python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """`Trainable` interface (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six @six.add_metaclass(abc.ABCMeta) class Trainable(object): """Interface for objects that are trainable by, e.g., `Experiment`. THIS CLASS IS DEPRECATED. """ @abc.abstractmethod def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): """Trains a model given training data `x` predictions and `y` labels. Args: x: Matrix of shape [n_samples, n_features...] or the dictionary of Matrices. Can be iterator that returns arrays of features or dictionary of arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs] or the dictionary of same. Can be iterator that returns array of labels or dictionary of array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. Note: For classification, label values must be integers representing the class index (i.e. values from 0 to n_classes-1). input_fn: Input function returning a tuple of: features - `Tensor` or dictionary of string feature name to `Tensor`. labels - `Tensor` or dictionary of `Tensor` with labels. If input_fn is set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. 'steps' works incrementally. If you call two times fit(steps=10) then training occurs in total 20 steps. If you don't want to have incremental behavior please set `max_steps` instead. If set, `max_steps` must be `None`. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. max_steps: Number of total steps for which to train model. If `None`, train forever. If set, `steps` must be `None`. Two calls to `fit(steps=100)` means 200 training iterations. On the other hand, two calls to `fit(max_steps=100)` means that the second call will not do any iteration since first call did all 100 steps. Returns: `self`, for chaining. """ raise NotImplementedError
tensorflow-master
tensorflow/contrib/learn/python/learn/trainable.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Monitors instrument the training process (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. @@get_default_monitors @@BaseMonitor @@CaptureVariable @@CheckpointSaver @@EveryN @@ExportMonitor @@GraphDump @@LoggingTrainable @@NanLoss @@PrintTensor @@StepCounter @@StopAtStep @@SummarySaver @@ValidationMonitor """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import time import numpy as np import six from tensorflow.core.framework.summary_pb2 import Summary from tensorflow.core.util.event_pb2 import SessionLog from tensorflow.python.estimator import estimator as core_estimator from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary as core_summary from tensorflow.python.training import checkpoint_management from tensorflow.python.training import session_run_hook from tensorflow.python.training import training_util from tensorflow.python.util import deprecation from tensorflow.python.util import tf_inspect # TODO(ptucker): Split each monitor class into a separate file. # TODO(ptucker): Fail if epoch or step does not monotonically increase? class BaseMonitor(object): """Base class for Monitors. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Defines basic interfaces of Monitors. Monitors can either be run on all workers or, more commonly, restricted to run exclusively on the elected chief worker. """ @deprecation.deprecated( "2016-12-05", "Monitors are deprecated. Please use tf.train.SessionRunHook.") def __init__(self): self._begun = False self._current_epoch = None self._current_step = None self._max_steps = None self._estimator = None @property def run_on_all_workers(self): return False def set_estimator(self, estimator): """A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None. """ if estimator is None: raise ValueError("Missing estimator.") # TODO(mdan): This should fail if called twice with the same estimator. self._estimator = estimator def begin(self, max_steps=None): """Called at the beginning of training. When called, the default graph is the one we are executing. Args: max_steps: `int`, the maximum global step this training will run until. Raises: ValueError: if we've already begun a run. """ if self._begun: raise ValueError("begin called twice without end.") self._max_steps = max_steps self._begun = True def end(self, session=None): """Callback at the end of training/evaluation. Args: session: A `tf.compat.v1.Session` object that can be used to run ops. Raises: ValueError: if we've not begun a run. """ _ = session if not self._begun: raise ValueError("end called without begin.") self._max_steps = None self._begun = False def epoch_begin(self, epoch): """Begin epoch. Args: epoch: `int`, the epoch number. Raises: ValueError: if we've already begun an epoch, or `epoch` < 0. """ if self._current_epoch is not None: raise ValueError("epoch_begin called twice without epoch_end.") if epoch < 0: raise ValueError("Invalid epoch %s." % epoch) self._current_epoch = epoch def epoch_end(self, epoch): """End epoch. Args: epoch: `int`, the epoch number. Raises: ValueError: if we've not begun an epoch, or `epoch` number does not match. """ if self._current_epoch != epoch: raise ValueError("epoch_end expected %s but got %s.", self._current_epoch, epoch) self._current_epoch = None def step_begin(self, step): """Callback before training step begins. You may use this callback to request evaluation of additional tensors in the graph. Args: step: `int`, the current value of the global step. Returns: List of `Tensor` objects or string tensor names to be run. Raises: ValueError: if we've already begun a step, or `step` < 0, or `step` > `max_steps`. """ if (step < 0) or ((self._max_steps is not None) and (step > self._max_steps)): raise ValueError("Invalid step %s." % step) self._current_step = step return [] def step_end(self, step, output): # pylint: disable=unused-argument """Callback after training step finished. This callback provides access to the tensors/ops evaluated at this step, including the additional tensors for which evaluation was requested in `step_begin`. In addition, the callback has the opportunity to stop training by returning `True`. This is useful for early stopping, for example. Note that this method is not called if the call to `Session.run()` that followed the last call to `step_begin()` failed. Args: step: `int`, the current value of the global step. output: `dict` mapping `string` values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy `array`, for non-scalar tensors. Returns: `bool`. True if training should stop. Raises: ValueError: if we've not begun a step, or `step` number does not match. """ if self._current_step != step: raise ValueError("step_end expected %s but got %s.", self._current_step, step) self._current_step = None return False def post_step(self, step, session): # pylint: disable=unused-argument """Callback after the step is finished. Called after step_end and receives session to perform extra session.run calls. If failure occurred in the process, will be called as well. Args: step: `int`, global step of the model. session: `Session` object. """ _ = step, session def _extract_output(outputs, request): if request in outputs: return outputs[request] return outputs[request.name] class EveryN(BaseMonitor): """Base class for monitors that execute callbacks every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. This class adds three new callbacks: - every_n_step_begin - every_n_step_end - every_n_post_step The callbacks are executed every n steps, or optionally every step for the first m steps, where m and n can both be user-specified. When extending this class, note that if you wish to use any of the `BaseMonitor` callbacks, you must call their respective super implementation: def step_begin(self, step): super(ExampleMonitor, self).step_begin(step) return [] Failing to call the super implementation will cause unpredictable behavior. The `every_n_post_step()` callback is also called after the last step if it was not already called through the regular conditions. Note that `every_n_step_begin()` and `every_n_step_end()` do not receive that special treatment. """ # TODO(ipolosukhin): Add also every n seconds. def __init__(self, every_n_steps=100, first_n_steps=1): """Initializes an `EveryN` monitor. Args: every_n_steps: `int`, the number of steps to allow between callbacks. first_n_steps: `int`, specifying the number of initial steps during which the callbacks will always be executed, regardless of the value of `every_n_steps`. Note that this value is relative to the global step """ super(EveryN, self).__init__() self._every_n_steps = every_n_steps self._first_n_steps = first_n_steps # Last step in the model. self._last_successful_step = None # Last step at which we called one of the every_n methods self._last_active_step = 0 self._every_n_step_begin_called = False def every_n_step_begin(self, step): # pylint: disable=unused-argument """Callback before every n'th step begins. Args: step: `int`, the current value of the global step. Returns: A `list` of tensors that will be evaluated at this step. """ return [] def every_n_step_end(self, step, outputs): # pylint: disable=unused-argument """Callback after every n'th step finished. This callback provides access to the tensors/ops evaluated at this step, including the additional tensors for which evaluation was requested in `step_begin`. In addition, the callback has the opportunity to stop training by returning `True`. This is useful for early stopping, for example. Args: step: `int`, the current value of the global step. outputs: `dict` mapping `string` values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy `array`, for non-scalar tensors. Returns: `bool`. True if training should stop. """ return False def every_n_post_step(self, step, session): """Callback after a step is finished or `end()` is called. Args: step: `int`, the current value of the global step. session: `Session` object. """ pass def step_begin(self, step): """Overrides `BaseMonitor.step_begin`. When overriding this method, you must call the super implementation. Args: step: `int`, the current value of the global step. Returns: A `list`, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step. """ super(EveryN, self).step_begin(step) if (step <= self._first_n_steps or step >= (self._every_n_steps + self._last_active_step) or step == self._max_steps): # Note: max_steps can be None here. self._every_n_step_begin_called = True return self.every_n_step_begin(step) self._every_n_step_begin_called = False return [] def step_end(self, step, output): """Overrides `BaseMonitor.step_end`. When overriding this method, you must call the super implementation. Args: step: `int`, the current value of the global step. output: `dict` mapping `string` values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy `array`, for non-scalar tensors. Returns: `bool`, the result of every_n_step_end, if that was called this step, or `False` otherwise. """ super(EveryN, self).step_end(step, output) if self._every_n_step_begin_called: return self.every_n_step_end(step, output) return False def post_step(self, step, session): super(EveryN, self).post_step(step, session) if self._every_n_step_begin_called: self.every_n_post_step(step, session) self._last_active_step = step self._last_successful_step = step def end(self, session=None): super(EveryN, self).end(session=session) if self._last_successful_step != self._last_active_step: self.every_n_post_step(self._last_successful_step, session) class StopAtStep(BaseMonitor): """Monitor to request stop at a specified step.""" def __init__(self, num_steps=None, last_step=None): """Create a StopAtStep monitor. This monitor requests stop after either a number of steps have been executed or a last step has been reached. Only of the two options can be specified. if `num_steps` is specified, it indicates the number of steps to execute after `begin()` is called. If instead `last_step` is specified, it indicates the last step we want to execute, as passed to the `step_begin()` call. Args: num_steps: Number of steps to execute. last_step: Step after which to stop. Raises: ValueError: If one of the arguments is invalid. """ super(StopAtStep, self).__init__() if num_steps is None and last_step is None: raise ValueError("One of num_steps or last_step must be specified.") if num_steps is not None and last_step is not None: raise ValueError("Only one of num_steps or last_step can be specified.") self._num_steps = num_steps self._last_step = last_step @property def run_on_all_workers(self): return True def step_begin(self, step): super(StopAtStep, self).step_begin(step) if self._last_step is None: self._last_step = step + self._num_steps - 1 return [] def step_end(self, step, output): super(StopAtStep, self).step_end(step, output) return step >= self._last_step # TODO(ptucker): Rename to LoggingTensor since it's not writing to stdout. class PrintTensor(EveryN): """Prints given tensors every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. This is an `EveryN` monitor and has consistent semantic for `every_n` and `first_n`. The tensors will be printed to the log, with `INFO` severity. """ def __init__(self, tensor_names, every_n=100, first_n=1): """Initializes a PrintTensor monitor. Args: tensor_names: `dict` of tag to tensor names or `iterable` of tensor names (strings). every_n: `int`, print every N steps. See `PrintN.` first_n: `int`, also print the first N steps. See `PrintN.` """ super(PrintTensor, self).__init__(every_n, first_n) if not isinstance(tensor_names, dict): tensor_names = {item: item for item in tensor_names} self._tensor_names = tensor_names def every_n_step_begin(self, step): super(PrintTensor, self).every_n_step_begin(step) return list(self._tensor_names.values()) def every_n_step_end(self, step, outputs): super(PrintTensor, self).every_n_step_end(step, outputs) stats = [] for tag, tensor_name in six.iteritems(self._tensor_names): if tensor_name in outputs: stats.append("%s = %s" % (tag, str(_extract_output(outputs, tensor_name)))) logging.info("Step %d: %s", step, ", ".join(stats)) class LoggingTrainable(EveryN): """Writes trainable variable values into log every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Write the tensors in trainable variables `every_n` steps, starting with the `first_n`th step. """ def __init__(self, scope=None, every_n=100, first_n=1): """Initializes LoggingTrainable monitor. Args: scope: An optional string to match variable names using re.match. every_n: Print every N steps. first_n: Print first N steps. """ super(LoggingTrainable, self).__init__(every_n, first_n) self._scope = scope def every_n_step_begin(self, step): super(LoggingTrainable, self).every_n_step_begin(step) # Get a list of trainable variables at the beginning of every N steps. # We cannot get this in __init__ because train_op has not been generated. trainables = ops.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES, scope=self._scope) self._names = {} for var in trainables: self._names[var.name] = var.value().name return list(self._names.values()) def every_n_step_end(self, step, outputs): super(LoggingTrainable, self).every_n_step_end(step, outputs) stats = [] for tag, tensor_name in six.iteritems(self._names): if tensor_name in outputs: stats.append("%s = %s" % (tag, str(_extract_output(outputs, tensor_name)))) logging.info("Logging Trainable: Step %d: %s", step, ", ".join(stats)) class SummarySaver(EveryN): """Saves summaries every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, summary_op, save_steps=100, output_dir=None, summary_writer=None, scaffold=None): """Initializes a `SummarySaver` monitor. Args: summary_op: `Tensor` of type `string`. A serialized `Summary` protocol buffer, as output by TF summary methods like `summary.scalar` or `summary.merge_all`. save_steps: `int`, save summaries every N steps. See `EveryN`. output_dir: `string`, the directory to save the summaries to. Only used if no `summary_writer` is supplied. summary_writer: `SummaryWriter`. If `None` and an `output_dir` was passed, one will be created accordingly. scaffold: `Scaffold` to get summary_op if it's not provided. """ # TODO(ipolosukhin): Implement every N seconds. super(SummarySaver, self).__init__(every_n_steps=save_steps) self._summary_op = summary_op self._summary_writer = summary_writer if summary_writer is None and output_dir: self._summary_writer = core_summary.FileWriter(output_dir) self._scaffold = scaffold # TODO(mdan): Throw an error if output_dir and summary_writer are None. def set_estimator(self, estimator): super(SummarySaver, self).set_estimator(estimator) # TODO(mdan): This line looks redundant. if self._summary_writer is None: self._summary_writer = core_summary.FileWriter(estimator.model_dir) def every_n_step_begin(self, step): super(SummarySaver, self).every_n_step_begin(step) if self._summary_op is None and self._scaffold is not None: self._summary_op = self._scaffold.summary_op if self._summary_op is not None: return [self._summary_op] return [] def every_n_step_end(self, step, outputs): super(SummarySaver, self).every_n_step_end(step, outputs) if self._summary_op is not None: summary_strs = _extract_output(outputs, self._summary_op) if self._summary_writer: self._summary_writer.add_summary(summary_strs, step) return False def end(self, session=None): super(SummarySaver, self).end(session=session) if self._summary_writer: self._summary_writer.flush() class ValidationMonitor(EveryN): """Runs evaluation of a given estimator, at most every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Note that the evaluation is done based on the saved checkpoint, which will usually be older than the current step. Can do early stopping on validation metrics if `early_stopping_rounds` is provided. """ def __init__(self, x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, hooks=None, early_stopping_rounds=None, early_stopping_metric="loss", early_stopping_metric_minimize=True, name=None, check_interval_secs=5): """Initializes a ValidationMonitor. Args: x: See `BaseEstimator.evaluate`. y: See `BaseEstimator.evaluate`. input_fn: See `BaseEstimator.evaluate`. batch_size: See `BaseEstimator.evaluate`. eval_steps: See `BaseEstimator.evaluate`. every_n_steps: Check for new checkpoints to evaluate every N steps. If a new checkpoint is found, it is evaluated. See `EveryN`. metrics: See `BaseEstimator.evaluate`. hooks: A list of `SessionRunHook` hooks to pass to the `Estimator`'s `evaluate` function. early_stopping_rounds: `int`. If the metric indicated by `early_stopping_metric` does not change according to `early_stopping_metric_minimize` for this many steps, then training will be stopped. early_stopping_metric: `string`, name of the metric to check for early stopping. early_stopping_metric_minimize: `bool`, True if `early_stopping_metric` is expected to decrease (thus early stopping occurs when this metric stops decreasing), False if `early_stopping_metric` is expected to increase. Typically, `early_stopping_metric_minimize` is True for loss metrics like mean squared error, and False for performance metrics like accuracy. name: See `BaseEstimator.evaluate`. check_interval_secs: Only check for new checkpoint if at least `check_interval_secs` have passed. Ignore if None. Default is 5 secs. Raises: ValueError: If both x and input_fn are provided. """ super(ValidationMonitor, self).__init__( every_n_steps=every_n_steps, first_n_steps=-1) # TODO(mdan): Checks like this are already done by evaluate. if x is None and input_fn is None: raise ValueError("Either x or input_fn should be provided.") self.x = x self.y = y self.input_fn = input_fn self.batch_size = batch_size self.eval_steps = eval_steps self.metrics = metrics self.hooks = hooks self.early_stopping_rounds = early_stopping_rounds self.early_stopping_metric = early_stopping_metric self.early_stopping_metric_minimize = early_stopping_metric_minimize self.name = name self._best_value_step = None self._best_value = None self._best_metrics = None self._early_stopped = False self._latest_path = None self._latest_path_step = None self._last_checkpoint_check_time = None self._check_interval_secs = check_interval_secs @property def early_stopped(self): """Returns True if this monitor caused an early stop.""" return self._early_stopped @property def best_step(self): """Returns the step at which the best early stopping metric was found.""" return self._best_value_step @property def best_value(self): """Returns the best early stopping metric value found so far.""" return self._best_value @property def best_metrics(self): """Returns all eval metrics computed with the best early stopping metric. For instance, if the metrics computed in two successive evals are 1. {'loss':40, 'auc':0.5} 2. {'loss':50, 'auc':0.6} this function would return the first dict {'loss':40, 'auc':0.5} after both first and second eval (if `early_stopping_metric` is 'loss' and `early_stopping_metric_minimize` is True). Returns: The output dict of estimator.evaluate which contains the best value of the early stopping metric seen so far. """ return self._best_metrics def _evaluate_estimator(self): if isinstance(self._estimator, core_estimator.Estimator): if any((x is not None for x in [self.x, self.y, self.batch_size, self.metrics])): raise ValueError( "tf.estimator.Estimator does not support following " "arguments: x, y, batch_size, metrics. Should set as `None` " "in ValidationMonitor") return self._estimator.evaluate( input_fn=self.input_fn, steps=self.eval_steps, hooks=self.hooks, name=self.name) else: return self._estimator.evaluate( x=self.x, y=self.y, input_fn=self.input_fn, batch_size=self.batch_size, steps=self.eval_steps, metrics=self.metrics, hooks=self.hooks, name=self.name) def every_n_step_end(self, step, outputs): super(ValidationMonitor, self).every_n_step_end(step, outputs) # TODO(mdan): The use of step below is probably misleading. # The code should probably use the step from the checkpoint, because # that's what is being evaluated. if self._estimator is None: raise ValueError("Missing call to set_estimator.") current_time = time.time() if (self._check_interval_secs is not None and self._last_checkpoint_check_time is not None and current_time - self._last_checkpoint_check_time <= self._check_interval_secs): logging.debug( "Skipping evaluation since less than %d seconds have passed since " "last check for a new checkpoint.", self._check_interval_secs) return False self._last_checkpoint_check_time = current_time # Check that we are not running evaluation on the same checkpoint. latest_path = checkpoint_management.latest_checkpoint( self._estimator.model_dir) if latest_path is None: logging.debug("Skipping evaluation since model has not been saved yet " "at step %d.", step) return False if latest_path is not None and latest_path == self._latest_path: logging.debug("Skipping evaluation due to same checkpoint %s for step %d " "as for step %d.", latest_path, step, self._latest_path_step) return False self._latest_path = latest_path self._latest_path_step = step # Run evaluation and log it. validation_outputs = self._evaluate_estimator() stats = [] for name in validation_outputs: stats.append("%s = %s" % (name, str(validation_outputs[name]))) logging.info("Validation (step %d): %s", step, ", ".join(stats)) # Early stopping logic. if self.early_stopping_rounds is not None: if self.early_stopping_metric not in validation_outputs: raise ValueError("Metric %s missing from outputs %s." % (self.early_stopping_metric, set(validation_outputs.keys()))) current_value = validation_outputs[self.early_stopping_metric] if (self._best_value is None or (self.early_stopping_metric_minimize and (current_value < self._best_value)) or (not self.early_stopping_metric_minimize and (current_value > self._best_value))): self._best_value = current_value self._best_metrics = copy.deepcopy(validation_outputs) self._best_value_step = step stop_now = (step - self._best_value_step >= self.early_stopping_rounds) if stop_now: logging.info("Stopping. Best step: {} with {} = {}.".format( self._best_value_step, self.early_stopping_metric, self._best_value)) self._early_stopped = True return True return False # TODO(ptucker): This really reads any tensor, not just vars, and requires the # ':0' suffix on var_name. class CaptureVariable(EveryN): """Captures a variable's values into a collection. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. This monitor is useful for unit testing. You should exercise caution when using this monitor in production, since it never discards values. This is an `EveryN` monitor and has consistent semantic for `every_n` and `first_n`. """ def __init__(self, var_name, every_n=100, first_n=1): """Initializes a CaptureVariable monitor. Args: var_name: `string`. The variable name, including suffix (typically ":0"). every_n: `int`, print every N steps. See `PrintN.` first_n: `int`, also print the first N steps. See `PrintN.` """ super(CaptureVariable, self).__init__(every_n, first_n) self._var_name = var_name self._var_values = {} @property def values(self): """Returns the values captured so far. Returns: `dict` mapping `int` step numbers to that values of the variable at the respective step. """ return self._var_values def every_n_step_begin(self, step): super(CaptureVariable, self).every_n_step_begin(step) return [self._var_name] def every_n_step_end(self, step, outputs): super(CaptureVariable, self).every_n_step_end(step, outputs) self._var_values[step] = _extract_output(outputs, self._var_name) @deprecation.deprecated(None, "Use tf.train.MonitoredTrainingSession.") def get_default_monitors(loss_op=None, summary_op=None, save_summary_steps=100, output_dir=None, summary_writer=None): """Returns a default set of typically-used monitors. Args: loss_op: `Tensor`, the loss tensor. This will be printed using `PrintTensor` at the default interval. summary_op: See `SummarySaver`. save_summary_steps: See `SummarySaver`. output_dir: See `SummarySaver`. summary_writer: See `SummarySaver`. Returns: `list` of monitors. """ monitors = [] if loss_op is not None: monitors.append(PrintTensor(tensor_names={"loss": loss_op.name})) if summary_op is not None: monitors.append( SummarySaver( summary_op, save_steps=save_summary_steps, output_dir=output_dir, summary_writer=summary_writer)) return monitors class GraphDump(BaseMonitor): """Dumps almost all tensors in the graph at every step. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Note, this is very expensive, prefer `PrintTensor` in production. """ IGNORE_OPS = [ "Const", "Assign", "Identity", "Placeholder", "RandomUniform", "Cast", "RestoreSlice" ] def __init__(self, ignore_ops=None): """Initializes GraphDump monitor. Args: ignore_ops: `list` of `string`. Names of ops to ignore. If None, `GraphDump.IGNORE_OPS` is used. """ super(GraphDump, self).__init__() self._ignore_ops = ignore_ops or GraphDump.IGNORE_OPS self._data = {} def begin(self, max_steps=None): super(GraphDump, self).begin(max_steps=max_steps) self._tensors = [] graph = ops.get_default_graph() graph_def = graph.as_graph_def() for node in graph_def.node: if node.op in self._ignore_ops: continue logging.info("op=%s name=%s.", node.op, node.name) try: self._tensors.append(graph.get_tensor_by_name(node.name + ":0")) except KeyError: pass def step_begin(self, step): super(GraphDump, self).step_begin(step) return self._tensors def step_end(self, step, output): super(GraphDump, self).step_end(step, output) self._data[step] = output @property def data(self): return self._data # TODO(ptucker): Handle keys that are in one but not the other. def compare(self, other_dump, step, atol=1e-06): """Compares two `GraphDump` monitors and returns differences. Args: other_dump: Another `GraphDump` monitor. step: `int`, step to compare on. atol: `float`, absolute tolerance in comparison of floating arrays. Returns: Returns tuple: matched: `list` of keys that matched. non_matched: `dict` of keys to tuple of 2 mismatched values. Raises: ValueError: if a key in `data` is missing from `other_dump` at `step`. """ non_matched = {} matched = [] this_output = self.data[step] if step in self.data else {} other_output = other_dump.data[step] if step in other_dump.data else {} for key in this_output: if not isinstance(key, six.string_types): continue if key not in other_output: raise ValueError("%s missing at step %s.", (key, step)) value1 = _extract_output(this_output, key) value2 = _extract_output(other_output, key) if isinstance(value1, str): continue if isinstance(value1, np.ndarray): if not np.allclose(value1, value2, atol=atol): non_matched[key] = value1 - value2 else: matched.append(key) else: if value1 != value2: non_matched[key] = (value1, value2) else: matched.append(key) return matched, non_matched class ExportMonitor(EveryN): """Monitor that exports Estimator every N steps. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecation.deprecated("2017-03-25", "ExportMonitor is deprecated. Please pass an " "ExportStrategy to Experiment instead.") def __init__(self, every_n_steps, export_dir, input_fn=None, input_feature_key=None, exports_to_keep=5, signature_fn=None, default_batch_size=1): """Initializes ExportMonitor. Args: every_n_steps: Run monitor every N steps. export_dir: str, folder to export. input_fn: A function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: String key into the features dict returned by `input_fn` that corresponds to the raw `Example` strings `Tensor` that the exported model will take as input. Should be `None` if and only if you're passing in a `signature_fn` that does not use the first arg (`Tensor` of `Example` strings). exports_to_keep: int, number of exports to keep. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `dict` of `Tensor`s for predictions. default_batch_size: Default batch size of the `Example` placeholder. Raises: ValueError: If `input_fn` and `input_feature_key` are not both defined or are not both `None`. """ super(ExportMonitor, self).__init__(every_n_steps=every_n_steps) self._export_dir = export_dir self._input_fn = input_fn self._input_feature_key = input_feature_key self._use_deprecated_input_fn = input_fn is None self._exports_to_keep = exports_to_keep self._signature_fn = signature_fn self._default_batch_size = default_batch_size self._last_export_dir = None @property def export_dir(self): return self._export_dir @property def exports_to_keep(self): return self._exports_to_keep @property def signature_fn(self): return self._signature_fn @property def last_export_dir(self): """Returns the directory containing the last completed export. Returns: The string path to the exported directory. NB: this functionality was added on 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because the estimator being fitted does not yet return a value during export. """ return self._last_export_dir def every_n_step_end(self, step, outputs): super(ExportMonitor, self).every_n_step_end(step, outputs) try: if isinstance(self._estimator, core_estimator.Estimator): raise ValueError( "ExportMonitor does not support `tf.estimator.Estimator. `. " "Please pass an ExportStrategy to Experiment instead.") self._last_export_dir = self._estimator.export( self.export_dir, exports_to_keep=self.exports_to_keep, signature_fn=self.signature_fn, input_fn=self._input_fn, default_batch_size=self._default_batch_size, input_feature_key=self._input_feature_key, use_deprecated_input_fn=self._use_deprecated_input_fn) except RuntimeError: # Currently we are not syncronized with saving checkpoints, which leads to # runtime errors when we are calling export on the same global step. # Exports depend on saved checkpoints for constructing the graph and # getting the global step from the graph instance saved in the checkpoint. # If the checkpoint is stale with respect to current step, the global step # is taken to be the last saved checkpoint's global step and exporter # doesn't export the same checkpoint again with the following error. logging.info("Skipping exporting because the existing checkpoint has " "already been exported. " "Consider exporting less frequently.") def end(self, session=None): super(ExportMonitor, self).end(session=session) latest_path = checkpoint_management.latest_checkpoint( self._estimator.model_dir) if latest_path is None: logging.info("Skipping export at the end since model has not been saved " "yet.") return if isinstance(self._estimator, core_estimator.Estimator): raise ValueError( "ExportMonitor does not support `tf.estimator.Estimator. `. " "Please pass an ExportStrategy to Experiment instead.") try: self._last_export_dir = self._estimator.export( self.export_dir, exports_to_keep=self.exports_to_keep, signature_fn=self.signature_fn, input_fn=self._input_fn, default_batch_size=self._default_batch_size, input_feature_key=self._input_feature_key, use_deprecated_input_fn=self._use_deprecated_input_fn) except RuntimeError: logging.info("Skipping exporting for the same step.") class CheckpointSaver(BaseMonitor): """Saves checkpoints every N steps or N seconds. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_basename="model.ckpt", scaffold=None): """Initialize CheckpointSaver monitor. Args: checkpoint_dir: `str`, base directory for the checkpoint files. save_secs: `int`, save every N secs. save_steps: `int`, save every N steps. saver: `Saver` object, used for saving. checkpoint_basename: `str`, base name for the checkpoint files. scaffold: `Scaffold`, use to get saver object. Raises: ValueError: If both `save_steps` and `save_secs` are not `None`. ValueError: If both `save_steps` and `save_secs` are `None`. """ logging.info("Create CheckpointSaver.") super(CheckpointSaver, self).__init__() self._saver = saver self._summary_writer = core_summary.FileWriterCache.get(checkpoint_dir) self._save_path = os.path.join(checkpoint_dir, checkpoint_basename) self._scaffold = scaffold self._save_secs = save_secs self._save_steps = save_steps self._last_saved_time = None self._last_begin_step = None self._last_saved_step = None if save_steps is None and save_secs is None: raise ValueError("Either save_steps or save_secs should be provided") if (save_steps is not None) and (save_secs is not None): raise ValueError("Can not provide both save_steps and save_secs.") def begin(self, max_steps=None): super(CheckpointSaver, self).begin(max_steps) self._last_saved_time = None self._last_begin_step = None self._last_saved_step = None def step_begin(self, step): super(CheckpointSaver, self).step_begin(step) self._last_begin_step = step def post_step(self, step, session): super(CheckpointSaver, self).post_step(step, session) if self._last_saved_time is None: self._save(step, session) if self._save_steps is not None: if step >= self._last_saved_step + self._save_steps: self._save(step, session) if self._save_secs is not None: if time.time() >= self._last_saved_time + self._save_secs: self._save(step, session) def end(self, session=None): super(CheckpointSaver, self).end(session) self._save(self._last_begin_step, session) def _save(self, step, session): """Saves the latest checkpoint.""" if step == self._last_saved_step: return logging.info("Saving checkpoints for %d into %s.", step, self._save_path) self._last_saved_time = time.time() self._last_saved_step = step if self._saver is None: self._scaffold.saver.save(session, self._save_path, global_step=step) else: self._saver.save(session, self._save_path, global_step=step) self._summary_writer.add_session_log( SessionLog( status=SessionLog.CHECKPOINT, checkpoint_path=self._save_path), step) class StepCounter(EveryN): """Steps per second monitor. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, every_n_steps=100, output_dir=None, summary_writer=None): super(StepCounter, self).__init__(every_n_steps=every_n_steps) self._summary_tag = "global_step/sec" self._last_reported_step = None self._last_reported_time = None self._summary_writer = summary_writer if summary_writer is None and output_dir: self._summary_writer = core_summary.FileWriterCache.get(output_dir) def set_estimator(self, estimator): super(StepCounter, self).set_estimator(estimator) if self._summary_writer is None: self._summary_writer = core_summary.FileWriterCache.get( estimator.model_dir) def every_n_step_end(self, current_step, outputs): current_time = time.time() if self._last_reported_time is not None and self._summary_writer: added_steps = current_step - self._last_reported_step elapsed_time = current_time - self._last_reported_time steps_per_sec = added_steps / elapsed_time summary = Summary(value=[ Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec) ]) self._summary_writer.add_summary(summary, current_step) self._last_reported_step = current_step self._last_reported_time = current_time class NanLossDuringTrainingError(RuntimeError): def __str__(self): return "NaN loss during training." class NanLoss(EveryN): """NaN Loss monitor. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Monitors loss and stops training if loss is NaN. Can either fail with exception or just stop training. """ def __init__(self, loss_tensor, every_n_steps=100, fail_on_nan_loss=True): """Initializes NanLoss monitor. Args: loss_tensor: `Tensor`, the loss tensor. every_n_steps: `int`, run check every this many steps. fail_on_nan_loss: `bool`, whether to raise exception when loss is NaN. """ super(NanLoss, self).__init__(every_n_steps=every_n_steps) self._loss_tensor = loss_tensor self._fail_on_nan_loss = fail_on_nan_loss def every_n_step_begin(self, step): super(NanLoss, self).every_n_step_begin(step) return [self._loss_tensor] def every_n_step_end(self, step, outputs): super(NanLoss, self).every_n_step_end(step, outputs) if np.isnan(_extract_output(outputs, self._loss_tensor)): failure_message = "Model diverged with loss = NaN." if self._fail_on_nan_loss: logging.error(failure_message) raise NanLossDuringTrainingError else: logging.warning(failure_message) # We don't raise an error but we return "should stop" so we stop, but # without an exception. return True class RunHookAdapterForMonitors(session_run_hook.SessionRunHook): """Wraps monitors into a SessionRunHook.""" def __init__(self, monitors): self._monitors = monitors def begin(self): self._last_step = None self._global_step_tensor = training_util.get_global_step() for m in self._monitors: m.begin(max_steps=None) def before_run(self, run_context): if self._last_step is None: self._last_step = run_context.session.run(self._global_step_tensor) + 1 request = {self._global_step_tensor: self._global_step_tensor} monitor_fetches = [] for m in self._monitors: monitor_requests = m.step_begin(self._last_step) if monitor_requests: if not isinstance(monitor_requests, list): raise ValueError("Monitor.step_begin should return a list.") monitor_fetches.extend(monitor_requests) if monitor_fetches: request["monitors"] = dict( zip(monitor_fetches, [_as_graph_element(f) for f in monitor_fetches])) return session_run_hook.SessionRunArgs(request) def after_run(self, run_context, run_values): result = run_values.results[ "monitors"] if "monitors" in run_values.results else {} for m in self._monitors: induce_stop = m.step_end(self._last_step, result) if induce_stop: run_context.request_stop() for m in self._monitors: m.post_step(self._last_step, run_context.session) self._last_step = run_values.results[self._global_step_tensor] + 1 def end(self, session): self._last_step = None for m in self._monitors: if "session" in tf_inspect.getargspec(m.end).args: m.end(session=session) else: m.end() def replace_monitors_with_hooks(monitors_or_hooks, estimator): """Wraps monitors with a hook. `Monitor` is deprecated in favor of `SessionRunHook`. If you're using a monitor, you can wrap it with a hook using function. It is recommended to implement hook version of your monitor. Args: monitors_or_hooks: A `list` may contain both monitors and hooks. estimator: An `Estimator` that monitor will be used with. Returns: Returns a list of hooks. If there is any monitor in the given list, it is replaced by a hook. """ monitors_or_hooks = monitors_or_hooks or [] hooks = [ m for m in monitors_or_hooks if isinstance(m, session_run_hook.SessionRunHook) ] deprecated_monitors = [ m for m in monitors_or_hooks if not isinstance(m, session_run_hook.SessionRunHook) ] if not estimator.config.is_chief: # Prune list of monitor to the ones runnable on all workers. deprecated_monitors = [ m for m in deprecated_monitors if m.run_on_all_workers ] # Setup monitors. for monitor in deprecated_monitors: monitor.set_estimator(estimator) if deprecated_monitors: hooks.append(RunHookAdapterForMonitors(deprecated_monitors)) return hooks def _as_graph_element(obj): """Retrieves Graph element.""" graph = ops.get_default_graph() if not isinstance(obj, six.string_types): if not hasattr(obj, "graph") or obj.graph != graph: raise ValueError("Passed %s should have graph attribute that is equal " "to current graph %s." % (obj, graph)) return obj if ":" in obj: element = graph.as_graph_element(obj) else: element = graph.as_graph_element(obj + ":0") # Check that there is no :1 (e.g. it's single output). try: graph.as_graph_element(obj + ":1") except (KeyError, ValueError): pass else: raise ValueError("Name %s is ambiguous, " "as this `Operation` has multiple outputs " "(at least 2)." % obj) return element
tensorflow-master
tensorflow/contrib/learn/python/learn/monitors.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """learn_main tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os from tensorflow.contrib.learn.python.learn import evaluable # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import run_config as run_config_lib from tensorflow.contrib.training.python.training import hparam as hparam_lib from tensorflow.python.estimator import run_config as core_run_config_lib from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging patch = test.mock.patch _MODIR_DIR = "/tmp" _HPARAMS = hparam_lib.HParams(learning_rate=0.01) _MUST_SPECIFY_OUTPUT_DIR_MSG = "Must specify an output directory" _MISSING_MODEL_DIR_ERR_MSG = ( "Must specify a model directory `model_dir` in `run_config`.") _EXP_NOT_CALLABLE_MSG = "Experiment builder .* is not callable" _INVALID_HPARAMS_ERR_MSG = "`hparams` must be `HParams` instance" _NOT_EXP_TYPE_MSG = "Experiment builder did not return an Experiment" _NON_EXIST_TASK_MSG = "Schedule references non-existent task" _NON_CALLABLE_MSG = "Schedule references non-callable member" _MUST_SPECIFY_OUTPUT_DIR_OR_CONFIG_MSG = ( "Must set value for `output_dir` or `run_config`") _HPARAMS_CANNOT_BE_SET_FOR_OUTPUT_DIR_MSG = ( "Must set `hparams` as None for `experiment_fn` with `output_dir`.") _CANNOT_SET_BOTH_OUTPUT_DIR_AND_CONFIG_MSG = ( "Cannot provide both `output_dir` and `run_config`") _INVALID_RUN_CONFIG_TYPE_MSG = ( "`run_config` must be `tf.contrib.learn.RunConfig` instance") _RUN_CONFIG_UID_CHECK_ERR_MSG = ( "`RunConfig` instance is expected to be used by the `Estimator`") _MISSING_RUN_CONFIG_UID_ERR_MSG = ( "Pass `run_config` argument of the `experiment_fn` to the Estimator") class TestExperiment(experiment.Experiment): def __init__(self, default=None, config=None, model_dir=None): self.default = default self.config = config internal_model_dir = model_dir or config.model_dir self._model_dir = internal_model_dir class Estimator(evaluable.Evaluable, trainable.Trainable): config = self.config @property def model_dir(self): return internal_model_dir def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): raise NotImplementedError def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None): raise NotImplementedError super(TestExperiment, self).__init__(Estimator(), None, None) def local_run(self): return "local_run-{}".format(self._model_dir) def train(self): return "train-{}".format(self._model_dir) def run_std_server(self): return "run_std_server-{}".format(self._model_dir) def train_and_evaluate(self): return "train_and_evaluate-{}".format(self._model_dir) def simple_task(self): return "simple_task, default=%s." % self.default # pylint: disable=unused-argument def build_experiment(output_dir): tf_logging.info("In default build_experiment.") return TestExperiment(model_dir=output_dir) def build_experiment_fn_for_output_dir(run_config=None): def _build_experiment(output_dir): tf_logging.info("In default build_experiment.") return TestExperiment(config=run_config, model_dir=output_dir) return _build_experiment def build_experiment_for_run_config(run_config, hparams): if hparams is not None and hparams != _HPARAMS: raise ValueError("hparams is not set correctly") return TestExperiment(config=run_config) def build_non_experiment(output_dir): return "Ceci n'est pas un Experiment." # pylint: enable=unused-argument def build_distributed_cluster_spec(): return { run_config_lib.TaskType.PS: ["localhost:1234", "localhost:1235"], run_config_lib.TaskType.WORKER: ["localhost:1236", "localhost:1237"], run_config_lib.TaskType.MASTER: ["localhost:1238"], "foo_has_no_default_schedule": ["localhost:1239"] } def build_non_distributed_cluster_spec(): return {"foo": ["localhost:1234"]} class LearnRunnerRunWithOutputDirTest(test.TestCase): def setUp(self): # Ensure the TF_CONFIG environment variable is unset for all tests. os.environ.pop("TF_CONFIG", None) def test_run_with_custom_schedule(self): self.assertEqual( "simple_task, default=None.", learn_runner.run(build_experiment, output_dir=_MODIR_DIR, schedule="simple_task")) def test_run_with_explicit_local_run(self): self.assertEqual( "local_run-" + _MODIR_DIR, learn_runner.run(build_experiment, output_dir=_MODIR_DIR, schedule="local_run")) def test_fail_output_dir_and_run_config_are_both_set(self): with self.assertRaisesRegexp( ValueError, _CANNOT_SET_BOTH_OUTPUT_DIR_AND_CONFIG_MSG): learn_runner.run(build_experiment, output_dir=_MODIR_DIR, schedule="simple_task", run_config=run_config_lib.RunConfig()) def test_fail_empty_output_dir(self): with self.assertRaisesRegexp(ValueError, _MUST_SPECIFY_OUTPUT_DIR_MSG): learn_runner.run(build_experiment, output_dir="", schedule="simple_task") def test_fail_no_output_dir(self): with self.assertRaisesRegexp( ValueError, _MUST_SPECIFY_OUTPUT_DIR_OR_CONFIG_MSG): learn_runner.run(build_experiment, None, "simple_task") def test_fail_hparams_are_set(self): hparams = _HPARAMS with self.assertRaisesRegexp( ValueError, _HPARAMS_CANNOT_BE_SET_FOR_OUTPUT_DIR_MSG): learn_runner.run( build_experiment, _MODIR_DIR, schedule="simple_task", hparams=hparams) def test_fail_non_callable(self): with self.assertRaisesRegexp(TypeError, _EXP_NOT_CALLABLE_MSG): learn_runner.run("not callable", _MODIR_DIR, "simple_test") def test_fail_not_experiment(self): with self.assertRaisesRegexp(TypeError, _NOT_EXP_TYPE_MSG): learn_runner.run(build_non_experiment, _MODIR_DIR, "simple_test") def test_fail_non_existent_task(self): with self.assertRaisesRegexp(ValueError, _NON_EXIST_TASK_MSG): learn_runner.run(build_experiment, _MODIR_DIR, "mirage") def test_fail_non_callable_task(self): with self.assertRaisesRegexp(TypeError, _NON_CALLABLE_MSG): learn_runner.run(build_experiment, _MODIR_DIR, "default") class LearnRunnerRunWithRunConfigTest(test.TestCase): def setUp(self): # Ensure the TF_CONFIG environment variable is unset for all tests. os.environ.pop("TF_CONFIG", None) def test_run_with_custom_schedule(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) self.assertEqual( "simple_task, default=None.", learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="simple_task")) def test_run_with_hparams(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) self.assertEqual( "simple_task, default=None.", learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="simple_task", hparams=_HPARAMS)) def test_run_with_explicit_local_run(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) self.assertEqual( "local_run-" + _MODIR_DIR, learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="local_run")) def test_fail_empty_output_dir(self): run_config = run_config_lib.RunConfig(model_dir="") with self.assertRaisesRegexp(ValueError, _MISSING_MODEL_DIR_ERR_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="local_run") def test_fail_no_output_dir(self): run_config = run_config_lib.RunConfig() with self.assertRaisesRegexp(ValueError, _MISSING_MODEL_DIR_ERR_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="local_run") def test_fail_invalid_run_config_type(self): run_config = "invalid_run_config" with self.assertRaisesRegexp(ValueError, _INVALID_RUN_CONFIG_TYPE_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="local_run") def test_fail_invalid_hparams_type(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) with self.assertRaisesRegexp(ValueError, _INVALID_HPARAMS_ERR_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="local_run", hparams=["hparams"]) def test_fail_non_callable(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) with self.assertRaisesRegexp(TypeError, _EXP_NOT_CALLABLE_MSG): learn_runner.run("not callable", run_config=run_config, schedule="simple_task") def test_fail_not_experiment(self): def _experiment_fn(run_config, hparams): del run_config, hparams # unused. return "not experiment" run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) with self.assertRaisesRegexp(TypeError, _NOT_EXP_TYPE_MSG): learn_runner.run(_experiment_fn, run_config=run_config, schedule="simple_task") def test_fail_non_existent_task(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) with self.assertRaisesRegexp(ValueError, _NON_EXIST_TASK_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="mirage") def test_fail_non_callable_task(self): run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) with self.assertRaisesRegexp(TypeError, _NON_CALLABLE_MSG): learn_runner.run(build_experiment_for_run_config, run_config=run_config, schedule="default") def test_basic_run_config_uid_check(self): expected_run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) def _experiment_fn(run_config, hparams): del run_config, hparams # unused. # Explicitly use a new run_config. new_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR + "/123") return TestExperiment(config=new_config) with self.assertRaisesRegexp(RuntimeError, _RUN_CONFIG_UID_CHECK_ERR_MSG): learn_runner.run(experiment_fn=_experiment_fn, run_config=expected_run_config) def test_fail_invalid_experiment_config_type(self): expected_run_config = run_config_lib.RunConfig(model_dir=_MODIR_DIR) def _experiment_fn(run_config, hparams): del run_config, hparams # unused. # Explicitly use a new run_config without `uid` method. new_config = core_run_config_lib.RunConfig( model_dir=_MODIR_DIR + "/123") return TestExperiment(config=new_config) with self.assertRaisesRegexp(RuntimeError, _MISSING_RUN_CONFIG_UID_ERR_MSG): learn_runner.run(experiment_fn=_experiment_fn, run_config=expected_run_config) class LearnRunnerDefaultScheduleTest(test.TestCase): def setUp(self): # Ensure the TF_CONFIG environment variable is unset for all tests. os.environ.pop("TF_CONFIG", None) def test_schedule_from_tf_config_runs_train_on_worker(self): os.environ["TF_CONFIG"] = json.dumps({ "cluster": build_distributed_cluster_spec(), "task": { "type": run_config_lib.TaskType.WORKER } }) # RunConfig constructor will set job_name from TF_CONFIG. config = run_config_lib.RunConfig() self.assertEqual( "train-" + _MODIR_DIR, learn_runner.run( build_experiment_fn_for_output_dir(config), output_dir=_MODIR_DIR)) def test_schedule_from_tf_config_runs_train_and_evaluate_on_master(self): tf_config = { "cluster": build_distributed_cluster_spec(), "task": { "type": run_config_lib.TaskType.MASTER } } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual( "train_and_evaluate-" + _MODIR_DIR, learn_runner.run( build_experiment_fn_for_output_dir(config), output_dir=_MODIR_DIR)) def test_schedule_from_tf_config_runs_serve_on_ps(self): tf_config = { "cluster": build_distributed_cluster_spec(), "task": { "type": run_config_lib.TaskType.PS } } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual( "run_std_server-" + _MODIR_DIR, learn_runner.run( build_experiment_fn_for_output_dir(config), output_dir=_MODIR_DIR)) def test_no_schedule_and_no_config_runs_train_and_evaluate(self): self.assertEqual( "train_and_evaluate-" + _MODIR_DIR, learn_runner.run(build_experiment, output_dir=_MODIR_DIR)) def test_no_schedule_and_non_distributed_runs_train_and_evaluate(self): tf_config = {"cluster": build_non_distributed_cluster_spec()} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual( "train_and_evaluate-" + _MODIR_DIR, learn_runner.run( build_experiment_fn_for_output_dir(config), output_dir=_MODIR_DIR)) def test_fail_task_type_with_no_default_schedule(self): tf_config = { "cluster": build_distributed_cluster_spec(), "task": { "type": "foo_has_no_default_schedule" } } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() create_experiment_fn = lambda output_dir: TestExperiment(config=config) self.assertRaisesRegexp(ValueError, "No default schedule", learn_runner.run, create_experiment_fn, _MODIR_DIR) def test_fail_schedule_from_config_with_no_task_type(self): tf_config = {"cluster": build_distributed_cluster_spec()} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertRaisesRegexp( ValueError, "Must specify a schedule", learn_runner.run, lambda output_dir: TestExperiment(config=config), output_dir=_MODIR_DIR) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_runner_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow dict of numpy arrays (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.numpy_io import numpy_input_fn as core_numpy_input_fn from tensorflow.python.util.deprecation import deprecated @deprecated(None, 'Use tf.compat.v1.estimator.inputs.numpy_input_fn.') def numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1): """This input_fn diffs from the core version with default `shuffle`.""" return core_numpy_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads)
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/numpy_io.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn as core_pandas_input_fn from tensorflow.python.util.deprecation import deprecated try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } @deprecated(None, 'Please use tf.compat.v1.estimator.inputs.pandas_input_fn') def pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, target_column='target'): """This input_fn diffs from the core version with default `shuffle`.""" return core_pandas_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, target_column=target_column) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() @deprecated(None, 'Please access pandas data directly.') def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for pandas_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import pandas_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class PandasIoTest(test.TestCase): def makeTestDataFrame(self): index = np.arange(100, 104) a = np.arange(4) b = np.arange(32, 36) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -28), index=index) return x, y def callInputFnOnce(self, input_fn, session): results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) result_values = session.run(results) coord.request_stop() coord.join(threads) return result_values def testPandasInputFn_IndexMismatch(self): if not HAS_PANDAS: return x, _ = self.makeTestDataFrame() y_noindex = pd.Series(np.arange(-32, -28)) with self.assertRaises(ValueError): pandas_io.pandas_input_fn( x, y_noindex, batch_size=2, shuffle=False, num_epochs=1) def testPandasInputFn_ProducesExpectedOutputs(self): if not HAS_PANDAS: return with self.cached_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, target = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) def testPandasInputFn_ProducesOutputsForLargeBatchAndMultipleEpochs(self): if not HAS_PANDAS: return with self.cached_session() as session: index = np.arange(100, 102) a = np.arange(2) b = np.arange(32, 34) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -30), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=128, shuffle=False, num_epochs=2) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1, 0, 1]) self.assertAllEqual(features['b'], [32, 33, 32, 33]) self.assertAllEqual(target, [-32, -31, -32, -31]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_ProducesOutputsWhenDataSizeNotDividedByBatchSize(self): if not HAS_PANDAS: return with self.cached_session() as session: index = np.arange(100, 105) a = np.arange(5) b = np.arange(32, 37) x = pd.DataFrame({'a': a, 'b': b}, index=index) y = pd.Series(np.arange(-32, -27), index=index) input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) results = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) features, target = session.run(results) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) self.assertAllEqual(target, [-32, -31]) features, target = session.run(results) self.assertAllEqual(features['a'], [2, 3]) self.assertAllEqual(features['b'], [34, 35]) self.assertAllEqual(target, [-30, -29]) features, target = session.run(results) self.assertAllEqual(features['a'], [4]) self.assertAllEqual(features['b'], [36]) self.assertAllEqual(target, [-28]) with self.assertRaises(errors.OutOfRangeError): session.run(results) coord.request_stop() coord.join(threads) def testPandasInputFn_OnlyX(self): if not HAS_PANDAS: return with self.cached_session() as session: x, _ = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y=None, batch_size=2, shuffle=False, num_epochs=1) features = self.callInputFnOnce(input_fn, session) self.assertAllEqual(features['a'], [0, 1]) self.assertAllEqual(features['b'], [32, 33]) def testPandasInputFn_ExcludesIndex(self): if not HAS_PANDAS: return with self.cached_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1) features, _ = self.callInputFnOnce(input_fn, session) self.assertFalse('index' in features) def assertInputsCallableNTimes(self, input_fn, session, n): inputs = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) for _ in range(n): session.run(inputs) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def testPandasInputFn_RespectsEpoch_NoShuffle(self): if not HAS_PANDAS: return with self.cached_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=False, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffle(self): if not HAS_PANDAS: return with self.cached_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=4, shuffle=True, num_epochs=1) self.assertInputsCallableNTimes(input_fn, session, 1) def testPandasInputFn_RespectsEpoch_WithShuffleAutosize(self): if not HAS_PANDAS: return with self.cached_session() as session: x, y = self.makeTestDataFrame() input_fn = pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, queue_capacity=None, num_epochs=2) self.assertInputsCallableNTimes(input_fn, session, 4) def testPandasInputFn_RespectsEpochUnevenBatches(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() with self.cached_session() as session: input_fn = pandas_io.pandas_input_fn( x, y, batch_size=3, shuffle=False, num_epochs=1) # Before the last batch, only one element of the epoch should remain. self.assertInputsCallableNTimes(input_fn, session, 2) def testPandasInputFn_Idempotent(self): if not HAS_PANDAS: return x, y = self.makeTestDataFrame() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=False, num_epochs=1)() for _ in range(2): pandas_io.pandas_input_fn( x, y, batch_size=2, shuffle=True, num_epochs=1)() if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/pandas_io_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to allow different io formats (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_labels from tensorflow.contrib.learn.python.learn.learn_io.dask_io import HAS_DASK from tensorflow.contrib.learn.python.learn.learn_io.graph_io import queue_parsed_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_batch_record_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_examples_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features from tensorflow.contrib.learn.python.learn.learn_io.graph_io import read_keyed_batch_features_shared_queue from tensorflow.contrib.learn.python.learn.learn_io.numpy_io import numpy_input_fn from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_data from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_labels from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import extract_pandas_matrix from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.learn_io.pandas_io import pandas_input_fn from tensorflow.contrib.learn.python.learn.learn_io.generator_io import generator_input_fn
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow generator of dict with numpy arrays (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import Container from types import FunctionType from types import GeneratorType from tensorflow.python.estimator.inputs.queues.feeding_functions import _enqueue_data as enqueue_data from tensorflow.python.util.deprecation import deprecated @deprecated(None, 'Please use tf.data.') def generator_input_fn(x, target_key=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, pad_value=None): """Returns input function that returns dicts of numpy arrays yielded from a generator. It is assumed that every dict of numpy arrays yielded from the dictionary represents a single sample. The generator should consume a single epoch of the data. This returns a function outputting `features` and `target` based on the dict of numpy arrays. The dict `features` has the same keys as an element yielded from x. Example: ```python def generator(): for index in range(10): yield {'height': np.random.randint(32,36), 'age': np.random.randint(18, 80), 'label': np.ones(1)} with tf.compat.v1.Session() as session: input_fn = generator_io.generator_input_fn( generator, target_key="label", batch_size=2, shuffle=False, num_epochs=1) ``` Args: x: Generator Function, returns a `Generator` that will yield the data in `dict` of numpy arrays target_key: String or Container of Strings, the key or Container of keys of the numpy arrays in x dictionaries to use as target. batch_size: Integer, size of batches to return. num_epochs: Integer, number of epochs to iterate over data. If `None` will run forever. shuffle: Boolean, if True shuffles the queue. Avoid shuffle at prediction time. queue_capacity: Integer, size of queue to accumulate. num_threads: Integer, number of threads used for reading and enqueueing. pad_value: default value for dynamic padding of data samples, if provided. Returns: Function, that returns a feature `dict` with `Tensors` and an optional label `dict` with `Tensors`, or if target_key is `str` label is a `Tensor` Raises: TypeError: `x` is not `FunctionType`. TypeError: `x()` is not `GeneratorType`. TypeError: `next(x())` is not `dict`. TypeError: `target_key` is not `str` or `target_key` is not `Container` of `str`. KeyError: `target_key` not a key or `target_key[index]` not in next(`x()`). KeyError: `key` mismatch between dicts emitted from `x()` """ if not isinstance(x, FunctionType): raise TypeError( 'x must be generator function; got {}'.format(type(x).__name__)) generator = x() if not isinstance(generator, GeneratorType): raise TypeError( 'x() must be generator; got {}'.format(type(generator).__name__)) data = next(generator) if not isinstance(data, dict): raise TypeError('x() must yield dict; got {}'.format(type(data).__name__)) input_keys = sorted(next(x()).keys()) if target_key is not None: if isinstance(target_key, str): target_key = [target_key] elif isinstance(target_key, Container): for item in target_key: if not isinstance(item, str): raise TypeError('target_key must be str or Container of str; got {}'. format(type(item).__name__)) if item not in input_keys: raise KeyError( 'target_key not in yielded dict. Expected {} keys; got {}'.format( input_keys, item)) else: raise TypeError('target_key must be str or Container of str; got {}'. format(type(target_key).__name__)) def _generator_input_fn(): """generator input function.""" queue = enqueue_data( x, queue_capacity, shuffle=shuffle, num_threads=num_threads, enqueue_size=batch_size, num_epochs=num_epochs, pad_value=pad_value) features = (queue.dequeue_many(batch_size) if num_epochs is None else queue.dequeue_up_to(batch_size)) if not isinstance(features, list): features = [features] features = dict(zip(input_keys, features)) if target_key is not None: if len(target_key) > 1: target = {key: features.pop(key) for key in target_key} else: target = features.pop(target_key[0]) return features, target return features return _generator_input_fn
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/generator_io.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementations of different data feeders to provide data for TF trainer (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ # TODO(ipolosukhin): Replace this module with feed-dict queue runners & queues. from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import math import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.deprecation import deprecated # pylint: disable=g-multiple-import,g-bad-import-order from .pandas_io import HAS_PANDAS, extract_pandas_data, extract_pandas_matrix, extract_pandas_labels from .dask_io import HAS_DASK, extract_dask_data, extract_dask_labels # pylint: enable=g-multiple-import,g-bad-import-order def _get_in_out_shape(x_shape, y_shape, n_classes, batch_size=None): """Returns shape for input and output of the data feeder.""" x_is_dict, y_is_dict = isinstance( x_shape, dict), y_shape is not None and isinstance(y_shape, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) if batch_size is None: batch_size = list(x_shape.values())[0][0] if x_is_dict else x_shape[0] elif batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) if x_is_dict: input_shape = {} for k, v in list(x_shape.items()): input_shape[k] = [batch_size] + (list(v[1:]) if len(v) > 1 else [1]) else: x_shape = list(x_shape[1:]) if len(x_shape) > 1 else [1] input_shape = [batch_size] + x_shape if y_shape is None: return input_shape, None, batch_size def out_el_shape(out_shape, num_classes): out_shape = list(out_shape[1:]) if len(out_shape) > 1 else [] # Skip first dimension if it is 1. if out_shape and out_shape[0] == 1: out_shape = out_shape[1:] if num_classes is not None and num_classes > 1: return [batch_size] + out_shape + [num_classes] else: return [batch_size] + out_shape if not y_is_dict: output_shape = out_el_shape(y_shape, n_classes) else: output_shape = dict([(k, out_el_shape(v, n_classes[k] if n_classes is not None and k in n_classes else None)) for k, v in list(y_shape.items())]) return input_shape, output_shape, batch_size def _data_type_filter(x, y): """Filter data types into acceptable format.""" if HAS_DASK: x = extract_dask_data(x) if y is not None: y = extract_dask_labels(y) if HAS_PANDAS: x = extract_pandas_data(x) if y is not None: y = extract_pandas_labels(y) return x, y def _is_iterable(x): return hasattr(x, 'next') or hasattr(x, '__next__') @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_train_data_feeder(x, y, n_classes, batch_size=None, shuffle=True, epochs=None): """Create data feeder, to sample inputs from dataset. If `x` and `y` are iterators, use `StreamingDataFeeder`. Args: x: numpy, pandas or Dask matrix or dictionary of aforementioned. Also supports iterables. y: numpy, pandas or Dask array or dictionary of aforementioned. Also supports iterables. n_classes: number of classes. Must be None or same type as y. In case, `y` is `dict` (or iterable which returns dict) such that `n_classes[key] = n_classes for y[key]` batch_size: size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: DataFeeder object that returns training data. Raises: ValueError: if one of `x` and `y` is iterable and the other is not. """ x, y = _data_type_filter(x, y) if HAS_DASK: # pylint: disable=g-import-not-at-top import dask.dataframe as dd if (isinstance(x, (dd.Series, dd.DataFrame)) and (y is None or isinstance(y, (dd.Series, dd.DataFrame)))): data_feeder_cls = DaskDataFeeder else: data_feeder_cls = DataFeeder else: data_feeder_cls = DataFeeder if _is_iterable(x): if y is not None and not _is_iterable(y): raise ValueError('Both x and y should be iterators for ' 'streaming learning to work.') return StreamingDataFeeder(x, y, n_classes, batch_size) return data_feeder_cls( x, y, n_classes, batch_size, shuffle=shuffle, epochs=epochs) def _batch_data(x, batch_size=None): if (batch_size is not None) and (batch_size <= 0): raise ValueError('Invalid batch_size %d.' % batch_size) x_first_el = six.next(x) x = itertools.chain([x_first_el], x) chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False for data in x: if isinstance(data, dict): for k, v in list(data.items()): chunk[k].append(v) if (batch_size is not None) and (len(chunk[k]) >= batch_size): chunk[k] = np.matrix(chunk[k]) chunk_filled = True if chunk_filled: yield chunk chunk = dict([(k, []) for k in list(x_first_el.keys())]) if isinstance( x_first_el, dict) else [] chunk_filled = False else: chunk.append(data) if (batch_size is not None) and (len(chunk) >= batch_size): yield np.matrix(chunk) chunk = [] if isinstance(x_first_el, dict): for k, v in list(data.items()): chunk[k] = np.matrix(chunk[k]) yield chunk else: yield np.matrix(chunk) @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_predict_data_feeder(x, batch_size=None): """Returns an iterable for feeding into predict step. Args: x: numpy, pandas, Dask array or dictionary of aforementioned. Also supports iterable. batch_size: Size of batches to split data into. If `None`, returns one batch of full size. Returns: List or iterator (or dictionary thereof) of parts of data to predict on. Raises: ValueError: if `batch_size` <= 0. """ if HAS_DASK: x = extract_dask_data(x) if HAS_PANDAS: x = extract_pandas_data(x) if _is_iterable(x): return _batch_data(x, batch_size) if len(x.shape) == 1: x = np.reshape(x, (-1, 1)) if batch_size is not None: if batch_size <= 0: raise ValueError('Invalid batch_size %d.' % batch_size) n_batches = int(math.ceil(float(len(x)) / batch_size)) return [x[i * batch_size:(i + 1) * batch_size] for i in xrange(n_batches)] return [x] @deprecated(None, 'Please use tensorflow/transform or tf.data.') def setup_processor_data_feeder(x): """Sets up processor iterable. Args: x: numpy, pandas or iterable. Returns: Iterable of data to process. """ if HAS_PANDAS: x = extract_pandas_matrix(x) return x @deprecated(None, 'Please convert numpy dtypes explicitly.') def check_array(array, dtype): """Checks array on dtype and converts it if different. Args: array: Input array. dtype: Expected dtype. Returns: Original array or converted. """ # skip check if array is instance of other classes, e.g. h5py.Dataset # to avoid copying array and loading whole data into memory if isinstance(array, (np.ndarray, list)): array = np.array(array, dtype=dtype, order=None, copy=False) return array def _access(data, iloc): """Accesses an element from collection, using integer location based indexing. Args: data: array-like. The collection to access iloc: `int` or `list` of `int`s. Location(s) to access in `collection` Returns: The element of `a` found at location(s) `iloc`. """ if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if isinstance(data, pd.Series) or isinstance(data, pd.DataFrame): return data.iloc[iloc] return data[iloc] def _check_dtype(dtype): if dtypes.as_dtype(dtype) == dtypes.float64: logging.warn( 'float64 is not supported by many models, consider casting to float32.') return dtype class DataFeeder(object): """Data feeder is an example class to sample data for TF trainer. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please use tensorflow/transform or tf.data.') def __init__(self, x, y, n_classes, batch_size=None, shuffle=True, random_state=None, epochs=None): """Initializes a DataFeeder instance. Args: x: One feature sample which can either Nd numpy matrix of shape `[n_samples, n_features, ...]` or dictionary of Nd numpy matrix. y: label vector, either floats for regression or class id for classification. If matrix, will consider as a sequence of labels. Can be `None` for unsupervised setting. Also supports dictionary of labels. n_classes: Number of classes, 0 and 1 are considered regression, `None` will pass through the input labels without one-hot conversion. Also, if `y` is `dict`, then `n_classes` must be `dict` such that `n_classes[key] = n_classes for label y[key]`, `None` otherwise. batch_size: Mini-batch size to accumulate samples in one mini batch. shuffle: Whether to shuffle `x`. random_state: Numpy `RandomState` object to reproduce sampling. epochs: Number of times to iterate over input data before raising `StopIteration` exception. Attributes: x: Input features (ndarray or dictionary of ndarrays). y: Input label (ndarray or dictionary of ndarrays). n_classes: Number of classes (if `None`, pass through indices without one-hot conversion). batch_size: Mini-batch size to accumulate. input_shape: Shape of the input (or dictionary of shapes). output_shape: Shape of the output (or dictionary of shapes). input_dtype: DType of input (or dictionary of shapes). output_dtype: DType of output (or dictionary of shapes. """ x_is_dict, y_is_dict = isinstance( x, dict), y is not None and isinstance(y, dict) if isinstance(y, list): y = np.array(y) self._x = dict([(k, check_array(v, v.dtype)) for k, v in list(x.items()) ]) if x_is_dict else check_array(x, x.dtype) self._y = None if y is None else (dict( [(k, check_array(v, v.dtype)) for k, v in list(y.items())]) if y_is_dict else check_array(y, y.dtype)) # self.n_classes is not None means we're converting raw target indices # to one-hot. if n_classes is not None: if not y_is_dict: y_dtype = ( np.int64 if n_classes is not None and n_classes > 1 else np.float32) self._y = (None if y is None else check_array(y, dtype=y_dtype)) self.n_classes = n_classes self.max_epochs = epochs x_shape = dict([(k, v.shape) for k, v in list(self._x.items()) ]) if x_is_dict else self._x.shape y_shape = dict([(k, v.shape) for k, v in list(self._y.items()) ]) if y_is_dict else None if y is None else self._y.shape self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) # Input dtype matches dtype of x. self._input_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._x.items())]) if x_is_dict else _check_dtype(self._x.dtype)) # self._output_dtype == np.float32 when y is None self._output_dtype = ( dict([(k, _check_dtype(v.dtype)) for k, v in list(self._y.items())]) if y_is_dict else (_check_dtype(self._y.dtype) if y is not None else np.float32)) # self.n_classes is None means we're passing in raw target indices if n_classes is not None and y_is_dict: for key in list(n_classes.keys()): if key in self._output_dtype: self._output_dtype[key] = np.float32 self._shuffle = shuffle self.random_state = np.random.RandomState( 42) if random_state is None else random_state if x_is_dict: num_samples = list(self._x.values())[0].shape[0] elif tensor_util.is_tensor(self._x): num_samples = self._x.shape[ 0].value # shape will be a Dimension, extract an int else: num_samples = self._x.shape[0] if self._shuffle: self.indices = self.random_state.permutation(num_samples) else: self.indices = np.array(range(num_samples)) self.offset = 0 self.epoch = 0 self._epoch_placeholder = None @property def x(self): return self._x @property def y(self): return self._y @property def shuffle(self): return self._shuffle @property def input_dtype(self): return self._input_dtype @property def output_dtype(self): return self._output_dtype @property def batch_size(self): return self._batch_size def make_epoch_variable(self): """Adds a placeholder variable for the epoch to the graph. Returns: The epoch placeholder. """ self._epoch_placeholder = array_ops.placeholder( dtypes.int32, [1], name='epoch') return self._epoch_placeholder def input_builder(self): """Builds inputs in the graph. Returns: Two placeholders for inputs and outputs. """ def get_placeholder(shape, dtype, name_prepend): if shape is None: return None if isinstance(shape, dict): placeholder = {} for key in list(shape.keys()): placeholder[key] = array_ops.placeholder( dtypes.as_dtype(dtype[key]), [None] + shape[key][1:], name=name_prepend + '_' + key) else: placeholder = array_ops.placeholder( dtypes.as_dtype(dtype), [None] + shape[1:], name=name_prepend) return placeholder self._input_placeholder = get_placeholder(self.input_shape, self._input_dtype, 'input') self._output_placeholder = get_placeholder(self.output_shape, self._output_dtype, 'output') return self._input_placeholder, self._output_placeholder def set_placeholders(self, input_placeholder, output_placeholder): """Sets placeholders for this data feeder. Args: input_placeholder: Placeholder for `x` variable. Should match shape of the examples in the x dataset. output_placeholder: Placeholder for `y` variable. Should match shape of the examples in the y dataset. Can be `None`. """ self._input_placeholder = input_placeholder self._output_placeholder = output_placeholder def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return { 'epoch': self.epoch, 'offset': self.offset, 'batch_size': self._batch_size } def get_feed_dict_fn(self): """Returns a function that samples data into given placeholders. Returns: A function that when called samples a random subset of batch size from `x` and `y`. """ x_is_dict, y_is_dict = isinstance( self._x, dict), self._y is not None and isinstance(self._y, dict) # Assign input features from random indices. def extract(data, indices): return (np.array(_access(data, indices)).reshape((indices.shape[0], 1)) if len(data.shape) == 1 else _access(data, indices)) # assign labels from random indices def assign_label(data, shape, dtype, n_classes, indices): shape[0] = indices.shape[0] out = np.zeros(shape, dtype=dtype) for i in xrange(out.shape[0]): sample = indices[i] # self.n_classes is None means we're passing in raw target indices if n_classes is None: out[i] = _access(data, sample) else: if n_classes > 1: if len(shape) == 2: out.itemset((i, int(_access(data, sample))), 1.0) else: for idx, value in enumerate(_access(data, sample)): out.itemset(tuple([i, idx, value]), 1.0) else: out[i] = _access(data, sample) return out def _feed_dict_fn(): """Function that samples data into given placeholders.""" if self.max_epochs is not None and self.epoch + 1 > self.max_epochs: raise StopIteration assert self._input_placeholder is not None feed_dict = {} if self._epoch_placeholder is not None: feed_dict[self._epoch_placeholder.name] = [self.epoch] # Take next batch of indices. x_len = list( self._x.values())[0].shape[0] if x_is_dict else self._x.shape[0] end = min(x_len, self.offset + self._batch_size) batch_indices = self.indices[self.offset:end] # adding input placeholder feed_dict.update( dict([(self._input_placeholder[k].name, extract(v, batch_indices)) for k, v in list(self._x.items())]) if x_is_dict else { self._input_placeholder.name: extract(self._x, batch_indices) }) # move offset and reset it if necessary self.offset += self._batch_size if self.offset >= x_len: self.indices = self.random_state.permutation( x_len) if self._shuffle else np.array(range(x_len)) self.offset = 0 self.epoch += 1 # return early if there are no labels if self._output_placeholder is None: return feed_dict # adding output placeholders if y_is_dict: for k, v in list(self._y.items()): n_classes = (self.n_classes[k] if k in self.n_classes else None) if self.n_classes is not None else None shape, dtype = self.output_shape[k], self._output_dtype[k] feed_dict.update({ self._output_placeholder[k].name: assign_label(v, shape, dtype, n_classes, batch_indices) }) else: shape, dtype, n_classes = (self.output_shape, self._output_dtype, self.n_classes) feed_dict.update({ self._output_placeholder.name: assign_label(self._y, shape, dtype, n_classes, batch_indices) }) return feed_dict return _feed_dict_fn class StreamingDataFeeder(DataFeeder): """Data feeder for TF trainer that reads data from iterator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Streaming data feeder allows to read data as it comes it from disk or somewhere else. It's custom to have this iterators rotate infinetly over the dataset, to allow control of how much to learn on the trainer side. """ def __init__(self, x, y, n_classes, batch_size): """Initializes a StreamingDataFeeder instance. Args: x: iterator each element of which returns one feature sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices. y: iterator each element of which returns one label sample. Sample can be a Nd numpy matrix or dictionary of Nd numpy matrices with 1 or many classes regression values. n_classes: indicator of how many classes the corresponding label sample has for the purposes of one-hot conversion of label. In case where `y` is a dictionary, `n_classes` must be dictionary (with same keys as `y`) of how many classes there are in each label in `y`. If key is present in `y` and missing in `n_classes`, the value is assumed `None` and no one-hot conversion will be applied to the label with that key. batch_size: Mini batch size to accumulate samples in one batch. If set `None`, then assumes that iterator to return already batched element. Attributes: x: input features (or dictionary of input features). y: input label (or dictionary of output features). n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input (can be dictionary depending on `x`). output_shape: shape of the output (can be dictionary depending on `y`). input_dtype: dtype of input (can be dictionary depending on `x`). output_dtype: dtype of output (can be dictionary depending on `y`). """ # pylint: disable=invalid-name,super-init-not-called x_first_el = six.next(x) self._x = itertools.chain([x_first_el], x) if y is not None: y_first_el = six.next(y) self._y = itertools.chain([y_first_el], y) else: y_first_el = None self._y = None self.n_classes = n_classes x_is_dict = isinstance(x_first_el, dict) y_is_dict = y is not None and isinstance(y_first_el, dict) if y_is_dict and n_classes is not None: assert isinstance(n_classes, dict) # extract shapes for first_elements if x_is_dict: x_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(x_first_el.items())]) else: x_first_el_shape = [1] + list(x_first_el.shape) if y_is_dict: y_first_el_shape = dict( [(k, [1] + list(v.shape)) for k, v in list(y_first_el.items())]) elif y is None: y_first_el_shape = None else: y_first_el_shape = ( [1] + list(y_first_el[0].shape if isinstance(y_first_el, list) else y_first_el.shape)) self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_first_el_shape, y_first_el_shape, n_classes, batch_size) # Input dtype of x_first_el. if x_is_dict: self._input_dtype = dict( [(k, _check_dtype(v.dtype)) for k, v in list(x_first_el.items())]) else: self._input_dtype = _check_dtype(x_first_el.dtype) # Output dtype of y_first_el. def check_y_dtype(el): if isinstance(el, np.ndarray): return el.dtype elif isinstance(el, list): return check_y_dtype(el[0]) else: return _check_dtype(np.dtype(type(el))) # Output types are floats, due to both softmaxes and regression req. if n_classes is not None and (y is None or not y_is_dict) and n_classes > 0: self._output_dtype = np.float32 elif y_is_dict: self._output_dtype = dict( [(k, check_y_dtype(v)) for k, v in list(y_first_el.items())]) elif y is None: self._output_dtype = None else: self._output_dtype = check_y_dtype(y_first_el) def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self): """Returns a function, that will sample data and provide it to placeholders. Returns: A function that when called samples a random subset of batch size from x and y. """ self.stopped = False def _feed_dict_fn(): """Samples data and provides it to placeholders. Returns: `dict` of input and output tensors. """ def init_array(shape, dtype): """Initialize array of given shape or dict of shapes and dtype.""" if shape is None: return None elif isinstance(shape, dict): return dict( [(k, np.zeros(shape[k], dtype[k])) for k in list(shape.keys())]) else: return np.zeros(shape, dtype=dtype) def put_data_array(dest, index, source=None, n_classes=None): """Puts data array into container.""" if source is None: dest = dest[:index] elif n_classes is not None and n_classes > 1: if len(self.output_shape) == 2: dest.itemset((index, source), 1.0) else: for idx, value in enumerate(source): dest.itemset(tuple([index, idx, value]), 1.0) else: if len(dest.shape) > 1: dest[index, :] = source else: dest[index] = source[0] if isinstance(source, list) else source return dest def put_data_array_or_dict(holder, index, data=None, n_classes=None): """Puts data array or data dictionary into container.""" if holder is None: return None if isinstance(holder, dict): if data is None: data = {k: None for k in holder.keys()} assert isinstance(data, dict) for k in holder.keys(): num_classes = n_classes[k] if (n_classes is not None and k in n_classes) else None holder[k] = put_data_array(holder[k], index, data[k], num_classes) else: holder = put_data_array(holder, index, data, n_classes) return holder if self.stopped: raise StopIteration inp = init_array(self.input_shape, self._input_dtype) out = init_array(self.output_shape, self._output_dtype) for i in xrange(self._batch_size): # Add handling when queue ends. try: next_inp = six.next(self._x) inp = put_data_array_or_dict(inp, i, next_inp, None) except StopIteration: self.stopped = True if i == 0: raise inp = put_data_array_or_dict(inp, i, None, None) out = put_data_array_or_dict(out, i, None, None) break if self._y is not None: next_out = six.next(self._y) out = put_data_array_or_dict(out, i, next_out, self.n_classes) # creating feed_dict if isinstance(inp, dict): feed_dict = dict([(self._input_placeholder[k].name, inp[k]) for k in list(self._input_placeholder.keys())]) else: feed_dict = {self._input_placeholder.name: inp} if self._y is not None: if isinstance(out, dict): feed_dict.update( dict([(self._output_placeholder[k].name, out[k]) for k in list(self._output_placeholder.keys())])) else: feed_dict.update({self._output_placeholder.name: out}) return feed_dict return _feed_dict_fn class DaskDataFeeder(object): """Data feeder for that reads data from dask.Series and dask.DataFrame. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Numpy arrays can be serialized to disk and it's possible to do random seeks into them. DaskDataFeeder will remove requirement to have full dataset in the memory and still do random seeks for sampling of batches. """ @deprecated(None, 'Please feed input to tf.data to support dask.') def __init__(self, x, y, n_classes, batch_size, shuffle=True, random_state=None, epochs=None): """Initializes a DaskDataFeeder instance. Args: x: iterator that returns for each element, returns features. y: iterator that returns for each element, returns 1 or many classes / regression values. n_classes: indicator of how many classes the label has. batch_size: Mini batch size to accumulate. shuffle: Whether to shuffle the inputs. random_state: random state for RNG. Note that it will mutate so use a int value for this if you want consistent sized batches. epochs: Number of epochs to run. Attributes: x: input features. y: input label. n_classes: number of classes. batch_size: mini batch size to accumulate. input_shape: shape of the input. output_shape: shape of the output. input_dtype: dtype of input. output_dtype: dtype of output. Raises: ValueError: if `x` or `y` are `dict`, as they are not supported currently. """ if isinstance(x, dict) or isinstance(y, dict): raise ValueError( 'DaskDataFeeder does not support dictionaries at the moment.') # pylint: disable=invalid-name,super-init-not-called import dask.dataframe as dd # pylint: disable=g-import-not-at-top # TODO(terrytangyuan): check x and y dtypes in dask_io like pandas self._x = x self._y = y # save column names self._x_columns = list(x.columns) if isinstance(y.columns[0], str): self._y_columns = list(y.columns) else: # deal with cases where two DFs have overlapped default numeric colnames self._y_columns = len(self._x_columns) + 1 self._y = self._y.rename(columns={y.columns[0]: self._y_columns}) # TODO(terrytangyuan): deal with unsupervised cases # combine into a data frame self.df = dd.multi.concat([self._x, self._y], axis=1) self.n_classes = n_classes x_count = x.count().compute()[0] x_shape = (x_count, len(self._x.columns)) y_shape = (x_count, len(self._y.columns)) # TODO(terrytangyuan): Add support for shuffle and epochs. self._shuffle = shuffle self.epochs = epochs self.input_shape, self.output_shape, self._batch_size = _get_in_out_shape( x_shape, y_shape, n_classes, batch_size) self.sample_fraction = self._batch_size / float(x_count) self._input_dtype = _check_dtype(self._x.dtypes[0]) self._output_dtype = _check_dtype(self._y.dtypes[self._y_columns]) if random_state is None: self.random_state = 66 else: self.random_state = random_state def get_feed_params(self): """Function returns a `dict` with data feed params while training. Returns: A `dict` with data feed params while training. """ return {'batch_size': self._batch_size} def get_feed_dict_fn(self, input_placeholder, output_placeholder): """Returns a function, that will sample data and provide it to placeholders. Args: input_placeholder: tf.compat.v1.placeholder for input features mini batch. output_placeholder: tf.compat.v1.placeholder for output labels. Returns: A function that when called samples a random subset of batch size from x and y. """ def _feed_dict_fn(): """Samples data and provides it to placeholders.""" # TODO(ipolosukhin): option for with/without replacement (dev version of # dask) sample = self.df.random_split( [self.sample_fraction, 1 - self.sample_fraction], random_state=self.random_state) inp = extract_pandas_matrix(sample[0][self._x_columns].compute()).tolist() out = extract_pandas_matrix(sample[0][self._y_columns].compute()) # convert to correct dtype inp = np.array(inp, dtype=self._input_dtype) # one-hot encode out for each class for cross entropy loss if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top if not isinstance(out, pd.Series): out = out.flatten() out_max = self._y.max().compute().values[0] encoded_out = np.zeros((out.size, out_max + 1), dtype=self._output_dtype) encoded_out[np.arange(out.size), out] = 1 return {input_placeholder.name: inp, output_placeholder.name: encoded_out} return _feed_dict_fn
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/data_feeder.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `DataFeeder`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.platform import test # pylint: enable=wildcard-import class DataFeederTest(test.TestCase): # pylint: disable=undefined-variable """Tests for `DataFeeder`.""" def setUp(self): self._base_dir = os.path.join(self.get_temp_dir(), 'base_dir') file_io.create_dir(self._base_dir) def tearDown(self): file_io.delete_recursively(self._base_dir) def _wrap_dict(self, data, prepend=''): return {prepend + '1': data, prepend + '2': data} def _assert_raises(self, input_data): with self.assertRaisesRegexp(TypeError, 'annot convert'): data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) def _assert_dtype(self, expected_np_dtype, expected_tf_dtype, input_data): feeder = data_feeder.DataFeeder(input_data, None, n_classes=0, batch_size=1) if isinstance(input_data, dict): for v in list(feeder.input_dtype.values()): self.assertEqual(expected_np_dtype, v) else: self.assertEqual(expected_np_dtype, feeder.input_dtype) with ops.Graph().as_default() as g, self.session(g): inp, _ = feeder.input_builder() if isinstance(inp, dict): for v in list(inp.values()): self.assertEqual(expected_tf_dtype, v.dtype) else: self.assertEqual(expected_tf_dtype, inp.dtype) def test_input_int8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int8) self._assert_dtype(np.int8, dtypes.int8, data) self._assert_dtype(np.int8, dtypes.int8, self._wrap_dict(data)) def test_input_int16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int16) self._assert_dtype(np.int16, dtypes.int16, data) self._assert_dtype(np.int16, dtypes.int16, self._wrap_dict(data)) def test_input_int32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int32) self._assert_dtype(np.int32, dtypes.int32, data) self._assert_dtype(np.int32, dtypes.int32, self._wrap_dict(data)) def test_input_int64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.int64) self._assert_dtype(np.int64, dtypes.int64, data) self._assert_dtype(np.int64, dtypes.int64, self._wrap_dict(data)) def test_input_uint32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint32) self._assert_dtype(np.uint32, dtypes.uint32, data) self._assert_dtype(np.uint32, dtypes.uint32, self._wrap_dict(data)) def test_input_uint64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint64) self._assert_dtype(np.uint64, dtypes.uint64, data) self._assert_dtype(np.uint64, dtypes.uint64, self._wrap_dict(data)) def test_input_uint8(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint8) self._assert_dtype(np.uint8, dtypes.uint8, data) self._assert_dtype(np.uint8, dtypes.uint8, self._wrap_dict(data)) def test_input_uint16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.uint16) self._assert_dtype(np.uint16, dtypes.uint16, data) self._assert_dtype(np.uint16, dtypes.uint16, self._wrap_dict(data)) def test_input_float16(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float16) self._assert_dtype(np.float16, dtypes.float16, data) self._assert_dtype(np.float16, dtypes.float16, self._wrap_dict(data)) def test_input_float32(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float32) self._assert_dtype(np.float32, dtypes.float32, data) self._assert_dtype(np.float32, dtypes.float32, self._wrap_dict(data)) def test_input_float64(self): data = np.matrix([[1, 2], [3, 4]], dtype=np.float64) self._assert_dtype(np.float64, dtypes.float64, data) self._assert_dtype(np.float64, dtypes.float64, self._wrap_dict(data)) def test_input_bool(self): data = np.array([[False for _ in xrange(2)] for _ in xrange(2)]) self._assert_dtype(np.bool, dtypes.bool, data) self._assert_dtype(np.bool, dtypes.bool, self._wrap_dict(data)) def test_input_string(self): input_data = np.array([['str%d' % i for i in xrange(2)] for _ in xrange(2)]) self._assert_dtype(input_data.dtype, dtypes.string, input_data) self._assert_dtype(input_data.dtype, dtypes.string, self._wrap_dict(input_data)) def _assertAllClose(self, src, dest, src_key_of=None, src_prop=None): def func(x): val = getattr(x, src_prop) if src_prop else x return val if src_key_of is None else src_key_of[val] if isinstance(src, dict): for k in list(src.keys()): self.assertAllClose(func(src[k]), dest) else: self.assertAllClose(func(src), dest) def test_unsupervised(self): def func(feeder): with self.cached_session(): inp, _ = feeder.input_builder() feed_dict_fn = feeder.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[1, 2]], feed_dict, 'name') data = np.matrix([[1, 2], [2, 3], [3, 4]]) func(data_feeder.DataFeeder(data, None, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data), None, n_classes=0, batch_size=1)) def test_data_feeder_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [2, 1], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) def test_epoch(self): def func(feeder): with self.cached_session(): feeder.input_builder() epoch = feeder.make_epoch_variable() feed_dict_fn = feeder.get_feed_dict_fn() # First input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Second input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Third input feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [0]) # Back to the first input again, so new epoch. feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[epoch.name], [1]) data = np.matrix([[1, 2], [2, 3], [3, 4]]) labels = np.array([0, 0, 1]) func(data_feeder.DataFeeder(data, labels, n_classes=0, batch_size=1)) func( data_feeder.DataFeeder( self._wrap_dict(data, 'in'), self._wrap_dict(labels, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=1)) def test_data_feeder_multioutput_regression(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose(out, [[3, 4], [1, 2]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[1, 2], [3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) def test_data_feeder_multioutput_classification(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self._assertAllClose( out, [[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0]]], feed_dict, 'name') x = np.matrix([[1, 2], [3, 4]]) y = np.array([[0, 1, 2], [2, 3, 4]]) func(data_feeder.DataFeeder(x, y, n_classes=5, batch_size=2)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(5, 'out'), batch_size=2)) def test_streaming_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[[1, 2]], [[3, 4]]], feed_dict, 'name') self._assertAllClose(out, [[[1], [2]], [[2], [2]]], feed_dict, 'name') def x_iter(wrap_dict=False): yield np.array([[1, 2]]) if not wrap_dict else self._wrap_dict( np.array([[1, 2]]), 'in') yield np.array([[3, 4]]) if not wrap_dict else self._wrap_dict( np.array([[3, 4]]), 'in') def y_iter(wrap_dict=False): yield np.array([[1], [2]]) if not wrap_dict else self._wrap_dict( np.array([[1], [2]]), 'out') yield np.array([[2], [2]]) if not wrap_dict else self._wrap_dict( np.array([[2], [2]]), 'out') func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=2)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=2)) # Test non-full batches. func( data_feeder.StreamingDataFeeder( x_iter(), y_iter(), n_classes=0, batch_size=10)) func( data_feeder.StreamingDataFeeder( x_iter(True), y_iter(True), n_classes=self._wrap_dict(0, 'out'), batch_size=10)) def test_dask_data_feeder(self): if HAS_PANDAS and HAS_DASK: x = pd.DataFrame( dict( a=np.array([.1, .3, .4, .6, .2, .1, .6]), b=np.array([.7, .8, .1, .2, .5, .3, .9]))) x = dd.from_pandas(x, npartitions=2) y = pd.DataFrame(dict(labels=np.array([1, 0, 2, 1, 0, 1, 2]))) y = dd.from_pandas(y, npartitions=2) # TODO(ipolosukhin): Remove or restore this. # x = extract_dask_data(x) # y = extract_dask_labels(y) df = data_feeder.DaskDataFeeder(x, y, n_classes=2, batch_size=2) inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self.assertAllClose(feed_dict[inp.name], [[0.40000001, 0.1], [0.60000002, 0.2]]) self.assertAllClose(feed_dict[out.name], [[0., 0., 1.], [0., 1., 0.]]) # TODO(rohanj): Fix this test by fixing data_feeder. Currently, h5py doesn't # support permutation based indexing lookups (More documentation at # http://docs.h5py.org/en/latest/high/dataset.html#fancy-indexing) def DISABLED_test_hdf5_data_feeder(self): def func(df): inp, out = df.input_builder() feed_dict_fn = df.get_feed_dict_fn() feed_dict = feed_dict_fn() self._assertAllClose(inp, [[3, 4], [1, 2]], feed_dict, 'name') self.assertAllClose(out, [2, 1], feed_dict, 'name') try: import h5py # pylint: disable=g-import-not-at-top x = np.matrix([[1, 2], [3, 4]]) y = np.array([1, 2]) file_path = os.path.join(self._base_dir, 'test_hdf5.h5') h5f = h5py.File(file_path, 'w') h5f.create_dataset('x', data=x) h5f.create_dataset('y', data=y) h5f.close() h5f = h5py.File(file_path, 'r') x = h5f['x'] y = h5f['y'] func(data_feeder.DataFeeder(x, y, n_classes=0, batch_size=3)) func( data_feeder.DataFeeder( self._wrap_dict(x, 'in'), self._wrap_dict(y, 'out'), n_classes=self._wrap_dict(0, 'out'), batch_size=3)) except ImportError: print("Skipped test for hdf5 since it's not installed.") class SetupPredictDataFeederTest(DataFeederTest): """Tests for `DataFeeder.setup_predict_data_feeder`.""" def test_iterable_data(self): # pylint: disable=undefined-variable def func(df): self._assertAllClose(six.next(df), [[1, 2], [3, 4]]) self._assertAllClose(six.next(df), [[5, 6]]) data = [[1, 2], [3, 4], [5, 6]] x = iter(data) x_dict = iter([self._wrap_dict(v) for v in iter(data)]) func(data_feeder.setup_predict_data_feeder(x, batch_size=2)) func(data_feeder.setup_predict_data_feeder(x_dict, batch_size=2)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/data_feeder_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow dask.DataFrame (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.util.deprecation import deprecated try: # pylint: disable=g-import-not-at-top import dask.dataframe as dd allowed_classes = (dd.Series, dd.DataFrame) HAS_DASK = True except ImportError: HAS_DASK = False def _add_to_index(df, start): """New dask.dataframe with values added to index of each subdataframe.""" df = df.copy() df.index += start return df def _get_divisions(df): """Number of rows in each sub-dataframe.""" lengths = df.map_partitions(len).compute() divisions = np.cumsum(lengths).tolist() divisions.insert(0, 0) return divisions def _construct_dask_df_with_divisions(df): """Construct the new task graph and make a new dask.dataframe around it.""" divisions = _get_divisions(df) # pylint: disable=protected-access name = 'csv-index' + df._name dsk = {(name, i): (_add_to_index, (df._name, i), divisions[i]) for i in range(df.npartitions)} # pylint: enable=protected-access from toolz import merge # pylint: disable=g-import-not-at-top if isinstance(df, dd.DataFrame): return dd.DataFrame(merge(dsk, df.dask), name, df.columns, divisions) elif isinstance(df, dd.Series): return dd.Series(merge(dsk, df.dask), name, df.name, divisions) @deprecated(None, 'Please feed input to tf.data to support dask.') def extract_dask_data(data): """Extract data from dask.Series or dask.DataFrame for predictors. Given a distributed dask.DataFrame or dask.Series containing columns or names for one or more predictors, this operation returns a single dask.DataFrame or dask.Series that can be iterated over. Args: data: A distributed dask.DataFrame or dask.Series. Returns: A dask.DataFrame or dask.Series that can be iterated over. If the supplied argument is neither a dask.DataFrame nor a dask.Series this operation returns it without modification. """ if isinstance(data, allowed_classes): return _construct_dask_df_with_divisions(data) else: return data @deprecated(None, 'Please feed input to tf.data to support dask.') def extract_dask_labels(labels): """Extract data from dask.Series or dask.DataFrame for labels. Given a distributed dask.DataFrame or dask.Series containing exactly one column or name, this operation returns a single dask.DataFrame or dask.Series that can be iterated over. Args: labels: A distributed dask.DataFrame or dask.Series with exactly one column or name. Returns: A dask.DataFrame or dask.Series that can be iterated over. If the supplied argument is neither a dask.DataFrame nor a dask.Series this operation returns it without modification. Raises: ValueError: If the supplied dask.DataFrame contains more than one column or the supplied dask.Series contains more than one name. """ if isinstance(labels, dd.DataFrame): ncol = labels.columns elif isinstance(labels, dd.Series): ncol = labels.name if isinstance(labels, allowed_classes): if len(ncol) > 1: raise ValueError('Only one column for labels is allowed.') return _construct_dask_df_with_divisions(labels) else: return labels
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/dask_io.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for learn.io.graph_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import base64 import os import random import tempfile from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib.learn.python.learn.learn_io import graph_io from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl from tensorflow.python.training import server_lib _VALID_FILE_PATTERN = "VALID" _VALID_FILE_PATTERN_2 = "VALID_2" _FILE_NAMES = [b"abc", b"def", b"ghi", b"jkl"] _FILE_NAMES_2 = [b"mno", b"pqr"] _INVALID_FILE_PATTERN = "INVALID" class GraphIOTest(test.TestCase): def _mock_glob(self, pattern): if _VALID_FILE_PATTERN == pattern: return _FILE_NAMES if _VALID_FILE_PATTERN_2 == pattern: return _FILE_NAMES_2 self.assertEqual(_INVALID_FILE_PATTERN, pattern) return [] def setUp(self): super(GraphIOTest, self).setUp() random.seed(42) self._orig_glob = gfile.Glob gfile.Glob = self._mock_glob def tearDown(self): gfile.Glob = self._orig_glob super(GraphIOTest, self).tearDown() def test_dequeue_batch_value_errors(self): default_batch_size = 17 queue_capacity = 1234 num_threads = 3 name = "my_batch" self.assertRaisesRegexp( ValueError, "No files match", graph_io.read_batch_examples, _INVALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=num_threads, name=name) self.assertRaisesRegexp( ValueError, "Invalid batch_size", graph_io.read_batch_examples, _VALID_FILE_PATTERN, None, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=num_threads, name=name) self.assertRaisesRegexp( ValueError, "Invalid batch_size", graph_io.read_batch_examples, _VALID_FILE_PATTERN, -1, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=num_threads, name=name) self.assertRaisesRegexp( ValueError, "Invalid batch_size", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=default_batch_size, num_threads=num_threads, name=name) self.assertRaisesRegexp( ValueError, "Invalid queue_capacity", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=None, num_threads=num_threads, name=name) self.assertRaisesRegexp( ValueError, "Invalid num_threads", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=None, name=name) self.assertRaisesRegexp( ValueError, "Invalid num_threads", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=-1, name=name) self.assertRaisesRegexp( ValueError, "Invalid batch_size", graph_io.read_batch_examples, _VALID_FILE_PATTERN, queue_capacity + 1, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=1, name=name) self.assertRaisesRegexp( ValueError, "Invalid num_epochs", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=-1, queue_capacity=queue_capacity, num_threads=1, name=name) self.assertRaisesRegexp( ValueError, "Invalid read_batch_size", graph_io.read_batch_examples, _VALID_FILE_PATTERN, default_batch_size, io_ops.TFRecordReader, False, num_epochs=None, queue_capacity=queue_capacity, num_threads=1, read_batch_size=0, name=name) def test_batch_record_features(self): batch_size = 17 queue_capacity = 1234 name = "my_batch" shape = (0,) features = { "feature": parsing_ops.FixedLenFeature(shape=shape, dtype=dtypes_lib.float32) } with ops.Graph().as_default() as g, self.session(graph=g) as sess: features = graph_io.read_batch_record_features( _VALID_FILE_PATTERN, batch_size, features, randomize_input=False, queue_capacity=queue_capacity, reader_num_threads=2, name=name) self.assertTrue("feature" in features, "'feature' missing from %s." % features.keys()) feature = features["feature"] self.assertEqual("%s/fifo_queue_1_Dequeue:0" % name, feature.name) self.assertAllEqual((batch_size,) + shape, feature.get_shape().as_list()) file_name_queue_name = "%s/file_name_queue" % name file_names_name = "%s/input" % file_name_queue_name example_queue_name = "%s/fifo_queue" % name parse_example_queue_name = "%s/fifo_queue" % name op_nodes = test_util.assert_ops_in_graph({ file_names_name: "Const", file_name_queue_name: "FIFOQueueV2", "%s/read/TFRecordReaderV2" % name: "TFRecordReaderV2", example_queue_name: "FIFOQueueV2", parse_example_queue_name: "FIFOQueueV2", name: "QueueDequeueManyV2" }, g) self.assertAllEqual(_FILE_NAMES, sess.run(["%s:0" % file_names_name])[0]) self.assertEqual(queue_capacity, op_nodes[example_queue_name].attr["capacity"].i) def test_one_epoch(self): batch_size = 17 queue_capacity = 1234 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as sess: inputs = graph_io.read_batch_examples( _VALID_FILE_PATTERN, batch_size, reader=io_ops.TFRecordReader, randomize_input=True, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), inputs.get_shape().as_list()) self.assertEqual("%s:1" % name, inputs.name) file_name_queue_name = "%s/file_name_queue" % name file_name_queue_limit_name = ( "%s/limit_epochs/epochs" % file_name_queue_name) file_names_name = "%s/input" % file_name_queue_name example_queue_name = "%s/random_shuffle_queue" % name op_nodes = test_util.assert_ops_in_graph({ file_names_name: "Const", file_name_queue_name: "FIFOQueueV2", "%s/read/TFRecordReaderV2" % name: "TFRecordReaderV2", example_queue_name: "RandomShuffleQueueV2", name: "QueueDequeueUpToV2", file_name_queue_limit_name: "VariableV2" }, g) self.assertEqual( set(_FILE_NAMES), set(sess.run(["%s:0" % file_names_name])[0])) self.assertEqual(queue_capacity, op_nodes[example_queue_name].attr["capacity"].i) def test_batch_randomized_multiple_globs(self): batch_size = 17 queue_capacity = 1234 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as sess: inputs = graph_io.read_batch_examples( [_VALID_FILE_PATTERN, _VALID_FILE_PATTERN_2], batch_size, reader=io_ops.TFRecordReader, randomize_input=True, queue_capacity=queue_capacity, name=name) self.assertAllEqual((batch_size,), inputs.get_shape().as_list()) self.assertEqual("%s:1" % name, inputs.name) file_name_queue_name = "%s/file_name_queue" % name file_names_name = "%s/input" % file_name_queue_name example_queue_name = "%s/random_shuffle_queue" % name op_nodes = test_util.assert_ops_in_graph({ file_names_name: "Const", file_name_queue_name: "FIFOQueueV2", "%s/read/TFRecordReaderV2" % name: "TFRecordReaderV2", example_queue_name: "RandomShuffleQueueV2", name: "QueueDequeueManyV2" }, g) self.assertEqual( set(_FILE_NAMES + _FILE_NAMES_2), set(sess.run(["%s:0" % file_names_name])[0])) self.assertEqual(queue_capacity, op_nodes[example_queue_name].attr["capacity"].i) def _create_temp_file(self, lines): tempdir = tempfile.mkdtemp() filename = os.path.join(tempdir, "temp_file") gfile.Open(filename, "w").write(lines) return filename def _create_sorted_temp_files(self, lines_list): tempdir = tempfile.mkdtemp() filenames = [] for i, lines in enumerate(lines_list): filename = os.path.join(tempdir, "temp_file%05d" % i) gfile.Open(filename, "w").write(lines) filenames.append(filename) return filenames def test_read_text_lines(self): gfile.Glob = self._orig_glob filename = self._create_temp_file("ABC\nDEF\nGHK\n") batch_size = 1 queue_capacity = 5 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: inputs = graph_io.read_batch_examples( filename, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) self.assertAllEqual(session.run(inputs), [b"ABC"]) self.assertAllEqual(session.run(inputs), [b"DEF"]) self.assertAllEqual(session.run(inputs), [b"GHK"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def _create_file_from_list_of_features(self, lines): json_lines = [ "".join([ '{"features": { "feature": { "sequence": {', '"bytes_list": { "value": ["', base64.b64encode(l).decode("ascii"), '"]}}}}}\n' ]) for l in lines ] return self._create_temp_file("".join(json_lines)) def test_read_text_lines_large(self): gfile.Glob = self._orig_glob sequence_prefix = "abcdefghijklmnopqrstuvwxyz123456789" num_records = 49999 lines = [ "".join([sequence_prefix, str(l)]).encode("ascii") for l in xrange(num_records) ] filename = self._create_file_from_list_of_features(lines) batch_size = 10000 queue_capacity = 100000 name = "my_large_batch" features = {"sequence": parsing_ops.FixedLenFeature([], dtypes_lib.string)} with ops.Graph().as_default() as g, self.session(graph=g) as session: keys, result = graph_io.read_keyed_batch_features( filename, batch_size, features, io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, num_enqueue_threads=2, parse_fn=parsing_ops.decode_json_example, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertEqual(1, len(result)) self.assertAllEqual((None,), result["sequence"].get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) data = [] try: while not coord.should_stop(): data.append(session.run(result)) except errors.OutOfRangeError: pass finally: coord.request_stop() coord.join(threads) parsed_records = [ item for sublist in [d["sequence"] for d in data] for item in sublist ] # Check that the number of records matches expected and all records # are present. self.assertEqual(len(parsed_records), num_records) self.assertEqual(set(parsed_records), set(lines)) def test_read_batch_features_maintains_order(self): """Make sure that examples are read in the right order. When randomize_input=False, num_enqueue_threads=1 and reader_num_threads=1 read_keyed_batch_features() should read the examples in the same order as they appear in the file. """ gfile.Glob = self._orig_glob num_records = 1000 lines = ["".join(str(l)).encode("ascii") for l in xrange(num_records)] filename = self._create_file_from_list_of_features(lines) batch_size = 10 queue_capacity = 1000 name = "my_large_batch" features = {"sequence": parsing_ops.FixedLenFeature([], dtypes_lib.string)} with ops.Graph().as_default() as g, self.session(graph=g) as session: result = graph_io.read_batch_features( filename, batch_size, features, io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, reader_num_threads=1, num_enqueue_threads=1, parse_fn=parsing_ops.decode_json_example, name=name) self.assertEqual(1, len(result)) self.assertAllEqual((None,), result["sequence"].get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) data = [] try: while not coord.should_stop(): data.append(session.run(result)) except errors.OutOfRangeError: pass finally: coord.request_stop() coord.join(threads) parsed_records = [ item for sublist in [d["sequence"] for d in data] for item in sublist ] # Check that the number of records matches expected and all records # are present in the right order. self.assertEqual(len(parsed_records), num_records) self.assertEqual(parsed_records, lines) def test_read_text_lines_multifile(self): gfile.Glob = self._orig_glob filenames = self._create_sorted_temp_files(["ABC\n", "DEF\nGHK\n"]) batch_size = 1 queue_capacity = 5 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: inputs = graph_io.read_batch_examples( filenames, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) self.assertEqual("%s:1" % name, inputs.name) file_name_queue_name = "%s/file_name_queue" % name file_names_name = "%s/input" % file_name_queue_name example_queue_name = "%s/fifo_queue" % name test_util.assert_ops_in_graph({ file_names_name: "Const", file_name_queue_name: "FIFOQueueV2", "%s/read/TextLineReaderV2" % name: "TextLineReaderV2", example_queue_name: "FIFOQueueV2", name: "QueueDequeueUpToV2" }, g) self.assertAllEqual(session.run(inputs), [b"ABC"]) self.assertAllEqual(session.run(inputs), [b"DEF"]) self.assertAllEqual(session.run(inputs), [b"GHK"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def test_read_text_lines_multifile_with_shared_queue(self): gfile.Glob = self._orig_glob filenames = self._create_sorted_temp_files(["ABC\n", "DEF\nGHK\n"]) batch_size = 1 queue_capacity = 5 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: keys, inputs = graph_io.read_keyed_batch_examples_shared_queue( filenames, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run([ variables.local_variables_initializer(), variables.global_variables_initializer() ]) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) self.assertEqual("%s:1" % name, inputs.name) example_queue_name = "%s/fifo_queue" % name worker_file_name_queue_name = "%s/file_name_queue/fifo_queue" % name test_util.assert_ops_in_graph({ "%s/read/TextLineReaderV2" % name: "TextLineReaderV2", example_queue_name: "FIFOQueueV2", worker_file_name_queue_name: "FIFOQueueV2", name: "QueueDequeueUpToV2" }, g) self.assertAllEqual(session.run(inputs), [b"ABC"]) self.assertAllEqual(session.run(inputs), [b"DEF"]) self.assertAllEqual(session.run(inputs), [b"GHK"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def _get_qr(self, name): for qr in ops.get_collection(ops.GraphKeys.QUEUE_RUNNERS): if qr.name == name: return qr def _run_queue(self, name, session): qr = self._get_qr(name) for op in qr.enqueue_ops: session.run(op) def test_multiple_workers_with_shared_queue(self): gfile.Glob = self._orig_glob filenames = self._create_sorted_temp_files([ "ABC\n", "DEF\n", "GHI\n", "JKL\n", "MNO\n", "PQR\n", "STU\n", "VWX\n", "YZ\n" ]) batch_size = 1 queue_capacity = 5 name = "my_batch" example_queue_name = "%s/fifo_queue" % name worker_file_name_queue_name = "%s/file_name_queue/fifo_queue" % name server = server_lib.Server.create_local_server() with ops.Graph().as_default() as g1, session_lib.Session( server.target, graph=g1) as session: keys, inputs = graph_io.read_keyed_batch_examples_shared_queue( filenames, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run([ variables.local_variables_initializer(), variables.global_variables_initializer() ]) # Run the two queues once manually. self._run_queue(worker_file_name_queue_name, session) self._run_queue(example_queue_name, session) self.assertAllEqual(session.run(inputs), [b"ABC"]) # Run the worker and the example queue. self._run_queue(worker_file_name_queue_name, session) self._run_queue(example_queue_name, session) self.assertAllEqual(session.run(inputs), [b"DEF"]) with ops.Graph().as_default() as g2, session_lib.Session( server.target, graph=g2) as session: keys, inputs = graph_io.read_keyed_batch_examples_shared_queue( filenames, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertAllEqual((None,), inputs.get_shape().as_list()) # Run the worker and the example queue. self._run_queue(worker_file_name_queue_name, session) self._run_queue(example_queue_name, session) self.assertAllEqual(session.run(inputs), [b"GHI"]) self.assertTrue(g1 is not g2) def test_batch_text_lines(self): gfile.Glob = self._orig_glob filename = self._create_temp_file("A\nB\nC\nD\nE\n") batch_size = 3 queue_capacity = 10 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: inputs = graph_io.read_batch_examples( [filename], batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, read_batch_size=10, name=name) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) self.assertAllEqual(session.run(inputs), [b"A", b"B", b"C"]) self.assertAllEqual(session.run(inputs), [b"D", b"E"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def test_keyed_read_text_lines(self): gfile.Glob = self._orig_glob filename = self._create_temp_file("ABC\nDEF\nGHK\n") batch_size = 1 queue_capacity = 5 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: keys, inputs = graph_io.read_keyed_batch_examples( filename, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) self.assertAllEqual( session.run([keys, inputs]), [[filename.encode("utf-8") + b":1"], [b"ABC"]]) self.assertAllEqual( session.run([keys, inputs]), [[filename.encode("utf-8") + b":2"], [b"DEF"]]) self.assertAllEqual( session.run([keys, inputs]), [[filename.encode("utf-8") + b":3"], [b"GHK"]]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def test_keyed_parse_json(self): gfile.Glob = self._orig_glob filename = self._create_temp_file( '{"features": {"feature": {"age": {"int64_list": {"value": [0]}}}}}\n' '{"features": {"feature": {"age": {"int64_list": {"value": [1]}}}}}\n' '{"features": {"feature": {"age": {"int64_list": {"value": [2]}}}}}\n') batch_size = 1 queue_capacity = 5 name = "my_batch" with ops.Graph().as_default() as g, self.session(graph=g) as session: dtypes = {"age": parsing_ops.FixedLenFeature([1], dtypes_lib.int64)} parse_fn = lambda example: parsing_ops.parse_single_example( # pylint: disable=g-long-lambda parsing_ops.decode_json_example(example), dtypes) keys, inputs = graph_io.read_keyed_batch_examples( filename, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, queue_capacity=queue_capacity, parse_fn=parse_fn, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertEqual(1, len(inputs)) self.assertAllEqual((None, 1), inputs["age"].get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) key, age = session.run([keys, inputs["age"]]) self.assertAllEqual(age, [[0]]) self.assertAllEqual(key, [filename.encode("utf-8") + b":1"]) key, age = session.run([keys, inputs["age"]]) self.assertAllEqual(age, [[1]]) self.assertAllEqual(key, [filename.encode("utf-8") + b":2"]) key, age = session.run([keys, inputs["age"]]) self.assertAllEqual(age, [[2]]) self.assertAllEqual(key, [filename.encode("utf-8") + b":3"]) with self.assertRaises(errors.OutOfRangeError): session.run(inputs) coord.request_stop() coord.join(threads) def test_keyed_features_filter(self): gfile.Glob = self._orig_glob lines = [ '{"features": {"feature": {"age": {"int64_list": {"value": [2]}}}}}', '{"features": {"feature": {"age": {"int64_list": {"value": [0]}}}}}', '{"features": {"feature": {"age": {"int64_list": {"value": [1]}}}}}', '{"features": {"feature": {"age": {"int64_list": {"value": [0]}}}}}', '{"features": {"feature": {"age": {"int64_list": {"value": [3]}}}}}', '{"features": {"feature": {"age": {"int64_list": {"value": [5]}}}}}' ] filename = self._create_temp_file("\n".join(lines)) batch_size = 2 queue_capacity = 4 name = "my_batch" features = {"age": parsing_ops.FixedLenFeature([], dtypes_lib.int64)} def filter_fn(keys, examples_json): del keys serialized = parsing_ops.decode_json_example(examples_json) examples = parsing_ops.parse_example(serialized, features) return math_ops.less(examples["age"], 2) with ops.Graph().as_default() as g, self.session(graph=g) as session: keys, inputs = graph_io._read_keyed_batch_examples_helper( filename, batch_size, reader=io_ops.TextLineReader, randomize_input=False, num_epochs=1, read_batch_size=batch_size, queue_capacity=queue_capacity, filter_fn=filter_fn, name=name) self.assertAllEqual((None,), keys.get_shape().as_list()) self.assertAllEqual((None,), inputs.get_shape().as_list()) session.run(variables.local_variables_initializer()) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) # First batch of two filtered examples. out_keys, out_vals = session.run((keys, inputs)) self.assertAllEqual( [filename.encode("utf-8") + b":2", filename.encode("utf-8") + b":3"], out_keys) self.assertAllEqual([lines[1].encode("utf-8"), lines[2].encode("utf-8")], out_vals) # Second batch will only have one filtered example as that's the only # remaining example that satisfies the filtering criterion. out_keys, out_vals = session.run((keys, inputs)) self.assertAllEqual([filename.encode("utf-8") + b":4"], out_keys) self.assertAllEqual([lines[3].encode("utf-8")], out_vals) # Exhausted input. with self.assertRaises(errors.OutOfRangeError): session.run((keys, inputs)) coord.request_stop() coord.join(threads) def test_queue_parsed_features_single_tensor(self): with ops.Graph().as_default() as g, self.session(graph=g) as session: features = {"test": constant_op.constant([1, 2, 3])} _, queued_features = graph_io.queue_parsed_features(features) coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) out_features = session.run(queued_features["test"]) self.assertAllEqual([1, 2, 3], out_features) coord.request_stop() coord.join(threads) def test_read_keyed_batch_features_shared_queue(self): batch_size = 17 shape = (0,) fixed_feature = parsing_ops.FixedLenFeature( shape=shape, dtype=dtypes_lib.float32) feature = {"feature": fixed_feature} reader = io_ops.TFRecordReader _, queued_feature = graph_io.read_keyed_batch_features_shared_queue( _VALID_FILE_PATTERN, batch_size, feature, reader) with ops.Graph().as_default() as g, self.session(graph=g) as session: features_result = graph_io.read_batch_features( _VALID_FILE_PATTERN, batch_size, feature, reader) session.run(variables.local_variables_initializer()) self.assertAllEqual( queued_feature.get("feature").get_shape().as_list(), features_result.get("feature").get_shape().as_list()) def test_get_file_names_errors(self): # Raise bad file_pattern. with self.assertRaises(ValueError): graph_io._get_file_names([], True) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/graph_io_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for numpy_io.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import generator_io from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner_impl class GeneratorIoTest(test.TestCase): def testGeneratorInputFn(self): def generator(): for index in range(2): yield { 'a': np.ones(1) * index, 'b': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32 } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key='label', batch_size=2, shuffle=False, num_epochs=1) features, target = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run([features, target]) self.assertAllEqual(res[0]['a'], np.asarray([0, 1]).reshape(-1, 1)) self.assertAllEqual(res[0]['b'], np.asarray([32, 33]).reshape(-1, 1)) self.assertAllEqual(res[1], np.asarray([-32, -31]).reshape(-1, 1)) session.run([features]) with self.assertRaises(errors.OutOfRangeError): session.run([features, target]) coord.request_stop() coord.join(threads) def testGeneratorSingleInputFn(self): def generator(): for index in range(2): yield {'a': np.ones(1) * index} with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key=None, batch_size=2, shuffle=False, num_epochs=1) features = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run([features]) self.assertAllEqual(res[0]['a'], np.asarray([0, 1]).reshape(-1, 1)) session.run([features]) with self.assertRaises(errors.OutOfRangeError): session.run([features]) coord.request_stop() coord.join(threads) def testGeneratorInputFnLabelDict(self): def generator(): for index in range(2): yield { 'a': np.ones(1) * index, 'b': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32, 'label2': np.ones(1) * index - 64, } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key=['label', 'label2'], batch_size=2, shuffle=False, num_epochs=1) features, target = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run([features, target]) self.assertAllEqual(res[0]['a'], np.asarray([0, 1]).reshape(-1, 1)) self.assertAllEqual(res[0]['b'], np.asarray([32, 33]).reshape(-1, 1)) self.assertAllEqual(res[1]['label'], np.asarray([-32, -31]).reshape( -1, 1)) self.assertAllEqual(res[1]['label2'], np.asarray([-64, -63]).reshape(-1, 1)) session.run([features]) with self.assertRaises(errors.OutOfRangeError): session.run([features, target]) coord.request_stop() coord.join(threads) def testGeneratorInputFnWithDifferentDimensionsOfFeatures(self): def generator(): for index in range(100): yield { 'a': np.ones((10, 10)) * index, 'b': np.ones((5, 5)) * index + 32, 'label': np.ones((3, 3)) * index - 32 } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key='label', batch_size=2, shuffle=False, num_epochs=1) features, target = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run([features, target]) self.assertAllEqual(res[0]['a'], np.vstack((np.zeros((10, 10)), np.ones( (10, 10)))).reshape(2, 10, 10)) self.assertAllEqual(res[0]['b'], np.vstack((np.zeros((5, 5)), np.ones( (5, 5)))).reshape(2, 5, 5) + 32) self.assertAllEqual(res[1], np.vstack((np.zeros((3, 3)), np.ones( (3, 3)))).reshape(2, 3, 3) - 32) coord.request_stop() coord.join(threads) def testGeneratorInputFnWithXAsNonGeneratorFunction(self): x = np.arange(32, 36) with self.cached_session(): with self.assertRaisesRegexp(TypeError, 'x must be generator function'): failing_input_fn = generator_io.generator_input_fn( x, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFnWithXAsNonGenerator(self): def generator(): return np.arange(32, 36) with self.cached_session(): with self.assertRaisesRegexp(TypeError, r'x\(\) must be generator'): failing_input_fn = generator_io.generator_input_fn( generator, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFnWithXAsNonGeneratorYieldingDicts(self): def generator(): yield np.arange(32, 36) with self.cached_session(): with self.assertRaisesRegexp(TypeError, r'x\(\) must yield dict'): failing_input_fn = generator_io.generator_input_fn( generator, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFNWithTargetLabelNotString(self): def generator(): for index in range(2): yield { 'a': np.ones((10, 10)) * index, 'b': np.ones((5, 5)) * index + 32, 'label': np.ones((3, 3)) * index - 32 } y = np.arange(32, 36) with self.cached_session(): with self.assertRaisesRegexp(TypeError, 'target_key must be str or' ' Container of str'): failing_input_fn = generator_io.generator_input_fn( generator, target_key=y, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFNWithTargetLabelListNotString(self): def generator(): for index in range(2): yield { 'a': np.ones((10, 10)) * index, 'b': np.ones((5, 5)) * index + 32, 'label': np.ones((3, 3)) * index - 32 } y = ['label', np.arange(10)] with self.cached_session(): with self.assertRaisesRegexp(TypeError, 'target_key must be str or' ' Container of str'): failing_input_fn = generator_io.generator_input_fn( generator, target_key=y, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFNWithTargetLabelNotInDict(self): def generator(): for index in range(2): yield { 'a': np.ones((10, 10)) * index, 'b': np.ones((5, 5)) * index + 32, 'label': np.ones((3, 3)) * index - 32 } y = ['label', 'target'] with self.cached_session(): with self.assertRaisesRegexp(KeyError, 'target_key not in yielded dict'): failing_input_fn = generator_io.generator_input_fn( generator, target_key=y, batch_size=2, shuffle=False, num_epochs=1) failing_input_fn() def testGeneratorInputFnWithNoTargetKey(self): def generator(): for index in range(2): yield { 'a': np.ones(1) * index, 'b': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32 } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key=None, batch_size=2, shuffle=False, num_epochs=1) features = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run(features) self.assertAllEqual(res['a'], np.asarray([0, 1]).reshape(-1, 1)) self.assertAllEqual(res['b'], np.asarray([32, 33]).reshape(-1, 1)) self.assertAllEqual(res['label'], np.asarray([-32, -31]).reshape(-1, 1)) session.run([features]) with self.assertRaises(errors.OutOfRangeError): session.run([features]) coord.request_stop() coord.join(threads) def testGeneratorInputFnWithBatchLargerthanData(self): def generator(): for index in range(2): yield { 'a': np.ones(1) * index, 'b': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32 } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key=None, batch_size=4, shuffle=False, num_epochs=1) features = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) res = session.run(features) self.assertAllEqual(res['a'], np.asarray([0, 1, 0, 1]).reshape(-1, 1)) self.assertAllEqual(res['b'], np.asarray([32, 33, 32, 33]).reshape(-1, 1)) self.assertAllEqual(res['label'], np.asarray([-32, -31, -32, -31]).reshape(-1, 1)) with self.assertRaises(errors.OutOfRangeError): session.run([features]) coord.request_stop() coord.join(threads) def testGeneratorInputFnWithMismatchinGeneratorKeys(self): def generator(): index = 0 yield { 'a': np.ones(1) * index, 'b': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32 } index = 1 yield { 'a': np.ones(1) * index, 'c': np.ones(1) * index + 32, 'label': np.ones(1) * index - 32 } with self.cached_session() as session: input_fn = generator_io.generator_input_fn( generator, target_key=None, batch_size=2, shuffle=False, num_epochs=1) features = input_fn() coord = coordinator.Coordinator() threads = queue_runner_impl.start_queue_runners(session, coord=coord) with self.assertRaises(errors.OutOfRangeError): session.run([features]) with self.assertRaisesRegex(KeyError, 'key mismatch between dicts emitted' ' by GenFunExpected'): coord.request_stop() coord.join(threads) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/generator_io_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tf.learn IO operation tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random # pylint: disable=wildcard-import from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.learn_io import * from tensorflow.python.platform import test # pylint: enable=wildcard-import class IOTest(test.TestCase): # pylint: disable=undefined-variable """tf.learn IO operation tests.""" def test_pandas_dataframe(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.DataFrame(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels[0], list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) else: print("No pandas installed. pandas-related tests are skipped.") def test_pandas_series(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) labels = pd.Series(iris.target) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) score = accuracy_score(labels, list(classifier.predict_classes(data))) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) def test_string_data_formats(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top with self.assertRaises(ValueError): learn.io.extract_pandas_data(pd.DataFrame({"Test": ["A", "B"]})) with self.assertRaises(ValueError): learn.io.extract_pandas_labels(pd.DataFrame({"Test": ["A", "B"]})) def test_dask_io(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top # test dask.dataframe df = pd.DataFrame( dict( a=list("aabbcc"), b=list(range(6))), index=pd.date_range( start="20100101", periods=6)) ddf = dd.from_pandas(df, npartitions=3) extracted_ddf = extract_dask_data(ddf) self.assertEqual( extracted_ddf.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_ddf.divisions)) self.assertEqual( extracted_ddf.columns.tolist(), ["a", "b"], "Failed with columns = {0}".format(extracted_ddf.columns)) # test dask.series labels = ddf["a"] extracted_labels = extract_dask_labels(labels) self.assertEqual( extracted_labels.divisions, (0, 2, 4, 6), "Failed with divisions = {0}".format(extracted_labels.divisions)) # labels should only have one column with self.assertRaises(ValueError): extract_dask_labels(ddf) else: print("No dask installed. dask-related tests are skipped.") def test_dask_iris_classification(self): if HAS_DASK and HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top import dask.dataframe as dd # pylint: disable=g-import-not-at-top random.seed(42) iris = datasets.load_iris() data = pd.DataFrame(iris.data) data = dd.from_pandas(data, npartitions=2) labels = pd.DataFrame(iris.target) labels = dd.from_pandas(labels, npartitions=2) classifier = learn.LinearClassifier( feature_columns=learn.infer_real_valued_columns_from_input(data), n_classes=3) classifier.fit(data, labels, steps=100) predictions = data.map_partitions(classifier.predict).compute() score = accuracy_score(labels.compute(), predictions) self.assertGreater(score, 0.5, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/io_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to read data in the graph (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.input_pipeline.python.ops import input_pipeline_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.layers import utils from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.summary import summary from tensorflow.python.training import input as input_ops from tensorflow.python.training import queue_runner from tensorflow.python.util.deprecation import deprecated # Default name for key in the feature dict. KEY_FEATURE_NAME = '__key__' @deprecated(None, 'Use tf.data.') def read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None, seed=None): """Adds operations to read, queue, batch `Example` protos. Given file pattern (or list of files), will setup a queue for file names, read `Example` proto using provided `reader`, use batch queue to create batches of examples of size `batch_size`. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Use `parse_fn` if you need to do parsing / processing on single examples. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If `None`, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call `tf.compat.v1.local_variables_initializer()` and run the op in a session. queue_capacity: Capacity for input queue. num_threads: The number of threads enqueuing examples. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `num_threads` should be 1. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. seed: An integer (optional). Seed used if randomize_input == True. Returns: String `Tensor` of batched `Example` proto. Raises: ValueError: for invalid inputs. """ _, examples = read_keyed_batch_examples( file_pattern=file_pattern, batch_size=batch_size, reader=reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, read_batch_size=read_batch_size, parse_fn=parse_fn, name=name, seed=seed) return examples @deprecated(None, 'Use tf.data.') def read_keyed_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None, seed=None): """Adds operations to read, queue, batch `Example` protos. Given file pattern (or list of files), will setup a queue for file names, read `Example` proto using provided `reader`, use batch queue to create batches of examples of size `batch_size`. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Use `parse_fn` if you need to do parsing / processing on single examples. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If `None`, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call `tf.compat.v1.local_variables_initializer()` and run the op in a session. queue_capacity: Capacity for input queue. num_threads: The number of threads enqueuing examples. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `num_threads` should be 1. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. seed: An integer (optional). Seed used if randomize_input == True. Returns: Returns tuple of: - `Tensor` of string keys. - String `Tensor` of batched `Example` proto. Raises: ValueError: for invalid inputs. """ return _read_keyed_batch_examples_helper( file_pattern, batch_size, reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, read_batch_size=read_batch_size, parse_fn=parse_fn, setup_shared_queue=False, name=name, seed=seed) @deprecated(None, 'Use tf.data.') def read_keyed_batch_examples_shared_queue(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None, seed=None): """Adds operations to read, queue, batch `Example` protos. Given file pattern (or list of files), will setup a shared queue for file names, setup a worker queue that pulls from the shared queue, read `Example` protos using provided `reader`, use batch queue to create batches of examples of size `batch_size`. This provides at most once visit guarantees. Note that this only works if the parameter servers are not pre-empted or restarted or the session is not restored from a checkpoint since the state of a queue is not checkpointed and we will end up restarting from the entire list of files. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Use `parse_fn` if you need to do parsing / processing on single examples. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If `None`, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call `tf.compat.v1.local_variables_initializer()` and run the op in a session. queue_capacity: Capacity for input queue. num_threads: The number of threads enqueuing examples. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. seed: An integer (optional). Seed used if randomize_input == True. Returns: Returns tuple of: - `Tensor` of string keys. - String `Tensor` of batched `Example` proto. Raises: ValueError: for invalid inputs. """ return _read_keyed_batch_examples_helper( file_pattern, batch_size, reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, read_batch_size=read_batch_size, parse_fn=parse_fn, setup_shared_queue=True, name=name, seed=seed) def _get_file_names(file_pattern, randomize_input): """Parse list of file names from pattern, optionally shuffled. Args: file_pattern: File glob pattern, or list of glob patterns. randomize_input: Whether to shuffle the order of file names. Returns: List of file names matching `file_pattern`. Raises: ValueError: If `file_pattern` is empty, or pattern matches no files. """ if isinstance(file_pattern, list): if not file_pattern: raise ValueError('No files given to dequeue_examples.') file_names = [] for entry in file_pattern: file_names.extend(gfile.Glob(entry)) else: file_names = list(gfile.Glob(file_pattern)) if not file_names: raise ValueError('No files match %s.' % file_pattern) # Sort files so it will be deterministic for unit tests. They'll be shuffled # in `string_input_producer` if `randomize_input` is enabled. if not randomize_input: file_names = sorted(file_names) return file_names def _get_examples(file_name_queue, reader, num_threads, read_batch_size, filter_fn, parse_fn): """Get example filenames matching. Args: file_name_queue: A queue implementation that dequeues elements in first-in first-out order. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). num_threads: The number of threads enqueuing examples. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. filter_fn: Filtering function, takes both keys as well as an `Example` Tensors and returns a boolean mask of the same shape as the input Tensors to be applied for filtering. If `None`, no filtering is done. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. Returns: List of example file names matching `file_name_queue`. """ with ops.name_scope('read'): example_list = [] for _ in range(num_threads): keys, examples_proto = utils.smart_cond( read_batch_size > 1, lambda: reader().read_up_to(file_name_queue, read_batch_size), lambda: reader().read(file_name_queue)) if filter_fn: mask = filter_fn(keys, examples_proto) keys = array_ops.boolean_mask(keys, mask) examples_proto = array_ops.boolean_mask(examples_proto, mask) if parse_fn: parsed_examples = parse_fn(examples_proto) # Map keys into example map because batch_join doesn't support # tuple of Tensor + dict. if isinstance(parsed_examples, dict): parsed_examples[KEY_FEATURE_NAME] = keys example_list.append(parsed_examples) else: example_list.append((keys, parsed_examples)) else: example_list.append((keys, examples_proto)) return example_list def _read_keyed_batch_examples_helper(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, filter_fn=None, parse_fn=None, setup_shared_queue=False, name=None, seed=None): """Adds operations to read, queue, batch `Example` protos. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If `None`, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call `tf.compat.v1.local_variables_initializer()` and run the op in a session. queue_capacity: Capacity for input queue. num_threads: The number of threads enqueuing examples. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. filter_fn: Filtering function, takes both keys as well `Example` Tensors and returns a boolean mask of the same shape as the input Tensors to be applied for filtering. If `None`, no filtering is done. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. setup_shared_queue: Whether to set up a shared queue for file names. name: Name of resulting op. seed: An integer (optional). Seed used if randomize_input == True. Returns: Returns tuple of: - `Tensor` of string keys. - String `Tensor` of batched `Example` proto. Raises: ValueError: for invalid inputs. """ # Retrieve files to read. file_names = _get_file_names(file_pattern, randomize_input) # Check input parameters are given and reasonable. if (not queue_capacity) or (queue_capacity <= 0): raise ValueError('Invalid queue_capacity %s.' % queue_capacity) if (batch_size is None) or ( (not isinstance(batch_size, ops.Tensor)) and (batch_size <= 0 or batch_size >= queue_capacity)): raise ValueError('Invalid batch_size %s, with queue_capacity %s.' % (batch_size, queue_capacity)) if (read_batch_size is None) or ( (not isinstance(read_batch_size, ops.Tensor)) and (read_batch_size <= 0)): raise ValueError('Invalid read_batch_size %s.' % read_batch_size) if (not num_threads) or (num_threads <= 0): raise ValueError('Invalid num_threads %s.' % num_threads) if (num_epochs is not None) and (num_epochs <= 0): raise ValueError('Invalid num_epochs %s.' % num_epochs) with ops.name_scope(name, 'read_batch_examples', [file_pattern]) as scope: with ops.name_scope('file_name_queue') as file_name_queue_scope: if setup_shared_queue: file_name_queue = data_flow_ops.FIFOQueue( capacity=1, dtypes=[dtypes.string], shapes=[[]]) enqueue_op = file_name_queue.enqueue( input_pipeline_ops.seek_next( file_names, shuffle=randomize_input, num_epochs=num_epochs, seed=seed)) queue_runner.add_queue_runner( queue_runner.QueueRunner(file_name_queue, [enqueue_op])) else: file_name_queue = input_ops.string_input_producer( constant_op.constant(file_names, name='input'), shuffle=randomize_input, num_epochs=num_epochs, name=file_name_queue_scope, seed=seed) example_list = _get_examples(file_name_queue, reader, num_threads, read_batch_size, filter_fn, parse_fn) enqueue_many = read_batch_size > 1 if num_epochs is None: allow_smaller_final_batch = False else: allow_smaller_final_batch = True # Setup batching queue given list of read example tensors. if randomize_input: if isinstance(batch_size, ops.Tensor): min_after_dequeue = int(queue_capacity * 0.4) else: min_after_dequeue = max(queue_capacity - (3 * batch_size), batch_size) queued_examples_with_keys = input_ops.shuffle_batch_join( example_list, batch_size, capacity=queue_capacity, min_after_dequeue=min_after_dequeue, enqueue_many=enqueue_many, name=scope, allow_smaller_final_batch=allow_smaller_final_batch, seed=seed) else: queued_examples_with_keys = input_ops.batch_join( example_list, batch_size, capacity=queue_capacity, enqueue_many=enqueue_many, name=scope, allow_smaller_final_batch=allow_smaller_final_batch) if parse_fn and isinstance(queued_examples_with_keys, dict): queued_keys = queued_examples_with_keys.pop(KEY_FEATURE_NAME) return queued_keys, queued_examples_with_keys return queued_examples_with_keys @deprecated(None, 'Use tf.data.') def read_keyed_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, feature_queue_capacity=100, num_enqueue_threads=2, parse_fn=None, name=None, read_batch_size=None): """Adds operations to read, queue, batch and parse `Example` protos. Given file pattern (or list of files), will setup a queue for file names, read `Example` proto using provided `reader`, use batch queue to create batches of examples of size `batch_size` and parse example given `features` specification. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call tf.compat.v1.local_variables_initializer() and run the op in a session. queue_capacity: Capacity for input queue. reader_num_threads: The number of threads to read examples. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `reader_num_threads` should be 1. feature_queue_capacity: Capacity of the parsed features queue. num_enqueue_threads: Number of threads to enqueue the parsed example queue. Using multiple threads to enqueue the parsed example queue helps maintain a full queue when the subsequent computations overall are cheaper than parsing. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `num_enqueue_threads` should be 1. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. If `None`, defaults to `batch_size`. Returns: Returns tuple of: - `Tensor` of string keys. - A dict of `Tensor` or `SparseTensor` objects for each in `features`. Raises: ValueError: for invalid inputs. """ with ops.name_scope(name, 'read_batch_features', [file_pattern]) as scope: if read_batch_size is None: read_batch_size = batch_size keys, examples = read_keyed_batch_examples( file_pattern, batch_size, reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=reader_num_threads, read_batch_size=read_batch_size, parse_fn=parse_fn, name=scope) # Parse the example. feature_map = parsing_ops.parse_example(examples, features) return queue_parsed_features( feature_map, keys=keys, feature_queue_capacity=feature_queue_capacity, num_enqueue_threads=num_enqueue_threads, name=scope) @deprecated(None, 'Use tf.data.') def read_keyed_batch_features_shared_queue(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, feature_queue_capacity=100, num_queue_runners=2, parse_fn=None, name=None): """Adds operations to read, queue, batch and parse `Example` protos. Given file pattern (or list of files), will setup a shared queue for file names, setup a worker queue that gets filenames from the shared queue, read `Example` proto using provided `reader`, use batch queue to create batches of examples of size `batch_size` and parse example given `features` specification. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call tf.compat.v1.local_variables_initializer() and run the op in a session. queue_capacity: Capacity for input queue. reader_num_threads: The number of threads to read examples. feature_queue_capacity: Capacity of the parsed features queue. num_queue_runners: Number of threads to enqueue the parsed example queue. Using multiple threads to enqueue the parsed example queue helps maintain a full queue when the subsequent computations overall are cheaper than parsing. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. Returns: Returns tuple of: - `Tensor` of string keys. - A dict of `Tensor` or `SparseTensor` objects for each in `features`. Raises: ValueError: for invalid inputs. """ with ops.name_scope(name, 'read_batch_features', [file_pattern]) as scope: keys, examples = read_keyed_batch_examples_shared_queue( file_pattern, batch_size, reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=reader_num_threads, read_batch_size=batch_size, parse_fn=parse_fn, name=scope) # Parse the example. feature_map = parsing_ops.parse_example(examples, features) return queue_parsed_features( feature_map, keys=keys, feature_queue_capacity=feature_queue_capacity, num_enqueue_threads=num_queue_runners, name=scope) @deprecated(None, 'Use tf.data.') def queue_parsed_features(parsed_features, keys=None, feature_queue_capacity=100, num_enqueue_threads=2, name=None): """Speeds up parsing by using queues to do it asynchronously. This function adds the tensors in `parsed_features` to a queue, which allows the parsing (or any other expensive op before this) to be asynchronous wrt the rest of the training graph. This greatly improves read latency and speeds up training since the data will already be parsed and ready when each step of training needs it. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Args: parsed_features: A dict of string key to `Tensor` or `SparseTensor` objects. keys: `Tensor` of string keys. feature_queue_capacity: Capacity of the parsed features queue. num_enqueue_threads: Number of threads to enqueue the parsed example queue. Using multiple threads to enqueue the parsed example queue helps maintain a full queue when the subsequent computations overall are cheaper than parsing. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `num_enqueue_threads` should be 1. name: Name of resulting op. Returns: Returns tuple of: - `Tensor` corresponding to `keys` if provided, otherwise `None`. - A dict of string key to `Tensor` or `SparseTensor` objects corresponding to `parsed_features`. Raises: ValueError: for invalid inputs. """ args = list(parsed_features.values()) if keys is not None: args += [keys] with ops.name_scope(name, 'queue_parsed_features', args): # Lets also add preprocessed tensors into the queue types for each item of # the queue. tensors_to_enqueue = [] # Each entry contains the key, and a boolean which indicates whether the # tensor was a sparse tensor. tensors_mapping = [] # TODO(sibyl-Aix6ihai): Most of the functionality here is about pushing sparse # tensors into a queue. This could be taken care in somewhere else so others # can reuse it. Also, QueueBase maybe extended to handle sparse tensors # directly. for key in sorted(parsed_features.keys()): tensor = parsed_features[key] if isinstance(tensor, sparse_tensor.SparseTensor): tensors_mapping.append((key, True)) tensors_to_enqueue.extend( [tensor.indices, tensor.values, tensor.dense_shape]) else: tensors_mapping.append((key, False)) tensors_to_enqueue.append(tensor) if keys is not None: tensors_to_enqueue.append(keys) queue_dtypes = [x.dtype for x in tensors_to_enqueue] input_queue = data_flow_ops.FIFOQueue(feature_queue_capacity, queue_dtypes) # Add a summary op to debug if our feature queue is full or not. summary.scalar('queue/parsed_features/%s/fraction_of_%d_full' % (input_queue.name, feature_queue_capacity), math_ops.cast(input_queue.size(), dtypes.float32) * (1. / feature_queue_capacity)) # Use a single QueueRunner with multiple threads to enqueue so the queue is # always full. The threads are coordinated so the last batch will not be # lost. enqueue_ops = [ input_queue.enqueue(tensors_to_enqueue) for _ in range(num_enqueue_threads) ] queue_runner.add_queue_runner( queue_runner.QueueRunner( input_queue, enqueue_ops, queue_closed_exception_types=(errors.OutOfRangeError, errors.CancelledError))) dequeued_tensors = input_queue.dequeue() if not isinstance(dequeued_tensors, list): # input_queue.dequeue() returns a single tensor instead of a list of # tensors if there is only one tensor to dequeue, which breaks the # assumption of a list below. dequeued_tensors = [dequeued_tensors] # Reset shapes on dequeued tensors. for i in range(len(tensors_to_enqueue)): dequeued_tensors[i].set_shape(tensors_to_enqueue[i].get_shape()) # Recreate feature mapping according to the original dictionary. dequeued_parsed_features = {} index = 0 for key, is_sparse_tensor in tensors_mapping: if is_sparse_tensor: # Three tensors are (indices, values, shape). dequeued_parsed_features[key] = sparse_tensor.SparseTensor( dequeued_tensors[index], dequeued_tensors[index + 1], dequeued_tensors[index + 2]) index += 3 else: dequeued_parsed_features[key] = dequeued_tensors[index] index += 1 dequeued_keys = None if keys is not None: dequeued_keys = dequeued_tensors[-1] return dequeued_keys, dequeued_parsed_features @deprecated(None, 'Use tf.data.') def read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100, reader_num_threads=1, num_enqueue_threads=2, parse_fn=None, name=None, read_batch_size=None): """Adds operations to read, queue, batch and parse `Example` protos. Given file pattern (or list of files), will setup a queue for file names, read `Example` proto using provided `reader`, use batch queue to create batches of examples of size `batch_size` and parse example given `features` specification. All queue runners are added to the queue runners collection, and may be started via `start_queue_runners`. All ops are added to the default graph. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. reader: A function or class that returns an object with `read` method, (filename tensor) -> (example tensor). randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call tf.compat.v1.local_variables_initializer() and run the op in a session. queue_capacity: Capacity for input queue. feature_queue_capacity: Capacity of the parsed features queue. Set this value to a small number, for example 5 if the parsed features are large. reader_num_threads: The number of threads to read examples. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `reader_num_threads` should be 1. num_enqueue_threads: Number of threads to enqueue the parsed example queue. Using multiple threads to enqueue the parsed example queue helps maintain a full queue when the subsequent computations overall are cheaper than parsing. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `num_enqueue_threads` should be 1. parse_fn: Parsing function, takes `Example` Tensor returns parsed representation. If `None`, no parsing is done. name: Name of resulting op. read_batch_size: An int or scalar `Tensor` specifying the number of records to read at once. If `None`, defaults to `batch_size`. Returns: A dict of `Tensor` or `SparseTensor` objects for each in `features`. Raises: ValueError: for invalid inputs. """ _, features = read_keyed_batch_features( file_pattern, batch_size, features, reader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, reader_num_threads=reader_num_threads, feature_queue_capacity=feature_queue_capacity, num_enqueue_threads=num_enqueue_threads, read_batch_size=read_batch_size, parse_fn=parse_fn, name=name) return features @deprecated(None, 'Use tf.data.') def read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, name='dequeue_record_examples'): """Reads TFRecord, queues, batches and parses `Example` proto. See more detailed description in `read_examples`. Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.io.gfile.glob` for pattern rules. batch_size: An int or scalar `Tensor` specifying the batch size to use. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call tf.compat.v1.local_variables_initializer() and run the op in a session. queue_capacity: Capacity for input queue. reader_num_threads: The number of threads to read examples. In order to have predictable and repeatable order of reading and enqueueing, such as in prediction and evaluation mode, `reader_num_threads` should be 1. name: Name of resulting op. Returns: A dict of `Tensor` or `SparseTensor` objects for each in `features`. Raises: ValueError: for invalid inputs. """ return read_batch_features( file_pattern=file_pattern, batch_size=batch_size, features=features, reader=io_ops.TFRecordReader, randomize_input=randomize_input, num_epochs=num_epochs, queue_capacity=queue_capacity, reader_num_threads=reader_num_threads, name=name)
tensorflow-master
tensorflow/contrib/learn/python/learn/learn_io/graph_io.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.platform import test mock = test.mock _TIMEOUT = IOError(110, "timeout") class BaseTest(test.TestCase): """Test load csv functions.""" def testUrlretrieveRetriesOnIOError(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, None ] base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert full backoff was tried actual_list = [arg[0][0] for arg in mock_time.sleep.call_args_list] expected_list = [1, 2, 4, 8, 16] for actual, expected in zip(actual_list, expected_list): self.assertLessEqual(abs(actual - expected), 0.25 * expected) self.assertEquals(len(actual_list), len(expected_list)) def testUrlretrieveRaisesAfterRetriesAreExhausted(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, _TIMEOUT, ] with self.assertRaises(IOError): base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert full backoff was tried actual_list = [arg[0][0] for arg in mock_time.sleep.call_args_list] expected_list = [1, 2, 4, 8, 16] for actual, expected in zip(actual_list, expected_list): self.assertLessEqual(abs(actual - expected), 0.25 * expected) self.assertEquals(len(actual_list), len(expected_list)) def testUrlretrieveRaisesOnNonRetriableErrorWithoutRetry(self): with mock.patch.object(base, "time") as mock_time: with mock.patch.object(base, "urllib") as mock_urllib: mock_urllib.request.urlretrieve.side_effect = [ IOError(2, "No such file or directory"), ] with self.assertRaises(IOError): base.urlretrieve_with_retry("http://dummy.com", "/tmp/dummy") # Assert no retries self.assertFalse(mock_time.called) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/base_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Synthetic dataset generators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.datasets.base import Dataset from tensorflow.python.util.deprecation import deprecated @deprecated(None, 'Consider using synthetic datasets from scikits.learn.') def circles(n_samples=100, noise=None, seed=None, factor=0.8, n_classes=2, *args, **kwargs): """Create circles separated by some value Args: n_samples: int, number of datapoints to generate noise: float or None, standard deviation of the Gaussian noise added seed: int or None, seed for the noise factor: float, size factor of the inner circles with respect to the outer ones n_classes: int, number of classes to generate Returns: Shuffled features and labels for 'circles' synthetic dataset of type `base.Dataset` Note: The multi-class support might not work as expected if `noise` is enabled TODO: - Generation of unbalanced data Credit goes to (under BSD 3 clause): B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, G. Louppe, J. Nothman """ if seed is not None: np.random.seed(seed) # Algo: 1) Generate initial circle, 2) For ever class generate a smaller radius circle linspace = np.linspace(0, 2 * np.pi, n_samples // n_classes) circ_x = np.empty(0, dtype=np.int32) circ_y = np.empty(0, dtype=np.int32) base_cos = np.cos(linspace) base_sin = np.sin(linspace) y = np.empty(0, dtype=np.int32) for label in range(n_classes): circ_x = np.append(circ_x, base_cos) circ_y = np.append(circ_y, base_sin) base_cos *= factor base_sin *= factor y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) # Add more points if n_samples is not divisible by n_classes (unbalanced!) extras = n_samples % n_classes circ_x = np.append(circ_x, np.cos(np.random.rand(extras) * 2 * np.pi)) circ_y = np.append(circ_y, np.sin(np.random.rand(extras) * 2 * np.pi)) y = np.append(y, np.zeros(extras, dtype=np.int32)) # Reshape the features/labels X = np.vstack((circ_x, circ_y)).T y = np.hstack(y) # Shuffle the data indices = np.random.permutation(range(n_samples)) if noise is not None: X += np.random.normal(scale=noise, size=X.shape) return Dataset(data=X[indices], target=y[indices]) @deprecated(None, 'Consider using synthetic datasets from scikits.learn.') def spirals(n_samples=100, noise=None, seed=None, mode='archimedes', n_loops=2, *args, **kwargs): """Create spirals Currently only binary classification is supported for spiral generation Args: n_samples: int, number of datapoints to generate noise: float or None, standard deviation of the Gaussian noise added seed: int or None, seed for the noise n_loops: int, number of spiral loops, doesn't play well with 'bernoulli' mode: str, how the spiral should be generated. Current implementations: 'archimedes': a spiral with equal distances between branches 'bernoulli': logarithmic spiral with branch distances increasing 'fermat': a spiral with branch distances decreasing (sqrt) Returns: Shuffled features and labels for 'spirals' synthetic dataset of type `base.Dataset` Raises: ValueError: If the generation `mode` is not valid TODO: - Generation of unbalanced data """ n_classes = 2 # I am not sure how to make it multiclass _modes = { 'archimedes': _archimedes_spiral, 'bernoulli': _bernoulli_spiral, 'fermat': _fermat_spiral } if mode is None or mode not in _modes: raise ValueError('Cannot generate spiral with mode %s' % mode) if seed is not None: np.random.seed(seed) linspace = np.linspace(0, 2 * n_loops * np.pi, n_samples // n_classes) spir_x = np.empty(0, dtype=np.int32) spir_y = np.empty(0, dtype=np.int32) y = np.empty(0, dtype=np.int32) for label in range(n_classes): base_cos, base_sin = _modes[mode](linspace, label * np.pi, *args, **kwargs) spir_x = np.append(spir_x, base_cos) spir_y = np.append(spir_y, base_sin) y = np.append(y, label * np.ones(n_samples // n_classes, dtype=np.int32)) # Add more points if n_samples is not divisible by n_classes (unbalanced!) extras = n_samples % n_classes if extras > 0: x_extra, y_extra = _modes[mode](np.random.rand(extras) * 2 * np.pi, *args, **kwargs) spir_x = np.append(spir_x, x_extra) spir_y = np.append(spir_y, y_extra) y = np.append(y, np.zeros(extras, dtype=np.int32)) # Reshape the features/labels X = np.vstack((spir_x, spir_y)).T y = np.hstack(y) # Shuffle the data indices = np.random.permutation(range(n_samples)) if noise is not None: X += np.random.normal(scale=noise, size=X.shape) return Dataset(data=X[indices], target=y[indices]) def _archimedes_spiral(theta, theta_offset=0., *args, **kwargs): """Return Archimedes spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) """ x, y = theta * np.cos(theta + theta_offset), theta * np.sin( theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y def _bernoulli_spiral(theta, theta_offset=0., *args, **kwargs): """Return Equiangular (Bernoulli's) spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) Kwargs: exp_scale: growth rate of the exponential """ exp_scale = kwargs.pop('exp_scale', 0.1) x, y = np.exp(exp_scale * theta) * np.cos(theta + theta_offset), np.exp( exp_scale * theta) * np.sin(theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y def _fermat_spiral(theta, theta_offset=0., *args, **kwargs): """Return Parabolic (Fermat's) spiral Args: theta: array-like, angles from polar coordinates to be converted theta_offset: float, angle offset in radians (2*pi = 0) """ x, y = np.sqrt(theta) * np.cos(theta + theta_offset), np.sqrt(theta) * np.sin( theta + theta_offset) x_norm = np.max(np.abs(x)) y_norm = np.max(np.abs(y)) x, y = x / x_norm, y / y_norm return x, y
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/synthetic.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn import datasets from tensorflow.python.platform import test class LoadCsvTest(test.TestCase): """Test load csv functions.""" def testIris(self): iris = datasets.load_iris() self.assertTupleEqual(iris.data.shape, (150, 4)) self.assertTupleEqual(iris.target.shape, (150,)) def testBoston(self): boston = datasets.load_boston() self.assertTupleEqual(boston.data.shape, (506, 13)) self.assertTupleEqual(boston.target.shape, (506,)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/load_csv_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Produce DBpedia datasets of a smaller size (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.datasets import text_datasets from tensorflow.python.platform import app def main(unused_argv): text_datasets.maybe_download_dbpedia('dbpedia_data') # Reduce the size of original data by a factor of 1000. base.shrink_csv('dbpedia_data/dbpedia_csv/train.csv', 1000) base.shrink_csv('dbpedia_data/dbpedia_csv/test.csv', 1000) if __name__ == '__main__': app.run()
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/produce_small_datasets.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Dataset utilities and synthetic/reference datasets (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv from os import path import numpy as np from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.datasets import mnist from tensorflow.contrib.learn.python.learn.datasets import synthetic from tensorflow.contrib.learn.python.learn.datasets import text_datasets from tensorflow.python.util.deprecation import deprecated # Export load_iris and load_boston. load_iris = base.load_iris load_boston = base.load_boston # List of all available datasets. # Note, currently they may return different types. DATASETS = { # Returns base.Dataset. 'iris': base.load_iris, 'boston': base.load_boston, # Returns base.Datasets (train/validation/test sets). 'mnist': mnist.load_mnist, 'dbpedia': text_datasets.load_dbpedia, } # List of all synthetic datasets SYNTHETIC = { # All of these will return ['data', 'target'] -> base.Dataset 'circles': synthetic.circles, 'spirals': synthetic.spirals } @deprecated(None, 'Please use tf.data.') def load_dataset(name, size='small', test_with_fake_data=False): """Loads dataset by name. Args: name: Name of the dataset to load. size: Size of the dataset to load. test_with_fake_data: If true, load with fake dataset. Returns: Features and labels for given dataset. Can be numpy or iterator. Raises: ValueError: if `name` is not found. """ if name not in DATASETS: raise ValueError('Name of dataset is not found: %s' % name) if name == 'dbpedia': return DATASETS[name](size, test_with_fake_data) else: return DATASETS[name]() @deprecated(None, 'Please use tf.data.') def make_dataset(name, n_samples=100, noise=None, seed=42, *args, **kwargs): """Creates binary synthetic datasets. Args: name: str, name of the dataset to generate n_samples: int, number of datapoints to generate noise: float or None, standard deviation of the Gaussian noise added seed: int or None, seed for noise Returns: Shuffled features and labels for given synthetic dataset of type `base.Dataset` Raises: ValueError: Raised if `name` not found Note: - This is a generic synthetic data generator - individual generators might have more parameters! See documentation for individual parameters - Note that the `noise` parameter uses `numpy.random.normal` and depends on `numpy`'s seed TODO: - Support multiclass datasets - Need shuffling routine. Currently synthetic datasets are reshuffled to avoid train/test correlation, but that hurts reprodusability """ # seed = kwargs.pop('seed', None) if name not in SYNTHETIC: raise ValueError('Synthetic dataset not found or not implemeted: %s' % name) else: return SYNTHETIC[name]( n_samples=n_samples, noise=noise, seed=seed, *args, **kwargs)
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Text datasets (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tarfile import numpy as np from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated DBPEDIA_URL = 'https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz' @deprecated(None, 'See contrib/learn/README.md') def maybe_download_dbpedia(data_dir): """Download if DBpedia data is not present.""" train_path = os.path.join(data_dir, 'dbpedia_csv/train.csv') test_path = os.path.join(data_dir, 'dbpedia_csv/test.csv') if not (gfile.Exists(train_path) and gfile.Exists(test_path)): archive_path = base.maybe_download( 'dbpedia_csv.tar.gz', data_dir, DBPEDIA_URL) tfile = tarfile.open(archive_path, 'r:*') tfile.extractall(data_dir) @deprecated(None, 'See contrib/learn/README.md') def load_dbpedia(size='small', test_with_fake_data=False): """Get DBpedia datasets from CSV files.""" if not test_with_fake_data: data_dir = os.path.join(os.getenv('TF_EXP_BASE_DIR', ''), 'dbpedia_data') maybe_download_dbpedia(data_dir) train_path = os.path.join(data_dir, 'dbpedia_csv', 'train.csv') test_path = os.path.join(data_dir, 'dbpedia_csv', 'test.csv') if size == 'small': # Reduce the size of original data by a factor of 1000. base.shrink_csv(train_path, 1000) base.shrink_csv(test_path, 1000) train_path = train_path.replace('train.csv', 'train_small.csv') test_path = test_path.replace('test.csv', 'test_small.csv') else: module_path = os.path.dirname(__file__) train_path = os.path.join(module_path, 'data', 'text_train.csv') test_path = os.path.join(module_path, 'data', 'text_test.csv') train = base.load_csv_without_header( train_path, target_dtype=np.int32, features_dtype=np.str, target_column=0) test = base.load_csv_without_header( test_path, target_dtype=np.int32, features_dtype=np.str, target_column=0) return base.Datasets(train=train, validation=None, test=test)
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/text_datasets.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base utilities for loading datasets (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from os import path import random import time import numpy as np from six.moves import urllib from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated Dataset = collections.namedtuple('Dataset', ['data', 'target']) Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test']) @deprecated(None, 'Use tf.data instead.') def load_csv_with_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file with a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) header = next(data_file) n_samples = int(header[0]) n_features = int(header[1]) data = np.zeros((n_samples, n_features), dtype=features_dtype) target = np.zeros((n_samples,), dtype=target_dtype) for i, row in enumerate(data_file): target[i] = np.asarray(row.pop(target_column), dtype=target_dtype) data[i] = np.asarray(row, dtype=features_dtype) return Dataset(data=data, target=target) @deprecated(None, 'Use tf.data instead.') def load_csv_without_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file without a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) data, target = [], [] for row in data_file: target.append(row.pop(target_column)) data.append(np.asarray(row, dtype=features_dtype)) target = np.array(target, dtype=target_dtype) data = np.array(data) return Dataset(data=data, target=target) @deprecated(None, 'Use tf.data instead.') def shrink_csv(filename, ratio): """Create a smaller dataset of only 1/ratio of original data.""" filename_small = filename.replace('.', '_small.') with gfile.Open(filename_small, 'w') as csv_file_small: writer = csv.writer(csv_file_small) with gfile.Open(filename) as csv_file: reader = csv.reader(csv_file) i = 0 for row in reader: if i % ratio == 0: writer.writerow(row) i += 1 @deprecated(None, 'Use scikits.learn.datasets.') def load_iris(data_path=None): """Load Iris dataset. Args: data_path: string, path to iris dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'iris.csv') return load_csv_with_header( data_path, target_dtype=np.int, features_dtype=np.float) @deprecated(None, 'Use scikits.learn.datasets.') def load_boston(data_path=None): """Load Boston housing dataset. Args: data_path: string, path to boston dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'boston_house_prices.csv') return load_csv_with_header( data_path, target_dtype=np.float, features_dtype=np.float) @deprecated(None, 'Use the retry module or similar alternatives.') def retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions. Args: initial_delay: the initial delay. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. Returns: A function that wraps another function to automatically retry it. """ return _internal_retry( initial_delay=initial_delay, max_delay=max_delay, factor=factor, jitter=jitter, is_retriable=is_retriable) def _internal_retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions, for internal use only. Args: initial_delay: the initial delay. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. Returns: A function that wraps another function to automatically retry it. """ if factor < 1: raise ValueError('factor must be >= 1; was %f' % (factor,)) if jitter >= 1: raise ValueError('jitter must be < 1; was %f' % (jitter,)) # Generator to compute the individual delays def delays(): delay = initial_delay while delay <= max_delay: yield delay * random.uniform(1 - jitter, 1 + jitter) delay *= factor def wrap(fn): """Wrapper function factory invoked by decorator magic.""" def wrapped_fn(*args, **kwargs): """The actual wrapper function that applies the retry logic.""" for delay in delays(): try: return fn(*args, **kwargs) except Exception as e: # pylint: disable=broad-except if is_retriable is None: continue if is_retriable(e): time.sleep(delay) else: raise return fn(*args, **kwargs) return wrapped_fn return wrap _RETRIABLE_ERRNOS = { 110, # Connection timed out [socket.py] } def _is_retriable(e): return isinstance(e, IOError) and e.errno in _RETRIABLE_ERRNOS @deprecated(None, 'Please use urllib or similar directly.') @_internal_retry(initial_delay=1.0, max_delay=16.0, is_retriable=_is_retriable) def urlretrieve_with_retry(url, filename=None): return urllib.request.urlretrieve(url, filename) @deprecated(None, 'Please write your own downloading logic.') def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not gfile.Exists(work_directory): gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not gfile.Exists(filepath): temp_file_name, _ = urlretrieve_with_retry(source_url) gfile.Copy(temp_file_name, filepath) with gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') return filepath
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/base.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import numpy from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated # CVDF mirror of http://yann.lecun.com/exdb/mnist/ DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] @deprecated(None, 'Please use tf.data to implement this functionality.') def extract_images(f): """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. Args: f: A file object that can be passed into a gzip reader. Returns: data: A 4D uint8 numpy array [index, y, x, depth]. Raises: ValueError: If the bytestream does not start with 2051. """ print('Extracting', f.name) with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError('Invalid magic number %d in MNIST image file: %s' % (magic, f.name)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data @deprecated(None, 'Please use tf.one_hot on tensors.') def dense_to_one_hot(labels_dense, num_classes): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot @deprecated(None, 'Please use tf.data to implement this functionality.') def extract_labels(f, one_hot=False, num_classes=10): """Extract the labels into a 1D uint8 numpy array [index]. Args: f: A file object that can be passed into a gzip reader. one_hot: Does one hot encoding for the result. num_classes: Number of classes for the one hot encoding. Returns: labels: a 1D uint8 numpy array. Raises: ValueError: If the bystream doesn't start with 2049. """ print('Extracting', f.name) with gzip.GzipFile(fileobj=f) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError('Invalid magic number %d in MNIST label file: %s' % (magic, f.name)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels, num_classes) return labels class DataSet(object): """Container class for a dataset (deprecated). THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please use alternatives such as official/mnist/dataset.py' ' from tensorflow/models.') def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True, seed=None): """Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. Seed arg provides for convenient deterministic testing. """ seed1, seed2 = random_seed.get_seed(seed) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seed1 if seed is None else seed2) dtype = dtypes.as_dtype(dtype).base_dtype if dtype not in (dtypes.uint8, dtypes.float32): raise TypeError( 'Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) if dtype == dtypes.float32: # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False, shuffle=True): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size) ] start = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: perm0 = numpy.arange(self._num_examples) numpy.random.shuffle(perm0) self._images = self.images[perm0] self._labels = self.labels[perm0] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch rest_num_examples = self._num_examples - start images_rest_part = self._images[start:self._num_examples] labels_rest_part = self._labels[start:self._num_examples] # Shuffle the data if shuffle: perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self.images[perm] self._labels = self.labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size - rest_num_examples end = self._index_in_epoch images_new_part = self._images[start:end] labels_new_part = self._labels[start:end] return numpy.concatenate( (images_rest_part, images_new_part), axis=0), numpy.concatenate( (labels_rest_part, labels_new_part), axis=0) else: self._index_in_epoch += batch_size end = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(None, 'Please use alternatives such as official/mnist/dataset.py' ' from tensorflow/models.') def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=dtypes.float32, reshape=True, validation_size=5000, seed=None, source_url=DEFAULT_SOURCE_URL): if fake_data: def fake(): return DataSet( [], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed) train = fake() validation = fake() test = fake() return base.Datasets(train=train, validation=validation, test=test) if not source_url: # empty string check source_url = DEFAULT_SOURCE_URL TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' local_file = base.maybe_download(TRAIN_IMAGES, train_dir, source_url + TRAIN_IMAGES) with gfile.Open(local_file, 'rb') as f: train_images = extract_images(f) local_file = base.maybe_download(TRAIN_LABELS, train_dir, source_url + TRAIN_LABELS) with gfile.Open(local_file, 'rb') as f: train_labels = extract_labels(f, one_hot=one_hot) local_file = base.maybe_download(TEST_IMAGES, train_dir, source_url + TEST_IMAGES) with gfile.Open(local_file, 'rb') as f: test_images = extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, source_url + TEST_LABELS) with gfile.Open(local_file, 'rb') as f: test_labels = extract_labels(f, one_hot=one_hot) if not 0 <= validation_size <= len(train_images): raise ValueError('Validation size should be between 0 and {}. Received: {}.' .format(len(train_images), validation_size)) validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] options = dict(dtype=dtype, reshape=reshape, seed=seed) train = DataSet(train_images, train_labels, **options) validation = DataSet(validation_images, validation_labels, **options) test = DataSet(test_images, test_labels, **options) return base.Datasets(train=train, validation=validation, test=test) @deprecated(None, 'Please use alternatives such as official/mnist/dataset.py' ' from tensorflow/models.') def load_mnist(train_dir='MNIST-data'): return read_data_sets(train_dir)
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/mnist.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import numpy as np from tensorflow.python.platform import test from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn.datasets import synthetic class SyntheticTest(test.TestCase): """Test synthetic dataset generation""" def test_make_dataset(self): """Test if the synthetic routine wrapper complains about the name""" self.assertRaises( ValueError, datasets.make_dataset, name='_non_existing_name') def test_all_datasets_callable(self): """Test if all methods inside the `SYNTHETIC` are callable""" self.assertIsInstance(datasets.SYNTHETIC, dict) if len(datasets.SYNTHETIC) > 0: for name, method in six.iteritems(datasets.SYNTHETIC): self.assertTrue(callable(method)) def test_circles(self): """Test if the circles are generated correctly Tests: - return type is `Dataset` - returned `data` shape is (n_samples, n_features) - returned `target` shape is (n_samples,) - set of unique classes range is [0, n_classes) TODO: - all points have the same radius, if no `noise` specified """ n_samples = 100 n_classes = 2 circ = synthetic.circles( n_samples=n_samples, noise=None, n_classes=n_classes) self.assertIsInstance(circ, datasets.base.Dataset) self.assertTupleEqual(circ.data.shape, (n_samples, 2)) self.assertTupleEqual(circ.target.shape, (n_samples,)) self.assertSetEqual(set(circ.target), set(range(n_classes))) def test_circles_replicable(self): """Test if the data generation is replicable with a specified `seed` Tests: - return the same value if raised with the same seed - return different values if noise or seed is different """ seed = 42 noise = 0.1 circ0 = synthetic.circles( n_samples=100, noise=noise, n_classes=2, seed=seed) circ1 = synthetic.circles( n_samples=100, noise=noise, n_classes=2, seed=seed) np.testing.assert_array_equal(circ0.data, circ1.data) np.testing.assert_array_equal(circ0.target, circ1.target) circ1 = synthetic.circles( n_samples=100, noise=noise, n_classes=2, seed=seed + 1) self.assertRaises(AssertionError, np.testing.assert_array_equal, circ0.data, circ1.data) self.assertRaises(AssertionError, np.testing.assert_array_equal, circ0.target, circ1.target) circ1 = synthetic.circles( n_samples=100, noise=noise / 2., n_classes=2, seed=seed) self.assertRaises(AssertionError, np.testing.assert_array_equal, circ0.data, circ1.data) def test_spirals(self): """Test if the circles are generated correctly Tests: - if mode is unknown, ValueError is raised - return type is `Dataset` - returned `data` shape is (n_samples, n_features) - returned `target` shape is (n_samples,) - set of unique classes range is [0, n_classes) """ self.assertRaises( ValueError, synthetic.spirals, mode='_unknown_mode_spiral_') n_samples = 100 modes = ('archimedes', 'bernoulli', 'fermat') for mode in modes: spir = synthetic.spirals(n_samples=n_samples, noise=None, mode=mode) self.assertIsInstance(spir, datasets.base.Dataset) self.assertTupleEqual(spir.data.shape, (n_samples, 2)) self.assertTupleEqual(spir.target.shape, (n_samples,)) self.assertSetEqual(set(spir.target), set(range(2))) def test_spirals_replicable(self): """Test if the data generation is replicable with a specified `seed` Tests: - return the same value if raised with the same seed - return different values if noise or seed is different """ seed = 42 noise = 0.1 modes = ('archimedes', 'bernoulli', 'fermat') for mode in modes: spir0 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed) spir1 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed) np.testing.assert_array_equal(spir0.data, spir1.data) np.testing.assert_array_equal(spir0.target, spir1.target) spir1 = synthetic.spirals(n_samples=1000, noise=noise, seed=seed + 1) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.data, spir1.data) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.target, spir1.target) spir1 = synthetic.spirals(n_samples=1000, noise=noise / 2., seed=seed) self.assertRaises(AssertionError, np.testing.assert_array_equal, spir0.data, spir1.data) def test_spirals_synthetic(self): synthetic.spirals(3) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/datasets/synthetic_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""System for specifying garbage collection (GC) of path based data (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. This framework allows for GC of data specified by path names, for example files on disk. gc.Path objects each represent a single item stored at a path and may be a base directory, /tmp/exports/0/... /tmp/exports/1/... ... or a fully qualified file, /tmp/train-1.ckpt /tmp/train-2.ckpt ... A gc filter function takes and returns a list of gc.Path items. Filter functions are responsible for selecting Path items for preservation or deletion. Note that functions should always return a sorted list. For example, base_dir = "/tmp" # Create the directories. for e in xrange(10): os.mkdir("%s/%d" % (base_dir, e), 0o755) # Create a simple parser that pulls the export_version from the directory. path_regex = "^" + re.escape(base_dir) + "/(\\d+)$" def parser(path): match = re.match(path_regex, path.path) if not match: return None return path._replace(export_version=int(match.group(1))) path_list = gc.get_paths("/tmp", parser) # contains all ten Paths every_fifth = gc.mod_export_version(5) print(every_fifth(path_list)) # shows ["/tmp/0", "/tmp/5"] largest_three = gc.largest_export_versions(3) print(largest_three(all_paths)) # shows ["/tmp/7", "/tmp/8", "/tmp/9"] both = gc.union(every_fifth, largest_three) print(both(all_paths)) # shows ["/tmp/0", "/tmp/5", # "/tmp/7", "/tmp/8", "/tmp/9"] # Delete everything not in 'both'. to_delete = gc.negation(both) for p in to_delete(all_paths): gfile.rmtree(p.path) # deletes: "/tmp/1", "/tmp/2", # "/tmp/3", "/tmp/4", "/tmp/6", """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import heapq import math import os from tensorflow.python.platform import gfile from tensorflow.python.util import compat from tensorflow.python.util.deprecation import deprecated Path = collections.namedtuple('Path', 'path export_version') @deprecated(None, 'Please implement your own file management or use Saver.') def largest_export_versions(n): """Creates a filter that keeps the largest n export versions. Args: n: number of versions to keep. Returns: A filter function that keeps the n largest paths. """ def keep(paths): heap = [] for idx, path in enumerate(paths): if path.export_version is not None: heapq.heappush(heap, (path.export_version, idx)) keepers = [paths[i] for _, i in heapq.nlargest(n, heap)] return sorted(keepers) return keep @deprecated(None, 'Please implement your own file management or use Saver.') def one_of_every_n_export_versions(n): """Creates a filter that keeps one of every n export versions. Args: n: interval size. Returns: A filter function that keeps exactly one path from each interval [0, n], (n, 2n], (2n, 3n], etc... If more than one path exists in an interval the largest is kept. """ def keep(paths): """A filter function that keeps exactly one out of every n paths.""" keeper_map = {} # map from interval to largest path seen in that interval for p in paths: if p.export_version is None: # Skip missing export_versions. continue # Find the interval (with a special case to map export_version = 0 to # interval 0. interval = math.floor( (p.export_version - 1) / n) if p.export_version else 0 existing = keeper_map.get(interval, None) if (not existing) or (existing.export_version < p.export_version): keeper_map[interval] = p return sorted(keeper_map.values()) return keep @deprecated(None, 'Please implement your own file management or use Saver.') def mod_export_version(n): """Creates a filter that keeps every export that is a multiple of n. Args: n: step size. Returns: A filter function that keeps paths where export_version % n == 0. """ def keep(paths): keepers = [] for p in paths: if p.export_version % n == 0: keepers.append(p) return sorted(keepers) return keep @deprecated(None, 'Please implement your own file management or use Saver.') def union(lf, rf): """Creates a filter that keeps the union of two filters. Args: lf: first filter rf: second filter Returns: A filter function that keeps the n largest paths. """ def keep(paths): l = set(lf(paths)) r = set(rf(paths)) return sorted(list(l|r)) return keep @deprecated(None, 'Please implement your own file management or use Saver.') def negation(f): """Negate a filter. Args: f: filter function to invert Returns: A filter function that returns the negation of f. """ def keep(paths): l = set(paths) r = set(f(paths)) return sorted(list(l-r)) return keep @deprecated(None, 'Please implement your own file name management.') def get_paths(base_dir, parser): """Gets a list of Paths in a given directory. Args: base_dir: directory. parser: a function which gets the raw Path and can augment it with information such as the export_version, or ignore the path by returning None. An example parser may extract the export version from a path such as "/tmp/exports/100" an another may extract from a full file name such as "/tmp/checkpoint-99.out". Returns: A list of Paths contained in the base directory with the parsing function applied. By default the following fields are populated, - Path.path The parsing function is responsible for populating, - Path.export_version """ raw_paths = gfile.ListDirectory(base_dir) paths = [] for r in raw_paths: p = parser(Path(os.path.join(compat.as_str_any(base_dir), compat.as_str_any(r)), None)) if p: paths.append(p) return sorted(paths)
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/gc.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities supporting export to SavedModel (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. Some contents of this file are moved to tensorflow/python/estimator/export.py: get_input_alternatives() -> obsolete get_output_alternatives() -> obsolete, but see _get_default_export_output() build_all_signature_defs() -> build_all_signature_defs() get_timestamped_export_directory() -> get_timestamped_export_directory() _get_* -> obsolete _is_* -> obsolete Functionality of build_standardized_signature_def() is moved to tensorflow/python/estimator/export_output.py as ExportOutput.as_signature_def(). Anything to do with ExportStrategies or garbage collection is not moved. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import export_strategy from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import gc from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.python.estimator import estimator as core_estimator from tensorflow.python.estimator.export import export as core_export from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.summary import summary_iterator from tensorflow.python.training import checkpoint_management from tensorflow.python.util import compat from tensorflow.python.util.deprecation import deprecated # A key for use in the input_alternatives dict indicating the default input. # This is the input that will be expected when a serving request does not # specify a specific signature. # The default input alternative specifies placeholders that the input_fn # requires to be fed (in the typical case, a single placeholder for a # serialized tf.Example). DEFAULT_INPUT_ALTERNATIVE_KEY = 'default_input_alternative' # A key for use in the input_alternatives dict indicating the features input. # The features inputs alternative specifies the feature Tensors provided as # input to the model_fn, i.e. the outputs of the input_fn. FEATURES_INPUT_ALTERNATIVE_KEY = 'features_input_alternative' # A key for use in the output_alternatives dict indicating the default output. # This is the output that will be provided when a serving request does not # specify a specific signature. # In a single-headed model, the single output is automatically the default. # In a multi-headed model, the name of the desired default head should be # provided to get_output_alternatives. _FALLBACK_DEFAULT_OUTPUT_ALTERNATIVE_KEY = 'default_output_alternative' @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def build_standardized_signature_def(input_tensors, output_tensors, problem_type): """Build a SignatureDef using problem type and input and output Tensors. Note that this delegates the actual creation of the signatures to methods in //third_party/tensorflow/python/saved_model/signature_def_utils.py, which may assign names to the input and output tensors (depending on the problem type) that are standardized in the context of SavedModel. Args: input_tensors: a dict of string key to `Tensor` output_tensors: a dict of string key to `Tensor` problem_type: an instance of constants.ProblemType, specifying classification, regression, etc. Returns: A SignatureDef using SavedModel standard keys where possible. Raises: ValueError: if input_tensors or output_tensors is None or empty. """ if not input_tensors: raise ValueError('input_tensors must be provided.') if not output_tensors: raise ValueError('output_tensors must be provided.') # Per-method signature_def functions will standardize the keys if possible if _is_classification_problem(problem_type, input_tensors, output_tensors): (_, examples), = input_tensors.items() classes = _get_classification_classes(output_tensors) scores = _get_classification_scores(output_tensors) if classes is None and scores is None: items = list(output_tensors.items()) if items[0][1].dtype == dtypes.string: (_, classes), = items else: (_, scores), = items return signature_def_utils.classification_signature_def( examples, classes, scores) elif _is_regression_problem(problem_type, input_tensors, output_tensors): (_, examples), = input_tensors.items() (_, predictions), = output_tensors.items() return signature_def_utils.regression_signature_def(examples, predictions) else: return signature_def_utils.predict_signature_def(input_tensors, output_tensors) def _get_classification_scores(output_tensors): scores = output_tensors.get(prediction_key.PredictionKey.SCORES) if scores is None: scores = output_tensors.get(prediction_key.PredictionKey.PROBABILITIES) return scores def _get_classification_classes(output_tensors): classes = output_tensors.get(prediction_key.PredictionKey.CLASSES) if classes is not None and classes.dtype != dtypes.string: # Servo classification can only serve string classes. return None return classes def _is_classification_problem(problem_type, input_tensors, output_tensors): classes = _get_classification_classes(output_tensors) scores = _get_classification_scores(output_tensors) return ((problem_type == constants.ProblemType.CLASSIFICATION or problem_type == constants.ProblemType.LOGISTIC_REGRESSION) and len(input_tensors) == 1 and (classes is not None or scores is not None or len(output_tensors) == 1)) def _is_regression_problem(problem_type, input_tensors, output_tensors): return (problem_type == constants.ProblemType.LINEAR_REGRESSION and len(input_tensors) == 1 and len(output_tensors) == 1) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def get_input_alternatives(input_ops): """Obtain all input alternatives using the input_fn output and heuristics.""" input_alternatives = {} if isinstance(input_ops, input_fn_utils.InputFnOps): features, unused_labels, default_inputs = input_ops input_alternatives[DEFAULT_INPUT_ALTERNATIVE_KEY] = default_inputs else: features, unused_labels = input_ops if not features: raise ValueError('Features must be defined.') # TODO(b/34253951): reinstate the "features" input_signature. # The "features" input_signature, as written, does not work with # SparseTensors. It is simply commented out as a stopgap, pending discussion # on the bug as to the correct solution. # Add the "features" input_signature in any case. # Note defensive copy because model_fns alter the features dict. # input_alternatives[FEATURES_INPUT_ALTERNATIVE_KEY] = ( # copy.copy(features)) return input_alternatives, features @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def get_output_alternatives(model_fn_ops, default_output_alternative_key=None): """Obtain all output alternatives using the model_fn output and heuristics. Args: model_fn_ops: a `ModelFnOps` object produced by a `model_fn`. This may or may not have output_alternatives populated. default_output_alternative_key: the name of the head to serve when an incoming serving request does not explicitly request a specific head. Not needed for single-headed models. Returns: A tuple of (output_alternatives, actual_default_output_alternative_key), where the latter names the head that will actually be served by default. This may differ from the requested default_output_alternative_key when a) no output_alternatives are provided at all, so one must be generated, or b) there is exactly one head, which is used regardless of the requested default. Raises: ValueError: if the requested default_output_alternative_key is not available in output_alternatives, or if there are multiple output_alternatives and no default is specified. """ output_alternatives = model_fn_ops.output_alternatives if not output_alternatives: if default_output_alternative_key: raise ValueError('Requested default_output_alternative: {}, ' 'but available output_alternatives are: []'.format( default_output_alternative_key)) # Lacking provided output alternatives, the best we can do is to # interpret the model as single-headed of unknown type. default_problem_type = constants.ProblemType.UNSPECIFIED default_outputs = model_fn_ops.predictions if not isinstance(default_outputs, dict): default_outputs = {prediction_key.PredictionKey.GENERIC: default_outputs} actual_default_output_alternative_key = ( _FALLBACK_DEFAULT_OUTPUT_ALTERNATIVE_KEY) output_alternatives = { actual_default_output_alternative_key: (default_problem_type, default_outputs) } return output_alternatives, actual_default_output_alternative_key if default_output_alternative_key: # If a default head is provided, use it. if default_output_alternative_key in output_alternatives: return output_alternatives, default_output_alternative_key raise ValueError('Requested default_output_alternative: {}, ' 'but available output_alternatives are: {}'.format( default_output_alternative_key, sorted(output_alternatives.keys()))) if len(output_alternatives) == 1: # If there is only one head, use it as the default regardless of its name. (actual_default_output_alternative_key, _), = output_alternatives.items() return output_alternatives, actual_default_output_alternative_key raise ValueError('Please specify a default_output_alternative. ' 'Available output_alternatives are: {}'.format( sorted(output_alternatives.keys()))) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def build_all_signature_defs(input_alternatives, output_alternatives, actual_default_output_alternative_key): """Build `SignatureDef`s from all pairs of input and output alternatives.""" signature_def_map = {('%s:%s' % (input_key, output_key or 'None')): build_standardized_signature_def(inputs, outputs, problem_type) for input_key, inputs in input_alternatives.items() for output_key, (problem_type, outputs) in output_alternatives.items()} # Add the default SignatureDef default_inputs = input_alternatives.get(DEFAULT_INPUT_ALTERNATIVE_KEY) if not default_inputs: raise ValueError('A default input_alternative must be provided.') # default_inputs = input_alternatives[FEATURES_INPUT_ALTERNATIVE_KEY] # default outputs are guaranteed to exist above (default_problem_type, default_outputs) = ( output_alternatives[actual_default_output_alternative_key]) signature_def_map[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( build_standardized_signature_def(default_inputs, default_outputs, default_problem_type)) return signature_def_map # When we create a timestamped directory, there is a small chance that the # directory already exists because another worker is also writing exports. # In this case we just wait one second to get a new timestamp and try again. # If this fails several times in a row, then something is seriously wrong. MAX_DIRECTORY_CREATION_ATTEMPTS = 10 @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def get_timestamped_export_dir(export_dir_base): """Builds a path to a new subdirectory within the base directory. Each export is written into a new subdirectory named using the current time. This guarantees monotonically increasing version numbers even across multiple runs of the pipeline. The timestamp used is the number of seconds since epoch UTC. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. Returns: The full path of the new subdirectory (which is not actually created yet). Raises: RuntimeError: if repeated attempts fail to obtain a unique timestamped directory name. """ attempts = 0 while attempts < MAX_DIRECTORY_CREATION_ATTEMPTS: export_timestamp = int(time.time()) export_dir = os.path.join( compat.as_bytes(export_dir_base), compat.as_bytes(str(export_timestamp))) if not gfile.Exists(export_dir): # Collisions are still possible (though extremely unlikely): this # directory is not actually created yet, but it will be almost # instantly on return from this function. return export_dir time.sleep(1) attempts += 1 logging.warn('Export directory {} already exists; retrying (attempt {}/{})'. format(export_dir, attempts, MAX_DIRECTORY_CREATION_ATTEMPTS)) raise RuntimeError('Failed to obtain a unique export directory name after ' '{} attempts.'.format(MAX_DIRECTORY_CREATION_ATTEMPTS)) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def get_temp_export_dir(timestamped_export_dir): """Builds a directory name based on the argument but starting with 'temp-'. This relies on the fact that TensorFlow Serving ignores subdirectories of the base directory that can't be parsed as integers. Args: timestamped_export_dir: the name of the eventual export directory, e.g. /foo/bar/<timestamp> Returns: A sister directory prefixed with 'temp-', e.g. /foo/bar/temp-<timestamp>. """ (dirname, basename) = os.path.split(timestamped_export_dir) temp_export_dir = os.path.join( compat.as_bytes(dirname), compat.as_bytes('temp-{}'.format(compat.as_text(basename)))) return temp_export_dir # create a simple parser that pulls the export_version from the directory. def _export_version_parser(path): filename = os.path.basename(path.path) if not (len(filename) == 10 and filename.isdigit()): return None return path._replace(export_version=int(filename)) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def get_most_recent_export(export_dir_base): """Locate the most recent SavedModel export in a directory of many exports. This method assumes that SavedModel subdirectories are named as a timestamp (seconds from epoch), as produced by get_timestamped_export_dir(). Args: export_dir_base: A base directory containing multiple timestamped directories. Returns: A gc.Path, with is just a namedtuple of (path, export_version). """ select_filter = gc.largest_export_versions(1) results = select_filter( gc.get_paths(export_dir_base, parser=_export_version_parser)) return next(iter(results or []), None) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def garbage_collect_exports(export_dir_base, exports_to_keep): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. exports_to_keep: the number of recent exports to retain. """ if exports_to_keep is None: return keep_filter = gc.largest_export_versions(exports_to_keep) delete_filter = gc.negation(keep_filter) for p in delete_filter( gc.get_paths(export_dir_base, parser=_export_version_parser)): try: gfile.DeleteRecursively(p.path) except errors_impl.NotFoundError as e: logging.warn('Can not delete %s recursively: %s', p.path, e) @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def make_export_strategy(serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, exports_to_keep=5, strip_default_attrs=None): """Create an ExportStrategy for use with Experiment. Args: serving_input_fn: A function that takes no arguments and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when an incoming serving request does not explicitly request a specific head. Must be `None` if the estimator inherits from `tf.estimator.Estimator` or for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. exports_to_keep: Number of exports to keep. Older exports will be garbage-collected. Defaults to 5. Set to None to disable garbage collection. strip_default_attrs: Boolean. If True, default attrs in the `GraphDef` will be stripped on write. This is recommended for better forward compatibility of the resulting `SavedModel`. Returns: An ExportStrategy that can be passed to the Experiment constructor. """ def export_fn(estimator, export_dir_base, checkpoint_path=None, strip_default_attrs=False): """Exports the given Estimator as a SavedModel. Args: estimator: the Estimator to export. export_dir_base: A string containing a directory to write the exported graph and checkpoints. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. Returns: The string path to the exported directory. Raises: ValueError: If `estimator` is a `tf.estimator.Estimator` instance and `default_output_alternative_key` was specified. """ if isinstance(estimator, core_estimator.Estimator): if default_output_alternative_key is not None: raise ValueError( 'default_output_alternative_key is not supported in core ' 'Estimator. Given: {}'.format(default_output_alternative_key)) export_result = estimator.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra, as_text=as_text, checkpoint_path=checkpoint_path, strip_default_attrs=strip_default_attrs) else: export_result = estimator.export_savedmodel( export_dir_base, serving_input_fn, default_output_alternative_key=default_output_alternative_key, assets_extra=assets_extra, as_text=as_text, checkpoint_path=checkpoint_path, strip_default_attrs=strip_default_attrs) garbage_collect_exports(export_dir_base, exports_to_keep) return export_result return export_strategy.ExportStrategy('Servo', export_fn, strip_default_attrs) @deprecated(None, 'Use tf.estimator.export.build_parsing_serving_input_receiver_fn') def make_parsing_export_strategy(feature_columns, default_output_alternative_key=None, assets_extra=None, as_text=False, exports_to_keep=5, target_core=False, strip_default_attrs=None): """Create an ExportStrategy for use with Experiment, using `FeatureColumn`s. Creates a SavedModel export that expects to be fed with a single string Tensor containing serialized tf.Examples. At serving time, incoming tf.Examples will be parsed according to the provided `FeatureColumn`s. Args: feature_columns: An iterable of `FeatureColumn`s representing the features that must be provided at serving time (excluding labels!). default_output_alternative_key: the name of the head to serve when an incoming serving request does not explicitly request a specific head. Must be `None` if the estimator inherits from `tf.estimator.Estimator` or for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. exports_to_keep: Number of exports to keep. Older exports will be garbage-collected. Defaults to 5. Set to None to disable garbage collection. target_core: If True, prepare an ExportStrategy for use with tensorflow.python.estimator.*. If False (default), prepare an ExportStrategy for use with tensorflow.contrib.learn.python.learn.*. strip_default_attrs: Boolean. If True, default attrs in the `GraphDef` will be stripped on write. This is recommended for better forward compatibility of the resulting `SavedModel`. Returns: An ExportStrategy that can be passed to the Experiment constructor. """ feature_spec = feature_column.create_feature_spec_for_parsing(feature_columns) if target_core: serving_input_fn = ( core_export.build_parsing_serving_input_receiver_fn(feature_spec)) else: serving_input_fn = ( input_fn_utils.build_parsing_serving_input_fn(feature_spec)) return make_export_strategy( serving_input_fn, default_output_alternative_key=default_output_alternative_key, assets_extra=assets_extra, as_text=as_text, exports_to_keep=exports_to_keep, strip_default_attrs=strip_default_attrs) def _default_compare_fn(curr_best_eval_result, cand_eval_result): """Compares two evaluation results and returns true if the 2nd one is better. Both evaluation results should have the values for MetricKey.LOSS, which are used for comparison. Args: curr_best_eval_result: current best eval metrics. cand_eval_result: candidate eval metrics. Returns: True if cand_eval_result is better. Raises: ValueError: If input eval result is None or no loss is available. """ default_key = metric_key.MetricKey.LOSS if not curr_best_eval_result or default_key not in curr_best_eval_result: raise ValueError( 'curr_best_eval_result cannot be empty or no loss is found in it.') if not cand_eval_result or default_key not in cand_eval_result: raise ValueError( 'cand_eval_result cannot be empty or no loss is found in it.') return curr_best_eval_result[default_key] > cand_eval_result[default_key] class BestModelSelector(object): """A helper that keeps track of export selection candidates. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def __init__(self, event_file_pattern=None, compare_fn=None): """Constructor of this class. Args: event_file_pattern: absolute event file name pattern. compare_fn: a function that returns true if the candidate is better than the current best model. """ self._compare_fn = compare_fn or _default_compare_fn self._best_eval_result = self._get_best_eval_result(event_file_pattern) def update(self, checkpoint_path, eval_result): """Records a given checkpoint and exports if this is the best model. Args: checkpoint_path: the checkpoint path to export. eval_result: a dictionary which is usually generated in evaluation runs. By default, eval_results contains 'loss' field. Returns: A string representing the path to the checkpoint to be exported. A dictionary of the same type of eval_result. Raises: ValueError: if checkpoint path is empty. ValueError: if eval_results is None object. """ if not checkpoint_path: raise ValueError('Checkpoint path is empty.') if eval_result is None: raise ValueError('%s has empty evaluation results.', checkpoint_path) if (self._best_eval_result is None or self._compare_fn(self._best_eval_result, eval_result)): self._best_eval_result = eval_result return checkpoint_path, eval_result else: return '', None def _get_best_eval_result(self, event_files): """Get the best eval result from event files. Args: event_files: Absolute pattern of event files. Returns: The best eval result. """ if not event_files: return None best_eval_result = None for event_file in gfile.Glob(os.path.join(event_files)): for event in summary_iterator.summary_iterator(event_file): if event.HasField('summary'): event_eval_result = {} for value in event.summary.value: if value.HasField('simple_value'): event_eval_result[value.tag] = value.simple_value if best_eval_result is None or self._compare_fn( best_eval_result, event_eval_result): best_eval_result = event_eval_result return best_eval_result @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def make_best_model_export_strategy( serving_input_fn, exports_to_keep=1, model_dir=None, event_file_pattern=None, compare_fn=None, default_output_alternative_key=None, strip_default_attrs=None): """Creates an custom ExportStrategy for use with tf.contrib.learn.Experiment. Args: serving_input_fn: a function that takes no arguments and returns an `InputFnOps`. exports_to_keep: an integer indicating how many historical best models need to be preserved. model_dir: Directory where model parameters, graph etc. are saved. This will be used to load eval metrics from the directory when the export strategy is created. So the best metrics would not be lost even if the export strategy got preempted, which guarantees that only the best model would be exported regardless of preemption. If None, however, the export strategy would not be preemption-safe. To be preemption-safe, both model_dir and event_file_pattern would be needed. event_file_pattern: event file name pattern relative to model_dir, e.g. "eval_continuous/*.tfevents.*". If None, however, the export strategy would not be preemption-safe. To be preemption-safe, both model_dir and event_file_pattern would be needed. compare_fn: a function that select the 'best' candidate from a dictionary of evaluation result keyed by corresponding checkpoint path. default_output_alternative_key: the key for default serving signature for multi-headed inference graphs. strip_default_attrs: Boolean. If True, default attrs in the `GraphDef` will be stripped on write. This is recommended for better forward compatibility of the resulting `SavedModel`. Returns: An ExportStrategy that can be passed to the Experiment constructor. """ best_model_export_strategy = make_export_strategy( serving_input_fn, exports_to_keep=exports_to_keep, default_output_alternative_key=default_output_alternative_key, strip_default_attrs=strip_default_attrs) full_event_file_pattern = os.path.join( model_dir, event_file_pattern) if model_dir and event_file_pattern else None best_model_selector = BestModelSelector(full_event_file_pattern, compare_fn) def export_fn(estimator, export_dir_base, checkpoint_path, eval_result=None): """Exports the given Estimator as a SavedModel. Args: estimator: the Estimator to export. export_dir_base: A string containing a directory to write the exported graph and checkpoints. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. eval_result: placehold args matching the call signature of ExportStrategy. Returns: The string path to the exported directory. """ if not checkpoint_path: # TODO(b/67425018): switch to # checkpoint_path = estimator.latest_checkpoint() # as soon as contrib is cleaned up and we can thus be sure that # estimator is a tf.estimator.Estimator and not a # tf.contrib.learn.Estimator checkpoint_path = checkpoint_management.latest_checkpoint( estimator.model_dir) export_checkpoint_path, export_eval_result = best_model_selector.update( checkpoint_path, eval_result) if export_checkpoint_path and export_eval_result is not None: checkpoint_base = os.path.basename(export_checkpoint_path) export_dir = os.path.join(export_dir_base, checkpoint_base) return best_model_export_strategy.export( estimator, export_dir, export_checkpoint_path, export_eval_result) else: return '' return export_strategy.ExportStrategy('best_model', export_fn) # TODO(b/67013778): Revisit this approach when corresponding changes to # TF Core are finalized. @deprecated(None, 'Switch to tf.estimator.Exporter and associated utilities.') def extend_export_strategy(base_export_strategy, post_export_fn, post_export_name=None): """Extend ExportStrategy, calling post_export_fn after export. Args: base_export_strategy: An ExportStrategy that can be passed to the Experiment constructor. post_export_fn: A user-specified function to call after exporting the SavedModel. Takes two arguments - the path to the SavedModel exported by base_export_strategy and the directory where to export the SavedModel modified by the post_export_fn. Returns the path to the exported SavedModel. post_export_name: The directory name under the export base directory where SavedModels generated by the post_export_fn will be written. If None, the directory name of base_export_strategy is used. Returns: An ExportStrategy that can be passed to the Experiment constructor. """ def export_fn(estimator, export_dir_base, checkpoint_path=None): """Exports the given Estimator as a SavedModel and invokes post_export_fn. Args: estimator: the Estimator to export. export_dir_base: A string containing a directory to write the exported graphs and checkpoint. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. Returns: The string path to the SavedModel indicated by post_export_fn. Raises: ValueError: If `estimator` is a `tf.estimator.Estimator` instance and `default_output_alternative_key` was specified or if post_export_fn does not return a valid directory. RuntimeError: If unable to create temporary or final export directory. """ tmp_base_export_folder = 'temp-base-export-' + str(int(time.time())) tmp_base_export_dir = os.path.join(export_dir_base, tmp_base_export_folder) if gfile.Exists(tmp_base_export_dir): raise RuntimeError('Failed to obtain base export directory') gfile.MakeDirs(tmp_base_export_dir) tmp_base_export = base_export_strategy.export( estimator, tmp_base_export_dir, checkpoint_path) tmp_post_export_folder = 'temp-post-export-' + str(int(time.time())) tmp_post_export_dir = os.path.join(export_dir_base, tmp_post_export_folder) if gfile.Exists(tmp_post_export_dir): raise RuntimeError('Failed to obtain temp export directory') gfile.MakeDirs(tmp_post_export_dir) tmp_post_export = post_export_fn(tmp_base_export, tmp_post_export_dir) if not tmp_post_export.startswith(tmp_post_export_dir): raise ValueError('post_export_fn must return a sub-directory of {}' .format(tmp_post_export_dir)) post_export_relpath = os.path.relpath(tmp_post_export, tmp_post_export_dir) post_export = os.path.join(export_dir_base, post_export_relpath) if gfile.Exists(post_export): raise RuntimeError('Failed to obtain final export directory') gfile.Rename(tmp_post_export, post_export) gfile.DeleteRecursively(tmp_base_export_dir) gfile.DeleteRecursively(tmp_post_export_dir) return post_export name = post_export_name if post_export_name else base_export_strategy.name return export_strategy.ExportStrategy(name, export_fn)
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/saved_model_export_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Learn Utils (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.utils.export import export_estimator from tensorflow.contrib.learn.python.learn.utils.input_fn_utils import build_default_serving_input_fn from tensorflow.contrib.learn.python.learn.utils.input_fn_utils import build_parsing_serving_input_fn from tensorflow.contrib.learn.python.learn.utils.input_fn_utils import InputFnOps from tensorflow.contrib.learn.python.learn.utils.saved_model_export_utils import make_export_strategy
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple script for inspect checkpoint files (deprecated).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys from tensorflow.contrib.framework.python.framework import checkpoint_utils from tensorflow.python.platform import app FLAGS = None def print_tensors_in_checkpoint_file(file_name, tensor_name): """Prints tensors in a checkpoint file. If no `tensor_name` is provided, prints the tensor names and shapes in the checkpoint file. If `tensor_name` is provided, prints the content of the tensor. Args: file_name: Name of the checkpoint file. tensor_name: Name of the tensor in the checkpoint file to print. """ try: if not tensor_name: variables = checkpoint_utils.list_variables(file_name) for name, shape in variables: print("%s\t%s" % (name, str(shape))) else: print("tensor_name: ", tensor_name) print(checkpoint_utils.load_variable(file_name, tensor_name)) except Exception as e: # pylint: disable=broad-except print(str(e)) if "corrupted compressed block contents" in str(e): print("It's likely that your checkpoint file has been compressed " "with SNAPPY.") def main(unused_argv): if not FLAGS.file_name: print("Usage: inspect_checkpoint --file_name=<checkpoint_file_name " "or directory> [--tensor_name=tensor_to_print]") sys.exit(1) else: print_tensors_in_checkpoint_file(FLAGS.file_name, FLAGS.tensor_name) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--file_name", type=str, default="", help="Checkpoint filename" ) parser.add_argument( "--tensor_name", type=str, default="", help="Name of the tensor to inspect" ) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/inspect_checkpoint.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Export utilities (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework import deprecated from tensorflow.contrib.session_bundle import exporter from tensorflow.contrib.session_bundle import gc from tensorflow.python.client import session as tf_session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_management from tensorflow.python.training import saver as tf_saver from tensorflow.python.training import training_util @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def _get_first_op_from_collection(collection_name): """Get first element from the collection.""" elements = ops.get_collection(collection_name) if elements is not None: if elements: return elements[0] return None @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def _get_saver(): """Lazy init and return saver.""" saver = _get_first_op_from_collection(ops.GraphKeys.SAVERS) if saver is not None: if saver: saver = saver[0] else: saver = None if saver is None and variables.global_variables(): saver = tf_saver.Saver() ops.add_to_collection(ops.GraphKeys.SAVERS, saver) return saver @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def _export_graph(graph, saver, checkpoint_path, export_dir, default_graph_signature, named_graph_signatures, exports_to_keep): """Exports graph via session_bundle, by creating a Session.""" with graph.as_default(): with tf_session.Session('') as session: variables.local_variables_initializer() lookup_ops.tables_initializer() saver.restore(session, checkpoint_path) export = exporter.Exporter(saver) export.init( init_op=control_flow_ops.group( variables.local_variables_initializer(), lookup_ops.tables_initializer()), default_graph_signature=default_graph_signature, named_graph_signatures=named_graph_signatures, assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS)) return export.export(export_dir, training_util.get_global_step(), session, exports_to_keep=exports_to_keep) @deprecated('2017-03-25', 'signature_fns are deprecated. For canned Estimators they are no ' 'longer needed. For custom Estimators, please return ' 'output_alternatives from your model_fn via ModelFnOps.') def generic_signature_fn(examples, unused_features, predictions): """Creates generic signature from given examples and predictions. This is needed for backward compatibility with default behavior of export_estimator. Args: examples: `Tensor`. unused_features: `dict` of `Tensor`s. predictions: `Tensor` or `dict` of `Tensor`s. Returns: Tuple of default signature and empty named signatures. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None when using this signature fn.') tensors = {'inputs': examples} if not isinstance(predictions, dict): predictions = {'outputs': predictions} tensors.update(predictions) default_signature = exporter.generic_signature(tensors) return default_signature, {} @deprecated('2017-03-25', 'signature_fns are deprecated. For canned Estimators they are no ' 'longer needed. For custom Estimators, please return ' 'output_alternatives from your model_fn via ModelFnOps.') def classification_signature_fn(examples, unused_features, predictions): """Creates classification signature from given examples and predictions. Args: examples: `Tensor`. unused_features: `dict` of `Tensor`s. predictions: `Tensor` or dict of tensors that contains the classes tensor as in {'classes': `Tensor`}. Returns: Tuple of default classification signature and empty named signatures. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None when using this signature fn.') if isinstance(predictions, dict): default_signature = exporter.classification_signature( examples, classes_tensor=predictions['classes']) else: default_signature = exporter.classification_signature( examples, classes_tensor=predictions) return default_signature, {} @deprecated('2017-03-25', 'signature_fns are deprecated. For canned Estimators they are no ' 'longer needed. For custom Estimators, please return ' 'output_alternatives from your model_fn via ModelFnOps.') def classification_signature_fn_with_prob( examples, unused_features, predictions): """Classification signature from given examples and predicted probabilities. Args: examples: `Tensor`. unused_features: `dict` of `Tensor`s. predictions: `Tensor` of predicted probabilities or dict that contains the probabilities tensor as in {'probabilities', `Tensor`}. Returns: Tuple of default classification signature and empty named signatures. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None when using this signature fn.') if isinstance(predictions, dict): default_signature = exporter.classification_signature( examples, scores_tensor=predictions['probabilities']) else: default_signature = exporter.classification_signature( examples, scores_tensor=predictions) return default_signature, {} @deprecated('2017-03-25', 'signature_fns are deprecated. For canned Estimators they are no ' 'longer needed. For custom Estimators, please return ' 'output_alternatives from your model_fn via ModelFnOps.') def regression_signature_fn(examples, unused_features, predictions): """Creates regression signature from given examples and predictions. Args: examples: `Tensor`. unused_features: `dict` of `Tensor`s. predictions: `Tensor`. Returns: Tuple of default regression signature and empty named signatures. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None when using this signature fn.') default_signature = exporter.regression_signature( input_tensor=examples, output_tensor=predictions) return default_signature, {} @deprecated('2017-03-25', 'signature_fns are deprecated. For canned Estimators they are no ' 'longer needed. For custom Estimators, please return ' 'output_alternatives from your model_fn via ModelFnOps.') def logistic_regression_signature_fn(examples, unused_features, predictions): """Creates logistic regression signature from given examples and predictions. Args: examples: `Tensor`. unused_features: `dict` of `Tensor`s. predictions: `Tensor` of shape [batch_size, 2] of predicted probabilities or dict that contains the probabilities tensor as in {'probabilities', `Tensor`}. Returns: Tuple of default regression signature and named signature. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None when using this signature fn.') if isinstance(predictions, dict): predictions_tensor = predictions['probabilities'] else: predictions_tensor = predictions # predictions should have shape [batch_size, 2] where first column is P(Y=0|x) # while second column is P(Y=1|x). We are only interested in the second # column for inference. predictions_shape = predictions_tensor.get_shape() predictions_rank = len(predictions_shape) if predictions_rank != 2: logging.fatal( 'Expected predictions to have rank 2, but received predictions with ' 'rank: {} and shape: {}'.format(predictions_rank, predictions_shape)) if predictions_shape[1] != 2: logging.fatal( 'Expected predictions to have 2nd dimension: 2, but received ' 'predictions with 2nd dimension: {} and shape: {}. Did you mean to use ' 'regression_signature_fn or classification_signature_fn_with_prob ' 'instead?'.format(predictions_shape[1], predictions_shape)) positive_predictions = predictions_tensor[:, 1] default_signature = exporter.regression_signature( input_tensor=examples, output_tensor=positive_predictions) return default_signature, {} # pylint: disable=protected-access @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def _default_input_fn(estimator, examples): """Creates default input parsing using Estimator's feature signatures.""" return estimator._get_feature_ops_from_example(examples) @deprecated('2016-09-23', 'Please use Estimator.export_savedmodel() instead.') def export_estimator(estimator, export_dir, signature_fn=None, input_fn=_default_input_fn, default_batch_size=1, exports_to_keep=None): """Deprecated, please use Estimator.export_savedmodel().""" _export_estimator(estimator=estimator, export_dir=export_dir, signature_fn=signature_fn, input_fn=input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def _export_estimator(estimator, export_dir, signature_fn, input_fn, default_batch_size, exports_to_keep, input_feature_key=None, use_deprecated_input_fn=True, prediction_key=None, checkpoint_path=None): if use_deprecated_input_fn: input_fn = input_fn or _default_input_fn elif input_fn is None: raise ValueError('input_fn must be defined.') # If checkpoint_path is specified, use the specified checkpoint path. checkpoint_path = (checkpoint_path or checkpoint_management.latest_checkpoint( estimator._model_dir)) with ops.Graph().as_default() as g: training_util.create_global_step(g) if use_deprecated_input_fn: examples = array_ops.placeholder(dtype=dtypes.string, shape=[default_batch_size], name='input_example_tensor') features = input_fn(estimator, examples) else: features, _ = input_fn() examples = None if input_feature_key is not None: examples = features.pop(input_feature_key) if (not features) and (examples is None): raise ValueError('Either features or examples must be defined.') predictions = estimator._get_predict_ops(features).predictions if prediction_key is not None: predictions = predictions[prediction_key] # Explicit signature_fn takes priority if signature_fn: default_signature, named_graph_signatures = signature_fn(examples, features, predictions) else: try: # Some estimators provide a signature function. # TODO(zakaria): check if the estimator has this function, # raise helpful error if not signature_fn = estimator._create_signature_fn() default_signature, named_graph_signatures = ( signature_fn(examples, features, predictions)) except AttributeError: logging.warn( 'Change warning: `signature_fn` will be required after' '2016-08-01.\n' 'Using generic signatures for now. To maintain this behavior, ' 'pass:\n' ' signature_fn=export.generic_signature_fn\n' 'Also consider passing a regression or classification signature; ' 'see cl/126430915 for an example.') default_signature, named_graph_signatures = generic_signature_fn( examples, features, predictions) if exports_to_keep is not None: exports_to_keep = gc.largest_export_versions(exports_to_keep) return _export_graph( g, _get_saver(), checkpoint_path, export_dir, default_graph_signature=default_signature, named_graph_signatures=named_graph_signatures, exports_to_keep=exports_to_keep) # pylint: enable=protected-access
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/export.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of utilities for creating input_fns.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class InputFnTest(test.TestCase): def test_build_default_serving_input_fn_name(self): """Test case for issue #12755.""" f = { 'feature': array_ops.placeholder( name='feature', shape=[32], dtype=dtypes.float32) } serving_input = input_fn_utils.build_default_serving_input_fn(f) v = serving_input() self.assertTrue(isinstance(v, input_fn_utils.InputFnOps)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/input_fn_utils_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of utilities supporting export to SavedModel.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import time from tensorflow.contrib.layers.python.layers import feature_column as fc from tensorflow.contrib.learn.python.learn import export_strategy as export_strategy_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.python.estimator import estimator as core_estimator from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.util import compat class TestEstimator(estimator.Estimator): def __init__(self, *args, **kwargs): super(TestEstimator, self).__init__(*args, **kwargs) self.last_exported_checkpoint = "" self.last_exported_dir = "" # @Override def export_savedmodel(self, export_dir, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False): if not os.path.exists(export_dir): os.makedirs(export_dir) open(os.path.join(export_dir, "placeholder.txt"), "a").close() self.last_exported_checkpoint = checkpoint_path self.last_exported_dir = export_dir return export_dir class SavedModelExportUtilsTest(test.TestCase): def test_build_standardized_signature_def_regression(self): input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "output-1": array_ops.placeholder(dtypes.float32, 1, name="output-tensor-1") } problem_type = constants.ProblemType.LINEAR_REGRESSION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.REGRESS_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.REGRESS_OUTPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-1:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = signature_constants.REGRESS_METHOD_NAME self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification(self): """Tests classification with one output tensor.""" input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "output-1": array_ops.placeholder(dtypes.string, 1, name="output-tensor-1") } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.CLASSIFY_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.CLASSIFY_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification2(self): """Tests multiple output tensors that include classes and probabilities.""" input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "classes": array_ops.placeholder( dtypes.string, 1, name="output-tensor-classes"), # Will be used for CLASSIFY_OUTPUT_SCORES. "probabilities": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-proba"), "logits": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-logits-unused"), } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.CLASSIFY_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-classes:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-proba:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.CLASSIFY_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification3(self): """Tests multiple output tensors that include classes and scores.""" input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "classes": array_ops.placeholder( dtypes.string, 1, name="output-tensor-classes"), "scores": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-scores"), "logits": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-logits-unused"), } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.CLASSIFY_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_CLASSES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-classes:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-scores:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.CLASSIFY_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification4(self): """Tests classification without classes tensor.""" input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "probabilities": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-proba"), "logits": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-logits-unused"), } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.CLASSIFY_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-proba:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.CLASSIFY_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification5(self): """Tests multiple output tensors that include integer classes and scores. Integer classes are dropped out, because Servo classification can only serve string classes. So, only scores are present in the signature. """ input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "classes": array_ops.placeholder( dtypes.int64, 1, name="output-tensor-classes"), "scores": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-scores"), "logits": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-logits-unused"), } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs[signature_constants.CLASSIFY_INPUTS].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs[ signature_constants.CLASSIFY_OUTPUT_SCORES].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-scores:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.CLASSIFY_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_build_standardized_signature_def_classification6(self): """Tests multiple output tensors that with integer classes and no scores. Servo classification cannot serve integer classes, but no scores are available. So, we fall back to predict signature. """ input_tensors = { "input-1": array_ops.placeholder(dtypes.string, 1, name="input-tensor-1") } output_tensors = { "classes": array_ops.placeholder( dtypes.int64, 1, name="output-tensor-classes"), "logits": array_ops.placeholder( dtypes.float32, 1, name="output-tensor-logits"), } problem_type = constants.ProblemType.CLASSIFICATION actual_signature_def = ( saved_model_export_utils.build_standardized_signature_def( input_tensors, output_tensors, problem_type)) expected_signature_def = meta_graph_pb2.SignatureDef() shape = tensor_shape_pb2.TensorShapeProto( dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=1)]) dtype_int64 = types_pb2.DataType.Value("DT_INT64") dtype_float = types_pb2.DataType.Value("DT_FLOAT") dtype_string = types_pb2.DataType.Value("DT_STRING") expected_signature_def.inputs["input-1"].CopyFrom( meta_graph_pb2.TensorInfo( name="input-tensor-1:0", dtype=dtype_string, tensor_shape=shape)) expected_signature_def.outputs["classes"].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-classes:0", dtype=dtype_int64, tensor_shape=shape)) expected_signature_def.outputs["logits"].CopyFrom( meta_graph_pb2.TensorInfo( name="output-tensor-logits:0", dtype=dtype_float, tensor_shape=shape)) expected_signature_def.method_name = ( signature_constants.PREDICT_METHOD_NAME) self.assertEqual(actual_signature_def, expected_signature_def) def test_get_input_alternatives(self): input_ops = input_fn_utils.InputFnOps("bogus features dict", None, "bogus default input dict") input_alternatives, _ = saved_model_export_utils.get_input_alternatives( input_ops) self.assertEqual(input_alternatives[ saved_model_export_utils.DEFAULT_INPUT_ALTERNATIVE_KEY], "bogus default input dict") # self.assertEqual(input_alternatives[ # saved_model_export_utils.FEATURES_INPUT_ALTERNATIVE_KEY], # "bogus features dict") def test_get_output_alternatives_explicit_default(self): provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, "bogus output dict"), "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"), "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": "bogus_tensor"}, output_alternatives=provided_output_alternatives) output_alternatives, _ = saved_model_export_utils.get_output_alternatives( model_fn_ops, "head-1") self.assertEqual(provided_output_alternatives, output_alternatives) def test_get_output_alternatives_wrong_default(self): provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, "bogus output dict"), "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"), "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": "bogus_tensor"}, output_alternatives=provided_output_alternatives) with self.assertRaises(ValueError) as e: saved_model_export_utils.get_output_alternatives(model_fn_ops, "WRONG") self.assertEqual("Requested default_output_alternative: WRONG, but " "available output_alternatives are: ['head-1', 'head-2', " "'head-3']", str(e.exception)) def test_get_output_alternatives_single_no_default(self): prediction_tensor = constant_op.constant(["bogus"]) provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, { "output": prediction_tensor }), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions=prediction_tensor, output_alternatives=provided_output_alternatives) output_alternatives, _ = saved_model_export_utils.get_output_alternatives( model_fn_ops) self.assertEqual({ "head-1": (constants.ProblemType.LINEAR_REGRESSION, { "output": prediction_tensor }) }, output_alternatives) def test_get_output_alternatives_multi_no_default(self): provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, "bogus output dict"), "head-2": (constants.ProblemType.CLASSIFICATION, "bogus output dict 2"), "head-3": (constants.ProblemType.UNSPECIFIED, "bogus output dict 3"), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": "bogus_tensor"}, output_alternatives=provided_output_alternatives) with self.assertRaises(ValueError) as e: saved_model_export_utils.get_output_alternatives(model_fn_ops) self.assertEqual("Please specify a default_output_alternative. Available " "output_alternatives are: ['head-1', 'head-2', 'head-3']", str(e.exception)) def test_get_output_alternatives_none_provided(self): prediction_tensor = constant_op.constant(["bogus"]) model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": prediction_tensor}, output_alternatives=None) output_alternatives, _ = saved_model_export_utils.get_output_alternatives( model_fn_ops) self.assertEqual({ "default_output_alternative": (constants.ProblemType.UNSPECIFIED, { "some_output": prediction_tensor }) }, output_alternatives) def test_get_output_alternatives_empty_provided_with_default(self): prediction_tensor = constant_op.constant(["bogus"]) model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": prediction_tensor}, output_alternatives={}) with self.assertRaises(ValueError) as e: saved_model_export_utils.get_output_alternatives(model_fn_ops, "WRONG") self.assertEqual("Requested default_output_alternative: WRONG, but " "available output_alternatives are: []", str(e.exception)) def test_get_output_alternatives_empty_provided_no_default(self): prediction_tensor = constant_op.constant(["bogus"]) model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": prediction_tensor}, output_alternatives={}) output_alternatives, _ = saved_model_export_utils.get_output_alternatives( model_fn_ops) self.assertEqual({ "default_output_alternative": (constants.ProblemType.UNSPECIFIED, { "some_output": prediction_tensor }) }, output_alternatives) def test_get_output_alternatives_implicit_single(self): prediction_tensor = constant_op.constant(["bogus"]) model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions=prediction_tensor, output_alternatives=None) output_alternatives, _ = saved_model_export_utils.get_output_alternatives( model_fn_ops) self.assertEqual({ "default_output_alternative": (constants.ProblemType.UNSPECIFIED, { "output": prediction_tensor }) }, output_alternatives) def test_build_all_signature_defs(self): input_features = constant_op.constant(["10"]) input_example = constant_op.constant(["input string"]) input_ops = input_fn_utils.InputFnOps({ "features": input_features }, None, { "default input": input_example }) input_alternatives, _ = ( saved_model_export_utils.get_input_alternatives(input_ops)) output_1 = constant_op.constant([1.0]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, { "some_output_1": output_1 }), "head-2": (constants.ProblemType.CLASSIFICATION, { "some_output_2": output_2 }), "head-3": (constants.ProblemType.UNSPECIFIED, { "some_output_3": output_3 }), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": constant_op.constant(["4"])}, output_alternatives=provided_output_alternatives) output_alternatives, _ = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, "head-1")) signature_defs = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, "head-1") expected_signature_defs = { "serving_default": signature_def_utils.regression_signature_def( input_example, output_1), "default_input_alternative:head-1": signature_def_utils.regression_signature_def( input_example, output_1), "default_input_alternative:head-2": signature_def_utils.classification_signature_def( input_example, output_2, None), "default_input_alternative:head-3": signature_def_utils.predict_signature_def({ "default input": input_example }, { "some_output_3": output_3 }), # "features_input_alternative:head-1": # signature_def_utils.regression_signature_def(input_features, # output_1), # "features_input_alternative:head-2": # signature_def_utils.classification_signature_def(input_features, # output_2, None), # "features_input_alternative:head-3": # signature_def_utils.predict_signature_def({ # "input": input_features # }, {"output": output_3}), } self.assertDictEqual(expected_signature_defs, signature_defs) def test_build_all_signature_defs_legacy_input_fn_not_supported(self): """Tests that legacy input_fn returning (features, labels) raises error. serving_input_fn must return InputFnOps including a default input alternative. """ input_features = constant_op.constant(["10"]) input_ops = ({"features": input_features}, None) input_alternatives, _ = ( saved_model_export_utils.get_input_alternatives(input_ops)) output_1 = constant_op.constant(["1"]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) provided_output_alternatives = { "head-1": (constants.ProblemType.LINEAR_REGRESSION, { "some_output_1": output_1 }), "head-2": (constants.ProblemType.CLASSIFICATION, { "some_output_2": output_2 }), "head-3": (constants.ProblemType.UNSPECIFIED, { "some_output_3": output_3 }), } model_fn_ops = model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions={"some_output": constant_op.constant(["4"])}, output_alternatives=provided_output_alternatives) output_alternatives, _ = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, "head-1")) with self.assertRaisesRegexp( ValueError, "A default input_alternative must be provided"): saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, "head-1") def test_get_timestamped_export_dir(self): export_dir_base = tempfile.mkdtemp() + "export/" export_dir_1 = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_2 = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_3 = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) # Export directories should be named using a timestamp that is seconds # since epoch. Such a timestamp is 10 digits long. time_1 = os.path.basename(export_dir_1) self.assertEqual(10, len(time_1)) time_2 = os.path.basename(export_dir_2) self.assertEqual(10, len(time_2)) time_3 = os.path.basename(export_dir_3) self.assertEqual(10, len(time_3)) self.assertTrue(int(time_1) < int(time_2)) self.assertTrue(int(time_2) < int(time_3)) def test_garbage_collect_exports(self): export_dir_base = tempfile.mkdtemp() + "export/" gfile.MkDir(export_dir_base) export_dir_1 = _create_test_export_dir(export_dir_base) export_dir_2 = _create_test_export_dir(export_dir_base) export_dir_3 = _create_test_export_dir(export_dir_base) export_dir_4 = _create_test_export_dir(export_dir_base) self.assertTrue(gfile.Exists(export_dir_1)) self.assertTrue(gfile.Exists(export_dir_2)) self.assertTrue(gfile.Exists(export_dir_3)) self.assertTrue(gfile.Exists(export_dir_4)) # Garbage collect all but the most recent 2 exports, # where recency is determined based on the timestamp directory names. saved_model_export_utils.garbage_collect_exports(export_dir_base, 2) self.assertFalse(gfile.Exists(export_dir_1)) self.assertFalse(gfile.Exists(export_dir_2)) self.assertTrue(gfile.Exists(export_dir_3)) self.assertTrue(gfile.Exists(export_dir_4)) def test_get_most_recent_export(self): export_dir_base = tempfile.mkdtemp() + "export/" gfile.MkDir(export_dir_base) _create_test_export_dir(export_dir_base) _create_test_export_dir(export_dir_base) _create_test_export_dir(export_dir_base) export_dir_4 = _create_test_export_dir(export_dir_base) (most_recent_export_dir, most_recent_export_version) = ( saved_model_export_utils.get_most_recent_export(export_dir_base)) self.assertEqual( compat.as_bytes(export_dir_4), compat.as_bytes(most_recent_export_dir)) self.assertEqual( compat.as_bytes(export_dir_4), os.path.join( compat.as_bytes(export_dir_base), compat.as_bytes(str(most_recent_export_version)))) def test_make_export_strategy(self): """Only tests that an ExportStrategy instance is created.""" def _serving_input_fn(): return array_ops.constant([1]), None export_strategy = saved_model_export_utils.make_export_strategy( serving_input_fn=_serving_input_fn, default_output_alternative_key="default", assets_extra={"from/path": "to/path"}, as_text=False, exports_to_keep=5) self.assertTrue( isinstance(export_strategy, export_strategy_lib.ExportStrategy)) def test_make_parsing_export_strategy(self): """Only tests that an ExportStrategy instance is created.""" sparse_col = fc.sparse_column_with_hash_bucket( "sparse_column", hash_bucket_size=100) embedding_col = fc.embedding_column( fc.sparse_column_with_hash_bucket( "sparse_column_for_embedding", hash_bucket_size=10), dimension=4) real_valued_col1 = fc.real_valued_column("real_valued_column1") bucketized_col1 = fc.bucketized_column( fc.real_valued_column("real_valued_column_for_bucketization1"), [0, 4]) feature_columns = [ sparse_col, embedding_col, real_valued_col1, bucketized_col1 ] export_strategy = saved_model_export_utils.make_parsing_export_strategy( feature_columns=feature_columns) self.assertTrue( isinstance(export_strategy, export_strategy_lib.ExportStrategy)) def test_make_best_model_export_strategy(self): export_dir_base = tempfile.mkdtemp() + "export/" gfile.MkDir(export_dir_base) test_estimator = TestEstimator() export_strategy = saved_model_export_utils.make_best_model_export_strategy( serving_input_fn=None, exports_to_keep=3, compare_fn=None) self.assertNotEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_0", { "loss": 100 })) self.assertNotEqual("", test_estimator.last_exported_dir) self.assertNotEqual("", test_estimator.last_exported_checkpoint) self.assertEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_1", { "loss": 101 })) self.assertEqual(test_estimator.last_exported_dir, os.path.join(export_dir_base, "fake_ckpt_0")) self.assertNotEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_2", { "loss": 10 })) self.assertEqual(test_estimator.last_exported_dir, os.path.join(export_dir_base, "fake_ckpt_2")) self.assertEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_3", { "loss": 20 })) self.assertEqual(test_estimator.last_exported_dir, os.path.join(export_dir_base, "fake_ckpt_2")) def test_make_best_model_export_strategy_with_preemption(self): model_dir = self.get_temp_dir() eval_dir_base = os.path.join(model_dir, "eval_continuous") core_estimator._write_dict_to_summary(eval_dir_base, {"loss": 50}, 1) core_estimator._write_dict_to_summary(eval_dir_base, {"loss": 60}, 2) test_estimator = TestEstimator() export_strategy = saved_model_export_utils.make_best_model_export_strategy( serving_input_fn=None, exports_to_keep=3, model_dir=model_dir, event_file_pattern="eval_continuous/*.tfevents.*", compare_fn=None) export_dir_base = os.path.join(self.get_temp_dir(), "export") self.assertEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_0", { "loss": 100 })) self.assertEqual("", test_estimator.last_exported_dir) self.assertEqual("", test_estimator.last_exported_checkpoint) self.assertNotEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_2", { "loss": 10 })) self.assertEqual(test_estimator.last_exported_dir, os.path.join(export_dir_base, "fake_ckpt_2")) self.assertEqual("", export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_3", { "loss": 20 })) self.assertEqual(test_estimator.last_exported_dir, os.path.join(export_dir_base, "fake_ckpt_2")) def test_make_best_model_export_strategy_exceptions(self): export_dir_base = tempfile.mkdtemp() + "export/" test_estimator = TestEstimator() export_strategy = saved_model_export_utils.make_best_model_export_strategy( serving_input_fn=None, exports_to_keep=3, compare_fn=None) with self.assertRaises(ValueError): export_strategy.export(test_estimator, export_dir_base, "", {"loss": 200}) with self.assertRaises(ValueError): export_strategy.export(test_estimator, export_dir_base, "fake_ckpt_1", None) def test_extend_export_strategy(self): def _base_export_fn(unused_estimator, export_dir_base, unused_checkpoint_path=None): base_path = os.path.join(export_dir_base, "e1") gfile.MkDir(base_path) return base_path def _post_export_fn(orig_path, new_path): assert orig_path.endswith("/e1") post_export_path = os.path.join(new_path, "rewrite") gfile.MkDir(post_export_path) return post_export_path base_export_strategy = export_strategy_lib.ExportStrategy( "Servo", _base_export_fn) final_export_strategy = saved_model_export_utils.extend_export_strategy( base_export_strategy, _post_export_fn, "Servo2") self.assertEqual(final_export_strategy.name, "Servo2") test_estimator = TestEstimator() tmpdir = tempfile.mkdtemp() export_model_dir = os.path.join(tmpdir, "model") checkpoint_path = os.path.join(tmpdir, "checkpoint") final_path = final_export_strategy.export(test_estimator, export_model_dir, checkpoint_path) self.assertEqual(os.path.join(export_model_dir, "rewrite"), final_path) def test_extend_export_strategy_same_name(self): def _base_export_fn(unused_estimator, export_dir_base, unused_checkpoint_path=None): base_path = os.path.join(export_dir_base, "e1") gfile.MkDir(base_path) return base_path def _post_export_fn(orig_path, new_path): assert orig_path.endswith("/e1") post_export_path = os.path.join(new_path, "rewrite") gfile.MkDir(post_export_path) return post_export_path base_export_strategy = export_strategy_lib.ExportStrategy( "Servo", _base_export_fn) final_export_strategy = saved_model_export_utils.extend_export_strategy( base_export_strategy, _post_export_fn) self.assertEqual(final_export_strategy.name, "Servo") test_estimator = TestEstimator() tmpdir = tempfile.mkdtemp() export_model_dir = os.path.join(tmpdir, "model") checkpoint_path = os.path.join(tmpdir, "checkpoint") final_path = final_export_strategy.export(test_estimator, export_model_dir, checkpoint_path) self.assertEqual(os.path.join(export_model_dir, "rewrite"), final_path) def test_extend_export_strategy_raises_error(self): def _base_export_fn(unused_estimator, export_dir_base, unused_checkpoint_path=None): base_path = os.path.join(export_dir_base, "e1") gfile.MkDir(base_path) return base_path def _post_export_fn(unused_orig_path, unused_new_path): return tempfile.mkdtemp() base_export_strategy = export_strategy_lib.ExportStrategy( "Servo", _base_export_fn) final_export_strategy = saved_model_export_utils.extend_export_strategy( base_export_strategy, _post_export_fn) test_estimator = TestEstimator() tmpdir = tempfile.mkdtemp() with self.assertRaises(ValueError) as ve: final_export_strategy.export(test_estimator, tmpdir, os.path.join(tmpdir, "checkpoint")) self.assertTrue( "post_export_fn must return a sub-directory" in str(ve.exception)) def _create_test_export_dir(export_dir_base): export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) gfile.MkDir(export_dir) time.sleep(2) return export_dir if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/saved_model_export_utils_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for export tools.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import tempfile import numpy as np import six from tensorflow.contrib import learn from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.session_bundle import exporter from tensorflow.contrib.session_bundle import manifest_pb2 from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.training import saver _X_KEY = 'my_x_key' _X_COLUMN = feature_column.real_valued_column(_X_KEY, dimension=1) def _training_input_fn(): x = random_ops.random_uniform(shape=(1,), minval=0.0, maxval=1000.0) y = 2 * x + 3 return {_X_KEY: x}, y class ExportTest(test.TestCase): def _get_default_signature(self, export_meta_filename): """ Gets the default signature from the export.meta file. """ with session.Session(): save = saver.import_meta_graph(export_meta_filename) meta_graph_def = save.export_meta_graph() collection_def = meta_graph_def.collection_def signatures_any = collection_def['serving_signatures'].any_list.value self.assertEquals(len(signatures_any), 1) signatures = manifest_pb2.Signatures() signatures_any[0].Unpack(signatures) default_signature = signatures.default_signature return default_signature def _assert_export(self, export_monitor, export_dir, expected_signature): self.assertTrue(gfile.Exists(export_dir)) # Only the written checkpoints are exported. self.assertTrue( saver.checkpoint_exists(os.path.join(export_dir, '00000001', 'export')), 'Exported checkpoint expected but not found: %s' % os.path.join( export_dir, '00000001', 'export')) self.assertTrue( saver.checkpoint_exists(os.path.join(export_dir, '00000010', 'export')), 'Exported checkpoint expected but not found: %s' % os.path.join( export_dir, '00000010', 'export')) self.assertEquals( six.b(os.path.join(export_dir, '00000010')), export_monitor.last_export_dir) # Validate the signature signature = self._get_default_signature( os.path.join(export_dir, '00000010', 'export.meta')) self.assertTrue(signature.HasField(expected_signature)) def testExportMonitor_EstimatorProvidesSignature(self): random.seed(42) x = np.random.rand(1000) y = 2 * x + 3 cont_features = [feature_column.real_valued_column('', dimension=1)] regressor = learn.LinearRegressor(feature_columns=cont_features) export_dir = os.path.join(tempfile.mkdtemp(), 'export') export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=2) regressor.fit(x, y, steps=10, monitors=[export_monitor]) self._assert_export(export_monitor, export_dir, 'regression_signature') def testExportMonitor(self): random.seed(42) x = np.random.rand(1000) y = 2 * x + 3 cont_features = [feature_column.real_valued_column('', dimension=1)] export_dir = os.path.join(tempfile.mkdtemp(), 'export') export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=cont_features) regressor.fit(x, y, steps=10, monitors=[export_monitor]) self._assert_export(export_monitor, export_dir, 'generic_signature') def testExportMonitorInputFeatureKeyMissing(self): random.seed(42) def _serving_input_fn(): return { _X_KEY: random_ops.random_uniform(shape=(1,), minval=0.0, maxval=1000.0) }, None input_feature_key = 'my_example_key' monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=os.path.join(tempfile.mkdtemp(), 'export'), input_fn=_serving_input_fn, input_feature_key=input_feature_key, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) with self.assertRaisesRegexp(KeyError, input_feature_key): regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) def testExportMonitorInputFeatureKeyNoneNoFeatures(self): random.seed(42) input_feature_key = 'my_example_key' def _serving_input_fn(): return {input_feature_key: None}, None monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=os.path.join(tempfile.mkdtemp(), 'export'), input_fn=_serving_input_fn, input_feature_key=input_feature_key, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) with self.assertRaisesRegexp(ValueError, 'features or examples must be defined'): regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) def testExportMonitorInputFeatureKeyNone(self): random.seed(42) input_feature_key = 'my_example_key' def _serving_input_fn(): return { input_feature_key: None, _X_KEY: random_ops.random_uniform(shape=(1,), minval=0.0, maxval=1000.0) }, None monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=os.path.join(tempfile.mkdtemp(), 'export'), input_fn=_serving_input_fn, input_feature_key=input_feature_key, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) with self.assertRaisesRegexp(ValueError, 'examples cannot be None'): regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) def testExportMonitorInputFeatureKeyNoFeatures(self): random.seed(42) input_feature_key = 'my_example_key' def _serving_input_fn(): return { input_feature_key: array_ops.placeholder(dtype=dtypes.string, shape=(1,)) }, None monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=os.path.join(tempfile.mkdtemp(), 'export'), input_fn=_serving_input_fn, input_feature_key=input_feature_key, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) with self.assertRaisesRegexp(KeyError, _X_KEY): regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) def testExportMonitorInputFeature(self): random.seed(42) input_feature_key = 'my_example_key' def _serving_input_fn(): return { input_feature_key: array_ops.placeholder(dtype=dtypes.string, shape=(1,)), _X_KEY: random_ops.random_uniform(shape=(1,), minval=0.0, maxval=1000.0) }, None export_dir = os.path.join(tempfile.mkdtemp(), 'export') monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, input_fn=_serving_input_fn, input_feature_key=input_feature_key, exports_to_keep=2, signature_fn=export.generic_signature_fn) regressor = learn.LinearRegressor(feature_columns=[_X_COLUMN]) regressor.fit(input_fn=_training_input_fn, steps=10, monitors=[monitor]) self._assert_export(monitor, export_dir, 'generic_signature') def testExportMonitorRegressionSignature(self): def _regression_signature(examples, unused_features, predictions): signatures = {} signatures['regression'] = ( exporter.regression_signature(examples, predictions)) return signatures['regression'], signatures random.seed(42) x = np.random.rand(1000) y = 2 * x + 3 cont_features = [feature_column.real_valued_column('', dimension=1)] regressor = learn.LinearRegressor(feature_columns=cont_features) export_dir = os.path.join(tempfile.mkdtemp(), 'export') export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=1, signature_fn=_regression_signature) regressor.fit(x, y, steps=10, monitors=[export_monitor]) self.assertTrue(gfile.Exists(export_dir)) with self.assertRaises(errors.NotFoundError): saver.checkpoint_exists(os.path.join(export_dir, '00000000', 'export')) self.assertTrue( saver.checkpoint_exists(os.path.join(export_dir, '00000010', 'export'))) # Validate the signature signature = self._get_default_signature( os.path.join(export_dir, '00000010', 'export.meta')) self.assertTrue(signature.HasField('regression_signature')) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/export_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for creating input_fns (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. Contents of this file are moved to tensorflow/python/estimator/export.py. InputFnOps is renamed to ServingInputReceiver. build_parsing_serving_input_fn is renamed to build_parsing_serving_input_receiver_fn. build_default_serving_input_fn is renamed to build_raw_serving_input_receiver_fn. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.util.deprecation import deprecated class InputFnOps(collections.namedtuple('InputFnOps', ['features', 'labels', 'default_inputs'])): """A return type for an input_fn (deprecated). THIS CLASS IS DEPRECATED. Please use tf.estimator.export.ServingInputReceiver instead. This return type is currently only supported for serving input_fn. Training and eval input_fn should return a `(features, labels)` tuple. The expected return values are: features: A dict of string to `Tensor` or `SparseTensor`, specifying the features to be passed to the model. labels: A `Tensor`, `SparseTensor`, or a dict of string to `Tensor` or `SparseTensor`, specifying labels for training or eval. For serving, set `labels` to `None`. default_inputs: a dict of string to `Tensor` or `SparseTensor`, specifying the input placeholders (if any) that this input_fn expects to be fed. Typically, this is used by a serving input_fn, which expects to be fed serialized `tf.Example` protos. """ @deprecated(None, 'Please use ' 'tf.estimator.export.build_parsing_serving_input_receiver_fn.') def build_parsing_serving_input_fn(feature_spec, default_batch_size=None): """Build an input_fn appropriate for serving, expecting fed tf.Examples. Creates an input_fn that expects a serialized tf.Example fed into a string placeholder. The function parses the tf.Example according to the provided feature_spec, and returns all parsed Tensors as features. This input_fn is for use at serving time, so the labels return value is always None. Args: feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`. default_batch_size: the number of query examples expected per batch. Leave unset for variable batch size (recommended). Returns: An input_fn suitable for use in serving. """ def input_fn(): """An input_fn that expects a serialized tf.Example.""" serialized_tf_example = array_ops.placeholder(dtype=dtypes.string, shape=[default_batch_size], name='input_example_tensor') inputs = {'examples': serialized_tf_example} features = parsing_ops.parse_example(serialized_tf_example, feature_spec) labels = None # these are not known in serving! return InputFnOps(features, labels, inputs) return input_fn @deprecated(None, 'Please use ' 'tf.estimator.export.build_raw_serving_input_receiver_fn.') def build_default_serving_input_fn(features, default_batch_size=None): """Build an input_fn appropriate for serving, expecting feature Tensors. Creates an input_fn that expects all features to be fed directly. This input_fn is for use at serving time, so the labels return value is always None. Args: features: a dict of string to `Tensor`. default_batch_size: the number of query examples expected per batch. Leave unset for variable batch size (recommended). Returns: An input_fn suitable for use in serving. """ def input_fn(): """an input_fn that expects all features to be fed directly.""" features_placeholders = {} for name, t in features.items(): shape_list = t.get_shape().as_list() shape_list[0] = default_batch_size shape = tensor_shape.TensorShape(shape_list) features_placeholders[name] = array_ops.placeholder( dtype=t.dtype, shape=shape, name=t.op.name) labels = None # these are not known in serving! return InputFnOps(features_placeholders, labels, features_placeholders) return input_fn
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/input_fn_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for learn.utils.gc.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.contrib.learn.python.learn.utils import gc from tensorflow.python.framework import test_util from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.util import compat def _create_parser(base_dir): # create a simple parser that pulls the export_version from the directory. def parser(path): # Modify the path object for RegEx match for Windows Paths if os.name == "nt": match = re.match( r"^" + compat.as_str_any(base_dir).replace("\\", "/") + r"/(\d+)$", compat.as_str_any(path.path).replace("\\", "/")) else: match = re.match(r"^" + compat.as_str_any(base_dir) + r"/(\d+)$", compat.as_str_any(path.path)) if not match: return None return path._replace(export_version=int(match.group(1))) return parser class GcTest(test_util.TensorFlowTestCase): def testLargestExportVersions(self): paths = [gc.Path("/foo", 8), gc.Path("/foo", 9), gc.Path("/foo", 10)] newest = gc.largest_export_versions(2) n = newest(paths) self.assertEqual(n, [gc.Path("/foo", 9), gc.Path("/foo", 10)]) def testLargestExportVersionsDoesNotDeleteZeroFolder(self): paths = [gc.Path("/foo", 0), gc.Path("/foo", 3)] newest = gc.largest_export_versions(2) n = newest(paths) self.assertEqual(n, [gc.Path("/foo", 0), gc.Path("/foo", 3)]) def testModExportVersion(self): paths = [ gc.Path("/foo", 4), gc.Path("/foo", 5), gc.Path("/foo", 6), gc.Path("/foo", 9) ] mod = gc.mod_export_version(2) self.assertEqual(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 6)]) mod = gc.mod_export_version(3) self.assertEqual(mod(paths), [gc.Path("/foo", 6), gc.Path("/foo", 9)]) def testOneOfEveryNExportVersions(self): paths = [ gc.Path("/foo", 0), gc.Path("/foo", 1), gc.Path("/foo", 3), gc.Path("/foo", 5), gc.Path("/foo", 6), gc.Path("/foo", 7), gc.Path("/foo", 8), gc.Path("/foo", 33) ] one_of = gc.one_of_every_n_export_versions(3) self.assertEqual( one_of(paths), [ gc.Path("/foo", 3), gc.Path("/foo", 6), gc.Path("/foo", 8), gc.Path("/foo", 33) ]) def testOneOfEveryNExportVersionsZero(self): # Zero is a special case since it gets rolled into the first interval. # Test that here. paths = [gc.Path("/foo", 0), gc.Path("/foo", 4), gc.Path("/foo", 5)] one_of = gc.one_of_every_n_export_versions(3) self.assertEqual(one_of(paths), [gc.Path("/foo", 0), gc.Path("/foo", 5)]) def testUnion(self): paths = [] for i in xrange(10): paths.append(gc.Path("/foo", i)) f = gc.union(gc.largest_export_versions(3), gc.mod_export_version(3)) self.assertEqual( f(paths), [ gc.Path("/foo", 0), gc.Path("/foo", 3), gc.Path("/foo", 6), gc.Path("/foo", 7), gc.Path("/foo", 8), gc.Path("/foo", 9) ]) def testNegation(self): paths = [ gc.Path("/foo", 4), gc.Path("/foo", 5), gc.Path("/foo", 6), gc.Path("/foo", 9) ] mod = gc.negation(gc.mod_export_version(2)) self.assertEqual(mod(paths), [gc.Path("/foo", 5), gc.Path("/foo", 9)]) mod = gc.negation(gc.mod_export_version(3)) self.assertEqual(mod(paths), [gc.Path("/foo", 4), gc.Path("/foo", 5)]) def testPathsWithParse(self): base_dir = os.path.join(test.get_temp_dir(), "paths_parse") self.assertFalse(gfile.Exists(base_dir)) for p in xrange(3): gfile.MakeDirs(os.path.join(base_dir, "%d" % p)) # add a base_directory to ignore gfile.MakeDirs(os.path.join(base_dir, "ignore")) self.assertEqual( gc.get_paths(base_dir, _create_parser(base_dir)), [ gc.Path(os.path.join(base_dir, "0"), 0), gc.Path(os.path.join(base_dir, "1"), 1), gc.Path(os.path.join(base_dir, "2"), 2) ]) def testMixedStrTypes(self): temp_dir = compat.as_bytes(test.get_temp_dir()) for sub_dir in ["str", b"bytes", u"unicode"]: base_dir = os.path.join( (temp_dir if isinstance(sub_dir, bytes) else temp_dir.decode()), sub_dir) self.assertFalse(gfile.Exists(base_dir)) gfile.MakeDirs(os.path.join(compat.as_str_any(base_dir), "42")) gc.get_paths(base_dir, _create_parser(base_dir)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/utils/gc_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.SVM.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.estimators import svm from tensorflow.python.framework import constant_op from tensorflow.python.framework import sparse_tensor from tensorflow.python.platform import test class SVMTest(test.TestCase): def testRealValuedFeaturesPerfectlySeparable(self): """Tests SVM classifier with real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'feature1': constant_op.constant([[0.0], [1.0], [3.0]]), 'feature2': constant_op.constant([[1.0], [-1.2], [1.0]]), }, constant_op.constant([[1], [0], [1]]) feature1 = feature_column.real_valued_column('feature1') feature2 = feature_column.real_valued_column('feature2') svm_classifier = svm.SVM(feature_columns=[feature1, feature2], example_id_column='example_id', l1_regularization=0.0, l2_regularization=0.0) svm_classifier.fit(input_fn=input_fn, steps=30) metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) loss = metrics['loss'] accuracy = metrics['accuracy'] # The points are not only separable but there exist weights (for instance # w1=0.0, w2=1.0) that satisfy the margin inequalities (y_i* w^T*x_i >=1). # The unregularized loss should therefore be 0.0. self.assertAlmostEqual(loss, 0.0, places=3) self.assertAlmostEqual(accuracy, 1.0, places=3) def testRealValuedFeaturesWithL2Regularization(self): """Tests SVM classifier with real valued features and L2 regularization.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'feature1': constant_op.constant([0.5, 1.0, 1.0]), 'feature2': constant_op.constant([1.0, -1.0, 0.5]), }, constant_op.constant([1, 0, 1]) feature1 = feature_column.real_valued_column('feature1') feature2 = feature_column.real_valued_column('feature2') svm_classifier = svm.SVM(feature_columns=[feature1, feature2], example_id_column='example_id', l1_regularization=0.0, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) loss = metrics['loss'] accuracy = metrics['accuracy'] # The points are in general separable. Also, if there was no regularization, # the margin inequalities would be satisfied too (for instance by w1=1.0, # w2=5.0). Due to regularization, smaller weights are chosen. This results # to a small but non-zero uneregularized loss. Still, all the predictions # will be correct resulting to perfect accuracy. self.assertLess(loss, 0.1) self.assertAlmostEqual(accuracy, 1.0, places=3) def testMultiDimensionalRealValuedFeaturesWithL2Regularization(self): """Tests SVM with multi-dimensional real features and L2 regularization.""" # This is identical to the one in testRealValuedFeaturesWithL2Regularization # where 2 tensors (dense features) of shape [3, 1] have been replaced by a # single tensor (dense feature) of shape [3, 2]. def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'multi_dim_feature': constant_op.constant([[0.5, 1.0], [1.0, -1.0], [1.0, 0.5]]), }, constant_op.constant([[1], [0], [1]]) multi_dim_feature = feature_column.real_valued_column( 'multi_dim_feature', dimension=2) svm_classifier = svm.SVM(feature_columns=[multi_dim_feature], example_id_column='example_id', l1_regularization=0.0, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) loss = metrics['loss'] accuracy = metrics['accuracy'] self.assertLess(loss, 0.1) self.assertAlmostEqual(accuracy, 1.0, places=3) def testRealValuedFeaturesWithMildL1Regularization(self): """Tests SVM classifier with real valued features and L2 regularization.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'feature1': constant_op.constant([[0.5], [1.0], [1.0]]), 'feature2': constant_op.constant([[1.0], [-1.0], [0.5]]), }, constant_op.constant([[1], [0], [1]]) feature1 = feature_column.real_valued_column('feature1') feature2 = feature_column.real_valued_column('feature2') svm_classifier = svm.SVM(feature_columns=[feature1, feature2], example_id_column='example_id', l1_regularization=0.5, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) loss = metrics['loss'] accuracy = metrics['accuracy'] # Adding small L1 regularization favors even smaller weights. This results # to somewhat moderate unregularized loss (bigger than the one when there is # no L1 regularization. Still, since L1 is small, all the predictions will # be correct resulting to perfect accuracy. self.assertGreater(loss, 0.1) self.assertAlmostEqual(accuracy, 1.0, places=3) def testRealValuedFeaturesWithBigL1Regularization(self): """Tests SVM classifier with real valued features and L2 regularization.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'feature1': constant_op.constant([0.5, 1.0, 1.0]), 'feature2': constant_op.constant([[1.0], [-1.0], [0.5]]), }, constant_op.constant([[1], [0], [1]]) feature1 = feature_column.real_valued_column('feature1') feature2 = feature_column.real_valued_column('feature2') svm_classifier = svm.SVM(feature_columns=[feature1, feature2], example_id_column='example_id', l1_regularization=3.0, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) metrics = svm_classifier.evaluate(input_fn=input_fn, steps=1) loss = metrics['loss'] accuracy = metrics['accuracy'] # When L1 regularization parameter is large, the loss due to regularization # outweights the unregularized loss. In this case, the classifier will favor # very small weights (in current case 0) resulting both big unregularized # loss and bad accuracy. self.assertAlmostEqual(loss, 1.0, places=3) self.assertAlmostEqual(accuracy, 1 / 3, places=3) def testSparseFeatures(self): """Tests SVM classifier with (hashed) sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.8], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), }, constant_op.constant([[0], [1], [1]]) price = feature_column.real_valued_column('price') country = feature_column.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) svm_classifier = svm.SVM(feature_columns=[price, country], example_id_column='example_id', l1_regularization=0.0, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) accuracy = svm_classifier.evaluate(input_fn=input_fn, steps=1)['accuracy'] self.assertAlmostEqual(accuracy, 1.0, places=3) def testBucketizedFeatures(self): """Tests SVM classifier with bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [800.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [800.0], [500.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column.bucketized_column( feature_column.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column.bucketized_column( feature_column.real_valued_column('sq_footage'), boundaries=[650.0]) svm_classifier = svm.SVM(feature_columns=[price_bucket, sq_footage_bucket], example_id_column='example_id', l1_regularization=0.1, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) accuracy = svm_classifier.evaluate(input_fn=input_fn, steps=1)['accuracy'] self.assertAlmostEqual(accuracy, 1.0, places=3) def testMixedFeatures(self): """Tests SVM classifier with a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column.real_valued_column('price') sq_footage_bucket = feature_column.bucketized_column( feature_column.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) svm_classifier = svm.SVM( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], example_id_column='example_id', weight_column_name='weights', l1_regularization=0.1, l2_regularization=1.0) svm_classifier.fit(input_fn=input_fn, steps=30) accuracy = svm_classifier.evaluate(input_fn=input_fn, steps=1)['accuracy'] self.assertAlmostEqual(accuracy, 1.0, places=3) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/svm_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Enum for metric keys (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function class MetricKey(object): """Metric key strings (deprecated).""" LOSS = "loss" AUC = "auc" AUC_PR = "auc_precision_recall" CLASS_AUC = "auc/class%d" CLASS_AUC_PR = "auc_precision_recall/class%d" PREDICTION_MEAN = "labels/prediction_mean" CLASS_PREDICTION_MEAN = "labels/prediction_mean/class%d" CLASS_LOGITS_MEAN = "labels/logits_mean/class%d" CLASS_PROBABILITY_MEAN = "labels/probability_mean/class%d" LABEL_MEAN = "labels/actual_label_mean" CLASS_LABEL_MEAN = "labels/actual_label_mean/class%d" ACCURACY = "accuracy" ACCURACY_BASELINE = "accuracy/baseline_label_mean" ACCURACY_MEAN = "accuracy/threshold_%f_mean" PRECISION_MEAN = "precision/positive_threshold_%f_mean" RECALL_MEAN = "recall/positive_threshold_%f_mean"
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/metric_key.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Deep Neural Network estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.summary import summary from tensorflow.python.training import training_util # The default learning rate of 0.05 is a historical artifact of the initial # implementation, but seems a reasonable choice. _LEARNING_RATE = 0.05 def _get_feature_dict(features): if isinstance(features, dict): return features return {"": features} def _get_optimizer(optimizer): if callable(optimizer): return optimizer() else: return optimizer _ACTIVATION_FUNCTIONS = { "relu": nn.relu, "tanh": nn.tanh, "sigmoid": nn.sigmoid } def _get_activation_fn(activation_fn): if not isinstance(activation_fn, six.string_types): return activation_fn if activation_fn not in _ACTIVATION_FUNCTIONS.keys(): raise ValueError("Activation name should be one of [%s], you provided %s." % (", ".join(_ACTIVATION_FUNCTIONS.keys()), activation_fn)) return _ACTIVATION_FUNCTIONS[activation_fn] def _add_hidden_layer_summary(value, tag): summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value)) summary.histogram("%s_activation" % tag, value) def _dnn_model_fn(features, labels, mode, params, config=None): """Deep Neural Net model_fn. Args: features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`). labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters. The following hyperparameters are expected: * head: A `_Head` instance. * hidden_units: List of hidden units per layer. * feature_columns: An iterable containing all the feature columns used by the model. * optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training. If `None`, will use the Adagrad optimizer with a default learning rate of 0.05. * activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. Note that a string containing the unqualified name of the op may also be provided, e.g., "relu", "tanh", or "sigmoid". * dropout: When not `None`, the probability we will drop out a given coordinate. * gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. * embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. * input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. config: `RunConfig` object to configure the runtime settings. Returns: predictions: A dict of `Tensor` objects. loss: A scalar containing the loss of the step. train_op: The op for training. """ head = params["head"] hidden_units = params["hidden_units"] feature_columns = params["feature_columns"] optimizer = params.get("optimizer") or "Adagrad" activation_fn = _get_activation_fn(params.get("activation_fn")) dropout = params.get("dropout") gradient_clip_norm = params.get("gradient_clip_norm") input_layer_min_slice_size = ( params.get("input_layer_min_slice_size") or 64 << 20) num_ps_replicas = config.num_ps_replicas if config else 0 embedding_lr_multipliers = params.get("embedding_lr_multipliers", {}) features = _get_feature_dict(features) parent_scope = "dnn" partitioner = partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas) with variable_scope.variable_scope( parent_scope, values=tuple(six.itervalues(features)), partitioner=partitioner): input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=input_layer_min_slice_size)) with variable_scope.variable_scope( "input_from_feature_columns", values=tuple(six.itervalues(features)), partitioner=input_layer_partitioner) as input_layer_scope: if all( isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access for fc in feature_columns ): net = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=feature_columns, weight_collections=[parent_scope], scope=input_layer_scope) else: net = fc_core.input_layer( features=features, feature_columns=feature_columns, weight_collections=[parent_scope]) for layer_id, num_hidden_units in enumerate(hidden_units): with variable_scope.variable_scope( "hiddenlayer_%d" % layer_id, values=(net,)) as hidden_layer_scope: net = layers.fully_connected( net, num_hidden_units, activation_fn=activation_fn, variables_collections=[parent_scope], scope=hidden_layer_scope) if dropout is not None and mode == model_fn.ModeKeys.TRAIN: net = layers.dropout(net, keep_prob=(1.0 - dropout)) _add_hidden_layer_summary(net, hidden_layer_scope.name) with variable_scope.variable_scope( "logits", values=(net,)) as logits_scope: logits = layers.fully_connected( net, head.logits_dimension, activation_fn=None, variables_collections=[parent_scope], scope=logits_scope) _add_hidden_layer_summary(logits, logits_scope.name) def _train_op_fn(loss): """Returns the op to optimize the loss.""" return optimizers.optimize_loss( loss=loss, global_step=training_util.get_global_step(), learning_rate=_LEARNING_RATE, optimizer=_get_optimizer(optimizer), gradient_multipliers=( dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access embedding_lr_multipliers, parent_scope, input_layer_scope.name)), clip_gradients=gradient_clip_norm, name=parent_scope, # Empty summaries to prevent optimizers from logging training_loss. summaries=[]) return head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=_train_op_fn, logits=logits) class DNNClassifier(estimator.Estimator): """A classifier for TensorFlow DNN models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNClassifier( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNClassifier( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], hidden_units=[1024, 512, 256], optimizer=tf.compat.v1.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y represents label's class index). pass estimator.evaluate(input_fn=input_fn_eval) def input_fn_predict: # returns x, None pass # predict_classes returns class indices. estimator.predict_classes(input_fn=input_fn_predict) ``` If the user specifies `label_keys` in constructor, labels must be strings from the `label_keys` vocabulary. Example: ```python label_keys = ['label0', 'label1', 'label2'] estimator = DNNClassifier( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], hidden_units=[1024, 512, 256], label_keys=label_keys) def input_fn_train: # returns x, y (where y is one of label_keys). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y is one of label_keys). pass estimator.evaluate(input_fn=input_fn_eval) def input_fn_predict: # returns x, None # predict_classes returns one of label_keys. estimator.predict_classes(input_fn=input_fn_predict) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=False, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None, input_layer_min_slice_size=None, label_keys=None): """Initializes a DNNClassifier instance. Args: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of label classes. Default is binary classification. It must be greater than 1. Note: Class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use tf.nn.relu. Note that a string containing the unqualified name of the op may also be provided, e.g., "relu", "tanh", or "sigmoid". dropout: When not `None`, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Only supported for `n_classes` > 2. Returns: A `DNNClassifier` estimator. Raises: ValueError: If `n_classes` < 2. """ self._feature_columns = tuple(feature_columns or []) super(DNNClassifier, self).__init__( model_fn=_dnn_model_fn, model_dir=model_dir, config=config, params={ "head": head_lib.multi_class_head( n_classes, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, label_keys=label_keys), "hidden_units": hidden_units, "feature_columns": self._feature_columns, "optimizer": optimizer, "activation_fn": activation_fn, "dropout": dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "input_layer_min_slice_size": input_layer_min_slice_size, }, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_classes, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted classes. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_classes` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns classes. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_classes( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(DNNClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_classes(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted classes for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.CLASSES preds = super(DNNClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key].reshape(-1) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted probabilities with shape [batch_size, n_classes] (or an iterable of predicted probabilities if as_iterable is True). """ key = prediction_key.PredictionKey.PROBABILITIES preds = super(DNNClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples(examples, self._feature_columns) return super(DNNClassifier, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=(signature_fn or export.classification_signature_fn_with_prob), prediction_key=prediction_key.PredictionKey.PROBABILITIES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) class DNNRegressor(estimator.Estimator): """A regressor for TensorFlow DNN models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNRegressor( feature_columns=[sparse_feature_a, sparse_feature_b], hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=[sparse_feature_a, sparse_feature_b], hidden_units=[1024, 512, 256], optimizer=tf.compat.v1.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Input builders def input_fn_train: # returns x, y pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y pass estimator.evaluate(input_fn=input_fn_eval) def input_fn_predict: # returns x, None pass estimator.predict_scores(input_fn=input_fn_predict) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, hidden_units, feature_columns, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=False, config=None, feature_engineering_fn=None, label_dimension=1, embedding_lr_multipliers=None, input_layer_min_slice_size=None): """Initializes a `DNNRegressor` instance. Args: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. Note that a string containing the unqualified name of the op may also be provided, e.g., "relu", "tanh", or "sigmoid". dropout: When not `None`, the probability we will drop out a given coordinate. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). embedding_lr_multipliers: Optional. A dictionary from `EbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. Returns: A `DNNRegressor` estimator. """ self._feature_columns = tuple(feature_columns or []) super(DNNRegressor, self).__init__( model_fn=_dnn_model_fn, model_dir=model_dir, config=config, params={ "head": head_lib.regression_head( label_dimension=label_dimension, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias), "hidden_units": hidden_units, "feature_columns": self._feature_columns, "optimizer": optimizer, "activation_fn": activation_fn, "dropout": dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "input_layer_min_slice_size": input_layer_min_slice_size, }, feature_engineering_fn=feature_engineering_fn) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None): """See evaluable.Evaluable.""" # TODO(zakaria): remove once deprecation is finished (b/31229024) custom_metrics = {} if metrics: for key, metric in six.iteritems(metrics): if (not isinstance(metric, metric_spec.MetricSpec) and not isinstance(key, tuple)): custom_metrics[(key, prediction_key.PredictionKey.SCORES)] = metric else: custom_metrics[key] = metric return super(DNNRegressor, self).evaluate( x=x, y=y, input_fn=input_fn, feed_fn=feed_fn, batch_size=batch_size, steps=steps, metrics=custom_metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_scores, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted scores. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_scores` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns scores. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_scores( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(DNNRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_scores(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted scores for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. """ key = prediction_key.PredictionKey.SCORES preds = super(DNNRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples(examples, self._feature_columns) return super(DNNRegressor, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=signature_fn or export.regression_signature_fn, prediction_key=prediction_key.PredictionKey.SCORES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) class DNNEstimator(estimator.Estimator): """A Estimator for TensorFlow DNN models with user specified _Head. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) To create a DNNEstimator for binary classification, where estimator = DNNEstimator( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], head=tf.contrib.learn.multi_class_head(n_classes=2), hidden_units=[1024, 512, 256]) If your label is keyed with "y" in your labels dict, and weights are keyed with "w" in features dict, and you want to enable centered bias, head = tf.contrib.learn.multi_class_head( n_classes=2, label_name="x", weight_column_name="w", enable_centered_bias=True) estimator = DNNEstimator( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], head=head, hidden_units=[1024, 512, 256]) # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y represents label's class index). pass estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) # returns predicted labels (i.e. label's class index). ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, head, hidden_units, feature_columns, model_dir=None, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None, input_layer_min_slice_size=None): """Initializes a `DNNEstimator` instance. Args: head: `Head` instance. hidden_units: List of hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. Note that a string containing the unqualified name of the op may also be provided, e.g., "relu", "tanh", or "sigmoid". dropout: When not `None`, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. Returns: A `DNNEstimator` estimator. """ super(DNNEstimator, self).__init__( model_fn=_dnn_model_fn, model_dir=model_dir, config=config, params={ "head": head, "hidden_units": hidden_units, "feature_columns": feature_columns, "optimizer": optimizer, "activation_fn": activation_fn, "dropout": dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "input_layer_min_slice_size": input_layer_min_slice_size, }, feature_engineering_fn=feature_engineering_fn)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dnn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow composable models used as building blocks for estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import re import six from tensorflow.contrib import layers from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.python.framework import ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.summary import summary from tensorflow.python.util.deprecation import deprecated class _ComposableModel(object): """ABC for building blocks that can be used to create estimators. Subclasses need to implement the following methods: - build_model - _get_optimizer See below for the required signatures. _ComposableModel and its subclasses are not part of the public tf.learn API. """ @deprecated(None, "Please use model_fns in tf.estimator.") def __init__(self, num_label_columns, optimizer, gradient_clip_norm, num_ps_replicas, scope, trainable=True): """Common initialization for all _ComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Scope for variables created in this model. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ self._num_label_columns = num_label_columns self._optimizer = optimizer self._gradient_clip_norm = gradient_clip_norm self._num_ps_replicas = num_ps_replicas self._scope = scope self._trainable = trainable self._feature_columns = None def get_scope_name(self): """Returns the scope name used by this model for variables.""" return self._scope def build_model(self, features, feature_columns, is_training): """Builds the model that can calculate the logits. Args: features: A mapping from feature columns to tensors. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. is_training: Set to True when training, False otherwise. Returns: The logits for this model. """ raise NotImplementedError def get_train_step(self, loss): """Returns the ops to run to perform a training step on this estimator. Args: loss: The loss to use when calculating gradients. Returns: The ops to run to perform a training step. """ my_vars = self._get_vars() if not (self._get_feature_columns() or my_vars): return [] grads = gradients.gradients(loss, my_vars) if self._gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm) return [self._get_optimizer().apply_gradients(zip(grads, my_vars))] def _get_feature_columns(self): if not self._feature_columns: return None feature_column_ops.check_feature_columns(self._feature_columns) return sorted(set(self._feature_columns), key=lambda x: x.key) def _get_vars(self): if self._get_feature_columns(): return ops.get_collection(self._scope) return [] def _get_optimizer(self): if (self._optimizer is None or isinstance(self._optimizer, six.string_types)): optimizer = self._get_default_optimizer(self._optimizer) elif callable(self._optimizer): optimizer = self._optimizer() else: optimizer = self._optimizer return optimizer def _get_default_optimizer(self, optimizer_name=None): raise NotImplementedError class LinearComposableModel(_ComposableModel): """A _ComposableModel that implements linear regression. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Instances of this class can be used to build estimators through the use of composition. """ def __init__(self, num_label_columns, optimizer=None, _joint_weights=False, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes LinearComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. _joint_weights: If True use a single (possibly partitioned) variable to store all weights in this model. Faster, but requires that all feature columns are sparse and have the 'sum' combiner. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If scope is not supplied, it will default to 'linear'. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "linear" if not scope else scope super(LinearComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._joint_weights = _joint_weights def get_weights(self, model_dir): """Returns weights per feature of the linear part. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model (without the optimizer weights). """ all_variables = [name for name, _ in list_variables(model_dir)] values = {} optimizer_regex = r".*/" + self._get_optimizer().get_name() + r"(_\d)?$" for name in all_variables: if (name.startswith(self._scope + "/") and name != self._scope + "/bias_weight" and not re.match(optimizer_regex, name)): values[name] = load_variable(model_dir, name) if len(values) == 1: return values[list(values.keys())[0]] return values def get_bias(self, model_dir): """Returns bias of the model. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The bias weights created by this model. """ return load_variable(model_dir, name=(self._scope + "/bias_weight")) def build_model(self, features, feature_columns, is_training): """See base class.""" self._feature_columns = feature_columns partitioner = partitioned_variables.min_max_variable_partitioner( max_partitions=self._num_ps_replicas, min_slice_size=64 << 20) with variable_scope.variable_scope( self._scope, values=features.values(), partitioner=partitioner) as scope: if self._joint_weights: logits, _, _ = layers.joint_weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=self._get_feature_columns(), num_outputs=self._num_label_columns, weight_collections=[self._scope], trainable=self._trainable, scope=scope) else: logits, _, _ = layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=self._get_feature_columns(), num_outputs=self._num_label_columns, weight_collections=[self._scope], trainable=self._trainable, scope=scope) return logits def _get_default_optimizer(self, optimizer_name=None): if optimizer_name is None: optimizer_name = "Ftrl" default_learning_rate = 1. / math.sqrt(len(self._get_feature_columns())) default_learning_rate = min(0.2, default_learning_rate) return layers.OPTIMIZER_CLS_NAMES[optimizer_name]( learning_rate=default_learning_rate) class DNNComposableModel(_ComposableModel): """A _ComposableModel that implements a DNN. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Instances of this class can be used to build estimators through the use of composition. """ def __init__(self, num_label_columns, hidden_units, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes DNNComposableModel objects. Args: num_label_columns: The number of label columns. hidden_units: List of hidden units per layer. All layers are fully connected. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If not scope is supplied, one is generated. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "dnn" if not scope else scope super(DNNComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._hidden_units = hidden_units self._activation_fn = activation_fn self._dropout = dropout def get_weights(self, model_dir): """Returns the weights of the model. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The weights created by this model. """ return [ load_variable( model_dir, name=(self._scope + "/hiddenlayer_%d/weights" % i)) for i, _ in enumerate(self._hidden_units) ] + [load_variable( model_dir, name=(self._scope + "/logits/weights"))] def get_bias(self, model_dir): """Returns the bias of the model. Args: model_dir: Directory where model parameters, graph and etc. are saved. Returns: The bias weights created by this model. """ return [ load_variable( model_dir, name=(self._scope + "/hiddenlayer_%d/biases" % i)) for i, _ in enumerate(self._hidden_units) ] + [load_variable( model_dir, name=(self._scope + "/logits/biases"))] def _add_hidden_layer_summary(self, value, tag): # TODO(zakaria): Move this code to tf.learn and add test. summary.scalar("%s/fraction_of_zero_values" % tag, nn.zero_fraction(value)) summary.histogram("%s/activation" % tag, value) def build_model(self, features, feature_columns, is_training): """See base class.""" self._feature_columns = feature_columns input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=self._num_ps_replicas, min_slice_size=64 << 20)) with variable_scope.variable_scope( self._scope + "/input_from_feature_columns", values=features.values(), partitioner=input_layer_partitioner) as scope: net = layers.input_from_feature_columns( features, self._get_feature_columns(), weight_collections=[self._scope], trainable=self._trainable, scope=scope) hidden_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=self._num_ps_replicas)) for layer_id, num_hidden_units in enumerate(self._hidden_units): with variable_scope.variable_scope( self._scope + "/hiddenlayer_%d" % layer_id, values=[net], partitioner=hidden_layer_partitioner) as scope: net = layers.fully_connected( net, num_hidden_units, activation_fn=self._activation_fn, variables_collections=[self._scope], trainable=self._trainable, scope=scope) if self._dropout is not None and is_training: net = layers.dropout(net, keep_prob=(1.0 - self._dropout)) self._add_hidden_layer_summary(net, scope.name) with variable_scope.variable_scope( self._scope + "/logits", values=[net], partitioner=hidden_layer_partitioner) as scope: logits = layers.fully_connected( net, self._num_label_columns, activation_fn=None, variables_collections=[self._scope], trainable=self._trainable, scope=scope) self._add_hidden_layer_summary(logits, "logits") return logits def _get_default_optimizer(self, optimizer_name=None): if optimizer_name is None: optimizer_name = "Adagrad" return layers.OPTIMIZER_CLS_NAMES[optimizer_name](learning_rate=0.05)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/composable_model.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce( offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points - 1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies( [q.enqueue_many(math_ops.range(num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def initial_clusters(self): return kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def _infer_helper(self, kmeans, clusters, num_points): points, true_assignments, true_offsets = make_random_points( clusters, num_points) # Test predict assignments = list( kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Run inference on small datasets. self._infer_helper(kmeans, clusters, num_points=10) self._infer_helper(kmeans, clusters, num_points=1) class KMeansTestMultiStageInit(KMeansTestBase): def test_random(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_just_right(self): points = np.array([[1, 2]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_too_small(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) with self.assertRaisesOpError(AssertionError): kmeans.fit( input_fn=self.input_fn(batch_size=4, points=points, randomize=False), steps=1) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean(normalize(self.points)[0:4, :], axis=0, keepdims=True))[ 0], normalize( np.mean(normalize(self.points)[4:, :], axis=0, keepdims=True))[ 0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list( self.kmeans.predict_cluster_idx(input_fn=self.input_fn( num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return (input_lib.limit_epochs( constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit( input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue( capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorSignature class and utilities (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops class TensorSignature( collections.namedtuple("TensorSignature", ["dtype", "shape", "is_sparse"])): """Signature of the `Tensor` object. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Useful to check compatibility of tensors. Example: ```python examples = tf.compat.v1.placeholder(...) inputs = {'a': var_a, 'b': var_b} signatures = tensor_signature.create_signatures(inputs) result = tensor_signature.create_example_parser_from_signatures( signatures, examples) self.assertTrue(tensor_signature.tensors_compatible(result, signatures)) ``` Attributes: dtype: `DType` object. shape: `TensorShape` object. """ def __new__(cls, tensor): if isinstance(tensor, sparse_tensor.SparseTensor): return super(TensorSignature, cls).__new__( cls, dtype=tensor.values.dtype, shape=None, is_sparse=True) return super(TensorSignature, cls).__new__( cls, dtype=tensor.dtype, shape=tensor.get_shape(), is_sparse=False) def is_compatible_with(self, other): """Returns True if signatures are compatible.""" def _shape_is_compatible_0dim(this, other): """Checks that shapes are compatible skipping dim 0.""" other = tensor_shape.as_shape(other) # If shapes are None (unknown) they may be compatible. if this.dims is None or other.dims is None: return True if this.ndims != other.ndims: return False for dim, (x_dim, y_dim) in enumerate(zip(this.dims, other.dims)): if dim == 0: continue if not x_dim.is_compatible_with(y_dim): return False return True if other.is_sparse: return self.is_sparse and self.dtype.is_compatible_with(other.dtype) return (self.dtype.is_compatible_with(other.dtype) and _shape_is_compatible_0dim(self.shape, other.shape) and not self.is_sparse) def get_placeholder(self): if self.is_sparse: return array_ops.sparse_placeholder(dtype=self.dtype) return array_ops.placeholder( dtype=self.dtype, shape=[None] + list(self.shape[1:])) def get_feature_spec(self): dtype = self.dtype # Convert, because example parser only supports float32, int64 and string. if dtype == dtypes.int32: dtype = dtypes.int64 if dtype == dtypes.float64: dtype = dtypes.float32 if self.is_sparse: return parsing_ops.VarLenFeature(dtype=dtype) return parsing_ops.FixedLenFeature(shape=self.shape[1:], dtype=dtype) def tensors_compatible(tensors, signatures): """Check that tensors are compatible with signatures. Args: tensors: Dict of `Tensor` objects or single `Tensor` object. signatures: Dict of `TensorSignature` objects or single `TensorSignature` object. Returns: True if all tensors are compatible, False otherwise. """ # Dict of Tensors as input. if tensors is None: return signatures is None if isinstance(tensors, dict): if not isinstance(signatures, dict): return False for key in signatures: if key not in tensors: return False if not TensorSignature(tensors[key]).is_compatible_with(signatures[key]): return False return True # Single tensor as input. if signatures is None or isinstance(signatures, dict): return False return TensorSignature(tensors).is_compatible_with(signatures) def create_signatures(tensors): """Creates TensorSignature objects for given tensors. Args: tensors: Dict of `Tensor` objects or single `Tensor`. Returns: Dict of `TensorSignature` objects or single `TensorSignature`. """ if isinstance(tensors, dict): return {key: TensorSignature(tensors[key]) for key in tensors} if tensors is None: return None return TensorSignature(tensors) def create_placeholders_from_signatures(signatures): """Creates placeholders from given signatures. Args: signatures: Dict of `TensorSignature` objects or single `TensorSignature`, or `None`. Returns: Dict of `tf.compat.v1.placeholder` objects or single `tf.compat.v1.placeholder`, or `None`. """ if signatures is None: return None if not isinstance(signatures, dict): return signatures.get_placeholder() return {key: signatures[key].get_placeholder() for key in signatures} def create_example_parser_from_signatures(signatures, examples_batch, single_feature_name="feature"): """Creates example parser from given signatures. Args: signatures: Dict of `TensorSignature` objects or single `TensorSignature`. examples_batch: string `Tensor` of serialized `Example` proto. single_feature_name: string, single feature name. Returns: features: `Tensor` or `dict` of `Tensor` objects. """ feature_spec = {} if not isinstance(signatures, dict): feature_spec[single_feature_name] = signatures.get_feature_spec() else: feature_spec = { key: signatures[key].get_feature_spec() for key in signatures } features = parsing_ops.parse_example(examples_batch, feature_spec) if not isinstance(signatures, dict): # Returns single feature, casts if needed. features = features[single_feature_name] if not signatures.dtype.is_compatible_with(features.dtype): features = math_ops.cast(features, signatures.dtype) return features # Returns dict of features, casts if needed. for name in features: if not signatures[name].dtype.is_compatible_with(features[name].dtype): features[name] = math_ops.cast(features[name], signatures[name].dtype) return features
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/tensor_signature.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Linear Estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import six from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.linear_optimizer.python import sdca_optimizer from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import session_run_hook from tensorflow.python.training import training as train from tensorflow.python.training import training_util # The default learning rate of 0.2 is a historical artifact of the initial # implementation, but seems a reasonable choice. _LEARNING_RATE = 0.2 def _get_optimizer(spec): if isinstance(spec, six.string_types): return layers.OPTIMIZER_CLS_NAMES[spec]( learning_rate=_LEARNING_RATE) elif callable(spec): return spec() return spec # TODO(ispir): Remove this function by fixing '_infer_model' with single outputs # and as_iteable case. def _as_iterable(preds, output): for pred in preds: yield pred[output] def _add_bias_column(feature_columns, columns_to_tensors, bias_variable, columns_to_variables): """Adds a fake bias feature column filled with all 1s.""" # TODO(b/31008490): Move definition to a common constants place. bias_column_name = "tf_virtual_bias_column" if any(col.name is bias_column_name for col in feature_columns): raise ValueError("%s is a reserved column name." % bias_column_name) if not feature_columns: raise ValueError("feature_columns can't be empty.") # Loop through input tensors until we can figure out batch_size. batch_size = None for column in columns_to_tensors.values(): if isinstance(column, tuple): column = column[0] if isinstance(column, sparse_tensor.SparseTensor): shape = tensor_util.constant_value(column.dense_shape) if shape is not None: batch_size = shape[0] break else: batch_size = array_ops.shape(column)[0] break if batch_size is None: raise ValueError("Could not infer batch size from input features.") bias_column = layers.real_valued_column(bias_column_name) columns_to_tensors[bias_column] = array_ops.ones([batch_size, 1], dtype=dtypes.float32) columns_to_variables[bias_column] = [bias_variable] def _linear_model_fn(features, labels, mode, params, config=None): """A model_fn for linear models that use a gradient-based optimizer. Args: features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`). labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters. The following hyperparameters are expected: * head: A `Head` instance. * feature_columns: An iterable containing all the feature columns used by the model. * optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training. If `None`, will use a FTRL optimizer. * gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. * joint_weights: If True, the weights for all columns will be stored in a single (possibly partitioned) variable. It's more efficient, but it's incompatible with SDCAOptimizer, and requires all feature columns are sparse and use the 'sum' combiner. config: `RunConfig` object to configure the runtime settings. Returns: A `ModelFnOps` instance. Raises: ValueError: If mode is not any of the `ModeKeys`. """ head = params["head"] feature_columns = params["feature_columns"] optimizer = params.get("optimizer") or _get_default_optimizer(feature_columns) gradient_clip_norm = params.get("gradient_clip_norm", None) num_ps_replicas = config.num_ps_replicas if config else 0 joint_weights = params.get("joint_weights", False) if not isinstance(features, dict): features = {"": features} parent_scope = "linear" partitioner = partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=64 << 20) with variable_scope.variable_scope( parent_scope, values=tuple(six.itervalues(features)), partitioner=partitioner) as scope: if all(isinstance(fc, feature_column._FeatureColumn) # pylint: disable=protected-access for fc in feature_columns): if joint_weights: layer_fn = layers.joint_weighted_sum_from_feature_columns else: layer_fn = layers.weighted_sum_from_feature_columns logits, _, _ = layer_fn( columns_to_tensors=features, feature_columns=feature_columns, num_outputs=head.logits_dimension, weight_collections=[parent_scope], scope=scope) else: logits = fc_core.linear_model( features=features, feature_columns=feature_columns, units=head.logits_dimension, weight_collections=[parent_scope]) def _train_op_fn(loss): global_step = training_util.get_global_step() my_vars = ops.get_collection(parent_scope) grads = gradients.gradients(loss, my_vars) if gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, gradient_clip_norm) return (_get_optimizer(optimizer).apply_gradients( zip(grads, my_vars), global_step=global_step)) return head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=_train_op_fn, logits=logits) def sdca_model_fn(features, labels, mode, params): """A model_fn for linear models that use the SDCA optimizer. Args: features: A dict of `Tensor` keyed by column name. labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters. The following hyperparameters are expected: * head: A `Head` instance. Type must be one of `_BinarySvmHead`, `_RegressionHead` or `_BinaryLogisticHead`. * feature_columns: An iterable containing all the feature columns used by the model. * optimizer: An `SDCAOptimizer` instance. * weight_column_name: A string defining the weight feature column, or None if there are no weights. * update_weights_hook: A `SessionRunHook` object or None. Used to update model weights. Returns: A `ModelFnOps` instance. Raises: ValueError: If `optimizer` is not an `SDCAOptimizer` instance. ValueError: If the type of head is neither `_BinarySvmHead`, nor `_RegressionHead` nor `_MultiClassHead`. ValueError: If mode is not any of the `ModeKeys`. """ head = params["head"] feature_columns = params["feature_columns"] optimizer = params["optimizer"] weight_column_name = params["weight_column_name"] update_weights_hook = params.get("update_weights_hook", None) if not isinstance(optimizer, sdca_optimizer.SDCAOptimizer): raise ValueError("Optimizer must be of type SDCAOptimizer") if isinstance(head, head_lib._BinarySvmHead): # pylint: disable=protected-access loss_type = "hinge_loss" elif isinstance(head, head_lib._BinaryLogisticHead): # pylint: disable=protected-access loss_type = "logistic_loss" elif isinstance(head, head_lib._RegressionHead): # pylint: disable=protected-access assert head.logits_dimension == 1, ("SDCA only applies for " "logits_dimension=1.") loss_type = "squared_loss" else: raise ValueError("Unsupported head type: {}".format(head)) parent_scope = "linear" with variable_scope.variable_scope( values=features.values(), name_or_scope=parent_scope, partitioner=optimizer.partitioner) as scope: features = features.copy() features.update(layers.transform_features(features, feature_columns)) logits, columns_to_variables, bias = ( layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=feature_columns, num_outputs=1, scope=scope)) _add_bias_column(feature_columns, features, bias, columns_to_variables) def _train_op_fn(unused_loss): global_step = training_util.get_global_step() sdca_model, train_op = optimizer.get_train_step(columns_to_variables, weight_column_name, loss_type, features, labels, global_step) if update_weights_hook is not None: update_weights_hook.set_parameters(sdca_model, train_op) return train_op model_fn_ops = head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=_train_op_fn, logits=logits) if update_weights_hook is not None: return model_fn_ops._replace( training_chief_hooks=(model_fn_ops.training_chief_hooks + [update_weights_hook])) return model_fn_ops # Ensures consistency with LinearComposableModel. def _get_default_optimizer(feature_columns): learning_rate = min(_LEARNING_RATE, 1.0 / math.sqrt(len(feature_columns))) return train.FtrlOptimizer(learning_rate=learning_rate) class _SdcaUpdateWeightsHook(session_run_hook.SessionRunHook): """SessionRunHook to update and shrink SDCA model weights.""" def __init__(self): pass def set_parameters(self, sdca_model, train_op): self._sdca_model = sdca_model self._train_op = train_op def begin(self): """Construct the update_weights op. The op is implicitly added to the default graph. """ self._update_op = self._sdca_model.update_weights(self._train_op) def before_run(self, run_context): """Return the update_weights op so that it is executed during this run.""" return session_run_hook.SessionRunArgs(self._update_op) class LinearClassifier(estimator.Estimator): """Linear classifier model. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. Example: ```python sparse_column_a = sparse_column_with_hash_bucket(...) sparse_column_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) # Estimator using the default optimizer. estimator = LinearClassifier( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b]) # Or estimator using the FTRL optimizer with regularization. estimator = LinearClassifier( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b], optimizer=tf.compat.v1.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Or estimator using the SDCAOptimizer. estimator = LinearClassifier( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b], optimizer=tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', num_loss_partitions=..., symmetric_l2_regularization=2.0 )) # Input builders def input_fn_train: # returns x, y (where y represents label's class index). ... def input_fn_eval: # returns x, y (where y represents label's class index). ... def input_fn_predict: # returns x, None. ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) # predict_classes returns class indices. estimator.predict_classes(input_fn=input_fn_predict) ``` If the user specifies `label_keys` in constructor, labels must be strings from the `label_keys` vocabulary. Example: ```python label_keys = ['label0', 'label1', 'label2'] estimator = LinearClassifier( n_classes=n_classes, feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b], label_keys=label_keys) def input_fn_train: # returns x, y (where y is one of label_keys). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y is one of label_keys). pass estimator.evaluate(input_fn=input_fn_eval) def input_fn_predict: # returns x, None # predict_classes returns one of label_keys. estimator.predict_classes(input_fn=input_fn_predict) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, # _joint_weight pylint: disable=invalid-name feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=False, _joint_weight=False, config=None, feature_engineering_fn=None, label_keys=None): """Construct a `LinearClassifier` estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of label classes. Default is binary classification. Note that class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: The optimizer used to train the model. If specified, it should be either an instance of `tf.Optimizer` or the SDCAOptimizer. If `None`, the Ftrl optimizer will be used. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. _joint_weight: If True, the weights for all columns will be stored in a single (possibly partitioned) variable. It's more efficient, but it's incompatible with SDCAOptimizer, and requires all feature columns are sparse and use the 'sum' combiner. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Only supported for `n_classes` > 2. Returns: A `LinearClassifier` estimator. Raises: ValueError: if n_classes < 2. ValueError: if enable_centered_bias=True and optimizer is SDCAOptimizer. """ if (isinstance(optimizer, sdca_optimizer.SDCAOptimizer) and enable_centered_bias): raise ValueError("enable_centered_bias is not supported with SDCA") self._feature_columns = tuple(feature_columns or []) assert self._feature_columns chief_hook = None head = head_lib.multi_class_head( n_classes, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, label_keys=label_keys) params = { "head": head, "feature_columns": feature_columns, "optimizer": optimizer, } if isinstance(optimizer, sdca_optimizer.SDCAOptimizer): assert not _joint_weight, ("_joint_weight is incompatible with the" " SDCAOptimizer") assert n_classes == 2, "SDCA only applies to binary classification." model_fn = sdca_model_fn # The model_fn passes the model parameters to the chief_hook. We then use # the hook to update weights and shrink step only on the chief. chief_hook = _SdcaUpdateWeightsHook() params.update({ "weight_column_name": weight_column_name, "update_weights_hook": chief_hook, }) else: model_fn = _linear_model_fn params.update({ "gradient_clip_norm": gradient_clip_norm, "joint_weights": _joint_weight, }) super(LinearClassifier, self).__init__( model_fn=model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_classes, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted classes. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_classes` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns classes. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_classes( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(LinearClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_classes(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted classes for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.CLASSES preds = super(LinearClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted probabilities with shape [batch_size, n_classes] (or an iterable of predicted probabilities if as_iterable is True). """ key = prediction_key.PredictionKey.PROBABILITIES preds = super(LinearClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return super(LinearClassifier, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=(signature_fn or export.classification_signature_fn_with_prob), prediction_key=prediction_key.PredictionKey.PROBABILITIES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) class LinearRegressor(estimator.Estimator): """Linear regressor model. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Train a linear regression model to predict label value given observation of feature values. Example: ```python sparse_column_a = sparse_column_with_hash_bucket(...) sparse_column_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) estimator = LinearRegressor( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b]) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a KeyError: * if `weight_column_name` is not `None`: key=weight_column_name, value=a `Tensor` * for column in `feature_columns`: - if isinstance(column, `SparseColumn`): key=column.name, value=a `SparseTensor` - if isinstance(column, `WeightedSparseColumn`): {key=id column name, value=a `SparseTensor`, key=weight column name, value=a `SparseTensor`} - if isinstance(column, `RealValuedColumn`): key=column.name, value=a `Tensor` """ def __init__(self, # _joint_weights: pylint: disable=invalid-name feature_columns, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=False, label_dimension=1, _joint_weights=False, config=None, feature_engineering_fn=None): """Construct a `LinearRegressor` estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Ftrl optimizer. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). _joint_weights: If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Returns: A `LinearRegressor` estimator. """ self._feature_columns = tuple(feature_columns or []) assert self._feature_columns chief_hook = None if (isinstance(optimizer, sdca_optimizer.SDCAOptimizer) and enable_centered_bias): enable_centered_bias = False logging.warning("centered_bias is not supported with SDCA, " "please disable it explicitly.") head = head_lib.regression_head( weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias) params = { "head": head, "feature_columns": feature_columns, "optimizer": optimizer, } if isinstance(optimizer, sdca_optimizer.SDCAOptimizer): assert label_dimension == 1, "SDCA only applies for label_dimension=1." assert not _joint_weights, ("_joint_weights is incompatible with" " SDCAOptimizer.") model_fn = sdca_model_fn # The model_fn passes the model parameters to the chief_hook. We then use # the hook to update weights and shrink step only on the chief. chief_hook = _SdcaUpdateWeightsHook() params.update({ "weight_column_name": weight_column_name, "update_weights_hook": chief_hook, }) else: model_fn = _linear_model_fn params.update({ "gradient_clip_norm": gradient_clip_norm, "joint_weights": _joint_weights, }) super(LinearRegressor, self).__init__( model_fn=model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_scores, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted scores. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_scores` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns scores. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_scores( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(LinearRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_scores(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted scores for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. """ key = prediction_key.PredictionKey.SCORES preds = super(LinearRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return super(LinearRegressor, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=(signature_fn or export.regression_signature_fn), prediction_key=prediction_key.PredictionKey.SCORES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) class LinearEstimator(estimator.Estimator): """Linear model with user specified head. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Train a generalized linear model to predict label value given observation of feature values. Example: To do poisson regression, ```python sparse_column_a = sparse_column_with_hash_bucket(...) sparse_column_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) estimator = LinearEstimator( feature_columns=[sparse_column_a, sparse_feature_a_x_sparse_feature_b], head=head_lib.poisson_regression_head()) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a KeyError: * if `weight_column_name` is not `None`: key=weight_column_name, value=a `Tensor` * for column in `feature_columns`: - if isinstance(column, `SparseColumn`): key=column.name, value=a `SparseTensor` - if isinstance(column, `WeightedSparseColumn`): {key=id column name, value=a `SparseTensor`, key=weight column name, value=a `SparseTensor`} - if isinstance(column, `RealValuedColumn`): key=column.name, value=a `Tensor` """ def __init__(self, # _joint_weights: pylint: disable=invalid-name feature_columns, head, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, _joint_weights=False, config=None, feature_engineering_fn=None): """Construct a `LinearEstimator` object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. head: An instance of _Head class. model_dir: Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Ftrl optimizer. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. _joint_weights: If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Returns: A `LinearEstimator` estimator. Raises: ValueError: if optimizer is not supported, e.g., SDCAOptimizer """ assert feature_columns if isinstance(optimizer, sdca_optimizer.SDCAOptimizer): raise ValueError("LinearEstimator does not support SDCA optimizer.") params = { "head": head, "feature_columns": feature_columns, "optimizer": optimizer, "gradient_clip_norm": gradient_clip_norm, "joint_weights": _joint_weights, } super(LinearEstimator, self).__init__( model_fn=_linear_model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/linear.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for learn.estimators.state_saving_rnn_estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np from tensorflow.contrib import lookup from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import target_column as target_column_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.estimators import rnn_common from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import state_saving_rnn_estimator as ssre from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class PrepareInputsForRnnTest(test.TestCase): def _test_prepare_inputs_for_rnn(self, sequence_features, context_features, sequence_feature_columns, num_unroll, expected): features_by_time = ssre._prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) sess.run(lookup_ops.tables_initializer()) features_val = sess.run(features_by_time) self.assertAllEqual(expected, features_val) def testPrepareInputsForRnnBatchSize1(self): num_unroll = 3 expected = [ np.array([[11., 31., 5., 7.]]), np.array([[12., 32., 5., 7.]]), np.array([[13., 33., 5., 7.]]) ] sequence_features = { 'seq_feature0': constant_op.constant([[11., 12., 13.]]), 'seq_feature1': constant_op.constant([[31., 32., 33.]]) } sequence_feature_columns = [ feature_column.real_valued_column( 'seq_feature0', dimension=1), feature_column.real_valued_column( 'seq_feature1', dimension=1), ] context_features = { 'ctx_feature0': constant_op.constant([[5.]]), 'ctx_feature1': constant_op.constant([[7.]]) } self._test_prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll, expected) def testPrepareInputsForRnnBatchSize2(self): num_unroll = 3 expected = [ np.array([[11., 31., 5., 7.], [21., 41., 6., 8.]]), np.array([[12., 32., 5., 7.], [22., 42., 6., 8.]]), np.array([[13., 33., 5., 7.], [23., 43., 6., 8.]]) ] sequence_features = { 'seq_feature0': constant_op.constant([[11., 12., 13.], [21., 22., 23.]]), 'seq_feature1': constant_op.constant([[31., 32., 33.], [41., 42., 43.]]) } sequence_feature_columns = [ feature_column.real_valued_column( 'seq_feature0', dimension=1), feature_column.real_valued_column( 'seq_feature1', dimension=1), ] context_features = { 'ctx_feature0': constant_op.constant([[5.], [6.]]), 'ctx_feature1': constant_op.constant([[7.], [8.]]) } self._test_prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll, expected) def testPrepareInputsForRnnNoContext(self): num_unroll = 3 expected = [ np.array([[11., 31.], [21., 41.]]), np.array([[12., 32.], [22., 42.]]), np.array([[13., 33.], [23., 43.]]) ] sequence_features = { 'seq_feature0': constant_op.constant([[11., 12., 13.], [21., 22., 23.]]), 'seq_feature1': constant_op.constant([[31., 32., 33.], [41., 42., 43.]]) } sequence_feature_columns = [ feature_column.real_valued_column( 'seq_feature0', dimension=1), feature_column.real_valued_column( 'seq_feature1', dimension=1), ] context_features = None self._test_prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll, expected) def testPrepareInputsForRnnSparse(self): num_unroll = 2 embedding_dimension = 8 expected = [ np.array([[1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1.]]), np.array([[1., 1., 1., 1., 1., 1., 1., 1.], [2., 2., 2., 2., 2., 2., 2., 2.], [1., 1., 1., 1., 1., 1., 1., 1.]]) ] sequence_features = { 'wire_cast': sparse_tensor.SparseTensor( indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 1, 1]], values=[ b'marlo', b'stringer', b'omar', b'stringer', b'marlo', b'marlo', b'omar' ], dense_shape=[3, 2, 2]) } wire_cast = feature_column.sparse_column_with_keys( 'wire_cast', ['marlo', 'omar', 'stringer']) sequence_feature_columns = [ feature_column.embedding_column( wire_cast, dimension=embedding_dimension, combiner='sum', initializer=init_ops.ones_initializer()) ] context_features = None self._test_prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll, expected) def testPrepareInputsForRnnSparseAndDense(self): num_unroll = 2 embedding_dimension = 8 dense_dimension = 2 expected = [ np.array([[1., 1., 1., 1., 1., 1., 1., 1., 111., 112.], [1., 1., 1., 1., 1., 1., 1., 1., 211., 212.], [1., 1., 1., 1., 1., 1., 1., 1., 311., 312.]]), np.array([[1., 1., 1., 1., 1., 1., 1., 1., 121., 122.], [2., 2., 2., 2., 2., 2., 2., 2., 221., 222.], [1., 1., 1., 1., 1., 1., 1., 1., 321., 322.]]) ] sequence_features = { 'wire_cast': sparse_tensor.SparseTensor( indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 1, 1]], values=[ b'marlo', b'stringer', b'omar', b'stringer', b'marlo', b'marlo', b'omar' ], dense_shape=[3, 2, 2]), 'seq_feature0': constant_op.constant([[[111., 112.], [121., 122.]], [[211., 212.], [221., 222.]], [[311., 312.], [321., 322.]]]) } wire_cast = feature_column.sparse_column_with_keys( 'wire_cast', ['marlo', 'omar', 'stringer']) wire_cast_embedded = feature_column.embedding_column( wire_cast, dimension=embedding_dimension, combiner='sum', initializer=init_ops.ones_initializer()) seq_feature0_column = feature_column.real_valued_column( 'seq_feature0', dimension=dense_dimension) sequence_feature_columns = [seq_feature0_column, wire_cast_embedded] context_features = None self._test_prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll, expected) class StateSavingRnnEstimatorTest(test.TestCase): def testPrepareFeaturesForSQSS(self): mode = model_fn_lib.ModeKeys.TRAIN seq_feature_name = 'seq_feature' sparse_seq_feature_name = 'wire_cast' ctx_feature_name = 'ctx_feature' sequence_length = 4 embedding_dimension = 8 features = { sparse_seq_feature_name: sparse_tensor.SparseTensor( indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 1, 1]], values=[ b'marlo', b'stringer', b'omar', b'stringer', b'marlo', b'marlo', b'omar' ], dense_shape=[3, 2, 2]), seq_feature_name: constant_op.constant( 1.0, shape=[sequence_length]), ctx_feature_name: constant_op.constant(2.0) } labels = constant_op.constant(5.0, shape=[sequence_length]) wire_cast = feature_column.sparse_column_with_keys( 'wire_cast', ['marlo', 'omar', 'stringer']) sequence_feature_columns = [ feature_column.real_valued_column( seq_feature_name, dimension=1), feature_column.embedding_column( wire_cast, dimension=embedding_dimension, initializer=init_ops.ones_initializer()) ] context_feature_columns = [ feature_column.real_valued_column( ctx_feature_name, dimension=1) ] expected_sequence = { rnn_common.RNNKeys.LABELS_KEY: np.array([5., 5., 5., 5.]), seq_feature_name: np.array([1., 1., 1., 1.]), sparse_seq_feature_name: sparse_tensor.SparseTensor( indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0], [2, 1, 1]], values=[ b'marlo', b'stringer', b'omar', b'stringer', b'marlo', b'marlo', b'omar' ], dense_shape=[3, 2, 2]), } expected_context = {ctx_feature_name: 2.} sequence, context = ssre._prepare_features_for_sqss( features, labels, mode, sequence_feature_columns, context_feature_columns) def assert_equal(expected, got): self.assertEqual(sorted(expected), sorted(got)) for k, v in expected.items(): if isinstance(v, sparse_tensor.SparseTensor): self.assertAllEqual(v.values.eval(), got[k].values) self.assertAllEqual(v.indices.eval(), got[k].indices) self.assertAllEqual(v.dense_shape.eval(), got[k].dense_shape) else: self.assertAllEqual(v, got[k]) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) sess.run(lookup_ops.tables_initializer()) actual_sequence, actual_context = sess.run( [sequence, context]) assert_equal(expected_sequence, actual_sequence) assert_equal(expected_context, actual_context) def _getModelFnOpsForMode(self, mode): """Helper for testGetRnnModelFn{Train,Eval,Infer}().""" num_units = [4] seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=1) ] features = { 'inputs': constant_op.constant([1., 2., 3.]), } labels = constant_op.constant([1., 0., 1.]) model_fn = ssre._get_rnn_model_fn( cell_type='basic_rnn', target_column=target_column_lib.multi_class_target(n_classes=2), optimizer='SGD', num_unroll=2, num_units=num_units, num_threads=1, queue_capacity=10, batch_size=1, # Only CLASSIFICATION yields eval metrics to test for. problem_type=constants.ProblemType.CLASSIFICATION, sequence_feature_columns=seq_columns, context_feature_columns=None, learning_rate=0.1) model_fn_ops = model_fn(features=features, labels=labels, mode=mode) return model_fn_ops # testGetRnnModelFn{Train,Eval,Infer}() test which fields # of ModelFnOps are set depending on mode. def testGetRnnModelFnTrain(self): model_fn_ops = self._getModelFnOpsForMode(model_fn_lib.ModeKeys.TRAIN) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNotNone(model_fn_ops.train_op) # None may get normalized to {}; we accept neither. self.assertNotEqual(len(model_fn_ops.eval_metric_ops), 0) def testGetRnnModelFnEval(self): model_fn_ops = self._getModelFnOpsForMode(model_fn_lib.ModeKeys.EVAL) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) # None may get normalized to {}; we accept neither. self.assertNotEqual(len(model_fn_ops.eval_metric_ops), 0) def testGetRnnModelFnInfer(self): model_fn_ops = self._getModelFnOpsForMode(model_fn_lib.ModeKeys.INFER) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) # None may get normalized to {}; we accept both. self.assertFalse(model_fn_ops.eval_metric_ops) def testExport(self): input_feature_key = 'magic_input_feature_key' batch_size = 8 num_units = [4] sequence_length = 10 num_unroll = 2 num_classes = 2 seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=4) ] def get_input_fn(mode, seed): def input_fn(): features = {} random_sequence = random_ops.random_uniform( [sequence_length + 1], 0, 2, dtype=dtypes.int32, seed=seed) labels = array_ops.slice(random_sequence, [0], [sequence_length]) inputs = math_ops.cast( array_ops.slice(random_sequence, [1], [sequence_length]), dtypes.float32) features = {'inputs': inputs} if mode == model_fn_lib.ModeKeys.INFER: input_examples = array_ops.placeholder(dtypes.string) features[input_feature_key] = input_examples labels = None return features, labels return input_fn model_dir = tempfile.mkdtemp() def estimator_fn(): return ssre.StateSavingRnnEstimator( constants.ProblemType.CLASSIFICATION, num_units=num_units, num_unroll=num_unroll, batch_size=batch_size, sequence_feature_columns=seq_columns, num_classes=num_classes, predict_probabilities=True, model_dir=model_dir, queue_capacity=2 + batch_size, seed=1234) # Train a bit to create an exportable checkpoint. estimator_fn().fit(input_fn=get_input_fn( model_fn_lib.ModeKeys.TRAIN, seed=1234), steps=100) # Now export, but from a fresh estimator instance, like you would # in an export binary. That means .export() has to work without # .fit() being called on the same object. export_dir = tempfile.mkdtemp() print('Exporting to', export_dir) estimator_fn().export( export_dir, input_fn=get_input_fn( model_fn_lib.ModeKeys.INFER, seed=4321), use_deprecated_input_fn=False, input_feature_key=input_feature_key) # Smoke tests to ensure deprecated constructor functions still work. class LegacyConstructorTest(test.TestCase): def _get_input_fn(self, sequence_length, seed=None): def input_fn(): random_sequence = random_ops.random_uniform( [sequence_length + 1], 0, 2, dtype=dtypes.int32, seed=seed) labels = array_ops.slice(random_sequence, [0], [sequence_length]) inputs = math_ops.cast( array_ops.slice(random_sequence, [1], [sequence_length]), dtypes.float32) return {'inputs': inputs}, labels return input_fn # TODO(jtbates): move all tests below to a benchmark test. class StateSavingRNNEstimatorLearningTest(test.TestCase): """Learning tests for state saving RNN Estimators.""" def testLearnSineFunction(self): """Tests learning a sine function.""" batch_size = 8 num_unroll = 5 sequence_length = 64 train_steps = 250 eval_steps = 20 num_rnn_layers = 1 num_units = [4] * num_rnn_layers learning_rate = 0.3 loss_threshold = 0.035 def get_sin_input_fn(sequence_length, increment, seed=None): def input_fn(): start = random_ops.random_uniform( (), minval=0, maxval=(np.pi * 2.0), dtype=dtypes.float32, seed=seed) sin_curves = math_ops.sin( math_ops.linspace(start, (sequence_length - 1) * increment, sequence_length + 1)) inputs = array_ops.slice(sin_curves, [0], [sequence_length]) labels = array_ops.slice(sin_curves, [1], [sequence_length]) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=1) ] config = run_config.RunConfig(tf_random_seed=1234) dropout_keep_probabilities = [0.9] * (num_rnn_layers + 1) sequence_estimator = ssre.StateSavingRnnEstimator( constants.ProblemType.LINEAR_REGRESSION, num_units=num_units, cell_type='lstm', num_unroll=num_unroll, batch_size=batch_size, sequence_feature_columns=seq_columns, learning_rate=learning_rate, dropout_keep_probabilities=dropout_keep_probabilities, config=config, queue_capacity=2 * batch_size, seed=1234) train_input_fn = get_sin_input_fn(sequence_length, np.pi / 32, seed=1234) eval_input_fn = get_sin_input_fn(sequence_length, np.pi / 32, seed=4321) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) loss = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps)['loss'] self.assertLess(loss, loss_threshold, 'Loss should be less than {}; got {}'.format(loss_threshold, loss)) def testLearnShiftByOne(self): """Tests that learning a 'shift-by-one' example. Each label sequence consists of the input sequence 'shifted' by one place. The RNN must learn to 'remember' the previous input. """ batch_size = 16 num_classes = 2 num_unroll = 32 sequence_length = 32 train_steps = 300 eval_steps = 20 num_units = [4] learning_rate = 0.5 accuracy_threshold = 0.9 def get_shift_input_fn(sequence_length, seed=None): def input_fn(): random_sequence = random_ops.random_uniform( [sequence_length + 1], 0, 2, dtype=dtypes.int32, seed=seed) labels = array_ops.slice(random_sequence, [0], [sequence_length]) inputs = math_ops.cast( array_ops.slice(random_sequence, [1], [sequence_length]), dtypes.float32) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=1) ] config = run_config.RunConfig(tf_random_seed=21212) sequence_estimator = ssre.StateSavingRnnEstimator( constants.ProblemType.CLASSIFICATION, num_units=num_units, cell_type='lstm', num_unroll=num_unroll, batch_size=batch_size, sequence_feature_columns=seq_columns, num_classes=num_classes, learning_rate=learning_rate, config=config, predict_probabilities=True, queue_capacity=2 + batch_size, seed=1234) train_input_fn = get_shift_input_fn(sequence_length, seed=12321) eval_input_fn = get_shift_input_fn(sequence_length, seed=32123) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) evaluation = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps) accuracy = evaluation['accuracy'] self.assertGreater(accuracy, accuracy_threshold, 'Accuracy should be higher than {}; got {}'.format( accuracy_threshold, accuracy)) # Testing `predict` when `predict_probabilities=True`. prediction_dict = sequence_estimator.predict( input_fn=eval_input_fn, as_iterable=False) self.assertListEqual( sorted(list(prediction_dict.keys())), sorted([ prediction_key.PredictionKey.CLASSES, prediction_key.PredictionKey.PROBABILITIES, ssre._get_state_name(0) ])) predictions = prediction_dict[prediction_key.PredictionKey.CLASSES] probabilities = prediction_dict[prediction_key.PredictionKey.PROBABILITIES] self.assertListEqual(list(predictions.shape), [batch_size, sequence_length]) self.assertListEqual( list(probabilities.shape), [batch_size, sequence_length, 2]) def testLearnLyrics(self): lyrics = 'if I go there will be trouble and if I stay it will be double' lyrics_list = lyrics.split() sequence_length = len(lyrics_list) vocab = set(lyrics_list) batch_size = 16 num_classes = len(vocab) num_unroll = 7 # not a divisor of sequence_length train_steps = 350 eval_steps = 30 num_units = [4] learning_rate = 0.4 accuracy_threshold = 0.65 def get_lyrics_input_fn(seed): def input_fn(): start = random_ops.random_uniform( (), minval=0, maxval=sequence_length, dtype=dtypes.int32, seed=seed) # Concatenate lyrics_list so inputs and labels wrap when start > 0. lyrics_list_concat = lyrics_list + lyrics_list inputs_dense = array_ops.slice(lyrics_list_concat, [start], [sequence_length]) indices = array_ops.constant( [[i, 0] for i in range(sequence_length)], dtype=dtypes.int64) dense_shape = [sequence_length, 1] inputs = sparse_tensor.SparseTensor( indices=indices, values=inputs_dense, dense_shape=dense_shape) table = lookup.string_to_index_table_from_tensor( mapping=list(vocab), default_value=-1, name='lookup') labels = table.lookup( array_ops.slice(lyrics_list_concat, [start + 1], [sequence_length])) return {'lyrics': inputs}, labels return input_fn sequence_feature_columns = [ feature_column.embedding_column( feature_column.sparse_column_with_keys('lyrics', vocab), dimension=8) ] config = run_config.RunConfig(tf_random_seed=21212) sequence_estimator = ssre.StateSavingRnnEstimator( constants.ProblemType.CLASSIFICATION, num_units=num_units, cell_type='basic_rnn', num_unroll=num_unroll, batch_size=batch_size, sequence_feature_columns=sequence_feature_columns, num_classes=num_classes, learning_rate=learning_rate, config=config, predict_probabilities=True, queue_capacity=2 + batch_size, seed=1234) train_input_fn = get_lyrics_input_fn(seed=12321) eval_input_fn = get_lyrics_input_fn(seed=32123) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) evaluation = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps) accuracy = evaluation['accuracy'] self.assertGreater(accuracy, accuracy_threshold, 'Accuracy should be higher than {}; got {}'.format( accuracy_threshold, accuracy)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/state_saving_rnn_estimator_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.linear_optimizer.python import sdca_optimizer as sdca_optimizer_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.platform import test from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import server_lib def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris class LinearClassifierTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearClassifier( n_classes=3, feature_columns=cont_features), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.sparse_column_with_hash_bucket('age', 2) classifier = linear.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_column = feature_column_lib.real_valued_column('', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[language_column], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100, 1], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [language_column, fc_core.numeric_column('age')] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column_lib.real_valued_column('', dimension=4)] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('linear/feature/weight', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertEqual( 4, len(classifier.get_variable_value('linear/feature/weight'))) self.assertEqual( 3, len(classifier.get_variable_value('linear/bias_weight'))) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) def _optimizer(): return ftrl.FtrlOptimizer(learning_rate=0.1) classifier = linear.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]], dtype=dtypes.float32) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = linear.LinearClassifier( feature_columns=[feature_column_lib.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([[1], [2]]), num_epochs=num_epochs), }, constant_op.constant( [[.7], [0]], dtype=dtypes.float32) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=sparse_features, config=config) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([1]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]), }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out1_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list( classifier2.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out2_proba = list( classifier2.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = linear.LinearClassifier( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': constant_op.constant([[20], [20], [20]]), 'weights': constant_op.constant([[100], [1], [1]]), } labels = constant_op.constant([[1], [0], [0]]) return features, labels age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = linear.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertIn('linear/binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['hindi'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = linear.LinearClassifier(feature_columns=[language]) classifier_with_reg = linear.LinearClassifier( feature_columns=[language], optimizer=ftrl.FtrlOptimizer( learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[1], [1], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier = linear.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'maintenance_cost': constant_op.constant([[500.0], [200.0]]), 'sq_footage': constant_op.constant([[800.0], [600.0]]), 'weights': constant_op.constant([[1.0], [1.0]]) }, constant_op.constant([[0], [1]]) maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'dense_feature': constant_op.constant([[500.0, 800.0], [200.0, 600.0]]) }, constant_op.constant([[0], [1]]) dense_feature = feature_column_lib.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = linear.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.4, 0.6, 0.3]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClassifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeaturesOOVWithNoOOVBuckets(self): """LinearClassifier with SDCAOptimizer with OOV features (-1 IDs).""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( # 'GB' is out of the vocabulary. values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_keys( 'country', keys=['US', 'CA', 'MK', 'IT', 'CN']) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'language': sparse_tensor.SparseTensor( values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'country': sparse_tensor.SparseTensor( values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[0], [0], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = feature_column_lib.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearClassifier with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) print('all scores = {}'.format(scores)) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': constant_op.constant([[1], [2]]), 'language': sparse_tensor.SparseTensor( values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], dense_shape=[2, 1]), }, constant_op.constant([[1], [0]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearRegressor(feature_columns=cont_features), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearRegressor(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] regressor = linear.LinearRegressor( feature_columns=cont_features, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = regressor.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = list( regressor.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list( regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7), feature_column_lib.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=feature_columns, config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = estimator.infer_real_valued_columns_from_input(x) regressor = linear.LinearRegressor( feature_columns=feature_columns, optimizer=ftrl.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) self.assertIn('linear//weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear//weight') # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'x': constant_op.constant(x), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant(y) x_column = feature_column_lib.real_valued_column('x', dimension=3) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertIn('linear/x/weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear/x/weight') self.assertAllClose( [w[0] for w in weights], regressor_weights.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerPartitionedVariables(self): """Tests LinearRegressor with SDCAOptimizer with partitioned variables.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0, partitioner=partitioned_variables.fixed_size_partitioner( num_shards=2, axis=0)) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer, config=config) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.4], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant([[1.4], [-0.8], [2.6]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] variable_names = regressor.get_variable_names() self.assertIn('linear/price/weight', variable_names) self.assertIn('linear/country/weights', variable_names) no_l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Regressor with L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': constant_op.constant([[0.0]] * num_examples), }, constant_op.constant( [[1 if i % 4 == 0 else 0] for i in range(num_examples)]) place_holder = feature_column_lib.real_valued_column('place_holder') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant( [[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] + [[-1 if x % 10 == 0 else 0] for x in range(half)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05) class LinearEstimatorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearEstimator(feature_columns=cont_features, head=head_lib.regression_head()), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearEstimator) def testLinearRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator(feature_columns=[age, language], head=head_lib.regression_head()) linear_estimator.fit(input_fn=input_fn, steps=100) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=400) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testPoissonRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator( feature_columns=[age, language], head=head_lib.poisson_regression_head()) linear_estimator.fit(input_fn=input_fn, steps=10) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=100) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) # Here loss of 2.1 implies a prediction of ~9.9998 self.assertLess(loss2, 2.1) def testSDCANotSupported(self): """Tests that we detect error for SDCA.""" maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') with self.assertRaises(ValueError): linear.LinearEstimator( head=head_lib.regression_head(label_dimension=1), feature_columns=[maintenance_cost, sq_footage], optimizer=sdca_optimizer, _joint_weights=True) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = linear.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Constants regarding Estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function class ProblemType(object): """Enum-like values for the type of problem that the model solves. THIS CLASS IS DEPRECATED. These values are used when exporting the model to produce the appropriate signature function for serving. The following values are supported: UNSPECIFIED: Produces a predict signature_fn. CLASSIFICATION: Produces a classify signature_fn. LINEAR_REGRESSION: Produces a regression signature_fn. LOGISTIC_REGRESSION: Produces a classify signature_fn. """ UNSPECIFIED = 0 CLASSIFICATION = 1 LINEAR_REGRESSION = 2 LOGISTIC_REGRESSION = 3 # CollectionDef key for the input feature keys. # TODO(b/34388557): This is a stopgap; please follow the bug to learn of changes COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS = "input_feature_keys"
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/constants.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimator regression tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random from tensorflow.contrib.framework.python.ops import variables from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test from tensorflow.python.training import optimizer as optimizer_lib def _get_input_fn(x, y, batch_size=None): df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size) return df.input_builder, df.get_feed_dict_fn() # We use a null optimizer since we can't get deterministic results out of # supervisor's multiple threads. class _NullOptimizer(optimizer_lib.Optimizer): def __init__(self): super(_NullOptimizer, self).__init__(use_locking=False, name='Null') def _apply_dense(self, grad, var): return control_flow_ops.no_op() def _apply_sparse(self, grad, var): return control_flow_ops.no_op() def _prepare(self): pass _NULL_OPTIMIZER = _NullOptimizer() class StabilityTest(test.TestCase): """Tests that estiamtors are reproducible.""" def testRandomStability(self): my_seed = 42 minval = -0.3333 maxval = 0.3333 with ops.Graph().as_default() as g: with self.session(graph=g) as session: g.seed = my_seed x = random_ops.random_uniform([10, 10], minval=minval, maxval=maxval) val1 = session.run(x) with ops.Graph().as_default() as g: with self.session(graph=g) as session: g.seed = my_seed x = random_ops.random_uniform([10, 10], minval=minval, maxval=maxval) val2 = session.run(x) self.assertAllClose(val1, val2) def testLinearRegression(self): my_seed = 42 config = run_config.RunConfig(tf_random_seed=my_seed) boston = base.load_boston() columns = [feature_column.real_valued_column('', dimension=13)] # We train with with ops.Graph().as_default() as g1: random.seed(my_seed) g1.seed = my_seed variables.create_global_step() regressor1 = linear.LinearRegressor( optimizer=_NULL_OPTIMIZER, feature_columns=columns, config=config) regressor1.fit(x=boston.data, y=boston.target, steps=1) with ops.Graph().as_default() as g2: random.seed(my_seed) g2.seed = my_seed variables.create_global_step() regressor2 = linear.LinearRegressor( optimizer=_NULL_OPTIMIZER, feature_columns=columns, config=config) regressor2.fit(x=boston.data, y=boston.target, steps=1) variable_names = regressor1.get_variable_names() self.assertIn('linear//weight', variable_names) self.assertIn('linear/bias_weight', variable_names) regressor1_weights = regressor1.get_variable_value('linear//weight') regressor2_weights = regressor2.get_variable_value('linear//weight') regressor1_bias = regressor1.get_variable_value('linear/bias_weight') regressor2_bias = regressor2.get_variable_value('linear/bias_weight') self.assertAllClose(regressor1_weights, regressor2_weights) self.assertAllClose(regressor1_bias, regressor2_bias) self.assertAllClose( list(regressor1.predict_scores( boston.data, as_iterable=True)), list(regressor2.predict_scores( boston.data, as_iterable=True)), atol=1e-05) def testDNNRegression(self): my_seed = 42 config = run_config.RunConfig(tf_random_seed=my_seed) boston = base.load_boston() columns = [feature_column.real_valued_column('', dimension=13)] with ops.Graph().as_default() as g1: random.seed(my_seed) g1.seed = my_seed variables.create_global_step() regressor1 = dnn.DNNRegressor( hidden_units=[10], feature_columns=columns, optimizer=_NULL_OPTIMIZER, config=config) regressor1.fit(x=boston.data, y=boston.target, steps=1) with ops.Graph().as_default() as g2: random.seed(my_seed) g2.seed = my_seed variables.create_global_step() regressor2 = dnn.DNNRegressor( hidden_units=[10], feature_columns=columns, optimizer=_NULL_OPTIMIZER, config=config) regressor2.fit(x=boston.data, y=boston.target, steps=1) weights1 = ([regressor1.get_variable_value('dnn/hiddenlayer_0/weights')] + [regressor1.get_variable_value('dnn/logits/weights')]) weights2 = ([regressor2.get_variable_value('dnn/hiddenlayer_0/weights')] + [regressor2.get_variable_value('dnn/logits/weights')]) for w1, w2 in zip(weights1, weights2): self.assertAllClose(w1, w2) biases1 = ([regressor1.get_variable_value('dnn/hiddenlayer_0/biases')] + [regressor1.get_variable_value('dnn/logits/biases')]) biases2 = ([regressor2.get_variable_value('dnn/hiddenlayer_0/biases')] + [regressor2.get_variable_value('dnn/logits/biases')]) for b1, b2 in zip(biases1, biases2): self.assertAllClose(b1, b2) self.assertAllClose( list(regressor1.predict_scores( boston.data, as_iterable=True)), list(regressor2.predict_scores( boston.data, as_iterable=True)), atol=1e-05) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/stability_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common operations for RNN Estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import metrics from tensorflow.contrib import rnn as contrib_rnn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops # NOTE(jtbates): As of February 10, 2017, some of the `RNNKeys` have been # removed and replaced with values from `prediction_key.PredictionKey`. The key # `RNNKeys.PREDICTIONS_KEY` has been replaced by # `prediction_key.PredictionKey.SCORES` for regression and # `prediction_key.PredictionKey.CLASSES` for classification. The key # `RNNKeys.PROBABILITIES_KEY` has been replaced by # `prediction_key.PredictionKey.PROBABILITIES`. class RNNKeys(object): FINAL_STATE_KEY = 'final_state' LABELS_KEY = '__labels__' SEQUENCE_LENGTH_KEY = 'sequence_length' STATE_PREFIX = 'rnn_cell_state' class PredictionType(object): """Enum-like values for the type of prediction that the model makes. """ SINGLE_VALUE = 1 MULTIPLE_VALUE = 2 _CELL_TYPES = {'basic_rnn': contrib_rnn.BasicRNNCell, 'lstm': contrib_rnn.LSTMCell, 'gru': contrib_rnn.GRUCell,} def _get_single_cell(cell_type, num_units): """Constructs and return a single `RNNCell`. Args: cell_type: Either a string identifying the `RNNCell` type or a subclass of `RNNCell`. num_units: The number of units in the `RNNCell`. Returns: An initialized `RNNCell`. Raises: ValueError: `cell_type` is an invalid `RNNCell` name. TypeError: `cell_type` is not a string or a subclass of `RNNCell`. """ cell_type = _CELL_TYPES.get(cell_type, cell_type) if not cell_type or not issubclass(cell_type, contrib_rnn.RNNCell): raise ValueError('The supported cell types are {}; got {}'.format( list(_CELL_TYPES.keys()), cell_type)) return cell_type(num_units=num_units) def construct_rnn_cell(num_units, cell_type='basic_rnn', dropout_keep_probabilities=None): """Constructs cells, applies dropout and assembles a `MultiRNNCell`. The cell type chosen by DynamicRNNEstimator.__init__() is the same as returned by this function when called with the same arguments. Args: num_units: A single `int` or a list/tuple of `int`s. The size of the `RNNCell`s. cell_type: A string identifying the `RNNCell` type or a subclass of `RNNCell`. dropout_keep_probabilities: a list of dropout probabilities or `None`. If a list is given, it must have length `len(cell_type) + 1`. Returns: An initialized `RNNCell`. """ if not isinstance(num_units, (list, tuple)): num_units = (num_units,) cells = [_get_single_cell(cell_type, n) for n in num_units] if dropout_keep_probabilities: cells = apply_dropout(cells, dropout_keep_probabilities) if len(cells) == 1: return cells[0] return contrib_rnn.MultiRNNCell(cells) def apply_dropout(cells, dropout_keep_probabilities, random_seed=None): """Applies dropout to the outputs and inputs of `cell`. Args: cells: A list of `RNNCell`s. dropout_keep_probabilities: a list whose elements are either floats in `[0.0, 1.0]` or `None`. It must have length one greater than `cells`. random_seed: Seed for random dropout. Returns: A list of `RNNCell`s, the result of applying the supplied dropouts. Raises: ValueError: If `len(dropout_keep_probabilities) != len(cells) + 1`. """ if len(dropout_keep_probabilities) != len(cells) + 1: raise ValueError( 'The number of dropout probabilities must be one greater than the ' 'number of cells. Got {} cells and {} dropout probabilities.'.format( len(cells), len(dropout_keep_probabilities))) wrapped_cells = [ contrib_rnn.DropoutWrapper(cell, prob, 1.0, seed=random_seed) for cell, prob in zip(cells[:-1], dropout_keep_probabilities[:-2]) ] wrapped_cells.append( contrib_rnn.DropoutWrapper(cells[-1], dropout_keep_probabilities[-2], dropout_keep_probabilities[-1])) return wrapped_cells def get_eval_metric_ops(problem_type, prediction_type, sequence_length, prediction_dict, labels): """Returns eval metric ops for given `problem_type` and `prediction_type`. Args: problem_type: `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. prediction_type: `PredictionType.SINGLE_VALUE` or `PredictionType.MULTIPLE_VALUE`. sequence_length: A `Tensor` with shape `[batch_size]` and dtype `int32` containing the length of each sequence in the batch. If `None`, sequences are assumed to be unpadded. prediction_dict: A dict of prediction tensors. labels: The label `Tensor`. Returns: A `dict` mapping strings to the result of calling the metric_fn. """ eval_metric_ops = {} if problem_type == constants.ProblemType.CLASSIFICATION: # Multi value classification if prediction_type == PredictionType.MULTIPLE_VALUE: mask_predictions, mask_labels = mask_activations_and_labels( prediction_dict[prediction_key.PredictionKey.CLASSES], labels, sequence_length) eval_metric_ops['accuracy'] = metrics.streaming_accuracy( predictions=mask_predictions, labels=mask_labels) # Single value classification elif prediction_type == PredictionType.SINGLE_VALUE: eval_metric_ops['accuracy'] = metrics.streaming_accuracy( predictions=prediction_dict[prediction_key.PredictionKey.CLASSES], labels=labels) elif problem_type == constants.ProblemType.LINEAR_REGRESSION: # Multi value regression if prediction_type == PredictionType.MULTIPLE_VALUE: pass # Single value regression elif prediction_type == PredictionType.SINGLE_VALUE: pass return eval_metric_ops def select_last_activations(activations, sequence_lengths): """Selects the nth set of activations for each n in `sequence_length`. Returns a `Tensor` of shape `[batch_size, k]`. If `sequence_length` is not `None`, then `output[i, :] = activations[i, sequence_length[i] - 1, :]`. If `sequence_length` is `None`, then `output[i, :] = activations[i, -1, :]`. Args: activations: A `Tensor` with shape `[batch_size, padded_length, k]`. sequence_lengths: A `Tensor` with shape `[batch_size]` or `None`. Returns: A `Tensor` of shape `[batch_size, k]`. """ with ops.name_scope( 'select_last_activations', values=[activations, sequence_lengths]): activations_shape = array_ops.shape(activations) batch_size = activations_shape[0] padded_length = activations_shape[1] num_label_columns = activations_shape[2] if sequence_lengths is None: sequence_lengths = padded_length reshaped_activations = array_ops.reshape(activations, [-1, num_label_columns]) indices = math_ops.range(batch_size) * padded_length + sequence_lengths - 1 last_activations = array_ops.gather(reshaped_activations, indices) last_activations.set_shape( [activations.get_shape()[0], activations.get_shape()[2]]) return last_activations def mask_activations_and_labels(activations, labels, sequence_lengths): """Remove entries outside `sequence_lengths` and returned flattened results. Args: activations: Output of the RNN, shape `[batch_size, padded_length, k]`. labels: Label values, shape `[batch_size, padded_length]`. sequence_lengths: A `Tensor` of shape `[batch_size]` with the unpadded length of each sequence. If `None`, then each sequence is unpadded. Returns: activations_masked: `logit` values with those beyond `sequence_lengths` removed for each batch. Batches are then concatenated. Shape `[tf.sum(sequence_lengths), k]` if `sequence_lengths` is not `None` and shape `[batch_size * padded_length, k]` otherwise. labels_masked: Label values after removing unneeded entries. Shape `[tf.sum(sequence_lengths)]` if `sequence_lengths` is not `None` and shape `[batch_size * padded_length]` otherwise. """ with ops.name_scope( 'mask_activations_and_labels', values=[activations, labels, sequence_lengths]): labels_shape = array_ops.shape(labels) batch_size = labels_shape[0] padded_length = labels_shape[1] if sequence_lengths is None: flattened_dimension = padded_length * batch_size activations_masked = array_ops.reshape(activations, [flattened_dimension, -1]) labels_masked = array_ops.reshape(labels, [flattened_dimension]) else: mask = array_ops.sequence_mask(sequence_lengths, padded_length) activations_masked = array_ops.boolean_mask(activations, mask) labels_masked = array_ops.boolean_mask(labels, mask) return activations_masked, labels_masked def multi_value_predictions(activations, target_column, problem_type, predict_probabilities): """Maps `activations` from the RNN to predictions for multi value models. If `predict_probabilities` is `False`, this function returns a `dict` containing single entry with key `prediction_key.PredictionKey.CLASSES` for `problem_type` `ProblemType.CLASSIFICATION` or `prediction_key.PredictionKey.SCORE` for `problem_type` `ProblemType.LINEAR_REGRESSION`. If `predict_probabilities` is `True`, it will contain a second entry with key `prediction_key.PredictionKey.PROBABILITIES`. The value of this entry is a `Tensor` of probabilities with shape `[batch_size, padded_length, num_classes]`. Note that variable length inputs will yield some predictions that don't have meaning. For example, if `sequence_length = [3, 2]`, then prediction `[1, 2]` has no meaningful interpretation. Args: activations: Output from an RNN. Should have dtype `float32` and shape `[batch_size, padded_length, ?]`. target_column: An initialized `TargetColumn`, calculate predictions. problem_type: Either `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. predict_probabilities: A Python boolean, indicating whether probabilities should be returned. Should only be set to `True` for classification/logistic regression problems. Returns: A `dict` mapping strings to `Tensors`. """ with ops.name_scope('MultiValuePrediction'): activations_shape = array_ops.shape(activations) flattened_activations = array_ops.reshape(activations, [-1, activations_shape[2]]) prediction_dict = {} if predict_probabilities: flat_probabilities = target_column.logits_to_predictions( flattened_activations, proba=True) flat_predictions = math_ops.argmax(flat_probabilities, 1) if target_column.num_label_columns == 1: probability_shape = array_ops.concat([activations_shape[:2], [2]], 0) else: probability_shape = activations_shape probabilities = array_ops.reshape( flat_probabilities, probability_shape, name=prediction_key.PredictionKey.PROBABILITIES) prediction_dict[ prediction_key.PredictionKey.PROBABILITIES] = probabilities else: flat_predictions = target_column.logits_to_predictions( flattened_activations, proba=False) predictions_name = (prediction_key.PredictionKey.CLASSES if problem_type == constants.ProblemType.CLASSIFICATION else prediction_key.PredictionKey.SCORES) predictions = array_ops.reshape( flat_predictions, [activations_shape[0], activations_shape[1]], name=predictions_name) prediction_dict[predictions_name] = predictions return prediction_dict
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/rnn_common.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import json import os import tempfile import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin from google.protobuf import text_format from tensorflow.contrib import learn from tensorflow.contrib import lookup from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn import monitors as monitors_lib from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import input_fn_utils from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.contrib.testing.python.framework import util_test from tensorflow.python.client import session as session_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.lib.io import file_io from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import gfile from tensorflow.python.platform import test from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import tag_constants from tensorflow.python.summary import summary from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import checkpoint_state_pb2 from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import session_run_hook from tensorflow.python.util import compat _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat([labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' def _build_estimator_for_export_tests(tmpdir): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column('feature', dimension=4) ] est = linear.LinearRegressor(feature_columns) est.fit(input_fn=_input_fn, steps=20) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) # hack in an op that uses an asset, in order to test asset export. # this is not actually valid, of course. def serving_input_fn_with_asset(): features, labels, inputs = serving_input_fn() vocab_file_name = os.path.join(tmpdir, 'my_vocab_file') vocab_file = gfile.GFile(vocab_file_name, mode='w') vocab_file.write(VOCAB_FILE_CONTENT) vocab_file.close() hashtable = lookup.HashTable( lookup.TextFileStringTableInitializer(vocab_file_name), 'x') features['bogus_lookup'] = hashtable.lookup( math_ops.cast(features['feature'], dtypes.int64)) return input_fn_utils.InputFnOps(features, labels, inputs) return est, serving_input_fn_with_asset def _build_estimator_for_resource_export_test(): def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_columns = [ feature_column_lib.real_valued_column('feature', dimension=4) ] def resource_constant_model_fn(unused_features, unused_labels, mode): """A model_fn that loads a constant from a resource and serves it.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) const = constant_op.constant(-1, dtype=dtypes.int64) table = lookup.MutableHashTable( dtypes.string, dtypes.int64, const, name='LookupTableModel') update_global_step = training_util.get_global_step().assign_add(1) if mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL): key = constant_op.constant(['key']) value = constant_op.constant([42], dtype=dtypes.int64) train_op_1 = table.insert(key, value) training_state = lookup.MutableHashTable( dtypes.string, dtypes.int64, const, name='LookupTableTrainingState') training_op_2 = training_state.insert(key, value) return (const, const, control_flow_ops.group(train_op_1, training_op_2, update_global_step)) if mode == model_fn.ModeKeys.INFER: key = constant_op.constant(['key']) prediction = table.lookup(key) return prediction, const, update_global_step est = estimator.Estimator(model_fn=resource_constant_model_fn) est.fit(input_fn=_input_fn, steps=1) feature_spec = feature_column_lib.create_feature_spec_for_parsing( feature_columns) serving_input_fn = input_fn_utils.build_parsing_serving_input_fn(feature_spec) return est, serving_input_fn class CheckCallsMonitor(monitors_lib.BaseMonitor): def __init__(self, expect_calls): super(CheckCallsMonitor, self).__init__() self.begin_calls = None self.end_calls = None self.expect_calls = expect_calls def begin(self, max_steps): self.begin_calls = 0 self.end_calls = 0 def step_begin(self, step): self.begin_calls += 1 return {} def step_end(self, step, outputs): self.end_calls += 1 return False def end(self): assert (self.end_calls == self.expect_calls and self.begin_calls == self.expect_calls) def _model_fn_ops(expected_features, expected_labels, actual_features, actual_labels, mode): assert_ops = tuple([ check_ops.assert_equal( expected_features[k], actual_features[k], name='assert_%s' % k) for k in expected_features ] + [ check_ops.assert_equal( expected_labels, actual_labels, name='assert_labels') ]) with ops.control_dependencies(assert_ops): return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=training_util.get_global_step().assign_add(1)) def _make_input_fn(features, labels): def _input_fn(): return {k: constant_op.constant(v) for k, v in six.iteritems(features)}, constant_op.constant(labels) return _input_fn class EstimatorModelFnTest(test.TestCase): def testModelFnArgs(self): features = {'x': 42., 'y': 43.} labels = 44. expected_params = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True # TODO(ptucker): We have to roll our own mock since Estimator._get_arguments # doesn't work with mock fns. model_fn_call_count = [0] # `features` and `labels` are passed by position, `arg0` and `arg1` here. def _model_fn(arg0, arg1, mode, params, config): model_fn_call_count[0] += 1 self.assertItemsEqual(features.keys(), arg0.keys()) self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_params, params) self.assertTrue(config.i_am_test) return _model_fn_ops(features, labels, arg0, arg1, mode) est = estimator.Estimator( model_fn=_model_fn, params=expected_params, config=expected_config) self.assertEqual(0, model_fn_call_count[0]) est.fit(input_fn=_make_input_fn(features, labels), steps=1) self.assertEqual(1, model_fn_call_count[0]) def testPartialModelFnArgs(self): features = {'x': 42., 'y': 43.} labels = 44. expected_params = {'some_param': 'some_value'} expected_config = run_config.RunConfig() expected_config.i_am_test = True expected_foo = 45. expected_bar = 46. # TODO(ptucker): We have to roll our own mock since Estimator._get_arguments # doesn't work with mock fns. model_fn_call_count = [0] # `features` and `labels` are passed by position, `arg0` and `arg1` here. def _model_fn(arg0, arg1, foo, mode, params, config, bar): model_fn_call_count[0] += 1 self.assertEqual(expected_foo, foo) self.assertEqual(expected_bar, bar) self.assertItemsEqual(features.keys(), arg0.keys()) self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_params, params) self.assertTrue(config.i_am_test) return _model_fn_ops(features, labels, arg0, arg1, mode) partial_model_fn = functools.partial( _model_fn, foo=expected_foo, bar=expected_bar) est = estimator.Estimator( model_fn=partial_model_fn, params=expected_params, config=expected_config) self.assertEqual(0, model_fn_call_count[0]) est.fit(input_fn=_make_input_fn(features, labels), steps=1) self.assertEqual(1, model_fn_call_count[0]) def testModelFnWithModelDir(self): expected_param = {'some_param': 'some_value'} expected_model_dir = tempfile.mkdtemp() def _argument_checker(features, labels, mode, params, config=None, model_dir=None): _, _, _ = features, labels, config self.assertEqual(model_fn.ModeKeys.TRAIN, mode) self.assertEqual(expected_param, params) self.assertEqual(model_dir, expected_model_dir) return (constant_op.constant(0.), constant_op.constant(0.), training_util.get_global_step().assign_add(1)) est = estimator.Estimator( model_fn=_argument_checker, params=expected_param, model_dir=expected_model_dir) est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_train_op(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') update_global_step = training_util.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): loss = 100.0 - w return None, loss, None est = estimator.Estimator(model_fn=_invalid_model_fn) with self.assertRaisesRegexp(ValueError, 'Missing train_op'): est.fit(input_fn=boston_input_fn, steps=1) def testInvalidModelFn_no_loss(self): def _invalid_model_fn(features, labels, mode): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w update_global_step = training_util.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): train_op = w.assign_add(loss / 100.0) predictions = loss if mode == model_fn.ModeKeys.EVAL: loss = None return predictions, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing loss'): est.evaluate(input_fn=boston_eval_fn, steps=1) def testInvalidModelFn_no_prediction(self): def _invalid_model_fn(features, labels): # pylint: disable=unused-argument w = variables_lib.Variable(42.0, 'weight') loss = 100.0 - w update_global_step = training_util.get_global_step().assign_add(1) with ops.control_dependencies([update_global_step]): train_op = w.assign_add(loss / 100.0) return None, loss, train_op est = estimator.Estimator(model_fn=_invalid_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.evaluate(input_fn=boston_eval_fn, steps=1) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict(input_fn=boston_input_fn) with self.assertRaisesRegexp(ValueError, 'Missing prediction'): est.predict( input_fn=functools.partial(boston_input_fn, num_epochs=1), as_iterable=True) def testModelFnScaffoldInTraining(self): self.is_init_fn_called = False def _init_fn(scaffold, session): _, _ = scaffold, session self.is_init_fn_called = True def _model_fn_scaffold(features, labels, mode): _, _ = features, labels return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant(0.), loss=constant_op.constant(0.), train_op=training_util.get_global_step().assign_add(1), scaffold=monitored_session.Scaffold(init_fn=_init_fn)) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=boston_input_fn, steps=1) self.assertTrue(self.is_init_fn_called) def testModelFnScaffoldSaverUsage(self): def _model_fn_scaffold(features, labels, mode): _, _ = features, labels variables_lib.Variable(1., 'weight') real_saver = saver_lib.Saver() self.mock_saver = test.mock.Mock( wraps=real_saver, saver_def=real_saver.saver_def) return model_fn.ModelFnOps( mode=mode, predictions=constant_op.constant([[1.]]), loss=constant_op.constant(0.), train_op=training_util.get_global_step().assign_add(1), scaffold=monitored_session.Scaffold(saver=self.mock_saver)) def input_fn(): return { 'x': constant_op.constant([[1.]]), }, constant_op.constant([[1.]]) est = estimator.Estimator(model_fn=_model_fn_scaffold) est.fit(input_fn=input_fn, steps=1) self.assertTrue(self.mock_saver.save.called) est.evaluate(input_fn=input_fn, steps=1) self.assertTrue(self.mock_saver.restore.called) est.predict(input_fn=input_fn) self.assertTrue(self.mock_saver.restore.called) def serving_input_fn(): serialized_tf_example = array_ops.placeholder( dtype=dtypes.string, shape=[None], name='input_example_tensor') features, labels = input_fn() return input_fn_utils.InputFnOps(features, labels, { 'examples': serialized_tf_example }) est.export_savedmodel( os.path.join(est.model_dir, 'export'), serving_input_fn) self.assertTrue(self.mock_saver.restore.called) class EstimatorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=estimator.Estimator(model_fn=linear_model_fn), train_input_fn=boston_input_fn, eval_input_fn=boston_input_fn) exp.test() def testCheckpointSaverHookSuppressesTheDefaultOne(self): saver_hook = test.mock.Mock( spec=basic_session_run_hooks.CheckpointSaverHook) saver_hook.before_run.return_value = None est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1, monitors=[saver_hook]) # test nothing is saved, due to suppressing default saver with self.assertRaises(learn.NotFittedError): est.evaluate(input_fn=boston_input_fn, steps=1) def testCustomConfig(self): test_random_seed = 5783452 class TestInput(object): def __init__(self): self.random_seed = 0 def config_test_input_fn(self): self.random_seed = ops.get_default_graph().seed return constant_op.constant([[1.]]), constant_op.constant([1.]) config = run_config.RunConfig(tf_random_seed=test_random_seed) test_input = TestInput() est = estimator.Estimator(model_fn=linear_model_fn, config=config) est.fit(input_fn=test_input.config_test_input_fn, steps=1) # If input_fn ran, it will have given us the random seed set on the graph. self.assertEquals(test_random_seed, test_input.random_seed) def testRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator(model_fn=linear_model_fn, config=config) self.assertEqual('test_dir', est.config.model_dir) self.assertEqual('test_dir', est.model_dir) def testModelDirAndRunConfigModelDir(self): config = run_config.RunConfig(model_dir='test_dir') est = estimator.Estimator( model_fn=linear_model_fn, config=config, model_dir='test_dir') self.assertEqual('test_dir', est.config.model_dir) with self.assertRaisesRegexp( ValueError, 'model_dir are set both in constructor and RunConfig, ' 'but with different'): estimator.Estimator( model_fn=linear_model_fn, config=config, model_dir='different_dir') def testModelDirIsCopiedToRunConfig(self): config = run_config.RunConfig() self.assertIsNone(config.model_dir) est = estimator.Estimator( model_fn=linear_model_fn, model_dir='test_dir', config=config) self.assertEqual('test_dir', est.config.model_dir) self.assertEqual('test_dir', est.model_dir) def testModelDirAsTempDir(self): with test.mock.patch.object(tempfile, 'mkdtemp', return_value='temp_dir'): est = estimator.Estimator(model_fn=linear_model_fn) self.assertEqual('temp_dir', est.config.model_dir) self.assertEqual('temp_dir', est.model_dir) def testCheckInputs(self): est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) # Lambdas so we have to different objects to compare right_features = lambda: np.ones(shape=[7, 8], dtype=np.float32) right_labels = lambda: np.ones(shape=[7, 10], dtype=np.int32) est.fit(right_features(), right_labels(), steps=1) # TODO(wicke): This does not fail for np.int32 because of data_feeder magic. wrong_type_features = np.ones(shape=[7, 8], dtype=np.int64) wrong_size_features = np.ones(shape=[7, 10]) wrong_type_labels = np.ones(shape=[7, 10], dtype=np.float32) wrong_size_labels = np.ones(shape=[7, 11]) est.fit(x=right_features(), y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_type_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=wrong_size_features, y=right_labels(), steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_type_labels, steps=1) with self.assertRaises(ValueError): est.fit(x=right_features(), y=wrong_size_labels, steps=1) def testBadInput(self): est = estimator.Estimator(model_fn=linear_model_fn) self.assertRaisesRegexp( ValueError, 'Either x or input_fn must be provided.', est.fit, x=None, input_fn=None, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, x='X', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and x or y', est.fit, y='Y', input_fn=iris_input_fn, steps=1) self.assertRaisesRegexp( ValueError, 'Can not provide both input_fn and batch_size', est.fit, input_fn=iris_input_fn, batch_size=100, steps=1) self.assertRaisesRegexp( ValueError, 'Inputs cannot be tensors. Please provide input_fn.', est.fit, x=constant_op.constant(1.), steps=1) def testUntrained(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) with self.assertRaises(learn.NotFittedError): _ = est.score(x=boston.data, y=boston.target.astype(np.float64)) with self.assertRaises(learn.NotFittedError): est.predict(x=boston.data) def testContinueTraining(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.SKCompat( estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=50) scores = est.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) del est # Create another estimator object with the same output dir. est2 = estimator.SKCompat( estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir)) # Check we can evaluate and predict. scores2 = est2.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertAllClose(scores['MSE'], scores2['MSE']) predictions = np.array(list(est2.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, float64_labels) self.assertAllClose(scores['MSE'], other_score) # Check we can keep training. est2.fit(x=boston.data, y=float64_labels, steps=100) scores3 = est2.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertLess(scores3['MSE'], scores['MSE']) def test_checkpoint_contains_relative_paths(self): tmpdir = tempfile.mkdtemp() est = estimator.Estimator( model_dir=tmpdir, model_fn=linear_model_fn_with_model_fn_ops) est.fit(input_fn=boston_input_fn, steps=5) checkpoint_file_content = file_io.read_file_to_string( os.path.join(tmpdir, 'checkpoint')) ckpt = checkpoint_state_pb2.CheckpointState() text_format.Merge(checkpoint_file_content, ckpt) self.assertEqual(ckpt.model_checkpoint_path, 'model.ckpt-5') # TODO(b/78461127): Please modify tests to not directly rely on names of # checkpoints. self.assertAllEqual(['model.ckpt-0', 'model.ckpt-5'], ckpt.all_model_checkpoint_paths) def test_train_save_copy_reload(self): tmpdir = tempfile.mkdtemp() model_dir1 = os.path.join(tmpdir, 'model_dir1') est1 = estimator.Estimator( model_dir=model_dir1, model_fn=linear_model_fn_with_model_fn_ops) est1.fit(input_fn=boston_input_fn, steps=5) model_dir2 = os.path.join(tmpdir, 'model_dir2') os.renames(model_dir1, model_dir2) est2 = estimator.Estimator( model_dir=model_dir2, model_fn=linear_model_fn_with_model_fn_ops) self.assertEqual(5, est2.get_variable_value('global_step')) est2.fit(input_fn=boston_input_fn, steps=5) self.assertEqual(10, est2.get_variable_value('global_step')) def testEstimatorParams(self): boston = base.load_boston() est = estimator.SKCompat( estimator.Estimator( model_fn=linear_model_params_fn, params={ 'learning_rate': 0.01 })) est.fit(x=boston.data, y=boston.target, steps=100) def testHooksNotChanged(self): est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) # We pass empty array and expect it to remain empty after calling # fit and evaluate. Requires inside to copy this array if any hooks were # added. my_array = [] est.fit(input_fn=iris_input_fn, steps=100, monitors=my_array) _ = est.evaluate(input_fn=iris_input_fn, steps=1, hooks=my_array) self.assertEqual(my_array, []) def testIrisIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = itertools.islice(iris.target, 100) estimator.SKCompat(est).fit(x_iter, y_iter, steps=20) eval_result = est.evaluate(input_fn=iris_input_fn, steps=1) x_iter_eval = itertools.islice(iris.data, 100) y_iter_eval = itertools.islice(iris.target, 100) score_result = estimator.SKCompat(est).score(x_iter_eval, y_iter_eval) print(score_result) self.assertItemsEqual(eval_result.keys(), score_result.keys()) self.assertItemsEqual(['global_step', 'loss'], score_result.keys()) predictions = estimator.SKCompat(est).predict(x=iris.data)['class'] self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisIteratorArray(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (np.array(x) for x in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisIteratorPlainInt(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 100) y_iter = (v for v in iris.target) est.fit(x_iter, y_iter, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) _ = six.next(est.predict(x=iris.data))['class'] def testIrisTruncatedIterator(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) x_iter = itertools.islice(iris.data, 50) y_iter = ([np.int32(v)] for v in iris.target) est.fit(x_iter, y_iter, steps=100) def testTrainStepsIsIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, steps=15) self.assertEqual(25, est.get_variable_value('global_step')) def testTrainMaxStepsIsNotIncremental(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, max_steps=10) self.assertEqual(10, est.get_variable_value('global_step')) est.fit(input_fn=boston_input_fn, max_steps=15) self.assertEqual(15, est.get_variable_value('global_step')) def testPredict(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) output = list(est.predict(x=boston.data, batch_size=10)) self.assertEqual(len(output), boston.target.shape[0]) def testWithModelFnOps(self): """Test for model_fn that returns `ModelFnOps`.""" est = estimator.Estimator(model_fn=linear_model_fn_with_model_fn_ops) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) scores = est.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores.keys()) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testWrongInput(self): def other_input_fn(): return { 'other': constant_op.constant([0, 0, 0]) }, constant_op.constant([0, 0, 0]) est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) with self.assertRaises(ValueError): est.fit(input_fn=other_input_fn, steps=1) def testMonitorsForFit(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit( input_fn=boston_input_fn, steps=21, monitors=[CheckCallsMonitor(expect_calls=21)]) def testHooksForEvaluate(self): class CheckCallHook(session_run_hook.SessionRunHook): def __init__(self): self.run_count = 0 def after_run(self, run_context, run_values): self.run_count += 1 est = learn.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) hook = CheckCallHook() est.evaluate(input_fn=boston_eval_fn, steps=3, hooks=[hook]) self.assertEqual(3, hook.run_count) def testSummaryWriting(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate(input_fn=boston_input_fn, steps=200) loss_summary = util_test.simple_values_from_events( util_test.latest_events(est.model_dir), ['OptimizeLoss/loss']) self.assertEqual(1, len(loss_summary)) def testSummaryWritingWithSummaryProto(self): def _streaming_mean_squared_error_histogram(predictions, labels, weights=None, metrics_collections=None, updates_collections=None, name=None): metrics, update_ops = metric_ops.streaming_mean_squared_error( predictions, labels, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) return summary.histogram('histogram', metrics), update_ops est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate( input_fn=boston_input_fn, steps=200, metrics={ 'MSE': _streaming_mean_squared_error_histogram }) events = util_test.latest_events(est.model_dir + '/eval') output_values = {} for e in events: if e.HasField('summary'): for v in e.summary.value: output_values[v.tag] = v self.assertTrue('MSE' in output_values) self.assertTrue(output_values['MSE'].HasField('histo')) def testSummaryWritingWithTensor(self): def _streaming_precition_mean_tensor(predictions, weights=None, metrics_collections=None, updates_collections=None, name=None): return metric_ops.streaming_mean_tensor( predictions, weights=weights, metrics_collections=metrics_collections, updates_collections=updates_collections, name=name) est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200) est.evaluate( input_fn=boston_input_fn, steps=200, metrics={ 'PMT': _streaming_precition_mean_tensor }) events = util_test.latest_events(est.model_dir + '/eval') output_values = {} for e in events: if e.HasField('summary'): for v in e.summary.value: output_values[v.tag] = v self.assertTrue('PMT' in output_values) self.assertTrue(output_values['PMT'].HasField('tensor')) def testLossInGraphCollection(self): class _LossCheckerHook(session_run_hook.SessionRunHook): def begin(self): self.loss_collection = ops.get_collection(ops.GraphKeys.LOSSES) hook = _LossCheckerHook() est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=200, monitors=[hook]) self.assertTrue(hook.loss_collection) def test_export_returns_exported_dirname(self): expected = '/path/to/some_dir' with test.mock.patch.object(estimator, 'export') as mock_export_module: mock_export_module._export_estimator.return_value = expected est = estimator.Estimator(model_fn=linear_model_fn) actual = est.export('/path/to') self.assertEquals(expected, actual) def test_export_savedmodel(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) self.assertItemsEqual(['bogus_lookup', 'feature'], [ compat.as_str_any(x) for x in graph.get_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS) ]) # cleanup gfile.DeleteRecursively(tmpdir) def test_export_savedmodel_with_resource(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_resource_export_test() export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel(export_dir_base, serving_input_fn) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) # Restore, to validate that the export was well-formed. with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, [tag_constants.SERVING], export_dir) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('LookupTableModel' in graph_ops) self.assertFalse('LookupTableTrainingState' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) def test_export_savedmodel_with_graph_transforms(self): tmpdir = tempfile.mkdtemp() est, serving_input_fn = _build_estimator_for_export_tests(tmpdir) extra_file_name = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_extra_file')) extra_file = gfile.GFile(extra_file_name, mode='w') extra_file.write(EXTRA_FILE_CONTENT) extra_file.close() assets_extra = {'some/sub/directory/my_extra_file': extra_file_name} export_dir_base = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('export')) export_dir = est.export_savedmodel( export_dir_base, serving_input_fn, assets_extra=assets_extra, graph_rewrite_specs=[ estimator.GraphRewriteSpec(['tag_1'], []), estimator.GraphRewriteSpec(['tag_2', 'tag_3'], ['strip_unused_nodes']) ]) self.assertTrue(gfile.Exists(export_dir_base)) self.assertTrue(gfile.Exists(export_dir)) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('saved_model.pb')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.index')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('variables/variables.data-00000-of-00001')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets')))) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file')))) self.assertEqual( compat.as_bytes(VOCAB_FILE_CONTENT), compat.as_bytes( gfile.GFile( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets/my_vocab_file'))).read())) expected_extra_path = os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra/some/sub/directory/my_extra_file')) self.assertTrue( gfile.Exists( os.path.join( compat.as_bytes(export_dir), compat.as_bytes('assets.extra')))) self.assertTrue(gfile.Exists(expected_extra_path)) self.assertEqual( compat.as_bytes(EXTRA_FILE_CONTENT), compat.as_bytes(gfile.GFile(expected_extra_path).read())) expected_vocab_file = os.path.join( compat.as_bytes(tmpdir), compat.as_bytes('my_vocab_file')) # Restore, to validate that the export was well-formed. # tag_1 is untransformed. tags = ['tag_1'] with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, tags, export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertIn('input_example_tensor', graph_ops) self.assertIn('ParseExample/ParseExample', graph_ops) self.assertIn('linear/linear/feature/matmul', graph_ops) # Since there were no transforms, both save ops are still present. self.assertIn('save/SaveV2/tensor_names', graph_ops) self.assertIn('save_1/SaveV2/tensor_names', graph_ops) # Since there were no transforms, the hash table lookup is still there. self.assertIn('hash_table_Lookup/LookupTableFindV2', graph_ops) # Restore, to validate that the export was well-formed. # tag_2, tag_3 was subjected to strip_unused_nodes. tags = ['tag_2', 'tag_3'] with ops.Graph().as_default() as graph: with session_lib.Session(graph=graph) as sess: loader.load(sess, tags, export_dir) assets = [ x.eval() for x in graph.get_collection(ops.GraphKeys.ASSET_FILEPATHS) ] self.assertItemsEqual([expected_vocab_file], assets) graph_ops = [x.name for x in graph.get_operations()] self.assertTrue('input_example_tensor' in graph_ops) self.assertTrue('ParseExample/ParseExample' in graph_ops) self.assertTrue('linear/linear/feature/matmul' in graph_ops) # The Saver used to restore the checkpoint into the export Session # was not added to the SAVERS collection, so strip_unused_nodes removes # it. The one explicitly created in export_savedmodel is tracked in # the MetaGraphDef saver_def field, so that one is retained. # TODO(soergel): Make Savers sane again. I understand this is all a bit # nuts but for now the test demonstrates what actually happens. self.assertFalse('save/SaveV2/tensor_names' in graph_ops) self.assertTrue('save_1/SaveV2/tensor_names' in graph_ops) # The fake hash table lookup wasn't connected to anything; stripped. self.assertFalse('hash_table_Lookup' in graph_ops) # cleanup gfile.DeleteRecursively(tmpdir) class InferRealValuedColumnsTest(test.TestCase): def testInvalidArgs(self): with self.assertRaisesRegexp(ValueError, 'x or input_fn must be provided'): estimator.infer_real_valued_columns_from_input(None) with self.assertRaisesRegexp(ValueError, 'cannot be tensors'): estimator.infer_real_valued_columns_from_input(constant_op.constant(1.0)) def _assert_single_feature_column(self, expected_shape, expected_dtype, feature_columns): self.assertEqual(1, len(feature_columns)) feature_column = feature_columns[0] self.assertEqual('', feature_column.name) self.assertEqual({ '': parsing_ops.FixedLenFeature( shape=expected_shape, dtype=expected_dtype) }, feature_column.config) def testInt32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.int32)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int32), None)) self._assert_single_feature_column([8], dtypes.int32, feature_columns) def testInt64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.int64)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testInt64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.int64), None)) self._assert_single_feature_column([8], dtypes.int64, feature_columns) def testFloat32Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.float32)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat32InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float32), None)) self._assert_single_feature_column([8], dtypes.float32, feature_columns) def testFloat64Input(self): feature_columns = estimator.infer_real_valued_columns_from_input( np.ones(shape=[7, 8], dtype=np.float64)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testFloat64InputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( lambda: (array_ops.ones(shape=[7, 8], dtype=dtypes.float64), None)) self._assert_single_feature_column([8], dtypes.float64, feature_columns) def testBoolInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): estimator.infer_real_valued_columns_from_input( np.array([[False for _ in xrange(8)] for _ in xrange(7)])) def testBoolInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: (constant_op.constant(False, shape=[7, 8], dtype=dtypes.bool), None) ) def testStringInput(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input( np.array([['%d.0' % i for i in xrange(8)] for _ in xrange(7)])) def testStringInputFn(self): with self.assertRaisesRegexp( ValueError, 'on integer or non floating types are not supported'): # pylint: disable=g-long-lambda estimator.infer_real_valued_columns_from_input_fn( lambda: ( constant_op.constant([['%d.0' % i for i in xrange(8)] for _ in xrange(7)]), None)) def testBostonInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) self._assert_single_feature_column([_BOSTON_INPUT_DIM], dtypes.float64, feature_columns) def testIrisInputFn(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( iris_input_fn) self._assert_single_feature_column([_IRIS_INPUT_DIM], dtypes.float64, feature_columns) class ReplicaDeviceSetterTest(test.TestCase): def testVariablesAreOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', { 'TF_CONFIG': json.dumps(tf_config) }): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker', a.device) def testVariablesAreLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('', v.device) self.assertDeviceEqual('', v.initializer.device) self.assertDeviceEqual('', w.device) self.assertDeviceEqual('', w.initializer.device) self.assertDeviceEqual('', a.device) def testMutableHashTableIsOnPs(self): tf_config = {'cluster': {run_config.TaskType.PS: ['fake_ps_0']}} with test.mock.patch.dict('os.environ', { 'TF_CONFIG': json.dumps(tf_config) }): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('/job:ps/task:0', table.resource_handle.device) self.assertDeviceEqual('/job:ps/task:0', output.device) def testMutableHashTableIsLocal(self): with ops.device( estimator._get_replica_device_setter(run_config.RunConfig())): default_val = constant_op.constant([-1, -1], dtypes.int64) table = lookup.MutableHashTable(dtypes.string, dtypes.int64, default_val) input_string = constant_op.constant(['brain', 'salad', 'tank']) output = table.lookup(input_string) self.assertDeviceEqual('', table.resource_handle.device) self.assertDeviceEqual('', output.device) def testTaskIsSetOnWorkerWhenJobNameIsSet(self): tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0'] }, 'task': { 'type': run_config.TaskType.WORKER, 'index': 3 } } with test.mock.patch.dict('os.environ', { 'TF_CONFIG': json.dumps(tf_config) }): config = run_config.RunConfig() with ops.device(estimator._get_replica_device_setter(config)): v = variables_lib.Variable([1, 2]) w = variables_lib.Variable([2, 1]) a = v + w self.assertDeviceEqual('/job:ps/task:0', v.device) self.assertDeviceEqual('/job:ps/task:0', v.initializer.device) self.assertDeviceEqual('/job:ps/task:0', w.device) self.assertDeviceEqual('/job:ps/task:0', w.initializer.device) self.assertDeviceEqual('/job:worker/task:3', a.device) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/estimator_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ComposableModel classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import composable_model from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import state_ops from tensorflow.python.platform import test def _iris_input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150, 1], dtype=dtypes.int32) def _base_model_fn(features, labels, mode, params): model = params['model'] feature_columns = params['feature_columns'] head = params['head'] if mode == model_fn_lib.ModeKeys.TRAIN: logits = model.build_model(features, feature_columns, is_training=True) elif mode == model_fn_lib.ModeKeys.EVAL: logits = model.build_model(features, feature_columns, is_training=False) else: raise NotImplementedError def _train_op_fn(loss): global_step = training_util.get_global_step() assert global_step train_step = model.get_train_step(loss) with ops.control_dependencies(train_step): with ops.get_default_graph().colocate_with(global_step): return state_ops.assign_add(global_step, 1).op return head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=_train_op_fn, logits=logits) def _linear_estimator(head, feature_columns): return estimator.Estimator( model_fn=_base_model_fn, params={ 'model': composable_model.LinearComposableModel( num_label_columns=head.logits_dimension), 'feature_columns': feature_columns, 'head': head }) def _joint_linear_estimator(head, feature_columns): return estimator.Estimator( model_fn=_base_model_fn, params={ 'model': composable_model.LinearComposableModel( num_label_columns=head.logits_dimension, _joint_weights=True), 'feature_columns': feature_columns, 'head': head }) def _dnn_estimator(head, feature_columns, hidden_units): return estimator.Estimator( model_fn=_base_model_fn, params={ 'model': composable_model.DNNComposableModel( num_label_columns=head.logits_dimension, hidden_units=hidden_units), 'feature_columns': feature_columns, 'head': head }) class ComposableModelTest(test.TestCase): def testLinearModel(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') head = head_lib.multi_class_head(n_classes=2) classifier = _linear_estimator(head, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=1000) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=2000) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointLinearModel(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.sparse_column_with_hash_bucket('age', 2) head = head_lib.multi_class_head(n_classes=2) classifier = _joint_linear_estimator(head, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=1000) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=2000) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testDNNModel(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] head = head_lib.multi_class_head(n_classes=3) classifier = _dnn_estimator( head, feature_columns=cont_features, hidden_units=[3, 3]) classifier.fit(input_fn=_iris_input_fn, steps=1000) classifier.evaluate(input_fn=_iris_input_fn, steps=100) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/composable_model_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity (deprecated). These classes are deprecated and replaced with `tf.estimator`. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.compat.v1.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.compat.v1.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.compat.v1.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.compat.v1.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.compat.v1.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import GraphRewriteSpec from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head from tensorflow.contrib.learn.python.learn.estimators.head import Head from tensorflow.contrib.learn.python.learn.estimators.head import loss_only_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head from tensorflow.contrib.learn.python.learn.estimators.head import regression_head from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for layers.rnn_common.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.estimators import rnn_common from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.platform import test class RnnCommonTest(test.TestCase): def testMaskActivationsAndLabels(self): """Test `mask_activations_and_labels`.""" batch_size = 4 padded_length = 6 num_classes = 4 np.random.seed(1234) sequence_length = np.random.randint(0, padded_length + 1, batch_size) activations = np.random.rand(batch_size, padded_length, num_classes) labels = np.random.randint(0, num_classes, [batch_size, padded_length]) (activations_masked_t, labels_masked_t) = rnn_common.mask_activations_and_labels( constant_op.constant(activations, dtype=dtypes.float32), constant_op.constant(labels, dtype=dtypes.int32), constant_op.constant(sequence_length, dtype=dtypes.int32)) with self.cached_session() as sess: activations_masked, labels_masked = sess.run( [activations_masked_t, labels_masked_t]) expected_activations_shape = [sum(sequence_length), num_classes] np.testing.assert_equal( expected_activations_shape, activations_masked.shape, 'Wrong activations shape. Expected {}; got {}.'.format( expected_activations_shape, activations_masked.shape)) expected_labels_shape = [sum(sequence_length)] np.testing.assert_equal(expected_labels_shape, labels_masked.shape, 'Wrong labels shape. Expected {}; got {}.'.format( expected_labels_shape, labels_masked.shape)) masked_index = 0 for i in range(batch_size): for j in range(sequence_length[i]): actual_activations = activations_masked[masked_index] expected_activations = activations[i, j, :] np.testing.assert_almost_equal( expected_activations, actual_activations, err_msg='Unexpected logit value at index [{}, {}, :].' ' Expected {}; got {}.'.format(i, j, expected_activations, actual_activations)) actual_labels = labels_masked[masked_index] expected_labels = labels[i, j] np.testing.assert_almost_equal( expected_labels, actual_labels, err_msg='Unexpected logit value at index [{}, {}].' ' Expected {}; got {}.'.format(i, j, expected_labels, actual_labels)) masked_index += 1 def testSelectLastActivations(self): """Test `select_last_activations`.""" batch_size = 4 padded_length = 6 num_classes = 4 np.random.seed(4444) sequence_length = np.random.randint(0, padded_length + 1, batch_size) activations = np.random.rand(batch_size, padded_length, num_classes) last_activations_t = rnn_common.select_last_activations( constant_op.constant(activations, dtype=dtypes.float32), constant_op.constant(sequence_length, dtype=dtypes.int32)) with session.Session() as sess: last_activations = sess.run(last_activations_t) expected_activations_shape = [batch_size, num_classes] np.testing.assert_equal( expected_activations_shape, last_activations.shape, 'Wrong activations shape. Expected {}; got {}.'.format( expected_activations_shape, last_activations.shape)) for i in range(batch_size): actual_activations = last_activations[i, :] expected_activations = activations[i, sequence_length[i] - 1, :] np.testing.assert_almost_equal( expected_activations, actual_activations, err_msg='Unexpected logit value at index [{}, :].' ' Expected {}; got {}.'.format(i, expected_activations, actual_activations)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/rnn_common_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow estimators for Linear and DNN joined training models (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import six from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.summary import summary from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util # The default learning rates are a historical artifact of the initial # implementation, but seem a reasonable choice. _DNN_LEARNING_RATE = 0.05 _LINEAR_LEARNING_RATE = 0.2 _FIX_GLOBAL_STEP_INCREMENT_DATE = "2017-04-15" _FIX_GLOBAL_STEP_INCREMENT_INSTRUCTIONS = ( "Please set fix_global_step_increment_bug=True and update training steps " "in your pipeline. See pydoc for details.") def _as_iterable(preds, output): for pred in preds: yield pred[output] def _get_feature_dict(features): if isinstance(features, dict): return features return {"": features} def _get_optimizer(optimizer): if callable(optimizer): return optimizer() else: return optimizer def _check_no_sync_replicas_optimizer(optimizer): if isinstance(optimizer, sync_replicas_optimizer.SyncReplicasOptimizer): raise ValueError( "SyncReplicasOptimizer is not supported in DNNLinearCombined model. " "If you want to use this optimizer, please use either DNN or Linear " "model.") def _linear_learning_rate(num_linear_feature_columns): """Returns the default learning rate of the linear model. The calculation is a historical artifact of this initial implementation, but has proven a reasonable choice. Args: num_linear_feature_columns: The number of feature columns of the linear model. Returns: A float. """ default_learning_rate = 1. / math.sqrt(num_linear_feature_columns) return min(_LINEAR_LEARNING_RATE, default_learning_rate) def _add_hidden_layer_summary(value, tag): summary.scalar("%s/fraction_of_zero_values" % tag, nn.zero_fraction(value)) summary.histogram("%s/activation" % tag, value) def _add_layer_summary(value, tag): summary.scalar("%s/fraction_of_zero_values" % tag, nn.zero_fraction(value)) summary.histogram("%s/activation" % tag, value) def _get_embedding_variable(column, collection_key, input_layer_scope): return ops.get_collection(collection_key, input_layer_scope + "/" + column.name) def _extract_embedding_lr_multipliers(embedding_lr_multipliers, collection_key, input_layer_scope): """Converts embedding lr multipliers to variable based gradient multiplier.""" if not embedding_lr_multipliers: return None gradient_multipliers = {} for column, lr_mult in embedding_lr_multipliers.items(): if not isinstance(column, feature_column_lib._EmbeddingColumn): # pylint: disable=protected-access raise ValueError( "learning rate multipler can only be defined for embedding columns. " "It is defined for {}".format(column)) embedding = _get_embedding_variable( column, collection_key, input_layer_scope) if not embedding: raise ValueError("Couldn't find a variable for column {}".format(column)) for v in embedding: gradient_multipliers[v] = lr_mult return gradient_multipliers def _dnn_linear_combined_model_fn(features, labels, mode, params, config=None): """Deep Neural Net and Linear combined model_fn. Args: features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`). labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters. The following hyperparameters are expected: * head: A `Head` instance. * linear_feature_columns: An iterable containing all the feature columns used by the Linear model. * linear_optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training the Linear model. Defaults to the Ftrl optimizer. * joint_linear_weights: If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires all columns are sparse and have the 'sum' combiner. * dnn_feature_columns: An iterable containing all the feature columns used by the DNN model. * dnn_optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training the DNN model. Defaults to the Adagrad optimizer. * dnn_hidden_units: List of hidden units per DNN layer. * dnn_activation_fn: Activation function applied to each DNN layer. If `None`, will use `tf.nn.relu`. * dnn_dropout: When not `None`, the probability we will drop out a given DNN coordinate. * gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. * embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. * input_layer_partitioner: Optional. Partitioner for input layer. config: `RunConfig` object to configure the runtime settings. Returns: `ModelFnOps` Raises: ValueError: If both `linear_feature_columns` and `dnn_features_columns` are empty at the same time, or `input_layer_partitioner` is missing. """ head = params["head"] linear_feature_columns = params.get("linear_feature_columns") linear_optimizer = params.get("linear_optimizer") or "Ftrl" joint_linear_weights = params.get("joint_linear_weights") dnn_feature_columns = params.get("dnn_feature_columns") dnn_optimizer = params.get("dnn_optimizer") or "Adagrad" dnn_hidden_units = params.get("dnn_hidden_units") dnn_activation_fn = params.get("dnn_activation_fn") or nn.relu dnn_dropout = params.get("dnn_dropout") gradient_clip_norm = params.get("gradient_clip_norm") num_ps_replicas = config.num_ps_replicas if config else 0 input_layer_partitioner = params.get("input_layer_partitioner") or ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=64 << 20)) embedding_lr_multipliers = params.get("embedding_lr_multipliers", {}) fix_global_step_increment_bug = params.get( "fix_global_step_increment_bug", True) if not linear_feature_columns and not dnn_feature_columns: raise ValueError( "Either linear_feature_columns or dnn_feature_columns must be defined.") features = _get_feature_dict(features) linear_optimizer = _get_optimizer(linear_optimizer) _check_no_sync_replicas_optimizer(linear_optimizer) dnn_optimizer = _get_optimizer(dnn_optimizer) _check_no_sync_replicas_optimizer(dnn_optimizer) # Build DNN Logits. dnn_parent_scope = "dnn" if not dnn_feature_columns: dnn_logits = None else: if not dnn_hidden_units: raise ValueError( "dnn_hidden_units must be defined when dnn_feature_columns is " "specified.") dnn_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas)) with variable_scope.variable_scope( dnn_parent_scope, values=tuple(six.itervalues(features)), partitioner=dnn_partitioner): with variable_scope.variable_scope( "input_from_feature_columns", values=tuple(six.itervalues(features)), partitioner=input_layer_partitioner) as dnn_input_scope: if all( isinstance(fc, feature_column_lib._FeatureColumn) # pylint: disable=protected-access for fc in dnn_feature_columns ): net = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=dnn_feature_columns, weight_collections=[dnn_parent_scope], scope=dnn_input_scope) else: net = fc_core.input_layer( features=features, feature_columns=dnn_feature_columns, weight_collections=[dnn_parent_scope]) for layer_id, num_hidden_units in enumerate(dnn_hidden_units): with variable_scope.variable_scope( "hiddenlayer_%d" % layer_id, values=(net,)) as dnn_hidden_layer_scope: net = layers.fully_connected( net, num_hidden_units, activation_fn=dnn_activation_fn, variables_collections=[dnn_parent_scope], scope=dnn_hidden_layer_scope) if dnn_dropout is not None and mode == model_fn.ModeKeys.TRAIN: net = layers.dropout( net, keep_prob=(1.0 - dnn_dropout)) # TODO(b/31209633): Consider adding summary before dropout. _add_layer_summary(net, dnn_hidden_layer_scope.name) with variable_scope.variable_scope( "logits", values=(net,)) as dnn_logits_scope: dnn_logits = layers.fully_connected( net, head.logits_dimension, activation_fn=None, variables_collections=[dnn_parent_scope], scope=dnn_logits_scope) _add_layer_summary(dnn_logits, dnn_logits_scope.name) # Build Linear logits. linear_parent_scope = "linear" if not linear_feature_columns: linear_logits = None else: linear_partitioner = partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=64 << 20) with variable_scope.variable_scope( linear_parent_scope, values=tuple(six.itervalues(features)), partitioner=linear_partitioner) as scope: if all(isinstance(fc, feature_column_lib._FeatureColumn) # pylint: disable=protected-access for fc in linear_feature_columns): if joint_linear_weights: linear_logits, _, _ = layers.joint_weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=linear_feature_columns, num_outputs=head.logits_dimension, weight_collections=[linear_parent_scope], scope=scope) else: linear_logits, _, _ = layers.weighted_sum_from_feature_columns( columns_to_tensors=features, feature_columns=linear_feature_columns, num_outputs=head.logits_dimension, weight_collections=[linear_parent_scope], scope=scope) else: linear_logits = fc_core.linear_model( features=features, feature_columns=linear_feature_columns, units=head.logits_dimension, weight_collections=[linear_parent_scope]) _add_layer_summary(linear_logits, scope.name) # Combine logits and build full model. if dnn_logits is not None and linear_logits is not None: logits = dnn_logits + linear_logits elif dnn_logits is not None: logits = dnn_logits else: logits = linear_logits def _make_training_op(training_loss): """Training op for the DNN linear combined model.""" train_ops = [] global_step = training_util.get_global_step() if dnn_logits is not None: train_ops.append( optimizers.optimize_loss( loss=training_loss, global_step=global_step, learning_rate=_DNN_LEARNING_RATE, optimizer=dnn_optimizer, gradient_multipliers=_extract_embedding_lr_multipliers( # pylint: disable=protected-access embedding_lr_multipliers, dnn_parent_scope, dnn_input_scope.name), clip_gradients=gradient_clip_norm, variables=ops.get_collection(dnn_parent_scope), name=dnn_parent_scope, # Empty summaries, because head already logs "loss" summary. summaries=[], increment_global_step=not fix_global_step_increment_bug)) if linear_logits is not None: train_ops.append( optimizers.optimize_loss( loss=training_loss, global_step=global_step, learning_rate=_linear_learning_rate(len(linear_feature_columns)), optimizer=linear_optimizer, clip_gradients=gradient_clip_norm, variables=ops.get_collection(linear_parent_scope), name=linear_parent_scope, # Empty summaries, because head already logs "loss" summary. summaries=[], increment_global_step=not fix_global_step_increment_bug)) train_op = control_flow_ops.group(*train_ops) if fix_global_step_increment_bug: with ops.control_dependencies([train_op]): with ops.colocate_with(global_step): return state_ops.assign_add(global_step, 1).op return train_op return head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=_make_training_op, logits=logits) class DNNLinearCombinedEstimator(estimator.Estimator): """An estimator for TensorFlow Linear and DNN joined training models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ @deprecated_arg_values( _FIX_GLOBAL_STEP_INCREMENT_DATE, _FIX_GLOBAL_STEP_INCREMENT_INSTRUCTIONS, fix_global_step_increment_bug=False) def __init__(self, # _joint_linear_weights pylint: disable=invalid-name head, model_dir=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=None, dnn_dropout=None, gradient_clip_norm=None, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None, fix_global_step_increment_bug=False, input_layer_partitioner=None): """Initializes a DNNLinearCombinedEstimator instance. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Args: head: A _Head object. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True will use a single (possibly partitioned) variable to store all weights for the linear model. More efficient if there are many columns, however requires all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. fix_global_step_increment_bug: If `False`, the estimator needs two fit steps to optimize both linear and dnn parts. If `True`, this bug is fixed. New users must set this to `True`, but the default value is `False` for backwards compatibility. input_layer_partitioner: Optional. Partitioner for input layer. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ linear_feature_columns = tuple(linear_feature_columns or []) dnn_feature_columns = tuple(dnn_feature_columns or []) if not linear_feature_columns + dnn_feature_columns: raise ValueError("Either linear_feature_columns or dnn_feature_columns " "must be defined.") super(DNNLinearCombinedEstimator, self).__init__( model_fn=_dnn_linear_combined_model_fn, model_dir=model_dir, config=config, params={ "head": head, "linear_feature_columns": linear_feature_columns, "linear_optimizer": linear_optimizer, "joint_linear_weights": _joint_linear_weights, "dnn_feature_columns": dnn_feature_columns, "dnn_optimizer": dnn_optimizer, "dnn_hidden_units": dnn_hidden_units, "dnn_activation_fn": dnn_activation_fn, "dnn_dropout": dnn_dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "fix_global_step_increment_bug": fix_global_step_increment_bug, "input_layer_partitioner": input_layer_partitioner }, feature_engineering_fn=feature_engineering_fn) class DNNLinearCombinedClassifier(estimator.Estimator): """A classifier for TensorFlow Linear and DNN joined training models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNLinearCombinedClassifier( # common settings n_classes=n_classes, weight_column_name=weight_column_name, # wide settings linear_feature_columns=[sparse_feature_a_x_sparse_feature_b], linear_optimizer=tf.compat.v1.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.compat.v1.train.AdagradOptimizer(...)) # Input builders def input_fn_train: # returns x, y (where y represents label's class index). ... def input_fn_eval: # returns x, y (where y represents label's class index). ... def input_fn_predict: # returns x, None. ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) # predict_classes returns class indices. estimator.predict_classes(input_fn=input_fn_predict) ``` If the user specifies `label_keys` in constructor, labels must be strings from the `label_keys` vocabulary. Example: ```python label_keys = ['label0', 'label1', 'label2'] estimator = DNNLinearCombinedClassifier( n_classes=n_classes, linear_feature_columns=[sparse_feature_a_x_sparse_feature_b], dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], dnn_hidden_units=[1000, 500, 100], label_keys=label_keys) def input_fn_train: # returns x, y (where y is one of label_keys). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y is one of label_keys). pass estimator.evaluate(input_fn=input_fn_eval) def input_fn_predict: # returns x, None # predict_classes returns one of label_keys. estimator.predict_classes(input_fn=input_fn_predict) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ @deprecated_arg_values( _FIX_GLOBAL_STEP_INCREMENT_DATE, _FIX_GLOBAL_STEP_INCREMENT_INSTRUCTIONS, fix_global_step_increment_bug=False) def __init__(self, # _joint_linear_weights pylint: disable=invalid-name model_dir=None, n_classes=2, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=False, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None, input_layer_min_slice_size=None, label_keys=None, fix_global_step_increment_bug=False): """Constructs a DNNLinearCombinedClassifier instance. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of label classes. Default is binary classification. Note that class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Only supported for `n_classes` > 2. fix_global_step_increment_bug: If `False`, the estimator needs two fit steps to optimize both linear and dnn parts. If `True`, this bug is fixed. New users must set this to `True`, but it the default value is `False` for backwards compatibility. Raises: ValueError: If `n_classes` < 2. ValueError: If both `linear_feature_columns` and `dnn_features_columns` are empty at the same time. """ head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, label_keys=label_keys) linear_feature_columns = tuple(linear_feature_columns or []) dnn_feature_columns = tuple(dnn_feature_columns or []) self._feature_columns = linear_feature_columns + dnn_feature_columns if not self._feature_columns: raise ValueError("Either linear_feature_columns or dnn_feature_columns " "must be defined.") # TODO(b/35922130): Replace with `input_layer_partitioner` arg. input_layer_partitioner = None if input_layer_min_slice_size is not None: input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=config.num_ps_replicas if config else 0, min_slice_size=input_layer_min_slice_size)) super(DNNLinearCombinedClassifier, self).__init__( model_fn=_dnn_linear_combined_model_fn, model_dir=model_dir, config=config, params={ "head": head, "linear_feature_columns": linear_feature_columns, "linear_optimizer": linear_optimizer, "joint_linear_weights": _joint_linear_weights, "dnn_feature_columns": dnn_feature_columns, "dnn_optimizer": dnn_optimizer, "dnn_hidden_units": dnn_hidden_units, "dnn_activation_fn": dnn_activation_fn, "dnn_dropout": dnn_dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "input_layer_partitioner": input_layer_partitioner, "fix_global_step_increment_bug": fix_global_step_increment_bug, }, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_classes, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted classes. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_classes` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns classes. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_classes( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_classes(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted classes for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes with shape [batch_size] (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.CLASSES preds = super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key].reshape(-1) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba( self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns prediction probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted probabilities with shape [batch_size, n_classes] (or an iterable of predicted probabilities if as_iterable is True). """ key = prediction_key.PredictionKey.PROBABILITIES preds = super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BasEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return super(DNNLinearCombinedClassifier, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=(signature_fn or export.classification_signature_fn_with_prob), prediction_key=prediction_key.PredictionKey.PROBABILITIES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) class DNNLinearCombinedRegressor(estimator.Estimator): """A regressor for TensorFlow Linear and DNN joined training models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/learn/README.md) for general migration instructions. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_x_sparse_feature_b = crossed_column(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNLinearCombinedRegressor( # common settings weight_column_name=weight_column_name, # wide settings linear_feature_columns=[sparse_feature_a_x_sparse_feature_b], linear_optimizer=tf.compat.v1.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.compat.v1.train.ProximalAdagradOptimizer(...)) # To apply L1 and L2 regularization, you can set optimizers as follows: tf.compat.v1.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.001) # It is same for FtrlOptimizer. # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... def input_fn_predict: # returns x, None ... estimator.train(input_fn_train) estimator.evaluate(input_fn_eval) estimator.predict(input_fn_predict) ``` Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ @deprecated_arg_values( _FIX_GLOBAL_STEP_INCREMENT_DATE, _FIX_GLOBAL_STEP_INCREMENT_INSTRUCTIONS, fix_global_step_increment_bug=False) def __init__(self, # _joint_linear_weights pylint: disable=invalid-name model_dir=None, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=False, label_dimension=1, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None, input_layer_min_slice_size=None, fix_global_step_increment_bug=False): """Initializes a DNNLinearCombinedRegressor instance. Note: New users must set `fix_global_step_increment_bug=True` when creating an estimator. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires that all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If None, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. input_layer_min_slice_size: Optional. The min slice size of input layer partitions. If not provided, will use the default of 64M. fix_global_step_increment_bug: If `False`, the estimator needs two fit steps to optimize both linear and dnn parts. If `True`, this bug is fixed. New users must set this to `True`, but it the default value is `False` for backwards compatibility. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ linear_feature_columns = linear_feature_columns or [] dnn_feature_columns = dnn_feature_columns or [] self._feature_columns = linear_feature_columns + dnn_feature_columns if not self._feature_columns: raise ValueError("Either linear_feature_columns or dnn_feature_columns " "must be defined.") # TODO(b/35922130): Replace with `input_layer_partitioner` arg. input_layer_partitioner = None if input_layer_min_slice_size is not None: input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=config.num_ps_replicas if config else 0, min_slice_size=input_layer_min_slice_size)) head = head_lib.regression_head( weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias) super(DNNLinearCombinedRegressor, self).__init__( model_fn=_dnn_linear_combined_model_fn, model_dir=model_dir, config=config, params={ "head": head, "linear_feature_columns": linear_feature_columns, "linear_optimizer": linear_optimizer, "joint_linear_weights": _joint_linear_weights, "dnn_feature_columns": dnn_feature_columns, "dnn_optimizer": dnn_optimizer, "dnn_hidden_units": dnn_hidden_units, "dnn_activation_fn": dnn_activation_fn, "dnn_dropout": dnn_dropout, "gradient_clip_norm": gradient_clip_norm, "embedding_lr_multipliers": embedding_lr_multipliers, "input_layer_partitioner": input_layer_partitioner, "fix_global_step_increment_bug": fix_global_step_increment_bug, }, feature_engineering_fn=feature_engineering_fn) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None): """See evaluable.Evaluable.""" # TODO(zakaria): remove once deprecation is finished (b/31229024) custom_metrics = {} if metrics: for key, metric in six.iteritems(metrics): if (not isinstance(metric, metric_spec.MetricSpec) and not isinstance(key, tuple)): custom_metrics[(key, prediction_key.PredictionKey.SCORES)] = metric else: custom_metrics[key] = metric return super(DNNLinearCombinedRegressor, self).evaluate( x=x, y=y, input_fn=input_fn, feed_fn=feed_fn, batch_size=batch_size, steps=steps, metrics=custom_metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) @deprecated_arg_values( "2017-03-01", "Please switch to predict_scores, or set `outputs` argument.", outputs=None) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. By default, returns predicted scores. But this default will be dropped soon. Users should either pass `outputs`, or call `predict_scores` method. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. outputs: list of `str`, name of the output to predict. If `None`, returns scores. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. If `outputs` is set, returns a dict of predictions. """ if not outputs: return self.predict_scores( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) return super(DNNLinearCombinedRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, as_iterable=as_iterable) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_scores(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted scores for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted scores (or an iterable of predicted scores if as_iterable is True). If `label_dimension == 1`, the shape of the output is `[batch_size]`, otherwise the shape is `[batch_size, label_dimension]`. """ key = prediction_key.PredictionKey.SCORES preds = super(DNNLinearCombinedRegressor, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key] @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return super(DNNLinearCombinedRegressor, self).export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=signature_fn or export.regression_signature_fn, prediction_key=prediction_key.PredictionKey.SCORES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) # Aliases # TODO(zakaria): Remove these aliases, See b/34751732 _DNNLinearCombinedEstimator = DNNLinearCombinedEstimator
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implementation of k-means clustering on top of `Estimator` API (deprecated). This module is deprecated. Please use `tf.contrib.factorization.KMeansClustering` instead of `tf.contrib.learn.KMeansClustering`. It has a similar interface, but uses the `tf.estimator.Estimator` API instead of `tf.contrib.learn.Estimator`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import numpy as np from tensorflow.contrib.factorization.python.ops import clustering_ops from tensorflow.python.training import training_util from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops.control_flow_ops import with_dependencies from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import session_run_hook from tensorflow.python.training.session_run_hook import SessionRunArgs from tensorflow.python.util.deprecation import deprecated _USE_TF_CONTRIB_FACTORIZATION = ( 'Please use tf.contrib.factorization.KMeansClustering instead of' ' tf.contrib.learn.KMeansClustering. It has a similar interface, but uses' ' the tf.estimator.Estimator API instead of tf.contrib.learn.Estimator.') class _LossRelativeChangeHook(session_run_hook.SessionRunHook): """Stops when the change in loss goes below a tolerance.""" def __init__(self, tolerance): """Initializes _LossRelativeChangeHook. Args: tolerance: A relative tolerance of change between iterations. """ self._tolerance = tolerance self._prev_loss = None def begin(self): self._loss_tensor = ops.get_default_graph().get_tensor_by_name( KMeansClustering.LOSS_OP_NAME + ':0') assert self._loss_tensor is not None def before_run(self, run_context): del run_context return SessionRunArgs( fetches={KMeansClustering.LOSS_OP_NAME: self._loss_tensor}) def after_run(self, run_context, run_values): loss = run_values.results[KMeansClustering.LOSS_OP_NAME] assert loss is not None if self._prev_loss is not None: relative_change = (abs(loss - self._prev_loss) / (1 + abs(self._prev_loss))) if relative_change < self._tolerance: run_context.request_stop() self._prev_loss = loss class _InitializeClustersHook(session_run_hook.SessionRunHook): """Initializes clusters or waits for cluster initialization.""" def __init__(self, init_op, is_initialized_op, is_chief): self._init_op = init_op self._is_chief = is_chief self._is_initialized_op = is_initialized_op def after_create_session(self, session, _): assert self._init_op.graph == ops.get_default_graph() assert self._is_initialized_op.graph == self._init_op.graph while True: try: if session.run(self._is_initialized_op): break elif self._is_chief: session.run(self._init_op) else: time.sleep(1) except RuntimeError as e: logging.info(e) def _parse_tensor_or_dict(features): """Helper function to parse features.""" if isinstance(features, dict): keys = sorted(features.keys()) with ops.colocate_with(features[keys[0]]): features = array_ops.concat([features[k] for k in keys], 1) return features def _kmeans_clustering_model_fn(features, labels, mode, params, config): """Model function for KMeansClustering estimator.""" assert labels is None, labels (all_scores, model_predictions, losses, is_initialized, init_op, training_op) = clustering_ops.KMeans( _parse_tensor_or_dict(features), params.get('num_clusters'), initial_clusters=params.get('training_initial_clusters'), distance_metric=params.get('distance_metric'), use_mini_batch=params.get('use_mini_batch'), mini_batch_steps_per_iteration=params.get( 'mini_batch_steps_per_iteration'), random_seed=params.get('random_seed'), kmeans_plus_plus_num_retries=params.get( 'kmeans_plus_plus_num_retries')).training_graph() incr_step = state_ops.assign_add(training_util.get_global_step(), 1) loss = math_ops.reduce_sum(losses, name=KMeansClustering.LOSS_OP_NAME) summary.scalar('loss/raw', loss) training_op = with_dependencies([training_op, incr_step], loss) predictions = { KMeansClustering.ALL_SCORES: all_scores[0], KMeansClustering.CLUSTER_IDX: model_predictions[0], } eval_metric_ops = {KMeansClustering.SCORES: loss} training_hooks = [_InitializeClustersHook( init_op, is_initialized, config.is_chief)] relative_tolerance = params.get('relative_tolerance') if relative_tolerance is not None: training_hooks.append(_LossRelativeChangeHook(relative_tolerance)) return ModelFnOps( mode=mode, predictions=predictions, eval_metric_ops=eval_metric_ops, loss=loss, train_op=training_op, training_hooks=training_hooks) # TODO(agarwal,ands): support sharded input. class KMeansClustering(estimator.Estimator): """An Estimator for K-Means clustering. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ SQUARED_EUCLIDEAN_DISTANCE = clustering_ops.SQUARED_EUCLIDEAN_DISTANCE COSINE_DISTANCE = clustering_ops.COSINE_DISTANCE RANDOM_INIT = clustering_ops.RANDOM_INIT KMEANS_PLUS_PLUS_INIT = clustering_ops.KMEANS_PLUS_PLUS_INIT SCORES = 'scores' CLUSTER_IDX = 'cluster_idx' CLUSTERS = 'clusters' ALL_SCORES = 'all_scores' LOSS_OP_NAME = 'kmeans_loss' @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def __init__(self, num_clusters, model_dir=None, initial_clusters=RANDOM_INIT, distance_metric=SQUARED_EUCLIDEAN_DISTANCE, random_seed=0, use_mini_batch=True, mini_batch_steps_per_iteration=1, kmeans_plus_plus_num_retries=2, relative_tolerance=None, config=None): """Creates a model for running KMeans training and inference. Args: num_clusters: number of clusters to train. model_dir: the directory to save the model results and log files. initial_clusters: specifies how to initialize the clusters for training. See clustering_ops.kmeans for the possible values. distance_metric: the distance metric used for clustering. See clustering_ops.kmeans for the possible values. random_seed: Python integer. Seed for PRNG used to initialize centers. use_mini_batch: If true, use the mini-batch k-means algorithm. Else assume full batch. mini_batch_steps_per_iteration: number of steps after which the updated cluster centers are synced back to a master copy. See clustering_ops.py for more details. kmeans_plus_plus_num_retries: For each point that is sampled during kmeans++ initialization, this parameter specifies the number of additional points to draw from the current distribution before selecting the best. If a negative value is specified, a heuristic is used to sample O(log(num_to_sample)) additional points. relative_tolerance: A relative tolerance of change in the loss between iterations. Stops learning if the loss changes less than this amount. Note that this may not work correctly if use_mini_batch=True. config: See Estimator """ params = {} params['num_clusters'] = num_clusters params['training_initial_clusters'] = initial_clusters params['distance_metric'] = distance_metric params['random_seed'] = random_seed params['use_mini_batch'] = use_mini_batch params['mini_batch_steps_per_iteration'] = mini_batch_steps_per_iteration params['kmeans_plus_plus_num_retries'] = kmeans_plus_plus_num_retries params['relative_tolerance'] = relative_tolerance super(KMeansClustering, self).__init__( model_fn=_kmeans_clustering_model_fn, params=params, model_dir=model_dir, config=config) @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def predict_cluster_idx(self, input_fn=None): """Yields predicted cluster indices.""" key = KMeansClustering.CLUSTER_IDX results = super(KMeansClustering, self).predict( input_fn=input_fn, outputs=[key]) for result in results: yield result[key] @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def score(self, input_fn=None, steps=None): """Predict total sum of distances to nearest clusters. Note that this function is different from the corresponding one in sklearn which returns the negative of the sum of distances. Args: input_fn: see predict. steps: see predict. Returns: Total sum of distances to nearest clusters. """ return np.sum( self.evaluate( input_fn=input_fn, steps=steps)[KMeansClustering.SCORES]) @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def transform(self, input_fn=None, as_iterable=False): """Transforms each element to distances to cluster centers. Note that this function is different from the corresponding one in sklearn. For SQUARED_EUCLIDEAN distance metric, sklearn transform returns the EUCLIDEAN distance, while this function returns the SQUARED_EUCLIDEAN distance. Args: input_fn: see predict. as_iterable: see predict Returns: Array with same number of rows as x, and num_clusters columns, containing distances to the cluster centers. """ key = KMeansClustering.ALL_SCORES results = super(KMeansClustering, self).predict( input_fn=input_fn, outputs=[key], as_iterable=as_iterable) if not as_iterable: return results[key] else: return results @deprecated(None, _USE_TF_CONTRIB_FACTORIZATION) def clusters(self): """Returns cluster centers.""" return super(KMeansClustering, self).get_variable_value(self.CLUSTERS)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/kmeans.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Linear regression tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python import learn from tensorflow.python.platform import test class RegressionTest(test.TestCase): """Linear regression tests.""" def testLinearRegression(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) regressor = learn.LinearRegressor( feature_columns=learn.infer_real_valued_columns_from_input(x), optimizer="SGD") regressor.fit(x, y, steps=200) self.assertIn("linear//weight", regressor.get_variable_names()) regressor_weights = regressor.get_variable_value("linear//weight") # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=0.01) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/regression_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Custom optimizer tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn import datasets from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn.estimators import estimator as estimator_lib from tensorflow.contrib.learn.python.learn.estimators._sklearn import accuracy_score from tensorflow.contrib.learn.python.learn.estimators._sklearn import train_test_split from tensorflow.python.framework import constant_op from tensorflow.python.ops import string_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.training import momentum as momentum_lib class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "transformed_x": constant_op.constant([9.]) }, { "transformed_y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["transformed_x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={ "label": metric_spec.MetricSpec(lambda predictions, labels: labels) }) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testFeatureEngineeringFnWithSameName(self): def input_fn(): return { "x": constant_op.constant(["9."]) }, { "y": constant_op.constant(["99."]) } def feature_engineering_fn(features, labels): # Github #12205: raise a TypeError if called twice. _ = string_ops.string_split(features["x"]) features["x"] = constant_op.constant([9.]) labels["y"] = constant_op.constant([99.]) return features, labels def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator.fit(input_fn=input_fn, steps=1) prediction = next(estimator.predict(input_fn=input_fn, as_iterable=True)) # predictions = transformed_x (9) self.assertEqual(9., prediction) metrics = estimator.evaluate( input_fn=input_fn, steps=1, metrics={ "label": metric_spec.MetricSpec(lambda predictions, labels: labels) }) # labels = transformed_y (99) self.assertEqual(99., metrics["label"]) def testNoneFeatureEngineeringFn(self): def input_fn(): return { "x": constant_op.constant([1.]) }, { "y": constant_op.constant([11.]) } def feature_engineering_fn(features, labels): _, _ = features, labels return { "x": constant_op.constant([9.]) }, { "y": constant_op.constant([99.]) } def model_fn(features, labels): # dummy variable: _ = variables_lib.Variable([0.]) _ = labels predictions = features["x"] loss = constant_op.constant([2.]) update_global_step = training_util.get_global_step().assign_add(1) return predictions, loss, update_global_step estimator_with_fe_fn = estimator_lib.Estimator( model_fn=model_fn, feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=1) estimator_without_fe_fn = estimator_lib.Estimator(model_fn=model_fn) estimator_without_fe_fn.fit(input_fn=input_fn, steps=1) # predictions = x prediction_with_fe_fn = next( estimator_with_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(9., prediction_with_fe_fn) prediction_without_fe_fn = next( estimator_without_fe_fn.predict(input_fn=input_fn, as_iterable=True)) self.assertEqual(1., prediction_without_fe_fn) class CustomOptimizer(test.TestCase): """Custom optimizer tests.""" def testIrisMomentum(self): random.seed(42) iris = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) def custom_optimizer(): return momentum_lib.MomentumOptimizer(learning_rate=0.01, momentum=0.9) classifier = learn.DNNClassifier( hidden_units=[10, 20, 10], feature_columns=learn.infer_real_valued_columns_from_input(x_train), n_classes=3, optimizer=custom_optimizer, config=learn.RunConfig(tf_random_seed=1)) classifier.fit(x_train, y_train, steps=400) predictions = np.array(list(classifier.predict_classes(x_test))) score = accuracy_score(y_test, predictions) self.assertGreater(score, 0.65, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/estimators_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LogisticRegressor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import layers from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import logistic_regressor from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test def _iris_data_input_fn(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) features = constant_op.constant(iris.data[ids], dtype=dtypes.float32) labels = constant_op.constant(iris.target[ids], dtype=dtypes.float32) labels = array_ops.reshape(labels, labels.get_shape().concatenate(1)) return features, labels def _logistic_regression_model_fn(features, labels, mode): _ = mode logits = layers.linear( features, 1, weights_initializer=init_ops.zeros_initializer(), # Intentionally uses really awful initial values so that # AUC/precision/recall/etc will change meaningfully even on a toy dataset. biases_initializer=init_ops.constant_initializer(-10.0)) predictions = math_ops.sigmoid(logits) loss = losses.sigmoid_cross_entropy(labels, logits) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return predictions, loss, train_op class LogisticRegressorTest(test.TestCase): def test_fit_and_evaluate_metrics(self): """Tests basic fit and evaluate, and checks the evaluation metrics.""" regressor = logistic_regressor.LogisticRegressor( model_fn=_logistic_regression_model_fn) # Get some (intentionally horrible) baseline metrics. regressor.fit(input_fn=_iris_data_input_fn, steps=1) eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1) self.assertNear( 0.0, eval_metrics[metric_key.MetricKey.PREDICTION_MEAN], err=1e-3) self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.LABEL_MEAN], err=1e-6) self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.ACCURACY_BASELINE], err=1e-6) self.assertNear(0.5, eval_metrics[metric_key.MetricKey.AUC], err=1e-6) self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.ACCURACY_MEAN % 0.5], err=1e-6) self.assertNear( 0.0, eval_metrics[metric_key.MetricKey.PRECISION_MEAN % 0.5], err=1e-6) self.assertNear( 0.0, eval_metrics[metric_key.MetricKey.RECALL_MEAN % 0.5], err=1e-6) # Train for more steps and check the metrics again. regressor.fit(input_fn=_iris_data_input_fn, steps=100) eval_metrics = regressor.evaluate(input_fn=_iris_data_input_fn, steps=1) # Mean prediction moves from ~0.0 to ~0.5 as we stop predicting all 0's. self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.PREDICTION_MEAN], err=1e-2) # Label mean and baseline both remain the same at 0.5. self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.LABEL_MEAN], err=1e-6) self.assertNear( 0.5, eval_metrics[metric_key.MetricKey.ACCURACY_BASELINE], err=1e-6) # AUC improves from 0.5 to 1.0. self.assertNear(1.0, eval_metrics[metric_key.MetricKey.AUC], err=1e-6) # Accuracy improves from 0.5 to >0.9. self.assertTrue( eval_metrics[metric_key.MetricKey.ACCURACY_MEAN % 0.5] > 0.9) # Precision improves from 0.0 to 1.0. self.assertNear( 1.0, eval_metrics[metric_key.MetricKey.PRECISION_MEAN % 0.5], err=1e-6) # Recall improves from 0.0 to >0.9. self.assertTrue(eval_metrics[metric_key.MetricKey.RECALL_MEAN % 0.5] > 0.9) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/logistic_regressor_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for learn.estimators.tensor_signature.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class TensorSignatureTest(test.TestCase): def testTensorPlaceholderNone(self): self.assertEqual(None, tensor_signature.create_placeholders_from_signatures(None)) def testTensorSignatureNone(self): self.assertEqual(None, tensor_signature.create_signatures(None)) def testTensorSignatureCompatible(self): placeholder_a = array_ops.placeholder( name='test', shape=[None, 100], dtype=dtypes.int32) placeholder_b = array_ops.placeholder( name='another', shape=[256, 100], dtype=dtypes.int32) placeholder_c = array_ops.placeholder( name='mismatch', shape=[256, 100], dtype=dtypes.float32) placeholder_d = array_ops.placeholder( name='mismatch', shape=[128, 100], dtype=dtypes.int32) signatures = tensor_signature.create_signatures(placeholder_a) self.assertTrue(tensor_signature.tensors_compatible(None, None)) self.assertFalse(tensor_signature.tensors_compatible(None, signatures)) self.assertFalse(tensor_signature.tensors_compatible(placeholder_a, None)) self.assertTrue( tensor_signature.tensors_compatible(placeholder_a, signatures)) self.assertTrue( tensor_signature.tensors_compatible(placeholder_b, signatures)) self.assertFalse( tensor_signature.tensors_compatible(placeholder_c, signatures)) self.assertTrue( tensor_signature.tensors_compatible(placeholder_d, signatures)) inputs = {'a': placeholder_a} signatures = tensor_signature.create_signatures(inputs) self.assertTrue(tensor_signature.tensors_compatible(inputs, signatures)) self.assertFalse( tensor_signature.tensors_compatible(placeholder_a, signatures)) self.assertFalse( tensor_signature.tensors_compatible(placeholder_b, signatures)) self.assertFalse( tensor_signature.tensors_compatible({ 'b': placeholder_b }, signatures)) self.assertTrue( tensor_signature.tensors_compatible({ 'a': placeholder_b, 'c': placeholder_c }, signatures)) self.assertFalse( tensor_signature.tensors_compatible({ 'a': placeholder_c }, signatures)) def testSparseTensorCompatible(self): t = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) signatures = tensor_signature.create_signatures(t) self.assertTrue(tensor_signature.tensors_compatible(t, signatures)) def testTensorSignaturePlaceholders(self): placeholder_a = array_ops.placeholder( name='test', shape=[None, 100], dtype=dtypes.int32) signatures = tensor_signature.create_signatures(placeholder_a) placeholder_out = tensor_signature.create_placeholders_from_signatures( signatures) self.assertEqual(placeholder_out.dtype, placeholder_a.dtype) self.assertTrue(placeholder_out.get_shape().is_compatible_with( placeholder_a.get_shape())) self.assertTrue( tensor_signature.tensors_compatible(placeholder_out, signatures)) inputs = {'a': placeholder_a} signatures = tensor_signature.create_signatures(inputs) placeholders_out = tensor_signature.create_placeholders_from_signatures( signatures) self.assertEqual(placeholders_out['a'].dtype, placeholder_a.dtype) self.assertTrue(placeholders_out['a'].get_shape().is_compatible_with( placeholder_a.get_shape())) self.assertTrue( tensor_signature.tensors_compatible(placeholders_out, signatures)) def testSparseTensorSignaturePlaceholders(self): tensor = sparse_tensor.SparseTensor( values=[1.0, 2.0], indices=[[0, 2], [0, 3]], dense_shape=[5, 5]) signature = tensor_signature.create_signatures(tensor) placeholder = tensor_signature.create_placeholders_from_signatures( signature) self.assertTrue(isinstance(placeholder, sparse_tensor.SparseTensor)) self.assertEqual(placeholder.values.dtype, tensor.values.dtype) def testTensorSignatureExampleParserSingle(self): examples = array_ops.placeholder( name='example', shape=[None], dtype=dtypes.string) placeholder_a = array_ops.placeholder( name='test', shape=[None, 100], dtype=dtypes.int32) signatures = tensor_signature.create_signatures(placeholder_a) result = tensor_signature.create_example_parser_from_signatures(signatures, examples) self.assertTrue(tensor_signature.tensors_compatible(result, signatures)) new_signatures = tensor_signature.create_signatures(result) self.assertTrue(new_signatures.is_compatible_with(signatures)) def testTensorSignatureExampleParserDict(self): examples = array_ops.placeholder( name='example', shape=[None], dtype=dtypes.string) placeholder_a = array_ops.placeholder( name='test', shape=[None, 100], dtype=dtypes.int32) placeholder_b = array_ops.placeholder( name='bb', shape=[None, 100], dtype=dtypes.float64) inputs = {'a': placeholder_a, 'b': placeholder_b} signatures = tensor_signature.create_signatures(inputs) result = tensor_signature.create_example_parser_from_signatures(signatures, examples) self.assertTrue(tensor_signature.tensors_compatible(result, signatures)) new_signatures = tensor_signature.create_signatures(result) self.assertTrue(new_signatures['a'].is_compatible_with(signatures['a'])) self.assertTrue(new_signatures['b'].is_compatible_with(signatures['b'])) def testUnknownShape(self): placeholder_unk = array_ops.placeholder( name='unk', shape=None, dtype=dtypes.string) placeholder_a = array_ops.placeholder( name='a', shape=[None], dtype=dtypes.string) placeholder_b = array_ops.placeholder( name='b', shape=[128, 2], dtype=dtypes.string) placeholder_c = array_ops.placeholder( name='c', shape=[128, 2], dtype=dtypes.int32) unk_signature = tensor_signature.create_signatures(placeholder_unk) # Tensors of same dtype match unk shape signature. self.assertTrue( tensor_signature.tensors_compatible(placeholder_unk, unk_signature)) self.assertTrue( tensor_signature.tensors_compatible(placeholder_a, unk_signature)) self.assertTrue( tensor_signature.tensors_compatible(placeholder_b, unk_signature)) self.assertFalse( tensor_signature.tensors_compatible(placeholder_c, unk_signature)) string_signature = tensor_signature.create_signatures(placeholder_a) int_signature = tensor_signature.create_signatures(placeholder_c) # Unk shape Tensor matche signatures same dtype. self.assertTrue( tensor_signature.tensors_compatible(placeholder_unk, string_signature)) self.assertFalse( tensor_signature.tensors_compatible(placeholder_unk, int_signature)) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/tensor_signature_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class ActivationFunctionTest(test.TestCase): def _getModelForActivation(self, activation_fn): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], 'activation_fn': activation_fn, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) return dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testValidActivation(self): _ = self._getModelForActivation('relu') def testRaisesOnBadActivationName(self): with self.assertRaisesRegexp(ValueError, 'Activation name should be one of'): self._getModelForActivation('max_pool') class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertClassificationPredictions( self, expected_len, n_classes, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, range(n_classes)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ fc_core.embedding_column(language_column, dimension=1), fc_core.numeric_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes(input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=300) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, n_classes, predicted_proba) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.cast(labels, dtypes.float32) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def _assertRegressionOutputs( self, predictions, expected_shape): predictions_nparray = np.array(predictions) self.assertAllEqual(expected_shape, predictions_nparray.shape) self.assertTrue(np.issubdtype(predictions_nparray.dtype, np.floating)) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self._assertRegressionOutputs(predicted_scores, [3]) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self._assertRegressionOutputs(predicted_scores, [3]) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Debug estimators (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. Debug estimators are bias-only estimators that can be used for debugging and as simple baselines. Example: ``` # Build DebugClassifier classifier = DebugClassifier() # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass def input_fn_eval: # returns x, y (where y represents label's class index). pass # Fit model. classifier.fit(input_fn=input_fn_train) # Evaluate cross entropy between the test and train labels. loss = classifier.evaluate(input_fn=input_fn_eval)["loss"] # predict_classes outputs the most commonly seen class in training. predicted_label = classifier.predict_classes(new_samples) # predict_proba outputs the class distribution from training. label_distribution = classifier.predict_proba(new_samples) ``` """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops def _get_feature_dict(features): if isinstance(features, dict): return features return {"": features} def debug_model_fn(features, labels, mode, params, config=None): """Model_fn for debug models. Args: features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`). labels: Labels that are compatible with the `_Head` instance in `params`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters containing: * head: A `_Head` instance. config: `RunConfig` object to configure the runtime settings. Raises: KeyError: If weight column is specified but not present. ValueError: If features is an empty dictionary. Returns: A `ModelFnOps` instance. """ del config # Unused. features = _get_feature_dict(features) if not features: raise ValueError("Features cannot be empty.") head = params["head"] size_checks = [] batch_size = None # The first dimension is assumed to be a batch size and must be consistent # among all of the features. for feature in features.values(): first_dim = array_ops.shape(feature)[0] if batch_size is None: batch_size = first_dim else: size_checks.append(check_ops.assert_equal(batch_size, first_dim)) with ops.control_dependencies(size_checks): logits = array_ops.zeros([batch_size, head.logits_dimension]) def train_op_fn(loss): return optimizers.optimize_loss( loss, global_step=None, learning_rate=0.3, optimizer="Adagrad") return head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=train_op_fn, logits=logits) class DebugClassifier(estimator.Estimator): """A classifier for TensorFlow Debug models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Example: ```python # Build DebugClassifier classifier = DebugClassifier() # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass def input_fn_eval: # returns x, y (where y represents label's class index). pass # Fit model. classifier.fit(input_fn=input_fn_train) # Evaluate cross entropy between the test and train labels. loss = classifier.evaluate(input_fn=input_fn_eval)["loss"] # predict_class outputs the most commonly seen class in training. predicted_label = classifier.predict_class(new_samples) # predict_proba outputs the class distribution from training. label_distribution = classifier.predict_proba(new_samples) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. """ def __init__(self, model_dir=None, n_classes=2, weight_column_name=None, config=None, feature_engineering_fn=None, label_keys=None): """Initializes a DebugClassifier instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of label classes. Default is binary classification. It must be greater than 1. Note: Class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Only supported for `n_classes` > 2. Returns: A `DebugClassifier` estimator. Raises: ValueError: If `n_classes` < 2. """ params = {"head": head_lib.multi_class_head( n_classes=n_classes, weight_column_name=weight_column_name, enable_centered_bias=True, label_keys=label_keys)} super(DebugClassifier, self).__init__( model_fn=debug_model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn) def predict_classes(self, input_fn=None, batch_size=None): """Returns predicted classes for given features. Args: input_fn: Input function. batch_size: Override default batch size. Returns: An iterable of predicted classes. Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.CLASSES preds = self.predict( input_fn=input_fn, batch_size=batch_size, outputs=[key]) return (pred[key] for pred in preds) def predict_proba(self, input_fn=None, batch_size=None): """Returns prediction probabilities for given features. Args: input_fn: Input function. batch_size: Override default batch size. Returns: An iterable of predicted probabilities with shape [batch_size, n_classes]. """ key = prediction_key.PredictionKey.PROBABILITIES preds = self.predict( input_fn=input_fn, batch_size=batch_size, outputs=[key]) return (pred[key] for pred in preds) class DebugRegressor(estimator.Estimator): """A regressor for TensorFlow Debug models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Example: ```python # Build DebugRegressor regressor = DebugRegressor() # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass def input_fn_eval: # returns x, y (where y represents label's class index). pass # Fit model. regressor.fit(input_fn=input_fn_train) # Evaluate squared-loss between the test and train targets. loss = regressor.evaluate(input_fn=input_fn_eval)["loss"] # predict_scores outputs mean value seen during training. predicted_targets = regressor.predict_scores(new_samples) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. """ def __init__(self, model_dir=None, label_dimension=1, weight_column_name=None, config=None, feature_engineering_fn=None): """Initializes a DebugRegressor instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. label_dimension: Number of regression targets per example. This is the size of the last dimension of the labels and logits `Tensor` objects (typically, these have shape `[batch_size, label_dimension]`). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Returns: A `DebugRegressor` estimator. """ params = { "head": head_lib.regression_head( weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=True) } super(DebugRegressor, self).__init__( model_fn=debug_model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn) def predict_scores(self, input_fn=None, batch_size=None): """Returns predicted scores for given features. Args: input_fn: Input function. batch_size: Override default batch size. Returns: An iterable of predicted scores. """ key = prediction_key.PredictionKey.SCORES preds = self.predict( input_fn=input_fn, batch_size=batch_size, outputs=[key]) return (pred[key] for pred in preds)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/debug.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and methods related to model_fn (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six from tensorflow.contrib.framework import get_graph_from_inputs from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.python.estimator import model_fn as core_model_fn_lib from tensorflow.python.estimator.export import export_output as core_export_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import session_run_hook from tensorflow.python.util.deprecation import deprecated class ModeKeys(object): """Standard names for model modes (deprecated). THIS CLASS IS DEPRECATED. The following standard keys are defined: * `TRAIN`: training mode. * `EVAL`: evaluation mode. * `INFER`: inference mode. """ TRAIN = 'train' EVAL = 'eval' INFER = 'infer' @classmethod def validate(cls, key): if key not in (cls.TRAIN, cls.EVAL, cls.INFER): raise ValueError('Invalid mode %s.' % key) class ModelFnOps( collections.namedtuple('ModelFnOps', [ 'predictions', 'loss', 'train_op', 'eval_metric_ops', 'output_alternatives', 'training_chief_hooks', 'training_hooks', 'scaffold', 'mode' ])): """Ops returned from a model_fn. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'When switching to tf.estimator.Estimator, use ' 'tf.estimator.EstimatorSpec. You can use the `estimator_spec`' ' method to create an equivalent one.') def __new__(cls, mode, predictions=None, loss=None, train_op=None, eval_metric_ops=None, output_alternatives=None, training_chief_hooks=None, training_hooks=None, scaffold=None): """Creates a validated `ModelFnOps` instance. For a multi-headed model, the predictions dict here will contain the outputs of all of the heads. However: at serving time, requests will be made specifically for one or more heads, and the RPCs used for these requests may differ by problem type (i.e., regression, classification, other). The purpose of the output_alternatives dict is to aid in exporting a SavedModel from which such head-specific queries can be served. These output_alternatives will be combined with input_alternatives (see `saved_model_export_utils`) to produce a set of `SignatureDef`s specifying the valid requests that can be served from this model. For a single-headed model, it is still adviseable to provide output_alternatives with a single entry, because this is how the problem type is communicated for export and serving. If output_alternatives is not given, the resulting SavedModel will support only one head of unspecified type. Args: mode: One of `ModeKeys`. Specifies if this training, evaluation or prediction. predictions: Predictions `Tensor` or dict of `Tensor`. loss: Training loss `Tensor`. train_op: Op for the training step. eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, such as `Tensor`. output_alternatives: a dict of `{submodel_name: (problem_type, {tensor_name: Tensor})}`, where `submodel_name` is a submodel identifier that should be consistent across the pipeline (here likely taken from the name of each `Head`, for models that use them), `problem_type` is a `ProblemType`, `tensor_name` is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and `Tensor` is the corresponding output Tensor itself. training_chief_hooks: A list of `SessionRunHook` objects that will be run on the chief worker during training. training_hooks: A list of `SessionRunHook` objects that will be run on all workers during training. scaffold: A `tf.compat.v1.train.Scaffold` object that can be used to set initialization, saver, and more to be used in training. Returns: A validated `ModelFnOps` object. Raises: ValueError: If validation fails. """ ModeKeys.validate(mode) # Assert all ops are from the same graph. get_graph_from_inputs((predictions, loss, train_op)) # Validate train_op. if train_op is None: if mode == ModeKeys.TRAIN: raise ValueError('Missing train_op.') elif not isinstance(train_op, ops.Operation): # TODO(ptucker): Should this be allowed? Consider raising error. train_op = ops.convert_to_tensor(train_op).op # Validate loss. if loss is None: if mode in (ModeKeys.TRAIN, ModeKeys.EVAL): raise ValueError('Missing loss.') else: loss = ops.convert_to_tensor(loss) loss_shape = loss.get_shape() if loss_shape.num_elements() not in (None, 1): raise ValueError('Loss must be scalar: %s.' % loss) if not loss_shape.is_compatible_with(tensor_shape.scalar()): loss = array_ops.reshape(loss, []) # Validate predictions. if predictions is None: if mode == ModeKeys.INFER or mode == ModeKeys.EVAL: raise ValueError('Missing predictions.') else: if isinstance(predictions, dict): predictions = { k: sparse_tensor.convert_to_tensor_or_sparse_tensor(v) for k, v in six.iteritems(predictions) } else: predictions = sparse_tensor.convert_to_tensor_or_sparse_tensor( predictions) # Validate eval_metric_ops if eval_metric_ops is None: eval_metric_ops = {} else: if not isinstance(eval_metric_ops, dict): raise ValueError('eval_metric_ops must be a dict.') # Validate hooks if training_chief_hooks is None: training_chief_hooks = [] if training_hooks is None: training_hooks = [] for hook in training_hooks + training_chief_hooks: if not isinstance(hook, session_run_hook.SessionRunHook): raise TypeError('All hooks returned from model_fn must be ' 'SessionRunHook instances, got instance of %s: %s' % (type(hook), hook)) return super(ModelFnOps, cls).__new__( cls, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, output_alternatives=output_alternatives, training_chief_hooks=training_chief_hooks, training_hooks=training_hooks, scaffold=scaffold, mode=mode) def estimator_spec(self, default_serving_output_alternative_key=None): """Creates an equivalent `EstimatorSpec`. Args: default_serving_output_alternative_key: Required for multiple heads. If you have multiple entries in `output_alternatives` dict (comparable to multiple heads), `EstimatorSpec` requires a default head that will be used if a Servo request does not explicitly mention which head to infer on. Pass the key of the output alternative here that you want to designate as default. A separate ExportOutpout for this default head will be added to the export_outputs dict with the special key saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY, unless there is already an enry in output_alternatives with this special key. Returns: Instance of `EstimatorSpec` that is equivalent to this `ModelFnOps` Raises: ValueError: If problem type is unknown. """ def _scores(output_tensors): scores = output_tensors.get(prediction_key.PredictionKey.SCORES) if scores is None: scores = output_tensors.get(prediction_key.PredictionKey.PROBABILITIES) return scores def _classes(output_tensors): # pylint: disable=missing-docstring classes = output_tensors.get(prediction_key.PredictionKey.CLASSES) if classes is None: logging.warning( 'classes is None, Servo inference will not have class ids.') return None elif classes.dtype != dtypes.string: # Servo classification can only serve string classes logging.warning( 'classes is not string, Servo inference will not have class ids.') return None return classes def _export_output(problem_type, predictions): # pylint: disable=missing-docstring if problem_type == constants.ProblemType.LINEAR_REGRESSION: return core_export_lib.RegressionOutput(_scores(predictions)) if (problem_type == constants.ProblemType.CLASSIFICATION or problem_type == constants.ProblemType.LOGISTIC_REGRESSION): return core_export_lib.ClassificationOutput( scores=_scores(predictions), classes=_classes(predictions)) if problem_type == constants.ProblemType.UNSPECIFIED: return core_export_lib.PredictOutput(predictions) raise ValueError('Unknown problem_type=%s' % problem_type) # Converts output_alternatives export_outputs_dict = None if self.output_alternatives: output_alternatives = self.output_alternatives # Adds default output_alternative if needed. if (len(output_alternatives) > 1 and signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY not in output_alternatives): output_alternatives = output_alternatives.copy() output_alternatives[ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = ( output_alternatives[default_serving_output_alternative_key]) export_outputs_dict = {key: _export_output(*val) for key, val in output_alternatives.items()} def _get_eval_metric_ops(): """Returns self.eval_metric_ops without loss metric.""" result = {} for key, value in six.iteritems(self.eval_metric_ops): if key != metric_key.MetricKey.LOSS: result[key] = value return result # Convert the contrib mode enum to the core mode enum. # Note: mode already validated in __new__(). if self.mode == ModeKeys.TRAIN: core_mode = core_model_fn_lib.ModeKeys.TRAIN elif self.mode == ModeKeys.EVAL: core_mode = core_model_fn_lib.ModeKeys.EVAL elif self.mode == ModeKeys.INFER: core_mode = core_model_fn_lib.ModeKeys.PREDICT return core_model_fn_lib.EstimatorSpec( mode=core_mode, predictions=self.predictions, loss=self.loss, train_op=self.train_op, eval_metric_ops=_get_eval_metric_ops(), export_outputs=export_outputs_dict, training_chief_hooks=self.training_chief_hooks, training_hooks=self.training_hooks, scaffold=self.scaffold)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/model_fn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """run_config.py tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import json from tensorflow.contrib.learn.python.learn.estimators import run_config as run_config_lib from tensorflow.core.protobuf import config_pb2 from tensorflow.python.estimator import run_config as core_run_config from tensorflow.python.platform import test from tensorflow.python.training import server_lib TEST_DIR = "test_dir" ANOTHER_TEST_DIR = "another_test_dir" MASTER = "master_" RANDOM_SEED = 123 patch = test.mock.patch def _create_run_config_with_cluster_spec(tf_config_str): with patch.dict("os.environ", {"TF_CONFIG": tf_config_str}): return run_config_lib.RunConfig( tf_random_seed=RANDOM_SEED, model_dir=TEST_DIR) class RunConfigTest(test.TestCase): def test_instance_of_core_run_config(self): config = run_config_lib.RunConfig() self.assertTrue(isinstance(config, core_run_config.RunConfig)) def test_defaults_with_no_tf_config(self): config = run_config_lib.RunConfig() self.assertEqual(config.master, "") self.assertEqual(config.task_id, 0) self.assertEqual(config.num_ps_replicas, 0) self.assertEqual(config.cluster_spec, {}) self.assertIsNone(config.task_type) self.assertTrue(config.is_chief) self.assertEqual(config.evaluation_master, "") def test_values_from_tf_config(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, "task": { "type": run_config_lib.TaskType.WORKER, "index": 1 } } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual(config.master, "grpc://host4:4") self.assertEqual(config.task_id, 1) self.assertEqual(config.num_ps_replicas, 2) self.assertEqual(config.num_worker_replicas, 3) self.assertEqual(config.cluster_spec.as_dict(), tf_config["cluster"]) self.assertEqual(config.task_type, run_config_lib.TaskType.WORKER) self.assertFalse(config.is_chief) self.assertEqual(config.evaluation_master, "") def test_explicitly_specified_values(self): cluster_spec = { run_config_lib.TaskType.PS: ["localhost:9990"], "my_job_name": ["localhost:9991", "localhost:9992", "localhost:0"] } tf_config = { "cluster": cluster_spec, "task": { "type": run_config_lib.TaskType.WORKER, "index": 2 } } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig( master="localhost:0", evaluation_master="localhost:9991") self.assertEqual(config.master, "localhost:0") self.assertEqual(config.task_id, 2) self.assertEqual(config.num_ps_replicas, 1) self.assertEqual(config.num_worker_replicas, 0) self.assertEqual(config.cluster_spec, server_lib.ClusterSpec(cluster_spec)) self.assertEqual(config.task_type, run_config_lib.TaskType.WORKER) self.assertFalse(config.is_chief) self.assertEqual(config.evaluation_master, "localhost:9991") def test_single_node_in_cluster_spec_produces_empty_master(self): tf_config = {"cluster": {run_config_lib.TaskType.WORKER: ["host1:1"]}} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual(config.master, "") def test_no_task_type_produces_empty_master(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, # Omits "task": {"type": "worker} } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertEqual(config.master, "") def test_invalid_job_name_raises(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, "task": { "type": "not_in_cluster_spec" } } expected_msg_regexp = "not_in_cluster_spec is not a valid task" with patch.dict( "os.environ", {"TF_CONFIG": json.dumps(tf_config)}), self.assertRaisesRegexp( ValueError, expected_msg_regexp): run_config_lib.RunConfig() def test_illegal_task_index_raises(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, "task": { "type": run_config_lib.TaskType.WORKER, "index": 3 } } expected_msg_regexp = "3 is not a valid task_id" with patch.dict( "os.environ", {"TF_CONFIG": json.dumps(tf_config)}), self.assertRaisesRegexp( ValueError, expected_msg_regexp): run_config_lib.RunConfig() def test_is_chief_from_cloud_tf_config(self): # is_chief should be true when ["task"]["type"] == "master" and # index == 0 and ["task"]["environment"] == "cloud". Note that # test_values_from_tf_config covers the non-master case. tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.MASTER: ["host3:3"], run_config_lib.TaskType.WORKER: ["host4:4", "host5:5", "host6:6"] }, "task": { "type": run_config_lib.TaskType.MASTER, "index": 0 }, "environment": "cloud" } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertTrue(config.is_chief) def test_is_chief_from_noncloud_tf_config(self): # is_chief should be true when ["task"]["type"] == "worker" and # index == 0 if ["task"]["environment"] != "cloud". tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.MASTER: ["host3:3"], run_config_lib.TaskType.WORKER: ["host4:4", "host5:5", "host6:6"] }, "task": { "type": run_config_lib.TaskType.WORKER, "index": 0 }, "environment": "random" } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertTrue(config.is_chief) # But task 0 for a job named "master" should not be. tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.MASTER: ["host3:3"], run_config_lib.TaskType.WORKER: ["host4:4", "host5:5", "host6:6"] }, "task": { "type": run_config_lib.TaskType.MASTER, "index": 0 }, "environment": "random" } with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertFalse(config.is_chief) def test_default_is_chief_from_tf_config_without_job_name(self): tf_config = {"cluster": {}, "task": {}} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): config = run_config_lib.RunConfig() self.assertTrue(config.is_chief) def test_model_dir(self): empty_config = run_config_lib.RunConfig() self.assertIsNone(empty_config.model_dir) config = run_config_lib.RunConfig(model_dir=TEST_DIR) self.assertEqual(TEST_DIR, config.model_dir) def test_model_dir_in_tf_config(self): tf_config = {"model_dir": TEST_DIR} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): run_config = run_config_lib.RunConfig() self.assertEqual(TEST_DIR, run_config.model_dir) def test_model_dir_both_in_tf_config_and_constructor(self): tf_config = {"model_dir": TEST_DIR} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): run_config = run_config_lib.RunConfig(model_dir=TEST_DIR) self.assertEqual(TEST_DIR, run_config.model_dir) def test_model_dir_fail_if_constructor_value_mismatch_tf_config(self): tf_config = {"model_dir": TEST_DIR} with patch.dict("os.environ", {"TF_CONFIG": json.dumps(tf_config)}): with self.assertRaisesRegexp( ValueError, "`model_dir` provided in RunConfig .* must have " "the same value .* in TF_CONFIG"): run_config_lib.RunConfig(model_dir=TEST_DIR + "/sub_dir") def test_replace(self): config = run_config_lib.RunConfig( tf_random_seed=RANDOM_SEED, model_dir=TEST_DIR) self.assertEqual(TEST_DIR, config.model_dir) self.assertEqual(RANDOM_SEED, config.tf_random_seed) new_config = config.replace(model_dir=ANOTHER_TEST_DIR) self.assertEqual(ANOTHER_TEST_DIR, new_config.model_dir) self.assertEqual(RANDOM_SEED, new_config.tf_random_seed) self.assertEqual(RANDOM_SEED, config.tf_random_seed) def test_uid_for_different_configs(self): config = run_config_lib.RunConfig( tf_random_seed=RANDOM_SEED, model_dir=TEST_DIR) expected_uid = config.uid() # Check for 10 times, which should prove something. for _ in range(10): self.assertEqual(expected_uid, config.uid()) new_config = config.replace(model_dir=ANOTHER_TEST_DIR) self.assertEqual(TEST_DIR, config.model_dir) self.assertNotEqual(expected_uid, new_config.uid()) self.assertEqual(ANOTHER_TEST_DIR, new_config.model_dir) def test_uid_for_whitelist(self): whitelist = ["model_dir"] config = run_config_lib.RunConfig( tf_random_seed=RANDOM_SEED, model_dir=TEST_DIR) expected_uid = config.uid(whitelist) self.assertEqual(expected_uid, config.uid(whitelist)) new_config = config.replace(model_dir=ANOTHER_TEST_DIR) self.assertEqual(TEST_DIR, config.model_dir) self.assertEqual(expected_uid, new_config.uid(whitelist)) self.assertEqual(ANOTHER_TEST_DIR, new_config.model_dir) def test_uid_for_default_whitelist(self): config = run_config_lib.RunConfig( tf_random_seed=11, save_summary_steps=12, save_checkpoints_steps=13, save_checkpoints_secs=14, session_config=config_pb2.ConfigProto(allow_soft_placement=True), keep_checkpoint_max=16, keep_checkpoint_every_n_hours=17) self.assertEqual(11, config.tf_random_seed) self.assertEqual(12, config.save_summary_steps) self.assertEqual(13, config.save_checkpoints_steps) self.assertEqual(14, config.save_checkpoints_secs) self.assertEqual(config_pb2.ConfigProto(allow_soft_placement=True), config.session_config) self.assertEqual(16, config.keep_checkpoint_max) self.assertEqual(17, config.keep_checkpoint_every_n_hours) new_config = run_config_lib.RunConfig( tf_random_seed=21, save_summary_steps=22, save_checkpoints_steps=23, save_checkpoints_secs=24, session_config=config_pb2.ConfigProto(allow_soft_placement=False), keep_checkpoint_max=26, keep_checkpoint_every_n_hours=27) self.assertEqual(config.uid(), new_config.uid()) # model_dir is not on the default whitelist. self.assertNotEqual(config.uid(whitelist=[]), new_config.uid(whitelist=[])) new_config = new_config.replace(model_dir=ANOTHER_TEST_DIR) self.assertNotEqual(config.uid(), new_config.uid()) def test_uid_for_deepcopy(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, "task": { "type": run_config_lib.TaskType.WORKER, "index": 1 } } config = _create_run_config_with_cluster_spec(json.dumps(tf_config)) expected_uid = config.uid() self.assertEqual(tf_config["cluster"], config.cluster_spec.as_dict()) new_config = copy.deepcopy(config) self.assertEqual(tf_config["cluster"], new_config.cluster_spec.as_dict()) self.assertEqual(expected_uid, new_config.uid()) def test_uid_for_different_cluster_spec_order(self): tf_config_1_str = ( "{\"cluster\": {\"ps\": [\"host1:1\", \"host2:2\"], " "\"worker\": [\"host3:3\", \"host4:4\", \"host5:5\"]}}") tf_config_2_str = ( "{\"cluster\": {\"worker\": [\"host3:3\", \"host4:4\", \"host5:5\"]," "\"ps\": [\"host1:1\", \"host2:2\"]}}") # Wraps in a loop to check flakiness. for _ in range(100): uid_1 = _create_run_config_with_cluster_spec(tf_config_1_str).uid() uid_2 = _create_run_config_with_cluster_spec(tf_config_2_str).uid() self.assertEqual(uid_1, uid_2) def test_uid_for_different_cluster_specs(self): tf_config_1 = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, } tf_config_2 = { "cluster": { run_config_lib.TaskType.PS: ["host1:1"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"] }, } uid_1 = _create_run_config_with_cluster_spec(json.dumps(tf_config_1)).uid() uid_2 = _create_run_config_with_cluster_spec(json.dumps(tf_config_2)).uid() self.assertNotEqual(uid_1, uid_2) def test_num_worker_replicas_counts_in_master_too(self): tf_config = { "cluster": { run_config_lib.TaskType.PS: ["host1:1", "host2:2"], run_config_lib.TaskType.MASTER: ["host6:6"], run_config_lib.TaskType.WORKER: ["host3:3", "host4:4", "host5:5"], }, "task": { "type": run_config_lib.TaskType.WORKER, "index": 1 } } config = _create_run_config_with_cluster_spec(json.dumps(tf_config)) self.assertEqual(config.num_worker_replicas, 4) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/run_config_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstractions for the head(s) of a model (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.contrib import framework as framework_lib from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey as mkey from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import nn from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import string_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import weights_broadcast_ops from tensorflow.python.ops.losses import losses as losses_lib from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import training from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect from tensorflow.python.util.deprecation import deprecated @six.add_metaclass(abc.ABCMeta) class Head(object): """Interface for the head/top of a model. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Given logits (or output of a hidden layer), a Head knows how to compute predictions, loss, default metric and export signature. It is meant to, 1) Simplify writing model_fn and to make model_fn more configurable 2) Support wide range of machine learning models. Since most heads can work with logits, they can support DNN, RNN, Wide, Wide&Deep, Global objectives, Gradient boosted trees and many other types of machine learning models. 2) To allow users to seamlessly switch between 1 to n heads for multi objective learning (See _MultiHead implementation for more details) Common usage: Here is simplified model_fn to build a multiclass DNN model. ```python def _my_dnn_model_fn(features, labels, mode, params, config=None): # Optionally your callers can pass head to model_fn as a param. head = tf.contrib.learn.multi_class_head(...) input = tf.contrib.layers.input_from_feature_columns(features, ...) last_hidden_layer_out = tf.contrib.layers.stack( input, tf.contrib.layers.fully_connected, [1000, 500]) logits = tf.contrib.layers.fully_connected( last_hidden_layer_out, head.logits_dimension, activation_fn=None) def _train_op_fn(loss): return optimizer.minimize(loss) return head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=_train_op_fn, logits=logits, scope=...) ``` Most heads also support logits_input which is typically the output of the last hidden layer. Some heads (like heads responsible for candidate sampling or hierarchical softmax) intrinsically will not support logits and you have to pass logits_input. Here is a common usage, ```python return head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=_train_op_fn, logits_input=last_hidden_layer_out, scope=...) ```python There are cases where computing and applying gradients can not be meaningfully captured with train_op_fn we support (for example, with sync optimizer). In such case, you can take the responsibility on your own. Here is a common use case, ```python model_fn_ops = head.create_model_fn_ops( features=features, labels=labels, mode=mode, train_op_fn=tf.contrib.learn.no_op_train_fn, logits=logits, scope=...) if mode == tf.contrib.learn.ModeKeys.TRAIN: optimizer = ... sync = tf.compat.v1.train.SyncReplicasOptimizer(opt=optimizer, ...) update_op = tf.contrib.layers.optimize_loss(optimizer=sync, loss=model_fn_ops.loss, ...) hooks = [sync.make_session_run_hook(is_chief)] ... update train_op and hooks in ModelFnOps and return ``` """ @abc.abstractproperty def logits_dimension(self): """Size of the last dimension of the logits `Tensor`. Typically, logits is of shape `[batch_size, logits_dimension]`. Returns: The expected size of the `logits` tensor. """ raise NotImplementedError("Calling an abstract method.") @abc.abstractmethod def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """Returns `ModelFnOps` that a model_fn can return. Please note that, + Exactly one of `logits` and `logits_input` must be provided. + All args must be passed via name. Args: features: Input `dict` of `Tensor` objects. mode: Estimator's `ModeKeys`. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss `Tensor` and returns an op to optimize the model with the loss. This is used in TRAIN mode and must not be None. None is allowed in other modes. If you want to optimize loss yourself you can pass `no_op_train_fn` and then use ModeFnOps.loss to compute and apply gradients. logits: logits `Tensor` to be used by the head. logits_input: `Tensor` from which to build logits, often needed when you don't want to compute the logits. Typically this is the activation of the last hidden layer in a DNN. Some heads (like the ones responsible for candidate sampling) intrinsically avoid computing full logits and only accepts logits_input. scope: Optional scope for `variable_scope`. Returns: An instance of `ModelFnOps`. Raises: ValueError: If `mode` is not recognized. ValueError: If neither or both of `logits` and `logits_input` is provided. """ raise NotImplementedError("Calling an abstract method.") @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def regression_head(label_name=None, weight_column_name=None, label_dimension=1, enable_centered_bias=False, head_name=None, link_fn=None): """Creates a `Head` for linear regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. link_fn: link function to convert logits to predictions. If provided, this link function will be used instead of identity. Returns: An instance of `Head` for linear regression. """ return _RegressionHead( label_name=label_name, weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias, head_name=head_name, loss_fn=_mean_squared_loss, link_fn=(link_fn if link_fn is not None else array_ops.identity)) @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def poisson_regression_head(label_name=None, weight_column_name=None, label_dimension=1, enable_centered_bias=False, head_name=None): """Creates a `Head` for poisson regression. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. Returns: An instance of `Head` for poisson regression. """ return _RegressionHead( label_name=label_name, weight_column_name=weight_column_name, label_dimension=label_dimension, enable_centered_bias=enable_centered_bias, head_name=head_name, loss_fn=_poisson_loss, link_fn=math_ops.exp) # TODO(zakaria): Consider adding a _RegressionHead for logistic_regression @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def multi_class_head(n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None, metric_class_ids=None, loss_fn=None, label_keys=None): """Creates a `Head` for multi class single label classification. The Head uses softmax cross entropy loss. This head expects to be fed integer labels specifying the class index. But if `label_keys` is specified, then labels must be strings from this vocabulary, and the predicted classes will be strings from the same vocabulary. Args: n_classes: Integer, number of classes, must be >= 2 label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. Invalid if `n_classes` is 2. loss_fn: Optional function that takes (`labels`, `logits`, `weights`) as parameter and returns a weighted scalar loss. `weights` should be optional. See `tf.losses` label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Only supported for `n_classes` > 2. Returns: An instance of `Head` for multi class classification. Raises: ValueError: if `n_classes` is < 2. ValueError: If `metric_class_ids` is provided when `n_classes` is 2. ValueError: If `len(label_keys) != n_classes`. """ if (n_classes is None) or (n_classes < 2): raise ValueError("n_classes must be > 1 for classification: %s." % n_classes) if loss_fn: _verify_loss_fn_args(loss_fn) loss_fn = _wrap_custom_loss_fn(loss_fn) if loss_fn else None if n_classes == 2: if metric_class_ids: raise ValueError("metric_class_ids invalid for n_classes==2.") if label_keys: raise ValueError("label_keys is not supported for n_classes=2.") return _BinaryLogisticHead( label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, loss_fn=loss_fn) return _MultiClassHead( n_classes=n_classes, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, metric_class_ids=metric_class_ids, loss_fn=loss_fn, label_keys=label_keys) @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def binary_svm_head( label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None,): """Creates a `Head` for binary classification with SVMs. The head uses binary hinge loss. Args: label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] Returns: An instance of `Head` for binary classification with SVM. """ return _BinarySvmHead( label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds) @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def multi_label_head(n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, thresholds=None, metric_class_ids=None, loss_fn=None): """Creates a Head for multi label classification. Multi-label classification handles the case where each example may have zero or more associated labels, from a discrete set. This is distinct from `multi_class_head` which has exactly one label from a discrete set. This head by default uses sigmoid cross entropy loss, which expects as input a multi-hot tensor of shape `(batch_size, num_classes)`. Args: n_classes: Integer, number of classes, must be >= 2 label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary and metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. thresholds: thresholds for eval metrics, defaults to [.5] metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. loss_fn: Optional function that takes (`labels`, `logits`, `weights`) as parameter and returns a weighted scalar loss. `weights` should be optional. See `tf.losses` Returns: An instance of `Head` for multi label classification. Raises: ValueError: If n_classes is < 2 ValueError: If loss_fn does not have expected signature. """ if n_classes < 2: raise ValueError("n_classes must be > 1 for classification.") if loss_fn: _verify_loss_fn_args(loss_fn) return _MultiLabelHead( n_classes=n_classes, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name, thresholds=thresholds, metric_class_ids=metric_class_ids, loss_fn=_wrap_custom_loss_fn(loss_fn) if loss_fn else None) @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def loss_only_head(loss_fn, head_name=None): """Creates a Head that contains only loss terms. Loss only head holds additional loss terms to be added to other heads and usually represents additional regularization terms in the objective function. Args: loss_fn: a function that takes no argument and returns a list of scalar tensors. head_name: a name for the head. Returns: An instance of `Head` to hold the additional losses. """ return _LossOnlyHead(loss_fn, head_name=head_name) @deprecated(None, "Please switch to tf.contrib.estimator.*_head.") def multi_head(heads, loss_weights=None): """Creates a MultiHead stemming from same logits/hidden layer. Args: heads: list of Head objects. loss_weights: optional list of weights to be used to merge losses from each head. All losses are weighted equally if not provided. Returns: A instance of `Head` that merges multiple heads. Raises: ValueError: if heads and loss_weights have different size. """ if loss_weights: if len(loss_weights) != len(heads): raise ValueError("heads and loss_weights must have same size") def _weighted_loss_merger(losses): if loss_weights: if len(losses) != len(loss_weights): raise ValueError("losses and loss_weights must have same size") weighted_losses = [] for loss, weight in zip(losses, loss_weights): weighted_losses.append(math_ops.multiply(loss, weight)) return math_ops.add_n(weighted_losses) else: return math_ops.add_n(losses) return _MultiHead(heads, loss_merger=_weighted_loss_merger) @deprecated(None, "Use 'lambda _: tf.no_op()'.") def no_op_train_fn(loss): del loss return control_flow_ops.no_op() class _SingleHead(Head): """Interface for a single head/top of a model.""" def __init__( self, problem_type, logits_dimension, label_name=None, weight_column_name=None, head_name=None): if problem_type is None: raise ValueError("Invalid problem_type %s." % problem_type) if logits_dimension is None or logits_dimension < 1: raise ValueError("Invalid logits_dimension %s." % logits_dimension) self._problem_type = problem_type self._logits_dimension = logits_dimension self._label_name = label_name self._weight_column_name = weight_column_name self._head_name = head_name @property def logits_dimension(self): return self._logits_dimension @property def label_name(self): return self._label_name @property def weight_column_name(self): return self._weight_column_name @property def head_name(self): return self._head_name def _create_output_alternatives(self, predictions): """Creates output alternative for the Head. Args: predictions: a dict of {tensor_name: Tensor}, where 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. Returns: `dict` of {submodel_name: (problem_type, {tensor_name: Tensor})}, where 'submodel_name' is a submodel identifier that should be consistent across the pipeline (here likely taken from the head_name), 'problem_type' is a `ProblemType`, 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. """ return {self._head_name: (self._problem_type, predictions)} # TODO(zakaria): use contrib losses. def _mean_squared_loss(labels, logits, weights=None): with ops.name_scope(None, "mean_squared_loss", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = ops.convert_to_tensor(labels) # To prevent broadcasting inside "-". if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, axis=1) # TODO(zakaria): make sure it does not recreate the broadcast bug. if len(logits.get_shape()) == 1: logits = array_ops.expand_dims(logits, axis=1) logits.get_shape().assert_is_compatible_with(labels.get_shape()) loss = math_ops.squared_difference( logits, math_ops.cast(labels, dtypes.float32), name=name) return _compute_weighted_loss(loss, weights) def _poisson_loss(labels, logits, weights=None): """Computes poisson loss from logits.""" with ops.name_scope(None, "_poisson_loss", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = ops.convert_to_tensor(labels) # To prevent broadcasting inside "-". if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, axis=1) # TODO(zakaria): make sure it does not recreate the broadcast bug. if len(logits.get_shape()) == 1: logits = array_ops.expand_dims(logits, axis=1) logits.get_shape().assert_is_compatible_with(labels.get_shape()) loss = nn.log_poisson_loss(labels, logits, compute_full_loss=True, name=name) return _compute_weighted_loss(loss, weights) def _logits(logits_input, logits, logits_dimension): """Validate logits args, and create `logits` if necessary. Exactly one of `logits_input` and `logits` must be provided. Args: logits_input: `Tensor` input to `logits`. logits: `Tensor` output. logits_dimension: Integer, last dimension of `logits`. This is used to create `logits` from `logits_input` if `logits` is `None`; otherwise, it's used to validate `logits`. Returns: `logits` `Tensor`. Raises: ValueError: if neither or both of `logits` and `logits_input` are supplied. """ if (logits_dimension is None) or (logits_dimension < 1): raise ValueError("Invalid logits_dimension %s." % logits_dimension) # If not provided, create logits. if logits is None: if logits_input is None: raise ValueError("Neither logits nor logits_input supplied.") return layers_lib.linear(logits_input, logits_dimension, scope="logits") if logits_input is not None: raise ValueError("Both logits and logits_input supplied.") logits = ops.convert_to_tensor(logits, name="logits") logits_dims = logits.get_shape().dims if logits_dims is not None: logits_dims[-1].assert_is_compatible_with(logits_dimension) return logits def _create_model_fn_ops(features, mode, loss_fn, logits_to_predictions_fn, metrics_fn, create_output_alternatives_fn, labels=None, train_op_fn=None, logits=None, logits_dimension=None, head_name=None, weight_column_name=None, enable_centered_bias=False): """Returns a `ModelFnOps` object.""" _check_mode_valid(mode) centered_bias = None if enable_centered_bias: centered_bias = _centered_bias(logits_dimension, head_name) logits = nn.bias_add(logits, centered_bias) predictions = logits_to_predictions_fn(logits) loss = None train_op = None eval_metric_ops = None if (mode != model_fn.ModeKeys.INFER) and (labels is not None): weight_tensor = _weight_tensor(features, weight_column_name) loss, weighted_average_loss = loss_fn(labels, logits, weight_tensor) # The name_scope escapism is needed to maintain the same summary tag # after switching away from the now unsupported API. with ops.name_scope(""): summary_loss = array_ops.identity(weighted_average_loss) summary.scalar(_summary_key(head_name, mkey.LOSS), summary_loss) if mode == model_fn.ModeKeys.TRAIN: if train_op_fn is None: raise ValueError("train_op_fn can not be None in TRAIN mode") batch_size = array_ops.shape(logits)[0] train_op = _train_op(loss, labels, train_op_fn, centered_bias, batch_size, loss_fn, weight_tensor) eval_metric_ops = metrics_fn( weighted_average_loss, predictions, labels, weight_tensor) return model_fn.ModelFnOps( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, output_alternatives=create_output_alternatives_fn(predictions)) class _RegressionHead(_SingleHead): """`Head` for regression with a generalized linear model.""" def __init__(self, label_dimension, loss_fn, link_fn, logits_dimension=None, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None): """`Head` for regression. Args: label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). loss_fn: Loss function, takes logits and labels and returns loss. link_fn: Link function, takes a logits tensor and returns the output. logits_dimension: Number of logits per example. This is the size of the last dimension of the logits `Tensor` (typically, this has shape `[batch_size, label_dimension]`). Default value: `label_dimension`. label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. Predictions, summary and metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. """ super(_RegressionHead, self).__init__( problem_type=constants.ProblemType.LINEAR_REGRESSION, logits_dimension=(logits_dimension if logits_dimension is not None else label_dimension), label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._loss_fn = loss_fn self._link_fn = link_fn self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `Head`.""" with variable_scope.variable_scope( scope, default_name=self.head_name or "regression_head", values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): labels = self._transform_labels(mode=mode, labels=labels) logits = _logits(logits_input, logits, self.logits_dimension) return _create_model_fn_ops( features=features, mode=mode, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=self._create_output_alternatives, labels=labels, train_op_fn=train_op_fn, logits=logits, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, mode, labels): """Applies transformations to labels tensor.""" if (mode == model_fn.ModeKeys.INFER) or (labels is None): return None labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Tensor` after applying possible centered bias. Returns: Dict of prediction `Tensor` keyed by `PredictionKey`. """ key = prediction_key.PredictionKey.SCORES with ops.name_scope(None, "predictions", (logits,)): if self.logits_dimension == 1: logits = array_ops.squeeze(logits, axis=(1,), name=key) return {key: self._link_fn(logits)} def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" del predictions, labels, weights # Unused by this head. with ops.name_scope("metrics", values=[eval_loss]): return { _summary_key(self.head_name, mkey.LOSS): metrics_lib.mean(eval_loss)} def _log_loss_with_two_classes(labels, logits, weights=None): with ops.name_scope(None, "log_loss_with_two_classes", (logits, labels)) as name: logits = ops.convert_to_tensor(logits) labels = math_ops.cast(labels, dtypes.float32) # TODO(ptucker): This will break for dynamic shapes. # sigmoid_cross_entropy_with_logits requires [batch_size, 1] labels. if len(labels.get_shape()) == 1: labels = array_ops.expand_dims(labels, axis=1) loss = nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits, name=name) return _compute_weighted_loss(loss, weights) def _one_class_to_two_class_logits(logits): return array_ops.concat((array_ops.zeros_like(logits), logits), 1) class _BinaryLogisticHead(_SingleHead): """`Head` for binary classification with logistic regression.""" def __init__(self, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, loss_fn=None, thresholds=None): """`Head` for binary classification with logistic regression. Args: label_name: String, name of the key in label dict. Can be `None` if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. Predictions, summary, metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. loss_fn: Loss function. thresholds: thresholds for eval. Raises: ValueError: if n_classes is invalid. """ super(_BinaryLogisticHead, self).__init__( problem_type=constants.ProblemType.LOGISTIC_REGRESSION, logits_dimension=1, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _log_loss_with_two_classes self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `Head`.""" with variable_scope.variable_scope( scope, default_name=self.head_name or "binary_logistic_head", values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): labels = self._transform_labels(mode=mode, labels=labels) logits = _logits(logits_input, logits, self.logits_dimension) return _create_model_fn_ops( features=features, mode=mode, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=_classification_output_alternatives( self.head_name, self._problem_type), labels=labels, train_op_fn=train_op_fn, logits=logits, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, mode, labels): """Applies transformations to labels tensor.""" if (mode == model_fn.ModeKeys.INFER) or (labels is None): return None labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Output` after applying possible centered bias. Returns: Dict of prediction `Output` keyed by `PredictionKey`. """ with ops.name_scope(None, "predictions", (logits,)): two_class_logits = _one_class_to_two_class_logits(logits) return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.LOGISTIC: math_ops.sigmoid( logits, name=prediction_key.PredictionKey.LOGISTIC), prediction_key.PredictionKey.PROBABILITIES: nn.softmax( two_class_logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: math_ops.argmax( two_class_logits, 1, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): classes = predictions[prediction_key.PredictionKey.CLASSES] logistic = predictions[prediction_key.PredictionKey.LOGISTIC] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.accuracy(labels, classes, weights)) metrics[_summary_key(self.head_name, mkey.PREDICTION_MEAN)] = ( _predictions_streaming_mean(logistic, weights)) metrics[_summary_key(self.head_name, mkey.LABEL_MEAN)] = ( _indicator_labels_streaming_mean(labels, weights)) # Also include the streaming mean of the label as an accuracy baseline, as # a reminder to users. metrics[_summary_key(self.head_name, mkey.ACCURACY_BASELINE)] = ( _indicator_labels_streaming_mean(labels, weights)) metrics[_summary_key(self.head_name, mkey.AUC)] = ( _streaming_auc(logistic, labels, weights)) metrics[_summary_key(self.head_name, mkey.AUC_PR)] = ( _streaming_auc(logistic, labels, weights, curve="PR")) for threshold in self._thresholds: metrics[_summary_key( self.head_name, mkey.ACCURACY_MEAN % threshold)] = ( _streaming_accuracy_at_threshold(logistic, labels, weights, threshold)) # Precision for positive examples. metrics[_summary_key( self.head_name, mkey.PRECISION_MEAN % threshold)] = ( _streaming_precision_at_threshold(logistic, labels, weights, threshold)) # Recall for positive examples. metrics[_summary_key( self.head_name, mkey.RECALL_MEAN % threshold)] = ( _streaming_recall_at_threshold(logistic, labels, weights, threshold)) return metrics def _softmax_cross_entropy_loss(labels, logits, weights=None): with ops.name_scope( None, "softmax_cross_entropy_loss", (logits, labels,)) as name: labels = ops.convert_to_tensor(labels) # Check that we got integer for classification. if not labels.dtype.is_integer: raise ValueError("Labels dtype should be integer " "Instead got %s." % labels.dtype) # sparse_softmax_cross_entropy_with_logits requires [batch_size] labels. is_squeezed_labels = False # TODO(ptucker): This will break for dynamic shapes. if len(labels.get_shape()) == 2: labels = array_ops.squeeze(labels, axis=(1,)) is_squeezed_labels = True loss = nn.sparse_softmax_cross_entropy_with_logits( labels=labels, logits=logits, name=name) # Restore squeezed dimension, if necessary, so loss matches weights shape. if is_squeezed_labels: loss = array_ops.expand_dims(loss, axis=(1,)) return _compute_weighted_loss(loss, weights) class _MultiClassHead(_SingleHead): """'Head' for multi class classification.""" def __init__(self, n_classes, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None, loss_fn=None, thresholds=None, metric_class_ids=None, label_keys=None): """'Head' for multi class classification. This head expects to be fed integer labels specifying the class index. But if `label_keys` is specified, then labels must be strings from this vocabulary, and the predicted classes will be strings from the same vocabulary. Args: n_classes: Number of classes, must be greater than 2 (for 2 classes, use `_BinaryLogisticHead`). label_name: String, name of the key in label dict. Can be null if label is a tensor (single headed models). weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: name of the head. If provided, predictions, summary, metrics keys will be suffixed by `"/" + head_name` and the default variable scope will be `head_name`. loss_fn: Loss function. Defaults to softmax cross entropy loss. thresholds: thresholds for eval. metric_class_ids: List of class IDs for which we should report per-class metrics. Must all be in the range `[0, n_classes)`. label_keys: Optional list of strings with size `[n_classes]` defining the label vocabulary. Raises: ValueError: if `n_classes`, `metric_class_ids` or `label_keys` is invalid. """ super(_MultiClassHead, self).__init__( problem_type=constants.ProblemType.CLASSIFICATION, logits_dimension=n_classes, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) if (n_classes is None) or (n_classes <= 2): raise ValueError("n_classes must be > 2: %s." % n_classes) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _softmax_cross_entropy_loss self._enable_centered_bias = enable_centered_bias self._metric_class_ids = tuple([] if metric_class_ids is None else metric_class_ids) for class_id in self._metric_class_ids: if (class_id < 0) or (class_id >= n_classes): raise ValueError("Class ID %s not in [0, %s)." % (class_id, n_classes)) if label_keys and len(label_keys) != n_classes: raise ValueError("Length of label_keys must equal n_classes.") self._label_keys = label_keys def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `Head`.""" with variable_scope.variable_scope( scope, default_name=self.head_name or "multi_class_head", values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): labels = self._transform_labels(mode=mode, labels=labels) logits = _logits(logits_input, logits, self.logits_dimension) return _create_model_fn_ops( features=features, mode=mode, loss_fn=self._wrapped_loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=_classification_output_alternatives( self.head_name, self._problem_type, self._label_keys), labels=labels, train_op_fn=train_op_fn, logits=logits, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, mode, labels): """Returns a dict that contains both the original labels and label IDs.""" if (mode == model_fn.ModeKeys.INFER) or (labels is None): return None labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) if self._label_keys: table = lookup_ops.index_table_from_tensor( self._label_keys, name="label_id_lookup") return { "labels": labels_tensor, "label_ids": table.lookup(labels_tensor), } return { "labels": labels_tensor, "label_ids": labels_tensor, } def _labels(self, labels_dict): """Returns labels `Tensor` of the same type as classes.""" return labels_dict["labels"] def _label_ids(self, labels_dict): """Returns integer label ID `Tensor`.""" return labels_dict["label_ids"] def _wrapped_loss_fn(self, labels, logits, weights=None): return self._loss_fn(self._label_ids(labels), logits, weights=weights) def _logits_to_predictions(self, logits): """Returns a dict of predictions. Args: logits: logits `Tensor` after applying possible centered bias. Returns: Dict of prediction `Tensor` keyed by `PredictionKey`. """ with ops.name_scope(None, "predictions", (logits,)): class_ids = math_ops.argmax( logits, 1, name=prediction_key.PredictionKey.CLASSES) if self._label_keys: table = lookup_ops.index_to_string_table_from_tensor( self._label_keys, name="class_string_lookup") classes = table.lookup(class_ids) else: classes = class_ids return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.PROBABILITIES: nn.softmax( logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: classes } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope( "metrics", values=((eval_loss, self._labels(labels), self._label_ids(labels), weights) + tuple(six.itervalues(predictions)))): logits = predictions[prediction_key.PredictionKey.LOGITS] probabilities = predictions[prediction_key.PredictionKey.PROBABILITIES] classes = predictions[prediction_key.PredictionKey.CLASSES] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.accuracy(self._labels(labels), classes, weights)) if not self._label_keys: # Classes are IDs. Add some metrics. for class_id in self._metric_class_ids: metrics[_summary_key( self.head_name, mkey.CLASS_PREDICTION_MEAN % class_id)] = ( _class_predictions_streaming_mean(classes, weights, class_id)) # TODO(ptucker): Add per-class accuracy, precision, recall. metrics[_summary_key( self.head_name, mkey.CLASS_LABEL_MEAN % class_id)] = ( _class_labels_streaming_mean( self._label_ids(labels), weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_PROBABILITY_MEAN % class_id)] = ( _predictions_streaming_mean(probabilities, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LOGITS_MEAN % class_id)] = ( _predictions_streaming_mean(logits, weights, class_id)) return metrics def _to_labels_tensor(labels, label_name): """Returns label as a tensor. Args: labels: Label `Tensor` or `SparseTensor` or a dict containing labels. label_name: Label name if labels is a dict. Returns: Label `Tensor` or `SparseTensor`. """ labels = labels[label_name] if isinstance(labels, dict) else labels return framework_lib.convert_to_tensor_or_sparse_tensor(labels) def _check_no_sparse_tensor(x): """Raises ValueError if the given tensor is `SparseTensor`.""" if isinstance(x, sparse_tensor.SparseTensor): raise ValueError("SparseTensor is not supported.") def _sparse_labels_to_indicator(labels, num_classes): """If labels is `SparseTensor`, converts it to indicator `Tensor`. Args: labels: Label `Tensor` or `SparseTensor`. num_classes: Number of classes. Returns: Dense label `Tensor`. Raises: ValueError: If labels is `SparseTensor` and `num_classes` < 2. """ if isinstance(labels, sparse_tensor.SparseTensor): if num_classes < 2: raise ValueError("Must set num_classes >= 2 when passing labels as a " "SparseTensor.") return math_ops.cast( sparse_ops.sparse_to_indicator(labels, num_classes), dtypes.int64) return labels def _assert_labels_rank(labels): return control_flow_ops.Assert( math_ops.less_equal(array_ops.rank(labels), 2), ("labels shape should be either [batch_size, 1] or [batch_size]",)) class _BinarySvmHead(_SingleHead): """`Head` for binary classification using SVM.""" def __init__(self, label_name, weight_column_name, enable_centered_bias, head_name, thresholds): def _loss_fn(labels, logits, weights=None): with ops.name_scope(None, "hinge_loss", (logits, labels)) as name: with ops.control_dependencies((_assert_labels_rank(labels),)): labels = array_ops.reshape(labels, shape=(-1, 1)) loss = losses_lib.hinge_loss(labels=labels, logits=logits, scope=name, reduction=losses_lib.Reduction.NONE) return _compute_weighted_loss(loss, weights) super(_BinarySvmHead, self).__init__( problem_type=constants.ProblemType.LOGISTIC_REGRESSION, logits_dimension=1, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = _loss_fn self._enable_centered_bias = enable_centered_bias def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `Head`.""" with variable_scope.variable_scope( scope, default_name=self.head_name or "binary_svm_head", values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): labels = self._transform_labels(mode=mode, labels=labels) logits = _logits(logits_input, logits, self.logits_dimension) return _create_model_fn_ops( features=features, mode=mode, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, # TODO(zakaria): Handle labels for export. create_output_alternatives_fn=self._create_output_alternatives, labels=labels, train_op_fn=train_op_fn, logits=logits, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, mode, labels): """Applies transformations to labels tensor.""" if (mode == model_fn.ModeKeys.INFER) or (labels is None): return None labels_tensor = _to_labels_tensor(labels, self._label_name) _check_no_sparse_tensor(labels_tensor) return labels_tensor def _logits_to_predictions(self, logits): """See `_MultiClassHead`.""" with ops.name_scope(None, "predictions", (logits,)): return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.CLASSES: math_ops.argmax( _one_class_to_two_class_logits(logits), 1, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """See `_MultiClassHead`.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. classes = predictions[prediction_key.PredictionKey.CLASSES] metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.accuracy(labels, classes, weights)) # TODO(sibyl-vie3Poto): add more metrics relevant for svms. return metrics class _MultiLabelHead(_SingleHead): """`Head` for multi-label classification.""" # TODO(zakaria): add signature and metric for multilabel. def __init__(self, n_classes, label_name, weight_column_name, enable_centered_bias, head_name, thresholds, metric_class_ids=None, loss_fn=None): super(_MultiLabelHead, self).__init__( problem_type=constants.ProblemType.CLASSIFICATION, logits_dimension=n_classes, label_name=label_name, weight_column_name=weight_column_name, head_name=head_name) self._thresholds = thresholds if thresholds else (.5,) self._loss_fn = loss_fn if loss_fn else _sigmoid_cross_entropy_loss self._enable_centered_bias = enable_centered_bias self._metric_class_ids = tuple([] if metric_class_ids is None else metric_class_ids) for class_id in self._metric_class_ids: if (class_id < 0) or (class_id >= n_classes): raise ValueError("Class ID %s not in [0, %s)." % (class_id, n_classes)) def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `Head`.""" with variable_scope.variable_scope( scope, default_name=self.head_name or "multi_label_head", values=(tuple(six.itervalues(features)) + (labels, logits, logits_input))): labels = self._transform_labels(mode=mode, labels=labels) logits = _logits(logits_input, logits, self.logits_dimension) return _create_model_fn_ops( features=features, mode=mode, loss_fn=self._loss_fn, logits_to_predictions_fn=self._logits_to_predictions, metrics_fn=self._metrics, create_output_alternatives_fn=_classification_output_alternatives( self.head_name, self._problem_type), labels=labels, train_op_fn=train_op_fn, logits=logits, logits_dimension=self.logits_dimension, head_name=self.head_name, weight_column_name=self.weight_column_name, enable_centered_bias=self._enable_centered_bias) def _transform_labels(self, mode, labels): """Applies transformations to labels tensor.""" if (mode == model_fn.ModeKeys.INFER) or (labels is None): return None labels_tensor = _to_labels_tensor(labels, self._label_name) labels_tensor = _sparse_labels_to_indicator(labels_tensor, self._logits_dimension) return labels_tensor def _logits_to_predictions(self, logits): """See `_MultiClassHead`.""" with ops.name_scope(None, "predictions", (logits,)): return { prediction_key.PredictionKey.LOGITS: logits, prediction_key.PredictionKey.PROBABILITIES: math_ops.sigmoid( logits, name=prediction_key.PredictionKey.PROBABILITIES), prediction_key.PredictionKey.CLASSES: math_ops.cast( math_ops.greater(logits, 0), dtypes.int64, name=prediction_key.PredictionKey.CLASSES) } def _metrics(self, eval_loss, predictions, labels, weights): """Returns a dict of metrics keyed by name.""" with ops.name_scope("metrics", values=( [eval_loss, labels, weights] + list(six.itervalues(predictions)))): classes = predictions[prediction_key.PredictionKey.CLASSES] probabilities = predictions[prediction_key.PredictionKey.PROBABILITIES] logits = predictions[prediction_key.PredictionKey.LOGITS] metrics = {_summary_key(self.head_name, mkey.LOSS): metrics_lib.mean(eval_loss)} # TODO(b/29366811): This currently results in both an "accuracy" and an # "accuracy/threshold_0.500000_mean" metric for binary classification. metrics[_summary_key(self.head_name, mkey.ACCURACY)] = ( metrics_lib.accuracy(labels, classes, weights)) metrics[_summary_key(self.head_name, mkey.AUC)] = _streaming_auc( probabilities, labels, weights) metrics[_summary_key(self.head_name, mkey.AUC_PR)] = _streaming_auc( probabilities, labels, weights, curve="PR") for class_id in self._metric_class_ids: # TODO(ptucker): Add per-class accuracy, precision, recall. metrics[_summary_key( self.head_name, mkey.CLASS_PREDICTION_MEAN % class_id)] = ( _predictions_streaming_mean(classes, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LABEL_MEAN % class_id)] = ( _indicator_labels_streaming_mean(labels, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_PROBABILITY_MEAN % class_id)] = ( _predictions_streaming_mean(probabilities, weights, class_id)) metrics[_summary_key( self.head_name, mkey.CLASS_LOGITS_MEAN % class_id)] = ( _predictions_streaming_mean(logits, weights, class_id)) metrics[_summary_key(self.head_name, mkey.CLASS_AUC % class_id)] = ( _streaming_auc(probabilities, labels, weights, class_id)) metrics[_summary_key(self.head_name, mkey.CLASS_AUC_PR % class_id)] = ( _streaming_auc(probabilities, labels, weights, class_id, curve="PR")) return metrics class _LossOnlyHead(Head): """`Head` implementation for additional loss terms. This class only holds loss terms unrelated to any other heads (labels), e.g. regularization. Common usage: This is oftem combine with other heads in a multi head setup. ```python head = multi_head([ head1, head2, loss_only_head('regularizer', regularizer)]) ``` """ def __init__(self, loss_fn, head_name=None): self._loss_fn = loss_fn self.head_name = head_name or "loss_only_head" @property def logits_dimension(self): return 0 def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head.create_model_fn_ops`. Args: features: Not been used. mode: Estimator's `ModeKeys`. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss and returns an op to optimize with the loss. logits: Not been used. logits_input: Not been used. scope: Optional scope for variable_scope. If provided, will be passed to all heads. Most users will want to set this to `None`, so each head constructs a separate variable_scope according to its `head_name`. Returns: A `ModelFnOps` object. Raises: ValueError: if `mode` is not recognition. """ _check_mode_valid(mode) loss = None train_op = None if mode != model_fn.ModeKeys.INFER: with variable_scope.variable_scope(scope, default_name=self.head_name): loss = self._loss_fn() if isinstance(loss, list): loss = math_ops.add_n(loss) # The name_scope escapism is needed to maintain the same summary tag # after switching away from the now unsupported API. with ops.name_scope(""): summary_loss = array_ops.identity(loss) summary.scalar(_summary_key(self.head_name, mkey.LOSS), summary_loss) if mode == model_fn.ModeKeys.TRAIN: if train_op_fn is None: raise ValueError("train_op_fn can not be None in TRAIN mode") with ops.name_scope(None, "train_op", (loss,)): train_op = train_op_fn(loss) return model_fn.ModelFnOps( mode=mode, loss=loss, train_op=train_op, predictions={}, eval_metric_ops={}) class _MultiHead(Head): """`Head` implementation for multi objective learning. This class is responsible for using and merging the output of multiple `Head` objects. All heads stem from the same logits/logit_input tensor. Common usage: For simple use cases you can pass the activation of hidden layer like this from your model_fn, ```python last_hidden_layer_activation = ... Build your model. multi_head = ... return multi_head.create_model_fn_ops( ..., logits_input=last_hidden_layer_activation, ...) ``` Or you can create a logits tensor of [batch_size, multi_head.logits_dimension] shape. _MultiHead will split the logits for you. return multi_head.create_model_fn_ops(..., logits=logits, ...) For more complex use cases like a multi-task/multi-tower model or when logits for each head has to be created separately, you can pass a dict of logits where the keys match the name of the single heads. ```python logits = {"head1": logits1, "head2": logits2} return multi_head.create_model_fn_ops(..., logits=logits, ...) ``` Here is what this class does, + For training, merges losses of each heads according a function provided by user, calls user provided train_op_fn with this final loss. + For eval, merges metrics by adding head_name suffix to the keys in eval metrics. + For inference, updates keys in prediction dict to a 2-tuple, (head_name, prediction_key) """ def __init__(self, heads, loss_merger): """_Head to merges multiple _Head objects. Args: heads: list of _Head objects. loss_merger: function that takes a list of loss tensors for the heads and returns the final loss tensor for the multi head. Raises: ValueError: if any head does not have a name. """ self._logits_dimension = 0 for head in heads: if not head.head_name: raise ValueError("Members of MultiHead must have names.") self._logits_dimension += head.logits_dimension self._heads = heads self._loss_merger = loss_merger @property def logits_dimension(self): return self._logits_dimension def create_model_fn_ops(self, features, mode, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head.create_model_fn_ops`. Args: features: Input `dict` of `Tensor` objects. mode: Estimator's `ModeKeys`. labels: Labels `Tensor`, or `dict` of same. train_op_fn: Function that takes a scalar loss and returns an op to optimize with the loss. logits: Concatenated logits for all heads or a dict of head name to logits tensor. If concatenated logits, it should have (batchsize, x) shape where x is the sum of `logits_dimension` of all the heads, i.e., same as `logits_dimension` of this class. create_model_fn_ops will split the logits tensor and pass logits of proper size to each head. This is useful if we want to be agnostic about whether you creating a single versus multihead. logits can also be a dict for convenience where you are creating the head specific logits explicitly and don't want to concatenate them yourself. logits_input: tensor to build logits from. scope: Optional scope for variable_scope. If provided, will be passed to all heads. Most users will want to set this to `None`, so each head constructs a separate variable_scope according to its `head_name`. Returns: `ModelFnOps`. Raises: ValueError: if `mode` is not recognized, or neither or both of `logits` and `logits_input` is provided. """ _check_mode_valid(mode) all_model_fn_ops = [] if logits is None: # Use logits_input. for head in self._heads: all_model_fn_ops.append( head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=no_op_train_fn, logits_input=logits_input, scope=scope)) else: head_logits_pairs = [] if isinstance(logits, dict): head_logits_pairs = [] for head in self._heads: if isinstance(head, _LossOnlyHead): head_logits_pairs.append((head, None)) else: head_logits_pairs.append((head, logits[head.head_name])) else: # Split logits for each head. head_logits_pairs = zip(self._heads, self._split_logits(logits)) for head, head_logits in head_logits_pairs: all_model_fn_ops.append( head.create_model_fn_ops( features=features, mode=mode, labels=labels, train_op_fn=no_op_train_fn, logits=head_logits, scope=scope)) if mode == model_fn.ModeKeys.TRAIN: if train_op_fn is None: raise ValueError("train_op_fn can not be None in TRAIN mode.") return self._merge_train(all_model_fn_ops, train_op_fn) if mode == model_fn.ModeKeys.INFER: return self._merge_infer(all_model_fn_ops) if mode == model_fn.ModeKeys.EVAL: return self._merge_eval(all_model_fn_ops) raise ValueError("mode=%s unrecognized" % str(mode)) def _split_logits(self, logits): """Splits logits for heads. Args: logits: the logits tensor. Returns: A list of logits for the individual heads. """ all_logits = [] begin = 0 for head in self._heads: current_logits_size = head.logits_dimension current_logits = array_ops.slice(logits, [0, begin], [-1, current_logits_size]) all_logits.append(current_logits) begin += current_logits_size return all_logits def _merge_train(self, all_model_fn_ops, train_op_fn): """Merges list of ModelFnOps for training. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. train_op_fn: Function to create train op. See `create_model_fn_ops` documentation for more details. Returns: ModelFnOps that merges all heads for TRAIN. """ losses = [] metrics = {} additional_train_ops = [] for m in all_model_fn_ops: losses.append(m.loss) if m.eval_metric_ops is not None: for k, v in six.iteritems(m.eval_metric_ops): # metrics["%s/%s" % (k, head_name)] = v metrics[k] = v additional_train_ops.append(m.train_op) loss = self._loss_merger(losses) train_op = train_op_fn(loss) train_op = control_flow_ops.group(train_op, *additional_train_ops) return model_fn.ModelFnOps( mode=model_fn.ModeKeys.TRAIN, loss=loss, train_op=train_op, eval_metric_ops=metrics) def _merge_infer(self, all_model_fn_ops): """Merges list of ModelFnOps for inference. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. Returns: ModelFnOps that Merges all the heads for INFER. """ predictions = {} output_alternatives = {} for head, m in zip(self._heads, all_model_fn_ops): if isinstance(head, _LossOnlyHead): continue head_name = head.head_name output_alternatives[head_name] = m.output_alternatives[head_name] for k, v in m.predictions.items(): predictions[(head_name, k)] = v return model_fn.ModelFnOps( mode=model_fn.ModeKeys.INFER, predictions=predictions, output_alternatives=output_alternatives) def _merge_eval(self, all_model_fn_ops): """Merges list of ModelFnOps for eval. Args: all_model_fn_ops: list of ModelFnOps for the individual heads. Returns: ModelFnOps that merges all the heads for EVAL. """ predictions = {} metrics = {} losses = [] for head, m in zip(self._heads, all_model_fn_ops): losses.append(m.loss) head_name = head.head_name for k, v in m.predictions.items(): predictions[(head_name, k)] = v for k, v in m.eval_metric_ops.items(): # metrics["%s/%s" % (k, head_name)] = v metrics[k] = v loss = self._loss_merger(losses) return model_fn.ModelFnOps( mode=model_fn.ModeKeys.EVAL, predictions=predictions, loss=loss, eval_metric_ops=metrics) def _weight_tensor(features, weight_column_name): """Returns weights as `Tensor` of rank 0, or at least 2.""" if not weight_column_name: return None if weight_column_name not in features: raise ValueError("Weights {} missing from features.".format( weight_column_name)) with ops.name_scope(None, "weight_tensor", tuple(six.itervalues(features))): weight_tensor = math_ops.cast(features[weight_column_name], dtypes.float32) shape = weight_tensor.get_shape() rank = shape.ndims # We don't bother with expanding dims of non-staticly shaped tensors or # scalars, and >1d is already in a good format. if rank == 1: logging.warning("Weights {} has shape {}, expanding to make it 2d.". format(weight_column_name, shape)) return ( sparse_ops.sparse_reshape(weight_tensor, (-1, 1)) if isinstance(weight_tensor, sparse_tensor.SparseTensor) else array_ops.reshape(weight_tensor, (-1, 1))) return weight_tensor # TODO(zakaria): This function is needed for backward compatibility and should # be removed when we migrate to core. def _compute_weighted_loss(loss_unweighted, weight, name="loss"): """Returns a tuple of (loss_train, loss_report). loss is used for gradient descent while weighted_average_loss is used for summaries to be backward compatible. loss is different from the loss reported on the tensorboard as we should respect the example weights when computing the gradient. L = sum_{i} w_{i} * l_{i} / B where B is the number of examples in the batch, l_{i}, w_{i} are individual losses, and example weight. Args: loss_unweighted: Unweighted loss weight: Weight tensor name: Optional name Returns: A tuple of losses. First one for training and the second one for reporting. """ with ops.name_scope(name, values=(loss_unweighted, weight)) as name_scope: if weight is None: loss = math_ops.reduce_mean(loss_unweighted, name=name_scope) return loss, loss weight = weights_broadcast_ops.broadcast_weights(weight, loss_unweighted) with ops.name_scope(None, "weighted_loss", (loss_unweighted, weight)) as name: weighted_loss = math_ops.multiply(loss_unweighted, weight, name=name) weighted_loss_mean = math_ops.reduce_mean(weighted_loss, name=name_scope) weighted_loss_normalized = math_ops.div( math_ops.reduce_sum(weighted_loss), math_ops.cast(math_ops.reduce_sum(weight), dtypes.float32), name="weighted_average_loss") return weighted_loss_mean, weighted_loss_normalized def _wrap_custom_loss_fn(loss_fn): def _wrapper(labels, logits, weights=None): if weights is None: loss = loss_fn(labels, logits) else: loss = loss_fn(labels, logits, weights) return loss, loss return _wrapper def _check_mode_valid(mode): """Raises ValueError if the given mode is invalid.""" if (mode != model_fn.ModeKeys.TRAIN and mode != model_fn.ModeKeys.INFER and mode != model_fn.ModeKeys.EVAL): raise ValueError("mode=%s unrecognized." % str(mode)) def _get_arguments(func): """Returns a spec of given func.""" _, func = tf_decorator.unwrap(func) if hasattr(func, "__code__"): # Regular function. return tf_inspect.getargspec(func) elif hasattr(func, "func"): # Partial function. return _get_arguments(func.func) elif hasattr(func, "__call__"): # Callable object. return _get_arguments(func.__call__) def _verify_loss_fn_args(loss_fn): args = _get_arguments(loss_fn).args for arg_name in ["labels", "logits", "weights"]: if arg_name not in args: raise ValueError("Argument %s not found in loss_fn." % arg_name) def _centered_bias(logits_dimension, head_name=None): """Returns centered_bias `Variable`. Args: logits_dimension: Last dimension of `logits`. Must be >= 1. head_name: Optional name of the head. Returns: `Variable` with shape `[logits_dimension]`. Raises: ValueError: if `logits_dimension` is invalid. """ if (logits_dimension is None) or (logits_dimension < 1): raise ValueError("Invalid logits_dimension %s." % logits_dimension) # Do not create a variable with variable_scope.get_variable, because that may # create a PartitionedVariable, which does not support indexing, so # summary.scalar will not work. centered_bias = variable_scope.variable( name="centered_bias_weight", initial_value=array_ops.zeros(shape=(logits_dimension,)), trainable=True) for dim in range(logits_dimension): if head_name: summary.scalar("centered_bias/bias_%d/%s" % (dim, head_name), centered_bias[dim]) else: summary.scalar("centered_bias/bias_%d" % dim, centered_bias[dim]) return centered_bias def _centered_bias_step(centered_bias, batch_size, labels, loss_fn, weights): """Creates and returns training op for centered bias.""" with ops.name_scope(None, "centered_bias_step", (labels,)) as name: logits_dimension = array_ops.shape(centered_bias)[0] logits = array_ops.reshape( array_ops.tile(centered_bias, (batch_size,)), (batch_size, logits_dimension)) with ops.name_scope(None, "centered_bias", (labels, logits)): centered_bias_loss = math_ops.reduce_mean( loss_fn(labels, logits, weights), name="training_loss") # Learn central bias by an optimizer. 0.1 is a convervative lr for a # single variable. return training.AdagradOptimizer(0.1).minimize( centered_bias_loss, var_list=(centered_bias,), name=name) def _summary_key(head_name, val): return "%s/%s" % (val, head_name) if head_name else val def _train_op(loss, labels, train_op_fn, centered_bias, batch_size, loss_fn, weights): """Returns op for the training step.""" if centered_bias is not None: centered_bias_step = _centered_bias_step( centered_bias=centered_bias, batch_size=batch_size, labels=labels, loss_fn=loss_fn, weights=weights) else: centered_bias_step = None with ops.name_scope(None, "train_op", (loss, labels)): train_op = train_op_fn(loss) if centered_bias_step is not None: train_op = control_flow_ops.group(train_op, centered_bias_step) return train_op def _sigmoid_cross_entropy_loss(labels, logits, weights=None): with ops.name_scope(None, "sigmoid_cross_entropy_loss", (logits, labels)) as name: # sigmoid_cross_entropy_with_logits requires [batch_size, n_classes] labels. loss = nn.sigmoid_cross_entropy_with_logits( labels=math_ops.cast(labels, dtypes.float32), logits=logits, name=name) return _compute_weighted_loss(loss, weights) def _float_weights_or_none(weights): if weights is None: return None with ops.name_scope(None, "float_weights", (weights,)) as name: return math_ops.cast(weights, dtypes.float32, name=name) def _indicator_labels_streaming_mean(labels, weights=None, class_id=None): labels = math_ops.cast(labels, dtypes.float32) weights = _float_weights_or_none(weights) if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, labels) if class_id is not None: if weights is not None: weights = weights[:, class_id] labels = labels[:, class_id] return metrics_lib.mean(labels, weights) def _predictions_streaming_mean(predictions, weights=None, class_id=None): predictions = math_ops.cast(predictions, dtypes.float32) weights = _float_weights_or_none(weights) if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, predictions) if class_id is not None: if weights is not None: weights = weights[:, class_id] predictions = predictions[:, class_id] return metrics_lib.mean(predictions, weights) # TODO(ptucker): Add support for SparseTensor labels. def _class_id_labels_to_indicator(labels, num_classes): if (num_classes is None) or (num_classes < 2): raise ValueError("Invalid num_classes %s." % num_classes) with ops.control_dependencies((_assert_labels_rank(labels),)): labels = array_ops.reshape(labels, (-1,)) return array_ops.one_hot(labels, depth=num_classes, axis=-1) def _class_predictions_streaming_mean(predictions, weights, class_id): return metrics_lib.mean( array_ops.where( math_ops.equal( math_ops.cast(class_id, dtypes.int32), math_ops.cast(predictions, dtypes.int32)), array_ops.ones_like(predictions), array_ops.zeros_like(predictions)), weights=weights) def _class_labels_streaming_mean(labels, weights, class_id): return metrics_lib.mean( array_ops.where( math_ops.equal( math_ops.cast(class_id, dtypes.int32), math_ops.cast(labels, dtypes.int32)), array_ops.ones_like(labels), array_ops.zeros_like(labels)), weights=weights) def _streaming_auc(predictions, labels, weights=None, class_id=None, curve="ROC"): # pylint: disable=missing-docstring predictions = math_ops.cast(predictions, dtypes.float32) if labels.dtype.base_dtype != dtypes.bool: logging.warning("Casting %s labels to bool.", labels.dtype) labels = math_ops.cast(labels, dtypes.bool) weights = _float_weights_or_none(weights) if weights is not None: weights = weights_broadcast_ops.broadcast_weights(weights, predictions) if class_id is not None: if weights is not None: weights = weights[:, class_id] predictions = predictions[:, class_id] labels = labels[:, class_id] return metrics_lib.auc(labels, predictions, weights, curve=curve) def _assert_class_id(class_id, num_classes=None): """Average label value for class `class_id`.""" if (class_id is None) or (class_id < 0): raise ValueError("Invalid class_id %s." % class_id) if num_classes is not None: if num_classes < 2: raise ValueError("Invalid num_classes %s." % num_classes) if class_id >= num_classes: raise ValueError("Invalid class_id %s." % class_id) def _streaming_accuracy_at_threshold(predictions, labels, weights, threshold): threshold_predictions = math_ops.cast( math_ops.greater_equal(predictions, threshold), dtypes.float32) return metrics_lib.accuracy(labels, threshold_predictions, weights) def _streaming_precision_at_threshold(predictions, labels, weights, threshold): precision_tensor, update_op = metrics_lib.precision_at_thresholds( labels, predictions, (threshold,), _float_weights_or_none(weights)) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op) def _streaming_recall_at_threshold(predictions, labels, weights, threshold): precision_tensor, update_op = metrics_lib.recall_at_thresholds( labels, predictions, (threshold,), _float_weights_or_none(weights)) return array_ops.squeeze(precision_tensor), array_ops.squeeze(update_op) def _classification_output_alternatives(head_name, problem_type, label_keys=None): """Creates a func to generate output alternatives for classification. Servo expects classes to be a string tensor, and have the same dimensions as the probabilities tensor. It should contain the labels of the corresponding entries in probabilities. This function creates a new classes tensor that satisfies these conditions and can be exported. Args: head_name: Name of the head. problem_type: `ProblemType` label_keys: Optional label keys Returns: A function to generate output alternatives. """ def _create_output_alternatives(predictions): """Creates output alternative for the Head. Args: predictions: a dict of {tensor_name: Tensor}, where 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. Returns: `dict` of {submodel_name: (problem_type, {tensor_name: Tensor})}, where 'submodel_name' is a submodel identifier that should be consistent across the pipeline (here likely taken from the head_name), 'problem_type' is a `ProblemType`, 'tensor_name' is a symbolic name for an output Tensor possibly but not necessarily taken from `PredictionKey`, and 'Tensor' is the corresponding output Tensor itself. Raises: ValueError: if predictions does not have PredictionKey.PROBABILITIES key. """ probabilities = predictions.get(prediction_key.PredictionKey.PROBABILITIES) if probabilities is None: raise ValueError("%s missing in predictions" % prediction_key.PredictionKey.PROBABILITIES) with ops.name_scope(None, "_classification_output_alternatives", (probabilities,)): batch_size = array_ops.shape(probabilities)[0] if label_keys: classes = array_ops.tile( input=array_ops.expand_dims(input=label_keys, axis=0), multiples=[batch_size, 1], name="classes_tensor") else: n = array_ops.shape(probabilities)[1] classes = array_ops.tile( input=array_ops.expand_dims(input=math_ops.range(n), axis=0), multiples=[batch_size, 1]) classes = string_ops.as_string(classes, name="classes_tensor") exported_predictions = { prediction_key.PredictionKey.PROBABILITIES: probabilities, prediction_key.PredictionKey.CLASSES: classes} return {head_name: (problem_type, exported_predictions)} return _create_output_alternatives # Aliases # TODO(zakaria): Remove these aliases, See b/34751732 _regression_head = regression_head _poisson_regression_head = poisson_regression_head _multi_class_head = multi_class_head _binary_svm_head = binary_svm_head _multi_label_head = multi_label_head _multi_head = multi_head _Head = Head
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/head.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNLinearCombinedEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column_lib as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.losses import losses from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import learning_rate_decay from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib from tensorflow.python.training import session_run_hook from tensorflow.python.training import sync_replicas_optimizer from tensorflow.python.training import training_util def _assert_metrics_in_range(keys, metrics): epsilon = 0.00001 # Added for floating point edge cases. for key in keys: estimator_test_utils.assert_in_range(0.0 - epsilon, 1.0 + epsilon, key, metrics) class _CheckCallsHead(head_lib.Head): """Head that checks whether head_ops is called.""" def __init__(self): self._head_ops_called_times = 0 @property def logits_dimension(self): return 1 def create_model_fn_ops( self, mode, features, labels=None, train_op_fn=None, logits=None, logits_input=None, scope=None): """See `_Head`.""" self._head_ops_called_times += 1 loss = losses.mean_squared_error(labels, logits) return model_fn.ModelFnOps( mode, predictions={'loss': loss}, loss=loss, train_op=train_op_fn(loss), eval_metric_ops={'loss': loss}) @property def head_ops_called_times(self): return self._head_ops_called_times class _StepCounterHook(session_run_hook.SessionRunHook): """Counts the number of training steps.""" def __init__(self): self._steps = 0 def after_run(self, run_context, run_values): del run_context, run_values self._steps += 1 @property def steps(self): return self._steps class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'dnn_feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn_linear_combined._dnn_linear_combined_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'dnn_feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'dnn_hidden_units': [1], # Set lr mult to 0. to keep language embeddings constant, whereas wire # embeddings will be trained. 'embedding_lr_multipliers': { embedding_language: 0.0 }, 'dnn_optimizer': 'Adagrad', } with ops.Graph().as_default(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) training_util.create_global_step() model_ops = dnn_linear_combined._dnn_linear_combined_model_fn( features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') language_initial_value = sess.run(language_var) for _ in range(2): _, language_value = sess.run([model_ops.train_op, language_var]) self.assertAllClose(language_value, language_initial_value) # We could also test that wire_value changed, but that test would be flaky. class DNNLinearCombinedEstimatorTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedEstimator) def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedEstimator( head=_CheckCallsHead(), linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testCheckCallsHead(self): """Tests binary classification using matrix data as input.""" head = _CheckCallsHead() iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10))] estimator = dnn_linear_combined.DNNLinearCombinedEstimator( head, linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) estimator.fit(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(1, head.head_ops_called_times) estimator.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=10) self.assertEqual(2, head.head_ops_called_times) estimator.predict(input_fn=test_data.iris_input_multiclass_fn) self.assertEqual(3, head.head_ops_called_times) class DNNLinearCombinedClassifierTest(test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedClassifier) def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testNoFeatureColumns(self): with self.assertRaisesRegexp( ValueError, 'Either linear_feature_columns or dnn_feature_columns must be defined'): dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=None, dnn_feature_columns=None, dnn_hidden_units=[3, 3]) def testNoDnnHiddenUnits(self): def _input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') with self.assertRaisesRegexp( ValueError, 'dnn_hidden_units must be defined when dnn_feature_columns is ' 'specified'): classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[age, language]) classifier.fit(input_fn=_input_fn, steps=2) def testSyncReplicasOptimizerUnsupported(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] sync_optimizer = sync_replicas_optimizer.SyncReplicasOptimizer( opt=adagrad.AdagradOptimizer(learning_rate=0.1), replicas_to_aggregate=1, total_num_replicas=1) sync_hook = sync_optimizer.make_session_run_hook(is_chief=True) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=sync_optimizer) with self.assertRaisesRegexp( ValueError, 'SyncReplicasOptimizer is not supported in DNNLinearCombined model'): classifier.fit( input_fn=test_data.iris_input_multiclass_fn, steps=100, monitors=[sync_hook]) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[embedding_language], dnn_hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, dnn_feature_columns=feature_columns, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertTrue(callable(classifier.params['input_layer_partitioner'])) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_feature = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_feature, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testLogisticRegression_TensorData(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant( iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant( iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [ feature_column.real_valued_column(str(i)) for i in range(4) ] linear_features = [ feature_column.bucketized_column(cont_features[i], test_data.get_quantile_based_buckets( iris.data[:, i], 10)) for i in range(4) ] linear_features.append( feature_column.sparse_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testEstimatorWithCoreFeatureColumns(self): """Tests binary classification using Tensor data as input.""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() features = {} for i in range(4): # The following shows how to provide the Tensor data for # RealValuedColumns. features.update({ str(i): array_ops.reshape( constant_op.constant(iris.data[:, i], dtype=dtypes.float32), [-1, 1]) }) # The following shows how to provide the SparseTensor data for # a SparseColumn. features['dummy_sparse_column'] = sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [60, 0]], dense_shape=[len(iris.target), 2]) labels = array_ops.reshape( constant_op.constant(iris.target, dtype=dtypes.int32), [-1, 1]) return features, labels iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [fc_core.numeric_column(str(i)) for i in range(4)] linear_features = [ fc_core.bucketized_column( cont_features[i], sorted(set(test_data.get_quantile_based_buckets( iris.data[:, i], 10)))) for i in range(4) ] linear_features.append( fc_core.categorical_column_with_hash_bucket( 'dummy_sparse_column', hash_bucket_size=100)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=linear_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=100) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] embedding_features = [ feature_column.embedding_column( sparse_features[0], dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=sparse_features, dnn_feature_columns=embedding_features, dnn_hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy', 'auc'), scores) def testMultiClass(self): """Tests multi-class classification using matrix data as input. Please see testLogisticRegression_TensorData() for how to use Tensor data as input instead. """ iris = base.load_iris() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=bucketized_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, linear_feature_columns=[language_column], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) _assert_metrics_in_range(('accuracy',), scores) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} labels = constant_op.constant([[1], [0], [0], [0]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Cross entropy = -0.25*log(0.25)-0.75*log(0.75) = 0.562 self.assertAlmostEqual(0.562, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels def _input_fn_eval(): # 4 rows, with different weights. features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } labels = constant_op.constant([[1.], [0.], [0.], [0.]]) return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', n_classes=2, linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted cross entropy = (-7*log(0.25)-3*log(0.75))/10 = 1.06 self.assertAlmostEqual(1.06, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x). labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByObject(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=adagrad.AdagradOptimizer(learning_rate=0.1)) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByString(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer='Ftrl', dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer='Adagrad') classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testCustomOptimizerByFunction(self): """Tests binary classification using matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() cont_features = [feature_column.real_valued_column('feature', dimension=4)] bucketized_features = [ feature_column.bucketized_column( cont_features[0], test_data.get_quantile_based_buckets(iris.data, 10)) ] def _optimizer_exp_decay(): global_step = training_util.get_global_step() learning_rate = learning_rate_decay.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) return adagrad.AdagradOptimizer(learning_rate=learning_rate) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=bucketized_features, linear_optimizer=_optimizer_exp_decay, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], dnn_optimizer=_optimizer_exp_decay) classifier.fit(input_fn=test_data.iris_input_logistic_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=100) _assert_metrics_in_range(('accuracy',), scores) def testPredict(self): """Tests weight column in evaluation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32)} return features, labels def _input_fn_predict(): y = input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=1) features = {'x': y} return features classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=100) probs = list(classifier.predict_proba(input_fn=_input_fn_predict)) self.assertAllClose([[0.75, 0.25]] * 4, probs, 0.05) classes = list(classifier.predict_classes(input_fn=_input_fn_predict)) self.assertListEqual([0] * 4, classes) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.cast(labels, dtypes.float32) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) # Test the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testVariableQuery(self): """Tests get_variable_names and get_variable_value.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=500) var_names = classifier.get_variable_names() self.assertGreater(len(var_names), 3) for name in var_names: classifier.get_variable_value(name) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[ feature_column.real_valued_column('age'), language, ], dnn_feature_columns=[ feature_column.embedding_column( language, dimension=1), ], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets classifier.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=True) classifier.fit(input_fn=_input_fn_train, steps=1000) self.assertIn('binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) # logodds(0.75) = 1.09861228867 self.assertAlmostEqual( 1.0986, float(classifier.get_variable_value( 'binary_logistic_head/centered_bias_weight')[0]), places=2) def testDisableCenteredBias(self): """Tests bias is centered or not.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], enable_centered_bias=False) classifier.fit(input_fn=_input_fn_train, steps=500) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testGlobalStepLinearOnly(self): """Tests global step update for linear-only model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNOnly(self): """Tests global step update for dnn-only model.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testGlobalStepDNNLinearCombinedBug(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=False) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) global_step = classifier.get_variable_value('global_step') if global_step == 100: # Expected is 100, but because of the global step increment bug, is 50. # Occasionally, step increments one more time due to a race condition, # reaching 51 steps. self.assertIn(step_counter.steps, [50, 51]) else: # Occasionally, training stops when global_step == 102, due to a race # condition. In addition, occasionally step increments one more time due # to a race condition reaching 52 steps. self.assertIn(step_counter.steps, [51, 52]) def testGlobalStepDNNLinearCombinedBugFixed(self): """Tests global step update for dnn-linear combined model.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 10) age = feature_column.real_valued_column('age') step_counter = _StepCounterHook() classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language], dnn_feature_columns=[ feature_column.embedding_column(language, dimension=1)], dnn_hidden_units=[3, 3], fix_global_step_increment_bug=True) classifier.fit(input_fn=input_fn, steps=100, monitors=[step_counter]) self.assertEqual(100, step_counter.steps) def testLinearOnly(self): """Tests that linear-only instantiation works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) age = feature_column.real_valued_column('age') classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/age/weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/age/weight'))) self.assertEquals( 100, len(classifier.get_variable_value('linear/language/weights'))) def testLinearOnlyOneFeature(self): """Tests that linear-only instantiation works for one feature only.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 99) classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) variable_names = classifier.get_variable_names() self.assertNotIn('dnn/logits/biases', variable_names) self.assertNotIn('dnn/logits/weights', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/language/weights', variable_names) self.assertEquals( 1, len(classifier.get_variable_value('linear/bias_weight'))) self.assertEquals( 99, len(classifier.get_variable_value('linear/language/weights'))) def testDNNOnly(self): """Tests that DNN-only instantiation works.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn_linear_combined.DNNLinearCombinedClassifier( n_classes=3, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=1000) classifier.evaluate(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) self.assertNotIn('linear/bias_weight', variable_names) self.assertNotIn('linear/feature_BUCKETIZED/weight', variable_names) def testDNNWeightsBiasesNames(self): """Tests the names of DNN weights and biases in the checkpoints.""" def _input_fn_train(): # Create 4 rows, three (y = x), one (y=Not(x)) labels = constant_op.constant([[1], [1], [1], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedClassifier( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3]) classifier.fit(input_fn=_input_fn_train, steps=5) variable_names = classifier.get_variable_names() self.assertIn('dnn/hiddenlayer_0/weights', variable_names) self.assertIn('dnn/hiddenlayer_0/biases', variable_names) self.assertIn('dnn/hiddenlayer_1/weights', variable_names) self.assertIn('dnn/hiddenlayer_1/biases', variable_names) self.assertIn('dnn/logits/weights', variable_names) self.assertIn('dnn/logits/biases', variable_names) class DNNLinearCombinedRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [feature_column.real_valued_column('feature', dimension=4)] exp = experiment.Experiment( estimator=dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, dnn_linear_combined.DNNLinearCombinedRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=cont_features, dnn_feature_columns=cont_features, dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_logistic_fn, steps=10) scores = regressor.evaluate( input_fn=test_data.iris_input_logistic_fn, steps=1) self.assertIn('loss', scores.keys()) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels classifier = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=10) classifier.evaluate(input_fn=_input_fn, steps=1) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn_linear_combined.DNNLinearCombinedRegressor( weight_column_name='w', linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.2) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) regressor.predict_scores(input_fn=_input_fn, as_iterable=False) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor.predict_scores(input_fn=predict_input_fn, as_iterable=True) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testExport(self): """Tests export model for servo.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=10) export_dir = tempfile.mkdtemp() input_feature_key = 'examples' def serving_input_fn(): features, targets = _input_fn() features[input_feature_key] = array_ops.placeholder(dtypes.string) return features, targets regressor.export( export_dir, serving_input_fn, input_feature_key, use_deprecated_input_fn=False) def testTrainSaveLoad(self): """Tests regression with restarting training / evaluate.""" def _input_fn(num_epochs=None): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = { 'x': input_lib.limit_epochs( constant_op.constant([[100.], [3.], [2.], [2.]]), num_epochs=num_epochs) } return features, labels model_dir = tempfile.mkdtemp() # pylint: disable=g-long-lambda new_regressor = lambda: dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predict_input_fn = functools.partial(_input_fn, num_epochs=1) regressor = new_regressor() regressor.fit(input_fn=_input_fn, steps=10) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor = new_regressor() predictions2 = list(regressor.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testLinearOnly(self): """Tests linear-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[ language_column, feature_column.real_valued_column('age') ], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) def testDNNOnly(self): """Tests DNN-only instantiation and training.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) regressor = dnn_linear_combined.DNNLinearCombinedRegressor( dnn_feature_columns=[ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores.keys()) class FeatureEngineeringFunctionTest(test.TestCase): """Tests feature_engineering_fn.""" def testNoneFeatureEngineeringFn(self): def input_fn(): # Create 4 rows of (y = x) labels = constant_op.constant([[100.], [3.], [2.], [2.]]) features = {'x': constant_op.constant([[100.], [3.], [2.], [2.]])} return features, labels def feature_engineering_fn(features, labels): _, _ = features, labels labels = constant_op.constant([[1000.], [30.], [20.], [20.]]) features = {'x': constant_op.constant([[1000.], [30.], [20.], [20.]])} return features, labels estimator_with_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1), feature_engineering_fn=feature_engineering_fn) estimator_with_fe_fn.fit(input_fn=input_fn, steps=110) estimator_without_fe_fn = dnn_linear_combined.DNNLinearCombinedRegressor( linear_feature_columns=[feature_column.real_valued_column('x')], dnn_feature_columns=[feature_column.real_valued_column('x')], dnn_hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) estimator_without_fe_fn.fit(input_fn=input_fn, steps=110) # predictions = y prediction_with_fe_fn = next( estimator_with_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(1000., prediction_with_fe_fn, delta=10.0) prediction_without_fe_fn = next( estimator_without_fe_fn.predict_scores( input_fn=input_fn, as_iterable=True)) self.assertAlmostEqual(100., prediction_without_fe_fn, delta=1.0) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for head.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math # pylint: disable=g-bad-todo,g-import-not-at-top import numpy as np import six from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.core.framework import summary_pb2 from tensorflow.python.client import session from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.ops.losses import losses as losses_lib from tensorflow.python.platform import test def _assert_variables(test_case, expected_global=None, expected_model=None, expected_trainable=None): test_case.assertItemsEqual( tuple([] if expected_global is None else expected_global), tuple([k.name for k in variables.global_variables()])) test_case.assertItemsEqual( tuple([] if expected_model is None else expected_model), tuple([k.name for k in variables.model_variables()])) test_case.assertItemsEqual( tuple([] if expected_trainable is None else expected_trainable), tuple([k.name for k in variables.trainable_variables()])) def _assert_no_variables(test_case): _assert_variables(test_case) # This must be called from within a tf.Session. def _assert_metrics(test_case, expected_loss, expected_eval_metrics, model_fn_ops): test_case.assertAlmostEqual(expected_loss, model_fn_ops.loss.eval(), places=4) for k in expected_eval_metrics: test_case.assertIn(k, model_fn_ops.eval_metric_ops) variables.initialize_local_variables().run() for key, expected_value in six.iteritems(expected_eval_metrics): value_tensor, update_tensor = model_fn_ops.eval_metric_ops[key] update = update_tensor.eval() test_case.assertAlmostEqual( expected_value, update, places=4, msg="%s: update, expected %s, got %s." % (key, expected_value, update)) value = value_tensor.eval() test_case.assertAlmostEqual( expected_value, value, places=4, msg="%s: value, expected %s, got %s." % (key, expected_value, value)) # This must be called from within a tf.Session. def _assert_summary_tags(test_case, expected_tags=None): actual_tags = [] for summary_op in ops.get_collection(ops.GraphKeys.SUMMARIES): summ = summary_pb2.Summary() summ.ParseFromString(summary_op.eval()) actual_tags.append(summ.value[0].tag) test_case.assertItemsEqual(expected_tags or [], actual_tags) def _sigmoid(x): return 1. / (1. + math.exp(-1 * x)) class PoissonHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LINEAR_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def _log_poisson_loss(self, logits, labels): x = np.array([f[0] for f in logits]) z = np.array([f[0] for f in labels]) lpl = np.exp(x) - z * x stirling_approx = z * np.log(z) - z + 0.5 * np.log(2. * np.pi * z) lpl += np.ma.masked_array(stirling_approx, mask=(z <= 1)).filled(0.) return sum(lpl)/len(lpl) def testPoissonWithLogits(self): head = head_lib.poisson_regression_head() labels = ((0.,), (1.,), (1.,)) logits = ((0.,), (-1.,), (3.,)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=logits) self._assert_output_alternatives(model_fn_ops) _assert_summary_tags(self, ["loss"]) _assert_no_variables(self) loss = self._log_poisson_loss(logits, labels) _assert_metrics(self, loss, {"loss": loss}, model_fn_ops) class RegressionHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LINEAR_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) # TODO(zakaria): test multilabel regression. def testRegressionWithLogits(self): head = head_lib.regression_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_summary_tags(self, ["loss"]) _assert_no_variables(self) _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops) def testRegressionWithLogitFn(self): head = head_lib.regression_head(link_fn=math_ops.square) def _assert_preditions(test_case, expected_predictions, model_fn_ops): variables.initialize_local_variables().run() test_case.assertAllClose(expected_predictions, model_fn_ops.predictions["scores"].eval()) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_summary_tags(self, ["loss"]) _assert_no_variables(self) _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops) _assert_preditions(self, ([1.0, 1.0, 9.0]), model_fn_ops) def testRegressionWithInvalidLogits(self): head = head_lib.regression_head() with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp(ValueError, "Dimensions.*not compatible"): head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1., 1.), (1., 1.), (3., 1.))) def testRegressionWithLogitsInput(self): head = head_lib.regression_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.), (0., 0.))) self._assert_output_alternatives(model_fn_ops) w = ("regression_head/logits/weights:0", "regression_head/logits/biases:0") _assert_variables( self, expected_global=w, expected_model=w, expected_trainable=w) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss"]) _assert_metrics(self, 2. / 3, {"loss": 2. / 3}, model_fn_ops) def testRegressionWithLogitsAndLogitsInput(self): head = head_lib.regression_head() with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "Both logits and logits_input supplied"): head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.), (0., 0.)), logits=((1.,), (1.,), (3.,))) def testRegressionEvalMode(self): head = head_lib.regression_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=((1.,), (1.,), (3.,)), mode=model_fn.ModeKeys.EVAL, train_op_fn=head_lib.no_op_train_fn, logits=((0.,), (1.,), (1.,))) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops) def testRegressionWithLabelName(self): label_name = "my_label" head = head_lib.regression_head(label_name=label_name) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels={label_name: ((0.,), (1.,), (1.,))}, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops) def testRegressionWithScalarWeights(self): head = head_lib.regression_head(weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): weights = 2. labels = ((0.,), (1.,), (1.,)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, (weights * 5.) / len(labels), { "loss": (weights * 5.) / (weights * len(labels)) }, model_fn_ops) def testRegressionWith1DWeights(self): head = head_lib.regression_head(weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): weights = (2., 5., 0.) labels = ((0.,), (1.,), (1.,)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, 2. / len(labels), {"loss": 2. / np.sum(weights)}, model_fn_ops) def testRegressionWith2DWeights(self): head = head_lib.regression_head(weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): weights = ((2.,), (5.,), (0.,)) labels = ((0.,), (1.,), (1.,)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, 2. / len(labels), {"loss": 2. / np.sum(weights)}, model_fn_ops) def testRegressionWithCenteredBias(self): head = head_lib.regression_head(enable_centered_bias=True) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, labels=((0.,), (1.,), (1.,)), mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) self._assert_output_alternatives(model_fn_ops) _assert_variables( self, expected_global=( "regression_head/centered_bias_weight:0", "regression_head/regression_head/centered_bias_weight/Adagrad:0", ), expected_trainable=("regression_head/centered_bias_weight:0",)) variables.global_variables_initializer().run() _assert_summary_tags(self, [ "loss", "regression_head/centered_bias/bias_0" ]) _assert_metrics(self, 5. / 3, {"loss": 5. / 3}, model_fn_ops) def testRegressionErrorInSparseTensorLabels(self): head = head_lib.regression_head() with ops.Graph().as_default(): labels = sparse_tensor.SparseTensorValue( indices=((0, 0), (1, 0), (2, 0)), values=(0., 1., 1.), dense_shape=(3, 1)) with self.assertRaisesRegexp(ValueError, "SparseTensor is not supported"): head.create_model_fn_ops( {}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) class MultiLabelHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.CLASSIFICATION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def setUp(self): self._logits = ((1., 0., 0.),) self._labels = ((0, 0, 1),) def _expected_eval_metrics(self, expected_loss): return { "accuracy": 1. / 3, "loss": expected_loss, "auc": 1. / 4, "auc/class0": 1., "auc/class1": 1., "auc/class2": 0., "auc_precision_recall": 0.166667, "auc_precision_recall/class0": 0, "auc_precision_recall/class1": 0., "auc_precision_recall/class2": 1., "labels/actual_label_mean/class0": self._labels[0][0], "labels/actual_label_mean/class1": self._labels[0][1], "labels/actual_label_mean/class2": self._labels[0][2], "labels/logits_mean/class0": self._logits[0][0], "labels/logits_mean/class1": self._logits[0][1], "labels/logits_mean/class2": self._logits[0][2], "labels/prediction_mean/class0": self._logits[0][0], "labels/prediction_mean/class1": self._logits[0][1], "labels/prediction_mean/class2": self._logits[0][2], "labels/probability_mean/class0": _sigmoid(self._logits[0][0]), "labels/probability_mean/class1": _sigmoid(self._logits[0][1]), "labels/probability_mean/class2": _sigmoid(self._logits[0][2]), } def testMultiLabelWithLogits(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .89985204 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiLabelTwoClasses(self): n_classes = 2 labels = ((0, 1),) logits = ((1., 0.),) head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, labels=labels, train_op_fn=head_lib.no_op_train_fn, logits=logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.00320443 _assert_metrics(self, expected_loss, { "accuracy": 0., "auc": 0., "loss": expected_loss, "auc/class0": 1., "auc/class1": 0., "labels/actual_label_mean/class0": labels[0][0], "labels/actual_label_mean/class1": labels[0][1], "labels/logits_mean/class0": logits[0][0], "labels/logits_mean/class1": logits[0][1], "labels/prediction_mean/class0": logits[0][0], "labels/prediction_mean/class1": logits[0][1], "labels/probability_mean/class0": _sigmoid(logits[0][0]), "labels/probability_mean/class1": _sigmoid(logits[0][1]), }, model_fn_ops) def testMultiLabelWithInvalidLogits(self): head = head_lib.multi_label_head(n_classes=len(self._labels[0]) + 1) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp(ValueError, "Dimensions.*not compatible"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) def testMultiLabelWithLogitsInput(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.),)) self._assert_output_alternatives(model_fn_ops) w = ("multi_label_head/logits/weights:0", "multi_label_head/logits/biases:0") _assert_variables( self, expected_global=w, expected_model=w, expected_trainable=w) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss"]) expected_loss = .69314718 _assert_metrics(self, expected_loss, { "accuracy": 2. / 3, "auc": 2. / 4, "loss": expected_loss, "auc/class0": 1., "auc/class1": 1., "auc/class2": 0., "labels/actual_label_mean/class0": self._labels[0][0], "labels/actual_label_mean/class1": self._labels[0][1], "labels/actual_label_mean/class2": self._labels[0][2], "labels/logits_mean/class0": 0., "labels/logits_mean/class1": 0., "labels/logits_mean/class2": 0., "labels/prediction_mean/class0": 0., "labels/prediction_mean/class1": 0., "labels/prediction_mean/class2": 0., "labels/probability_mean/class0": .5, "labels/probability_mean/class1": .5, "labels/probability_mean/class2": .5, }, model_fn_ops) def testMultiLabelWithLogitsAndLogitsInput(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "Both logits and logits_input supplied"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.),), logits=self._logits) def testMultiLabelEval(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .89985204 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassEvalWithLargeLogits(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) logits = ((2., 0., -1),) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.377779 expected_eval_metrics = { "accuracy": 1. / 3, "auc": 9.99999e-07, "loss": expected_loss, "auc/class0": 1., "auc/class1": 1., "auc/class2": 0., "labels/actual_label_mean/class0": 0. / 1, "labels/actual_label_mean/class1": 0. / 1, "labels/actual_label_mean/class2": 1. / 1, "labels/logits_mean/class0": logits[0][0], "labels/logits_mean/class1": logits[0][1], "labels/logits_mean/class2": logits[0][2], "labels/prediction_mean/class0": 1, "labels/prediction_mean/class1": 0, "labels/prediction_mean/class2": 0, "labels/probability_mean/class0": _sigmoid(logits[0][0]), "labels/probability_mean/class1": _sigmoid(logits[0][1]), "labels/probability_mean/class2": _sigmoid(logits[0][2]), } _assert_metrics(self, expected_loss, expected_eval_metrics, model_fn_ops) def testMultiLabelInfer(self): n_classes = 3 head = head_lib.multi_label_head(n_classes=n_classes, head_name="head_name") with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.INFER, self._labels, head_lib.no_op_train_fn, logits=((1., 0., 0.), (0., 0., 1))) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) with session.Session(): self.assertListEqual( [1, 0, 0], model_fn_ops.predictions["classes"].eval().tolist()[0]) self.assertItemsEqual(["head_name"], list(model_fn_ops.output_alternatives)) self.assertEqual( constants.ProblemType.CLASSIFICATION, model_fn_ops.output_alternatives["head_name"][0]) predictions_for_serving = ( model_fn_ops.output_alternatives["head_name"][1]) self.assertIn("classes", predictions_for_serving) self.assertAllEqual( [[b"0", b"1", b"2"], [b"0", b"1", b"2"]], predictions_for_serving["classes"].eval()) self.assertIn("probabilities", predictions_for_serving) self.assertAllClose( [[0.731059, 0.5, 0.5], [0.5, 0.5, 0.731059,]], predictions_for_serving["probabilities"].eval()) def testMultiLabelWithLabelName(self): n_classes = 3 label_name = "my_label" head = head_lib.multi_label_head( n_classes=n_classes, label_name=label_name, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, {label_name: self._labels}, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .89985204 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiLabelWithScalarWeight(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( features={"label_weight": .1}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, .089985214, self._expected_eval_metrics(.89985214), model_fn_ops) def testMultiLabelWith1DWeight(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "weights can not be broadcast to values"): head.create_model_fn_ops( features={"label_weight": (.1, .1, .1)}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) def testMultiLabelWith2DWeight(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( features={"label_weight": ((.1, .1, .1),)}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) _assert_metrics(self, .089985214, self._expected_eval_metrics(.89985214), model_fn_ops) def testMultiLabelWithCustomLoss(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes), loss_fn=_sigmoid_cross_entropy) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( features={"label_weight": .1}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .089985214 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiLabelWithCenteredBias(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, enable_centered_bias=True, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_variables( self, expected_global=( "multi_label_head/centered_bias_weight:0", ("multi_label_head/multi_label_head/centered_bias_weight/" "Adagrad:0"),), expected_trainable=("multi_label_head/centered_bias_weight:0",)) variables.global_variables_initializer().run() _assert_summary_tags(self, ( "loss", "multi_label_head/centered_bias/bias_0", "multi_label_head/centered_bias/bias_1", "multi_label_head/centered_bias/bias_2" )) expected_loss = .89985204 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiLabelSparseTensorLabels(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): labels = sparse_tensor.SparseTensorValue( indices=((0, 0),), values=(2,), dense_shape=(1, 1)) model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.TRAIN, labels=labels, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .89985204 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiLabelSparseTensorLabelsTooFewClasses(self): n_classes = 3 head = head_lib.multi_label_head( n_classes=n_classes, metric_class_ids=range(n_classes)) # Set _logits_dimension (n_classes) to a lower value; if it's set to 1 # upfront, the class throws an error during initialization. head._logits_dimension = 1 with ops.Graph().as_default(), session.Session(): labels = sparse_tensor.SparseTensorValue( indices=((0, 0),), values=(2,), dense_shape=(1, 1)) with self.assertRaisesRegexp(ValueError, "Must set num_classes >= 2 when passing"): head.create_model_fn_ops( features={}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=[0.]) class BinaryClassificationHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LOGISTIC_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def setUp(self): self._logits = ((1.,), (1.,)) self._labels = ((1.,), (0.,)) def _expected_eval_metrics(self, expected_loss): label_mean = np.mean(self._labels) return { "accuracy": 1. / 2, "accuracy/baseline_label_mean": label_mean, "accuracy/threshold_0.500000_mean": 1. / 2, "auc": 1. / 2, "auc_precision_recall": 0.749999, "labels/actual_label_mean": label_mean, "labels/prediction_mean": .731059, # softmax "loss": expected_loss, "precision/positive_threshold_0.500000_mean": 1. / 2, "recall/positive_threshold_0.500000_mean": 1. / 1, } def testBinaryClassificationWithLogits(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .81326175 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testBinaryClassificationWithInvalidLogits(self): head = head_lib.multi_class_head(n_classes=len(self._labels) + 1) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp(ValueError, "Dimensions.*not compatible"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) def testBinaryClassificationWithLogitsInput(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.))) self._assert_output_alternatives(model_fn_ops) w = ("binary_logistic_head/logits/weights:0", "binary_logistic_head/logits/biases:0") _assert_variables( self, expected_global=w, expected_model=w, expected_trainable=w) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss"]) expected_loss = .69314718 label_mean = np.mean(self._labels) _assert_metrics(self, expected_loss, { "accuracy": 1. / 2, "accuracy/baseline_label_mean": label_mean, "accuracy/threshold_0.500000_mean": 1. / 2, "auc": 1. / 2, "labels/actual_label_mean": label_mean, "labels/prediction_mean": .5, # softmax "loss": expected_loss, "precision/positive_threshold_0.500000_mean": 0. / 2, "recall/positive_threshold_0.500000_mean": 0. / 1, }, model_fn_ops) def testBinaryClassificationWithLogitsAndLogitsInput(self): head = head_lib.multi_class_head(n_classes=2) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "Both logits and logits_input supplied"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.)), logits=self._logits) def testBinaryClassificationEval(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .81326175 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testBinaryClassificationInfer(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes, head_name="head_name") with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.INFER, self._labels, head_lib.no_op_train_fn, logits=self._logits) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) with session.Session(): self.assertListEqual( [1, 1], list(model_fn_ops.predictions["classes"].eval())) self.assertItemsEqual(["head_name"], list(model_fn_ops.output_alternatives)) self.assertEqual( constants.ProblemType.LOGISTIC_REGRESSION, model_fn_ops.output_alternatives["head_name"][0]) predictions_for_serving = ( model_fn_ops.output_alternatives["head_name"][1]) self.assertIn("classes", predictions_for_serving) predicted_classes = predictions_for_serving["classes"].eval().tolist() self.assertListEqual( [b"0", b"1"], predicted_classes[0]) self.assertIn("probabilities", predictions_for_serving) def testBinaryClassificationInferMode_withWeightColumn(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes, weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( # This is what is being tested, features should not have weight for # inference. {}, model_fn.ModeKeys.INFER, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) def testErrorInSparseTensorLabels(self): n_classes = 2 head = head_lib.multi_class_head(n_classes=n_classes) with ops.Graph().as_default(): labels = sparse_tensor.SparseTensorValue( indices=((0, 0), (1, 0), (2, 0)), values=(0, 1, 1), dense_shape=(3, 1)) with self.assertRaisesRegexp(ValueError, "SparseTensor is not supported"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, labels, head_lib.no_op_train_fn, logits=((1.,), (1.,), (3.,))) def testBinaryClassificationWithLabelName(self): label_name = "my_label" head = head_lib.multi_class_head(n_classes=2, label_name=label_name) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, labels={label_name: self._labels}, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = .81326175 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testBinaryClassificationWith1DWeights(self): n_classes = 2 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): weights = (1., 0.) # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_total_loss = .31326166 _assert_metrics( self, expected_total_loss / len(weights), { "accuracy": 1. / 1, "accuracy/baseline_label_mean": 1. / 1, "accuracy/threshold_0.500000_mean": 1. / 1, "auc": 0. / 1, "labels/actual_label_mean": 1. / 1, "labels/prediction_mean": .731059, # softmax # eval loss is weighted loss divided by sum of weights. "loss": expected_total_loss, "precision/positive_threshold_0.500000_mean": 1. / 1, "recall/positive_threshold_0.500000_mean": 1. / 1, }, model_fn_ops) def testBinaryClassificationWith2DWeights(self): n_classes = 2 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight") with ops.Graph().as_default(), session.Session(): weights = ((1.,), (0.,)) # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_total_loss = .31326166 _assert_metrics( self, expected_total_loss / len(weights), { "accuracy": 1. / 1, "accuracy/baseline_label_mean": 1. / 1, "accuracy/threshold_0.500000_mean": 1. / 1, "auc": 0. / 1, "labels/actual_label_mean": 1. / 1, "labels/prediction_mean": .731059, # softmax # eval loss is weighted loss divided by sum of weights. "loss": expected_total_loss, "precision/positive_threshold_0.500000_mean": 1. / 1, "recall/positive_threshold_0.500000_mean": 1. / 1, }, model_fn_ops) def testBinaryClassificationWithCustomLoss(self): head = head_lib.multi_class_head( n_classes=2, weight_column_name="label_weight", loss_fn=_sigmoid_cross_entropy) with ops.Graph().as_default(), session.Session(): weights = ((.2,), (0.,)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) # expected_loss is (total_weighted_loss)/1 since there is 1 nonzero # weight. expected_loss = 0.062652342 _assert_metrics( self, expected_loss, { "accuracy": 1. / 1, "accuracy/baseline_label_mean": 1. / 1, "accuracy/threshold_0.500000_mean": 1. / 1, "auc": 0. / 1, "labels/actual_label_mean": 1. / 1, "labels/prediction_mean": .731059, # softmax "loss": expected_loss, "precision/positive_threshold_0.500000_mean": 1. / 1, "recall/positive_threshold_0.500000_mean": 1. / 1, }, model_fn_ops) def testBinaryClassificationWithCenteredBias(self): head = head_lib.multi_class_head(n_classes=2, enable_centered_bias=True) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_variables( self, expected_global=( "binary_logistic_head/centered_bias_weight:0", ("binary_logistic_head/binary_logistic_head/centered_bias_weight/" "Adagrad:0"),), expected_trainable=("binary_logistic_head/centered_bias_weight:0",)) variables.global_variables_initializer().run() _assert_summary_tags(self, [ "loss", "binary_logistic_head/centered_bias/bias_0" ]) expected_loss = .81326175 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) class MultiClassHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.CLASSIFICATION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def setUp(self): self._logits = ((1., 0., 0.),) self._labels = ((2,),) def _expected_eval_metrics(self, expected_loss): return { "accuracy": 0., "loss": expected_loss, "labels/actual_label_mean/class0": 0. / 1, "labels/actual_label_mean/class1": 0. / 1, "labels/actual_label_mean/class2": 1. / 1, "labels/logits_mean/class0": self._logits[0][0], "labels/logits_mean/class1": self._logits[0][1], "labels/logits_mean/class2": self._logits[0][2], "labels/prediction_mean/class0": self._logits[0][0], "labels/prediction_mean/class1": self._logits[0][1], "labels/prediction_mean/class2": self._logits[0][2], "labels/probability_mean/class0": 0.576117, # softmax "labels/probability_mean/class1": 0.211942, # softmax "labels/probability_mean/class2": 0.211942, # softmax } def testMultiClassWithLogits(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassWithInvalidLogits(self): head = head_lib.multi_class_head(n_classes=len(self._logits[0]) + 1) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp(ValueError, "Dimensions.*not compatible"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) def testMultiClassWithNoneTrainOpFnInTrain(self): head = head_lib.multi_class_head(n_classes=3) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "train_op_fn can not be None in TRAIN mode"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, train_op_fn=None, logits=self._logits) def testMultiClassWithLogitsInput(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.),)) self._assert_output_alternatives(model_fn_ops) w = ("multi_class_head/logits/weights:0", "multi_class_head/logits/biases:0") _assert_variables( self, expected_global=w, expected_model=w, expected_trainable=w) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss"]) expected_loss = 1.0986123 _assert_metrics(self, expected_loss, { "accuracy": 0., "loss": expected_loss, "labels/actual_label_mean/class0": 0. / 1, "labels/actual_label_mean/class1": 0. / 1, "labels/actual_label_mean/class2": 1. / 1, "labels/logits_mean/class0": 0., "labels/logits_mean/class1": 0., "labels/logits_mean/class2": 0., "labels/prediction_mean/class0": 1., "labels/prediction_mean/class1": 0., "labels/prediction_mean/class2": 0., "labels/probability_mean/class0": 0.333333, # softmax "labels/probability_mean/class1": 0.333333, # softmax "labels/probability_mean/class2": 0.333333, # softmax }, model_fn_ops) def testMultiClassWithLogitsAndLogitsInput(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "Both logits and logits_input supplied"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.),), logits=self._logits) def testMultiClassEnableCenteredBias(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, enable_centered_bias=True) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_variables( self, expected_global=( "multi_class_head/centered_bias_weight:0", ("multi_class_head/multi_class_head/centered_bias_weight/" "Adagrad:0"), ), expected_trainable=("multi_class_head/centered_bias_weight:0",)) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss", "multi_class_head/centered_bias/bias_0", "multi_class_head/centered_bias/bias_1", "multi_class_head/centered_bias/bias_2"]) def testMultiClassEval(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassEvalModeWithLargeLogits(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, metric_class_ids=range(n_classes)) logits = ((2., 0., -1),) with ops.Graph().as_default(), session.Session(): # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=logits) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 3.1698461 expected_eval_metrics = { "accuracy": 0., "loss": expected_loss, "labels/actual_label_mean/class0": 0. / 1, "labels/actual_label_mean/class1": 0. / 1, "labels/actual_label_mean/class2": 1. / 1, "labels/logits_mean/class0": logits[0][0], "labels/logits_mean/class1": logits[0][1], "labels/logits_mean/class2": logits[0][2], "labels/prediction_mean/class0": 1, "labels/prediction_mean/class1": 0, "labels/prediction_mean/class2": 0, "labels/probability_mean/class0": 0.843795, # softmax "labels/probability_mean/class1": 0.114195, # softmax "labels/probability_mean/class2": 0.0420101, # softmax } _assert_metrics(self, expected_loss, expected_eval_metrics, model_fn_ops) def testMultiClassWithScalarWeight(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): weight = .1 # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weight}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 _assert_metrics(self, expected_loss * weight, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassWith1DWeight(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): weight = .1 weights = (weight,) # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 _assert_metrics(self, expected_loss * weight, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassWith2DWeight(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes)) with ops.Graph().as_default(), session.Session(): weight = .1 weights = ((weight,),) # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weights}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 _assert_metrics(self, expected_loss * weight, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassWithCustomLoss(self): n_classes = 3 head = head_lib.multi_class_head( n_classes=n_classes, weight_column_name="label_weight", metric_class_ids=range(n_classes), loss_fn=losses_lib.sparse_softmax_cross_entropy) with ops.Graph().as_default(), session.Session(): weight = .1 # logloss: z:label, x:logit # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) model_fn_ops = head.create_model_fn_ops( features={"label_weight": weight}, labels=self._labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=self._logits) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 * weight _assert_metrics(self, expected_loss, self._expected_eval_metrics(expected_loss), model_fn_ops) def testMultiClassInfer(self): n_classes = 3 head = head_lib._multi_class_head( n_classes=n_classes, head_name="head_name") with ops.Graph().as_default(): model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.INFER, train_op_fn=head_lib.no_op_train_fn, logits=((1., 0., 0.), (0., 0., 1.),)) with session.Session(): lookup_ops.tables_initializer().run() self.assertAllEqual( [0, 2], model_fn_ops.predictions["classes"].eval()) self.assertItemsEqual(["head_name"], list(model_fn_ops.output_alternatives)) self.assertEqual( constants.ProblemType.CLASSIFICATION, model_fn_ops.output_alternatives["head_name"][0]) predictions_for_serving = ( model_fn_ops.output_alternatives["head_name"][1]) self.assertIn("classes", predictions_for_serving) self.assertAllEqual( [[b"0", b"1", b"2"], [b"0", b"1", b"2"]], predictions_for_serving["classes"].eval()) self.assertIn("probabilities", predictions_for_serving) self.assertAllClose( [[0.576117, 0.2119416, 0.2119416], [0.2119416, 0.2119416, 0.576117]], predictions_for_serving["probabilities"].eval()) def testInvalidNClasses(self): for n_classes in (None, -1, 0, 1): with self.assertRaisesRegexp(ValueError, "n_classes must be > 1"): head_lib.multi_class_head(n_classes=n_classes) def testMultiClassWithLabelKeysInvalidShape(self): with self.assertRaisesRegexp( ValueError, "Length of label_keys must equal n_classes"): head_lib._multi_class_head( n_classes=3, label_keys=("key0", "key1")) def testMultiClassWithLabelKeysTwoClasses(self): with self.assertRaisesRegexp( ValueError, "label_keys is not supported for n_classes=2"): head_lib._multi_class_head( n_classes=2, label_keys=("key0", "key1")) def testMultiClassWithLabelKeysInfer(self): n_classes = 3 label_keys = ("key0", "key1", "key2") head = head_lib._multi_class_head( n_classes=n_classes, label_keys=label_keys, metric_class_ids=range(n_classes), head_name="head_name") with ops.Graph().as_default(): model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.INFER, train_op_fn=head_lib.no_op_train_fn, logits=((1., 0., 0.), (0., 0., 1.),)) with session.Session(): lookup_ops.tables_initializer().run() self.assertAllEqual( [b"key0", b"key2"], model_fn_ops.predictions["classes"].eval()) self.assertItemsEqual(["head_name"], list(model_fn_ops.output_alternatives)) self.assertEqual( constants.ProblemType.CLASSIFICATION, model_fn_ops.output_alternatives["head_name"][0]) predictions_for_serving = ( model_fn_ops.output_alternatives["head_name"][1]) self.assertIn("classes", predictions_for_serving) self.assertAllEqual( [[b"key0", b"key1", b"key2"], [b"key0", b"key1", b"key2"]], predictions_for_serving["classes"].eval()) self.assertIn("probabilities", predictions_for_serving) self.assertAllClose( [[0.576117, 0.2119416, 0.2119416], [0.2119416, 0.2119416, 0.576117]], predictions_for_serving["probabilities"].eval()) def testMultiClassWithLabelKeysEvalAccuracy0(self): n_classes = 3 label_keys = ("key0", "key1", "key2") head = head_lib._multi_class_head( n_classes=n_classes, label_keys=label_keys) with ops.Graph().as_default(): model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.EVAL, labels=("key2",), train_op_fn=head_lib.no_op_train_fn, logits=((1., 0., 0.),)) with session.Session(): lookup_ops.tables_initializer().run() self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 1.5514447 expected_eval_metrics = { "accuracy": 0., "loss": expected_loss, } _assert_metrics(self, expected_loss, expected_eval_metrics, model_fn_ops) def testMultiClassWithLabelKeysEvalAccuracy1(self): n_classes = 3 label_keys = ("key0", "key1", "key2") head = head_lib._multi_class_head( n_classes=n_classes, label_keys=label_keys) with ops.Graph().as_default(): model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.EVAL, labels=("key2",), train_op_fn=head_lib.no_op_train_fn, logits=((0., 0., 1.),)) with session.Session(): lookup_ops.tables_initializer().run() self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = 0.5514447 expected_eval_metrics = { "accuracy": 1., "loss": expected_loss, } _assert_metrics(self, expected_loss, expected_eval_metrics, model_fn_ops) class BinarySvmHeadTest(test.TestCase): def _assert_output_alternatives(self, model_fn_ops): self.assertEquals({ None: constants.ProblemType.LOGISTIC_REGRESSION }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) def setUp(self): # Prediction for first example is in the right side of the hyperplane # (i.e., < 0) but it is within the [-1,1] margin. There is a 0.5 loss # incurred by this example. The 2nd prediction is outside the margin so it # incurs no loss at all. self._predictions = ((-.5,), (1.2,)) self._labels = (0, 1) self._expected_losses = (.5, 0.) def testBinarySVMWithLogits(self): head = head_lib.binary_svm_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = np.average(self._expected_losses) _assert_metrics(self, expected_loss, { "accuracy": 1., "loss": expected_loss, }, model_fn_ops) def testBinarySVMWithInvalidLogits(self): head = head_lib.binary_svm_head() with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp(ValueError, "Dimensions.*not compatible"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=np.ones((2, 2))) def testBinarySVMWithLogitsInput(self): head = head_lib.binary_svm_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.))) self._assert_output_alternatives(model_fn_ops) w = ("binary_svm_head/logits/weights:0", "binary_svm_head/logits/biases:0") _assert_variables( self, expected_global=w, expected_model=w, expected_trainable=w) variables.global_variables_initializer().run() _assert_summary_tags(self, ["loss"]) expected_loss = 1. _assert_metrics(self, expected_loss, { "accuracy": .5, "loss": expected_loss, }, model_fn_ops) def testBinarySVMWithLogitsAndLogitsInput(self): head = head_lib.binary_svm_head() with ops.Graph().as_default(), session.Session(): with self.assertRaisesRegexp( ValueError, "Both logits and logits_input supplied"): head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits_input=((0., 0.), (0., 0.)), logits=self._predictions) def testBinarySVMEvalMode(self): head = head_lib.binary_svm_head() with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.EVAL, self._labels, head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) self.assertIsNone(model_fn_ops.train_op) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = np.average(self._expected_losses) _assert_metrics(self, expected_loss, { "accuracy": 1., "loss": expected_loss, }, model_fn_ops) def testBinarySVMWithLabelName(self): label_name = "my_label" head = head_lib.binary_svm_head(label_name=label_name) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, {label_name: self._labels}, head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_loss = np.average(self._expected_losses) _assert_metrics(self, expected_loss, { "accuracy": 1., "loss": expected_loss, }, model_fn_ops) def testBinarySVMWith1DWeights(self): head = head_lib.binary_svm_head(weight_column_name="weights") with ops.Graph().as_default(), session.Session(): weights = (7., 11.) model_fn_ops = head.create_model_fn_ops( # We have to add an extra dim here for weights broadcasting to work. features={"weights": weights}, mode=model_fn.ModeKeys.TRAIN, labels=self._labels, train_op_fn=head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_weighted_losses = np.multiply(weights, self._expected_losses) _assert_metrics(self, np.mean(expected_weighted_losses), { "accuracy": 1., "loss": np.sum(expected_weighted_losses) / np.sum(weights), }, model_fn_ops) def testBinarySVMWith2DWeights(self): head = head_lib.binary_svm_head(weight_column_name="weights") with ops.Graph().as_default(), session.Session(): weights = (7., 11.) model_fn_ops = head.create_model_fn_ops( # We have to add an extra dim here for weights broadcasting to work. features={"weights": tuple([(w,) for w in weights])}, mode=model_fn.ModeKeys.TRAIN, labels=self._labels, train_op_fn=head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) _assert_no_variables(self) _assert_summary_tags(self, ["loss"]) expected_weighted_losses = np.multiply(weights, self._expected_losses) _assert_metrics(self, np.mean(expected_weighted_losses), { "accuracy": 1., "loss": np.sum(expected_weighted_losses) / np.sum(weights), }, model_fn_ops) def testBinarySVMWithCenteredBias(self): head = head_lib.binary_svm_head(enable_centered_bias=True) with ops.Graph().as_default(), session.Session(): model_fn_ops = head.create_model_fn_ops( {}, model_fn.ModeKeys.TRAIN, self._labels, head_lib.no_op_train_fn, logits=self._predictions) self._assert_output_alternatives(model_fn_ops) _assert_variables( self, expected_global=( "binary_svm_head/centered_bias_weight:0", ("binary_svm_head/binary_svm_head/centered_bias_weight/" "Adagrad:0"), ), expected_trainable=("binary_svm_head/centered_bias_weight:0",)) variables.global_variables_initializer().run() _assert_summary_tags(self, [ "loss", "binary_svm_head/centered_bias/bias_0" ]) expected_loss = np.average(self._expected_losses) _assert_metrics(self, expected_loss, { "accuracy": 1., "loss": expected_loss, }, model_fn_ops) class LossOnlyHead(test.TestCase): def testNoPredictionsAndNoMetrics(self): head = head_lib.loss_only_head(lambda: 1, head_name="const") model_fn_ops = head.create_model_fn_ops( features={}, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn) self.assertDictEqual(model_fn_ops.predictions, {}) self.assertDictEqual(model_fn_ops.eval_metric_ops, {}) self.assertIsNotNone(model_fn_ops.loss) with session.Session() as sess: self.assertEqual(1, sess.run(model_fn_ops.loss)) class MultiHeadTest(test.TestCase): def testInvalidHeads(self): named_head = head_lib.multi_class_head( n_classes=3, label_name="label", head_name="head1") unnamed_head = head_lib.multi_class_head( n_classes=4, label_name="label") with self.assertRaisesRegexp(ValueError, "must have names"): head_lib.multi_head((named_head, unnamed_head)) def testTrainWithNoneTrainOpFn(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head = head_lib.multi_head((head1, head2)) labels = { "label1": (1,), "label2": (1,) } with self.assertRaisesRegexp( ValueError, "train_op_fn can not be None in TRAIN mode"): head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=None, logits=((-0.7, 0.2, .1, .1, .1, .1, .1),)) def testTrain_withNoHeadWeights(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head3 = head_lib.loss_only_head(lambda: 1.0, head_name="const") head = head_lib.multi_head((head1, head2, head3)) labels = { "label1": (1,), "label2": (1,) } model_fn_ops = head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((-0.7, 0.2, .1, .1, .1, .1, .1),)) self.assertIsNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNotNone(model_fn_ops.train_op) self.assertTrue(model_fn_ops.eval_metric_ops) self.assertIsNone(model_fn_ops.output_alternatives) with session.Session() as sess: self.assertAlmostEqual(3.224, sess.run(model_fn_ops.loss), places=3) def testTrain_withHeadWeights(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head = head_lib.multi_head((head1, head2), (1, .5)) labels = { "label1": (1,), "label2": (1,) } model_fn_ops = head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits=((-0.7, 0.2, .1, .1, .1, .1, .1),)) self.assertIsNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNotNone(model_fn_ops.train_op) self.assertTrue(model_fn_ops.eval_metric_ops) self.assertIsNone(model_fn_ops.output_alternatives) with session.Session() as sess: self.assertAlmostEqual(1.531, sess.run(model_fn_ops.loss), places=3) def testTrain_withDictLogits(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head = head_lib.multi_head((head1, head2)) labels = { "label1": (1,), "label2": (1,) } model_fn_ops = head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.TRAIN, train_op_fn=head_lib.no_op_train_fn, logits={head1.head_name: ((-0.7, 0.2, .1),), head2.head_name: ((.1, .1, .1, .1),)}) self.assertIsNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNotNone(model_fn_ops.train_op) self.assertTrue(model_fn_ops.eval_metric_ops) self.assertIsNone(model_fn_ops.output_alternatives) with session.Session() as sess: self.assertAlmostEqual(2.224, sess.run(model_fn_ops.loss), places=3) def testInfer(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head = head_lib.multi_head((head1, head2), (1, .5)) labels = { "label1": (1,), "label2": (1,) } model_fn_ops = head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.INFER, train_op_fn=head_lib.no_op_train_fn, logits=((-0.7, 0.2, .1, .1, .1, .1, .1),)) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) self.assertFalse(model_fn_ops.eval_metric_ops) # Tests predictions keys. self.assertItemsEqual(( ("head1", prediction_key.PredictionKey.LOGITS), ("head1", prediction_key.PredictionKey.PROBABILITIES), ("head1", prediction_key.PredictionKey.CLASSES), ("head2", prediction_key.PredictionKey.LOGITS), ("head2", prediction_key.PredictionKey.PROBABILITIES), ("head2", prediction_key.PredictionKey.CLASSES), ), model_fn_ops.predictions.keys()) # Tests output alternative. self.assertEquals({ "head1": constants.ProblemType.CLASSIFICATION, "head2": constants.ProblemType.CLASSIFICATION, }, { k: v[0] for k, v in six.iteritems(model_fn_ops.output_alternatives) }) self.assertItemsEqual(( prediction_key.PredictionKey.PROBABILITIES, prediction_key.PredictionKey.CLASSES, ), model_fn_ops.output_alternatives["head1"][1].keys()) self.assertItemsEqual(( prediction_key.PredictionKey.PROBABILITIES, prediction_key.PredictionKey.CLASSES, ), model_fn_ops.output_alternatives["head2"][1].keys()) def testEval(self): head1 = head_lib.multi_class_head( n_classes=3, label_name="label1", head_name="head1") head2 = head_lib.multi_class_head( n_classes=4, label_name="label2", head_name="head2") head = head_lib.multi_head((head1, head2), (1, .5)) labels = { "label1": (1,), "label2": (1,) } model_fn_ops = head.create_model_fn_ops( features={"weights": (2.0, 10.0)}, labels=labels, mode=model_fn.ModeKeys.EVAL, train_op_fn=head_lib.no_op_train_fn, logits=((-0.7, 0.2, .1, .1, .1, .1, .1),)) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) self.assertIsNotNone(model_fn_ops.eval_metric_ops) self.assertIsNone(model_fn_ops.output_alternatives) metric_ops = model_fn_ops.eval_metric_ops # Tests eval keys. self.assertIn("accuracy/head1", metric_ops.keys()) self.assertIn("accuracy/head2", metric_ops.keys()) def _sigmoid_cross_entropy(labels, logits, weights): return losses_lib.sigmoid_cross_entropy(labels, logits, weights) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/head_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils for Estimator (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.util import tf_inspect def assert_estimator_contract(tester, estimator_class): """Asserts whether given estimator satisfies the expected contract. This doesn't check every details of contract. This test is used for that a function is not forgotten to implement in a precanned Estimator. Args: tester: A tf.test.TestCase. estimator_class: 'type' object of pre-canned estimator. """ attributes = tf_inspect.getmembers(estimator_class) attribute_names = [a[0] for a in attributes] tester.assertTrue('config' in attribute_names) tester.assertTrue('evaluate' in attribute_names) tester.assertTrue('export' in attribute_names) tester.assertTrue('fit' in attribute_names) tester.assertTrue('get_variable_names' in attribute_names) tester.assertTrue('get_variable_value' in attribute_names) tester.assertTrue('model_dir' in attribute_names) tester.assertTrue('predict' in attribute_names) def assert_in_range(min_value, max_value, key, metrics): actual_value = metrics[key] if actual_value < min_value: raise ValueError('%s: %s < %s.' % (key, actual_value, min_value)) if actual_value > max_value: raise ValueError('%s: %s > %s.' % (key, actual_value, max_value))
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/estimator_test_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for learn.estimators.dynamic_rnn_estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import numpy as np from tensorflow.contrib import rnn from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import target_column as target_column_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import dynamic_rnn_estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.estimators import rnn_common from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import map_fn from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.platform import test class IdentityRNNCell(rnn.RNNCell): def __init__(self, state_size, output_size): self._state_size = state_size self._output_size = output_size @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size def __call__(self, inputs, state): return array_ops.identity(inputs), array_ops.ones( [array_ops.shape(inputs)[0], self.state_size]) class MockTargetColumn(object): def __init__(self, num_label_columns=None): self._num_label_columns = num_label_columns def get_eval_ops(self, features, activations, labels, metrics): raise NotImplementedError( 'MockTargetColumn.get_eval_ops called unexpectedly.') def logits_to_predictions(self, flattened_activations, proba=False): raise NotImplementedError( 'MockTargetColumn.logits_to_predictions called unexpectedly.') def loss(self, activations, labels, features): raise NotImplementedError('MockTargetColumn.loss called unexpectedly.') @property def num_label_columns(self): if self._num_label_columns is None: raise ValueError('MockTargetColumn.num_label_columns has not been set.') return self._num_label_columns def set_num_label_columns(self, n): self._num_label_columns = n def sequence_length_mask(values, lengths): masked = values for i, length in enumerate(lengths): masked[i, length:, :] = np.zeros_like(masked[i, length:, :]) return masked class DynamicRnnEstimatorTest(test.TestCase): NUM_RNN_CELL_UNITS = 8 NUM_LABEL_COLUMNS = 6 INPUTS_COLUMN = feature_column.real_valued_column( 'inputs', dimension=NUM_LABEL_COLUMNS) def setUp(self): super(DynamicRnnEstimatorTest, self).setUp() self.rnn_cell = rnn_cell.BasicRNNCell(self.NUM_RNN_CELL_UNITS) self.mock_target_column = MockTargetColumn( num_label_columns=self.NUM_LABEL_COLUMNS) location = feature_column.sparse_column_with_keys( 'location', keys=['west_side', 'east_side', 'nyc']) location_onehot = feature_column.one_hot_column(location) self.context_feature_columns = [location_onehot] wire_cast = feature_column.sparse_column_with_keys( 'wire_cast', ['marlo', 'omar', 'stringer']) wire_cast_embedded = feature_column.embedding_column(wire_cast, dimension=8) measurements = feature_column.real_valued_column( 'measurements', dimension=2) self.sequence_feature_columns = [measurements, wire_cast_embedded] def GetColumnsToTensors(self): """Get columns_to_tensors matching setUp(), in the current default graph.""" return { 'location': sparse_tensor.SparseTensor( indices=[[0, 0], [1, 0], [2, 0]], values=['west_side', 'west_side', 'nyc'], dense_shape=[3, 1]), 'wire_cast': sparse_tensor.SparseTensor( indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 0], [1, 1, 1], [2, 0, 0]], values=[b'marlo', b'stringer', b'omar', b'stringer', b'marlo', b'marlo'], dense_shape=[3, 2, 2]), 'measurements': random_ops.random_uniform( [3, 2, 2], seed=4711) } def GetClassificationTargetsOrNone(self, mode): """Get targets matching setUp() and mode, in the current default graph.""" return (random_ops.random_uniform( [3, 2, 1], 0, 2, dtype=dtypes.int64, seed=1412) if mode != model_fn_lib.ModeKeys.INFER else None) def testBuildSequenceInputInput(self): sequence_input = dynamic_rnn_estimator.build_sequence_input( self.GetColumnsToTensors(), self.sequence_feature_columns, self.context_feature_columns) with self.cached_session() as sess: sess.run(variables.global_variables_initializer()) sess.run(lookup_ops.tables_initializer()) sequence_input_val = sess.run(sequence_input) expected_shape = np.array([ 3, # expected batch size 2, # padded sequence length 3 + 8 + 2 # location keys + embedding dim + measurement dimension ]) self.assertAllEqual(expected_shape, sequence_input_val.shape) def testConstructRNN(self): initial_state = None sequence_input = dynamic_rnn_estimator.build_sequence_input( self.GetColumnsToTensors(), self.sequence_feature_columns, self.context_feature_columns) activations_t, final_state_t = dynamic_rnn_estimator.construct_rnn( initial_state, sequence_input, self.rnn_cell, self.mock_target_column.num_label_columns) # Obtain values of activations and final state. with session.Session() as sess: sess.run(variables.global_variables_initializer()) sess.run(lookup_ops.tables_initializer()) activations, final_state = sess.run([activations_t, final_state_t]) expected_activations_shape = np.array([3, 2, self.NUM_LABEL_COLUMNS]) self.assertAllEqual(expected_activations_shape, activations.shape) expected_state_shape = np.array([3, self.NUM_RNN_CELL_UNITS]) self.assertAllEqual(expected_state_shape, final_state.shape) def testGetOutputAlternatives(self): test_cases = ( (rnn_common.PredictionType.SINGLE_VALUE, constants.ProblemType.CLASSIFICATION, {prediction_key.PredictionKey.CLASSES: True, prediction_key.PredictionKey.PROBABILITIES: True, dynamic_rnn_estimator._get_state_name(0): True}, {'dynamic_rnn_output': (constants.ProblemType.CLASSIFICATION, {prediction_key.PredictionKey.CLASSES: True, prediction_key.PredictionKey.PROBABILITIES: True})}), (rnn_common.PredictionType.SINGLE_VALUE, constants.ProblemType.LINEAR_REGRESSION, {prediction_key.PredictionKey.SCORES: True, dynamic_rnn_estimator._get_state_name(0): True, dynamic_rnn_estimator._get_state_name(1): True}, {'dynamic_rnn_output': (constants.ProblemType.LINEAR_REGRESSION, {prediction_key.PredictionKey.SCORES: True})}), (rnn_common.PredictionType.MULTIPLE_VALUE, constants.ProblemType.CLASSIFICATION, {prediction_key.PredictionKey.CLASSES: True, prediction_key.PredictionKey.PROBABILITIES: True, dynamic_rnn_estimator._get_state_name(0): True}, None)) for pred_type, prob_type, pred_dict, expected_alternatives in test_cases: actual_alternatives = dynamic_rnn_estimator._get_output_alternatives( pred_type, prob_type, pred_dict) self.assertEqual(expected_alternatives, actual_alternatives) # testGetDynamicRnnModelFn{Train,Eval,Infer}() test which fields # of ModelFnOps are set depending on mode. def testGetDynamicRnnModelFnTrain(self): model_fn_ops = self._GetModelFnOpsForMode(model_fn_lib.ModeKeys.TRAIN) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNotNone(model_fn_ops.train_op) # None may get normalized to {}; we accept neither. self.assertNotEqual(len(model_fn_ops.eval_metric_ops), 0) def testGetDynamicRnnModelFnEval(self): model_fn_ops = self._GetModelFnOpsForMode(model_fn_lib.ModeKeys.EVAL) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNotNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) # None may get normalized to {}; we accept neither. self.assertNotEqual(len(model_fn_ops.eval_metric_ops), 0) def testGetDynamicRnnModelFnInfer(self): model_fn_ops = self._GetModelFnOpsForMode(model_fn_lib.ModeKeys.INFER) self.assertIsNotNone(model_fn_ops.predictions) self.assertIsNone(model_fn_ops.loss) self.assertIsNone(model_fn_ops.train_op) # None may get normalized to {}; we accept both. self.assertFalse(model_fn_ops.eval_metric_ops) def _GetModelFnOpsForMode(self, mode): """Helper for testGetDynamicRnnModelFn{Train,Eval,Infer}().""" model_fn = dynamic_rnn_estimator._get_dynamic_rnn_model_fn( cell_type='basic_rnn', num_units=[10], target_column=target_column_lib.multi_class_target(n_classes=2), # Only CLASSIFICATION yields eval metrics to test for. problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, optimizer='SGD', sequence_feature_columns=self.sequence_feature_columns, context_feature_columns=self.context_feature_columns, learning_rate=0.1) labels = self.GetClassificationTargetsOrNone(mode) model_fn_ops = model_fn( features=self.GetColumnsToTensors(), labels=labels, mode=mode) return model_fn_ops def testExport(self): input_feature_key = 'magic_input_feature_key' def get_input_fn(mode): def input_fn(): features = self.GetColumnsToTensors() if mode == model_fn_lib.ModeKeys.INFER: input_examples = array_ops.placeholder(dtypes.string) features[input_feature_key] = input_examples # Real code would now parse features out of input_examples, # but this test can just stick to the constants above. return features, self.GetClassificationTargetsOrNone(mode) return input_fn model_dir = tempfile.mkdtemp() def estimator_fn(): return dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, num_classes=2, num_units=self.NUM_RNN_CELL_UNITS, sequence_feature_columns=self.sequence_feature_columns, context_feature_columns=self.context_feature_columns, predict_probabilities=True, model_dir=model_dir) # Train a bit to create an exportable checkpoint. estimator_fn().fit(input_fn=get_input_fn(model_fn_lib.ModeKeys.TRAIN), steps=100) # Now export, but from a fresh estimator instance, like you would # in an export binary. That means .export() has to work without # .fit() being called on the same object. export_dir = tempfile.mkdtemp() print('Exporting to', export_dir) estimator_fn().export( export_dir, input_fn=get_input_fn(model_fn_lib.ModeKeys.INFER), use_deprecated_input_fn=False, input_feature_key=input_feature_key) def testStateTupleDictConversion(self): """Test `state_tuple_to_dict` and `dict_to_state_tuple`.""" cell_sizes = [5, 3, 7] # A MultiRNNCell of LSTMCells is both a common choice and an interesting # test case, because it has two levels of nesting, with an inner class that # is not a plain tuple. cell = rnn_cell.MultiRNNCell( [rnn_cell.LSTMCell(i) for i in cell_sizes]) state_dict = { dynamic_rnn_estimator._get_state_name(i): array_ops.expand_dims(math_ops.range(cell_size), 0) for i, cell_size in enumerate([5, 5, 3, 3, 7, 7]) } expected_state = (rnn_cell.LSTMStateTuple( np.reshape(np.arange(5), [1, -1]), np.reshape(np.arange(5), [1, -1])), rnn_cell.LSTMStateTuple( np.reshape(np.arange(3), [1, -1]), np.reshape(np.arange(3), [1, -1])), rnn_cell.LSTMStateTuple( np.reshape(np.arange(7), [1, -1]), np.reshape(np.arange(7), [1, -1]))) actual_state = dynamic_rnn_estimator.dict_to_state_tuple(state_dict, cell) flattened_state = dynamic_rnn_estimator.state_tuple_to_dict(actual_state) with self.cached_session() as sess: (state_dict_val, actual_state_val, flattened_state_val) = sess.run( [state_dict, actual_state, flattened_state]) def _recursive_assert_equal(x, y): self.assertEqual(type(x), type(y)) if isinstance(x, (list, tuple)): self.assertEqual(len(x), len(y)) for i, _ in enumerate(x): _recursive_assert_equal(x[i], y[i]) elif isinstance(x, np.ndarray): np.testing.assert_array_equal(x, y) else: self.fail('Unexpected type: {}'.format(type(x))) for k in state_dict_val.keys(): np.testing.assert_array_almost_equal( state_dict_val[k], flattened_state_val[k], err_msg='Wrong value for state component {}.'.format(k)) _recursive_assert_equal(expected_state, actual_state_val) def testMultiRNNState(self): """Test that state flattening/reconstruction works for `MultiRNNCell`.""" batch_size = 11 sequence_length = 16 train_steps = 5 cell_sizes = [4, 8, 7] learning_rate = 0.1 def get_shift_input_fn(batch_size, sequence_length, seed=None): def input_fn(): random_sequence = random_ops.random_uniform( [batch_size, sequence_length + 1], 0, 2, dtype=dtypes.int32, seed=seed) labels = array_ops.slice(random_sequence, [0, 0], [batch_size, sequence_length]) inputs = array_ops.expand_dims( math_ops.cast( array_ops.slice(random_sequence, [0, 1], [batch_size, sequence_length]), dtypes.float32), 2) input_dict = { dynamic_rnn_estimator._get_state_name(i): random_ops.random_uniform( [batch_size, cell_size], seed=((i + 1) * seed)) for i, cell_size in enumerate([4, 4, 8, 8, 7, 7]) } input_dict['inputs'] = inputs return input_dict, labels return input_fn seq_columns = [feature_column.real_valued_column('inputs', dimension=1)] config = run_config.RunConfig(tf_random_seed=21212) cell_type = 'lstm' sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, num_classes=2, num_units=cell_sizes, sequence_feature_columns=seq_columns, cell_type=cell_type, learning_rate=learning_rate, config=config, predict_probabilities=True) train_input_fn = get_shift_input_fn(batch_size, sequence_length, seed=12321) eval_input_fn = get_shift_input_fn(batch_size, sequence_length, seed=32123) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) prediction_dict = sequence_estimator.predict( input_fn=eval_input_fn, as_iterable=False) for i, state_size in enumerate([4, 4, 8, 8, 7, 7]): state_piece = prediction_dict[dynamic_rnn_estimator._get_state_name(i)] self.assertListEqual(list(state_piece.shape), [batch_size, state_size]) def testMultipleRuns(self): """Tests resuming training by feeding state.""" cell_sizes = [4, 7] batch_size = 11 learning_rate = 0.1 train_sequence_length = 21 train_steps = 121 dropout_keep_probabilities = [0.5, 0.5, 0.5] prediction_steps = [3, 2, 5, 11, 6] def get_input_fn(batch_size, sequence_length, state_dict, starting_step=0): def input_fn(): sequence = constant_op.constant( [[(starting_step + i + j) % 2 for j in range(sequence_length + 1)] for i in range(batch_size)], dtype=dtypes.int32) labels = array_ops.slice(sequence, [0, 0], [batch_size, sequence_length]) inputs = array_ops.expand_dims( math_ops.cast( array_ops.slice(sequence, [0, 1], [batch_size, sequence_length ]), dtypes.float32), 2) input_dict = state_dict input_dict['inputs'] = inputs return input_dict, labels return input_fn seq_columns = [feature_column.real_valued_column('inputs', dimension=1)] config = run_config.RunConfig(tf_random_seed=21212) model_dir = tempfile.mkdtemp() sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, num_classes=2, sequence_feature_columns=seq_columns, num_units=cell_sizes, cell_type='lstm', dropout_keep_probabilities=dropout_keep_probabilities, learning_rate=learning_rate, config=config, model_dir=model_dir) train_input_fn = get_input_fn( batch_size, train_sequence_length, state_dict={}) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) def incremental_predict(estimator, increments): """Run `estimator.predict` for `i` steps for `i` in `increments`.""" step = 0 incremental_state_dict = {} for increment in increments: input_fn = get_input_fn( batch_size, increment, state_dict=incremental_state_dict, starting_step=step) prediction_dict = estimator.predict( input_fn=input_fn, as_iterable=False) step += increment incremental_state_dict = { k: v for (k, v) in prediction_dict.items() if k.startswith(rnn_common.RNNKeys.STATE_PREFIX) } return prediction_dict pred_all_at_once = incremental_predict(sequence_estimator, [sum(prediction_steps)]) pred_step_by_step = incremental_predict(sequence_estimator, prediction_steps) # Check that the last `prediction_steps[-1]` steps give the same # predictions. np.testing.assert_array_equal( pred_all_at_once[prediction_key.PredictionKey.CLASSES] [:, -1 * prediction_steps[-1]:], pred_step_by_step[prediction_key.PredictionKey.CLASSES], err_msg='Mismatch on last {} predictions.'.format(prediction_steps[-1])) # Check that final states are identical. for k, v in pred_all_at_once.items(): if k.startswith(rnn_common.RNNKeys.STATE_PREFIX): np.testing.assert_array_equal( v, pred_step_by_step[k], err_msg='Mismatch on state {}.'.format(k)) # TODO(jamieas): move all tests below to a benchmark test. class DynamicRNNEstimatorLearningTest(test.TestCase): """Learning tests for dynamic RNN Estimators.""" def testLearnSineFunction(self): """Tests learning a sine function.""" batch_size = 8 sequence_length = 64 train_steps = 200 eval_steps = 20 cell_size = [4] learning_rate = 0.1 loss_threshold = 0.02 def get_sin_input_fn(batch_size, sequence_length, increment, seed=None): def _sin_fn(x): ranger = math_ops.linspace( array_ops.reshape(x[0], []), (sequence_length - 1) * increment, sequence_length + 1) return math_ops.sin(ranger) def input_fn(): starts = random_ops.random_uniform( [batch_size], maxval=(2 * np.pi), seed=seed) sin_curves = map_fn.map_fn( _sin_fn, (starts,), dtype=dtypes.float32) inputs = array_ops.expand_dims( array_ops.slice(sin_curves, [0, 0], [batch_size, sequence_length]), 2) labels = array_ops.slice(sin_curves, [0, 1], [batch_size, sequence_length]) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=cell_size[0]) ] config = run_config.RunConfig(tf_random_seed=1234) sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.LINEAR_REGRESSION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, num_units=cell_size, sequence_feature_columns=seq_columns, learning_rate=learning_rate, dropout_keep_probabilities=[0.9, 0.9], config=config) train_input_fn = get_sin_input_fn( batch_size, sequence_length, np.pi / 32, seed=1234) eval_input_fn = get_sin_input_fn( batch_size, sequence_length, np.pi / 32, seed=4321) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) loss = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps)['loss'] self.assertLess(loss, loss_threshold, 'Loss should be less than {}; got {}'.format(loss_threshold, loss)) def testLearnShiftByOne(self): """Tests that learning a 'shift-by-one' example. Each label sequence consists of the input sequence 'shifted' by one place. The RNN must learn to 'remember' the previous input. """ batch_size = 16 sequence_length = 32 train_steps = 200 eval_steps = 20 cell_size = 4 learning_rate = 0.3 accuracy_threshold = 0.9 def get_shift_input_fn(batch_size, sequence_length, seed=None): def input_fn(): random_sequence = random_ops.random_uniform( [batch_size, sequence_length + 1], 0, 2, dtype=dtypes.int32, seed=seed) labels = array_ops.slice(random_sequence, [0, 0], [batch_size, sequence_length]) inputs = array_ops.expand_dims( math_ops.cast( array_ops.slice(random_sequence, [0, 1], [batch_size, sequence_length]), dtypes.float32), 2) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=cell_size) ] config = run_config.RunConfig(tf_random_seed=21212) sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.MULTIPLE_VALUE, num_classes=2, num_units=cell_size, sequence_feature_columns=seq_columns, learning_rate=learning_rate, config=config, predict_probabilities=True) train_input_fn = get_shift_input_fn(batch_size, sequence_length, seed=12321) eval_input_fn = get_shift_input_fn(batch_size, sequence_length, seed=32123) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) evaluation = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps) accuracy = evaluation['accuracy'] self.assertGreater(accuracy, accuracy_threshold, 'Accuracy should be higher than {}; got {}'.format( accuracy_threshold, accuracy)) # Testing `predict` when `predict_probabilities=True`. prediction_dict = sequence_estimator.predict( input_fn=eval_input_fn, as_iterable=False) self.assertListEqual( sorted(list(prediction_dict.keys())), sorted([ prediction_key.PredictionKey.CLASSES, prediction_key.PredictionKey.PROBABILITIES, dynamic_rnn_estimator._get_state_name(0) ])) predictions = prediction_dict[prediction_key.PredictionKey.CLASSES] probabilities = prediction_dict[ prediction_key.PredictionKey.PROBABILITIES] self.assertListEqual(list(predictions.shape), [batch_size, sequence_length]) self.assertListEqual( list(probabilities.shape), [batch_size, sequence_length, 2]) def testLearnMean(self): """Test learning to calculate a mean.""" batch_size = 16 sequence_length = 3 train_steps = 200 eval_steps = 20 cell_type = 'basic_rnn' cell_size = 8 optimizer_type = 'Momentum' learning_rate = 0.1 momentum = 0.9 loss_threshold = 0.1 def get_mean_input_fn(batch_size, sequence_length, seed=None): def input_fn(): # Create examples by choosing 'centers' and adding uniform noise. centers = math_ops.matmul( random_ops.random_uniform( [batch_size, 1], -0.75, 0.75, dtype=dtypes.float32, seed=seed), array_ops.ones([1, sequence_length])) noise = random_ops.random_uniform( [batch_size, sequence_length], -0.25, 0.25, dtype=dtypes.float32, seed=seed) sequences = centers + noise inputs = array_ops.expand_dims(sequences, 2) labels = math_ops.reduce_mean(sequences, axis=[1]) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=cell_size) ] config = run_config.RunConfig(tf_random_seed=6) sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.LINEAR_REGRESSION, prediction_type=rnn_common.PredictionType.SINGLE_VALUE, num_units=cell_size, sequence_feature_columns=seq_columns, cell_type=cell_type, optimizer=optimizer_type, learning_rate=learning_rate, momentum=momentum, config=config) train_input_fn = get_mean_input_fn(batch_size, sequence_length, 121) eval_input_fn = get_mean_input_fn(batch_size, sequence_length, 212) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) evaluation = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps) loss = evaluation['loss'] self.assertLess(loss, loss_threshold, 'Loss should be less than {}; got {}'.format(loss_threshold, loss)) def DISABLED_testLearnMajority(self): """Test learning the 'majority' function.""" batch_size = 16 sequence_length = 7 train_steps = 500 eval_steps = 20 cell_type = 'lstm' cell_size = 4 optimizer_type = 'Momentum' learning_rate = 2.0 momentum = 0.9 accuracy_threshold = 0.6 def get_majority_input_fn(batch_size, sequence_length, seed=None): random_seed.set_random_seed(seed) def input_fn(): random_sequence = random_ops.random_uniform( [batch_size, sequence_length], 0, 2, dtype=dtypes.int32, seed=seed) inputs = array_ops.expand_dims( math_ops.cast(random_sequence, dtypes.float32), 2) labels = math_ops.cast( array_ops.squeeze( math_ops.reduce_sum(inputs, axis=[1]) > ( sequence_length / 2.0)), dtypes.int32) return {'inputs': inputs}, labels return input_fn seq_columns = [ feature_column.real_valued_column( 'inputs', dimension=cell_size) ] config = run_config.RunConfig(tf_random_seed=77) sequence_estimator = dynamic_rnn_estimator.DynamicRnnEstimator( problem_type=constants.ProblemType.CLASSIFICATION, prediction_type=rnn_common.PredictionType.SINGLE_VALUE, num_classes=2, num_units=cell_size, sequence_feature_columns=seq_columns, cell_type=cell_type, optimizer=optimizer_type, learning_rate=learning_rate, momentum=momentum, config=config, predict_probabilities=True) train_input_fn = get_majority_input_fn(batch_size, sequence_length, 1111) eval_input_fn = get_majority_input_fn(batch_size, sequence_length, 2222) sequence_estimator.fit(input_fn=train_input_fn, steps=train_steps) evaluation = sequence_estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps) accuracy = evaluation['accuracy'] self.assertGreater(accuracy, accuracy_threshold, 'Accuracy should be higher than {}; got {}'.format( accuracy_threshold, accuracy)) # Testing `predict` when `predict_probabilities=True`. prediction_dict = sequence_estimator.predict( input_fn=eval_input_fn, as_iterable=False) self.assertListEqual( sorted(list(prediction_dict.keys())), sorted([ prediction_key.PredictionKey.CLASSES, prediction_key.PredictionKey.PROBABILITIES, dynamic_rnn_estimator._get_state_name(0), dynamic_rnn_estimator._get_state_name(1) ])) predictions = prediction_dict[prediction_key.PredictionKey.CLASSES] probabilities = prediction_dict[ prediction_key.PredictionKey.PROBABILITIES] self.assertListEqual(list(predictions.shape), [batch_size]) self.assertListEqual(list(probabilities.shape), [batch_size, 2]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ModelFnOps tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.python.client import session from tensorflow.python.estimator.export import export_output as core_export_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import control_flow_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import monitored_session class ModelFnopsTest(test.TestCase): """Multi-output tests.""" def create_predictions(self): probabilities = constant_op.constant([1., 1., 1.]) scores = constant_op.constant([1., 2., 3.]) classes = constant_op.constant([b"0", b"1", b"2"]) return { "probabilities": probabilities, "scores": scores, "classes": classes} def create_model_fn_ops(self, predictions, output_alternatives, mode=model_fn.ModeKeys.INFER): return model_fn.ModelFnOps( model_fn.ModeKeys.INFER, predictions=predictions, loss=constant_op.constant([1]), train_op=control_flow_ops.no_op(), eval_metric_ops={ "metric_key": (constant_op.constant(1.), control_flow_ops.no_op()), "loss": (constant_op.constant(1.), control_flow_ops.no_op()), }, training_chief_hooks=[basic_session_run_hooks.StepCounterHook()], training_hooks=[basic_session_run_hooks.StepCounterHook()], output_alternatives=output_alternatives, scaffold=monitored_session.Scaffold()) def assertEquals_except_export_and_eval_loss( self, model_fn_ops, estimator_spec): expected_eval_metric_ops = {} for key, value in six.iteritems(model_fn_ops.eval_metric_ops): if key != "loss": expected_eval_metric_ops[key] = value self.assertEqual(model_fn_ops.predictions, estimator_spec.predictions) self.assertEqual(model_fn_ops.loss, estimator_spec.loss) self.assertEqual(model_fn_ops.train_op, estimator_spec.train_op) self.assertEqual(expected_eval_metric_ops, estimator_spec.eval_metric_ops) self.assertAllEqual(model_fn_ops.training_chief_hooks, estimator_spec.training_chief_hooks) self.assertAllEqual(model_fn_ops.training_hooks, estimator_spec.training_hooks) self.assertEqual(model_fn_ops.scaffold, estimator_spec.scaffold) def testEstimatorSpec_except_export(self): predictions = self.create_predictions() model_fn_ops = self.create_model_fn_ops( predictions, None, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) def testEstimatorSpec_export_regression_with_scores(self): predictions = self.create_predictions() output_alternatives = {"regression_head": ( constants.ProblemType.LINEAR_REGRESSION, predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): regression_output = estimator_spec.export_outputs["regression_head"] self.assertTrue(isinstance( regression_output, core_export_lib.RegressionOutput)) self.assertAllEqual(predictions["scores"].eval(), regression_output.value.eval()) def testEstimatorSpec_export_regression_with_probabilities(self): predictions = self.create_predictions() output_alternatives_predictions = predictions.copy() del output_alternatives_predictions["scores"] output_alternatives = {"regression_head": ( constants.ProblemType.LINEAR_REGRESSION, output_alternatives_predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): regression_output = estimator_spec.export_outputs["regression_head"] self.assertTrue(isinstance( regression_output, core_export_lib.RegressionOutput)) self.assertAllEqual(predictions["probabilities"].eval(), regression_output.value.eval()) def testEstimatorSpec_export_classification(self): predictions = self.create_predictions() output_alternatives = {"classification_head": ( constants.ProblemType.CLASSIFICATION, predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): classification_output = estimator_spec.export_outputs[ "classification_head"] self.assertTrue(isinstance(classification_output, core_export_lib.ClassificationOutput)) self.assertAllEqual(predictions["scores"].eval(), classification_output.scores.eval()) self.assertAllEqual(predictions["classes"].eval(), classification_output.classes.eval()) def testEstimatorSpec_export_classification_with_missing_scores(self): predictions = self.create_predictions() output_alternatives_predictions = predictions.copy() del output_alternatives_predictions["scores"] output_alternatives = {"classification_head": ( constants.ProblemType.CLASSIFICATION, output_alternatives_predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): classification_output = estimator_spec.export_outputs[ "classification_head"] self.assertTrue(isinstance(classification_output, core_export_lib.ClassificationOutput)) self.assertAllEqual(predictions["probabilities"].eval(), classification_output.scores.eval()) self.assertAllEqual(predictions["classes"].eval(), classification_output.classes.eval()) def testEstimatorSpec_export_classification_with_missing_scores_proba(self): predictions = self.create_predictions() output_alternatives_predictions = predictions.copy() del output_alternatives_predictions["scores"] del output_alternatives_predictions["probabilities"] output_alternatives = {"classification_head": ( constants.ProblemType.CLASSIFICATION, output_alternatives_predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): classification_output = estimator_spec.export_outputs[ "classification_head"] self.assertTrue(isinstance(classification_output, core_export_lib.ClassificationOutput)) self.assertIsNone(classification_output.scores) self.assertAllEqual(predictions["classes"].eval(), classification_output.classes.eval()) def testEstimatorSpec_export_classification_with_missing_classes(self): predictions = self.create_predictions() output_alternatives_predictions = predictions.copy() del output_alternatives_predictions["classes"] output_alternatives = {"classification_head": ( constants.ProblemType.CLASSIFICATION, output_alternatives_predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): classification_output = estimator_spec.export_outputs[ "classification_head"] self.assertTrue(isinstance(classification_output, core_export_lib.ClassificationOutput)) self.assertAllEqual(predictions["scores"].eval(), classification_output.scores.eval()) self.assertIsNone(classification_output.classes) def testEstimatorSpec_export_classification_with_nonstring_classes(self): predictions = self.create_predictions() output_alternatives_predictions = predictions.copy() output_alternatives_predictions["classes"] = constant_op.constant( [1, 2, 3]) output_alternatives = {"classification_head": ( constants.ProblemType.CLASSIFICATION, output_alternatives_predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): classification_output = estimator_spec.export_outputs[ "classification_head"] self.assertTrue(isinstance(classification_output, core_export_lib.ClassificationOutput)) self.assertAllEqual(predictions["scores"].eval(), classification_output.scores.eval()) self.assertIsNone(classification_output.classes) def testEstimatorSpec_export_logistic(self): predictions = self.create_predictions() output_alternatives = {"logistic_head": ( constants.ProblemType.LOGISTIC_REGRESSION, predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): logistic_output = estimator_spec.export_outputs["logistic_head"] self.assertTrue(isinstance(logistic_output, core_export_lib.ClassificationOutput)) self.assertAllEqual(predictions["scores"].eval(), logistic_output.scores.eval()) self.assertAllEqual(predictions["classes"].eval(), logistic_output.classes.eval()) def testEstimatorSpec_export_unspecified(self): predictions = self.create_predictions() output_alternatives = {"unspecified_head": ( constants.ProblemType.UNSPECIFIED, predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec() self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): unspecified_output = estimator_spec.export_outputs["unspecified_head"] self.assertTrue(isinstance(unspecified_output, core_export_lib.PredictOutput)) self.assertEqual(predictions, unspecified_output.outputs) def testEstimatorSpec_export_multihead(self): predictions = self.create_predictions() output_alternatives = { "regression_head": ( constants.ProblemType.LINEAR_REGRESSION, predictions), "classification_head": ( constants.ProblemType.CLASSIFICATION, predictions)} model_fn_ops = self.create_model_fn_ops( predictions, output_alternatives, mode=model_fn.ModeKeys.INFER) estimator_spec = model_fn_ops.estimator_spec("regression_head") self.assertEquals_except_export_and_eval_loss(model_fn_ops, estimator_spec) with session.Session(): regression_output = estimator_spec.export_outputs["regression_head"] self.assertTrue(isinstance( regression_output, core_export_lib.RegressionOutput)) self.assertAllEqual(predictions["scores"].eval(), regression_output.value.eval()) default_output = estimator_spec.export_outputs[ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] self.assertTrue(isinstance(default_output, core_export_lib.RegressionOutput)) self.assertAllEqual(predictions["scores"].eval(), default_output.value.eval()) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/model_fn_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Debug estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import operator import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import debug from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib NUM_EXAMPLES = 100 N_CLASSES = 5 # Cardinality of multiclass labels. LABEL_DIMENSION = 3 # Dimensionality of regression labels. def _train_test_split(features_and_labels): features, labels = features_and_labels train_set = (features[:int(len(features) / 2)], labels[:int(len(features) / 2)]) test_set = (features[int(len(features) / 2):], labels[int(len(features) / 2):]) return train_set, test_set def _input_fn_builder(features, labels): def input_fn(): feature_dict = {'features': constant_op.constant(features)} my_labels = labels if my_labels is not None: my_labels = constant_op.constant(my_labels) return feature_dict, my_labels return input_fn class DebugClassifierTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.labels = np.random.choice( range(N_CLASSES), p=[0.1, 0.3, 0.4, 0.1, 0.1], size=NUM_EXAMPLES) self.binary_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) self.binary_float_labels = np.random.choice( range(2), p=[0.2, 0.8], size=NUM_EXAMPLES) def testPredict(self): """Tests that DebugClassifier outputs the majority class.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictBinary(self): """Same as above for binary predictions.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) majority_class, _ = max( collections.Counter(train_labels).items(), key=operator.itemgetter(1)) expected_prediction = np.vstack( [[majority_class] for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_classes( input_fn=_input_fn_builder(test_features, None)) self.assertAllEqual(expected_prediction, np.vstack(pred)) def testPredictProba(self): """Tests that DebugClassifier outputs observed class distribution.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.labels]) class_distribution = np.zeros((1, N_CLASSES)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=N_CLASSES) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testPredictProbaBinary(self): """Same as above but for binary classification.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, label] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.binary_float_labels]) class_distribution = np.zeros((1, 2)) for label in train_labels: class_distribution[0, int(label)] += 1 class_distribution /= len(train_labels) expected_prediction = np.vstack( [class_distribution for _ in range(test_labels.shape[0])]) classifier = debug.DebugClassifier(n_classes=2) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_proba( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugClassifier(n_classes=3), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugClassifier) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predictions = list(classifier.predict_classes(input_fn=predict_input_fn)) self._assertBinaryPredictions(3, predictions) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" classifier = debug.DebugClassifier(n_classes=3) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) classifier = debug.DebugClassifier(n_classes=3) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target classifier = debug.DebugClassifier(n_classes=3) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_StringLabel(self): """Tests multi-class classification with string labels.""" def _input_fn_train(): labels = constant_op.constant([['foo'], ['bar'], ['baz'], ['bar']]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels classifier = debug.DebugClassifier( n_classes=3, label_keys=['foo', 'bar', 'baz']) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels classifier = debug.DebugClassifier(n_classes=2) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier( weight_column_name='w', n_classes=2, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = debug.DebugClassifier(weight_column_name='w') classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones(shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.cast(labels, dtypes.float32) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(classifier.predict_classes(input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) model_dir = tempfile.mkdtemp() classifier = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = debug.DebugClassifier( model_dir=model_dir, n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column(language, dimension=1) ] classifier = debug.DebugClassifier( config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=5) def default_input_fn(unused_estimator, examples): return feature_column_ops.parse_feature_columns_from_examples( examples, feature_columns) export_dir = tempfile.mkdtemp() classifier.export(export_dir, input_fn=default_input_fn) class DebugRegressorTest(test.TestCase): def setUp(self): np.random.seed(100) self.features = np.random.rand(NUM_EXAMPLES, 5) self.targets = np.random.rand(NUM_EXAMPLES, LABEL_DIMENSION) def testPredictScores(self): """Tests that DebugRegressor outputs the mean target.""" (train_features, train_labels), (test_features, test_labels) = _train_test_split( [self.features, self.targets]) mean_target = np.mean(train_labels, 0) expected_prediction = np.vstack( [mean_target for _ in range(test_labels.shape[0])]) classifier = debug.DebugRegressor(label_dimension=LABEL_DIMENSION) classifier.fit( input_fn=_input_fn_builder(train_features, train_labels), steps=50) pred = classifier.predict_scores( input_fn=_input_fn_builder(test_features, None)) self.assertAllClose(expected_prediction, np.vstack(pred), atol=0.1) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=debug.DebugRegressor(), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, debug.DebugRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant(iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), } return features, labels regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = debug.DebugRegressor( weight_column_name='w', config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones(shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = debug.DebugRegressor( config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array( list(regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) model_dir = tempfile.mkdtemp() regressor = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = debug.DebugRegressor( model_dir=model_dir, config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/debug_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """sklearn cross-support (deprecated).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import numpy as np import six def _pprint(d): return ', '.join(['%s=%s' % (key, str(value)) for key, value in d.items()]) class _BaseEstimator(object): """This is a cross-import when sklearn is not available. Adopted from sklearn.BaseEstimator implementation. https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py """ def get_params(self, deep=True): """Get parameters for this estimator. Args: deep: boolean, optional If `True`, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values. """ out = {} param_names = [name for name in self.__dict__ if not name.startswith('_')] for key in param_names: value = getattr(self, key, None) if isinstance(value, collections.Callable): continue # XXX: should we rather test if instance of estimator? if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in six.iteritems(params): split = key.split('__', 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (name, self)) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self.__class__.__name__)) setattr(self, key, value) return self def __repr__(self): class_name = self.__class__.__name__ return '%s(%s)' % (class_name, _pprint(self.get_params(deep=False)),) # pylint: disable=old-style-class class _ClassifierMixin(): """Mixin class for all classifiers.""" pass class _RegressorMixin(): """Mixin class for all regression estimators.""" pass class _TransformerMixin(): """Mixin class for all transformer estimators.""" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. USE OF THIS EXCEPTION IS DEPRECATED. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples: >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) Copied from https://github.com/scikit-learn/scikit-learn/master/sklearn/exceptions.py """ # pylint: enable=old-style-class def _accuracy_score(y_true, y_pred): score = y_true == y_pred return np.average(score) def _mean_squared_error(y_true, y_pred): if len(y_true.shape) > 1: y_true = np.squeeze(y_true) if len(y_pred.shape) > 1: y_pred = np.squeeze(y_pred) return np.average((y_true - y_pred)**2) def _train_test_split(*args, **options): # pylint: disable=missing-docstring test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) if test_size is None and train_size is None: train_size = 0.75 elif train_size is None: train_size = 1 - test_size train_size = int(train_size * args[0].shape[0]) np.random.seed(random_state) indices = np.random.permutation(args[0].shape[0]) train_idx, test_idx = indices[:train_size], indices[train_size:] result = [] for x in args: result += [x.take(train_idx, axis=0), x.take(test_idx, axis=0)] return tuple(result) # If "TENSORFLOW_SKLEARN" flag is defined then try to import from sklearn. TRY_IMPORT_SKLEARN = os.environ.get('TENSORFLOW_SKLEARN', False) if TRY_IMPORT_SKLEARN: # pylint: disable=g-import-not-at-top,g-multiple-import,unused-import from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin, TransformerMixin from sklearn.metrics import accuracy_score, log_loss, mean_squared_error from sklearn.model_selection import train_test_split try: from sklearn.exceptions import NotFittedError except ImportError: try: from sklearn.utils.validation import NotFittedError except ImportError: pass else: # Naive implementations of sklearn classes and functions. BaseEstimator = _BaseEstimator ClassifierMixin = _ClassifierMixin RegressorMixin = _RegressorMixin TransformerMixin = _TransformerMixin accuracy_score = _accuracy_score log_loss = None mean_squared_error = _mean_squared_error train_test_split = _train_test_split
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/_sklearn.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test data utilities (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes def get_quantile_based_buckets(feature_values, num_buckets): quantiles = np.percentile( np.array(feature_values), ([100 * (i + 1.) / (num_buckets + 1.) for i in range(num_buckets)])) return list(quantiles) def prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) return base.Dataset(data=iris.data[ids], target=iris.target[ids]) def iris_input_multiclass_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=(150, 1), dtype=dtypes.int32) def iris_input_logistic_fn(): iris = prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=(100, 1), dtype=dtypes.int32)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/test_data.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run Config (deprecated, use tf.estimator.RunConfig instead). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import json import os import six from tensorflow.contrib.framework.python.framework import experimental from tensorflow.core.protobuf import config_pb2 from tensorflow.python.estimator import run_config as core_run_config from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import server_lib from tensorflow.python.util.deprecation import deprecated # A list of the property names in RunConfig user allows to change. They will # not affect the execution framework, so when execution framework checks the # `uid` of the RunConfig, it should be ignored. _DEFAULT_UID_WHITE_LIST = [ 'tf_random_seed', 'save_summary_steps', 'save_checkpoints_steps', 'save_checkpoints_secs', 'session_config', 'keep_checkpoint_max', 'keep_checkpoint_every_n_hours', 'log_step_count_steps', ] class Environment(object): """DEPRECATED CLASS.""" # For running general distributed training. CLOUD = 'cloud' # For running Google-internal distributed training. GOOGLE = 'google' # For running on local desktop. LOCAL = 'local' class TaskType(object): """DEPRECATED CLASS.""" MASTER = 'master' PS = 'ps' WORKER = 'worker' class ClusterConfig(object): """This class specifies the configurations for a distributed run. THIS CLASS IS DEPRECATED. Use tf.estimator.RunConfig instead. If you're using an `Estimator`, you should probably use the subclass RunConfig instead. """ def __init__(self, master=None, evaluation_master=None): """Constructor. Sets the properties `cluster_spec`, `is_chief`, `master` (if `None` in the args), `num_ps_replicas`, `task_id`, and `task_type` based on the `TF_CONFIG` environment variable, if the pertinent information is present. The `TF_CONFIG` environment variable is a JSON object with attributes: `cluster`, `environment`, and `task`. `cluster` is a JSON serialized version of `ClusterSpec`'s Python dict from `server_lib.py`, mapping task types (usually one of the TaskType enums) to a list of task addresses. `environment` specifies the runtime environment for the job (usually one of the `Environment` enums). Defaults to `LOCAL`. `task` has two attributes: `type` and `index`, where `type` can be any of the task types in `cluster`. When `TF_CONFIG` contains said information, the following properties are set on this class: * `task_type` is set to `TF_CONFIG['task']['type']`. Defaults to `None`. * `task_id` is set to `TF_CONFIG['task']['index']`. Defaults to 0. * `cluster_spec` is parsed from `TF_CONFIG['cluster']`. Defaults to {}. * `master` is determined by looking up `task_type` and `task_id` in the `cluster_spec`. Defaults to ''. * `num_ps_replicas` is set by counting the number of nodes listed in the `ps` attribute of `cluster_spec`. Defaults to 0. * `num_worker_replicas` is set by counting the number of nodes listed in the `worker` attribute of `cluster_spec`. Defaults to 0. * `is_chief` is deteremined based on `task_type`, `type_id`, and `environment`. Example: ``` cluster = {'ps': ['host1:2222', 'host2:2222'], 'worker': ['host3:2222', 'host4:2222', 'host5:2222']} os.environ['TF_CONFIG'] = json.dumps( {'cluster': cluster, 'task': {'type': 'worker', 'index': 1}}) config = ClusterConfig() assert config.master == 'host4:2222' assert config.task_id == 1 assert config.num_ps_replicas == 2 assert config.num_worker_replicas == 3 assert config.cluster_spec == server_lib.ClusterSpec(cluster) assert config.task_type == 'worker' assert not config.is_chief ``` Args: master: TensorFlow master. Defaults to empty string for local. evaluation_master: The master on which to perform evaluation. """ # If not explicitly specified in the constructor and the TF_CONFIG # environment variable is present, load cluster_spec from TF_CONFIG. config = json.loads(os.environ.get('TF_CONFIG') or '{}') # Set task_type and task_id if the TF_CONFIG environment variable is # present. Otherwise, use the respective default (None / 0). task_env = config.get('task', {}) self._task_type = task_env.get('type', None) self._task_id = self.get_task_id() self._cluster_spec = server_lib.ClusterSpec(config.get('cluster', {})) self._master = (master if master is not None else _get_master(self._cluster_spec, self._task_type, self._task_id) or '') self._num_ps_replicas = _count_ps(self._cluster_spec) or 0 self._num_worker_replicas = _count_worker(self._cluster_spec) or 0 # Set is_chief. self._environment = config.get('environment', Environment.LOCAL) self._is_chief = None if self._task_type is None: self._is_chief = (self._task_id == 0) elif self._environment == Environment.CLOUD: # When the TF_CONFIG environment variable is set, we can set the # default of is_chief to 0 when task_type is "master" and task_id is 0. self._is_chief = (self._task_type == TaskType.MASTER and self._task_id == 0) else: # Legacy behavior is that is_chief is None if task_id == 0. self._is_chief = (self._task_type == TaskType.WORKER and self._task_id == 0) self._evaluation_master = evaluation_master or '' @property def cluster_spec(self): return self._cluster_spec @property def environment(self): return self._environment @property def evaluation_master(self): return self._evaluation_master @property def is_chief(self): return self._is_chief @property def master(self): return self._master @property def num_ps_replicas(self): return self._num_ps_replicas @property def num_worker_replicas(self): return self._num_worker_replicas @property def task_id(self): return self._task_id @property def task_type(self): return self._task_type @staticmethod def get_task_id(): """Returns task index from `TF_CONFIG` environmental variable. If you have a ClusterConfig instance, you can just access its task_id property instead of calling this function and re-parsing the environmental variable. Returns: `TF_CONFIG['task']['index']`. Defaults to 0. """ config = json.loads(os.environ.get('TF_CONFIG') or '{}') task_env = config.get('task', {}) task_index = task_env.get('index') return int(task_index) if task_index else 0 class RunConfig(ClusterConfig, core_run_config.RunConfig): """This class specifies the configurations for an `Estimator` run. This class is a deprecated implementation of `tf.estimator.RunConfig` interface. """ _USE_DEFAULT = 0 @deprecated(None, 'When switching to tf.estimator.Estimator, use' ' tf.estimator.RunConfig instead.') def __init__(self, master=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, tf_random_seed=None, save_summary_steps=100, save_checkpoints_secs=_USE_DEFAULT, save_checkpoints_steps=None, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, log_step_count_steps=100, protocol=None, evaluation_master='', model_dir=None, session_config=None): """Constructor. The superclass `ClusterConfig` may set properties like `cluster_spec`, `is_chief`, `master` (if `None` in the args), `num_ps_replicas`, `task_id`, and `task_type` based on the `TF_CONFIG` environment variable. See `ClusterConfig` for more details. N.B.: If `save_checkpoints_steps` or `save_checkpoints_secs` is set, `keep_checkpoint_max` might need to be adjusted accordingly, especially in distributed training. For example, setting `save_checkpoints_secs` as 60 without adjusting `keep_checkpoint_max` (defaults to 5) leads to situation that checkpoint would be garbage collected after 5 minutes. In distributed training, the evaluation job starts asynchronously and might fail to load or find the checkpoint due to race condition. Args: master: TensorFlow master. Defaults to empty string for local. num_cores: Number of cores to be used. If 0, the system picks an appropriate number (default: 0). log_device_placement: Log the op placement to devices (default: False). gpu_memory_fraction: Fraction of GPU memory used by the process on each GPU uniformly on the same machine. tf_random_seed: Random seed for TensorFlow initializers. Setting this value allows consistency between reruns. save_summary_steps: Save summaries every this many steps. save_checkpoints_secs: Save checkpoints every this many seconds. Can not be specified with `save_checkpoints_steps`. save_checkpoints_steps: Save checkpoints every this many steps. Can not be specified with `save_checkpoints_secs`. keep_checkpoint_max: The maximum number of recent checkpoint files to keep. As new files are created, older files are deleted. If None or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent checkpoint files are kept.) keep_checkpoint_every_n_hours: Number of hours between each checkpoint to be saved. The default value of 10,000 hours effectively disables the feature. log_step_count_steps: The frequency, in number of global steps, that the global step/sec will be logged during training. evaluation_master: the master on which to perform evaluation. model_dir: directory where model parameters, graph etc are saved. If `None`, will use `model_dir` property in `TF_CONFIG` environment variable. If both are set, must have same value. If both are `None`, see `Estimator` about where the model will be saved. session_config: a ConfigProto used to set session parameters, or None. Note - using this argument, it is easy to provide settings which break otherwise perfectly good models. Use with care. protocol: An optional argument which specifies the protocol used when starting server. None means default to grpc. """ # Neither parent class calls super().__init__(), so here we have to # manually call their __init__() methods. ClusterConfig.__init__( self, master=master, evaluation_master=evaluation_master) # For too long this code didn't call: # core_run_config.RunConfig.__init__(self) # so instead of breaking compatibility with that assumption, we # just manually initialize this field: self._train_distribute = None self._eval_distribute = None self._experimental_max_worker_delay_secs = None self._device_fn = None gpu_options = config_pb2.GPUOptions( per_process_gpu_memory_fraction=gpu_memory_fraction) self._tf_config = config_pb2.ConfigProto( log_device_placement=log_device_placement, inter_op_parallelism_threads=num_cores, intra_op_parallelism_threads=num_cores, gpu_options=gpu_options) self._tf_random_seed = tf_random_seed self._save_summary_steps = save_summary_steps self._save_checkpoints_secs = save_checkpoints_secs self._log_step_count_steps = log_step_count_steps self._protocol = protocol self._session_config = session_config if save_checkpoints_secs == RunConfig._USE_DEFAULT: if save_checkpoints_steps is None: self._save_checkpoints_secs = 600 else: self._save_checkpoints_secs = None self._save_checkpoints_steps = save_checkpoints_steps # TODO(weiho): Remove these after ModelFn refactoring, when users can # create Scaffold and Saver in their model_fn to set these. self._keep_checkpoint_max = keep_checkpoint_max self._keep_checkpoint_every_n_hours = keep_checkpoint_every_n_hours self._model_dir = _get_model_dir(model_dir) @experimental def uid(self, whitelist=None): """Generates a 'Unique Identifier' based on all internal fields. Caller should use the uid string to check `RunConfig` instance integrity in one session use, but should not rely on the implementation details, which is subject to change. Args: whitelist: A list of the string names of the properties uid should not include. If `None`, defaults to `_DEFAULT_UID_WHITE_LIST`, which includes most properties user allowes to change. Returns: A uid string. """ if whitelist is None: whitelist = _DEFAULT_UID_WHITE_LIST state = {k: v for k, v in self.__dict__.items() if not k.startswith('__')} # Pop out the keys in whitelist. for k in whitelist: state.pop('_' + k, None) ordered_state = collections.OrderedDict( sorted(state.items(), key=lambda t: t[0])) # For class instance without __repr__, some special cares are required. # Otherwise, the object address will be used. if '_cluster_spec' in ordered_state: ordered_state['_cluster_spec'] = collections.OrderedDict( sorted(ordered_state['_cluster_spec'].as_dict().items(), key=lambda t: t[0])) return ', '.join( '%s=%r' % (k, v) for (k, v) in six.iteritems(ordered_state)) @property def model_dir(self): return self._model_dir @property def tf_config(self): return self._tf_config @property def tf_random_seed(self): return self._tf_random_seed @property def save_summary_steps(self): return self._save_summary_steps @property def save_checkpoints_secs(self): return self._save_checkpoints_secs @property def save_checkpoints_steps(self): return self._save_checkpoints_steps @property def session_config(self): return self._session_config @property def keep_checkpoint_max(self): return self._keep_checkpoint_max @property def keep_checkpoint_every_n_hours(self): return self._keep_checkpoint_every_n_hours @property def log_step_count_steps(self): return self._log_step_count_steps def _count_ps(cluster_spec): """Counts the number of parameter servers in cluster_spec.""" return len(cluster_spec.as_dict().get('ps', [])) if cluster_spec else 0 def _count_worker(cluster_spec): """Counts the number of workers in cluster_spec. Workers with TaskType.WORKER and TaskType.MASTER are included in the return value. Args: cluster_spec: a ClusterSpec instance that describes current deployment. Returns: The total number of eligible workers. If 'cluster_spec' was None, then 0 is returned. """ return (len(cluster_spec.as_dict().get('worker', [])) + len(cluster_spec.as_dict().get('master', []))) if cluster_spec else 0 def _get_master(cluster_spec, task_type, task_id): """Returns the appropriate string for the TensorFlow master.""" if not cluster_spec: return '' # If there is only one node in the cluster, do things locally. jobs = cluster_spec.jobs if len(jobs) == 1 and len(cluster_spec.job_tasks(jobs[0])) == 1: return '' # Lookup the master in cluster_spec using task_type and task_id, # if possible. if task_type: if task_type not in jobs: raise ValueError( '%s is not a valid task_type in the cluster_spec:\n' '%s\n\n' 'Note that these values may be coming from the TF_CONFIG environment ' 'variable.' % (task_type, cluster_spec)) addresses = cluster_spec.job_tasks(task_type) if task_id >= len(addresses) or task_id < 0: raise ValueError( '%d is not a valid task_id for task_type %s in the ' 'cluster_spec:\n' '%s\n\n' 'Note that these value may be coming from the TF_CONFIG environment ' 'variable.' % (task_id, task_type, cluster_spec)) return 'grpc://' + addresses[task_id] # For backwards compatibility, we return empty string if task_type was # not set (task_type did not previously exist). return '' def _get_model_dir(model_dir): """Returns `model_dir` based user provided `model_dir` or `TF_CONFIG`.""" model_dir_in_tf_config = json.loads( os.environ.get('TF_CONFIG') or '{}').get('model_dir', None) if model_dir_in_tf_config is not None: if model_dir is not None and model_dir_in_tf_config != model_dir: raise ValueError( '`model_dir` provided in RunConfig construct, if set, ' 'must have the same value as the model_dir in TF_CONFIG. ' 'model_dir: {}\nTF_CONFIG["model_dir"]: {}.\n'.format( model_dir, model_dir_in_tf_config)) logging.info('Using model_dir in TF_CONFIG: %s', model_dir_in_tf_config) return model_dir or model_dir_in_tf_config
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/run_config.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import copy import os import tempfile import numpy as np import six from google.protobuf import message from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.meta_graph_transform import meta_graph_transform from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_util from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import lookup_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.summary import summary as core_summary from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import checkpoint_management from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import training_util from tensorflow.python.util import compat from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existence of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if tensor_util.is_tensor(x) or y is not None and tensor_util.is_tensor(y): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) @deprecated(None, 'Please specify feature columns explicitly.') def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _model_fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ _, fn = tf_decorator.unwrap(fn) if hasattr(fn, 'func') and hasattr(fn, 'keywords') and hasattr(fn, 'args'): # Handle functools.partial and similar objects. return tuple([ arg for arg in tf_inspect.getargspec(fn.func).args[len(fn.args):] if arg not in set(fn.keywords.keys()) ]) # Handle function. return tuple(tf_inspect.getargspec(fn).args) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableV2', 'MutableHashTableOfTensors', 'MutableHashTableOfTensorsV2', 'MutableDenseHashTable', 'MutableDenseHashTableV2', 'VarHandleOp' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError('Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError('Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ results = [] for k, v in sorted(dictionary.items()): if isinstance(v, float) or isinstance(v, np.float32) or isinstance( v, int) or isinstance(v, np.int64) or isinstance(v, np.int32): results.append('%s = %s' % (k, v)) else: results.append('Type of %s = %s' % (k, type(v))) return ', '.join(results) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = core_summary.FileWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue if key == 'global_step': continue if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): summary_proto.value.add(tag=key, simple_value=float(dictionary[key])) elif (isinstance(dictionary[key], np.int64) or isinstance(dictionary[key], np.int32) or isinstance(dictionary[key], int)): summary_proto.value.add(tag=key, simple_value=int(dictionary[key])) elif isinstance(dictionary[key], six.string_types): try: summ = summary_pb2.Summary.FromString(dictionary[key]) for i, _ in enumerate(summ.value): summ.value[i].tag = key summary_proto.value.extend(summ.value) except message.DecodeError: logging.warn('Skipping summary for %s, cannot parse string to Summary.', key) continue elif isinstance(dictionary[key], np.ndarray): value = summary_proto.value.add() value.tag = key value.node_name = key tensor_proto = tensor_util.make_tensor_proto(dictionary[key]) value.tensor.CopyFrom(tensor_proto) logging.info( 'Summary for np.ndarray is not visible in Tensorboard by default. ' 'Consider using a Tensorboard plugin for visualization (see ' 'https://github.com/tensorflow/tensorboard-plugin-example/blob/master/README.md' ' for more information).') else: logging.warn( 'Skipping summary for %s, must be a float, np.float32, np.int64, ' 'np.int32 or int or np.ndarray or a serialized string of Summary.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() GraphRewriteSpec = collections.namedtuple('GraphRewriteSpec', ['tags', 'transforms']) class BaseEstimator(sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Users should not instantiate or subclass this class. Instead, use an `Estimator`. """ # Note that for Google users, this is overridden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name @deprecated(None, 'Please replace uses of any Estimator from tf.contrib.learn' ' with an Estimator from tf.estimator.*') def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. config: A RunConfig instance. """ # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config if self._config.session_config is None: self._session_config = config_pb2.ConfigProto(allow_soft_placement=True) else: self._session_config = self._config.session_config # Model directory. if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(b/9965722): remove this suppression after it is no longer # necessary. # pylint: disable=g-doc-exception raise ValueError( 'model_dir are set both in constructor and RunConfig, but with ' "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) # pylint: enable=g-doc-exception self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) if self._config.model_dir is None: self._config = self._config.replace(model_dir=self._model_dir) logging.info('Using config: %s', str(vars(self._config))) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @property def model_fn(self): """Returns the model_fn which is bound to self.params. Returns: The model_fn with the following signature: `def model_fn(features, labels, mode, metrics)` """ def public_model_fn(features, labels, mode, config): return self._call_model_fn(features, labels, mode, config=config) return public_model_fn @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def partial_fit(self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit( x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None)) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics, name) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args(SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True)) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True, iterate_batches=False): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). iterate_batches: If True, yield the whole batch at once instead of decomposing the batch into individual samples. Only relevant when as_iterable is True. Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable, iterate_batches=iterate_batches) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def export( self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = checkpoint_management.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_results = self._get_eval_ops(features, labels, metrics) eval_dict = model_fn_results.eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps == 0: logging.warning('evaluation steps are 0. If `input_fn` does not raise ' '`OutOfRangeError`, the evaluation will never stop. ' 'Use steps=None if intended.') if steps: hooks.append( evaluation.StopAfterNEvalsHook(steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, scaffold=model_fn_results.scaffold, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=self._session_config) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = checkpoint_management.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) training_util.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, scaffold=infer_ops.scaffold, config=self._session_config)) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = training_util.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) training_util._get_or_create_global_step_read() # pylint: disable=protected-access model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend(hooks) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, keep_checkpoint_every_n_hours=( self._config.keep_checkpoint_every_n_hours), defer_build=True, save_relative_paths=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any( isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self._session_config) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _model_fn_args(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) does not have a params ' 'argument, but params (%s) were passed to the ' 'Estimator\'s constructor.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode, metrics=None, config=None): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys metrics: Dict of metrics. config: RunConfig. Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _model_fn_args(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: if config: kwargs['config'] = config else: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): model_fn_ops = model_fn_results else: # Here model_fn_results should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') model_fn_ops = model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update( _make_metrics_ops(metrics, features, labels, model_fn_ops.predictions)) return model_fn_ops def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn(features, labels, model_fn_lib.ModeKeys.EVAL, metrics) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overridden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel(self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None, graph_rewrite_specs=(GraphRewriteSpec( (tag_constants.SERVING,), ()),), strip_default_attrs=False): # pylint: disable=line-too-long """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. graph_rewrite_specs: an iterable of `GraphRewriteSpec`. Each element will produce a separate MetaGraphDef within the exported SavedModel, tagged and rewritten as specified. Defaults to a single entry using the default serving tag ("serve") and no rewriting. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ # pylint: enable=line-too-long if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = checkpoint_management.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError( "Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) # We'll write the SavedModel to a temporary directory and then atomically # rename it at the end. This helps to avoid corrupt / incomplete outputs, # which could otherwise occur if the job is preempted or otherwise fails # in the middle of SavedModel creation. temp_export_dir = saved_model_export_utils.get_temp_export_dir(export_dir) builder = saved_model_builder.SavedModelBuilder(temp_export_dir) # Build the base graph with ops.Graph().as_default() as g: training_util.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # TODO(b/34388557) This is a stopgap, pending recording model provenance. # Record which features are expected at serving time. It is assumed that # these are the features that were used in training. for feature_key in input_ops.features.keys(): ops.add_to_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS, feature_key) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) init_op = control_flow_ops.group(variables.local_variables_initializer(), resources.initialize_resources( resources.shared_resources()), lookup_ops.tables_initializer()) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) # Export the first MetaGraphDef with variables, assets etc. with tf_session.Session('') as session: # pylint: disable=protected-access saveables = variables._all_saveable_objects() # pylint: enable=protected-access if (model_fn_ops.scaffold is not None and model_fn_ops.scaffold.saver is not None): saver_for_restore = model_fn_ops.scaffold.saver elif saveables: saver_for_restore = saver.Saver(saveables, sharded=True) saver_for_restore.restore(session, checkpoint_path) # Perform the export if not graph_rewrite_specs or graph_rewrite_specs[0].transforms: raise ValueError('The first element of graph_rewrite_specs ' 'must specify no transforms.') untransformed_tags = graph_rewrite_specs[0].tags builder.add_meta_graph_and_variables( session, untransformed_tags, signature_def_map=signature_def_map, assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS), main_op=init_op, strip_default_attrs=strip_default_attrs) # pylint: disable=protected-access base_meta_graph_def = builder._saved_model.meta_graphs[0] # pylint: enable=protected-access if graph_rewrite_specs[1:]: # Prepare the input_names and output_names needed for the # meta_graph_transform call below. input_names = [ tensor.name for input_dict in input_alternatives.values() for tensor in input_dict.values() ] output_names = [ tensor.name for output_alternative in output_alternatives.values() for tensor in output_alternative[1].values() ] # Write the additional MetaGraphDefs for graph_rewrite_spec in graph_rewrite_specs[1:]: # TODO(soergel) consider moving most of this to saved_model.builder_impl # as e.g. builder.add_rewritten_meta_graph(rewritten_graph_def, tags) transformed_meta_graph_def = meta_graph_transform.meta_graph_transform( base_meta_graph_def, input_names, output_names, graph_rewrite_spec.transforms, graph_rewrite_spec.tags) # pylint: disable=protected-access meta_graph_def = builder._saved_model.meta_graphs.add() # pylint: enable=protected-access meta_graph_def.CopyFrom(transformed_meta_graph_def) # Add the extra assets if assets_extra: assets_extra_path = os.path.join( compat.as_bytes(temp_export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join( compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) builder.save(as_text) gfile.Rename(temp_export_dir, export_dir) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please switch to the Estimator interface.') def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit( input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None, name=None): input_fn, feed_fn = _get_input_fn( x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate([output[key] for output in results], axis=0) for key in results[0] }
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/estimator.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Support Vector Machine (SVM) Estimator (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.linear_optimizer.python import sdca_optimizer def _as_iterable(preds, output): for pred in preds: yield pred[output] class SVM(estimator.Estimator): """Support Vector Machine (SVM) model for binary classification. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Currently, only linear SVMs are supported. For the underlying optimization problem, the `SDCAOptimizer` is used. For performance and convergence tuning, the num_loss_partitions parameter passed to `SDCAOptimizer` (see `__init__()` method), should be set to (#concurrent train ops per worker) x (#workers). If num_loss_partitions is larger or equal to this value, convergence is guaranteed but becomes slower as num_loss_partitions increases. If it is set to a smaller value, the optimizer is more aggressive in reducing the global loss but convergence is not guaranteed. The recommended value in an `Estimator` (where there is one process per worker) is the number of workers running the train steps. It defaults to 1 (single machine). Example: ```python real_feature_column = real_valued_column(...) sparse_feature_column = sparse_column_with_hash_bucket(...) estimator = SVM( example_id_column='example_id', feature_columns=[real_feature_column, sparse_feature_column], l2_regularization=10.0) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: a feature with `key=example_id_column` whose value is a `Tensor` of dtype string. if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, example_id_column, feature_columns, weight_column_name=None, model_dir=None, l1_regularization=0.0, l2_regularization=0.0, num_loss_partitions=1, kernels=None, config=None, feature_engineering_fn=None): """Constructs an `SVM` estimator object. Args: example_id_column: A string defining the feature column name representing example ids. Used to initialize the underlying optimizer. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. l1_regularization: L1-regularization parameter. Refers to global L1 regularization (across all examples). l2_regularization: L2-regularization parameter. Refers to global L2 regularization (across all examples). num_loss_partitions: number of partitions of the (global) loss function optimized by the underlying optimizer (SDCAOptimizer). kernels: A list of kernels for the SVM. Currently, no kernels are supported. Reserved for future use for non-linear SVMs. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Raises: ValueError: if kernels passed is not None. """ if kernels is not None: raise ValueError("Kernel SVMs are not currently supported.") optimizer = sdca_optimizer.SDCAOptimizer( example_id_column=example_id_column, num_loss_partitions=num_loss_partitions, symmetric_l1_regularization=l1_regularization, symmetric_l2_regularization=l2_regularization) self._feature_columns = feature_columns chief_hook = linear._SdcaUpdateWeightsHook() # pylint: disable=protected-access super(SVM, self).__init__( model_fn=linear.sdca_model_fn, model_dir=model_dir, config=config, params={ "head": head_lib.binary_svm_head( weight_column_name=weight_column_name, enable_centered_bias=False), "feature_columns": feature_columns, "optimizer": optimizer, "weight_column_name": weight_column_name, "update_weights_hook": chief_hook, }, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_classes(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Runs inference to determine the predicted class.""" key = prediction_key.PredictionKey.CLASSES preds = super(SVM, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba(self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Runs inference to determine the class probability predictions.""" key = prediction_key.PredictionKey.PROBABILITIES preds = super(SVM, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return _as_iterable(preds, output=key) return preds[key] # pylint: enable=protected-access @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export(self, export_dir, signature_fn=None, input_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" return self.export_with_defaults( export_dir=export_dir, signature_fn=signature_fn, input_fn=input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) @deprecated("2017-03-25", "Please use Estimator.export_savedmodel() instead.") def export_with_defaults( self, export_dir, signature_fn=None, input_fn=None, default_batch_size=1, exports_to_keep=None): """Same as BaseEstimator.export, but uses some defaults.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return super(SVM, self).export(export_dir=export_dir, signature_fn=signature_fn, input_fn=input_fn or default_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/svm.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimator for State Saving RNNs (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib import rnn as rnn_cell from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import rnn_common from tensorflow.contrib.training.python.training import sequence_queueing_state_saver as sqss from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import rnn from tensorflow.python.training import momentum as momentum_opt from tensorflow.python.util import nest def construct_state_saving_rnn(cell, inputs, num_label_columns, state_saver, state_name, scope='rnn'): """Build a state saving RNN and apply a fully connected layer. Args: cell: An instance of `RNNCell`. inputs: A length `T` list of inputs, each a `Tensor` of shape `[batch_size, input_size, ...]`. num_label_columns: The desired output dimension. state_saver: A state saver object with methods `state` and `save_state`. state_name: Python string or tuple of strings. The name to use with the state_saver. If the cell returns tuples of states (i.e., `cell.state_size` is a tuple) then `state_name` should be a tuple of strings having the same length as `cell.state_size`. Otherwise it should be a single string. scope: `VariableScope` for the created subgraph; defaults to "rnn". Returns: activations: The output of the RNN, projected to `num_label_columns` dimensions, a `Tensor` of shape `[batch_size, T, num_label_columns]`. final_state: The final state output by the RNN """ with ops.name_scope(scope): rnn_outputs, final_state = rnn.static_state_saving_rnn( cell=cell, inputs=inputs, state_saver=state_saver, state_name=state_name, scope=scope) # Convert rnn_outputs from a list of time-major order Tensors to a single # Tensor of batch-major order. rnn_outputs = array_ops.stack(rnn_outputs, axis=1) activations = layers.fully_connected( inputs=rnn_outputs, num_outputs=num_label_columns, activation_fn=None, trainable=True) # Use `identity` to rename `final_state`. final_state = array_ops.identity( final_state, name=rnn_common.RNNKeys.FINAL_STATE_KEY) return activations, final_state def _multi_value_loss( activations, labels, sequence_length, target_column, features): """Maps `activations` from the RNN to loss for multi value models. Args: activations: Output from an RNN. Should have dtype `float32` and shape `[batch_size, padded_length, ?]`. labels: A `Tensor` with length `[batch_size, padded_length]`. sequence_length: A `Tensor` with shape `[batch_size]` and dtype `int32` containing the length of each sequence in the batch. If `None`, sequences are assumed to be unpadded. target_column: An initialized `TargetColumn`, calculate predictions. features: A `dict` containing the input and (optionally) sequence length information and initial state. Returns: A scalar `Tensor` containing the loss. """ with ops.name_scope('MultiValueLoss'): activations_masked, labels_masked = rnn_common.mask_activations_and_labels( activations, labels, sequence_length) return target_column.loss(activations_masked, labels_masked, features) def _get_name_or_parent_names(column): """Gets the name of a column or its parent columns' names. Args: column: A sequence feature column derived from `FeatureColumn`. Returns: A list of the name of `column` or the names of its parent columns, if any exist. """ # pylint: disable=protected-access parent_columns = feature_column_ops._get_parent_columns(column) if parent_columns: return [x.name for x in parent_columns] return [column.name] def _prepare_features_for_sqss(features, labels, mode, sequence_feature_columns, context_feature_columns): """Prepares features for batching by the SQSS. In preparation for batching by the SQSS, this function: - Extracts the input key from the features dict. - Separates sequence and context features dicts from the features dict. - Adds the labels tensor to the sequence features dict. Args: features: A dict of Python string to an iterable of `Tensor` or `SparseTensor` of rank 2, the `features` argument of a TF.Learn model_fn. labels: An iterable of `Tensor`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. Returns: sequence_features: A dict mapping feature names to sequence features. context_features: A dict mapping feature names to context features. Raises: ValueError: If `features` does not contain a value for every key in `sequence_feature_columns` or `context_feature_columns`. """ # Extract sequence features. feature_column_ops._check_supported_sequence_columns(sequence_feature_columns) # pylint: disable=protected-access sequence_features = {} for column in sequence_feature_columns: for name in _get_name_or_parent_names(column): feature = features.get(name, None) if feature is None: raise ValueError('No key in features for sequence feature: ' + name) sequence_features[name] = feature # Extract context features. context_features = {} if context_feature_columns is not None: for column in context_feature_columns: name = column.name feature = features.get(name, None) if feature is None: raise ValueError('No key in features for context feature: ' + name) context_features[name] = feature # Add labels to the resulting sequence features dict. if mode != model_fn.ModeKeys.INFER: sequence_features[rnn_common.RNNKeys.LABELS_KEY] = labels return sequence_features, context_features def _get_state_names(cell): """Gets the state names for an `RNNCell`. Args: cell: A `RNNCell` to be used in the RNN. Returns: State names in the form of a string, a list of strings, or a list of string pairs, depending on the type of `cell.state_size`. Raises: TypeError: If cell.state_size is of type TensorShape. """ state_size = cell.state_size if isinstance(state_size, tensor_shape.TensorShape): raise TypeError('cell.state_size of type TensorShape is not supported.') if isinstance(state_size, int): return '{}_{}'.format(rnn_common.RNNKeys.STATE_PREFIX, 0) if isinstance(state_size, rnn_cell.LSTMStateTuple): return [ '{}_{}_c'.format(rnn_common.RNNKeys.STATE_PREFIX, 0), '{}_{}_h'.format(rnn_common.RNNKeys.STATE_PREFIX, 0), ] if isinstance(state_size[0], rnn_cell.LSTMStateTuple): return [[ '{}_{}_c'.format(rnn_common.RNNKeys.STATE_PREFIX, i), '{}_{}_h'.format(rnn_common.RNNKeys.STATE_PREFIX, i), ] for i in range(len(state_size))] return [ '{}_{}'.format(rnn_common.RNNKeys.STATE_PREFIX, i) for i in range(len(state_size))] def _get_initial_states(cell): """Gets the initial state of the `RNNCell` used in the RNN. Args: cell: A `RNNCell` to be used in the RNN. Returns: A Python dict mapping state names to the `RNNCell`'s initial state for consumption by the SQSS. """ names = nest.flatten(_get_state_names(cell)) values = nest.flatten(cell.zero_state(1, dtype=dtypes.float32)) return {n: array_ops.squeeze(v, axis=0) for [n, v] in zip(names, values)} def _read_batch(cell, features, labels, mode, num_unroll, batch_size, sequence_feature_columns, context_feature_columns=None, num_threads=3, queue_capacity=1000, seed=None): """Reads a batch from a state saving sequence queue. Args: cell: An initialized `RNNCell` to be used in the RNN. features: A dict of Python string to an iterable of `Tensor`, the `features` argument of a TF.Learn model_fn. labels: An iterable of `Tensor`, the `labels` argument of a TF.Learn model_fn. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. num_unroll: Python integer, how many time steps to unroll at a time. The input sequences of length `k` are then split into `k / num_unroll` many segments. batch_size: Python integer, the size of the minibatch produced by the SQSS. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. num_threads: The Python integer number of threads enqueuing input examples into a queue. Defaults to 3. queue_capacity: The max capacity of the queue in number of examples. Needs to be at least `batch_size`. Defaults to 1000. When iterating over the same input example multiple times reusing their keys the `queue_capacity` must be smaller than the number of examples. seed: Fixes the random seed used for generating input keys by the SQSS. Returns: batch: A `NextQueuedSequenceBatch` containing batch_size `SequenceExample` values and their saved internal states. """ states = _get_initial_states(cell) sequences, context = _prepare_features_for_sqss( features, labels, mode, sequence_feature_columns, context_feature_columns) return sqss.batch_sequences_with_states( input_key='key', input_sequences=sequences, input_context=context, input_length=None, # infer sequence lengths initial_states=states, num_unroll=num_unroll, batch_size=batch_size, pad=True, # pad to a multiple of num_unroll make_keys_unique=True, make_keys_unique_seed=seed, num_threads=num_threads, capacity=queue_capacity) def _get_state_name(i): """Constructs the name string for state component `i`.""" return '{}_{}'.format(rnn_common.RNNKeys.STATE_PREFIX, i) def state_tuple_to_dict(state): """Returns a dict containing flattened `state`. Args: state: A `Tensor` or a nested tuple of `Tensors`. All of the `Tensor`s must have the same rank and agree on all dimensions except the last. Returns: A dict containing the `Tensor`s that make up `state`. The keys of the dict are of the form "STATE_PREFIX_i" where `i` is the place of this `Tensor` in a depth-first traversal of `state`. """ with ops.name_scope('state_tuple_to_dict'): flat_state = nest.flatten(state) state_dict = {} for i, state_component in enumerate(flat_state): state_name = _get_state_name(i) state_value = (None if state_component is None else array_ops.identity( state_component, name=state_name)) state_dict[state_name] = state_value return state_dict def _prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll): """Prepares features batched by the SQSS for input to a state-saving RNN. Args: sequence_features: A dict of sequence feature name to `Tensor` or `SparseTensor`, with `Tensor`s of shape `[batch_size, num_unroll, ...]` or `SparseTensors` of dense shape `[batch_size, num_unroll, d]`. context_features: A dict of context feature name to `Tensor`, with tensors of shape `[batch_size, 1, ...]` and type float32. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. num_unroll: Python integer, how many time steps to unroll at a time. The input sequences of length `k` are then split into `k / num_unroll` many segments. Returns: features_by_time: A list of length `num_unroll` with `Tensor` entries of shape `[batch_size, sum(sequence_features dimensions) + sum(context_features dimensions)]` of type float32. Context features are copied into each time step. """ def _tile(feature): return array_ops.squeeze( array_ops.tile(array_ops.expand_dims(feature, 1), [1, num_unroll, 1]), axis=2) for feature in sequence_features.values(): if isinstance(feature, sparse_tensor.SparseTensor): # Explicitly set dense_shape's shape to 3 ([batch_size, num_unroll, d]) # since it can't be statically inferred. feature.dense_shape.set_shape([3]) sequence_features = layers.sequence_input_from_feature_columns( columns_to_tensors=sequence_features, feature_columns=sequence_feature_columns, weight_collections=None, scope=None) # Explicitly set shape along dimension 1 to num_unroll for the unstack op. sequence_features.set_shape([None, num_unroll, None]) if not context_features: return array_ops.unstack(sequence_features, axis=1) # TODO(jtbates): Call layers.input_from_feature_columns for context features. context_features = [ _tile(context_features[k]) for k in sorted(context_features) ] return array_ops.unstack( array_ops.concat( [sequence_features, array_ops.stack(context_features, 2)], axis=2), axis=1) def _get_rnn_model_fn(cell_type, target_column, problem_type, optimizer, num_unroll, num_units, num_threads, queue_capacity, batch_size, sequence_feature_columns, context_feature_columns=None, predict_probabilities=False, learning_rate=None, gradient_clipping_norm=None, dropout_keep_probabilities=None, name='StateSavingRNNModel', seed=None): """Creates a state saving RNN model function for an `Estimator`. Args: cell_type: A subclass of `RNNCell` or one of 'basic_rnn,' 'lstm' or 'gru'. target_column: An initialized `TargetColumn`, used to calculate prediction and loss. problem_type: `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. optimizer: A subclass of `Optimizer`, an instance of an `Optimizer` or a string. num_unroll: Python integer, how many time steps to unroll at a time. The input sequences of length `k` are then split into `k / num_unroll` many segments. num_units: The number of units in the `RNNCell`. num_threads: The Python integer number of threads enqueuing input examples into a queue. queue_capacity: The max capacity of the queue in number of examples. Needs to be at least `batch_size`. When iterating over the same input example multiple times reusing their keys the `queue_capacity` must be smaller than the number of examples. batch_size: Python integer, the size of the minibatch produced by the SQSS. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. predict_probabilities: A boolean indicating whether to predict probabilities for all classes. Must only be used with `ProblemType.CLASSIFICATION`. learning_rate: Learning rate used for optimization. This argument has no effect if `optimizer` is an instance of an `Optimizer`. gradient_clipping_norm: A float. Gradients will be clipped to this value. dropout_keep_probabilities: a list of dropout keep probabilities or `None`. If given a list, it must have length `len(num_units) + 1`. name: A string that will be used to create a scope for the RNN. seed: Fixes the random seed used for generating input keys by the SQSS. Returns: A model function to be passed to an `Estimator`. Raises: ValueError: `problem_type` is not one of `ProblemType.LINEAR_REGRESSION` or `ProblemType.CLASSIFICATION`. ValueError: `predict_probabilities` is `True` for `problem_type` other than `ProblemType.CLASSIFICATION`. ValueError: `num_unroll` is not positive. """ if problem_type not in (constants.ProblemType.CLASSIFICATION, constants.ProblemType.LINEAR_REGRESSION): raise ValueError( 'problem_type must be ProblemType.LINEAR_REGRESSION or ' 'ProblemType.CLASSIFICATION; got {}'. format(problem_type)) if (problem_type != constants.ProblemType.CLASSIFICATION and predict_probabilities): raise ValueError( 'predict_probabilities can only be set to True for problem_type' ' ProblemType.CLASSIFICATION; got {}.'.format(problem_type)) if num_unroll <= 0: raise ValueError('num_unroll must be positive; got {}.'.format(num_unroll)) def _rnn_model_fn(features, labels, mode): """The model to be passed to an `Estimator`.""" with ops.name_scope(name): dropout = (dropout_keep_probabilities if mode == model_fn.ModeKeys.TRAIN else None) cell = rnn_common.construct_rnn_cell(num_units, cell_type, dropout) batch = _read_batch( cell=cell, features=features, labels=labels, mode=mode, num_unroll=num_unroll, batch_size=batch_size, sequence_feature_columns=sequence_feature_columns, context_feature_columns=context_feature_columns, num_threads=num_threads, queue_capacity=queue_capacity, seed=seed) sequence_features = batch.sequences context_features = batch.context if mode != model_fn.ModeKeys.INFER: labels = sequence_features.pop(rnn_common.RNNKeys.LABELS_KEY) inputs = _prepare_inputs_for_rnn(sequence_features, context_features, sequence_feature_columns, num_unroll) state_name = _get_state_names(cell) rnn_activations, final_state = construct_state_saving_rnn( cell=cell, inputs=inputs, num_label_columns=target_column.num_label_columns, state_saver=batch, state_name=state_name) loss = None # Created below for modes TRAIN and EVAL. prediction_dict = rnn_common.multi_value_predictions( rnn_activations, target_column, problem_type, predict_probabilities) if mode != model_fn.ModeKeys.INFER: loss = _multi_value_loss(rnn_activations, labels, batch.length, target_column, features) eval_metric_ops = None if mode != model_fn.ModeKeys.INFER: eval_metric_ops = rnn_common.get_eval_metric_ops( problem_type, rnn_common.PredictionType.MULTIPLE_VALUE, batch.length, prediction_dict, labels) state_dict = state_tuple_to_dict(final_state) prediction_dict.update(state_dict) train_op = None if mode == model_fn.ModeKeys.TRAIN: train_op = optimizers.optimize_loss( loss=loss, global_step=None, # Get it internally. learning_rate=learning_rate, optimizer=optimizer, clip_gradients=gradient_clipping_norm, summaries=optimizers.OPTIMIZER_SUMMARIES) return model_fn.ModelFnOps(mode=mode, predictions=prediction_dict, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops) return _rnn_model_fn class StateSavingRnnEstimator(estimator.Estimator): """RNN with static unrolling and state saving (deprecated). THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, problem_type, num_unroll, batch_size, sequence_feature_columns, context_feature_columns=None, num_classes=None, num_units=None, cell_type='basic_rnn', optimizer_type='SGD', learning_rate=0.1, predict_probabilities=False, momentum=None, gradient_clipping_norm=5.0, dropout_keep_probabilities=None, model_dir=None, config=None, feature_engineering_fn=None, num_threads=3, queue_capacity=1000, seed=None): """Initializes a StateSavingRnnEstimator. Args: problem_type: `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. num_unroll: Python integer, how many time steps to unroll at a time. The input sequences of length `k` are then split into `k / num_unroll` many segments. batch_size: Python integer, the size of the minibatch. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. num_classes: The number of classes for categorization. Used only and required if `problem_type` is `ProblemType.CLASSIFICATION`. num_units: A list of integers indicating the number of units in the `RNNCell`s in each layer. Either `num_units` is specified or `cell_type` is an instance of `RNNCell`. cell_type: A subclass of `RNNCell` or one of 'basic_rnn,' 'lstm' or 'gru'. optimizer_type: The type of optimizer to use. Either a subclass of `Optimizer`, an instance of an `Optimizer` or a string. Strings must be one of 'Adagrad', 'Adam', 'Ftrl', Momentum', 'RMSProp', or 'SGD'. learning_rate: Learning rate. This argument has no effect if `optimizer` is an instance of an `Optimizer`. predict_probabilities: A boolean indicating whether to predict probabilities for all classes. Used only if `problem_type` is `ProblemType.CLASSIFICATION`. momentum: Momentum value. Only used if `optimizer_type` is 'Momentum'. gradient_clipping_norm: Parameter used for gradient clipping. If `None`, then no clipping is performed. dropout_keep_probabilities: a list of dropout keep probabilities or `None`. If given a list, it must have length `len(num_units) + 1`. model_dir: The directory in which to save and restore the model graph, parameters, etc. config: A `RunConfig` instance. feature_engineering_fn: Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. num_threads: The Python integer number of threads enqueuing input examples into a queue. Defaults to 3. queue_capacity: The max capacity of the queue in number of examples. Needs to be at least `batch_size`. Defaults to 1000. When iterating over the same input example multiple times reusing their keys the `queue_capacity` must be smaller than the number of examples. seed: Fixes the random seed used for generating input keys by the SQSS. Raises: ValueError: Both or neither of the following are true: (a) `num_units` is specified and (b) `cell_type` is an instance of `RNNCell`. ValueError: `problem_type` is not one of `ProblemType.LINEAR_REGRESSION` or `ProblemType.CLASSIFICATION`. ValueError: `problem_type` is `ProblemType.CLASSIFICATION` but `num_classes` is not specified. """ name = 'MultiValueStateSavingRNN' if problem_type == constants.ProblemType.LINEAR_REGRESSION: name += 'Regressor' target_column = layers.regression_target() elif problem_type == constants.ProblemType.CLASSIFICATION: if not num_classes: raise ValueError('For CLASSIFICATION problem_type, num_classes must be ' 'specified.') target_column = layers.multi_class_target(n_classes=num_classes) name += 'Classifier' else: raise ValueError( 'problem_type must be either ProblemType.LINEAR_REGRESSION ' 'or ProblemType.CLASSIFICATION; got {}'.format( problem_type)) if optimizer_type == 'Momentum': optimizer_type = momentum_opt.MomentumOptimizer(learning_rate, momentum) rnn_model_fn = _get_rnn_model_fn( cell_type=cell_type, target_column=target_column, problem_type=problem_type, optimizer=optimizer_type, num_unroll=num_unroll, num_units=num_units, num_threads=num_threads, queue_capacity=queue_capacity, batch_size=batch_size, sequence_feature_columns=sequence_feature_columns, context_feature_columns=context_feature_columns, predict_probabilities=predict_probabilities, learning_rate=learning_rate, gradient_clipping_norm=gradient_clipping_norm, dropout_keep_probabilities=dropout_keep_probabilities, name=name, seed=seed) super(StateSavingRnnEstimator, self).__init__( model_fn=rnn_model_fn, model_dir=model_dir, config=config, feature_engineering_fn=feature_engineering_fn)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/state_saving_rnn_estimator.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-output tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators._sklearn import mean_squared_error from tensorflow.python.platform import test class MultiOutputTest(test.TestCase): """Multi-output tests.""" def testMultiRegression(self): random.seed(42) rng = np.random.RandomState(1) x = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T regressor = learn.LinearRegressor( feature_columns=learn.infer_real_valued_columns_from_input(x), label_dimension=2) regressor.fit(x, y, steps=100) score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y) self.assertLess(score, 10, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/multioutput_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Enum for model prediction keys (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. This file is obsoleted in the move of Estimator to core. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function class PredictionKey(object): """THIS CLASS IS DEPRECATED.""" CLASSES = "classes" PROBABILITIES = "probabilities" LOGITS = "logits" LOGISTIC = "logistic" SCORES = "scores" TOP_K = "top_k" GENERIC = "output"
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/prediction_key.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Estimator input.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np from tensorflow.python.training import training_util from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import models from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner_impl _BOSTON_INPUT_DIM = 13 _IRIS_INPUT_DIM = 4 def boston_input_fn(num_epochs=None): boston = base.load_boston() features = input_lib.limit_epochs( array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]), num_epochs=num_epochs) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels def boston_input_fn_with_queue(num_epochs=None): features, labels = boston_input_fn(num_epochs=num_epochs) # Create a minimal queue runner. fake_queue = data_flow_ops.FIFOQueue(30, dtypes.int32) queue_runner = queue_runner_impl.QueueRunner(fake_queue, [constant_op.constant(0)]) queue_runner_impl.add_queue_runner(queue_runner) return features, labels def iris_input_fn(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(iris.target), [-1]) return features, labels def iris_input_fn_labels_dict(): iris = base.load_iris() features = array_ops.reshape( constant_op.constant(iris.data), [-1, _IRIS_INPUT_DIM]) labels = { 'labels': array_ops.reshape(constant_op.constant(iris.target), [-1]) } return features, labels def boston_eval_fn(): boston = base.load_boston() n_examples = len(boston.target) features = array_ops.reshape( constant_op.constant(boston.data), [n_examples, _BOSTON_INPUT_DIM]) labels = array_ops.reshape( constant_op.constant(boston.target), [n_examples, 1]) return array_ops.concat([features, features], 0), array_ops.concat([labels, labels], 0) def extract(data, key): if isinstance(data, dict): assert key in data return data[key] else: return data def linear_model_params_fn(features, labels, mode, params): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op def linear_model_fn(features, labels, mode): features = extract(features, 'input') labels = extract(labels, 'labels') assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) if isinstance(features, dict): (_, features), = features.items() prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def linear_model_fn_with_model_fn_ops(features, labels, mode): """Same as linear_model_fn, but returns `ModelFnOps`.""" assert mode in (model_fn.ModeKeys.TRAIN, model_fn.ModeKeys.EVAL, model_fn.ModeKeys.INFER) prediction, loss = (models.linear_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return model_fn.ModelFnOps( mode=mode, predictions=prediction, loss=loss, train_op=train_op) def logistic_model_no_mode_fn(features, labels): features = extract(features, 'input') labels = extract(labels, 'labels') labels = array_ops.one_hot(labels, 3, 1, 0) prediction, loss = (models.logistic_regression_zero_init(features, labels)) train_op = optimizers.optimize_loss( loss, training_util.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return { 'class': math_ops.argmax(prediction, 1), 'prob': prediction }, loss, train_op VOCAB_FILE_CONTENT = 'emerson\nlake\npalmer\n' EXTRA_FILE_CONTENT = 'kermit\npiggy\nralph\n' class EstimatorInputTest(test.TestCase): def testContinueTrainingDictionaryInput(self): boston = base.load_boston() output_dir = tempfile.mkdtemp() est = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=50) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) del est # Create another estimator object with the same output dir. est2 = estimator.Estimator(model_fn=linear_model_fn, model_dir=output_dir) # Check we can evaluate and predict. scores2 = est2.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) self.assertAllClose(scores2['MSE'], scores['MSE']) predictions = np.array(list(est2.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, float64_target['labels']) self.assertAllClose(other_score, scores['MSE']) def testBostonAll(self): boston = base.load_boston() est = estimator.SKCompat(estimator.Estimator(model_fn=linear_model_fn)) float64_labels = boston.target.astype(np.float64) est.fit(x=boston.data, y=float64_labels, steps=100) scores = est.score( x=boston.data, y=float64_labels, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston.data))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(scores['MSE'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testBostonAllDictionaryInput(self): boston = base.load_boston() est = estimator.Estimator(model_fn=linear_model_fn) boston_input = {'input': boston.data} float64_target = {'labels': boston.target.astype(np.float64)} est.fit(x=boston_input, y=float64_target, steps=100) scores = est.evaluate( x=boston_input, y=float64_target, metrics={ 'MSE': metric_ops.streaming_mean_squared_error }) predictions = np.array(list(est.predict(x=boston_input))) other_score = _sklearn.mean_squared_error(predictions, boston.target) self.assertAllClose(other_score, scores['MSE']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisAll(self): iris = base.load_iris() est = estimator.SKCompat( estimator.Estimator(model_fn=logistic_model_no_mode_fn)) est.fit(iris.data, iris.target, steps=100) scores = est.score( x=iris.data, y=iris.target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = est.predict(x=iris.data) predictions_class = est.predict(x=iris.data, outputs=['class'])['class'] self.assertEqual(predictions['prob'].shape[0], iris.target.shape[0]) self.assertAllClose(predictions['class'], predictions_class) self.assertAllClose(predictions['class'], np.argmax(predictions['prob'], axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions['class']) self.assertAllClose(scores['accuracy'], other_score) self.assertTrue('global_step' in scores) self.assertEqual(100, scores['global_step']) def testIrisAllDictionaryInput(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) iris_data = {'input': iris.data} iris_target = {'labels': iris.target} est.fit(iris_data, iris_target, steps=100) scores = est.evaluate( x=iris_data, y=iris_target, metrics={ ('accuracy', 'class'): metric_ops.streaming_accuracy }) predictions = list(est.predict(x=iris_data)) predictions_class = list(est.predict(x=iris_data, outputs=['class'])) self.assertEqual(len(predictions), iris.target.shape[0]) classes_batch = np.array([p['class'] for p in predictions]) self.assertAllClose(classes_batch, np.array([p['class'] for p in predictions_class])) self.assertAllClose(classes_batch, np.argmax( np.array([p['prob'] for p in predictions]), axis=1)) other_score = _sklearn.accuracy_score(iris.target, classes_batch) self.assertAllClose(other_score, scores['accuracy']) self.assertTrue('global_step' in scores) self.assertEqual(scores['global_step'], 100) def testIrisInputFn(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn, steps=100) _ = est.evaluate(input_fn=iris_input_fn, steps=1) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testIrisInputFnLabelsDict(self): iris = base.load_iris() est = estimator.Estimator(model_fn=logistic_model_no_mode_fn) est.fit(input_fn=iris_input_fn_labels_dict, steps=100) _ = est.evaluate( input_fn=iris_input_fn_labels_dict, steps=1, metrics={ 'accuracy': metric_spec.MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='class', label_key='labels') }) predictions = list(est.predict(x=iris.data)) self.assertEqual(len(predictions), iris.target.shape[0]) def testTrainInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_eval_fn, steps=1) def testPredictInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn, num_epochs=1) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) def testPredictInputFnWithQueue(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) input_fn = functools.partial(boston_input_fn_with_queue, num_epochs=2) output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0] * 2) def testPredictConstInputFn(self): est = estimator.Estimator(model_fn=linear_model_fn) boston = base.load_boston() est.fit(input_fn=boston_input_fn, steps=1) def input_fn(): features = array_ops.reshape( constant_op.constant(boston.data), [-1, _BOSTON_INPUT_DIM]) labels = array_ops.reshape(constant_op.constant(boston.target), [-1, 1]) return features, labels output = list(est.predict(input_fn=input_fn)) self.assertEqual(len(output), boston.target.shape[0]) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/estimator_input_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Non-linear estimator tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import random_seed from tensorflow.python.platform import test class NonLinearTest(test.TestCase): """Non-linear estimator tests.""" def setUp(self): random.seed(42) random_seed.set_random_seed(42) def testIrisDNN(self): iris = base.load_iris() feature_columns = [feature_column.real_valued_column("", dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(iris.data, iris.target, max_steps=200) variable_names = classifier.get_variable_names() self.assertEqual( classifier.get_variable_value("dnn/hiddenlayer_0/weights").shape, (4, 10)) self.assertEqual( classifier.get_variable_value("dnn/hiddenlayer_1/weights").shape, (10, 20)) self.assertEqual( classifier.get_variable_value("dnn/hiddenlayer_2/weights").shape, (20, 10)) self.assertEqual( classifier.get_variable_value("dnn/logits/weights").shape, (10, 3)) self.assertIn("dnn/hiddenlayer_0/biases", variable_names) self.assertIn("dnn/hiddenlayer_1/biases", variable_names) self.assertIn("dnn/hiddenlayer_2/biases", variable_names) self.assertIn("dnn/logits/biases", variable_names) def testBostonDNN(self): boston = base.load_boston() feature_columns = [feature_column.real_valued_column("", dimension=13)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[10, 20, 10], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(boston.data, boston.target, steps=300, batch_size=boston.data.shape[0]) weights = ([regressor.get_variable_value("dnn/hiddenlayer_0/weights")] + [regressor.get_variable_value("dnn/hiddenlayer_1/weights")] + [regressor.get_variable_value("dnn/hiddenlayer_2/weights")] + [regressor.get_variable_value("dnn/logits/weights")]) self.assertEqual(weights[0].shape, (13, 10)) self.assertEqual(weights[1].shape, (10, 20)) self.assertEqual(weights[2].shape, (20, 10)) self.assertEqual(weights[3].shape, (10, 1)) biases = ([regressor.get_variable_value("dnn/hiddenlayer_0/biases")] + [regressor.get_variable_value("dnn/hiddenlayer_1/biases")] + [regressor.get_variable_value("dnn/hiddenlayer_2/biases")] + [regressor.get_variable_value("dnn/logits/biases")]) self.assertEqual(biases[0].shape, (10,)) self.assertEqual(biases[1].shape, (20,)) self.assertEqual(biases[2].shape, (10,)) self.assertEqual(biases[3].shape, (1,)) def testDNNDropout0(self): # Dropout prob == 0. iris = base.load_iris() feature_columns = [feature_column.real_valued_column("", dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, dropout=0.0, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(iris.data, iris.target, max_steps=200) def testDNNDropout0_1(self): # Dropping only a little. iris = base.load_iris() feature_columns = [feature_column.real_valued_column("", dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, dropout=0.1, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(iris.data, iris.target, max_steps=200) def testDNNDropout0_9(self): # Dropping out most of it. iris = base.load_iris() feature_columns = [feature_column.real_valued_column("", dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, dropout=0.9, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(iris.data, iris.target, max_steps=200) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/nonlinear_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Estimator for Dynamic RNNs (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import layers from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.estimators import rnn_common from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn from tensorflow.python.training import momentum as momentum_opt from tensorflow.python.util import nest # TODO(jtbates): Remove PredictionType when all non-experimental targets which # depend on it point to rnn_common.PredictionType. class PredictionType(object): SINGLE_VALUE = 1 MULTIPLE_VALUE = 2 def _get_state_name(i): """Constructs the name string for state component `i`.""" return '{}_{}'.format(rnn_common.RNNKeys.STATE_PREFIX, i) def state_tuple_to_dict(state): """Returns a dict containing flattened `state`. Args: state: A `Tensor` or a nested tuple of `Tensors`. All of the `Tensor`s must have the same rank and agree on all dimensions except the last. Returns: A dict containing the `Tensor`s that make up `state`. The keys of the dict are of the form "STATE_PREFIX_i" where `i` is the place of this `Tensor` in a depth-first traversal of `state`. """ with ops.name_scope('state_tuple_to_dict'): flat_state = nest.flatten(state) state_dict = {} for i, state_component in enumerate(flat_state): state_name = _get_state_name(i) state_value = (None if state_component is None else array_ops.identity(state_component, name=state_name)) state_dict[state_name] = state_value return state_dict def dict_to_state_tuple(input_dict, cell): """Reconstructs nested `state` from a dict containing state `Tensor`s. Args: input_dict: A dict of `Tensor`s. cell: An instance of `RNNCell`. Returns: If `input_dict` does not contain keys 'STATE_PREFIX_i' for `0 <= i < n` where `n` is the number of nested entries in `cell.state_size`, this function returns `None`. Otherwise, returns a `Tensor` if `cell.state_size` is an `int` or a nested tuple of `Tensor`s if `cell.state_size` is a nested tuple. Raises: ValueError: State is partially specified. The `input_dict` must contain values for all state components or none at all. """ flat_state_sizes = nest.flatten(cell.state_size) state_tensors = [] with ops.name_scope('dict_to_state_tuple'): for i, state_size in enumerate(flat_state_sizes): state_name = _get_state_name(i) state_tensor = input_dict.get(state_name) if state_tensor is not None: rank_check = check_ops.assert_rank( state_tensor, 2, name='check_state_{}_rank'.format(i)) shape_check = check_ops.assert_equal( array_ops.shape(state_tensor)[1], state_size, name='check_state_{}_shape'.format(i)) with ops.control_dependencies([rank_check, shape_check]): state_tensor = array_ops.identity(state_tensor, name=state_name) state_tensors.append(state_tensor) if not state_tensors: return None elif len(state_tensors) == len(flat_state_sizes): dummy_state = cell.zero_state(batch_size=1, dtype=dtypes.bool) return nest.pack_sequence_as(dummy_state, state_tensors) else: raise ValueError( 'RNN state was partially specified.' 'Expected zero or {} state Tensors; got {}'. format(len(flat_state_sizes), len(state_tensors))) def _concatenate_context_input(sequence_input, context_input): """Replicates `context_input` across all timesteps of `sequence_input`. Expands dimension 1 of `context_input` then tiles it `sequence_length` times. This value is appended to `sequence_input` on dimension 2 and the result is returned. Args: sequence_input: A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, d0]`. context_input: A `Tensor` of dtype `float32` and shape `[batch_size, d1]`. Returns: A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, d0 + d1]`. Raises: ValueError: If `sequence_input` does not have rank 3 or `context_input` does not have rank 2. """ seq_rank_check = check_ops.assert_rank( sequence_input, 3, message='sequence_input must have rank 3', data=[array_ops.shape(sequence_input)]) seq_type_check = check_ops.assert_type( sequence_input, dtypes.float32, message='sequence_input must have dtype float32; got {}.'.format( sequence_input.dtype)) ctx_rank_check = check_ops.assert_rank( context_input, 2, message='context_input must have rank 2', data=[array_ops.shape(context_input)]) ctx_type_check = check_ops.assert_type( context_input, dtypes.float32, message='context_input must have dtype float32; got {}.'.format( context_input.dtype)) with ops.control_dependencies( [seq_rank_check, seq_type_check, ctx_rank_check, ctx_type_check]): padded_length = array_ops.shape(sequence_input)[1] tiled_context_input = array_ops.tile( array_ops.expand_dims(context_input, 1), array_ops.concat([[1], [padded_length], [1]], 0)) return array_ops.concat([sequence_input, tiled_context_input], 2) def build_sequence_input(features, sequence_feature_columns, context_feature_columns, weight_collections=None, scope=None): """Combine sequence and context features into input for an RNN. Args: features: A `dict` containing the input and (optionally) sequence length information and initial state. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features i.e. features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. weight_collections: List of graph collections to which weights are added. scope: Optional scope, passed through to parsing ops. Returns: A `Tensor` of dtype `float32` and shape `[batch_size, padded_length, ?]`. This will be used as input to an RNN. """ features = features.copy() features.update(layers.transform_features( features, list(sequence_feature_columns) + list(context_feature_columns or []))) sequence_input = layers.sequence_input_from_feature_columns( columns_to_tensors=features, feature_columns=sequence_feature_columns, weight_collections=weight_collections, scope=scope) if context_feature_columns is not None: context_input = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=context_feature_columns, weight_collections=weight_collections, scope=scope) sequence_input = _concatenate_context_input(sequence_input, context_input) return sequence_input def construct_rnn(initial_state, sequence_input, cell, num_label_columns, dtype=dtypes.float32, parallel_iterations=32, swap_memory=True): """Build an RNN and apply a fully connected layer to get the desired output. Args: initial_state: The initial state to pass the RNN. If `None`, the default starting state for `self._cell` is used. sequence_input: A `Tensor` with shape `[batch_size, padded_length, d]` that will be passed as input to the RNN. cell: An initialized `RNNCell`. num_label_columns: The desired output dimension. dtype: dtype of `cell`. parallel_iterations: Number of iterations to run in parallel. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. Returns: activations: The output of the RNN, projected to `num_label_columns` dimensions. final_state: A `Tensor` or nested tuple of `Tensor`s representing the final state output by the RNN. """ with ops.name_scope('RNN'): rnn_outputs, final_state = rnn.dynamic_rnn( cell=cell, inputs=sequence_input, initial_state=initial_state, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory, time_major=False) activations = layers.fully_connected( inputs=rnn_outputs, num_outputs=num_label_columns, activation_fn=None, trainable=True) return activations, final_state def _single_value_predictions(activations, sequence_length, target_column, problem_type, predict_probabilities): """Maps `activations` from the RNN to predictions for single value models. If `predict_probabilities` is `False`, this function returns a `dict` containing single entry with key `PREDICTIONS_KEY`. If `predict_probabilities` is `True`, it will contain a second entry with key `PROBABILITIES_KEY`. The value of this entry is a `Tensor` of probabilities with shape `[batch_size, num_classes]`. Args: activations: Output from an RNN. Should have dtype `float32` and shape `[batch_size, padded_length, ?]`. sequence_length: A `Tensor` with shape `[batch_size]` and dtype `int32` containing the length of each sequence in the batch. If `None`, sequences are assumed to be unpadded. target_column: An initialized `TargetColumn`, calculate predictions. problem_type: Either `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. predict_probabilities: A Python boolean, indicating whether probabilities should be returned. Should only be set to `True` for classification/logistic regression problems. Returns: A `dict` mapping strings to `Tensors`. """ with ops.name_scope('SingleValuePrediction'): last_activations = rnn_common.select_last_activations( activations, sequence_length) predictions_name = (prediction_key.PredictionKey.CLASSES if problem_type == constants.ProblemType.CLASSIFICATION else prediction_key.PredictionKey.SCORES) if predict_probabilities: probabilities = target_column.logits_to_predictions( last_activations, proba=True) prediction_dict = { prediction_key.PredictionKey.PROBABILITIES: probabilities, predictions_name: math_ops.argmax(probabilities, 1)} else: predictions = target_column.logits_to_predictions( last_activations, proba=False) prediction_dict = {predictions_name: predictions} return prediction_dict def _multi_value_loss( activations, labels, sequence_length, target_column, features): """Maps `activations` from the RNN to loss for multi value models. Args: activations: Output from an RNN. Should have dtype `float32` and shape `[batch_size, padded_length, ?]`. labels: A `Tensor` with length `[batch_size, padded_length]`. sequence_length: A `Tensor` with shape `[batch_size]` and dtype `int32` containing the length of each sequence in the batch. If `None`, sequences are assumed to be unpadded. target_column: An initialized `TargetColumn`, calculate predictions. features: A `dict` containing the input and (optionally) sequence length information and initial state. Returns: A scalar `Tensor` containing the loss. """ with ops.name_scope('MultiValueLoss'): activations_masked, labels_masked = rnn_common.mask_activations_and_labels( activations, labels, sequence_length) return target_column.loss(activations_masked, labels_masked, features) def _single_value_loss( activations, labels, sequence_length, target_column, features): """Maps `activations` from the RNN to loss for multi value models. Args: activations: Output from an RNN. Should have dtype `float32` and shape `[batch_size, padded_length, ?]`. labels: A `Tensor` with length `[batch_size]`. sequence_length: A `Tensor` with shape `[batch_size]` and dtype `int32` containing the length of each sequence in the batch. If `None`, sequences are assumed to be unpadded. target_column: An initialized `TargetColumn`, calculate predictions. features: A `dict` containing the input and (optionally) sequence length information and initial state. Returns: A scalar `Tensor` containing the loss. """ with ops.name_scope('SingleValueLoss'): last_activations = rnn_common.select_last_activations( activations, sequence_length) return target_column.loss(last_activations, labels, features) def _get_output_alternatives(prediction_type, problem_type, prediction_dict): """Constructs output alternatives dict for `ModelFnOps`. Args: prediction_type: either `MULTIPLE_VALUE` or `SINGLE_VALUE`. problem_type: either `CLASSIFICATION` or `LINEAR_REGRESSION`. prediction_dict: a dictionary mapping strings to `Tensor`s containing predictions. Returns: `None` or a dictionary mapping a string to an output alternative. Raises: ValueError: `prediction_type` is not one of `SINGLE_VALUE` or `MULTIPLE_VALUE`. """ if prediction_type == rnn_common.PredictionType.MULTIPLE_VALUE: return None if prediction_type == rnn_common.PredictionType.SINGLE_VALUE: prediction_dict_no_state = { k: v for k, v in prediction_dict.items() if rnn_common.RNNKeys.STATE_PREFIX not in k } return {'dynamic_rnn_output': (problem_type, prediction_dict_no_state)} raise ValueError('Unrecognized prediction_type: {}'.format(prediction_type)) def _get_dynamic_rnn_model_fn( cell_type, num_units, target_column, problem_type, prediction_type, optimizer, sequence_feature_columns, context_feature_columns=None, predict_probabilities=False, learning_rate=None, gradient_clipping_norm=None, dropout_keep_probabilities=None, sequence_length_key=rnn_common.RNNKeys.SEQUENCE_LENGTH_KEY, dtype=dtypes.float32, parallel_iterations=None, swap_memory=True, name='DynamicRNNModel'): """Creates an RNN model function for an `Estimator`. The model function returns an instance of `ModelFnOps`. When `problem_type == ProblemType.CLASSIFICATION` and `predict_probabilities == True`, the returned `ModelFnOps` includes an output alternative containing the classes and their associated probabilities. When `predict_probabilities == False`, only the classes are included. When `problem_type == ProblemType.LINEAR_REGRESSION`, the output alternative contains only the predicted values. Args: cell_type: A string, a subclass of `RNNCell` or an instance of an `RNNCell`. num_units: A single `int` or a list of `int`s. The size of the `RNNCell`s. target_column: An initialized `TargetColumn`, used to calculate prediction and loss. problem_type: `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. prediction_type: `PredictionType.SINGLE_VALUE` or `PredictionType.MULTIPLE_VALUE`. optimizer: A subclass of `Optimizer`, an instance of an `Optimizer` or a string. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the set should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. predict_probabilities: A boolean indicating whether to predict probabilities for all classes. Must only be used with `ProblemType.CLASSIFICATION`. learning_rate: Learning rate used for optimization. This argument has no effect if `optimizer` is an instance of an `Optimizer`. gradient_clipping_norm: A float. Gradients will be clipped to this value. dropout_keep_probabilities: a list of dropout keep probabilities or `None`. If a list is given, it must have length `len(num_units) + 1`. sequence_length_key: The key that will be used to look up sequence length in the `features` dict. dtype: The dtype of the state and output of the given `cell`. parallel_iterations: Number of iterations to run in parallel. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Transparently swap the tensors produced in forward inference but needed for back prop from GPU to CPU. This allows training RNNs which would typically not fit on a single GPU, with very minimal (or no) performance penalty. name: A string that will be used to create a scope for the RNN. Returns: A model function to be passed to an `Estimator`. Raises: ValueError: `problem_type` is not one of `ProblemType.LINEAR_REGRESSION` or `ProblemType.CLASSIFICATION`. ValueError: `prediction_type` is not one of `PredictionType.SINGLE_VALUE` or `PredictionType.MULTIPLE_VALUE`. ValueError: `predict_probabilities` is `True` for `problem_type` other than `ProblemType.CLASSIFICATION`. ValueError: `len(dropout_keep_probabilities)` is not `len(num_units) + 1`. """ if problem_type not in (constants.ProblemType.CLASSIFICATION, constants.ProblemType.LINEAR_REGRESSION): raise ValueError( 'problem_type must be ProblemType.LINEAR_REGRESSION or ' 'ProblemType.CLASSIFICATION; got {}'. format(problem_type)) if prediction_type not in (rnn_common.PredictionType.SINGLE_VALUE, rnn_common.PredictionType.MULTIPLE_VALUE): raise ValueError( 'prediction_type must be PredictionType.MULTIPLE_VALUEs or ' 'PredictionType.SINGLE_VALUE; got {}'. format(prediction_type)) if (problem_type != constants.ProblemType.CLASSIFICATION and predict_probabilities): raise ValueError( 'predict_probabilities can only be set to True for problem_type' ' ProblemType.CLASSIFICATION; got {}.'.format(problem_type)) def _dynamic_rnn_model_fn(features, labels, mode): """The model to be passed to an `Estimator`.""" with ops.name_scope(name): sequence_length = features.get(sequence_length_key) sequence_input = build_sequence_input(features, sequence_feature_columns, context_feature_columns) dropout = (dropout_keep_probabilities if mode == model_fn.ModeKeys.TRAIN else None) # This class promises to use the cell type selected by that function. cell = rnn_common.construct_rnn_cell(num_units, cell_type, dropout) initial_state = dict_to_state_tuple(features, cell) rnn_activations, final_state = construct_rnn( initial_state, sequence_input, cell, target_column.num_label_columns, dtype=dtype, parallel_iterations=parallel_iterations, swap_memory=swap_memory) loss = None # Created below for modes TRAIN and EVAL. if prediction_type == rnn_common.PredictionType.MULTIPLE_VALUE: prediction_dict = rnn_common.multi_value_predictions( rnn_activations, target_column, problem_type, predict_probabilities) if mode != model_fn.ModeKeys.INFER: loss = _multi_value_loss( rnn_activations, labels, sequence_length, target_column, features) elif prediction_type == rnn_common.PredictionType.SINGLE_VALUE: prediction_dict = _single_value_predictions( rnn_activations, sequence_length, target_column, problem_type, predict_probabilities) if mode != model_fn.ModeKeys.INFER: loss = _single_value_loss( rnn_activations, labels, sequence_length, target_column, features) state_dict = state_tuple_to_dict(final_state) prediction_dict.update(state_dict) eval_metric_ops = None if mode != model_fn.ModeKeys.INFER: eval_metric_ops = rnn_common.get_eval_metric_ops( problem_type, prediction_type, sequence_length, prediction_dict, labels) train_op = None if mode == model_fn.ModeKeys.TRAIN: train_op = optimizers.optimize_loss( loss=loss, global_step=None, # Get it internally. learning_rate=learning_rate, optimizer=optimizer, clip_gradients=gradient_clipping_norm, summaries=optimizers.OPTIMIZER_SUMMARIES) output_alternatives = _get_output_alternatives(prediction_type, problem_type, prediction_dict) return model_fn.ModelFnOps(mode=mode, predictions=prediction_dict, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, output_alternatives=output_alternatives) return _dynamic_rnn_model_fn class DynamicRnnEstimator(estimator.Estimator): """Dynamically unrolled RNN (deprecated). THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ def __init__(self, problem_type, prediction_type, sequence_feature_columns, context_feature_columns=None, num_classes=None, num_units=None, cell_type='basic_rnn', optimizer='SGD', learning_rate=0.1, predict_probabilities=False, momentum=None, gradient_clipping_norm=5.0, dropout_keep_probabilities=None, model_dir=None, feature_engineering_fn=None, config=None): """Initializes a `DynamicRnnEstimator`. The input function passed to this `Estimator` optionally contains keys `RNNKeys.SEQUENCE_LENGTH_KEY`. The value corresponding to `RNNKeys.SEQUENCE_LENGTH_KEY` must be vector of size `batch_size` where entry `n` corresponds to the length of the `n`th sequence in the batch. The sequence length feature is required for batches of varying sizes. It will be used to calculate loss and evaluation metrics. If `RNNKeys.SEQUENCE_LENGTH_KEY` is not included, all sequences are assumed to have length equal to the size of dimension 1 of the input to the RNN. In order to specify an initial state, the input function must include keys `STATE_PREFIX_i` for all `0 <= i < n` where `n` is the number of nested elements in `cell.state_size`. The input function must contain values for all state components or none of them. If none are included, then the default (zero) state is used as an initial state. See the documentation for `dict_to_state_tuple` and `state_tuple_to_dict` for further details. The input function can call rnn_common.construct_rnn_cell() to obtain the same cell type that this class will select from arguments to __init__. The `predict()` method of the `Estimator` returns a dictionary with keys `STATE_PREFIX_i` for `0 <= i < n` where `n` is the number of nested elements in `cell.state_size`, along with `PredictionKey.CLASSES` for problem type `CLASSIFICATION` or `PredictionKey.SCORES` for problem type `LINEAR_REGRESSION`. The value keyed by `PredictionKey.CLASSES` or `PredictionKey.SCORES` has shape `[batch_size, padded_length]` in the multi-value case and shape `[batch_size]` in the single-value case. Here, `padded_length` is the largest value in the `RNNKeys.SEQUENCE_LENGTH` `Tensor` passed as input. Entry `[i, j]` is the prediction associated with sequence `i` and time step `j`. If the problem type is `CLASSIFICATION` and `predict_probabilities` is `True`, it will also include key`PredictionKey.PROBABILITIES`. Args: problem_type: whether the `Estimator` is intended for a regression or classification problem. Value must be one of `ProblemType.CLASSIFICATION` or `ProblemType.LINEAR_REGRESSION`. prediction_type: whether the `Estimator` should return a value for each step in the sequence, or just a single value for the final time step. Must be one of `PredictionType.SINGLE_VALUE` or `PredictionType.MULTIPLE_VALUE`. sequence_feature_columns: An iterable containing all the feature columns describing sequence features. All items in the iterable should be instances of classes derived from `FeatureColumn`. context_feature_columns: An iterable containing all the feature columns describing context features, i.e., features that apply across all time steps. All items in the set should be instances of classes derived from `FeatureColumn`. num_classes: the number of classes for a classification problem. Only used when `problem_type=ProblemType.CLASSIFICATION`. num_units: A list of integers indicating the number of units in the `RNNCell`s in each layer. cell_type: A subclass of `RNNCell` or one of 'basic_rnn,' 'lstm' or 'gru'. optimizer: The type of optimizer to use. Either a subclass of `Optimizer`, an instance of an `Optimizer`, a callback that returns an optimizer, or a string. Strings must be one of 'Adagrad', 'Adam', 'Ftrl', 'Momentum', 'RMSProp' or 'SGD. See `layers.optimize_loss` for more details. learning_rate: Learning rate. This argument has no effect if `optimizer` is an instance of an `Optimizer`. predict_probabilities: A boolean indicating whether to predict probabilities for all classes. Used only if `problem_type` is `ProblemType.CLASSIFICATION` momentum: Momentum value. Only used if `optimizer_type` is 'Momentum'. gradient_clipping_norm: Parameter used for gradient clipping. If `None`, then no clipping is performed. dropout_keep_probabilities: a list of dropout probabilities or `None`. If a list is given, it must have length `len(num_units) + 1`. If `None`, then no dropout is applied. model_dir: The directory in which to save and restore the model graph, parameters, etc. feature_engineering_fn: Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. config: A `RunConfig` instance. Raises: ValueError: `problem_type` is not one of `ProblemType.LINEAR_REGRESSION` or `ProblemType.CLASSIFICATION`. ValueError: `problem_type` is `ProblemType.CLASSIFICATION` but `num_classes` is not specified. ValueError: `prediction_type` is not one of `PredictionType.MULTIPLE_VALUE` or `PredictionType.SINGLE_VALUE`. """ if prediction_type == rnn_common.PredictionType.MULTIPLE_VALUE: name = 'MultiValueDynamicRNN' elif prediction_type == rnn_common.PredictionType.SINGLE_VALUE: name = 'SingleValueDynamicRNN' else: raise ValueError( 'prediction_type must be one of PredictionType.MULTIPLE_VALUE or ' 'PredictionType.SINGLE_VALUE; got {}'.format(prediction_type)) if problem_type == constants.ProblemType.LINEAR_REGRESSION: name += 'Regressor' target_column = layers.regression_target() elif problem_type == constants.ProblemType.CLASSIFICATION: if not num_classes: raise ValueError('For CLASSIFICATION problem_type, num_classes must be ' 'specified.') target_column = layers.multi_class_target(n_classes=num_classes) name += 'Classifier' else: raise ValueError( 'problem_type must be either ProblemType.LINEAR_REGRESSION ' 'or ProblemType.CLASSIFICATION; got {}'.format( problem_type)) if optimizer == 'Momentum': optimizer = momentum_opt.MomentumOptimizer(learning_rate, momentum) dynamic_rnn_model_fn = _get_dynamic_rnn_model_fn( cell_type=cell_type, num_units=num_units, target_column=target_column, problem_type=problem_type, prediction_type=prediction_type, optimizer=optimizer, sequence_feature_columns=sequence_feature_columns, context_feature_columns=context_feature_columns, predict_probabilities=predict_probabilities, learning_rate=learning_rate, gradient_clipping_norm=gradient_clipping_norm, dropout_keep_probabilities=dropout_keep_probabilities, name=name) super(DynamicRnnEstimator, self).__init__( model_fn=dynamic_rnn_model_fn, model_dir=model_dir, config=config, feature_engineering_fn=feature_engineering_fn)
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/dynamic_rnn_estimator.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logistic regression (aka binary classifier) class (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. This defines some useful basic metrics for using logistic regression to classify a binary event (0 vs 1). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.python.framework import dtypes from tensorflow.python.ops import math_ops def _get_model_fn_with_logistic_metrics(model_fn): """Returns a model_fn with additional logistic metrics. Args: model_fn: Model function with the signature: `(features, labels, mode) -> (predictions, loss, train_op)`. Expects the returned predictions to be probabilities in [0.0, 1.0]. Returns: model_fn that can be used with Estimator. """ def _model_fn(features, labels, mode, params): """Model function that appends logistic evaluation metrics.""" thresholds = params.get('thresholds') or [.5] predictions, loss, train_op = model_fn(features, labels, mode) if mode == model_fn_lib.ModeKeys.EVAL: eval_metric_ops = _make_logistic_eval_metric_ops( labels=labels, predictions=predictions, thresholds=thresholds) else: eval_metric_ops = None return model_fn_lib.ModelFnOps( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, output_alternatives={ 'head': (constants.ProblemType.LOGISTIC_REGRESSION, { 'predictions': predictions }) }) return _model_fn # TODO(roumposg): Deprecate and delete after converting users to use head. def LogisticRegressor( # pylint: disable=invalid-name model_fn, thresholds=None, model_dir=None, config=None, feature_engineering_fn=None): """Builds a logistic regression Estimator for binary classification. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. This method provides a basic Estimator with some additional metrics for custom binary classification models, including AUC, precision/recall and accuracy. Example: ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` Args: model_fn: Model function with the signature: `(features, labels, mode) -> (predictions, loss, train_op)`. Expects the returned predictions to be probabilities in [0.0, 1.0]. thresholds: List of floating point thresholds to use for accuracy, precision, and recall metrics. If `None`, defaults to `[0.5]`. model_dir: Directory to save model parameters, graphs, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: A RunConfig configuration object. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Returns: An `Estimator` instance. """ return estimator.Estimator( model_fn=_get_model_fn_with_logistic_metrics(model_fn), model_dir=model_dir, config=config, params={'thresholds': thresholds}, feature_engineering_fn=feature_engineering_fn) def _make_logistic_eval_metric_ops(labels, predictions, thresholds): """Returns a dictionary of evaluation metric ops for logistic regression. Args: labels: The labels `Tensor`, or a dict with only one `Tensor` keyed by name. predictions: The predictions `Tensor`. thresholds: List of floating point thresholds to use for accuracy, precision, and recall metrics. Returns: A dict of metric results keyed by name. """ # If labels is a dict with a single key, unpack into a single tensor. labels_tensor = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor = labels.values()[0] metrics = {} metrics[metric_key.MetricKey.PREDICTION_MEAN] = metrics_lib.streaming_mean( predictions) metrics[metric_key.MetricKey.LABEL_MEAN] = metrics_lib.streaming_mean( labels_tensor) # Also include the streaming mean of the label as an accuracy baseline, as # a reminder to users. metrics[metric_key.MetricKey.ACCURACY_BASELINE] = metrics_lib.streaming_mean( labels_tensor) metrics[metric_key.MetricKey.AUC] = metrics_lib.streaming_auc( labels=labels_tensor, predictions=predictions) for threshold in thresholds: predictions_at_threshold = math_ops.cast( math_ops.greater_equal(predictions, threshold), dtypes.float32, name='predictions_at_threshold_%f' % threshold) metrics[metric_key.MetricKey.ACCURACY_MEAN % threshold] = ( metrics_lib.streaming_accuracy(labels=labels_tensor, predictions=predictions_at_threshold)) # Precision for positive examples. metrics[metric_key.MetricKey.PRECISION_MEAN % threshold] = ( metrics_lib.streaming_precision(labels=labels_tensor, predictions=predictions_at_threshold)) # Recall for positive examples. metrics[metric_key.MetricKey.RECALL_MEAN % threshold] = ( metrics_lib.streaming_recall(labels=labels_tensor, predictions=predictions_at_threshold)) return metrics
tensorflow-master
tensorflow/contrib/learn/python/learn/estimators/logistic_regressor.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sequence-to-sequence tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn import ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.platform import test class Seq2SeqOpsTest(test.TestCase): """Sequence-to-sequence tests.""" def test_sequence_classifier(self): with self.cached_session() as session: decoding = [ array_ops.placeholder(dtypes.float32, [2, 2]) for _ in range(3) ] labels = [array_ops.placeholder(dtypes.float32, [2, 2]) for _ in range(3)] sampling_decoding = [ array_ops.placeholder(dtypes.float32, [2, 2]) for _ in range(3) ] predictions, loss = ops.sequence_classifier(decoding, labels, sampling_decoding) pred, cost = session.run( [predictions, loss], feed_dict={ decoding[0].name: [[0.1, 0.9], [0.7, 0.3]], decoding[1].name: [[0.9, 0.1], [0.8, 0.2]], decoding[2].name: [[0.5, 0.5], [0.4, 0.6]], labels[0].name: [[1, 0], [0, 1]], labels[1].name: [[1, 0], [0, 1]], labels[2].name: [[1, 0], [0, 1]], sampling_decoding[0].name: [[0.1, 0.9], [0.7, 0.3]], sampling_decoding[1].name: [[0.9, 0.1], [0.8, 0.2]], sampling_decoding[2].name: [[0.5, 0.5], [0.4, 0.6]], }) self.assertAllEqual(pred.argmax(axis=2), [[1, 0, 0], [0, 0, 1]]) self.assertAllClose(cost, 4.7839908599) def test_seq2seq_inputs(self): inp = np.array([[[1, 0], [0, 1], [1, 0]], [[0, 1], [1, 0], [0, 1]]]) out = np.array([[[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [0, 1, 0]]]) with self.cached_session() as session: x = array_ops.placeholder(dtypes.float32, [2, 3, 2]) y = array_ops.placeholder(dtypes.float32, [2, 2, 3]) in_x, in_y, out_y = ops.seq2seq_inputs(x, y, 3, 2) enc_inp = session.run(in_x, feed_dict={x.name: inp}) dec_inp = session.run(in_y, feed_dict={x.name: inp, y.name: out}) dec_out = session.run(out_y, feed_dict={x.name: inp, y.name: out}) # Swaps from batch x len x height to list of len of batch x height. self.assertAllEqual(enc_inp, np.swapaxes(inp, 0, 1)) self.assertAllEqual(dec_inp, [[[0, 0, 0], [0, 0, 0]], [[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [0, 1, 0]]]) self.assertAllEqual(dec_out, [[[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0]]]) def test_rnn_decoder(self): with self.cached_session(): decoder_inputs = [ array_ops.placeholder(dtypes.float32, [2, 2]) for _ in range(3) ] encoding = array_ops.placeholder(dtypes.float32, [2, 2]) cell = rnn_cell.GRUCell(2) outputs, states, sampling_outputs, sampling_states = ( ops.rnn_decoder(decoder_inputs, encoding, cell)) self.assertEqual(len(outputs), 3) self.assertEqual(outputs[0].get_shape(), [2, 2]) self.assertEqual(len(states), 4) self.assertEqual(states[0].get_shape(), [2, 2]) self.assertEqual(len(sampling_outputs), 3) self.assertEqual(sampling_outputs[0].get_shape(), [2, 2]) self.assertEqual(len(sampling_states), 4) self.assertEqual(sampling_states[0].get_shape(), [2, 2]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/seq2seq_ops_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Ops to work with embeddings (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. Note: categorical variables are handled via embeddings in many cases. For example, in case of words. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework import deprecated from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops as array_ops_ from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope as vs @deprecated('2016-12-01', 'Use `tf.embedding_lookup` instead.') def embedding_lookup(params, ids, name='embedding_lookup'): """Provides a N dimensional version of tf.embedding_lookup. Ids are flattened to a 1d tensor before being passed to embedding_lookup then, they are unflattend to match the original ids shape plus an extra leading dimension of the size of the embeddings. Args: params: List of tensors of size D0 x D1 x ... x Dn-2 x Dn-1. ids: N-dimensional tensor of B0 x B1 x .. x Bn-2 x Bn-1. Must contain indexes into params. name: Optional name for the op. Returns: A tensor of size B0 x B1 x .. x Bn-2 x Bn-1 x D1 x ... x Dn-2 x Dn-1 containing the values from the params tensor(s) for indecies in ids. Raises: ValueError: if some parameters are invalid. """ with ops.name_scope(name, 'embedding_lookup', [params, ids]): params = ops.convert_to_tensor(params) ids = ops.convert_to_tensor(ids) shape = array_ops_.shape(ids) ids_flat = array_ops_.reshape( ids, math_ops.reduce_prod(shape, keepdims=True)) embeds_flat = nn.embedding_lookup(params, ids_flat, name) embed_shape = array_ops_.concat([shape, [-1]], 0) embeds = array_ops_.reshape(embeds_flat, embed_shape) embeds.set_shape(ids.get_shape().concatenate(params.get_shape()[1:])) return embeds @deprecated('2016-12-01', 'Use `tf.contrib.layers.embed_sequence` instead.') def categorical_variable(tensor_in, n_classes, embedding_size, name): """Creates an embedding for categorical variable with given number of classes. Args: tensor_in: Input tensor with class identifier (can be batch or N-dimensional). n_classes: Number of classes. embedding_size: Size of embedding vector to represent each class. name: Name of this categorical variable. Returns: Tensor of input shape, with additional dimension for embedding. Example: Calling categorical_variable([1, 2], 5, 10, "my_cat"), will return 2 x 10 tensor, where each row is representation of the class. """ with vs.variable_scope(name): embeddings = vs.get_variable(name + '_embeddings', [n_classes, embedding_size]) return embedding_lookup(embeddings, tensor_in)
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/embeddings_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Various TensorFlow Ops (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.ops.embeddings_ops import * from tensorflow.contrib.learn.python.learn.ops.losses_ops import * from tensorflow.contrib.learn.python.learn.ops.seq2seq_ops import * # pylint: enable=wildcard-import
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Ops for Sequence to Sequence models (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib import rnn from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import variable_scope as vs from tensorflow.python.util.deprecation import deprecated @deprecated(None, 'Please use tf.nn/tf.layers directly.') def sequence_classifier(decoding, labels, sampling_decoding=None, name=None): """Returns predictions and loss for sequence of predictions. Args: decoding: List of Tensors with predictions. labels: List of Tensors with labels. sampling_decoding: Optional, List of Tensor with predictions to be used in sampling. E.g. they shouldn't have dependncy on outputs. If not provided, decoding is used. name: Operation name. Returns: Predictions and losses tensors. """ with ops.name_scope(name, "sequence_classifier", [decoding, labels]): predictions, xent_list = [], [] for i, pred in enumerate(decoding): xent_list.append(nn.softmax_cross_entropy_with_logits( labels=labels[i], logits=pred, name="sequence_loss/xent_raw{0}".format(i))) if sampling_decoding: predictions.append(nn.softmax(sampling_decoding[i])) else: predictions.append(nn.softmax(pred)) xent = math_ops.add_n(xent_list, name="sequence_loss/xent") loss = math_ops.reduce_sum(xent, name="sequence_loss") return array_ops.stack(predictions, axis=1), loss @deprecated(None, 'Please use tf.nn/tf.layers directly.') def seq2seq_inputs(x, y, input_length, output_length, sentinel=None, name=None): """Processes inputs for Sequence to Sequence models. Args: x: Input Tensor [batch_size, input_length, embed_dim]. y: Output Tensor [batch_size, output_length, embed_dim]. input_length: length of input x. output_length: length of output y. sentinel: optional first input to decoder and final output expected. If sentinel is not provided, zeros are used. Due to fact that y is not available in sampling time, shape of sentinel will be inferred from x. name: Operation name. Returns: Encoder input from x, and decoder inputs and outputs from y. """ with ops.name_scope(name, "seq2seq_inputs", [x, y]): in_x = array_ops.unstack(x, axis=1) y = array_ops.unstack(y, axis=1) if not sentinel: # Set to zeros of shape of y[0], using x for batch size. sentinel_shape = array_ops.stack( [array_ops.shape(x)[0], y[0].get_shape()[1]]) sentinel = array_ops.zeros(sentinel_shape) sentinel.set_shape(y[0].get_shape()) in_y = [sentinel] + y out_y = y + [sentinel] return in_x, in_y, out_y @deprecated(None, 'Please use tf.nn/tf.layers directly.') def rnn_decoder(decoder_inputs, initial_state, cell, scope=None): """RNN Decoder that creates training and sampling sub-graphs. Args: decoder_inputs: Inputs for decoder, list of tensors. This is used only in training sub-graph. initial_state: Initial state for the decoder. cell: RNN cell to use for decoder. scope: Scope to use, if None new will be produced. Returns: List of tensors for outputs and states for training and sampling sub-graphs. """ with vs.variable_scope(scope or "dnn_decoder"): states, sampling_states = [initial_state], [initial_state] outputs, sampling_outputs = [], [] with ops.name_scope("training", values=[decoder_inputs, initial_state]): for i, inp in enumerate(decoder_inputs): if i > 0: vs.get_variable_scope().reuse_variables() output, new_state = cell(inp, states[-1]) outputs.append(output) states.append(new_state) with ops.name_scope("sampling", values=[initial_state]): for i, _ in enumerate(decoder_inputs): if i == 0: sampling_outputs.append(outputs[i]) sampling_states.append(states[i]) else: sampling_output, sampling_state = cell(sampling_outputs[-1], sampling_states[-1]) sampling_outputs.append(sampling_output) sampling_states.append(sampling_state) return outputs, states, sampling_outputs, sampling_states @deprecated(None, 'Please use tf.nn/tf.layers directly.') def rnn_seq2seq(encoder_inputs, decoder_inputs, encoder_cell, decoder_cell=None, dtype=dtypes.float32, scope=None): """RNN Sequence to Sequence model. Args: encoder_inputs: List of tensors, inputs for encoder. decoder_inputs: List of tensors, inputs for decoder. encoder_cell: RNN cell to use for encoder. decoder_cell: RNN cell to use for decoder, if None encoder_cell is used. dtype: Type to initialize encoder state with. scope: Scope to use, if None new will be produced. Returns: List of tensors for outputs and states for training and sampling sub-graphs. """ with vs.variable_scope(scope or "rnn_seq2seq"): _, last_enc_state = rnn.static_rnn( encoder_cell, encoder_inputs, dtype=dtype) return rnn_decoder(decoder_inputs, last_enc_state, decoder_cell or encoder_cell)
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/seq2seq_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ops tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn import ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import random_seed from tensorflow.python.ops import variables from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class OpsTest(test.TestCase): """Ops tests.""" def test_softmax_classifier(self): with self.cached_session() as session: features = array_ops.placeholder(dtypes.float32, [None, 3]) labels = array_ops.placeholder(dtypes.float32, [None, 2]) weights = constant_op.constant([[0.1, 0.1], [0.1, 0.1], [0.1, 0.1]]) biases = constant_op.constant([0.2, 0.3]) class_weight = constant_op.constant([0.1, 0.9]) prediction, loss = ops.softmax_classifier(features, labels, weights, biases, class_weight) self.assertEqual(prediction.get_shape()[1], 2) self.assertEqual(loss.get_shape(), []) value = session.run(loss, {features: [[0.2, 0.3, 0.2]], labels: [[0, 1]]}) self.assertAllClose(value, 0.55180627) def test_embedding_lookup(self): d_embed = 5 n_embed = 10 ids_shape = (2, 3, 4) embeds = np.random.randn(n_embed, d_embed) ids = np.random.randint(0, n_embed, ids_shape) with self.cached_session(): embed_np = embeds[ids] embed_tf = ops.embedding_lookup(embeds, ids).eval() self.assertEqual(embed_np.shape, embed_tf.shape) self.assertAllClose(embed_np, embed_tf) def test_categorical_variable(self): random_seed.set_random_seed(42) with self.cached_session() as sess: cat_var_idx = array_ops.placeholder(dtypes.int64, [2, 2]) embeddings = ops.categorical_variable( cat_var_idx, n_classes=5, embedding_size=10, name="my_cat_var") sess.run(variables.global_variables_initializer()) emb1 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 1], [2, 3]]}) emb2 = sess.run(embeddings, feed_dict={cat_var_idx.name: [[0, 2], [1, 3]]}) self.assertEqual(emb1.shape, emb2.shape) self.assertAllEqual(np.transpose(emb2, axes=[1, 0, 2]), emb1) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/ops_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow Ops for loss computation (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.framework import deprecated from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops as array_ops_ from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops.losses import losses @deprecated('2016-12-01', 'Use `tf.losses.mean_squared_error` ' 'and explicit logits computation.') def mean_squared_error_regressor(tensor_in, labels, weights, biases, name=None): """Returns prediction and loss for mean squared error regression.""" with ops.name_scope(name, 'mean_squared_error_regressor', [tensor_in, labels]): predictions = nn.xw_plus_b(tensor_in, weights, biases) if len(labels.get_shape()) == 1 and len(predictions.get_shape()) == 2: predictions = array_ops_.squeeze(predictions, axis=[1]) return predictions, losses.mean_squared_error(labels, predictions) @deprecated('2016-12-01', 'Use `tf.losses.softmax_cross_entropy` ' 'and explicit logits computation.') def softmax_classifier(tensor_in, labels, weights, biases, class_weight=None, name=None): """Returns prediction and loss for softmax classifier. This function returns "probabilities" and a cross entropy loss. To obtain predictions, use `tf.argmax` on the returned probabilities. This function requires labels to be passed in one-hot encoding. Args: tensor_in: Input tensor, [batch_size, feature_size], features. labels: Tensor, [batch_size, n_classes], one-hot labels of the output classes. weights: Tensor, [batch_size, feature_size], linear transformation matrix. biases: Tensor, [batch_size], biases. class_weight: Tensor, optional, [n_classes], weight for each class. If not given, all classes are supposed to have weight one. name: Operation name. Returns: `tuple` of softmax predictions and loss `Tensor`s. """ with ops.name_scope(name, 'softmax_classifier', [tensor_in, labels]): logits = nn.xw_plus_b(tensor_in, weights, biases) if class_weight is not None: logits = math_ops.multiply(logits, class_weight) return nn.softmax(logits), losses.softmax_cross_entropy(labels, logits)
tensorflow-master
tensorflow/contrib/learn/python/learn/ops/losses_ops.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements preprocessing transformers for categorical variables (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.util.deprecation import deprecated # pylint: disable=g-bad-import-order from . import categorical_vocabulary from ..learn_io.data_feeder import setup_processor_data_feeder # pylint: enable=g-bad-import-order class CategoricalProcessor(object): """Maps documents to sequences of word ids. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. As a common convention, Nan values are handled as unknown tokens. Both float('nan') and np.nan are accepted. """ @deprecated(None, 'Please use tensorflow/transform or tf.data for sequence ' 'processing.') def __init__(self, min_frequency=0, share=False, vocabularies=None): """Initializes a CategoricalProcessor instance. Args: min_frequency: Minimum frequency of categories in the vocabulary. share: Share vocabulary between variables. vocabularies: list of CategoricalVocabulary objects for each variable in the input dataset. Attributes: vocabularies_: list of CategoricalVocabulary objects. """ self.min_frequency = min_frequency self.share = share self.vocabularies_ = vocabularies def freeze(self, freeze=True): """Freeze or unfreeze all vocabularies. Args: freeze: Boolean, indicate if vocabularies should be frozen. """ for vocab in self.vocabularies_: vocab.freeze(freeze) def fit(self, x, unused_y=None): """Learn a vocabulary dictionary of all categories in `x`. Args: x: numpy matrix or iterable of lists/numpy arrays. unused_y: to match fit format signature of estimators. Returns: self """ x = setup_processor_data_feeder(x) for row in x: # Create vocabularies if not given. if self.vocabularies_ is None: # If not share, one per column, else one shared across. if not self.share: self.vocabularies_ = [ categorical_vocabulary.CategoricalVocabulary() for _ in row ] else: vocab = categorical_vocabulary.CategoricalVocabulary() self.vocabularies_ = [vocab for _ in row] for idx, value in enumerate(row): # Nans are handled as unknowns. if (isinstance(value, float) and math.isnan(value)) or value == np.nan: continue self.vocabularies_[idx].add(value) if self.min_frequency > 0: for vocab in self.vocabularies_: vocab.trim(self.min_frequency) self.freeze() return self def fit_transform(self, x, unused_y=None): """Learn the vocabulary dictionary and return indexies of categories. Args: x: numpy matrix or iterable of lists/numpy arrays. unused_y: to match fit_transform signature of estimators. Returns: x: iterable, [n_samples]. Category-id matrix. """ self.fit(x) return self.transform(x) def transform(self, x): """Transform documents to category-id matrix. Converts categories to ids give fitted vocabulary from `fit` or one provided in the constructor. Args: x: numpy matrix or iterable of lists/numpy arrays. Yields: x: iterable, [n_samples]. Category-id matrix. """ self.freeze() x = setup_processor_data_feeder(x) for row in x: output_row = [] for idx, value in enumerate(row): # Return <UNK> when it's Nan. if (isinstance(value, float) and math.isnan(value)) or value == np.nan: output_row.append(0) continue output_row.append(self.vocabularies_[idx].get(value)) yield np.array(output_row, dtype=np.int64)
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/categorical.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Preprocessing tools useful for building models (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=wildcard-import from tensorflow.contrib.learn.python.learn.preprocessing.categorical import * from tensorflow.contrib.learn.python.learn.preprocessing.text import * # pylint: enable=wildcard-import
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Categorical vocabulary classes to map categories to indexes (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. Can be used for categorical variables, sparse variables and words. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six from tensorflow.python.util.deprecation import deprecated class CategoricalVocabulary(object): """Categorical variables vocabulary class. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. Accumulates and provides mapping from classes to indexes. Can be easily used for words. """ @deprecated(None, 'Please use tensorflow/transform or tf.data.') def __init__(self, unknown_token="<UNK>", support_reverse=True): self._unknown_token = unknown_token self._mapping = {unknown_token: 0} self._support_reverse = support_reverse if support_reverse: self._reverse_mapping = [unknown_token] self._freq = collections.defaultdict(int) self._freeze = False def __len__(self): """Returns total count of mappings. Including unknown token.""" return len(self._mapping) def freeze(self, freeze=True): """Freezes the vocabulary, after which new words return unknown token id. Args: freeze: True to freeze, False to unfreeze. """ self._freeze = freeze def get(self, category): """Returns word's id in the vocabulary. If category is new, creates a new id for it. Args: category: string or integer to lookup in vocabulary. Returns: interger, id in the vocabulary. """ if category not in self._mapping: if self._freeze: return 0 self._mapping[category] = len(self._mapping) if self._support_reverse: self._reverse_mapping.append(category) return self._mapping[category] def add(self, category, count=1): """Adds count of the category to the frequency table. Args: category: string or integer, category to add frequency to. count: optional integer, how many to add. """ category_id = self.get(category) if category_id <= 0: return self._freq[category] += count def trim(self, min_frequency, max_frequency=-1): """Trims vocabulary for minimum frequency. Remaps ids from 1..n in sort frequency order. where n - number of elements left. Args: min_frequency: minimum frequency to keep. max_frequency: optional, maximum frequency to keep. Useful to remove very frequent categories (like stop words). """ # Sort by alphabet then reversed frequency. self._freq = sorted( sorted( six.iteritems(self._freq), key=lambda x: (isinstance(x[0], str), x[0])), key=lambda x: x[1], reverse=True) self._mapping = {self._unknown_token: 0} if self._support_reverse: self._reverse_mapping = [self._unknown_token] idx = 1 for category, count in self._freq: if max_frequency > 0 and count >= max_frequency: continue if count <= min_frequency: break self._mapping[category] = idx idx += 1 if self._support_reverse: self._reverse_mapping.append(category) self._freq = dict(self._freq[:idx - 1]) def reverse(self, class_id): """Given class id reverse to original class name. Args: class_id: Id of the class. Returns: Class name. Raises: ValueError: if this vocabulary wasn't initialized with support_reverse. """ if not self._support_reverse: raise ValueError("This vocabulary wasn't initialized with " "support_reverse to support reverse() function.") return self._reverse_mapping[class_id]
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/categorical_vocabulary.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Implements a number of text preprocessing utilities (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import numpy as np import six from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated from .categorical_vocabulary import CategoricalVocabulary # pylint: disable=g-bad-import-order try: # pylint: disable=g-import-not-at-top import cPickle as pickle except ImportError: # pylint: disable=g-import-not-at-top import pickle TOKENIZER_RE = re.compile(r"[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\'\w\-]+", re.UNICODE) @deprecated(None, 'Please use tensorflow/transform or tf.data.') def tokenizer(iterator): """Tokenizer generator. Args: iterator: Input iterator with strings. Yields: array of tokens per each value in the input. """ for value in iterator: yield TOKENIZER_RE.findall(value) @deprecated(None, 'Please use tensorflow/transform or tf.data.') class ByteProcessor(object): """Maps documents into sequence of ids for bytes. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please use tensorflow/transform or tf.data.') def __init__(self, max_document_length): self.max_document_length = max_document_length def fit(self, x): """Does nothing. No fitting required.""" pass def fit_transform(self, x): """Calls transform.""" return self.transform(x) # pylint: disable=no-self-use def reverse(self, x): """Reverses output of transform back to text. Args: x: iterator or matrix of integers. Document representation in bytes. Yields: Iterators of utf-8 strings. """ for data in x: document = np.trim_zeros(data.astype(np.int8), trim='b').tostring() try: yield document.decode('utf-8') except UnicodeDecodeError: yield '' def transform(self, x): """Transforms input documents into sequence of ids. Args: x: iterator or list of input documents. Documents can be bytes or unicode strings, which will be encoded as utf-8 to map to bytes. Note, in Python2 str and bytes is the same type. Yields: iterator of byte ids. """ if six.PY3: # For Python3 defined buffer as memoryview. buffer_or_memoryview = memoryview else: buffer_or_memoryview = buffer # pylint: disable=undefined-variable for document in x: if isinstance(document, six.text_type): document = document.encode('utf-8') document_mv = buffer_or_memoryview(document) buff = np.frombuffer(document_mv[:self.max_document_length], dtype=np.uint8) yield np.pad(buff, (0, self.max_document_length - len(buff)), 'constant') class VocabularyProcessor(object): """Maps documents to sequences of word ids. THIS CLASS IS DEPRECATED. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for general migration instructions. """ @deprecated(None, 'Please use tensorflow/transform or tf.data.') def __init__(self, max_document_length, min_frequency=0, vocabulary=None, tokenizer_fn=None): """Initializes a VocabularyProcessor instance. Args: max_document_length: Maximum length of documents. if documents are longer, they will be trimmed, if shorter - padded. min_frequency: Minimum frequency of words in the vocabulary. vocabulary: CategoricalVocabulary object. Attributes: vocabulary_: CategoricalVocabulary object. """ self.max_document_length = max_document_length self.min_frequency = min_frequency if vocabulary: self.vocabulary_ = vocabulary else: self.vocabulary_ = CategoricalVocabulary() if tokenizer_fn: self._tokenizer = tokenizer_fn else: self._tokenizer = tokenizer def fit(self, raw_documents, unused_y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Args: raw_documents: An iterable which yield either str or unicode. unused_y: to match fit format signature of estimators. Returns: self """ for tokens in self._tokenizer(raw_documents): for token in tokens: self.vocabulary_.add(token) if self.min_frequency > 0: self.vocabulary_.trim(self.min_frequency) self.vocabulary_.freeze() return self def fit_transform(self, raw_documents, unused_y=None): """Learn the vocabulary dictionary and return indexies of words. Args: raw_documents: An iterable which yield either str or unicode. unused_y: to match fit_transform signature of estimators. Returns: x: iterable, [n_samples, max_document_length]. Word-id matrix. """ self.fit(raw_documents) return self.transform(raw_documents) def transform(self, raw_documents): """Transform documents to word-id matrix. Convert words to ids with vocabulary fitted with fit or the one provided in the constructor. Args: raw_documents: An iterable which yield either str or unicode. Yields: x: iterable, [n_samples, max_document_length]. Word-id matrix. """ for tokens in self._tokenizer(raw_documents): word_ids = np.zeros(self.max_document_length, np.int64) for idx, token in enumerate(tokens): if idx >= self.max_document_length: break word_ids[idx] = self.vocabulary_.get(token) yield word_ids def reverse(self, documents): """Reverses output of vocabulary mapping to words. Args: documents: iterable, list of class ids. Yields: Iterator over mapped in words documents. """ for item in documents: output = [] for class_id in item: output.append(self.vocabulary_.reverse(class_id)) yield ' '.join(output) def save(self, filename): """Saves vocabulary processor into given file. Args: filename: Path to output file. """ with gfile.Open(filename, 'wb') as f: f.write(pickle.dumps(self)) @classmethod def restore(cls, filename): """Restores vocabulary processor from given file. Args: filename: Path to file to load from. Returns: VocabularyProcessor object. """ with gfile.Open(filename, 'rb') as f: return pickle.loads(f.read())
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/text.py
# encoding: utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Text processor tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from tensorflow.contrib.learn.python.learn.preprocessing import CategoricalVocabulary from tensorflow.contrib.learn.python.learn.preprocessing import text from tensorflow.python.platform import test class TextTest(test.TestCase): """Text processor tests.""" def testTokenizer(self): words = text.tokenizer( ["a b c", "a\nb\nc", "a, b - c", "фыв выф", "你好 怎么样"]) self.assertEqual( list(words), [["a", "b", "c"], ["a", "b", "c"], ["a", "b", "-", "c"], ["фыв", "выф"], ["你好", "怎么样"]]) def testByteProcessor(self): processor = text.ByteProcessor(max_document_length=8) inp = ["abc", "фыва", "фыва", b"abc", "12345678901234567890"] res = list(processor.fit_transform(inp)) self.assertAllEqual(res, [[97, 98, 99, 0, 0, 0, 0, 0], [209, 132, 209, 139, 208, 178, 208, 176], [209, 132, 209, 139, 208, 178, 208, 176], [97, 98, 99, 0, 0, 0, 0, 0], [49, 50, 51, 52, 53, 54, 55, 56]]) res = list(processor.reverse(res)) self.assertAllEqual(res, ["abc", "фыва", "фыва", "abc", "12345678"]) def testVocabularyProcessor(self): vocab_processor = text.VocabularyProcessor( max_document_length=4, min_frequency=1) tokens = vocab_processor.fit_transform(["a b c", "a\nb\nc", "a, b - c"]) self.assertAllEqual( list(tokens), [[1, 2, 3, 0], [1, 2, 3, 0], [1, 2, 0, 3]]) def testVocabularyProcessorSaveRestore(self): filename = test.get_temp_dir() + "test.vocab" vocab_processor = text.VocabularyProcessor( max_document_length=4, min_frequency=1) tokens = vocab_processor.fit_transform(["a b c", "a\nb\nc", "a, b - c"]) vocab_processor.save(filename) new_vocab = text.VocabularyProcessor.restore(filename) tokens = new_vocab.transform(["a b c"]) self.assertAllEqual(list(tokens), [[1, 2, 3, 0]]) def testExistingVocabularyProcessor(self): vocab = CategoricalVocabulary() vocab.get("A") vocab.get("B") vocab.freeze() vocab_processor = text.VocabularyProcessor( max_document_length=4, vocabulary=vocab, tokenizer_fn=list) tokens = vocab_processor.fit_transform(["ABC", "CBABAF"]) self.assertAllEqual(list(tokens), [[1, 2, 0, 0], [0, 2, 1, 2]]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/tests/text_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Preprocessing tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/tests/__init__.py
# encoding: utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Categorical tests.""" # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.learn_io import HAS_PANDAS from tensorflow.contrib.learn.python.learn.preprocessing import categorical from tensorflow.python.platform import test class CategoricalTest(test.TestCase): """Categorical tests.""" def testSingleCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor(min_frequency=1) x = cat_processor.fit_transform([["0"], [1], [float("nan")], ["C"], ["C"], [1], ["0"], [np.nan], [3]]) self.assertAllEqual(list(x), [[2], [1], [0], [3], [3], [1], [2], [0], [0]]) def testSingleCategoricalProcessorPandasSingleDF(self): if HAS_PANDAS: import pandas as pd # pylint: disable=g-import-not-at-top cat_processor = categorical.CategoricalProcessor() data = pd.DataFrame({"Gender": ["Male", "Female", "Male"]}) x = list(cat_processor.fit_transform(data)) self.assertAllEqual(list(x), [[1], [2], [1]]) def testMultiCategoricalProcessor(self): cat_processor = categorical.CategoricalProcessor( min_frequency=0, share=False) x = cat_processor.fit_transform([["0", "Male"], [1, "Female"], ["3", "Male"]]) self.assertAllEqual(list(x), [[1, 1], [2, 2], [3, 1]]) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/tests/categorical_test.py
# encoding: utf-8 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Categorical vocabulary tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.preprocessing import categorical_vocabulary from tensorflow.python.platform import test class CategoricalVocabularyTest(test.TestCase): """Categorical vocabulary tests.""" def testIntVocabulary(self): vocab = categorical_vocabulary.CategoricalVocabulary() self.assertEqual(vocab.get(1), 1) self.assertEqual(vocab.get(3), 2) self.assertEqual(vocab.get(2), 3) self.assertEqual(vocab.get(3), 2) # This vocab doesn't handle nan specially. self.assertEqual(vocab.get(float('nan')), 4) self.assertEqual(len(vocab), 5) def testWordVocabulary(self): vocab = categorical_vocabulary.CategoricalVocabulary() self.assertEqual(vocab.get('a'), 1) self.assertEqual(vocab.get('b'), 2) self.assertEqual(vocab.get('a'), 1) self.assertEqual(vocab.get('b'), 2) def testCountsTrim(self): vocab = categorical_vocabulary.CategoricalVocabulary() vocab.get('c') vocab.add('c', 5) vocab.get('a') vocab.add('a', 10) # not in vocab yet, skips. vocab.add('b', 5) vocab.add('d', 12) vocab.trim(7, 11) vocab.freeze() self.assertEqual(vocab.get('b'), 0) self.assertEqual(vocab.get('c'), 0) self.assertEqual(len(vocab), 2) self.assertEqual(vocab.get('a'), 1) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/learn/python/learn/preprocessing/tests/categorical_vocabulary_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """contrib module containing StagingArea.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops.data_flow_ops import StagingArea
tensorflow-master
tensorflow/contrib/staging/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MetaGraphDef Transform Tool.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from google.protobuf.any_pb2 import Any from tensorflow.contrib.meta_graph_transform import meta_graph_transform from tensorflow.core.framework import function_pb2 from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import saver_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import constants as saved_model_constants from tensorflow.python.training import saver from tensorflow.python.util import compat from tensorflow.tools import graph_transforms def _make_asset_file_def_any(node_name): asset_file_def = meta_graph_pb2.AssetFileDef() asset_file_def.tensor_info.name = node_name any_message = Any() any_message.Pack(asset_file_def) return any_message class MetaGraphTransformTest(test.TestCase): def test_meta_graph_transform(self): with ops.Graph().as_default(): with tf_session.Session(''): a = array_ops.placeholder(dtypes.int64, [1], name='a') b = array_ops.placeholder(dtypes.int64, [1], name='b') c = array_ops.placeholder(dtypes.int64, [1], name='c') _ = a * b _ = b * c base_meta_graph_def = saver.export_meta_graph() with ops.Graph().as_default(): with tf_session.Session(''): a = array_ops.placeholder(dtypes.int64, [1], name='a') b = array_ops.placeholder(dtypes.int64, [1], name='b') _ = a * b meta_info_def = meta_graph_pb2.MetaGraphDef.MetaInfoDef() meta_info_def.tags.append('tag_ab') expected_meta_graph_def = saver.export_meta_graph( meta_info_def=meta_info_def) # Graph rewriter clears versions field, so we expect that. expected_meta_graph_def.graph_def.ClearField('versions') # Graph rewriter adds an empty library field, so we expect that. expected_meta_graph_def.graph_def.library.CopyFrom( function_pb2.FunctionDefLibrary()) input_names = ['a', 'b'] output_names = ['mul:0'] transforms = ['strip_unused_nodes'] tags = ['tag_ab'] print('AAAAAA: {}'.format(base_meta_graph_def)) transformed_meta_graph_def = meta_graph_transform.meta_graph_transform( base_meta_graph_def, input_names, output_names, transforms, tags) self.assertEqual(expected_meta_graph_def, transformed_meta_graph_def) def test_get_shared_init_op(self): main_op = 'main_op' legacy_op = 'legacy_op' legacy_only = {saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op]} main_and_legacy = { saved_model_constants.MAIN_OP_KEY: [main_op], saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op] } self.assertEqual(meta_graph_transform._get_shared_init_op({}), None) self.assertEqual( meta_graph_transform._get_shared_init_op(main_and_legacy), main_op) self.assertEqual( meta_graph_transform._get_shared_init_op(legacy_only), legacy_op) @test.mock.patch.object(graph_transforms, 'TransformGraph') def test_gtt_transforms(self, graph_transform_mock): graph_def = graph_pb2.GraphDef() graph_def.node.extend([node_def_pb2.NodeDef(name='z1', op='NoOp')]) input_names = ['i1', 'i2'] output_names = ['o1', 'o2'] init_nodes = ['init1', 'init2'] initializer_names = {'init': init_nodes} transforms = ['t1', 't2'] expected_graph = graph_pb2.GraphDef() expected_graph.node.extend([node_def_pb2.NodeDef(name='n1', op='NoOp')]) graph_transform_mock.return_value = expected_graph transformed_graph_def = (meta_graph_transform._gtt_transforms( graph_def, input_names, output_names, initializer_names, transforms)) self.assertEqual(transformed_graph_def, expected_graph) graph_transform_mock.assert_called_once_with( graph_def, input_names, output_names + init_nodes, transforms) @test.mock.patch.object(meta_graph_transform, '_freeze_graph_with_def_protos') def test_freeze_transform(self, freeze_mock): graph_def = graph_pb2.GraphDef() graph_def.node.extend([node_def_pb2.NodeDef(name='z1', op='NoOp')]) output_names = ['o1', 'o2'] table_init_names = ['t1', 't2'] main_op = 'main_op' legacy_op = 'legacy_op' initializer_names = { 'foo_init': ['init1', 'init2'], ops.GraphKeys.TABLE_INITIALIZERS: table_init_names, saved_model_constants.MAIN_OP_KEY: [main_op], saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op] } expected_graph_def = graph_pb2.GraphDef() graph_def.node.extend([node_def_pb2.NodeDef(name='n1', op='NoOp')]) freeze_mock.return_value = expected_graph_def saver_def = saver_pb2.SaverDef() saver_def.filename_tensor_name = 'f1' checkpoint_path = '/checkpoint/path' transformed_graph_def, transformed_initializer_names = ( meta_graph_transform._freeze_transform(graph_def, output_names, initializer_names, saver_def, checkpoint_path)) self.assertEqual(transformed_graph_def, expected_graph_def) expected_initializer_names = { ops.GraphKeys.TABLE_INITIALIZERS: table_init_names, saved_model_constants.MAIN_OP_KEY: [main_op], saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op] } self.assertEqual(transformed_initializer_names, expected_initializer_names) freeze_mock.assert_called_once_with(graph_def, output_names, table_init_names, main_op, saver_def, checkpoint_path) def test_clean_save_and_restore(self): graph_def = graph_pb2.GraphDef() save_name = 'save_1/SaveV2' save_tensor_name = save_name + '/tensor_names' save_tensor_shape = save_name + '/shape_and_slices' save_op = graph_def.node.add() save_op.name = save_name save_op.op = 'NoOp' save_name_op = graph_def.node.add() save_name_op.name = save_tensor_name save_name_op.op = 'NoOp' save_shape_op = graph_def.node.add() save_shape_op.name = save_tensor_shape save_shape_op.op = 'NoOp' types = [types_pb2.DT_INT32, types_pb2.DT_FLOAT, types_pb2.DT_INT32] names = [ compat.as_bytes('/foo'), compat.as_bytes('/bar'), compat.as_bytes('/baz') ] shapes = [ compat.as_bytes('100 10 0,100:0,10'), compat.as_bytes('150 11 0,150:0,11'), compat.as_bytes('101 12 0,101:0,12') ] expected_types = [types[0], types[2]] expected_names = [names[0], names[2]] expected_shapes = [shapes[0], shapes[2]] save_op.attr['dtypes'].list.type[:] = types save_name_op.attr['value'].tensor.string_val[:] = names save_name_op.attr['value'].tensor.tensor_shape.dim.add().size = len(names) save_name_op.attr['_output_shapes'].list.shape.add().dim.add().size = len( names) save_shape_op.attr['value'].tensor.string_val[:] = shapes save_shape_op.attr['value'].tensor.tensor_shape.dim.add().size = len(shapes) save_shape_op.attr['_output_shapes'].list.shape.add().dim.add().size = len( shapes) meta_graph_transform._clean_save_and_restore(graph_def, save_op, ['/bar']) self.assertEqual(save_op.attr['dtypes'].list.type[:], expected_types) self.assertEqual(save_name_op.attr['value'].tensor.string_val[:], expected_names) self.assertEqual(save_name_op.attr['value'].tensor.tensor_shape.dim[0].size, len(expected_names)) self.assertEqual( save_name_op.attr['_output_shapes'].list.shape[0].dim[0].size, len(expected_names)) self.assertEqual(save_shape_op.attr['value'].tensor.string_val[:], expected_shapes) self.assertEqual( save_shape_op.attr['value'].tensor.tensor_shape.dim[0].size, len(expected_shapes)) self.assertEqual( save_shape_op.attr['_output_shapes'].list.shape[0].dim[0].size, len(expected_shapes)) @test.mock.patch.object(meta_graph_transform, '_clean_save_and_restore') @test.mock.patch.object(meta_graph_transform, '_gtt_transforms') def test_sparsify_gather_transform(self, gtt_mock, clean_save_restore_mock): # Initial graph def. graph_def = graph_pb2.GraphDef() variable_op = graph_def.node.add() variable_op.name = '/foo/part_1' constant_op = graph_def.node.add() constant_op.name = '/bar' # Transformed graph def. transformed_graph_def = graph_pb2.GraphDef() constant_op = transformed_graph_def.node.add() constant_op.name = '/foo' sparsify_shared_init_op_name = 'sparify_gather_init_op' new_table_init_names = ['table1', 'table2'] init_op = transformed_graph_def.node.add() init_op.name = sparsify_shared_init_op_name init_op.input.extend(['^' + f for f in new_table_init_names]) saver_op = transformed_graph_def.node.add() saver_op.name = 'save_1/SaveV2' orig_table_init_names = ['orig_table_init_1', 'orig_table_init_2'] legacy_op_name = 'legacy_op' legacy_op = transformed_graph_def.node.add() legacy_op.name = legacy_op_name legacy_op.input.extend(['^' + f for f in orig_table_init_names]) input_names = ['i1', 'i2'] output_names = ['o1', 'o2'] initializer_names = { 'foo_init': ['init1', 'init2'], ops.GraphKeys.TABLE_INITIALIZERS: orig_table_init_names, saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op_name] } checkpoint_path = '/path/to/checkpoint' expected_initializer_names = { 'foo_init': ['init1', 'init2'], ops.GraphKeys.TABLE_INITIALIZERS: ( orig_table_init_names + new_table_init_names), saved_model_constants.LEGACY_INIT_OP_KEY: [legacy_op_name] } expected_sparsify_cmd = [ 'sparsify_gather(input_checkpoint="%s", group_init_node="%s")' % (checkpoint_path, sparsify_shared_init_op_name) ] # Expected graph def. expected_graph_def = graph_pb2.GraphDef() constant_op = expected_graph_def.node.add() constant_op.name = '/foo' saver_op = expected_graph_def.node.add() saver_op.name = 'save_1/SaveV2' legacy_op_name = 'legacy_op' legacy_op = expected_graph_def.node.add() legacy_op.name = legacy_op_name legacy_op.input.extend( ['^' + f for f in orig_table_init_names + new_table_init_names]) gtt_mock.return_value = transformed_graph_def graph_def_result, init_names_result = ( meta_graph_transform._sparsify_gather_transform( graph_def, input_names, output_names, initializer_names, checkpoint_path)) gtt_mock.assert_called_once_with(graph_def, input_names, output_names, initializer_names, expected_sparsify_cmd) clean_save_restore_mock.assert_called_once_with(transformed_graph_def, saver_op, ['/bar', '/foo']) self.assertEqual(expected_graph_def, graph_def_result) self.assertEqual(expected_initializer_names, init_names_result) @test.mock.patch.object(meta_graph_transform, '_gtt_transforms') @test.mock.patch.object(meta_graph_transform, '_freeze_transform') @test.mock.patch.object(meta_graph_transform, '_sparsify_gather_transform') def test_do_transforms(self, sparsify_mock, freeze_mock, gtt_mock): graph_def = graph_pb2.GraphDef() constant_op = graph_def.node.add() constant_op.name = 'c1' input_names = ['i1', 'i2'] output_names = ['o1', 'o2'] initializer_names = { 'foo_init': ['init1', 'init2'], ops.GraphKeys.TABLE_INITIALIZERS: ['table1'], saved_model_constants.LEGACY_INIT_OP_KEY: ['legacy_op'] } transforms = ['foo', 'freeze_graph', 'bar', 'sparsify_gather', 'baz'] sparsify_mock.return_value = (graph_def, initializer_names) freeze_mock.return_value = (graph_def, initializer_names) gtt_mock.return_value = graph_def graph_def_result, initializer_names_result = ( meta_graph_transform._do_transforms(graph_def, input_names, output_names, initializer_names, transforms)) sparsify_mock.assert_called_once_with(graph_def, input_names, output_names, initializer_names, None) freeze_mock.assert_called_once_with(graph_def, output_names, initializer_names, None, None) gtt_mock.assert_has_calls([ test.mock.call(graph_def, input_names, output_names, initializer_names, ['foo']), test.mock.call(graph_def, input_names, output_names, initializer_names, ['bar']), test.mock.call(graph_def, input_names, output_names, initializer_names, ['baz']) ]) self.assertEqual(graph_def_result, graph_def) self.assertEqual(initializer_names, initializer_names_result) def test_add_new_inits_to_collection(self): meta_graph_def = meta_graph_pb2.MetaGraphDef() orig_table_inits = ['t1', 't2'] new_table_inits = ['t3', 't4'] meta_graph_def.collection_def[ ops.GraphKeys.TABLE_INITIALIZERS].node_list.value.extend( orig_table_inits) updated_init_names = { ops.GraphKeys.TABLE_INITIALIZERS: orig_table_inits + new_table_inits } meta_graph_transform._add_new_inits_to_collection(meta_graph_def, updated_init_names) self.assertEqual(meta_graph_def.collection_def[ ops.GraphKeys.TABLE_INITIALIZERS].node_list.value, orig_table_inits + new_table_inits) @test.mock.patch.object(graph_transforms, 'TransformGraph') @test.mock.patch.object(meta_graph_transform, '_freeze_graph_with_def_protos') def test_freeze_then_sparsify(self, freeze_mock, graph_transform_mock): tag_name = 'tag' input_nodes = 'input_nodes' output_nodes = 'output_nodes' freeze_transform = 'freeze_graph' sparsify_transform = 'sparsify_gather' base_meta_graph_def = meta_graph_pb2.MetaGraphDef() # Add a table initializer. table_init_name = 'table_init' node_def = node_def_pb2.NodeDef( name=table_init_name, op='InitializeTableV2') base_meta_graph_def.graph_def.node.extend([node_def]) # Add a group_deps node. group_deps_name = 'group_deps' node_def = node_def_pb2.NodeDef(name=group_deps_name, op='NoOp') node_def.input.extend(['^table_init']) base_meta_graph_def.graph_def.node.extend([node_def]) base_meta_graph_def.collection_def[ ops.GraphKeys.TABLE_INITIALIZERS].node_list.value.extend( [table_init_name]) base_meta_graph_def.collection_def[ saved_model_constants.LEGACY_INIT_OP_KEY].node_list.value.extend( [group_deps_name]) # Expected metagraphdef. expected_meta_graph_def = meta_graph_pb2.MetaGraphDef() expected_meta_graph_def.CopyFrom(base_meta_graph_def) expected_meta_graph_def.meta_info_def.tags.append(tag_name) transformed_graph_def = graph_pb2.GraphDef() transformed_graph_def.CopyFrom(expected_meta_graph_def.graph_def) freeze_mock.return_value = transformed_graph_def graph_transform_mock.return_value = transformed_graph_def # Add unsaved init node. unsaved_init_name = 'unsaved_node' node_def = node_def_pb2.NodeDef(name=unsaved_init_name, op='NoOp') base_meta_graph_def.graph_def.node.extend([node_def]) # Add a saver. base_meta_graph_def.saver_def.filename_tensor_name = 'node1' base_meta_graph_def.saver_def.save_tensor_name = 'node3' base_meta_graph_def.saver_def.restore_op_name = 'node6' transformed_meta_graph_def = meta_graph_transform.meta_graph_transform( base_meta_graph_def, [input_nodes], [output_nodes], [freeze_transform, sparsify_transform], [tag_name]) self.assertEqual(expected_meta_graph_def, transformed_meta_graph_def) freeze_mock.assert_called_once_with( base_meta_graph_def.graph_def, [output_nodes], [table_init_name], group_deps_name, base_meta_graph_def.saver_def, None) graph_transform_mock.assert_called_once_with( transformed_graph_def, [input_nodes], [ output_nodes, group_deps_name, table_init_name ], [sparsify_transform + '(group_init_node="sparify_gather_init_op")']) def test_connect_to_shared_init_op(self): group_deps_name = 'group_deps' init_node_1 = 'table_init_1' init_node_2 = 'table_init_2' orig_graph_def = graph_pb2.GraphDef() expected_graph_def_1 = graph_pb2.GraphDef() meta_graph_transform._connect_to_shared_init_op(orig_graph_def, group_deps_name, []) self.assertEqual(expected_graph_def_1, orig_graph_def) expected_graph_def_2 = graph_pb2.GraphDef() node_def = node_def_pb2.NodeDef(name=group_deps_name, op='NoOp') node_def.input.extend(['^' + init_node_1, '^' + init_node_2]) expected_graph_def_2.node.extend([node_def]) meta_graph_transform._connect_to_shared_init_op( orig_graph_def, group_deps_name, [init_node_1, init_node_2]) self.assertEqual(expected_graph_def_2, orig_graph_def) def test_add_pruned_collection_node(self): # Note: This also tests _is_removed(). collection_name = 'node_collection' base_meta_graph_def = meta_graph_pb2.MetaGraphDef() base_meta_graph_def.collection_def[collection_name].node_list.value.extend( ['node1', 'node2', 'node3', 'node4', '/a/a_1', '/b/b_1']) meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5', '/a', '/b/b_1'] meta_graph_transform._add_pruned_collection( base_meta_graph_def, meta_graph_def, collection_name, removed_op_names) collection = meta_graph_def.collection_def[collection_name] expected_nodes = ['node1', 'node3', '/a/a_1'] self.assertEqual(expected_nodes, collection.node_list.value) def test_add_pruned_collection_int(self): collection_name = 'int_collection' base_meta_graph_def = meta_graph_pb2.MetaGraphDef() base_meta_graph_def.collection_def[collection_name].int64_list.value[:] = ( [10, 20, 30, 40]) meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5', '/a', '/b/b_1'] meta_graph_transform._add_pruned_collection( base_meta_graph_def, meta_graph_def, collection_name, removed_op_names) collection = meta_graph_def.collection_def[collection_name] expected_ints = [10, 20, 30, 40] self.assertEqual(expected_ints, collection.int64_list.value) def test_add_pruned_collection_proto_in_any_list(self): # Note: This also tests _is_removed_mentioned(). collection_name = 'proto_collection' base_meta_graph_def = meta_graph_pb2.MetaGraphDef() base_meta_graph_def.collection_def[collection_name].any_list.value.extend([ _make_asset_file_def_any('node1'), _make_asset_file_def_any('node2'), _make_asset_file_def_any('node3'), _make_asset_file_def_any('node4'), _make_asset_file_def_any('/a/a_1'), _make_asset_file_def_any('/b/b_1') ]) meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5', '/a', '/b/b_1'] meta_graph_transform._add_pruned_collection( base_meta_graph_def, meta_graph_def, collection_name, removed_op_names) collection = meta_graph_def.collection_def[collection_name] expected_protos = [ _make_asset_file_def_any('node1'), _make_asset_file_def_any('node3'), _make_asset_file_def_any('/a/a_1'), ] self.assertEqual(expected_protos, collection.any_list.value[:]) def test_add_pruned_collection_proto_in_bytes_list(self): # Note: This also tests _is_removed_mentioned(). collection_name = 'proto_collection' base_meta_graph_def = meta_graph_pb2.MetaGraphDef() base_meta_graph_def.collection_def[collection_name].bytes_list.value.extend( [compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node1'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node2'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node3'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node4'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('/a/a_1'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('/b/b_1'))) ]) meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5', '/a', '/b/b_1'] meta_graph_transform._add_pruned_collection( base_meta_graph_def, meta_graph_def, collection_name, removed_op_names) collection = meta_graph_def.collection_def[collection_name] expected_values = [ compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node1'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('node3'))), compat.as_bytes(compat.as_str_any(_make_asset_file_def_any('/a/a_1'))), ] self.assertEqual(expected_values, collection.bytes_list.value[:]) def test_add_pruned_saver(self): base_meta_graph_def = meta_graph_pb2.MetaGraphDef() base_meta_graph_def.saver_def.filename_tensor_name = 'node1' base_meta_graph_def.saver_def.save_tensor_name = 'node3' base_meta_graph_def.saver_def.restore_op_name = 'node6' meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5'] meta_graph_transform._add_pruned_saver(base_meta_graph_def, meta_graph_def, removed_op_names) # TODO(b/63447631): For now the saver is just copied unchanged self.assertEqual(base_meta_graph_def.saver_def, meta_graph_def.saver_def) def test_add_pruned_signature(self): base_meta_graph_def = meta_graph_pb2.MetaGraphDef() signature_name_keep = 'test_signature_keep' base_sig_keep = base_meta_graph_def.signature_def[signature_name_keep] base_sig_keep.inputs['input_1'].name = 'input_1' base_sig_keep.outputs['output_1'].name = 'output_1' signature_name_remove = 'test_signature_remove' base_sig_remove = base_meta_graph_def.signature_def[signature_name_remove] base_sig_remove.inputs['node2'].name = 'node2' base_sig_remove.outputs['output_1'].name = 'output_1' meta_graph_def = meta_graph_pb2.MetaGraphDef() removed_op_names = ['node2', 'node4', 'node5'] meta_graph_transform._add_pruned_signature(base_meta_graph_def, meta_graph_def, signature_name_keep, removed_op_names) meta_graph_transform._add_pruned_signature(base_meta_graph_def, meta_graph_def, signature_name_remove, removed_op_names) self.assertTrue(signature_name_keep in meta_graph_def.signature_def) sig_keep = meta_graph_def.signature_def[signature_name_keep] self.assertEqual(base_sig_keep, sig_keep) self.assertFalse(signature_name_remove in meta_graph_def.signature_def) if __name__ == '__main__': test.main()
tensorflow-master
tensorflow/contrib/meta_graph_transform/meta_graph_transform_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility for applying the Graph Transform tool to a MetaGraphDef.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.meta_graph_transform import meta_graph_transform from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = ['meta_graph_transform'] remove_undocumented(__name__, allowed_exception_list=_allowed_symbols)
tensorflow-master
tensorflow/contrib/meta_graph_transform/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Apply graph_transforms tool to MetaGraphDefs. @@meta_graph_transform """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import re as _re from tensorflow.core.framework import graph_pb2 as _graph_pb2 from tensorflow.core.protobuf import meta_graph_pb2 as _meta_graph_pb2 from tensorflow.python.client import session as _session from tensorflow.python.framework import graph_util as _graph_util from tensorflow.python.framework import importer as _importer from tensorflow.python.framework import ops as _ops from tensorflow.python.platform import tf_logging as _logging from tensorflow.python.saved_model import constants as _saved_model_constants from tensorflow.python.training import saver as _saver_lib from tensorflow.python.util import compat as _compat from tensorflow.tools import graph_transforms as _graph_transforms _FREEZE_GRAPH_TRANSFORM = 'freeze_graph' _SPARSIFY_GATHER_TRANSFORM = 'sparsify_gather' def _op_name(tensor_name): """Get the op name from a tensor name.""" # control dependency inputs start with ^ if tensor_name[0] == '^': tensor_name = tensor_name[1:] if ':' in tensor_name: op_name, _ = tensor_name.split(':') return op_name return tensor_name def _get_shared_init_op(initializer_names): """Obtain the shared init op name, if it exists. Args: initializer_names: Dictionary of the "infrastructural" nodes (initializers, save and restore ops, etc.). The keys in this dictionary indicate the collection where these nodes were obtained from. Returns: A string indicating the shared init op name or none if None if none exists. """ return_value = initializer_names.get(_saved_model_constants.MAIN_OP_KEY, None) if not return_value: return_value = initializer_names.get( _saved_model_constants.LEGACY_INIT_OP_KEY, None) return str(return_value[0]) if return_value else None def _gtt_transforms(graph_def, input_names, output_names, initializer_names, transforms): """Pass through gtt transforms, applying them to the graph_def. Args: graph_def: A GraphDef proto to be transformed. input_names: Names of input nodes. output_names: Names of output nodes. initializer_names: Dictionary of the "infrastructural" nodes (initializers, save and restore ops, etc.) that should be retained even if they are not transitively reachable from output nodes. The keys in this dictionary indicate the collection where these nodes were obtained from. transforms: A list of strings naming the graph transforms to be applied in order. Returns: The transformed GraphDef. """ if not transforms: transformed_graph_def = _graph_pb2.GraphDef() transformed_graph_def.CopyFrom(graph_def) return transformed_graph_def initializer_names_flat = sorted( [k for l in initializer_names.values() for k in l]) all_output_names = output_names + initializer_names_flat return _graph_transforms.TransformGraph(graph_def, input_names, all_output_names, transforms) def _freeze_transform(graph_def, output_names, initializer_names, saver_def, checkpoint_path): """Handle the freeze transform. Determine which initializer nodes should be retained by the freeze transform. Retain those nodes and return an updated dictionary containing them. Args: graph_def: A GraphDef proto to be transformed. output_names: Names of output nodes. initializer_names: Dictionary of the "infrastructural" nodes (initializers, save and restore ops, etc.). The keys in this dictionary indicate the collection where these nodes were obtained from. saver_def: A SaverDef proto used for restoring a checkpoint during freezing, if needed (default None). checkpoint_path: A path to a checkpoint to restore during freezing, if needed (default None). Returns: A tuple containing the GraphDef and a Dict of pruned initializer nodes. """ table_initializers = initializer_names.get(_ops.GraphKeys.TABLE_INITIALIZERS, []) shared_init_op = _get_shared_init_op(initializer_names) graph_def = _freeze_graph_with_def_protos(graph_def, output_names, table_initializers, shared_init_op, saver_def, checkpoint_path) pruned_initializer_names = {} # Freeze graph prunes all initializers and shared init nodes that are not # explicitly maintained. Create new initializer_names dictionary to reflect # this. if table_initializers: pruned_initializer_names[_ops.GraphKeys.TABLE_INITIALIZERS] = ( table_initializers) if _saved_model_constants.LEGACY_INIT_OP_KEY in initializer_names: pruned_initializer_names[_saved_model_constants.LEGACY_INIT_OP_KEY] = ( initializer_names[_saved_model_constants.LEGACY_INIT_OP_KEY]) if _saved_model_constants.MAIN_OP_KEY in initializer_names: pruned_initializer_names[_saved_model_constants.MAIN_OP_KEY] = ( initializer_names[_saved_model_constants.MAIN_OP_KEY]) return (graph_def, pruned_initializer_names) def _clean_save_and_restore(graph_def, op, removed_op_names): """Clean the specified save and restore op. Updates the dtypes attribute of the save / restore op and the associated name and shape tensors to remove entries for variables that have been removed. Args: graph_def: A GraphDef proto to be transformed. op: The save or restore op to update. removed_op_names: List of op names that have been removed. """ name = op.name + '/tensor_names' shape = op.name + '/shape_and_slices' name_op = _find_op(graph_def, name) shape_op = _find_op(graph_def, shape) name_op_value_tensor = name_op.attr['value'].tensor shape_op_value_tensor = shape_op.attr['value'].tensor names = [] shapes = [] dtypes = [] for index, value in enumerate(name_op_value_tensor.string_val): if not _is_removed(_compat.as_str(value), removed_op_names): names.append(value) shapes.append(shape_op_value_tensor.string_val[index]) dtypes.append(op.attr['dtypes'].list.type[index]) name_op_value_tensor.string_val[:] = names name_op_value_tensor.tensor_shape.dim[0].size = len(names) shape_op_value_tensor.string_val[:] = shapes shape_op_value_tensor.tensor_shape.dim[0].size = len(shapes) op.attr['dtypes'].list.type[:] = dtypes if not name_op.attr['_output_shapes'].list.shape: name_op.attr['_output_shapes'].list.shape.add() name_op.attr['_output_shapes'].list.shape[0].dim.add() name_op.attr['_output_shapes'].list.shape[0].dim[0].size = len(names) if not shape_op.attr['_output_shapes'].list.shape: shape_op.attr['_output_shapes'].list.shape.add() shape_op.attr['_output_shapes'].list.shape[0].dim.add() shape_op.attr['_output_shapes'].list.shape[0].dim[0].size = len(shapes) def _sparsify_gather_transform(graph_def, input_names, output_names, initializer_names, checkpoint_path): """Handle the sparsify gather transform. Provides the transform the checkpoint and keeps track of the newly created initializer nodes. Args: graph_def: A GraphDef proto to be transformed. input_names: Names of input nodes. output_names: Names of output nodes. initializer_names: Dictionary of the "infrastructural" nodes (initializers, save and restore ops, etc.). The keys in this dictionary indicate the collection where these nodes were obtained from. checkpoint_path: A path to a checkpoint. Returns: A tuple containing the GraphDef and a Dict of updated initializer nodes. Raises: ValueError: if the restore_op_name does not have the expected format. """ # Ensure that sparsify_shared_init_op is unique. sparsify_shared_init_op = 'sparify_gather_init_op' while _find_op(graph_def, sparsify_shared_init_op): sparsify_shared_init_op += '_1' input_flag = '' if checkpoint_path: input_flag = 'input_checkpoint="%s", ' % checkpoint_path sparsify_cmd = [ 'sparsify_gather(%sgroup_init_node="%s")' % (input_flag, sparsify_shared_init_op) ] starting_op_names = [node.name for node in graph_def.node] graph_def = _gtt_transforms(graph_def, input_names, output_names, initializer_names, sparsify_cmd) ending_op_names = [node.name for node in graph_def.node] removed_op_names = list(set(starting_op_names) - set(ending_op_names)) removed_op_names.sort() for op_index, op_name in enumerate(removed_op_names): op_name_parts = op_name.rsplit('/', 1) # Remove part to get the checkpoint names used by the saver. if len(op_name_parts) == 2 and op_name_parts[1].startswith('part_'): removed_op_names[op_index] = op_name_parts[0] else: removed_op_names[op_index] = op_name # Obtain newly created table inits from gtt sparsify transform. added_table_inits = [] for index, node in enumerate(graph_def.node): if node.name == sparsify_shared_init_op: added_table_inits = [n.lstrip('^') for n in node.input] table_initializers = initializer_names.get( _ops.GraphKeys.TABLE_INITIALIZERS, []) table_initializers.extend(added_table_inits) initializer_names[_ops.GraphKeys.TABLE_INITIALIZERS] = table_initializers del graph_def.node[index] break # Add inits to existing shared init op. node = _find_op(graph_def, _get_shared_init_op(initializer_names)) for init in added_table_inits: node.input.append('^' + init) # Update saver. for node in graph_def.node: if node.name.endswith('SaveV2'): _clean_save_and_restore(graph_def, node, removed_op_names) return (graph_def, initializer_names) def _do_transforms(graph_def, input_names, output_names, initializer_names, transforms, saver_def=None, checkpoint_path=None): """Apply requested transforms to a GraphDef, including freezing. Args: graph_def: A GraphDef proto to be transformed. input_names: Names of input nodes. output_names: Names of output nodes. initializer_names: Dictionary of the "infrastructural" nodes (initializers, save and restore ops, etc.) that should be retained even if they are not transitively reachable from output nodes. The keys in this dictionary indicate the collection where these nodes were obtained from. transforms: A list of strings naming the graph transforms to be applied in order. These transform names are exactly those supported by the Graph Transform Tool, with the addition of the 'freeze_graph' and 'sparsify_gather' transforms. saver_def: A SaverDef proto used for restoring a checkpoint during freezing, if needed (default None). checkpoint_path: A path to a checkpoint to restore during freezing, if needed (default None). Returns: A tuple containing the GraphDef and a Dict of updated initializer nodes. """ transformed_graph_def = _graph_pb2.GraphDef() transformed_graph_def.CopyFrom(graph_def) transformed_initializer_names = initializer_names.copy() if not transforms: return transformed_graph_def, transformed_initializer_names current_gtt_transforms = [] for t in transforms: if t == _FREEZE_GRAPH_TRANSFORM: transformed_graph_def = _gtt_transforms( transformed_graph_def, input_names, output_names, transformed_initializer_names, current_gtt_transforms) output_node_names = [_op_name(x) for x in output_names] transformed_graph_def, transformed_initializer_names = _freeze_transform( transformed_graph_def, output_node_names, transformed_initializer_names, saver_def, checkpoint_path) current_gtt_transforms = [] elif t == _SPARSIFY_GATHER_TRANSFORM: transformed_graph_def = _gtt_transforms( transformed_graph_def, input_names, output_names, transformed_initializer_names, current_gtt_transforms) transformed_graph_def, transformed_initializer_names = ( _sparsify_gather_transform( transformed_graph_def, input_names, output_names, transformed_initializer_names, checkpoint_path)) current_gtt_transforms = [] else: current_gtt_transforms.append(t) transformed_graph_def = _gtt_transforms( transformed_graph_def, input_names, output_names, transformed_initializer_names, current_gtt_transforms) return transformed_graph_def, transformed_initializer_names def _connect_to_shared_init_op(graph_def, shared_init_op_name, nodes_to_connect): """Creates a new shared init node that is connected to via control deps. Args: graph_def: The GraphDef proto to add the shared init node to. shared_init_op_name: A string specifying the name of the shared init node to create. nodes_to_connect: A list of strings specifying the names of nodes to connect to the shared node via control dependencies. """ if nodes_to_connect: init_op = graph_def.node.add() init_op.name = shared_init_op_name init_op.op = 'NoOp' init_op.input.extend(['^' + i for i in nodes_to_connect]) # forked and modified from freeze_graph.py def _freeze_graph_with_def_protos(input_graph_def, output_node_names, initializer_names, shared_init_op_name, input_saver_def, input_checkpoint): """Converts all variables in a graph and checkpoint into constants. During this process, we need to retain certain initializer nodes (e.g. table initializer nodes). Instead of determining which dependencies of the shared initializer node (e.g. group_deps) to keep, we reconstruct the connections between the individual initializer nodes and the shared node after freezing the graph. Args: input_graph_def: A GraphDef proto to be frozen. output_node_names: Names of output nodes. initializer_names: Names of initializer nodes to keep. shared_init_op_name: The name of the shared initializer node to connect the nodes in initializer names to. input_saver_def: A SaverDef proto used for restoring a checkpoint. input_checkpoint: A path to a checkpoint to restore. Returns: A frozen GraphDef. """ with _ops.Graph().as_default(): _ = _importer.import_graph_def(input_graph_def, name='') with _session.Session() as sess: saver = _saver_lib.Saver(saver_def=input_saver_def) saver.restore(sess, input_checkpoint) output_graph_def = _graph_util.convert_variables_to_constants( sess, input_graph_def, output_node_names + initializer_names) _connect_to_shared_init_op(output_graph_def, shared_init_op_name, initializer_names) return output_graph_def def _find_all_mandatory_retain_ops(base_meta_graph_def): """Identify all infrastructural Ops, to ensure that they are retained. We need to retain infrastructural Ops (init and saver stuff), in addition to the desired outputs. For now we retain *all* save and restore ops, variable initializers, table initializers, and main init ops. This means that strip_unused_nodes will not remove unused variables. Args: base_meta_graph_def: a GraphDef proto in which to identify nodes to retain. Returns: A dictionary corresponding to the nodes associated with each collection that are to be retained. """ # TODO(b/63447631): implement variable stripping. initializer_names = {} # Primary SaverDef and SAVERS collection saver_defs = [] if base_meta_graph_def.HasField('saver_def'): saver_defs.append(base_meta_graph_def.saver_def) saver_defs.extend(_get_all_protos_from_collection( base_meta_graph_def, _ops.GraphKeys.SAVERS)) for saver_def in saver_defs: savers = initializer_names.get(_ops.GraphKeys.SAVERS, []) savers.extend([ saver_def.filename_tensor_name, saver_def.save_tensor_name, saver_def.restore_op_name ]) initializer_names[_ops.GraphKeys.SAVERS] = savers # Variable initializers variable_collections = [ _ops.GraphKeys.GLOBAL_VARIABLES, _ops.GraphKeys.TRAINABLE_VARIABLES, _ops.GraphKeys.MOVING_AVERAGE_VARIABLES, _ops.GraphKeys.LOCAL_VARIABLES, _ops.GraphKeys.MODEL_VARIABLES] for var_coll in variable_collections: variables = _get_all_protos_from_collection(base_meta_graph_def, var_coll) var_init_names = [v.initializer_name for v in variables] if var_init_names: # Sanity check to ensure we don't overwrite dictionary entries. assert var_coll not in initializer_names initializer_names[var_coll] = var_init_names # Table initializers op_names = _get_all_node_names_from_collection( base_meta_graph_def, _ops.GraphKeys.TABLE_INITIALIZERS) if op_names: # Sanity check to ensure we don't overwrite dictionary entries. assert _ops.GraphKeys.TABLE_INITIALIZERS not in initializer_names table_initializers = [t for t in op_names] initializer_names[_ops.GraphKeys.TABLE_INITIALIZERS] = table_initializers # Various init ops various_init_op_collections = [_saved_model_constants.LEGACY_INIT_OP_KEY, _saved_model_constants.MAIN_OP_KEY, _ops.GraphKeys.INIT_OP, _ops.GraphKeys.LOCAL_INIT_OP, _ops.GraphKeys.READY_OP, _ops.GraphKeys.READY_FOR_LOCAL_INIT_OP] for op_coll in various_init_op_collections: op_name = _get_single_node_name_from_collection( base_meta_graph_def, op_coll) if op_name: # Sanity check to ensure we don't overwrite dictionary entries. assert op_coll not in initializer_names initializer_names[op_coll] = [op_name] return initializer_names def _add_pruned_collection(base_meta_graph_def, meta_graph_def, collection_name, removed_op_names): """Copy collection to the transformed MetaGraphDef, omitting removed items.""" base_collection = base_meta_graph_def.collection_def[collection_name] collection = meta_graph_def.collection_def[collection_name] if base_collection.HasField('any_list'): for any_value in base_collection.any_list.value: # just search the serialized proto as a string if not _is_removed_mentioned(any_value.value, removed_op_names): copied_any = collection.any_list.value.add() copied_any.CopyFrom(any_value) elif base_collection.HasField('bytes_list'): collection.bytes_list.value[:] = [ s for s in base_collection.bytes_list.value if not _is_removed_mentioned(s, removed_op_names)] _logging.info( 'In collection %s, nodes excluded are: %s', collection_name, sorted([ s for s in base_collection.bytes_list.value if _is_removed_mentioned(s, removed_op_names) ])) elif base_collection.HasField('node_list'): collection.node_list.value[:] = [ s for s in base_collection.node_list.value if not _is_removed(s, removed_op_names)] else: collection.CopyFrom(base_collection) def _add_pruned_saver(base_meta_graph_def, meta_graph_def, removed_op_names): """Copy the Saver into the transformed MetaGraphDef, if valid. Currently this copies the Saver as is, after verifying that none of the referenced Save & Restore ops were removed. A future version will modify the Save and Restore ops themselves as needed to account for removed Variables. Args: base_meta_graph_def: The untransformed MetaGraphDef. meta_graph_def: The transformed MetaGraphDef being built. removed_op_names: An iterable of names of ops that were removed. """ # Note this does surgery on meta_graph_def.graph_def too, so that should have # been copied already. if base_meta_graph_def.HasField('saver_def'): filename_tensor_name = base_meta_graph_def.saver_def.filename_tensor_name save_tensor_name = base_meta_graph_def.saver_def.save_tensor_name restore_op_name = base_meta_graph_def.saver_def.restore_op_name _check_tensor_not_removed(filename_tensor_name, removed_op_names) _check_tensor_not_removed(save_tensor_name, removed_op_names) _check_tensor_not_removed(restore_op_name, removed_op_names) # TODO(b/63447631): Once we strip unused variables, remove references to # them from save and restore ops. Retain those ops only if they also refer # to retained Variables. See if we can use _clean_save_and_restore() for # this. # saver_name, restore_all = restore_op_name.rsplit('/', 1) # if restore_all != 'restore_all': # raise ValueError( # 'SaverDef restore_op_name did not have expected form */restore_all') # save_tensor_names_op_name = '{}/SaveV2/tensor_names'.format(saver_name) # restore_tensor_names_op_name = ( # '{}/RestoreV2/tensor_names'.format(saver_name)) # save_tensor_names_op = _find_op(meta_graph_def.graph_def, # save_tensor_names_op_name) # save_tensor_names_value_tensor = save_tensor_names_op.attr['value'].tensor # save_tensor_names_value_tensor.string_val[:] = [ # s for s in save_tensor_names_value_tensor.string_val # if not _is_removed(s, removed_op_names)] # restore_tensor_names_op = _find_op( # meta_graph_def.graph_def, restore_tensor_names_op_name) # restore_tensor_names_value_tensor = ( # restore_tensor_names_op.attr['value'].tensor) # restore_tensor_names_value_tensor.string_val[:] = [ # s for s in restore_tensor_names_value_tensor.string_val # if not _is_removed(s, removed_op_names)] # if (save_tensor_names_value_tensor.string_val # or restore_tensor_names_value_tensor.string_val): meta_graph_def.saver_def.CopyFrom(base_meta_graph_def.saver_def) def _find_op(graph_def, op_name): """Fetch a node from a GraphDef proto by name.""" for node_def in graph_def.node: if node_def.name == op_name: return node_def return None def _add_pruned_signature(base_meta_graph_def, meta_graph_def, signature_name, removed_op_names): """Copy the named signature into the transformed MetaGraphDef, if valid. If any input or output mentioned in the signature was removed by the graph transform, the signature is silently omitted from the transformed MetaGraphDef. Args: base_meta_graph_def: The untransformed MetaGraphDef. meta_graph_def: The transformed MetaGraphDef being built. signature_name: The name of the signature to copy. removed_op_names: An iterable of names of ops that were removed. """ try: base_signature = base_meta_graph_def.signature_def[signature_name] for key in base_signature.inputs: _check_tensor_not_removed(base_signature.inputs[key].name, removed_op_names) for key in base_signature.outputs: _check_tensor_not_removed(base_signature.outputs[key].name, removed_op_names) meta_graph_def.signature_def[signature_name].CopyFrom(base_signature) except ValueError: # exclude any signature that mentions a removed node pass def _get_single_node_name_from_collection(meta_graph_def, collection_key): """Obtain a node name that is the single element of a collection.""" if collection_key not in meta_graph_def.collection_def: return None collection = meta_graph_def.collection_def[collection_key] if not collection.node_list.value: raise ValueError( 'Collection {} is present but type is not node_list.'.format( collection_key)) if len(collection.node_list.value) != 1: raise ValueError( 'Collection {} is has {} elements; expected exactly one.'.format( collection_key, collection.bytes_list)) return collection.node_list.value[0] def _get_all_node_names_from_collection(meta_graph_def, collection_key): """Obtain node names from a collection.""" if collection_key not in meta_graph_def.collection_def: return None collection = meta_graph_def.collection_def[collection_key] if not collection.node_list.value: raise ValueError( 'Collection {} is present but type is not node_list.'.format( collection_key)) return collection.node_list.value def _get_all_protos_from_collection(meta_graph_def, collection_key): """Obtain node names from a collection.""" if collection_key not in meta_graph_def.collection_def: return [] collection = meta_graph_def.collection_def[collection_key] if not collection.bytes_list.value: raise ValueError( 'Collection {} is present but type is not bytes_list.'.format( collection_key)) proto_type = _ops.get_collection_proto_type(collection_key) result = [] for value in collection.bytes_list.value: proto = proto_type() proto.ParseFromString(value) result.append(proto) return result def _is_removed(tensor_name, removed_op_names): """Determine whether the named tensor is an output of a removed op.""" for removed_op_name in removed_op_names: if tensor_name.split(':')[0] == removed_op_name: return True return False def _is_removed_mentioned(s, removed_op_names): """Determine whether any removed op is mentioned in the given object. This relies on the string representation of the object. This is used for proto messages that may mention ops by name in nested fields. The string representation of the proto includes those field values, so this string search approach is sufficient. Args: s: an object to search for removed op names. removed_op_names: An iterable of names of ops that were removed. Returns: True if any removed op is mentioned in the given object, False otherwise. """ # A common approach taken by some of the transforms in gtt is to add new nodes # that have the same prefix as the node they are removing. For example, if # the original node name was /foo, they may remove that node and add in # /foo/bar. This regex ensures that we handle these two nodes # as separate entities. It matches on nodes having names in the form of # '/foo/bar_x' as well as nodes having names in the form of 'foo.' s_names = _re.findall(r'((?:[\/]?[a-zA-Z0-9\_]*)*)', _compat.as_str_any(s)) for removed_op_name in removed_op_names: for s_name in s_names: if s_name.endswith(removed_op_name): return True return False def _check_tensor_not_removed(tensor_name, removed_op_names): """Verify that the named tensor was not removed. Args: tensor_name: the name of a tensor to check. removed_op_names: An iterable of names of ops that were removed. Raises: ValueError: if the tensor was removed. """ if not tensor_name: raise ValueError('Tensor name should not be empty') if _is_removed(tensor_name, removed_op_names): raise ValueError( 'Expected Tensor, but it was removed: {}'.format(tensor_name)) def _add_new_inits_to_collection(meta_graph_def, updated_initializer_names): """Add new inits to collection. Args: meta_graph_def: The MetaGraphDef protocol buffer to update. updated_initializer_names: Dictionary of the updated "infrastructural" nodes (initializers, save and restore ops, etc.). The keys in this dictionary indicate the collection where these nodes were obtained from. Raises: ValueError: if the tensor was removed. """ # TODO(dzats): Extend this to support all collections. if _ops.GraphKeys.TABLE_INITIALIZERS in updated_initializer_names: orig_table_inits = _get_all_node_names_from_collection( meta_graph_def, _ops.GraphKeys.TABLE_INITIALIZERS) orig_table_inits = orig_table_inits if orig_table_inits else [] updated_table_inits = updated_initializer_names[ _ops.GraphKeys.TABLE_INITIALIZERS] new_table_inits = list(set(updated_table_inits) - set(orig_table_inits)) new_table_inits.sort() meta_graph_def.collection_def[ _ops.GraphKeys.TABLE_INITIALIZERS].node_list.value.extend( new_table_inits) def meta_graph_transform( base_meta_graph_def, input_names, output_names, transforms, tags, checkpoint_path=None): """Apply the Graph Transform tool to a MetaGraphDef. Args: base_meta_graph_def: A MetaGraphDef protocol buffer to transform. input_names: Names of input nodes. output_names: Names of output nodes. transforms: A list of strings naming the graph transforms to be applied in order. These transform names are exactly those supported by the Graph Transform Tool, with the addition of the 'freeze_graph' and 'sparsify_gather' transforms. tags: A list of tags with which to annotate the transformed MetaGraphDef. checkpoint_path: A path to a checkpoint to restore during freezing, if needed (default None). Returns: A new transformed MetaGraphDef protocol buffer. """ meta_graph_def = _meta_graph_pb2.MetaGraphDef() initializer_names = _find_all_mandatory_retain_ops(base_meta_graph_def) transformed_graph_def, updated_initializer_names = _do_transforms( base_meta_graph_def.graph_def, input_names, output_names, initializer_names, transforms, base_meta_graph_def.saver_def, checkpoint_path) meta_graph_def.graph_def.CopyFrom(transformed_graph_def) meta_graph_def.meta_info_def.CopyFrom(base_meta_graph_def.meta_info_def) meta_graph_def.meta_info_def.ClearField('tags') for tag in tags: meta_graph_def.meta_info_def.tags.append(tag) base_op_names = [_compat.as_str(node.name) for node in base_meta_graph_def.graph_def.node] retained_op_names = [_compat.as_str(node.name) for node in meta_graph_def.graph_def.node] removed_op_names = set(base_op_names) - set(retained_op_names) _logging.info('Node names in base graph: %s', sorted(base_op_names)) _logging.info('Node names retained: %s', sorted(retained_op_names)) _logging.info('Node names removed: %s', sorted(removed_op_names)) # Copy saver, excluding any pruned nodes if graph was not frozen. # TODO(b/63447631): Revisit this once the problem is addressed. Currently # _add_pruned_saver assumes that the save and restore nodes have not been # removed but freeze_graph (correctly) removes them. if _FREEZE_GRAPH_TRANSFORM not in transforms: _add_pruned_saver(base_meta_graph_def, meta_graph_def, removed_op_names) # Copy collections, excluding any pruned nodes for collection_name in base_meta_graph_def.collection_def: _add_pruned_collection( base_meta_graph_def, meta_graph_def, collection_name, removed_op_names) # Append newly added initializers to collection. _add_new_inits_to_collection(meta_graph_def, updated_initializer_names) # Copy signature_defs, excluding any pruned nodes for signature_name in base_meta_graph_def.signature_def: _add_pruned_signature( base_meta_graph_def, meta_graph_def, signature_name, removed_op_names) return meta_graph_def
tensorflow-master
tensorflow/contrib/meta_graph_transform/meta_graph_transform.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools for working with object-based checkpoints. Visualization and inspection: @@dot_graph_from_checkpoint @@list_objects @@object_metadata Managing dependencies: @@capture_dependencies @@Checkpointable @@CheckpointableBase @@CheckpointableObjectGraph @@NoDependency @@split_dependency Trackable data structures: @@List @@Mapping @@UniqueNameTracker Checkpoint management: @@CheckpointManager Saving and restoring Python state: @@NumpyState @@PythonStateWrapper """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.checkpoint.python.containers import UniqueNameTracker from tensorflow.contrib.checkpoint.python.python_state import NumpyState from tensorflow.contrib.checkpoint.python.split_dependency import split_dependency from tensorflow.contrib.checkpoint.python.visualize import dot_graph_from_checkpoint from tensorflow.core.protobuf.trackable_object_graph_pb2 import TrackableObjectGraph as CheckpointableObjectGraph from tensorflow.python.training.checkpoint_management import CheckpointManager from tensorflow.python.training.tracking.base import Trackable as CheckpointableBase from tensorflow.python.training.tracking.data_structures import List from tensorflow.python.training.tracking.data_structures import Mapping from tensorflow.python.training.tracking.data_structures import NoDependency from tensorflow.python.training.tracking.python_state import PythonState as PythonStateWrapper from tensorflow.python.training.tracking.tracking import AutoTrackable as Checkpointable from tensorflow.python.training.tracking.util import capture_dependencies from tensorflow.python.training.tracking.util import list_objects from tensorflow.python.training.tracking.util import object_metadata from tensorflow.python.util.all_util import remove_undocumented remove_undocumented(module_name=__name__)
tensorflow-master
tensorflow/contrib/checkpoint/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import six from tensorflow.contrib.checkpoint.python import containers from tensorflow.python.framework import test_util from tensorflow.python.keras import layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import test from tensorflow.python.training.tracking import data_structures from tensorflow.python.training.tracking import tracking from tensorflow.python.training.tracking import util class UniqueNameTrackerTests(test.TestCase): @test_util.run_in_graph_and_eager_modes def testNames(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") x1 = resource_variable_ops.ResourceVariable(2.) x2 = resource_variable_ops.ResourceVariable(3.) x3 = resource_variable_ops.ResourceVariable(4.) y = resource_variable_ops.ResourceVariable(5.) slots = containers.UniqueNameTracker() slots.track(x1, "x") slots.track(x2, "x") slots.track(x3, "x_1") slots.track(y, "y") self.evaluate((x1.initializer, x2.initializer, x3.initializer, y.initializer)) save_root = util.Checkpoint(slots=slots) save_path = save_root.save(checkpoint_prefix) restore_slots = tracking.AutoTrackable() restore_root = util.Checkpoint( slots=restore_slots) status = restore_root.restore(save_path) restore_slots.x = resource_variable_ops.ResourceVariable(0.) restore_slots.x_1 = resource_variable_ops.ResourceVariable(0.) restore_slots.x_1_1 = resource_variable_ops.ResourceVariable(0.) restore_slots.y = resource_variable_ops.ResourceVariable(0.) status.assert_consumed().run_restore_ops() self.assertEqual(2., self.evaluate(restore_slots.x)) self.assertEqual(3., self.evaluate(restore_slots.x_1)) self.assertEqual(4., self.evaluate(restore_slots.x_1_1)) self.assertEqual(5., self.evaluate(restore_slots.y)) @test_util.run_in_graph_and_eager_modes def testExample(self): class SlotManager(tracking.AutoTrackable): def __init__(self): self.slotdeps = containers.UniqueNameTracker() slotdeps = self.slotdeps slots = [] slots.append(slotdeps.track( resource_variable_ops.ResourceVariable(3.), "x")) slots.append(slotdeps.track( resource_variable_ops.ResourceVariable(4.), "y")) slots.append(slotdeps.track( resource_variable_ops.ResourceVariable(5.), "x")) self.slots = data_structures.NoDependency(slots) manager = SlotManager() self.evaluate([v.initializer for v in manager.slots]) checkpoint = util.Checkpoint(slot_manager=manager) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = checkpoint.save(checkpoint_prefix) metadata = util.object_metadata(save_path) dependency_names = [] for node in metadata.nodes: for child in node.children: dependency_names.append(child.local_name) six.assertCountEqual( self, dependency_names, ["x", "x_1", "y", "slot_manager", "slotdeps", "save_counter"]) @test_util.run_in_graph_and_eager_modes def testLayers(self): tracker = containers.UniqueNameTracker() tracker.track(layers.Dense(3), "dense") tracker.layers[0](array_ops.zeros([1, 1])) self.assertEqual(2, len(tracker.trainable_weights)) if __name__ == "__main__": test.main()
tensorflow-master
tensorflow/contrib/checkpoint/python/containers_test.py
"""Trackable data structures.""" # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.training.tracking import base as trackable_lib from tensorflow.python.training.tracking import data_structures class UniqueNameTracker(data_structures.TrackableDataStructure): """Adds dependencies on trackable objects with name hints. Useful for creating dependencies with locally unique names. Example usage: ```python class SlotManager(tf.contrib.checkpoint.Checkpointable): def __init__(self): # Create a dependency named "slotdeps" on the container. self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker() slotdeps = self.slotdeps slots = [] slots.append(slotdeps.track(tf.Variable(3.), "x")) # Named "x" slots.append(slotdeps.track(tf.Variable(4.), "y")) slots.append(slotdeps.track(tf.Variable(5.), "x")) # Named "x_1" ``` """ def __init__(self): super(UniqueNameTracker, self).__init__() self._maybe_initialize_trackable() self._name_counts = {} @property def _values(self): return [dep.ref for dep in self._checkpoint_dependencies] def track(self, trackable, base_name): """Add a dependency on `trackable`. Args: trackable: An object to add a checkpoint dependency on. base_name: A name hint, which is uniquified to determine the dependency name. Returns: `trackable`, for chaining. Raises: ValueError: If `trackable` is not a trackable object. """ if not isinstance(trackable, trackable_lib.Trackable): raise ValueError( ("Expected a trackable value, got %s which does not inherit " "from tf.track.Trackable.") % (trackable,)) def _format_name(prefix, number): if number > 0: return "%s_%d" % (prefix, number) else: return prefix count = self._name_counts.get(base_name, 0) candidate = _format_name(base_name, count) while self._lookup_dependency(candidate) is not None: count += 1 candidate = _format_name(base_name, count) self._name_counts[base_name] = count + 1 self._track_value(trackable, name=candidate) return trackable
tensorflow-master
tensorflow/contrib/checkpoint/python/containers.py