python_code
stringlengths
0
108k
# This file is part of Eigen, a lightweight C++ template library # for linear algebra. # # Copyright (C) 2012 Keir Mierle <[email protected]> # # This Source Code Form is subject to the terms of the Mozilla # Public License v. 2.0. If a copy of the MPL was not distributed # with this file, You can obtain one at http://mozilla.org/MPL/2.0/. # # Author: [email protected] (Keir Mierle) # # Make the long-awaited conversion to MPL. lgpl3_header = ''' // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. ''' mpl2_header = """ // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. """ exclusions = set(['relicense.py']) def update(text): if text.find(lgpl3_header) == -1: return text, False return text.replace(lgpl3_header, mpl2_header), True rootdir = sys.argv[1] for root, sub_folders, files in os.walk(rootdir): for basename in files: if basename in exclusions: print 'SKIPPED', filename continue filename = os.path.join(root, basename) fo = file(filename) text = fo.read() fo.close() text, updated = update(text) if updated: fo = file(filename, "w") fo.write(text) fo.close() print 'UPDATED', filename else: print ' ', filename
# Intentionally empty
# -*- coding: utf-8 -*- # This file is part of Eigen, a lightweight C++ template library # for linear algebra. # # Copyright (C) 2009 Benjamin Schindler <[email protected]> # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. # Pretty printers for Eigen::Matrix # This is still pretty basic as the python extension to gdb is still pretty basic. # It cannot handle complex eigen types and it doesn't support any of the other eigen types # Such as quaternion or some other type. # This code supports fixed size as well as dynamic size matrices # To use it: # # * Create a directory and put the file as well as an empty __init__.py in # that directory. # * Create a ~/.gdbinit file, that contains the following: # python # import sys # sys.path.insert(0, '/path/to/eigen/printer/directory') # from printers import register_eigen_printers # register_eigen_printers (None) # end class EigenMatrixPrinter: "Print Eigen Matrix or Array of some kind" def __init__(self, variety, val): "Extract all the necessary information" # Save the variety (presumably "Matrix" or "Array") for later usage self.variety = variety # The gdb extension does not support value template arguments - need to extract them by hand type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() self.type = type.unqualified().strip_typedefs() tag = self.type.tag regex = re.compile('\<.*\>') m = regex.findall(tag)[0][1:-1] template_params = m.split(',') template_params = [x.replace(" ", "") for x in template_params] if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001' or template_params[1] == '-1': self.rows = val['m_storage']['m_rows'] else: self.rows = int(template_params[1]) if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001' or template_params[2] == '-1': self.cols = val['m_storage']['m_cols'] else: self.cols = int(template_params[2]) self.options = 0 # default value if len(template_params) > 3: self.options = template_params[3]; self.rowMajor = (int(self.options) & 0x1) self.innerType = self.type.template_argument(0) self.val = val # Fixed size matrices have a struct as their storage, so we need to walk through this self.data = self.val['m_storage']['m_data'] if self.data.type.code == gdb.TYPE_CODE_STRUCT: self.data = self.data['array'] self.data = self.data.cast(self.innerType.pointer()) class _iterator: def __init__ (self, rows, cols, dataPtr, rowMajor): self.rows = rows self.cols = cols self.dataPtr = dataPtr self.currentRow = 0 self.currentCol = 0 self.rowMajor = rowMajor def __iter__ (self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): row = self.currentRow col = self.currentCol if self.rowMajor == 0: if self.currentCol >= self.cols: raise StopIteration self.currentRow = self.currentRow + 1 if self.currentRow >= self.rows: self.currentRow = 0 self.currentCol = self.currentCol + 1 else: if self.currentRow >= self.rows: raise StopIteration self.currentCol = self.currentCol + 1 if self.currentCol >= self.cols: self.currentCol = 0 self.currentRow = self.currentRow + 1 item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 if (self.cols == 1): #if it's a column vector return ('[%d]' % (row,), item) elif (self.rows == 1): #if it's a row vector return ('[%d]' % (col,), item) return ('[%d,%d]' % (row, col), item) def children(self): return self._iterator(self.rows, self.cols, self.data, self.rowMajor) def to_string(self): return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else "ColMajor", self.data) class EigenQuaternionPrinter: "Print an Eigen Quaternion" def __init__(self, val): "Extract all the necessary information" # The gdb extension does not support value template arguments - need to extract them by hand type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() self.type = type.unqualified().strip_typedefs() self.innerType = self.type.template_argument(0) self.val = val # Quaternions have a struct as their storage, so we need to walk through this self.data = self.val['m_coeffs']['m_storage']['m_data']['array'] self.data = self.data.cast(self.innerType.pointer()) class _iterator: def __init__ (self, dataPtr): self.dataPtr = dataPtr self.currentElement = 0 self.elementNames = ['x', 'y', 'z', 'w'] def __iter__ (self): return self def next(self): return self.__next__() # Python 2.x compatibility def __next__(self): element = self.currentElement if self.currentElement >= 4: #there are 4 elements in a quanternion raise StopIteration self.currentElement = self.currentElement + 1 item = self.dataPtr.dereference() self.dataPtr = self.dataPtr + 1 return ('[%s]' % (self.elementNames[element],), item) def children(self): return self._iterator(self.data) def to_string(self): return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data) def build_eigen_dictionary (): pretty_printers_dict[re.compile('^Eigen::Quaternion<.*>$')] = lambda val: EigenQuaternionPrinter(val) pretty_printers_dict[re.compile('^Eigen::Matrix<.*>$')] = lambda val: EigenMatrixPrinter("Matrix", val) pretty_printers_dict[re.compile('^Eigen::Array<.*>$')] = lambda val: EigenMatrixPrinter("Array", val) def register_eigen_printers(obj): "Register eigen pretty-printers with objfile Obj" if obj == None: obj = gdb obj.pretty_printers.append(lookup_function) def lookup_function(val): "Look-up and return a pretty-printer that can print va." type = val.type if type.code == gdb.TYPE_CODE_REF: type = type.target() type = type.unqualified().strip_typedefs() typename = type.tag if typename == None: return None for function in pretty_printers_dict: if function.search(typename): return pretty_printers_dict[function](val) return None pretty_printers_dict = {} build_eigen_dictionary ()
from attention_tensorflow_mesh.attention_tensorflow_mesh import transformer_lm, transformer, attention
# helpers def default(val, d): return val if val is not None else d # simple linear layer def linear(x, dim_out, scope = 'linear', bias = True): with tf.variable_scope(scope): *_, dim_in = x.shape w_init_stdev = 1 / math.sqrt(dim_in.size) return mtf.layers.dense(x, new_dims=[dim_out], reduced_dims=[dim_in], name=scope, use_bias=bias, kernel_initializer=tf.random_normal_initializer(stddev=w_init_stdev, dtype=tf.float32)) # norm def norm(x, axis = None, epsilon=1e-5): axis = default(axis, x.shape[-1]) u = mtf.reduce_mean(x, reduced_dim=axis) s = mtf.reduce_mean(mtf.square(x - u), reduced_dim=axis) u = mtf.broadcast(u, x.shape) s = mtf.broadcast(s, x.shape) return (x - u) * mtf.rsqrt(s + epsilon) def scale_norm(x, scope, *, axis=None, epsilon=1e-5, params=None): if axis is None: axis = x.shape[-1] with tf.variable_scope(scope): n_state = x.shape[-1] dt = tf.float32 g = mtf.get_variable(x.mesh, 'g', [], initializer=tf.constant_initializer(1, dtype=dt), dtype=dt) x = norm(x, axis, epsilon) x = x * g return x def prenorm(fn, scope): def inner(x, *args, **kwargs): return fn(scale_norm(x, scope), *args, **kwargs) return inner def residual(fn): def inner(x, *args, **kwargs): return fn(x, *args, **kwargs) + x return inner # full multi-head attention def attention(x, dim_head, dim_features_head, scope = 'attn', causal = False): with tf.variable_scope(scope): mesh, batch, seq, dim = x.mesh, *x.shape dim_heads = mtf.Dimension('dim_heads', dim_head.size * dim_features_head.size) dim_intermediate = mtf.Dimension('qkv_dimension', dim_heads.size * 3) qkv = linear(x, dim_intermediate, bias = False, scope='to_qkv') q, k, v = mtf.split(qkv, dim_intermediate, 3) q, k, v = map(lambda t: mtf.reshape(t, [batch, seq, dim_head, dim_features_head]), (q, k, v)) q, k, v = map(lambda t: mtf.transpose(t, [batch, dim_head, seq, dim_features_head]), (q, k, v)) k, v = map(lambda t: mtf.rename_dimension(t, seq.name, 'memory_length'), (k, v)) mem_len_dim = v.shape[-2] dots = mtf.layers.us_einsum([q, k], [batch, dim_head, seq, mem_len_dim]) if causal: i = mtf.range(mesh, seq, tf.int32) j = mtf.range(mesh, mem_len_dim, tf.int32) i, j = map(lambda t: mtf.broadcast(t, [seq, mem_len_dim]), (i, j)) mask = mtf.less(i + mem_len_dim.size - seq.size, j) mask = mtf.cast(mask, tf.float32) * -1e10 dots += mask attn = mtf.softmax(dots, mem_len_dim) out = mtf.einsum([attn, v], [batch, dim_head, seq, dim_features_head]) out = mtf.transpose(out, [batch, seq, dim_head, dim_features_head]) out = mtf.reshape(out, [batch, seq, dim_heads]) combined_out = linear(out, dim, scope='combine_output') return combined_out # feed forward def ff(x, mult = 4, scope = 'ff'): *_, dim = x.shape with tf.variable_scope(scope): dim_intermediate = mtf.Dimension('ff_intermediate', dim.size * mult) h = linear(x, dim_intermediate, scope='w1') h = mtf.gelu(h) h = linear(h, dim, scope='w2') return h # block def transformer(x, *, depth, dim_head, dim_features_head, causal = False): attn_fn = residual(prenorm(attention, 'norm1')) ff_fn = residual(prenorm(ff, 'norm2')) for i in range(depth): with tf.variable_scope(f'layer_{i}'): x = attn_fn(x, dim_head, dim_features_head, causal = causal) x = ff_fn(x) return x # language model def transformer_lm(x, *, dim, num_tokens, depth, max_seq_len, dim_head, dim_features_head, causal = False): mesh, batch, seq_dim = x.mesh, *x.shape dim = mtf.Dimension('dim', dim) dim_head = mtf.Dimension('dim_head', dim_head) dim_features_head = mtf.Dimension('dim_features_head', dim_features_head) dim_num_tokens = mtf.Dimension('vocab_size', num_tokens) dim_max_seq_len = mtf.Dimension('max_seq_len', max_seq_len) wte = mtf.get_variable(mesh, name='wte', shape=mtf.Shape([dim_num_tokens, dim]), dtype=tf.float32) wpe = mtf.get_variable(mesh, name='wpe', shape=mtf.Shape([seq_dim, dim]), dtype=tf.float32) x = mtf.gather(wte, x, dim_num_tokens) p = mtf.gather(wpe, mtf.range(mesh, seq_dim, dtype=tf.int32), dim_max_seq_len) x = x + p x = transformer(x, depth = depth, dim_head = dim_head, dim_features_head = dim_features_head, causal = causal) logits = linear(x, dim_num_tokens, scope='to_logits') return logits
from setuptools import setup, find_packages setup( name = 'charformer-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'Charformer - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/charformer-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'learned tokenization' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
from charformer_pytorch.charformer_pytorch import GBST
import math from math import gcd import functools import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def lcm(*numbers): return int(functools.reduce(lambda x, y: int((x * y) / gcd(x, y)), numbers, 1)) def masked_mean(tensor, mask, dim = -1): diff_len = len(tensor.shape) - len(mask.shape) mask = mask[(..., *((None,) * diff_len))] tensor.masked_fill_(~mask, 0.) total_el = mask.sum(dim = dim) mean = tensor.sum(dim = dim) / total_el.clamp(min = 1.) mean.masked_fill_(total_el == 0, 0.) return mean def next_divisible_length(seqlen, multiple): return math.ceil(seqlen / multiple) * multiple def pad_to_multiple(tensor, multiple, *, seq_dim, dim = -1, value = 0.): seqlen = tensor.shape[seq_dim] length = next_divisible_length(seqlen, multiple) if length == seqlen: return tensor remainder = length - seqlen pad_offset = (0,) * (-1 - dim) * 2 return F.pad(tensor, (*pad_offset, 0, remainder), value = value) # helper classes class Pad(nn.Module): def __init__(self, padding, value = 0.): super().__init__() self.padding = padding self.value = value def forward(self, x): return F.pad(x, self.padding, value = self.value) class DepthwiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size): super().__init__() self.conv = nn.Conv1d(dim_in, dim_out, kernel_size, groups = dim_in) self.proj_out = nn.Conv1d(dim_out, dim_out, 1) def forward(self, x): x = self.conv(x) return self.proj_out(x) # main class class GBST(nn.Module): def __init__( self, *, num_tokens, dim, max_block_size = None, blocks = None, downsample_factor = 4, score_consensus_attn = True ): super().__init__() assert exists(max_block_size) ^ exists(blocks), 'either max_block_size or blocks are given on initialization' self.token_emb = nn.Embedding(num_tokens, dim) if exists(blocks): assert isinstance(blocks, tuple), 'blocks must be a tuple of block sizes' self.blocks = tuple(map(lambda el: el if isinstance(el, tuple) else (el, 0), blocks)) assert all([(offset < block_size) for block_size, offset in self.blocks]), 'offset must be always smaller than the block size' max_block_size = max(list(map(lambda t: t[0], self.blocks))) else: self.blocks = tuple(map(lambda el: (el, 0), range(1, max_block_size + 1))) self.pos_conv = nn.Sequential( Pad((0, 0, 0, max_block_size - 1)), Rearrange('b n d -> b d n'), DepthwiseConv1d(dim, dim, kernel_size = max_block_size), Rearrange('b d n -> b n d') ) self.score_fn = nn.Sequential( nn.Linear(dim, 1), Rearrange('... () -> ...') ) self.score_consensus_attn = score_consensus_attn assert downsample_factor <= max_block_size, 'final downsample factor should be less than the maximum block size' self.block_pad_multiple = lcm(*[block_size for block_size, _ in self.blocks]) self.downsample_factor = downsample_factor def forward(self, x, mask = None): b, n, block_mult, ds_factor, device = *x.shape, self.block_pad_multiple, self.downsample_factor, x.device m = next_divisible_length(n, ds_factor) # get character token embeddings x = self.token_emb(x) # do a conv to generate the positions for the tokens x = self.pos_conv(x) # pad both sequence and mask to length visibile by all block sizes from 0 to max block size x = pad_to_multiple(x, block_mult, seq_dim = 1, dim = -2) if exists(mask): mask = pad_to_multiple(mask, block_mult, seq_dim = 1, dim = -1, value = False) # compute representations for all blocks by mean pooling block_masks = [] block_reprs = [] for block_size, offset in self.blocks: # clone the input sequence as well as the mask, in order to pad for offsets block_x = x.clone() if exists(mask): block_mask = mask.clone() # pad for offsets, if needed need_padding = offset > 0 if need_padding: left_offset, right_offset = (block_size - offset), offset block_x = F.pad(block_x, (0, 0, left_offset, right_offset), value = 0.) if exists(mask): block_mask = F.pad(block_mask, (left_offset, right_offset), value = False) # group input sequence into blocks blocks = rearrange(block_x, 'b (n m) d -> b n m d', m = block_size) # either mean pool the blocks, or do a masked mean if exists(mask): mask_blocks = rearrange(block_mask, 'b (n m) -> b n m', m = block_size) block_repr = masked_mean(blocks, mask_blocks, dim = -2) else: block_repr = blocks.mean(dim = -2) # append the block representations, as well as the pooled block masks block_repr = repeat(block_repr, 'b n d -> b (n m) d', m = block_size) if need_padding: block_repr = block_repr[:, left_offset:-right_offset] block_reprs.append(block_repr) if exists(mask): mask_blocks = torch.any(mask_blocks, dim = -1) mask_blocks = repeat(mask_blocks, 'b n -> b (n m)', m = block_size) if need_padding: mask_blocks = mask_blocks[:, left_offset:-right_offset] block_masks.append(mask_blocks) # stack all the block representations block_reprs = torch.stack(block_reprs, dim = 2) # calculate scores and softmax across the block size dimension scores = self.score_fn(block_reprs) if exists(mask): block_masks = torch.stack(block_masks, dim = 2) max_neg_value = -torch.finfo(scores.dtype).max scores = scores.masked_fill(~block_masks, max_neg_value) scores = scores.softmax(dim = 2) # do the cheap consensus attention, eq (5) in paper if self.score_consensus_attn: score_sim = einsum('b i d, b j d -> b i j', scores, scores) if exists(mask): cross_mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') max_neg_value = -torch.finfo(score_sim.dtype).max score_sim = score_sim.masked_fill(~cross_mask, max_neg_value) score_attn = score_sim.softmax(dim = -1) scores = einsum('b i j, b j m -> b i m', score_attn, scores) # multiply the block representations by the position-wise scores scores = rearrange(scores, 'b n m -> b n m ()') x = (block_reprs * scores).sum(dim = 2) # truncate to length divisible by downsample factor x = x[:, :m] if exists(mask): mask = mask[:, :m] # final mean pooling downsample x = rearrange(x, 'b (n m) d -> b n m d', m = ds_factor) if exists(mask): mask = rearrange(mask, 'b (n m) -> b n m', m = ds_factor) x = masked_mean(x, mask, dim = 2) mask = torch.any(mask, dim = -1) else: x = x.mean(dim = -2) return x, mask
import os import re from subprocess import check_call from setuptools import setup, find_packages from setuptools.command.install import install __pkg_name__ = 'bonito' verstrline = open(os.path.join(__pkg_name__, '__init__.py'), 'r').read() vsre = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(vsre, verstrline, re.M) if mo: __version__ = mo.group(1) else: raise RuntimeError('Unable to find version string in "{}/__init__.py".'.format(__pkg_name__)) USE_CUDA111 = False if USE_CUDA111: print("Building with CUDA 11.1") require_file = 'requirements-cuda111.txt' package_name = "ont-%s-cuda111" % __pkg_name__ else: print("Building with CUDA 10.2") require_file = 'requirements.txt' package_name = "ont-%s" % __pkg_name__ with open(require_file) as f: requirements = f.read().splitlines() with open('README.md', encoding='utf-8') as f: long_description = f.read() class download_latest_model(install): def run(self): install.run(self) check_call("bonito download --models --latest -f".split()) setup( name=package_name, version=__version__, packages=find_packages(), include_package_data=True, install_requires=requirements, long_description=long_description, long_description_content_type='text/markdown', author='Oxford Nanopore Technologies, Ltd', author_email='[email protected]', url='https://github.com/nanoporetech/bonito', cmdclass={ 'install': download_latest_model, }, entry_points = { 'console_scripts': [ '{0} = {0}:main'.format(__pkg_name__) ] }, dependency_links=[ 'https://download.pytorch.org/whl/torch_stable.html', ] )
""" Bonito Aligner """ from threading import Thread from functools import partial from mappy import Aligner, ThreadBuffer from bonito.multiprocessing import ThreadMap, ProcessMap def align_map(aligner, sequences, n_thread=4): """ Align `sequences` with minimap using `n_thread` threads. """ return ThreadMap(partial(MappyWorker, aligner), sequences, n_thread) class MappyWorker(Thread): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, aligner, input_queue=None, output_queue=None): super().__init__() self.aligner = aligner self.input_queue = input_queue self.output_queue = output_queue def run(self): thrbuf = ThreadBuffer() while True: item = self.input_queue.get() if item is StopIteration: self.output_queue.put(item) break k, v = item mapping = next(self.aligner.map(v['sequence'], buf=thrbuf, MD=True), None) self.output_queue.put((k, {**v, 'mapping': mapping}))
""" Bonito Fast5 Utils """ import sys from glob import glob from pathlib import Path from functools import partial from multiprocessing import Pool from itertools import chain, starmap import torch import numpy as np from scipy.signal import find_peaks from ont_fast5_api.fast5_interface import get_fast5_file class Read: def __init__(self, read, filename): self.read_id = read.read_id self.filename = filename.name self.run_id = read.get_run_id() if type(self.run_id) in (bytes, np.bytes_): self.run_id = self.run_id.decode() read_attrs = read.handle[read.raw_dataset_group_name].attrs channel_info = read.handle[read.global_key + 'channel_id'].attrs self.offset = int(channel_info['offset']) self.sampling_rate = channel_info['sampling_rate'] self.scaling = channel_info['range'] / channel_info['digitisation'] self.mux = read_attrs['start_mux'] self.channel = channel_info['channel_number'] if type(self.channel) in (bytes, np.bytes_): self.channel = self.channel.decode() self.start = read_attrs['start_time'] / self.sampling_rate self.duration = read_attrs['duration'] / self.sampling_rate raw = read.handle[read.raw_dataset_name][:] scaled = np.array(self.scaling * (raw + self.offset), dtype=np.float32) trim_start, _ = trim(scaled[:8000]) scaled = scaled[trim_start:] self.template_start = self.start + (1 / self.sampling_rate) * trim_start self.template_duration = self.duration - (1 / self.sampling_rate) * trim_start if len(scaled) > 8000: med, mad = med_mad(scaled) self.signal = (scaled - med) / mad else: self.signal = norm_by_noisiest_section(scaled) def __repr__(self): return "Read('%s')" % self.read_id class ReadChunk: def __init__(self, read, chunk, i, n): self.read_id = "%s:%i:%i" % (read.read_id, i, n) self.run_id = read.run_id self.filename = read.filename self.mux = read.mux self.channel = read.channel self.start = read.start self.duration = read.duration self.template_start = self.start self.template_duration = self.duration self.signal = chunk def __repr__(self): return "ReadChunk('%s')" % self.read_id def trim(signal, window_size=40, threshold_factor=2.4, min_elements=3): min_trim = 10 signal = signal[min_trim:] med, mad = med_mad(signal[-(window_size*100):]) threshold = med + mad * threshold_factor num_windows = len(signal) // window_size seen_peak = False for pos in range(num_windows): start = pos * window_size end = start + window_size window = signal[start:end] if len(window[window > threshold]) > min_elements or seen_peak: seen_peak = True if window[-1] > threshold: continue return min(end + min_trim, len(signal)), len(signal) return min_trim, len(signal) def med_mad(x, factor=1.4826): """ Calculate signal median and median absolute deviation """ med = np.median(x) mad = np.median(np.absolute(x - med)) * factor return med, mad def norm_by_noisiest_section(signal, samples=100, threshold=6.0): """ Normalise using the medmad from the longest continuous region where the noise is above some threshold relative to the std of the full signal. """ threshold = signal.std() / threshold noise = np.ones(signal.shape) for idx in np.arange(signal.shape[0] // samples): window = slice(idx * samples, (idx + 1) * samples) noise[window] = np.where(signal[window].std() > threshold, 1, 0) # start and end low for peak finding noise[0] = 0; noise[-1] = 0 peaks, info = find_peaks(noise, width=(None, None)) if len(peaks): widest = np.argmax(info['widths']) med, mad = med_mad(signal[info['left_bases'][widest]: info['right_bases'][widest]]) else: med, mad = med_mad(signal) return (signal - med) / mad def read_chunks(read, chunksize=4000, overlap=400): """ Split a Read in fixed sized ReadChunks """ if len(read.signal) < chunksize: return _, offset = divmod(len(read.signal) - chunksize, chunksize - overlap) signal = torch.from_numpy(read.signal[offset:]) blocks = signal.unfold(0, chunksize, chunksize - overlap) for i, block in enumerate(blocks): yield ReadChunk(read, block.numpy(), i+1, blocks.shape[0]) def get_raw_data(filename, read_ids=None, skip=False): """ Get the raw signal and read id from the fast5 files """ with get_fast5_file(filename, 'r') as f5_fh: for read_id in f5_fh.get_read_ids(): if read_ids is None or (read_id in read_ids) ^ skip: yield Read(f5_fh.get_read(read_id), filename) def get_read_ids(filename, read_ids=None, skip=False): """ Get all the read_ids from the file `filename`. """ with get_fast5_file(filename, 'r') as f5_fh: ids = [(filename, rid) for rid in f5_fh.get_read_ids()] if read_ids is None: return ids return [rid for rid in ids if (rid[1] in read_ids) ^ skip] def get_raw_data_for_read(info): """ Get the raw signal from the fast5 file for a given filename, read_id pair """ filename, read_id = info with get_fast5_file(filename, 'r') as f5_fh: return Read(f5_fh.get_read(read_id), filename) def get_reads(directory, read_ids=None, skip=False, max_read_size=0, n_proc=1, recursive=False, cancel=None): """ Get all reads in a given `directory`. """ pattern = "**/*.fast5" if recursive else "*.fast5" get_filtered_reads = partial(get_read_ids, read_ids=read_ids, skip=skip) with Pool(n_proc) as pool: for job in chain(pool.imap(get_filtered_reads, (Path(x) for x in glob(directory + "/" + pattern, recursive=True)))): for read in pool.imap(get_raw_data_for_read, job): if max_read_size > 0 and len(read.signal) > max_read_size: sys.stderr.write( "> skipping long read %s (%s samples)\n" % (read.read_id, len(read.signal)) ) continue yield read if cancel is not None and cancel.is_set(): return
""" Bonito utils """ import os import re import sys import random from glob import glob from itertools import groupby from operator import itemgetter from importlib import import_module from collections import deque, defaultdict, OrderedDict import toml import torch import parasail import numpy as np from torch.cuda import get_device_capability try: from claragenomics.bindings import cuda from claragenomics.bindings.cudapoa import CudaPoaBatch except ImportError: pass __dir__ = os.path.dirname(os.path.realpath(__file__)) __data__ = os.path.join(__dir__, "data") __models__ = os.path.join(__dir__, "models") __configs__ = os.path.join(__dir__, "models/configs") split_cigar = re.compile(r"(?P<len>\d+)(?P<op>\D+)") default_data = os.path.join(__data__, "dna_r9.4.1") default_config = os.path.join(__configs__, "[email protected]") def init(seed, device): """ Initialise random libs and setup cudnn https://pytorch.org/docs/stable/notes/randomness.html """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if device == "cpu": return torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False assert(torch.cuda.is_available()) def permute(x, input_layout, output_layout): """ Permute `x` from `input_layout` to `output_layout` >>> permute(x, 'TNC', 'NTC') """ if input_layout == output_layout: return x return x.permute(*[input_layout.index(x) for x in output_layout]) def concat(xs, dim=0): """ Type agnostic concat. """ if isinstance(xs[0], torch.Tensor): return torch.cat(xs, dim=dim) elif isinstance(xs[0], np.ndarray): return np.concatenate(xs, axis=dim) elif isinstance(xs[0], list): return [x for l in xs for x in l] elif isinstance(xs[0], str): return ''.join(xs) elif isinstance(xs[0], dict): return {k: concat([x[k] for x in xs], dim) for k in xs[0].keys()} else: raise TypeError def select_range(x, start, end, dim=0): """ Type agnostic range select. """ if isinstance(x, dict): return {k: select_range(v, start, end, dim) for (k, v) in x.items()} if dim == 0 or isinstance(x, list): return x[start:end] return x[(*(slice(None),)*dim, slice(start, end))] def size(x, dim=0): """ Type agnostic size. """ if hasattr(x, 'shape'): return x.shape[dim] elif dim == 0: return len(x) raise TypeError def half_supported(): """ Returns whether FP16 is support on the GPU """ try: return get_device_capability()[0] >= 7 except: return False def phred(prob, scale=1.0, bias=0.0): """ Converts `prob` into a ascii encoded phred quality score between 0 and 40. """ p = max(1 - prob, 1e-4) q = -10 * np.log10(p) * scale + bias return chr(int(np.round(q) + 33)) def mean_qscore_from_qstring(qstring): """ Convert qstring into a mean qscore """ if len(qstring) == 0: return 0.0 err_probs = [10**((ord(c) - 33) / -10) for c in qstring] mean_err = np.mean(err_probs) return -10 * np.log10(max(mean_err, 1e-4)) def decode_ref(encoded, labels): """ Convert a integer encoded reference into a string and remove blanks """ return ''.join(labels[e] for e in encoded if e) def column_to_set(filename, idx=0, skip_header=False): """ Pull a column from a file and return a set of the values. """ if filename and os.path.isfile(filename): with open(filename, 'r') as tsv: if skip_header: next(tsv) return {line.strip().split()[idx] for line in tsv.readlines()} def chunk(signal, chunksize, overlap): """ Convert a read into overlapping chunks before calling """ T = signal.shape[0] if chunksize == 0: chunks = signal[None, :] elif T < chunksize: chunks = torch.nn.functional.pad(signal, (chunksize - T, 0))[None, :] else: stub = (T - overlap) % (chunksize - overlap) chunks = signal[stub:].unfold(0, chunksize, chunksize - overlap) if stub > 0: chunks = torch.cat([signal[None, :chunksize], chunks], dim=0) return chunks.unsqueeze(1) def stitch(chunks, chunksize, overlap, length, stride, reverse=False): """ Stitch chunks together with a given overlap """ if chunks.shape[0] == 1: return chunks.squeeze(0) semi_overlap = overlap // 2 start, end = semi_overlap // stride, (chunksize - semi_overlap) // stride stub = (length - overlap) % (chunksize - overlap) first_chunk_end = (stub + semi_overlap) // stride if (stub > 0) else end if reverse: chunks = list(chunks) return concat([ chunks[-1][:-start], *(x[-end:-start] for x in reversed(chunks[1:-1])), chunks[0][-first_chunk_end:] ]) else: return concat([ chunks[0, :first_chunk_end], *chunks[1:-1, start:end], chunks[-1, start:] ]) def batchify(items, batchsize, dim=0): """ Batch up items up to `batch_size`. """ stack, pos = [], 0 for k, v in items: breaks = range(batchsize - pos, size(v, dim), batchsize) for start, end in zip([0, *breaks], [*breaks, size(v, dim)]): sub_batch = select_range(v, start, end, dim) stack.append(((k, (pos, pos + end - start)), sub_batch)) if pos + end - start == batchsize: ks, vs = zip(*stack) yield ks, concat(vs, dim) stack, pos = [], 0 else: pos += end - start if len(stack): ks, vs = zip(*stack) yield ks, concat(vs, dim) def unbatchify(batches, dim=0): """ Reconstruct batches. """ batches = ( (k, select_range(v, start, end, dim)) for sub_batches, v in batches for k, (start, end) in sub_batches ) return ( (k, concat([v for (k, v) in group], dim)) for k, group in groupby(batches, itemgetter(0)) ) def load_data(limit=None, directory=None): """ Load the training data """ if directory is None: directory = default_data chunks = np.load(os.path.join(directory, "chunks.npy"), mmap_mode='r') targets = np.load(os.path.join(directory, "references.npy"), mmap_mode='r') lengths = np.load(os.path.join(directory, "reference_lengths.npy"), mmap_mode='r') indices = os.path.join(directory, "indices.npy") if os.path.exists(indices): idx = np.load(indices, mmap_mode='r') idx = idx[idx < lengths.shape[0]] if limit: idx = idx[:limit] return chunks[idx, :], targets[idx, :], lengths[idx] if limit: chunks = chunks[:limit] targets = targets[:limit] lengths = lengths[:limit] return np.array(chunks), np.array(targets), np.array(lengths) def load_symbol(config, symbol): """ Dynamic load a symbol from module specified in model config. """ if not isinstance(config, dict): if not os.path.isdir(config) and os.path.isdir(os.path.join(__models__, config)): dirname = os.path.join(__models__, config) else: dirname = config config = toml.load(os.path.join(dirname, 'config.toml')) imported = import_module(config['model']['package']) return getattr(imported, symbol) def match_names(state_dict, model): keys_and_shapes = lambda state_dict: zip(*[ (k, s) for s, i, k in sorted([(v.shape, i, k) for i, (k, v) in enumerate(state_dict.items())]) ]) k1, s1 = keys_and_shapes(state_dict) k2, s2 = keys_and_shapes(model.state_dict()) assert s1 == s2 remap = dict(zip(k1, k2)) return OrderedDict([(k, remap[k]) for k in state_dict.keys()]) def load_model(dirname, device, weights=None, half=None, chunksize=0): """ Load a model from disk """ if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)): dirname = os.path.join(__models__, dirname) if not weights: # take the latest checkpoint weight_files = glob(os.path.join(dirname, "weights_*.tar")) if not weight_files: raise FileNotFoundError("no model weights found in '%s'" % dirname) weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) device = torch.device(device) config = toml.load(os.path.join(dirname, 'config.toml')) weights = os.path.join(dirname, 'weights_%s.tar' % weights) Model = load_symbol(config, "Model") model = Model(config) state_dict = torch.load(weights, map_location=device) state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()} new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k.replace('module.', '') new_state_dict[name] = v model.load_state_dict(new_state_dict) if half is None: half = half_supported() if half: model = model.half() model.eval() model.to(device) return model def parasail_to_sam(result, seq): """ Extract reference start and sam compatible cigar string. :param result: parasail alignment result. :param seq: query sequence. :returns: reference start coordinate, cigar string. """ cigstr = result.cigar.decode.decode() first = re.search(split_cigar, cigstr) first_count, first_op = first.groups() prefix = first.group() rstart = result.cigar.beg_ref cliplen = result.cigar.beg_query clip = '' if cliplen == 0 else '{}S'.format(cliplen) if first_op == 'I': pre = '{}S'.format(int(first_count) + cliplen) elif first_op == 'D': pre = clip rstart = int(first_count) else: pre = '{}{}'.format(clip, prefix) mid = cigstr[len(prefix):] end_clip = len(seq) - result.end_query - 1 suf = '{}S'.format(end_clip) if end_clip > 0 else '' new_cigstr = ''.join((pre, mid, suf)) return rstart, new_cigstr def accuracy(ref, seq, balanced=False, min_coverage=0.0): """ Calculate the accuracy between `ref` and `seq` """ alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull) counts = defaultdict(int) q_coverage = len(alignment.traceback.query) / len(seq) r_coverage = len(alignment.traceback.ref) / len(ref) if r_coverage < min_coverage: return 0.0 _, cigar = parasail_to_sam(alignment, seq) for count, op in re.findall(split_cigar, cigar): counts[op] += int(count) if balanced: accuracy = (counts['='] - counts['I']) / (counts['='] + counts['X'] + counts['D']) else: accuracy = counts['='] / (counts['='] + counts['I'] + counts['X'] + counts['D']) return accuracy * 100 def print_alignment(ref, seq): """ Print the alignment between `ref` and `seq` """ alignment = parasail.sw_trace_striped_32(seq, ref, 8, 4, parasail.dnafull) print(alignment.traceback.ref) print(alignment.traceback.comp) print(alignment.traceback.query) print(" Score=%s" % alignment.score) return alignment.score def poa(groups, max_poa_sequences=100, gpu_mem_per_batch=0.9): """ Generate consensus for POA groups. Args: groups : A list of lists of sequences for which consensus is to be generated. """ free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device()) gpu_mem_per_batch *= free batch = CudaPoaBatch(max_poa_sequences, gpu_mem_per_batch, stream=None, output_type="consensus") results = [] for i, group in enumerate(groups, start=1): group_status, seq_status = batch.add_poa_group(group) # Once batch is full, run POA processing if group_status == 1 or i == len(groups): batch.generate_poa() consensus, coverage, status = batch.get_consensus() results.extend(consensus) batch.reset() group_status, seq_status = batch.add_poa_group(group) return results
""" Bonito nn modules. """ import torch from torch import nn from torch.nn import Module from torch.nn.init import orthogonal_ layers = {} def register(layer): layer.name = layer.__name__.lower() layers[layer.name] = layer return layer register(torch.nn.ReLU) register(torch.nn.Tanh) @register class Swish(torch.nn.SiLU): pass @register class Serial(torch.nn.Sequential): def __init__(self, sublayers): super().__init__(*sublayers) def to_dict(self, include_weights=False): return { 'sublayers': [to_dict(layer, include_weights) for layer in self._modules.values()] } @register class Reverse(Module): def __init__(self, sublayers): super().__init__() self.layer = Serial(sublayers) if isinstance(sublayers, list) else sublayers def forward(self, x): return self.layer(x.flip(0)).flip(0) def to_dict(self, include_weights=False): if isinstance(self.layer, Serial): return self.layer.to_dict(include_weights) else: return {'sublayers': to_dict(self.layer, include_weights)} @register class Convolution(Module): def __init__(self, insize, size, winlen, stride=1, padding=0, bias=True, activation=None): super().__init__() self.conv = torch.nn.Conv1d(insize, size, winlen, stride=stride, padding=padding, bias=bias) self.activation = layers.get(activation, lambda: activation)() def forward(self, x): if self.activation is not None: return self.activation(self.conv(x)) return self.conv(x) def to_dict(self, include_weights=False): res = { "insize": self.conv.in_channels, "size": self.conv.out_channels, "bias": self.conv.bias is not None, "winlen": self.conv.kernel_size[0], "stride": self.conv.stride[0], "padding": self.conv.padding[0], "activation": self.activation.name if self.activation else None, } if include_weights: res['params'] = { 'W': self.conv.weight, 'b': self.conv.bias if self.conv.bias is not None else [] } return res @register class LinearCRFEncoder(Module): def __init__(self, insize, n_base, state_len, bias=True, scale=None, activation=None, blank_score=None): super().__init__() self.n_base = n_base self.state_len = state_len self.blank_score = blank_score size = (n_base + 1) * n_base**state_len if blank_score is None else n_base**(state_len + 1) self.linear = torch.nn.Linear(insize, size, bias=bias) self.activation = layers.get(activation, lambda: activation)() self.scale = scale def forward(self, x): scores = self.linear(x) if self.activation is not None: scores = self.activation(scores) if self.scale is not None: scores = scores * self.scale if self.blank_score is not None: T, N, C = scores.shape s = torch.tensor(self.blank_score, device=scores.device, dtype=scores.dtype) scores = torch.cat([s.expand(T, N, C//self.n_base, 1), scores.reshape(T, N, C//self.n_base, self.n_base)], axis=-1).reshape(T, N, -1) return scores def to_dict(self, include_weights=False): res = { 'insize': self.linear.in_features, 'n_base': self.n_base, 'state_len': self.state_len, 'bias': self.linear.bias is not None, 'scale': self.scale, 'activation': self.activation.name if self.activation else None, 'blank_score': self.blank_score, } if include_weights: res['params'] = { 'W': self.linear.weight, 'b': self.linear.bias if self.linear.bias is not None else [] } return res @register class SHA(Module): def __init__(self, dim): super().__init__() self.scale = dim ** -0.5 self.to_q = nn.Sequential(nn.Linear(dim, dim), nn.LayerNorm(dim)) def forward(self, x, kv): x = x.transpose(0, 1) kv = kv.transpose(0, 1) q = self.to_q(x) sim = torch.matmul(q, kv.transpose(-1, -2)) * self.scale attn = sim.softmax(dim=-1) out = torch.matmul(attn, kv) return out.transpose(0, 1) @register class SHABlock(Module): """ https://arxiv.org/abs/1911.11423 """ def __init__(self, dim, ff_mult=4): super().__init__() self.attn_query_norm = nn.LayerNorm(dim) self.attn_kv_norm = nn.LayerNorm(dim) self.attn = SHA(dim=dim) self.ff_residual_norm = nn.LayerNorm(dim) self.ff = Serial([ nn.LayerNorm(dim), nn.Linear(dim, dim * ff_mult), nn.GELU(), nn.Linear(dim * ff_mult, dim), ]) def forward(self, x): kv = self.attn_kv_norm(x) x = self.attn_query_norm(x) x = self.attn(x, kv) + x x = self.ff(x) + self.ff_residual_norm(x) return x @register class Permute(Module): def __init__(self, dims): super().__init__() self.dims = dims def forward(self, x): return x.permute(*self.dims) def to_dict(self, include_weights=False): return {'dims': self.dims} def truncated_normal(size, dtype=torch.float32, device=None, num_resample=5): x = torch.empty(size + (num_resample,), dtype=torch.float32, device=device).normal_() i = ((x < 2) & (x > -2)).max(-1, keepdim=True)[1] return torch.clamp_(x.gather(-1, i).squeeze(-1), -2, 2) class RNNWrapper(Module): def __init__( self, rnn_type, *args, reverse=False, orthogonal_weight_init=True, disable_state_bias=True, bidirectional=False, **kwargs ): super().__init__() if reverse and bidirectional: raise Exception("'reverse' and 'bidirectional' should not both be set to True") self.reverse = reverse self.rnn = rnn_type(*args, bidirectional=bidirectional, **kwargs) self.init_orthogonal(orthogonal_weight_init) self.init_biases() if disable_state_bias: self.disable_state_bias() def forward(self, x): if self.reverse: x = x.flip(0) y, h = self.rnn(x) if self.reverse: y = y.flip(0) return y def init_biases(self, types=('bias_ih',)): for name, param in self.rnn.named_parameters(): if any(k in name for k in types): with torch.no_grad(): param.set_(0.5*truncated_normal(param.shape, dtype=param.dtype, device=param.device)) def init_orthogonal(self, types=True): if not types: return if types == True: types = ('weight_ih', 'weight_hh') for name, x in self.rnn.named_parameters(): if any(k in name for k in types): for i in range(0, x.size(0), self.rnn.hidden_size): orthogonal_(x[i:i+self.rnn.hidden_size]) def disable_state_bias(self): for name, x in self.rnn.named_parameters(): if 'bias_hh' in name: x.requires_grad = False x.zero_() @register class LSTM(RNNWrapper): def __init__(self, size, insize, bias=True, reverse=False): super().__init__(torch.nn.LSTM, size, insize, bias=bias, reverse=reverse) def to_dict(self, include_weights=False): res = { 'size': self.rnn.hidden_size, 'insize': self.rnn.input_size, 'bias': self.rnn.bias, 'reverse': self.reverse, } if include_weights: res['params'] = { 'iW': self.rnn.weight_ih_l0.reshape(4, self.rnn.hidden_size, self.rnn.input_size), 'sW': self.rnn.weight_hh_l0.reshape(4, self.rnn.hidden_size, self.rnn.hidden_size), 'b': self.rnn.bias_ih_l0.reshape(4, self.rnn.hidden_size) } return res def to_dict(layer, include_weights=False): if hasattr(layer, 'to_dict'): return {'type': layer.name, **layer.to_dict(include_weights)} return {'type': layer.name} def from_dict(model_dict, layer_types=None): model_dict = model_dict.copy() if layer_types is None: layer_types = layers type_name = model_dict.pop('type') typ = layer_types[type_name] if 'sublayers' in model_dict: sublayers = model_dict['sublayers'] model_dict['sublayers'] = [ from_dict(x, layer_types) for x in sublayers ] if isinstance(sublayers, list) else from_dict(sublayers, layer_types) try: layer = typ(**model_dict) except Exception as e: raise Exception(f'Failed to build layer of type {typ} with args {model_dict}') from e return layer
""" Bonito Input/Output """ import os import sys import csv import pandas as pd from warnings import warn from threading import Thread from logging import getLogger from contextlib import contextmanager from os.path import realpath, splitext, dirname import numpy as np from mappy import revcomp import bonito from bonito.cli.convert import typical_indices logger = getLogger('bonito') class CSVLogger: def __init__(self, filename, sep=','): self.filename = str(filename) if os.path.exists(self.filename): with open(self.filename) as f: self.columns = csv.DictReader(f).fieldnames else: self.columns = None self.fh = open(self.filename, 'a', newline='') self.csvwriter = csv.writer(self.fh, delimiter=sep) self.count = 0 def set_columns(self, columns): if self.columns: raise Exception('Columns already set') self.columns = list(columns) self.csvwriter.writerow(self.columns) def append(self, row): if self.columns is None: self.set_columns(row.keys()) self.csvwriter.writerow([row.get(k, '-') for k in self.columns]) self.count += 1 if self.count > 100: self.count = 0 self.fh.flush() def close(self): self.fh.close() def __enter__(self): return self def __exit__(self, *args): self.close() @contextmanager def devnull(*args, **kwds): """ A context manager that sends all out stdout & stderr to devnull. """ save_fds = [os.dup(1), os.dup(2)] null_fds = [os.open(os.devnull, os.O_RDWR) for _ in range(2)] os.dup2(null_fds[0], 1) os.dup2(null_fds[1], 2) try: yield finally: os.dup2(save_fds[0], 1) os.dup2(save_fds[1], 2) for fd in null_fds + save_fds: os.close(fd) def write_fasta(header, sequence, fd=sys.stdout): """ Write a fasta record to a file descriptor. """ fd.write(">%s\n" % header) fd.write("%s\n" % sequence) fd.flush() def write_fastq(header, sequence, qstring, fd=sys.stdout): """ Write a fastq record to a file descriptor. """ fd.write("@%s\n" % header) fd.write("%s\n" % sequence) fd.write("+\n") fd.write("%s\n" % qstring) fd.flush() def write_sam_header(aligner, fd=sys.stdout, sep='\t'): """ Write the SQ & PG sam headers to a file descriptor. """ fd.write('%s\n' % os.linesep.join([ sep.join([ '@SQ', 'SN:%s' % name, 'LN:%s' % len(aligner.seq(name)) ]) for name in aligner.seq_names ])) fd.write('%s\n' % sep.join([ '@PG', 'ID:bonito', 'PN:bonito', 'VN:%s' % bonito.__version__, 'CL:%s' % ' '.join(sys.argv), ])) fd.flush() def write_sam(read_id, sequence, qstring, mapping, fd=sys.stdout, unaligned=False, sep='\t'): """ Write a sam record to a file descriptor. """ if unaligned: fd.write("%s\n" % sep.join(map(str, [ read_id, 4, '*', 0, 0, '*', '*', 0, 0, sequence, qstring, 'NM:i:0' ]))) else: softclip = [ '%sS' % mapping.q_st if mapping.q_st else '', mapping.cigar_str, '%sS' % (len(sequence) - mapping.q_en) if len(sequence) - mapping.q_en else '' ] fd.write("%s\n" % sep.join(map(str, [ read_id, 0 if mapping.strand == +1 else 16, mapping.ctg, mapping.r_st + 1, mapping.mapq, ''.join(softclip if mapping.strand == +1 else softclip[::-1]), '*', 0, 0, sequence if mapping.strand == +1 else revcomp(sequence), qstring, 'NM:i:%s' % mapping.NM, 'MD:Z:%s' % mapping.MD, ]))) fd.flush() def summary_file(): """ Return the filename to use for the summary tsv. """ stdout = realpath('/dev/fd/1') if sys.stdout.isatty() or stdout.startswith('/proc'): return 'summary.tsv' return '%s_summary.tsv' % splitext(stdout)[0] summary_field_names = [ 'filename', 'read_id', 'run_id', 'channel', 'mux', 'start_time', 'duration', 'template_start', 'template_duration', 'sequence_length_template', 'mean_qscore_template', #if alignment 'alignment_genome', 'alignment_genome_start', 'alignment_genome_end', 'alignment_strand_start', 'alignment_strand_end', 'alignment_direction', 'alignment_length', 'alignment_num_aligned', 'alignment_num_correct', 'alignment_num_insertions', 'alignment_num_deletions', 'alignment_num_substitutions', 'alignment_mapq', 'alignment_strand_coverage', 'alignment_identity', 'alignment_accuracy', ] def summary_row(read, seqlen, qscore, alignment=False): """ Summary tsv row. """ fields = [ read.filename, read.read_id, read.run_id, read.channel, read.mux, read.start, read.duration, read.template_start, read.template_duration, seqlen, qscore, ] if alignment: ins = sum(count for count, op in alignment.cigar if op == 1) dels = sum(count for count, op in alignment.cigar if op == 2) subs = alignment.NM - ins - dels length = alignment.blen matches = length - ins - dels correct = alignment.mlen fields.extend([ alignment.ctg, alignment.r_st, alignment.r_en, alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en, alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st, '+' if alignment.strand == +1 else '-', length, matches, correct, ins, dels, subs, alignment.mapq, (alignment.q_en - alignment.q_st) / seqlen, correct / matches, correct / length, ]) elif alignment is None: fields.extend( ['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0] ) return dict(zip(summary_field_names, fields)) duplex_summary_field_names = [ 'filename_template', 'read_id_template', 'filename_complement', 'read_id_complement', 'run_id', 'channel_template', 'mux_template', 'channel_complement', 'mux_complement', 'sequence_length_duplex', 'mean_qscore_duplex', #if alignment 'alignment_genome', 'alignment_genome_start', 'alignment_genome_end', 'alignment_strand_start', 'alignment_strand_end', 'alignment_direction', 'alignment_length', 'alignment_num_aligned', 'alignment_num_correct', 'alignment_num_insertions', 'alignment_num_deletions', 'alignment_num_substitutions', 'alignment_mapq', 'alignment_strand_coverage', 'alignment_identity', 'alignment_accuracy', ] def duplex_summary_row(read_temp, comp_read, seqlen, qscore, alignment=False): """ Duplex summary tsv row. """ fields = [ read_temp.filename, read_temp.read_id, comp_read.filename, comp_read.read_id, read_temp.run_id, read_temp.channel, read_temp.mux, comp_read.channel, comp_read.mux, seqlen, qscore, ] if alignment: ins = sum(count for count, op in alignment.cigar if op == 1) dels = sum(count for count, op in alignment.cigar if op == 2) subs = alignment.NM - ins - dels length = alignment.blen matches = length - ins - dels correct = alignment.mlen fields.extend([ alignment.ctg, alignment.r_st, alignment.r_en, alignment.q_st if alignment.strand == +1 else seqlen - alignment.q_en, alignment.q_en if alignment.strand == +1 else seqlen - alignment.q_st, '+' if alignment.strand == +1 else '-', length, matches, correct, ins, dels, subs, alignment.mapq, (alignment.q_en - alignment.q_st) / seqlen, correct / matches, correct / length, ]) elif alignment is None: fields.extend( ['*', -1, -1, -1, -1, '*', 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0] ) return dict(zip(duplex_summary_field_names, fields)) class Writer(Thread): def __init__(self, iterator, aligner, fd=sys.stdout, fastq=False, duplex=False): super().__init__() self.fd = fd self.log = [] self.fastq = fastq self.duplex = duplex self.aligner = aligner self.iterator = iterator self.write_headers() def write_headers(self): if self.aligner: write_sam_header(self.aligner, fd=self.fd) def run(self): with CSVLogger(summary_file(), sep='\t') as summary: for read, res in self.iterator: seq = res['sequence'] qstring = res.get('qstring', '*') mean_qscore = res.get('mean_qscore', 0.0) mapping = res.get('mapping', False) if self.duplex: samples = len(read[0].signal) + len(read[1].signal) read_id = '%s;%s' % (read[0].read_id, read[1].read_id) else: samples = len(read.signal) read_id = read.read_id if len(seq): if self.aligner: write_sam(read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None) else: if self.fastq: write_fastq(read_id, seq, qstring, fd=self.fd) else: write_fasta(read_id, seq, fd=self.fd) if self.duplex: summary.append(duplex_summary_row(read[0], read[1], len(seq), mean_qscore, alignment=mapping)) else: summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping)) self.log.append((read_id, samples)) else: logger.warn("> skipping empty sequence %s", read_id) class CTCWriter(Thread): """ CTC writer process that writes output numpy training data. """ def __init__(self, iterator, aligner, min_coverage, min_accuracy, fd=sys.stdout): super().__init__() self.fd = fd self.log = [] self.aligner = aligner self.iterator = iterator self.min_coverage = min_coverage self.min_accuracy = min_accuracy self.write_headers() def write_headers(self): if self.aligner: write_sam_header(self.aligner, fd=self.fd) def run(self): chunks = [] targets = [] lengths = [] with CSVLogger(summary_file(), sep='\t') as summary: for read, ctc_data in self.iterator: seq = ctc_data['sequence'] qstring = ctc_data['qstring'] mean_qscore = ctc_data['mean_qscore'] mapping = ctc_data.get('mapping', False) self.log.append((read.read_id, len(read.signal))) if len(seq) == 0 or mapping is None: continue cov = (mapping.q_en - mapping.q_st) / len(seq) acc = mapping.mlen / mapping.blen refseq = self.aligner.seq(mapping.ctg, mapping.r_st, mapping.r_en) if acc < self.min_accuracy or cov < self.min_coverage or 'N' in refseq: continue write_sam(read.read_id, seq, qstring, mapping, fd=self.fd, unaligned=mapping is None) summary.append(summary_row(read, len(seq), mean_qscore, alignment=mapping)) if mapping.strand == -1: refseq = revcomp(refseq) target = [int(x) for x in refseq.translate({65: '1', 67: '2', 71: '3', 84: '4'})] targets.append(target) chunks.append(read.signal) lengths.append(len(target)) if len(chunks) == 0: sys.stderr.write("> no suitable ctc data to write\n") return chunks = np.array(chunks, dtype=np.float16) targets_ = np.zeros((chunks.shape[0], max(lengths)), dtype=np.uint8) for idx, target in enumerate(targets): targets_[idx, :len(target)] = target lengths = np.array(lengths, dtype=np.uint16) indices = np.random.permutation(typical_indices(lengths)) chunks = chunks[indices] targets_ = targets_[indices] lengths = lengths[indices] summary = pd.read_csv(summary_file(), sep='\t') summary.iloc[indices].to_csv(summary_file(), sep='\t', index=False) output_directory = '.' if sys.stdout.isatty() else dirname(realpath('/dev/fd/1')) np.save(os.path.join(output_directory, "chunks.npy"), chunks) np.save(os.path.join(output_directory, "references.npy"), targets_) np.save(os.path.join(output_directory, "reference_lengths.npy"), lengths) sys.stderr.write("> written ctc training data\n") sys.stderr.write(" - chunks.npy with shape (%s)\n" % ','.join(map(str, chunks.shape))) sys.stderr.write(" - references.npy with shape (%s)\n" % ','.join(map(str, targets_.shape))) sys.stderr.write(" - reference_lengths.npy shape (%s)\n" % ','.join(map(str, lengths.shape))) def stop(self): self.join()
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from bonito.cli import basecaller, train, evaluate, view, convert, download, export, duplex modules = [ 'basecaller', 'train', 'evaluate', 'view', 'convert', 'download', 'export', 'duplex', ] __version__ = '0.4.0' def main(): parser = ArgumentParser( 'bonito', formatter_class=ArgumentDefaultsHelpFormatter ) parser.add_argument( '-v', '--version', action='version', version='%(prog)s {}'.format(__version__) ) subparsers = parser.add_subparsers( title='subcommands', description='valid commands', help='additional help', dest='command' ) subparsers.required = True for module in modules: mod = globals()[module] p = subparsers.add_parser(module, parents=[mod.argparser()]) p.set_defaults(func=mod.main) args = parser.parse_args() args.func(args)
""" Bonito Multiprocesing """ import queue from itertools import count from threading import Thread from functools import partial from collections import deque from signal import signal, SIGINT from multiprocessing import Process, Queue, Event, Lock, cpu_count def process_iter(iterator, maxsize=1): """ Take an iterator and run it on another process. """ return iter(ProcessIterator(iterator, maxsize=maxsize)) def thread_iter(iterator, maxsize=1): """ Take an iterator and run it on another thread. """ return iter(ThreadIterator(iterator, maxsize=maxsize)) def process_cancel(): """ Register an cancel event on sigint """ event = Event() signal(SIGINT, lambda *a: event.set()) return event def process_map(func, iterator, n_proc=4, maxsize=0): """ Take an `iterator` of key, value pairs and apply `func` to all values using `n_proc` processes. """ if n_proc == 0: return ((k, func(v)) for k, v in iterator) return iter(ProcessMap(func, iterator, n_proc, output_queue=Queue(maxsize))) def thread_map(func, iterator, n_thread=4, maxsize=2): """ Take an `iterator` of key, value pairs and apply `func` to all values using `n_thread` threads. """ if n_thread == 0: return ((k, func(v)) for k, v in iterator) return iter(ThreadMap(partial(MapWorkerThread, func), iterator, n_thread, maxsize=maxsize)) class BackgroundIterator: """ Runs an iterator in the background. """ def __init__(self, iterator, maxsize=10): super().__init__() self.iterator = iterator self.queue = self.QueueClass(maxsize) def __iter__(self): self.start() while True: item = self.queue.get() if item is StopIteration: break yield item def run(self): for item in self.iterator: self.queue.put(item) self.queue.put(StopIteration) def stop(self): self.join() class ThreadIterator(BackgroundIterator, Thread): """ Runs an iterator in a separate process. """ QueueClass = queue.Queue class ProcessIterator(BackgroundIterator, Process): """ Runs an iterator in a separate process. """ QueueClass = Queue class MapWorker(Process): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, func, input_queue, output_queue): super().__init__() self.func = func self.input_queue = input_queue self.output_queue = output_queue def run(self): while True: item = self.input_queue.get() if item is StopIteration: break k, v = item self.output_queue.put((k, self.func(v))) class ProcessMap(Thread): def __init__(self, func, iterator, n_proc, output_queue=None): super().__init__() self.key_map = {} self.iterator = iterator self.work_queue = Queue(n_proc * 2) self.output_queue = output_queue or Queue() self.processes = [MapWorker(func, self.work_queue, self.output_queue) for _ in range(n_proc)] def start(self): for process in self.processes: process.start() super().start() def run(self): for (k, v) in self.iterator: self.work_queue.put((id(k), v)) self.key_map[id(k)] = k for _ in self.processes: self.work_queue.put(StopIteration) for process in self.processes: process.join() self.output_queue.put(StopIteration) def __iter__(self): self.start() while True: item = self.output_queue.get() if item is StopIteration: break k, v = item yield self.key_map.pop(k), v class MapWorkerThread(Thread): """ Process that reads items from an input_queue, applies a func to them and puts them on an output_queue """ def __init__(self, func, input_queue=None, output_queue=None): super().__init__() self.func = func self.input_queue = input_queue self.output_queue = output_queue def run(self): while True: item = self.input_queue.get() if item is StopIteration: self.output_queue.put(item) break k, v = item self.output_queue.put((k, self.func(v))) class ThreadMap(Thread): def __init__(self, worker_type, iterator, n_thread, maxsize=2): super().__init__() self.iterator = iterator self.n_thread = n_thread self.work_queues = [queue.Queue(maxsize) for _ in range(n_thread)] self.output_queues = [queue.Queue(maxsize) for _ in range(n_thread)] self.workers = [worker_type(input_queue=in_q, output_queue=out_q) for (in_q, out_q) in zip(self.work_queues, self.output_queues)] def start(self): for worker in self.workers: worker.start() super().start() def __iter__(self): self.start() for i in count(): item = self.output_queues[i % self.n_thread].get() if item is StopIteration: #do we need to empty output_queues in order to join worker threads? for j in range(i + 1, i + self.n_thread): self.output_queues[j % self.n_thread].get() break yield item def run(self): for i, (k, v) in enumerate(self.iterator): self.work_queues[i % self.n_thread].put((k, v)) for q in self.work_queues: q.put(StopIteration) for worker in self.workers: worker.join()
""" Bonito train """ import os import re from glob import glob from functools import partial from time import perf_counter from collections import OrderedDict from datetime import datetime from bonito.util import accuracy, decode_ref, permute, concat, match_names import bonito import torch import numpy as np import torch.nn as nn from tqdm import tqdm from torch.optim.lr_scheduler import LambdaLR import torch.cuda.amp as amp class ChunkDataSet: def __init__(self, chunks, targets, lengths): self.chunks = np.expand_dims(chunks, axis=1) self.targets = targets self.lengths = lengths def __getitem__(self, i): return ( self.chunks[i].astype(np.float32), self.targets[i].astype(np.int64), self.lengths[i].astype(np.int64), ) def __len__(self): return len(self.lengths) def const_schedule(y): """ Constant Scheduler """ return lambda t: y def linear_schedule(y0, y1): """ Linear Scheduler """ return lambda t: y0 + (y1 - y0) * t def cosine_decay_schedule(y0, y1): """ Cosine Decay Scheduler """ return lambda t: y1 + 0.5 * (y0 - y1) * (np.cos(t * np.pi) + 1.0) def piecewise_schedule(knots, funcs): """ Piecewise Scheduler """ def f(t): i = np.searchsorted(knots, t) t0 = 0.0 if i == 0 else knots[i - 1] t1 = 1.0 if i == len(knots) else knots[i] return funcs[i]((t - t0) / (t1 - t0)) return f def func_scheduler(optimizer, func, total_steps, warmup_steps=None, warmup_ratio=0.1, start_step=0): """ Learning Rate Scheduler """ if warmup_steps: y0 = func(0.0) func = piecewise_schedule( [warmup_steps / total_steps], [linear_schedule(warmup_ratio * y0, y0), func] ) return LambdaLR(optimizer, (lambda step: func((step + start_step) / total_steps))) def load_state(dirname, device, model): """ Load a model state dict from disk """ model.to(device) weight_no = None weight_files = glob(os.path.join(dirname, "weights_*.tar")) if weight_files: weight_no = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) if weight_no: print("[picking up from epoch %s]" % weight_no) state_dict = torch.load( os.path.join(dirname, 'weights_%s.tar' % weight_no), map_location=device ) state_dict = {k2: state_dict[k1] for k1, k2 in match_names(state_dict, model).items()} new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k.replace('module.', '') new_state_dict[name] = v model.load_state_dict(new_state_dict) epoch = weight_no else: epoch = 0 return epoch class Trainer: def __init__(self, model, device, train_loader, valid_loader, criterion=None, use_amp=True): self.model = model.to(device) self.device = device self.train_loader = train_loader self.valid_loader = valid_loader self.criterion = criterion or (model.seqdist.ctc_loss if hasattr(model, 'seqdist') else model.ctc_label_smoothing_loss) self.use_amp = use_amp self.scaler = torch.cuda.amp.GradScaler(enabled=use_amp) self.optimizer = None def train_one_step(self, batch): data, targets, lengths = batch self.optimizer.zero_grad() with amp.autocast(enabled=self.use_amp): scores = self.model(data.to(self.device)) losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device)) if not isinstance(losses, dict): losses = {'loss': losses} self.scaler.scale(losses['loss']).backward() self.scaler.unscale_(self.optimizer) grad_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=2.0).item() self.scaler.step(self.optimizer) self.scaler.update() return losses, grad_norm def train_one_epoch(self, loss_log, lr_scheduler): t0 = perf_counter() chunks = 0 self.model.train() progress_bar = tqdm( total=len(self.train_loader), desc='[0/{}]'.format(len(self.train_loader.dataset)), ascii=True, leave=True, ncols=100, bar_format='{l_bar}{bar}| [{elapsed}{postfix}]' ) smoothed_loss = None with progress_bar: for batch in self.train_loader: chunks += batch[0].shape[0] losses, grad_norm = self.train_one_step(batch) losses = {k: v.item() for k,v in losses.items()} if lr_scheduler is not None: lr_scheduler.step() smoothed_loss = losses['loss'] if smoothed_loss is None else (0.01 * losses['loss'] + 0.99 * smoothed_loss) progress_bar.set_postfix(loss='%.4f' % smoothed_loss) progress_bar.set_description("[{}/{}]".format(chunks, len(self.train_loader.dataset))) progress_bar.update() if loss_log is not None: loss_log.append({'chunks': chunks, 'time': perf_counter() - t0, 'grad_norm': grad_norm, **losses}) return smoothed_loss, perf_counter() - t0 def validate_one_step(self, batch): data, targets, lengths = batch scores = self.model(data.to(self.device)) losses = self.criterion(scores, targets.to(self.device), lengths.to(self.device)) losses = {k: v.item() for k, v in losses.items()} if isinstance(losses, dict) else losses.item() if hasattr(self.model, 'decode_batch'): seqs = self.model.decode_batch(scores) else: seqs = [self.model.decode(x) for x in permute(scores, 'TNC', 'NTC')] refs = [decode_ref(target, self.model.alphabet) for target in targets] accs = [ accuracy(ref, seq, min_coverage=0.5) if len(seq) else 0. for ref, seq in zip(refs, seqs) ] return seqs, refs, accs, losses def validate_one_epoch(self): self.model.eval() with torch.no_grad(): seqs, refs, accs, losses = zip(*(self.validate_one_step(batch) for batch in self.valid_loader)) seqs, refs, accs = (sum(x, []) for x in (seqs, refs, accs)) loss = np.mean([(x['ctc_loss'] if isinstance(x, dict) else x) for x in losses]) return loss, np.mean(accs), np.median(accs) def init_optimizer(self, lr, **kwargs): self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=lr, **kwargs) def get_lr_scheduler(self, epochs, last_epoch=0): return func_scheduler( self.optimizer, cosine_decay_schedule(1.0, 0.1), epochs * len(self.train_loader), warmup_steps=500, start_step=last_epoch*len(self.train_loader) ) def fit(self, workdir, epochs=1, lr=2e-3, last_epoch=0): if self.optimizer is None: self.init_optimizer(lr) lr_scheduler = self.get_lr_scheduler(epochs, last_epoch=last_epoch) for epoch in range(1 + last_epoch, epochs + 1 + last_epoch): try: with bonito.io.CSVLogger(os.path.join(workdir, 'losses_{}.csv'.format(epoch))) as loss_log: train_loss, duration = self.train_one_epoch(loss_log, lr_scheduler) model_state = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict() torch.save(model_state, os.path.join(workdir, "weights_%s.tar" % epoch)) val_loss, val_mean, val_median = self.validate_one_epoch() except KeyboardInterrupt: break print("[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%".format( epoch, workdir, val_loss, val_mean, val_median )) with bonito.io.CSVLogger(os.path.join(workdir, 'training.csv')) as training_log: training_log.append({ 'time': datetime.today(), 'duration': int(duration), 'epoch': epoch, 'train_loss': train_loss, 'validation_loss': val_loss, 'validation_mean': val_mean, 'validation_median': val_median })
""" Bonito Download """ import os import re from shutil import rmtree from zipfile import ZipFile from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.util import __data__, __models__ from bonito.cli.convert import main as convert from bonito.cli.convert import argparser as cargparser import requests from tqdm import tqdm class File: """ Small class for downloading models and training assets. """ __url__ = "https://nanoporetech.box.com/shared/static/" def __init__(self, path, url_frag, force): self.path = path self.force = force self.url = os.path.join(self.__url__, url_frag) def location(self, filename): return os.path.join(self.path, filename) def exists(self, filename): return os.path.exists(self.location(filename)) def download(self): """ Download the remote file """ # create the requests for the file req = requests.get(self.url, stream=True) total = int(req.headers.get('content-length', 0)) fname = re.findall('filename="([^"]+)', req.headers['content-disposition'])[0] # skip download if local file is found if self.exists(fname.strip('.zip')) and not self.force: print("[skipping %s]" % fname) return if self.exists(fname.strip('.zip')) and self.force: rmtree(self.location(fname.strip('.zip'))) # download the file with tqdm(total=total, unit='iB', ascii=True, ncols=100, unit_scale=True, leave=False) as t: with open(self.location(fname), 'wb') as f: for data in req.iter_content(1024): f.write(data) t.update(len(data)) print("[downloaded %s]" % fname) # unzip .zip files if fname.endswith('.zip'): with ZipFile(self.location(fname), 'r') as zfile: zfile.extractall(self.path) os.remove(self.location(fname)) # convert chunkify training files to bonito if fname.endswith('.hdf5'): print("[converting %s]" % fname) args = cargparser().parse_args([ self.location(fname), self.location(fname).strip('.hdf5') ]) convert(args) r9_models = [ "n8c07gc9ro09zt0ivgcoeuz6krnwsnf6.zip", # dna_r9.4.1@v1 "nas0uhf46fd1lh2jndhx2a54a9vvhxp4.zip", # dna_r9.4.1@v2 "1wodp3ur4jhvqvu5leowfg6lrw54jxp2.zip", # dna_r9.4.1@v3 "uetgwsnb8yfqvuyoka8p09mxilgskqc7.zip", # [email protected] "47t2y48zw4waly25lmzx6sagf4bbbqqz.zip", # [email protected] "hrv649cvx8lvomu1u0tsd47e5u2bbabt.zip", # [email protected] "arqi4qwcj9btsd6bbjsnlbai0s6dg8yd.zip", ] r10_models = [ "e70s615lh3i24rkhz006i0e4u4m8y2xa.zip", # dna_r10.3_q20ea "hnr5mwlm8vmdsfpvn5fsxn3mvhbucy5f.zip", # dna_r10.3@v3 "yesf11tisfrncmod5hj2xtx9kbdveuqt.zip", # [email protected] "ci6xdu7d4wczmhorhw1sweyg4gczx97t.zip", # [email protected] "4cunv5z7nwjag7v2bun0g7vk2lf8rqnc.zip", ] training = [ "cmh91cxupa0are1kc3z9aok425m75vrb.hdf5", ] def main(args): """ Download models and training sets """ if args.models or args.all: print("[downloading models]") for model in r9_models[-1 if args.latest else 0:]: File(__models__, model, args.force).download() for model in r10_models[-1 if args.latest else 0:]: File(__models__, model, args.force).download() if args.training or args.all: print("[downloading training data]") for train in training: File(__data__, train, args.force).download() def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) group = parser.add_mutually_exclusive_group() group.add_argument('--all', action='store_true') group.add_argument('--models', action='store_true') group.add_argument('--training', action='store_true') parser.add_argument('-f', '--force', action='store_true') parser.add_argument('--latest', action='store_true') return parser
#!/usr/bin/env python """ Convert a Taiyaki chunkify training file to set of Bonito CTC .npy files """ import os import h5py import random import numpy as np from argparse import ArgumentParser from collections import OrderedDict from itertools import islice as take from argparse import ArgumentDefaultsHelpFormatter from tqdm import tqdm from bonito.training import ChunkDataSet def align(samples, pointers, reference): """ align to the start of the mapping """ squiggle_duration = len(samples) mapped_off_the_start = len(pointers[pointers < 0]) mapped_off_the_end = len(pointers[pointers >= squiggle_duration]) pointers = pointers[mapped_off_the_start:len(pointers) - mapped_off_the_end] reference = reference[mapped_off_the_start:len(reference) - mapped_off_the_end] return samples[pointers[0]:pointers[-1]], pointers - pointers[0], reference def scale(read, normalise=True): """ scale and normalise a read """ samples = read['Dacs'][:] scaling = read.attrs['range'] / read.attrs['digitisation'] scaled = (scaling * (samples + read.attrs['offset'])).astype(np.float32) if normalise: return (scaled - read.attrs['shift_frompA']) / read.attrs['scale_frompA'] return scaled def pad_lengths(ragged_array, max_len=None): lengths = np.array([len(x) for x in ragged_array], dtype=np.uint16) padded = np.zeros((len(ragged_array), max_len or np.max(lengths)), dtype=ragged_array[0].dtype) for x, y in zip(ragged_array, padded): y[:len(x)] = x return padded, lengths def regular_break_points(n, chunk_len, overlap=0, align='mid'): num_chunks, remainder = divmod(n - overlap, chunk_len - overlap) start = {'left': 0, 'mid': remainder // 2, 'right': remainder}[align] starts = np.arange(start, start + num_chunks*(chunk_len - overlap), (chunk_len - overlap)) return np.vstack([starts, starts + chunk_len]).T def get_chunks(read, break_points): sample = scale(read) pointers = read['Ref_to_signal'][:] target = read['Reference'][:] + 1 # CTC convention return ( (sample[i:j], target[ti:tj]) for (i, j), (ti, tj) in zip(break_points, np.searchsorted(pointers, break_points)) ) def chunk_dataset(reads, chunk_len, num_chunks=None): all_chunks = ( (chunk, target) for read in reads for chunk, target in get_chunks(reads[read], regular_break_points(len(reads[read]['Dacs']), chunk_len)) ) chunks, targets = zip(*tqdm(take(all_chunks, num_chunks), total=num_chunks)) targets, target_lens = pad_lengths(targets) # convert refs from ragged arrray return ChunkDataSet(chunks, targets, target_lens) def validation_split(reads, num_valid=1000): reads = np.random.permutation(sorted(reads.items())) return OrderedDict(reads[:-num_valid]), OrderedDict(reads[-num_valid:]) def typical_indices(x, n=2.5): mu, sd = np.mean(x), np.std(x) idx, = np.where((mu - n*sd < x) & (x < mu + n*sd)) return idx def filter_chunks(ds, idx): filtered = ChunkDataSet(ds.chunks.squeeze(1)[idx], ds.targets[idx], ds.lengths[idx]) filtered.targets = filtered.targets[:, :filtered.lengths.max()] return filtered def save_chunks(chunks, output_directory): os.makedirs(output_directory, exist_ok=True) np.save(os.path.join(output_directory, "chunks.npy"), chunks.chunks.squeeze(1)) np.save(os.path.join(output_directory, "references.npy"), chunks.targets) np.save(os.path.join(output_directory, "reference_lengths.npy"), chunks.lengths) print() print("> data written to %s:" % output_directory) print(" - chunks.npy with shape", chunks.chunks.squeeze(1).shape) print(" - references.npy with shape", chunks.targets.shape) print(" - reference_lengths.npy shape", chunks.lengths.shape) def main(args): random.seed(args.seed) np.random.seed(args.seed) reads = h5py.File(args.chunkify_file, 'r')['Reads'] training, validation = validation_split(reads, args.validation_reads) print("> preparing training chunks\n") training_chunks = chunk_dataset(training, args.chunksize) training_indices = typical_indices(training_chunks.lengths) training_chunks = filter_chunks(training_chunks, np.random.permutation(training_indices)) save_chunks(training_chunks, args.output_directory) print("\n> preparing validation chunks\n") validation_chunks = chunk_dataset(validation, args.chunksize) validation_indices = typical_indices(validation_chunks.lengths) validation_chunks = filter_chunks(validation_chunks, validation_indices) save_chunks(validation_chunks, os.path.join(args.output_directory, "validation")) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("chunkify_file") parser.add_argument("output_directory") parser.add_argument("--seed", default=25, type=int) parser.add_argument("--chunksize", default=3600, type=int) parser.add_argument("--validation-reads", default=1000, type=int) return parser
""" Bonito Export """ import os import re import sys import json import torch import bonito import hashlib import numpy as np from glob import glob from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter class JsonEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() elif isinstance(obj, torch.nn.Parameter): return obj.data elif isinstance(obj, torch.Tensor): return obj.detach().numpy() else: return super(JsonEncoder, self).default(obj) def file_md5(filename, nblock=1024): """ Get md5 string from file. """ hasher = hashlib.md5() block_size = nblock * hasher.block_size with open(filename, "rb") as fh: for blk in iter((lambda: fh.read(block_size)), b""): hasher.update(blk) return hasher.hexdigest() def reformat_output_layer(layer_dict): n_base, state_len, blank_score = [layer_dict.pop(k) for k in ['n_base', 'state_len', 'blank_score']] layer_dict['size'] = (n_base + 1) * n_base**state_len layer_dict['type'] = 'GlobalNormTransducer' if blank_score is not None: assert layer_dict['activation'] == 'tanh' params = layer_dict['params'] params['W'] = torch.nn.functional.pad( params['W'].reshape([n_base**state_len, n_base, -1]), (0, 0, 1, 0), value=0. ).reshape((n_base + 1) * n_base**state_len, -1) params['b'] = torch.nn.functional.pad( params['b'].reshape(n_base**state_len, n_base), (1, 0), value=np.arctanh(blank_score / layer_dict['scale']) ).reshape(-1) return layer_dict def to_guppy_dict(model, include_weights=True): guppy_dict = bonito.nn.to_dict(model.encoder, include_weights=include_weights) guppy_dict['sublayers'] = [x for x in guppy_dict['sublayers'] if x['type'] != 'permute'] guppy_dict['sublayers'] = [dict(x, type='LSTM', activation='tanh', gate='sigmoid') if x['type'] == 'lstm' else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'] = [dict(x, padding=(x['padding'], x['padding'])) if x['type'] == 'convolution' else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'] = [{'type': 'reverse', 'sublayers': x} if x.pop('reverse', False) else x for x in guppy_dict['sublayers']] guppy_dict['sublayers'][-1] = reformat_output_layer(guppy_dict['sublayers'][-1]) return guppy_dict def main(args): if not os.path.isdir(args.model): print("[error] file given - please provide a model directory to export.", file=sys.stderr) return 1 model = bonito.util.load_model(args.model, device='cpu') jsn = to_guppy_dict(model) weight_files = glob(os.path.join(args.model, "weights_*.tar")) weights = max([int(re.sub(".*_([0-9]+).tar", "\\1", w)) for w in weight_files]) jsn["md5sum"] = file_md5(os.path.join(args.model, 'weights_%s.tar' % weights)) json.dump(jsn, sys.stdout, cls=JsonEncoder) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument('model') return parser
""" Bonito model viewer - display a model architecture for a given config. """ import toml import argparse from bonito.util import load_symbol def main(args): config = toml.load(args.config) Model = load_symbol(config, "Model") model = Model(config) print(model) print("Total parameters in model", sum(p.numel() for p in model.parameters())) def argparser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("config") return parser
""" Bonito Basecaller """ import sys import torch import numpy as np from tqdm import tqdm from time import perf_counter from datetime import timedelta from itertools import islice as take from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.aligner import Aligner from bonito.io import CTCWriter, Writer from bonito.fast5 import get_reads, read_chunks from bonito.multiprocessing import process_cancel from bonito.util import column_to_set, load_symbol, load_model def main(args): if args.save_ctc and not args.reference: sys.stderr.write("> a reference is needed to output ctc training data\n") exit(1) sys.stderr.write("> loading model\n") model = load_model(args.model_directory, args.device, weights=int(args.weights)) if args.reference: sys.stderr.write("> loading reference\n") aligner = Aligner(args.reference, preset='ont-map', best_n=1) if not aligner: sys.stderr.write("> failed to load/build index\n") exit(1) else: aligner = None reads = get_reads( args.reads_directory, n_proc=8, recursive=args.recursive, read_ids=column_to_set(args.read_ids), skip=args.skip, cancel=process_cancel() ) if args.max_reads: reads = take(reads, args.max_reads) basecall = load_symbol(args.model_directory, "basecall") if args.save_ctc: reads = ( chunk for read in reads for chunk in read_chunks(read, chunksize=args.chunksize) ) basecalls = basecall( model, reads, batchsize=64, chunksize=args.chunksize, aligner=aligner, qscores=args.fastq, reverse=args.revcomp, ) writer = CTCWriter( tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, args.ctc_min_coverage, args.ctc_min_accuracy ) else: basecalls = basecall( model, reads, aligner=aligner, reverse=args.revcomp, qscores=args.fastq, batchsize=args.batchsize, chunksize=args.chunksize, ) writer = Writer( tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, fastq=args.fastq ) t0 = perf_counter() writer.start() writer.join() duration = perf_counter() - t0 num_samples = sum(num_samples for read_id, num_samples in writer.log) sys.stderr.write("> completed reads: %s\n" % len(writer.log)) sys.stderr.write("> duration: %s\n" % timedelta(seconds=np.round(duration))) sys.stderr.write("> samples per second %.1E\n" % (num_samples / duration)) sys.stderr.write("> done\n") def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model_directory") parser.add_argument("reads_directory") parser.add_argument("--reference") parser.add_argument("--read-ids") parser.add_argument("--device", default="cuda") parser.add_argument("--weights", default="0", type=str) parser.add_argument("--skip", action="store_true", default=False) parser.add_argument("--fastq", action="store_true", default=False) parser.add_argument("--save-ctc", action="store_true", default=False) parser.add_argument("--revcomp", action="store_true", default=False) parser.add_argument("--recursive", action="store_true", default=False) parser.add_argument("--ctc-min-coverage", default=0.9, type=float) parser.add_argument("--ctc-min-accuracy", default=0.9, type=float) parser.add_argument("--batchsize", default=32, type=int) parser.add_argument("--chunksize", default=4000, type=int) parser.add_argument("--max-reads", default=0, type=int) return parser
""" Bonito Duplex consensus decoding. https://www.biorxiv.org/content/10.1101/2020.02.25.956771v1 """ import os import sys import json from glob import glob from pathlib import Path from os.path import basename from functools import partial from time import perf_counter from datetime import timedelta from multiprocessing import Pool from itertools import islice, groupby from concurrent.futures import ProcessPoolExecutor from multiprocessing import Process, Queue, Lock, cpu_count from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import spoa import torch import parasail import numpy as np import pandas as pd from tqdm import tqdm from fast_ctc_decode import crf_beam_search, crf_beam_search_duplex from genomeworks import cuda from genomeworks.cudapoa import CudaPoaBatch, status_to_str import bonito from bonito.io import Writer, devnull from bonito.aligner import Aligner, align_map from bonito.util import load_model, half_supported from bonito.crf.basecall import transfer, split_read, stitch from bonito.fast5 import get_raw_data_for_read, get_fast5_file from bonito.util import unbatchify, batchify, chunk, concat, accuracy from bonito.multiprocessing import thread_map, process_map, process_cancel def poagen(groups, gpu_percent=0.8): free, total = cuda.cuda_get_mem_info(cuda.cuda_get_device()) gpu_mem_per_batch = gpu_percent * free max_seq_sz = 0 max_sequences_per_poa = 0 for group in groups: longest_seq = len(max(group, key=len)) max_seq_sz = longest_seq if longest_seq > max_seq_sz else max_seq_sz seq_in_poa = len(group) max_sequences_per_poa = seq_in_poa if seq_in_poa > max_sequences_per_poa else max_sequences_per_poa batch = CudaPoaBatch( max_sequences_per_poa, max_seq_sz, gpu_mem_per_batch, output_type="consensus", cuda_banded_alignment=True, alignment_band_width=256, ) poa_index = 0 initial_count = 0 while poa_index < len(groups): group = groups[poa_index] group_status, seq_status = batch.add_poa_group(group) # If group was added and more space is left in batch, continue onto next group. if group_status == 0: for seq_index, status in enumerate(seq_status): if status != 0: print("Could not add sequence {} to POA {} - error {}".format(seq_index, poa_index, status_to_str(status)), file=sys.stderr) poa_index += 1 # Once batch is full or no groups are left, run POA processing. if ((group_status == 1) or ((group_status == 0) and (poa_index == len(groups)))): batch.generate_poa() consensus, coverage, con_status = batch.get_consensus() for p, status in enumerate(con_status): if status != 0: print("Could not get consensus for POA group {} - {}".format(initial_count + p, status_to_str(status)), file=sys.stderr) yield from consensus initial_count = poa_index batch.reset() # In the case where POA group wasn't processed correctly. elif group_status != 0: print("Could not add POA group {} to batch - {}".format(poa_index, status_to_str(group_status)), file=sys.stderr) poa_index += 1 def get_read(readdir, summary, idx): """ Get a single read from row `idx` in the `summary` dataframe. """ return get_raw_data_for_read( (readdir / summary.iloc[idx].filename_fast5, summary.iloc[idx].read_id) ) def read_gen(directory, summary, n_proc=1, cancel=None): """ Generate reads from the given `directory` listed in the `summary` dataframe. """ with Pool(n_proc) as pool: for read in pool.imap(partial(get_read, Path(directory), summary), range(len(summary))): yield read if cancel is not None and cancel.is_set(): return def get_read_ids(filename): """ Return a dictionary of read_id -> filename mappings. """ with get_fast5_file(filename, 'r') as f5: return { read.read_id: basename(filename) for read in f5.get_reads() } def build_index(files, n_proc=1): """ Build an index of read ids to filename mappings """ index = {} with ProcessPoolExecutor(max_workers=n_proc) as pool: for res in tqdm(pool.map(get_read_ids, files), leave=False): index.update(res) return index def build_envelope(len1, seq1, path1, len2, seq2, path2, padding=15): # needleman-wunsch alignment with constant gap penalty. aln = parasail.nw_trace_striped_32(seq2, seq1, 2, 2, parasail.dnafull) # pair up positions alignment = np.column_stack([ np.cumsum([x != '-' for x in aln.traceback.ref]) - 1, np.cumsum([x != '-' for x in aln.traceback.query]) - 1 ]) path_range1 = np.column_stack([path1, path1[1:] + [len1]]) path_range2 = np.column_stack([path2, path2[1:] + [len2]]) envelope = np.full((len1, 2), -1, dtype=int) for idx1, idx2 in alignment.clip(0): st_1, en_1 = path_range1[idx1] st_2, en_2 = path_range2[idx2] for idx in range(st_1, en_1): if st_2 < envelope[idx, 0] or envelope[idx, 0] < 0: envelope[idx, 0] = st_2 if en_2 > envelope[idx, 1] or envelope[idx, 1] < 0: envelope[idx, 1] = en_2 # add a little padding to ensure some overlap envelope[:, 0] = envelope[:, 0] - padding envelope[:, 1] = envelope[:, 1] + padding envelope = np.clip(envelope, 0, len2) prev_end = 0 for i in range(envelope.shape[0]): if envelope[i, 0] > envelope[i, 1]: envelope[i, 0] = 0 if envelope[i, 0] > prev_end: envelope[i, 0] = prev_end prev_end = envelope[i, 1] return envelope.astype(np.uint64) def find_follow_on(df, gap=5, distance=51, cov=0.85, min_len=100): """ Find follow on reads from a sequencing summary file. """ df = df[ df.alignment_coverage.astype('float32').gt(cov) & df.sequence_length_template.astype('int32').gt(min_len) ] df = df.sort_values(['run_id', 'channel', 'mux', 'start_time']) genome_start = np.array(df.alignment_genome_start, dtype=np.int32) genome_end = np.array(df.alignment_genome_end, dtype=np.int32) direction = np.array(df.alignment_direction) start_time = np.array(df.start_time, dtype=np.float32) end_time = np.array(df.start_time + df.duration, dtype=np.float32) channel = np.array(df.channel, dtype=np.int32) mux = np.array(df.mux, dtype=np.int32) filt = ( (channel[1:] == channel[:-1]) & (mux[1:] == mux[:-1]) & (np.abs(genome_start[1:] - genome_start[:-1]) < distance) & (np.abs(genome_end[1:] - genome_end[:-1]) < distance) & (direction[1:] != direction[:-1]) & (start_time[1:] - end_time[:-1] < gap) ) mask = np.full(len(filt) + 1, False) mask[:-1] = mask[:-1] | filt mask[1:] = mask[1:] | filt return df[mask] def compute_scores(model, batch, reverse=False): with torch.no_grad(): device = next(model.parameters()).device dtype = torch.float16 if half_supported() else torch.float32 scores = model.encoder(batch.to(dtype).to(device)) if reverse: scores = model.seqdist.reverse_complement(scores) betas = model.seqdist.backward_scores(scores.to(torch.float32)) trans, init = model.seqdist.compute_transition_probs(scores, betas) return { 'trans': trans.to(dtype).transpose(0, 1), 'init': init.to(dtype).unsqueeze(1), } def basecall(model, reads, chunksize=4000, overlap=500, batchsize=32, reverse=False): reads = ( read_chunk for read in reads for read_chunk in split_read(read, chunksize * batchsize)[::-1 if reverse else 1] ) chunks = ( ((read, start, end), chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap)) for (read, start, end) in reads ) batches = ( (k, compute_scores(model, batch, reverse=reverse)) for k, batch in batchify(chunks, batchsize=batchsize) ) stitched = ( (read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse)) for ((read, start, end), x) in unbatchify(batches) ) transferred = thread_map(transfer, stitched, n_thread=1) return ( (read, concat([part for k, part in parts])) for read, parts in groupby(transferred, lambda x: x[0]) ) def beam_search_duplex(seq1, path1, t1, b1, seq2, path2, t2, b2, alphabet='NACGT', beamsize=5, pad=40, T=0.01): env = build_envelope(t1.shape[0], seq1, path1, t2.shape[0], seq2, path2, padding=pad) return crf_beam_search_duplex( t1, b1, t2, b2, alphabet=alphabet, beam_size=beamsize, beam_cut_threshold=T, envelope=env, ) def decode(res, beamsize_1=5, pad_1=40, cut_1=0.01, beamsize_2=5, pad_2=40, cut_2=0.01, match=80, alphabet="NACGT"): temp_probs, init1 = res[0]['trans'].astype(np.float32), res[0]['init'][0].astype(np.float32) comp_probs, init2 = res[1]['trans'].astype(np.float32), res[1]['init'][0].astype(np.float32) simplex1, path1 = crf_beam_search(temp_probs, init1, alphabet, beam_size=5, beam_cut_threshold=0.01) simplex2, path2 = crf_beam_search(comp_probs, init2, alphabet, beam_size=5, beam_cut_threshold=0.01) if len(simplex1) < 10 or len(simplex2) < 10: return [simplex1, simplex2] if accuracy(simplex1, simplex2) < match: return [simplex1, simplex2] duplex1 = beam_search_duplex( simplex1, path1, temp_probs, init1, simplex2, path2, comp_probs, init2, pad=pad_1, beamsize=5, T=cut_1 ) duplex2 = beam_search_duplex( simplex2, path2, comp_probs, init2, simplex1, path1, temp_probs, init1, pad=pad_2, beamsize=5, T=cut_2 ) return [duplex1, duplex2, simplex1, simplex2] def poa(seqs, allseq=False): con, msa = spoa.poa(seqs, genmsa=False) if allseq: return (con, *seqs) return (con, ) def call(model, reads_directory, templates, complements, aligner=None, cudapoa=True): temp_reads = read_gen(reads_directory, templates, n_proc=8, cancel=process_cancel()) comp_reads = read_gen(reads_directory, complements, n_proc=8, cancel=process_cancel()) temp_scores = basecall(model, temp_reads, reverse=False) comp_scores = basecall(model, comp_reads, reverse=True) scores = (((r1, r2), (s1, s2)) for (r1, s1), (r2, s2) in zip(temp_scores, comp_scores)) calls = thread_map(decode, scores, n_thread=12) if cudapoa: sequences = ((reads, [seqs, ]) for reads, seqs in calls if len(seqs) > 2) consensus = (zip(reads, poagen(calls)) for reads, calls in batchify(sequences, 100)) res = ((reads[0], {'sequence': seq}) for seqs in consensus for reads, seq in seqs) else: sequences = ((reads, seqs) for reads, seqs in calls if len(seqs) > 2) consensus = process_map(poa, sequences, n_proc=4) res = ((reads, {'sequence': seq}) for reads, seqs in consensus for seq in seqs) if aligner is None: return res return align_map(aligner, res) def main(args): sys.stderr.write("> loading model\n") model = load_model(args.model, args.device) if args.reference: sys.stderr.write("> loading reference\n") aligner = Aligner(args.reference, preset='ont-map') if not aligner: sys.stderr.write("> failed to load/build index\n") exit(1) else: aligner = None if args.summary: sys.stderr.write("> finding follow on strands\n") pairs = pd.read_csv(args.summary, '\t', low_memory=False) pairs = pairs[pairs.sequence_length_template.gt(0)] if 'filename' in pairs.columns: pairs = pairs.rename(columns={'filename': 'filename_fast5'}) if 'alignment_strand_coverage' in pairs.columns: pairs = pairs.rename(columns={'alignment_strand_coverage': 'alignment_coverage'}) valid_fast5s = [ f for f in pairs.filename_fast5.unique() if ((args.reads_directory / Path(f)).exists()) ] pairs = pairs[pairs.filename_fast5.isin(valid_fast5s)] pairs = find_follow_on(pairs) sys.stderr.write("> found %s follow strands in summary\n" % (len(pairs) // 2)) if args.max_reads > 0: pairs = pairs.head(args.max_reads) temp_reads = pairs.iloc[0::2] comp_reads = pairs.iloc[1::2] else: if args.index is not None: sys.stderr.write("> loading read index\n") index = json.load(open(args.index, 'r')) else: sys.stderr.write("> building read index\n") files = list(glob(os.path.join(args.reads_directory, '*.fast5'))) index = build_index(files, n_proc=8) if args.save_index: with open('bonito-read-id.idx', 'w') as f: json.dump(index, f) pairs = pd.read_csv(args.pairs, sep=args.sep, names=['read_1', 'read_2']) if args.max_reads > 0: pairs = pairs.head(args.max_reads) pairs['file_1'] = pairs['read_1'].apply(index.get) pairs['file_2'] = pairs['read_2'].apply(index.get) pairs = pairs.dropna().reset_index() temp_reads = pairs[['read_1', 'file_1']].rename( columns={'read_1': 'read_id', 'file_1': 'filename_fast5'} ) comp_reads = pairs[['read_2', 'file_2']].rename( columns={'read_2': 'read_id', 'file_2': 'filename_fast5'} ) if len(pairs) == 0: print("> no matched pairs found in given directory", file=sys.stderr) exit(1) # https://github.com/clara-parabricks/GenomeWorks/issues/648 with devnull(): CudaPoaBatch(1000, 1000, 3724032) basecalls = call(model, args.reads_directory, temp_reads, comp_reads, aligner=aligner) writer = Writer(tqdm(basecalls, desc="> calling", unit=" reads", leave=False), aligner, duplex=True) t0 = perf_counter() writer.start() writer.join() duration = perf_counter() - t0 num_samples = sum(num_samples for read_id, num_samples in writer.log) print("> duration: %s" % timedelta(seconds=np.round(duration)), file=sys.stderr) print("> samples per second %.1E" % (num_samples / duration), file=sys.stderr) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model") parser.add_argument("reads_directory") group = parser.add_mutually_exclusive_group() group.add_argument("--summary", default=None) group.add_argument("--pairs", default=None) parser.add_argument("--sep", default=' ') parser.add_argument("--index", default=None) parser.add_argument("--save-index", action="store_true", default=False) parser.add_argument("--reference") parser.add_argument("--device", default="cuda") parser.add_argument("--max-reads", default=0, type=int) return parser
#!/usr/bin/env python3 """ Bonito training. """ import os from argparse import ArgumentParser from argparse import ArgumentDefaultsHelpFormatter from bonito.util import __models__, default_config, default_data from bonito.util import load_data, load_model, load_symbol, init, half_supported from bonito.training import ChunkDataSet, load_state, Trainer import toml import torch import numpy as np from torch.optim import AdamW from torch.utils.data import DataLoader def main(args): workdir = os.path.expanduser(args.training_directory) if os.path.exists(workdir) and not args.force: print("[error] %s exists, use -f to force continue training." % workdir) exit(1) init(args.seed, args.device) device = torch.device(args.device) print("[loading data]") train_data = load_data(limit=args.chunks, directory=args.directory) if os.path.exists(os.path.join(args.directory, 'validation')): valid_data = load_data(directory=os.path.join(args.directory, 'validation')) else: print("[validation set not found: splitting training set]") split = np.floor(len(train_data[0]) * 0.97).astype(np.int32) valid_data = [x[split:] for x in train_data] train_data = [x[:split] for x in train_data] train_loader = DataLoader(ChunkDataSet(*train_data), batch_size=args.batch, shuffle=True, num_workers=4, pin_memory=True) valid_loader = DataLoader(ChunkDataSet(*valid_data), batch_size=args.batch, num_workers=4, pin_memory=True) if args.pretrained: dirname = args.pretrained if not os.path.isdir(dirname) and os.path.isdir(os.path.join(__models__, dirname)): dirname = os.path.join(__models__, dirname) config_file = os.path.join(dirname, 'config.toml') else: config_file = args.config config = toml.load(config_file) argsdict = dict(training=vars(args)) os.makedirs(workdir, exist_ok=True) toml.dump({**config, **argsdict}, open(os.path.join(workdir, 'config.toml'), 'w')) print("[loading model]") if args.pretrained: print("[using pretrained model {}]".format(args.pretrained)) model = load_model(args.pretrained, device, half=False) else: model = load_symbol(config, 'Model')(config) last_epoch = load_state(workdir, args.device, model) if args.multi_gpu: from torch.nn import DataParallel model = DataParallel(model) model.decode = model.module.decode model.alphabet = model.module.alphabet trainer = Trainer(model, device, train_loader, valid_loader, use_amp=half_supported() and not args.no_amp) trainer.fit(workdir, args.epochs, args.lr, last_epoch=last_epoch) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("training_directory") group = parser.add_mutually_exclusive_group() group.add_argument('--config', default=default_config) group.add_argument('--pretrained', default="") parser.add_argument("--directory", default=default_data) parser.add_argument("--device", default="cuda") parser.add_argument("--lr", default=2e-3, type=float) parser.add_argument("--seed", default=25, type=int) parser.add_argument("--epochs", default=5, type=int) parser.add_argument("--batch", default=64, type=int) parser.add_argument("--chunks", default=0, type=int) parser.add_argument("--no-amp", action="store_true", default=False) parser.add_argument("--multi-gpu", action="store_true", default=False) parser.add_argument("-f", "--force", action="store_true", default=False) return parser
""" Bonito model evaluator """ import os import time import torch import numpy as np from itertools import starmap from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from bonito.training import ChunkDataSet from bonito.util import accuracy, poa, decode_ref, half_supported from bonito.util import init, load_data, load_model, concat, permute from torch.utils.data import DataLoader def main(args): poas = [] init(args.seed, args.device) print("* loading data") directory = args.directory if os.path.exists(os.path.join(directory, 'validation')): directory = os.path.join(directory, 'validation') testdata = ChunkDataSet( *load_data( limit=args.chunks, directory=directory ) ) dataloader = DataLoader(testdata, batch_size=args.batchsize) accuracy_with_cov = lambda ref, seq: accuracy(ref, seq, min_coverage=args.min_coverage) for w in [int(i) for i in args.weights.split(',')]: seqs = [] print("* loading model", w) model = load_model(args.model_directory, args.device, weights=w) print("* calling") t0 = time.perf_counter() with torch.no_grad(): for data, *_ in dataloader: if half_supported(): data = data.type(torch.float16).to(args.device) else: data = data.to(args.device) log_probs = model(data) if hasattr(model, 'decode_batch'): seqs.extend(model.decode_batch(log_probs)) else: seqs.extend([model.decode(p) for p in permute(log_probs, 'TNC', 'NTC')]) duration = time.perf_counter() - t0 refs = [decode_ref(target, model.alphabet) for target in dataloader.dataset.targets] accuracies = [accuracy_with_cov(ref, seq) if len(seq) else 0. for ref, seq in zip(refs, seqs)] if args.poa: poas.append(sequences) print("* mean %.2f%%" % np.mean(accuracies)) print("* median %.2f%%" % np.median(accuracies)) print("* time %.2f" % duration) print("* samples/s %.2E" % (args.chunks * data.shape[2] / duration)) if args.poa: print("* doing poa") t0 = time.perf_counter() # group each sequence prediction per model together poas = [list(seq) for seq in zip(*poas)] consensuses = poa(poas) duration = time.perf_counter() - t0 accuracies = list(starmap(accuracy_with_coverage_filter, zip(references, consensuses))) print("* mean %.2f%%" % np.mean(accuracies)) print("* median %.2f%%" % np.median(accuracies)) print("* time %.2f" % duration) def argparser(): parser = ArgumentParser( formatter_class=ArgumentDefaultsHelpFormatter, add_help=False ) parser.add_argument("model_directory") parser.add_argument("--directory", default=None) parser.add_argument("--device", default="cuda") parser.add_argument("--seed", default=9, type=int) parser.add_argument("--weights", default="0", type=str) parser.add_argument("--chunks", default=1000, type=int) parser.add_argument("--batchsize", default=96, type=int) parser.add_argument("--beamsize", default=5, type=int) parser.add_argument("--poa", action="store_true", default=False) parser.add_argument("--min-coverage", default=0.5, type=float) return parser
from .model import Model from .basecall import basecall
""" Bonito CTC-CRF Model. """ import torch import numpy as np from bonito.nn import Module, Convolution, SHABlock, LinearCRFEncoder, Serial, Permute, layers, from_dict import seqdist.sparse from seqdist.ctc_simple import logZ_cupy, viterbi_alignments from seqdist.core import SequenceDist, Max, Log, semiring def get_stride(m): if hasattr(m, 'stride'): return m.stride if isinstance(m.stride, int) else m.stride[0] if isinstance(m, Convolution): return get_stride(m.conv) if isinstance(m, Serial): return int(np.prod([get_stride(x) for x in m])) return 1 class CTC_CRF(SequenceDist): def __init__(self, state_len, alphabet): super().__init__() self.alphabet = alphabet self.state_len = state_len self.n_base = len(alphabet[1:]) self.idx = torch.cat([ torch.arange(self.n_base**(self.state_len))[:, None], torch.arange( self.n_base**(self.state_len) ).repeat_interleave(self.n_base).reshape(self.n_base, -1).T ], dim=1).to(torch.int32) def n_score(self): return len(self.alphabet) * self.n_base**(self.state_len) def logZ(self, scores, S:semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, len(self.alphabet)) alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one) beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.logZ(Ms, self.idx, alpha_0, beta_T, S) def normalise(self, scores): return (scores - self.logZ(scores)[:, None] / len(scores)) def forward_scores(self, scores, S: semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, self.n_base + 1) alpha_0 = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.fwd_scores_cupy(Ms, self.idx, alpha_0, S, K=1) def backward_scores(self, scores, S: semiring=Log): T, N, _ = scores.shape Ms = scores.reshape(T, N, -1, self.n_base + 1) beta_T = Ms.new_full((N, self.n_base**(self.state_len)), S.one) return seqdist.sparse.bwd_scores_cupy(Ms, self.idx, beta_T, S, K=1) def compute_transition_probs(self, scores, betas): T, N, C = scores.shape # add bwd scores to edge scores log_trans_probs = (scores.reshape(T, N, -1, self.n_base + 1) + betas[1:, :, :, None]) # transpose from (new_state, dropped_base) to (old_state, emitted_base) layout log_trans_probs = torch.cat([ log_trans_probs[:, :, :, [0]], log_trans_probs[:, :, :, 1:].transpose(3, 2).reshape(T, N, -1, self.n_base) ], dim=-1) # convert from log probs to probs by exponentiating and normalising trans_probs = torch.softmax(log_trans_probs, dim=-1) #convert first bwd score to initial state probabilities init_state_probs = torch.softmax(betas[0], dim=-1) return trans_probs, init_state_probs def reverse_complement(self, scores): T, N, C = scores.shape expand_dims = T, N, *(self.n_base for _ in range(self.state_len)), self.n_base + 1 scores = scores.reshape(*expand_dims) blanks = torch.flip(scores[..., 0].permute( 0, 1, *range(self.state_len + 1, 1, -1)).reshape(T, N, -1, 1), [0, 2] ) emissions = torch.flip(scores[..., 1:].permute( 0, 1, *range(self.state_len, 1, -1), self.state_len +2, self.state_len + 1).reshape(T, N, -1, self.n_base), [0, 2, 3] ) return torch.cat([blanks, emissions], dim=-1).reshape(T, N, -1) def viterbi(self, scores): traceback = self.posteriors(scores, Max) paths = traceback.argmax(2) % len(self.alphabet) return paths def path_to_str(self, path): alphabet = np.frombuffer(''.join(self.alphabet).encode(), dtype='u1') seq = alphabet[path[path != 0]] return seq.tobytes().decode() def prepare_ctc_scores(self, scores, targets): # convert from CTC targets (with blank=0) to zero indexed targets = torch.clamp(targets - 1, 0) T, N, C = scores.shape scores = scores.to(torch.float32) n = targets.size(1) - (self.state_len - 1) stay_indices = sum( targets[:, i:n + i] * self.n_base ** (self.state_len - i - 1) for i in range(self.state_len) ) * len(self.alphabet) move_indices = stay_indices[:, 1:] + targets[:, :n - 1] + 1 stay_scores = scores.gather(2, stay_indices.expand(T, -1, -1)) move_scores = scores.gather(2, move_indices.expand(T, -1, -1)) return stay_scores, move_scores def ctc_loss(self, scores, targets, target_lengths, loss_clip=None, reduction='mean', normalise_scores=True): if normalise_scores: scores = self.normalise(scores) stay_scores, move_scores = self.prepare_ctc_scores(scores, targets) logz = logZ_cupy(stay_scores, move_scores, target_lengths + 1 - self.state_len) loss = - (logz / target_lengths) if loss_clip: loss = torch.clamp(loss, 0.0, loss_clip) if reduction == 'mean': return loss.mean() elif reduction in ('none', None): return loss else: raise ValueError('Unknown reduction type {}'.format(reduction)) def ctc_viterbi_alignments(self, scores, targets, target_lengths): stay_scores, move_scores = self.prepare_ctc_scores(scores, targets) return viterbi_alignments(stay_scores, move_scores, target_lengths + 1 - self.state_len) def conv(c_in, c_out, ks, stride=1, bias=False, activation=None): return Convolution(c_in, c_out, ks, stride=stride, padding=ks//2, bias=bias, activation=activation) def rnn_encoder(n_base, state_len, insize=1, stride=5, winlen=19, activation='swish', rnn_type='lstm', features=768, scale=5.0, blank_score=None, single_head_attn=False): rnn = layers[rnn_type] return Serial([ conv(insize, 4, ks=5, bias=True, activation=activation), conv(4, 16, ks=5, bias=True, activation=activation), conv(16, features, ks=winlen, stride=stride, bias=True, activation=activation), Permute([2, 0, 1]), rnn(features, features, reverse=True), rnn(features, features), rnn(features, features, reverse=True), rnn(features, features), *([SHABlock(features)] if single_head_attn else []), rnn(features, features, reverse=True), LinearCRFEncoder(features, n_base, state_len, bias=True, activation='tanh', scale=scale, blank_score=blank_score) ]) class SeqdistModel(Module): def __init__(self, encoder, seqdist): super().__init__() self.seqdist = seqdist self.encoder = encoder self.stride = get_stride(encoder) self.alphabet = seqdist.alphabet def forward(self, x): return self.encoder(x).to(torch.float32) def decode_batch(self, x): scores = self.seqdist.posteriors(x.to(torch.float32)) + 1e-8 tracebacks = self.seqdist.viterbi(scores.log()).to(torch.int16).T return [self.seqdist.path_to_str(x) for x in tracebacks.cpu().numpy()] def decode(self, x): return self.decode_batch(x.unsqueeze(1))[0] class Model(SeqdistModel): def __init__(self, config): seqdist = CTC_CRF( state_len=config['global_norm']['state_len'], alphabet=config['labels']['labels'] ) if 'type' in config['encoder']: #new-style config encoder = from_dict(config['encoder']) else: #old-style encoder = rnn_encoder(seqdist.n_base, seqdist.state_len, insize=config['input']['features'], **config['encoder']) super().__init__(encoder, seqdist) self.config = config
""" Bonito CRF basecall """ import torch import numpy as np from kbeam import beamsearch from itertools import groupby from functools import partial from operator import itemgetter import bonito from bonito.io import Writer from bonito.fast5 import get_reads from bonito.aligner import align_map from bonito.multiprocessing import thread_map, thread_iter from bonito.util import concat, chunk, batchify, unbatchify, half_supported def stitch(chunks, chunksize, overlap, length, stride, reverse=False): """ Stitch chunks together with a given overlap """ if isinstance(chunks, dict): return { k: stitch(v, chunksize, overlap, length, stride, reverse=reverse) for k, v in chunks.items() } return bonito.util.stitch(chunks, chunksize, overlap, length, stride, reverse=reverse) def compute_scores(model, batch, reverse=False): """ Compute scores for model. """ with torch.no_grad(): device = next(model.parameters()).device dtype = torch.float16 if half_supported() else torch.float32 scores = model(batch.to(dtype).to(device)) if reverse: scores = model.seqdist.reverse_complement(scores) betas = model.seqdist.backward_scores(scores.to(torch.float32)) betas -= (betas.max(2, keepdim=True)[0] - 5.0) return { 'scores': scores.transpose(0, 1), 'betas': betas.transpose(0, 1), } def quantise_int8(x, scale=127/5): """ Quantise scores to int8. """ scores = x['scores'] scores *= scale scores = torch.round(scores).to(torch.int8).detach() betas = x['betas'] betas *= scale betas = torch.round(torch.clamp(betas, -127., 128.)).to(torch.int8).detach() return {'scores': scores, 'betas': betas} def transfer(x): """ Device to host transfer using pinned memory. """ torch.cuda.synchronize() with torch.cuda.stream(torch.cuda.Stream()): return { k: torch.empty(v.shape, pin_memory=True, dtype=v.dtype).copy_(v).numpy() for k, v in x.items() } def decode_int8(scores, seqdist, scale=127/5, beamsize=40, beamcut=100.0): """ Beamsearch decode. """ path, _ = beamsearch( scores['scores'], scale, seqdist.n_base, beamsize, guide=scores['betas'], beam_cut=beamcut ) try: return seqdist.path_to_str(path % 4 + 1) except IndexError: return "" def split_read(read, split_read_length=400000): """ Split large reads into manageable pieces. """ if len(read.signal) <= split_read_length: return [(read, 0, len(read.signal))] breaks = np.arange(0, len(read.signal) + split_read_length, split_read_length) return [(read, start, min(end, len(read.signal))) for (start, end) in zip(breaks[:-1], breaks[1:])] def basecall(model, reads, aligner=None, beamsize=40, chunksize=4000, overlap=500, batchsize=32, qscores=False, reverse=False): """ Basecalls a set of reads. """ _decode = partial(decode_int8, seqdist=model.seqdist, beamsize=beamsize) reads = (read_chunk for read in reads for read_chunk in split_read(read)[::-1 if reverse else 1]) chunks = ( ((read, start, end), chunk(torch.from_numpy(read.signal[start:end]), chunksize, overlap)) for (read, start, end) in reads ) batches = ( (k, quantise_int8(compute_scores(model, batch, reverse=reverse))) for k, batch in thread_iter(batchify(chunks, batchsize=batchsize)) ) stitched = ( (read, stitch(x, chunksize, overlap, end - start, model.stride, reverse=reverse)) for ((read, start, end), x) in unbatchify(batches) ) transferred = thread_map(transfer, stitched, n_thread=1) basecalls = thread_map(_decode, transferred, n_thread=8) basecalls = ( (read, ''.join(seq for k, seq in parts)) for read, parts in groupby(basecalls, lambda x: (x[0].parent if hasattr(x[0], 'parent') else x[0])) ) basecalls = ( (read, {'sequence': seq, 'qstring': '?' * len(seq) if qscores else '*', 'mean_qscore': 0.0}) for read, seq in basecalls ) if aligner: return align_map(aligner, basecalls) return basecalls
from .model import Model from .basecall import basecall
""" Bonito Model template """ import numpy as np from bonito.nn import Permute, layers import torch from torch.nn.functional import log_softmax, ctc_loss from torch.nn import Module, ModuleList, Sequential, Conv1d, BatchNorm1d, Dropout from fast_ctc_decode import beam_search, viterbi_search class Model(Module): """ Model template for QuartzNet style architectures https://arxiv.org/pdf/1910.10261.pdf """ def __init__(self, config): super(Model, self).__init__() if 'qscore' not in config: self.qbias = 0.0 self.qscale = 1.0 else: self.qbias = config['qscore']['bias'] self.qscale = config['qscore']['scale'] self.config = config self.stride = config['block'][0]['stride'][0] self.alphabet = config['labels']['labels'] self.features = config['block'][-1]['filters'] self.encoder = Encoder(config) self.decoder = Decoder(self.features, len(self.alphabet)) def forward(self, x): encoded = self.encoder(x) return self.decoder(encoded) def decode(self, x, beamsize=5, threshold=1e-3, qscores=False, return_path=False): x = x.exp().cpu().numpy().astype(np.float32) if beamsize == 1 or qscores: seq, path = viterbi_search(x, self.alphabet, qscores, self.qscale, self.qbias) else: seq, path = beam_search(x, self.alphabet, beamsize, threshold) if return_path: return seq, path return seq def ctc_label_smoothing_loss(self, log_probs, targets, lengths, weights=None): T, N, C = log_probs.shape weights = weights or torch.cat([torch.tensor([0.4]), (0.1 / (C - 1)) * torch.ones(C - 1)]) log_probs_lengths = torch.full(size=(N, ), fill_value=T, dtype=torch.int64) loss = ctc_loss(log_probs.to(torch.float32), targets, log_probs_lengths, lengths, reduction='mean') label_smoothing_loss = -((log_probs * weights.to(log_probs.device)).mean()) return {'loss': loss + label_smoothing_loss, 'ctc_loss': loss, 'label_smooth_loss': label_smoothing_loss} class Encoder(Module): """ Builds the model encoder """ def __init__(self, config): super(Encoder, self).__init__() self.config = config features = self.config['input']['features'] activation = layers[self.config['encoder']['activation']]() encoder_layers = [] for layer in self.config['block']: encoder_layers.append( Block( features, layer['filters'], activation, repeat=layer['repeat'], kernel_size=layer['kernel'], stride=layer['stride'], dilation=layer['dilation'], dropout=layer['dropout'], residual=layer['residual'], separable=layer['separable'], ) ) features = layer['filters'] self.encoder = Sequential(*encoder_layers) def forward(self, x): return self.encoder(x) class TCSConv1d(Module): """ Time-Channel Separable 1D Convolution """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, separable=False): super(TCSConv1d, self).__init__() self.separable = separable if separable: self.depthwise = Conv1d( in_channels, in_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias, groups=in_channels ) self.pointwise = Conv1d( in_channels, out_channels, kernel_size=1, stride=1, dilation=dilation, bias=bias, padding=0 ) else: self.conv = Conv1d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias ) def forward(self, x): if self.separable: x = self.depthwise(x) x = self.pointwise(x) else: x = self.conv(x) return x class Block(Module): """ TCSConv, Batch Normalisation, Activation, Dropout """ def __init__(self, in_channels, out_channels, activation, repeat=5, kernel_size=1, stride=1, dilation=1, dropout=0.0, residual=False, separable=False): super(Block, self).__init__() self.use_res = residual self.conv = ModuleList() _in_channels = in_channels padding = self.get_padding(kernel_size[0], stride[0], dilation[0]) # add the first n - 1 convolutions + activation for _ in range(repeat - 1): self.conv.extend( self.get_tcs( _in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, separable=separable ) ) self.conv.extend(self.get_activation(activation, dropout)) _in_channels = out_channels # add the last conv and batch norm self.conv.extend( self.get_tcs( _in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=padding, separable=separable ) ) # add the residual connection if self.use_res: self.residual = Sequential(*self.get_tcs(in_channels, out_channels)) # add the activation and dropout self.activation = Sequential(*self.get_activation(activation, dropout)) def get_activation(self, activation, dropout): return activation, Dropout(p=dropout) def get_padding(self, kernel_size, stride, dilation): if stride > 1 and dilation > 1: raise ValueError("Dilation and stride can not both be greater than 1") return (kernel_size // 2) * dilation def get_tcs(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, padding=0, bias=False, separable=False): return [ TCSConv1d( in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, separable=separable ), BatchNorm1d(out_channels, eps=1e-3, momentum=0.1) ] def forward(self, x): _x = x for layer in self.conv: _x = layer(_x) if self.use_res: _x = _x + self.residual(x) return self.activation(_x) class Decoder(Module): """ Decoder """ def __init__(self, features, classes): super(Decoder, self).__init__() self.layers = Sequential( Conv1d(features, classes, kernel_size=1, bias=True), Permute([2, 0, 1]) ) def forward(self, x): return log_softmax(self.layers(x), dim=-1)
""" Bonito basecall """ import torch import numpy as np from functools import partial from bonito.fast5 import ReadChunk from bonito.aligner import align_map from bonito.multiprocessing import process_map, thread_map from bonito.util import mean_qscore_from_qstring, half_supported from bonito.util import chunk, stitch, batchify, unbatchify, permute, concat def basecall(model, reads, aligner=None, beamsize=5, chunksize=0, overlap=0, batchsize=1, qscores=False, reverse=None): """ Basecalls a set of reads. """ chunks = ( (read, chunk(torch.tensor(read.signal), chunksize, overlap)) for read in reads ) scores = unbatchify( (k, compute_scores(model, v)) for k, v in batchify(chunks, batchsize) ) scores = ( (read, {'scores': stitch(v, chunksize, overlap, len(read.signal), model.stride)}) for read, v in scores ) decoder = partial(decode, decode=model.decode, beamsize=beamsize, qscores=qscores) basecalls = process_map(decoder, scores, n_proc=4) if aligner: return align_map(aligner, basecalls) return basecalls def compute_scores(model, batch): """ Compute scores for model. """ with torch.no_grad(): device = next(model.parameters()).device chunks = batch.to(torch.half).to(device) probs = permute(model(chunks), 'TNC', 'NTC') return probs.cpu().to(torch.float32) def decode(scores, decode, beamsize=5, qscores=False): """ Convert the network scores into a sequence. """ # do a greedy decode to get a sensible qstring to compute the mean qscore from seq, path = decode(scores['scores'], beamsize=1, qscores=True, return_path=True) seq, qstring = seq[:len(path)], seq[len(path):] mean_qscore = mean_qscore_from_qstring(qstring) # beam search will produce a better sequence but doesn't produce a sensible qstring/path if not (qscores or beamsize == 1): try: seq = decode(scores['scores'], beamsize=beamsize) path = None qstring = '*' except: pass return {'sequence': seq, 'qstring': qstring, 'mean_qscore': mean_qscore, 'path': path}
from setuptools import setup, find_packages setup( name = 'BS-RoFormer', packages = find_packages(exclude=[]), version = '0.0.2', license='MIT', description = 'BS-RoFormer - Band-Split Rotary Transformer for SOTA Music Source Separation', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/BS-RoFormer', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'music source separation' ], install_requires=[ 'beartype', 'einops>=0.6.1', 'rotary-embedding-torch>=0.3.0', 'torch>=2.0', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
from bs_roformer.bs_roformer import BSRoformer
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # constants FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.flash: return self.flash_attn(q, k, v) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out
import torch from torch import nn, einsum, Tensor from torch.nn import Module, ModuleList import torch.nn.functional as F from bs_roformer.attend import Attend from beartype.typing import Tuple, Optional, List from beartype import beartype from rotary_embedding_torch import RotaryEmbedding from einops import rearrange, pack, unpack # helper functions def exists(val): return val is not None # norm class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.gamma # attention class FeedForward(Module): def __init__( self, dim, mult = 4, dropout = 0. ): super().__init__() dim_inner = int(dim * mult) self.net = nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_inner), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim_inner, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(Module): def __init__( self, dim, heads = 8, dim_head = 64, dropout = 0., rotary_embed = None, flash = True ): super().__init__() self.heads = heads self.scale = dim_head **-0.5 dim_inner = heads * dim_head self.rotary_embed = rotary_embed self.attend = Attend(flash = flash, dropout = dropout) self.norm = RMSNorm(dim) self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(dim_inner, dim, bias = False), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = self.heads) if exists(self.rotary_embed): q = self.rotary_embed.rotate_queries_or_keys(q) k = self.rotary_embed.rotate_queries_or_keys(k) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., ff_mult = 4, norm_output = True, rotary_embed = None, flash_attn = True ): super().__init__() self.layers = ModuleList([]) for _ in range(depth): self.layers.append(ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_embed = rotary_embed, flash = flash_attn), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) if norm_output else nn.Identity() def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) # bandsplit module class BandSplit(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...] ): super().__init__() self.dim_inputs = dim_inputs self.to_features = ModuleList([]) for dim_in in dim_inputs: net = nn.Sequential( RMSNorm(dim_in), nn.Linear(dim_in, dim) ) self.to_features.append(net) def forward(self, x): x = x.split(self.dim_inputs, dim = -1) outs = [] for split_input, to_feature in zip(x, self.to_features): split_output = to_feature(split_input) outs.append(split_output) return torch.stack(outs, dim = -2) class LinearGLUWithTanH(Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x.tanh() * gate.sigmoid() class MaskEstimator(Module): @beartype def __init__( self, dim, dim_inputs: Tuple[int, ...], depth ): super().__init__() self.dim_inputs = dim_inputs self.to_freqs = ModuleList([]) for dim_in in dim_inputs: net = [] for ind in range(depth): is_last = ind == (depth - 1) dim_out = dim if not is_last else dim_in net.append(LinearGLUWithTanH(dim, dim_out)) self.to_freqs.append(nn.Sequential(*net)) def forward(self, x): x = x.unbind(dim = -2) outs = [] for band_features, to_freq in zip(x, self.to_freqs): freq_out = to_freq(band_features) outs.append(freq_out) return torch.cat(outs, dim = -1) # main class class BSRoformer(Module): @beartype def __init__( self, dim, *, depth, time_transformer_depth = 2, freq_transformer_depth = 2, freqs_per_bands: Tuple[int, ...] = (256, 257), # in the paper, they divide into ~60 bands, test with 1 for starters dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., flash_attn = True, dim_freqs_in = 513, stft_n_fft = 1024, stft_hop_length = 256, stft_win_length = 1024, stft_normalized = False, mask_estimator_depth = 1, multi_stft_resolution_loss_weight = 1., multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256), multi_stft_hop_size = 147, multi_stft_normalized = False ): super().__init__() self.layers = ModuleList([]) transformer_kwargs = dict( dim = dim, heads = heads, dim_head = dim_head, attn_dropout = attn_dropout, ff_dropout = ff_dropout, flash_attn = flash_attn ) time_rotary_embed = RotaryEmbedding(dim = dim_head) freq_rotary_embed = RotaryEmbedding(dim = dim_head) for _ in range(depth): self.layers.append(nn.ModuleList([ Transformer(depth = time_transformer_depth, rotary_embed = time_rotary_embed, **transformer_kwargs), Transformer(depth = freq_transformer_depth, rotary_embed = freq_rotary_embed, **transformer_kwargs) ])) self.stft_kwargs = dict( n_fft = stft_n_fft, hop_length = stft_hop_length, win_length = stft_win_length, normalized = stft_normalized ) freqs = torch.stft(torch.randn(1, 1024), **self.stft_kwargs, return_complex = True).shape[1] assert len(freqs_per_bands) > 1 assert sum(freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings' freqs_per_bands_with_complex = tuple(2 * f for f in freqs_per_bands) self.band_split = BandSplit( dim = dim, dim_inputs = freqs_per_bands_with_complex ) self.mask_estimator = MaskEstimator( dim = dim, dim_inputs = freqs_per_bands_with_complex, depth = mask_estimator_depth ) # for the multi-resolution stft loss self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes self.multi_stft_n_fft = stft_n_fft self.multi_stft_kwargs = dict( hop_length = multi_stft_hop_size, normalized = multi_stft_normalized ) def forward( self, raw_audio, target = None, return_loss_breakdown = False ): """ einops b - batch f - freq t - time c - complex (2) d - feature dimension """ # to stft stft_repr = torch.stft(raw_audio, **self.stft_kwargs, return_complex = True) stft_repr = torch.view_as_real(stft_repr) x = rearrange(stft_repr, 'b f t c -> b t (f c)') x = self.band_split(x) # axial / hierarchical attention for time_transformer, freq_transformer in self.layers: x = rearrange(x, 'b t f d -> b f t d') x, ps = pack([x], 'b * d') x = time_transformer(x) x, = unpack(x, ps, 'b * d') x = rearrange(x, 'b f t d -> b t f d') x, ps = pack([x], 'b * d') x = freq_transformer(x) x, = unpack(x, ps, 'b * d') mask = self.mask_estimator(x) mask = rearrange(mask, 'b t (f c) -> b f t c', c = 2) # modulate frequency representation stft_repr = stft_repr * mask # istft stft_repr = torch.view_as_complex(stft_repr) recon_audio = torch.istft(stft_repr, **self.stft_kwargs, return_complex = False) # if a target is passed in, calculate loss for learning if not exists(target): return recon_audio target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft loss = F.l1_loss(recon_audio, target) multi_stft_resolution_loss = 0. for window_size in self.multi_stft_resolutions_window_sizes: res_stft_kwargs = dict( n_fft = max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft win_length = window_size, return_complex = True, **self.multi_stft_kwargs, ) recon_Y = torch.stft(recon_audio, **res_stft_kwargs) target_Y = torch.stft(target, **res_stft_kwargs) multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y) weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight total_loss = loss + weighted_multi_resolution_loss if not return_loss_breakdown: return total_loss return total_loss, (loss, multi_stft_resolution_loss)
import random import torch import torch.linalg import numpy as np class BlackHole(object): def __setattr__(self, name, value): pass def __call__(self, *args, **kwargs): return self def __getattr__(self, name): return self def seed_all(seed): torch.backends.cudnn.deterministic = True torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def recursive_to(obj, device): if isinstance(obj, torch.Tensor): try: return obj.cuda(device=device, non_blocking=True) except RuntimeError: return obj.to(device) elif isinstance(obj, list): return [recursive_to(o, device=device) for o in obj] elif isinstance(obj, tuple): return (recursive_to(o, device=device) for o in obj) elif isinstance(obj, dict): return {k: recursive_to(v, device=device) for k, v in obj.items()} else: return obj
import warnings import torch from Bio import BiopythonWarning from Bio.PDB import Selection from Bio.PDB.PDBParser import PDBParser from Bio.PDB.Polypeptide import three_to_one, three_to_index, is_aa NON_STANDARD_SUBSTITUTIONS = { '2AS':'ASP', '3AH':'HIS', '5HP':'GLU', 'ACL':'ARG', 'AGM':'ARG', 'AIB':'ALA', 'ALM':'ALA', 'ALO':'THR', 'ALY':'LYS', 'ARM':'ARG', 'ASA':'ASP', 'ASB':'ASP', 'ASK':'ASP', 'ASL':'ASP', 'ASQ':'ASP', 'AYA':'ALA', 'BCS':'CYS', 'BHD':'ASP', 'BMT':'THR', 'BNN':'ALA', 'BUC':'CYS', 'BUG':'LEU', 'C5C':'CYS', 'C6C':'CYS', 'CAS':'CYS', 'CCS':'CYS', 'CEA':'CYS', 'CGU':'GLU', 'CHG':'ALA', 'CLE':'LEU', 'CME':'CYS', 'CSD':'ALA', 'CSO':'CYS', 'CSP':'CYS', 'CSS':'CYS', 'CSW':'CYS', 'CSX':'CYS', 'CXM':'MET', 'CY1':'CYS', 'CY3':'CYS', 'CYG':'CYS', 'CYM':'CYS', 'CYQ':'CYS', 'DAH':'PHE', 'DAL':'ALA', 'DAR':'ARG', 'DAS':'ASP', 'DCY':'CYS', 'DGL':'GLU', 'DGN':'GLN', 'DHA':'ALA', 'DHI':'HIS', 'DIL':'ILE', 'DIV':'VAL', 'DLE':'LEU', 'DLY':'LYS', 'DNP':'ALA', 'DPN':'PHE', 'DPR':'PRO', 'DSN':'SER', 'DSP':'ASP', 'DTH':'THR', 'DTR':'TRP', 'DTY':'TYR', 'DVA':'VAL', 'EFC':'CYS', 'FLA':'ALA', 'FME':'MET', 'GGL':'GLU', 'GL3':'GLY', 'GLZ':'GLY', 'GMA':'GLU', 'GSC':'GLY', 'HAC':'ALA', 'HAR':'ARG', 'HIC':'HIS', 'HIP':'HIS', 'HMR':'ARG', 'HPQ':'PHE', 'HTR':'TRP', 'HYP':'PRO', 'IAS':'ASP', 'IIL':'ILE', 'IYR':'TYR', 'KCX':'LYS', 'LLP':'LYS', 'LLY':'LYS', 'LTR':'TRP', 'LYM':'LYS', 'LYZ':'LYS', 'MAA':'ALA', 'MEN':'ASN', 'MHS':'HIS', 'MIS':'SER', 'MLE':'LEU', 'MPQ':'GLY', 'MSA':'GLY', 'MSE':'MET', 'MVA':'VAL', 'NEM':'HIS', 'NEP':'HIS', 'NLE':'LEU', 'NLN':'LEU', 'NLP':'LEU', 'NMC':'GLY', 'OAS':'SER', 'OCS':'CYS', 'OMT':'MET', 'PAQ':'TYR', 'PCA':'GLU', 'PEC':'CYS', 'PHI':'PHE', 'PHL':'PHE', 'PR3':'CYS', 'PRR':'ALA', 'PTR':'TYR', 'PYX':'CYS', 'SAC':'SER', 'SAR':'GLY', 'SCH':'CYS', 'SCS':'CYS', 'SCY':'CYS', 'SEL':'SER', 'SEP':'SER', 'SET':'SER', 'SHC':'CYS', 'SHR':'LYS', 'SMC':'CYS', 'SOC':'CYS', 'STY':'TYR', 'SVA':'SER', 'TIH':'ALA', 'TPL':'TRP', 'TPO':'THR', 'TPQ':'ALA', 'TRG':'LYS', 'TRO':'TRP', 'TYB':'TYR', 'TYI':'TYR', 'TYQ':'TYR', 'TYS':'TYR', 'TYY':'TYR' } RESIDUE_SIDECHAIN_POSTFIXES = { 'A': ['B'], 'R': ['B', 'G', 'D', 'E', 'Z', 'H1', 'H2'], 'N': ['B', 'G', 'D1', 'D2'], 'D': ['B', 'G', 'D1', 'D2'], 'C': ['B', 'G'], 'E': ['B', 'G', 'D', 'E1', 'E2'], 'Q': ['B', 'G', 'D', 'E1', 'E2'], 'G': [], 'H': ['B', 'G', 'D1', 'D2', 'E1', 'E2'], 'I': ['B', 'G1', 'G2', 'D1'], 'L': ['B', 'G', 'D1', 'D2'], 'K': ['B', 'G', 'D', 'E', 'Z'], 'M': ['B', 'G', 'D', 'E'], 'F': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z'], 'P': ['B', 'G', 'D'], 'S': ['B', 'G'], 'T': ['B', 'G1', 'G2'], 'W': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'E3', 'Z2', 'Z3', 'H2'], 'Y': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z', 'H'], 'V': ['B', 'G1', 'G2'], } GLY_INDEX = 5 ATOM_N, ATOM_CA, ATOM_C, ATOM_O, ATOM_CB = 0, 1, 2, 3, 4 def augmented_three_to_one(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_one(three) def augmented_three_to_index(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_index(three) def augmented_is_aa(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return is_aa(three, standard=True) def is_hetero_residue(res): return len(res.id[0].strip()) > 0 def get_atom_name_postfix(atom): name = atom.get_name() if name in ('N', 'CA', 'C', 'O'): return name if name[-1].isnumeric(): return name[-2:] else: return name[-1:] def get_residue_pos14(res): pos14 = torch.full([14, 3], float('inf')) suffix_to_atom = {get_atom_name_postfix(a):a for a in res.get_atoms()} atom_order = ['N', 'CA', 'C', 'O'] + RESIDUE_SIDECHAIN_POSTFIXES[augmented_three_to_one(res.get_resname())] for i, atom_suffix in enumerate(atom_order): if atom_suffix not in suffix_to_atom: continue pos14[i,0], pos14[i,1], pos14[i,2] = suffix_to_atom[atom_suffix].get_coord().tolist() return pos14 def parse_pdb(path, model_id=0): warnings.simplefilter('ignore', BiopythonWarning) parser = PDBParser() structure = parser.get_structure(None, path) return parse_complex(structure, model_id) def parse_complex(structure, model_id=None): if model_id is not None: structure = structure[model_id] chains = Selection.unfold_entities(structure, 'C') aa, resseq, icode, seq = [], [], [], [] pos14, pos14_mask = [], [] chain_id, chain_seq = [], [] for i, chain in enumerate(chains): seq_this = 0 for res in chain: resname = res.get_resname() if not augmented_is_aa(resname): continue if not (res.has_id('CA') and res.has_id('C') and res.has_id('N')): continue # Chain chain_id.append(chain.get_id()) chain_seq.append(i+1) # Residue types restype = augmented_three_to_index(resname) aa.append(restype) # Atom coordinates pos14_this = get_residue_pos14(res) pos14_mask_this = pos14_this.isfinite() pos14.append(pos14_this.nan_to_num(posinf=99999)) pos14_mask.append(pos14_mask_this) # Sequential number resseq_this = int(res.get_id()[1]) icode_this = res.get_id()[2] if seq_this == 0: seq_this = 1 else: d_resseq = resseq_this - resseq[-1] if d_resseq == 0: seq_this += 1 else: seq_this += d_resseq resseq.append(resseq_this) icode.append(icode_this) seq.append(seq_this) if len(aa) == 0: return None return { 'name': structure.get_id(), # Chain 'chain_id': ''.join(chain_id), 'chain_seq': torch.LongTensor(chain_seq), # Sequence 'aa': torch.LongTensor(aa), 'resseq': torch.LongTensor(resseq), 'icode': ''.join(icode), 'seq': torch.LongTensor(seq), # Atom positions 'pos14': torch.stack(pos14), 'pos14_mask': torch.stack(pos14_mask), }
import math import torch from torch.utils.data._utils.collate import default_collate from .protein import ATOM_CA, parse_pdb class PaddingCollate(object): def __init__(self, length_ref_key='mutation_mask', pad_values={'aa': 20, 'pos14': float('999'), 'icode': ' ', 'chain_id': '-'}, donot_pad={'foldx'}, eight=False): super().__init__() self.length_ref_key = length_ref_key self.pad_values = pad_values self.donot_pad = donot_pad self.eight = eight def _pad_last(self, x, n, value=0): if isinstance(x, torch.Tensor): assert x.size(0) <= n if x.size(0) == n: return x pad_size = [n - x.size(0)] + list(x.shape[1:]) pad = torch.full(pad_size, fill_value=value).to(x) return torch.cat([x, pad], dim=0) elif isinstance(x, list): pad = [value] * (n - len(x)) return x + pad elif isinstance(x, str): if value == 0: # Won't pad strings if not specified return x pad = value * (n - len(x)) return x + pad elif isinstance(x, dict): padded = {} for k, v in x.items(): if k in self.donot_pad: padded[k] = v else: padded[k] = self._pad_last(v, n, value=self._get_pad_value(k)) return padded else: return x @staticmethod def _get_pad_mask(l, n): return torch.cat([ torch.ones([l], dtype=torch.bool), torch.zeros([n-l], dtype=torch.bool) ], dim=0) def _get_pad_value(self, key): if key not in self.pad_values: return 0 return self.pad_values[key] def __call__(self, data_list): max_length = max([data[self.length_ref_key].size(0) for data in data_list]) if self.eight: max_length = math.ceil(max_length / 8) * 8 data_list_padded = [] for data in data_list: data_padded = { k: self._pad_last(v, max_length, value=self._get_pad_value(k)) for k, v in data.items() if k in ('wt', 'mut', 'ddG', 'mutation_mask', 'index', 'mutation') } data_padded['mask'] = self._get_pad_mask(data[self.length_ref_key].size(0), max_length) data_list_padded.append(data_padded) return default_collate(data_list_padded) def _mask_list(l, mask): return [l[i] for i in range(len(l)) if mask[i]] def _mask_string(s, mask): return ''.join([s[i] for i in range(len(s)) if mask[i]]) def _mask_dict_recursively(d, mask): out = {} for k, v in d.items(): if isinstance(v, torch.Tensor) and v.size(0) == mask.size(0): out[k] = v[mask] elif isinstance(v, list) and len(v) == mask.size(0): out[k] = _mask_list(v, mask) elif isinstance(v, str) and len(v) == mask.size(0): out[k] = _mask_string(v, mask) elif isinstance(v, dict): out[k] = _mask_dict_recursively(v, mask) else: out[k] = v return out class KnnResidue(object): def __init__(self, num_neighbors=128): super().__init__() self.num_neighbors = num_neighbors def __call__(self, data): pos_CA = data['wt']['pos14'][:, ATOM_CA] pos_CA_mut = pos_CA[data['mutation_mask']] diff = pos_CA_mut.view(1, -1, 3) - pos_CA.view(-1, 1, 3) dist = torch.linalg.norm(diff, dim=-1) try: mask = torch.zeros([dist.size(0)], dtype=torch.bool) mask[ dist.min(dim=1)[0].argsort()[:self.num_neighbors] ] = True except IndexError as e: print(data) raise e return _mask_dict_recursively(data, mask) def load_wt_mut_pdb_pair(wt_path, mut_path): data_wt = parse_pdb(wt_path) data_mut = parse_pdb(mut_path) transform = KnnResidue() collate_fn = PaddingCollate() mutation_mask = (data_wt['aa'] != data_mut['aa']) batch = collate_fn([transform({'wt': data_wt, 'mut': data_mut, 'mutation_mask': mutation_mask})]) return batch
import torch import torch.nn as nn import torch.nn.functional as F from models.residue import PerResidueEncoder from models.attention import GAEncoder from models.common import get_pos_CB, construct_3d_basis from utils.protein import ATOM_N, ATOM_CA, ATOM_C class ComplexEncoder(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.relpos_embedding = nn.Embedding(cfg.max_relpos*2+2, cfg.pair_feat_dim) self.residue_encoder = PerResidueEncoder(cfg.node_feat_dim) if cfg.geomattn is not None: self.ga_encoder = GAEncoder( node_feat_dim = cfg.node_feat_dim, pair_feat_dim = cfg.pair_feat_dim, num_layers = cfg.geomattn.num_layers, spatial_attn_mode = cfg.geomattn.spatial_attn_mode, ) else: self.out_mlp = nn.Sequential( nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), ) def forward(self, pos14, aa, seq, chain, mask_atom): """ Args: pos14: (N, L, 14, 3). aa: (N, L). seq: (N, L). chain: (N, L). mask_atom: (N, L, 14) Returns: (N, L, node_ch) """ same_chain = (chain[:, None, :] == chain[:, :, None]) # (N, L, L) relpos = (seq[:, None, :] - seq[:, :, None]).clamp(min=-self.cfg.max_relpos, max=self.cfg.max_relpos) + self.cfg.max_relpos # (N, L, L) relpos = torch.where(same_chain, relpos, torch.full_like(relpos, fill_value=self.cfg.max_relpos*2+1)) pair_feat = self.relpos_embedding(relpos) # (N, L, L, pair_ch) R = construct_3d_basis(pos14[:, :, ATOM_CA], pos14[:, :, ATOM_C], pos14[:, :, ATOM_N]) # Residue encoder res_feat = self.residue_encoder(aa, pos14, mask_atom) # Geom encoder t = pos14[:, :, ATOM_CA] mask_residue = mask_atom[:, :, ATOM_CA] res_feat = self.ga_encoder(R, t, get_pos_CB(pos14, mask_atom), res_feat, pair_feat, mask_residue) return res_feat class DDGReadout(nn.Module): def __init__(self, feat_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(feat_dim*2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) self.project = nn.Linear(feat_dim, 1, bias=False) def forward(self, node_feat_wt, node_feat_mut, mask=None): """ Args: node_feat_wt: (N, L, F). node_feat_mut: (N, L, F). mask: (N, L). """ feat_wm = torch.cat([node_feat_wt, node_feat_mut], dim=-1) feat_mw = torch.cat([node_feat_mut, node_feat_wt], dim=-1) feat_diff = self.mlp(feat_wm) - self.mlp(feat_mw) # (N, L, F) # feat_diff = self.mlp(node_feat_wt) - self.mlp(node_feat_mut) per_residue_ddg = self.project(feat_diff).squeeze(-1) # (N, L) if mask is not None: per_residue_ddg = per_residue_ddg * mask ddg = per_residue_ddg.sum(dim=1) # (N,) return ddg class DDGPredictor(nn.Module): def __init__(self, cfg): super().__init__() self.encoder = ComplexEncoder(cfg) self.ddG_readout = DDGReadout(cfg.node_feat_dim) def forward(self, complex_wt, complex_mut, ddG_true=None): mask_atom_wt = complex_wt['pos14_mask'].all(dim=-1) # (N, L, 14) mask_atom_mut = complex_mut['pos14_mask'].all(dim=-1) feat_wt = self.encoder(complex_wt['pos14'], complex_wt['aa'], complex_wt['seq'], complex_wt['chain_seq'], mask_atom_wt) feat_mut = self.encoder(complex_mut['pos14'], complex_mut['aa'], complex_mut['seq'], complex_mut['chain_seq'], mask_atom_mut) mask_res = mask_atom_wt[:, :, ATOM_CA] ddG_pred = self.ddG_readout(feat_wt, feat_mut, mask_res) # One mask is enough if ddG_true is None: return ddG_pred else: losses = { 'ddG': F.mse_loss(ddG_pred, ddG_true), } return losses, ddG_pred
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .common import mask_zero, global_to_local, local_to_global, normalize_vector def _alpha_from_logits(logits, mask, inf=1e5): """ Args: logits: Logit matrices, (N, L_i, L_j, num_heads). mask: Masks, (N, L). Returns: alpha: Attention weights. """ N, L, _, _ = logits.size() mask_row = mask.view(N, L, 1, 1).expand_as(logits) # (N, L, *, *) mask_pair = mask_row * mask_row.permute(0, 2, 1, 3) # (N, L, L, *) logits = torch.where(mask_pair, logits, logits-inf) alpha = torch.softmax(logits, dim=2) # (N, L, L, num_heads) alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha)) return alpha def _heads(x, n_heads, n_ch): """ Args: x: (..., num_heads * num_channels) Returns: (..., num_heads, num_channels) """ s = list(x.size())[:-1] + [n_heads, n_ch] return x.view(*s) class GeometricAttention(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, spatial_attn_mode='CB', value_dim=16, query_key_dim=16, num_query_points=8, num_value_points=8, num_heads=12): super().__init__() self.node_feat_dim = node_feat_dim self.pair_feat_dim = pair_feat_dim self.value_dim = value_dim self.query_key_dim = query_key_dim self.num_query_points = num_query_points self.num_value_points = num_value_points self.num_heads = num_heads assert spatial_attn_mode in ('CB', 'vpoint') self.spatial_attn_mode = spatial_attn_mode # Node self.proj_query = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_key = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_value = nn.Linear(node_feat_dim, value_dim*num_heads, bias=False) # Pair self.proj_pair_bias = nn.Linear(pair_feat_dim, num_heads, bias=False) # Spatial self.spatial_coef = nn.Parameter(torch.full([1, 1, 1, self.num_heads], fill_value=np.log(np.exp(1.) - 1.)), requires_grad=True) if spatial_attn_mode == 'vpoint': self.proj_query_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_key_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_value_point = nn.Linear(node_feat_dim, num_value_points*num_heads*3, bias=False) # Output if spatial_attn_mode == 'CB': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*(3+3+1)), out_features = node_feat_dim, ) elif spatial_attn_mode == 'vpoint': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*num_value_points*(3+3+1)), out_features = node_feat_dim, ) self.layer_norm = nn.LayerNorm(node_feat_dim) def _node_logits(self, x): query_l = _heads(self.proj_query(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) key_l = _heads(self.proj_key(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) query_l = query_l.permute(0, 2, 1, 3) # (N,L1,H,C) -> (N,H,L1,C) key_l = key_l.permute(0, 2, 3, 1) # (N,L2,H,C) -> (N,H,C,L2) logits = torch.matmul(query_l, key_l) # (N,H,L1,L2) logits = logits.permute(0, 2, 3, 1) # (N,L1,L2,H) # logits = (query_l.unsqueeze(2) * key_l.unsqueeze(1) * (1 / np.sqrt(self.query_key_dim))).sum(-1) # (N, L, L, num_heads) return logits def _pair_logits(self, z): logits_pair = self.proj_pair_bias(z) return logits_pair def _beta_logits(self, R, t, p_CB): N, L, _ = t.size() qk = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) sum_sq_dist = ((qk.unsqueeze(2) - qk.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logtis_beta = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / 9)) / 2) return logtis_beta def _spatial_logits(self, R, t, x): N, L, _ = t.size() # Query query_points = _heads(self.proj_query_point(x), self.num_heads*self.num_query_points, 3) # (N, L, n_heads * n_pnts, 3) query_points = local_to_global(R, t, query_points) # Global query coordinates, (N, L, n_heads * n_pnts, 3) query_s = query_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Key key_points = _heads(self.proj_key_point(x), self.num_heads*self.num_query_points, 3) # (N, L, 3, n_heads * n_pnts) key_points = local_to_global(R, t, key_points) # Global key coordinates, (N, L, n_heads * n_pnts, 3) key_s = key_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Q-K Product sum_sq_dist = ((query_s.unsqueeze(2) - key_s.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logits_spatial = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / (9 * self.num_query_points))) / 2) # (N, L, L, n_heads) return logits_spatial def _pair_aggregation(self, alpha, z): N, L = z.shape[:2] feat_p2n = alpha.unsqueeze(-1) * z.unsqueeze(-2) # (N, L, L, n_heads, C) feat_p2n = feat_p2n.sum(dim=2) # (N, L, n_heads, C) return feat_p2n.reshape(N, L, -1) def _node_aggregation(self, alpha, x): N, L = x.shape[:2] value_l = _heads(self.proj_value(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, v_ch) feat_node = alpha.unsqueeze(-1) * value_l.unsqueeze(1) # (N, L, L, n_heads, *) @ (N, *, L, n_heads, v_ch) feat_node = feat_node.sum(dim=2) # (N, L, n_heads, v_ch) return feat_node.reshape(N, L, -1) def _beta_aggregation(self, alpha, R, t, p_CB, x): N, L, _ = t.size() v = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) # (N, L, n_heads, 3) aggr = alpha.reshape(N, L, L, self.num_heads, 1) * v.unsqueeze(1) # (N, *, L, n_heads, 3) aggr = aggr.sum(dim=2) feat_points = global_to_local(R, t, aggr) # (N, L, n_heads, 3) feat_distance = feat_points.norm(dim=-1) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def _spatial_aggregation(self, alpha, R, t, x): N, L, _ = t.size() value_points = _heads(self.proj_value_point(x), self.num_heads*self.num_value_points, 3) # (N, L, n_heads * n_v_pnts, 3) value_points = local_to_global(R, t, value_points.reshape(N, L, self.num_heads, self.num_value_points, 3)) # (N, L, n_heads, n_v_pnts, 3) aggr_points = alpha.reshape(N, L, L, self.num_heads, 1, 1) * value_points.unsqueeze(1) # (N, *, L, n_heads, n_pnts, 3) aggr_points = aggr_points.sum(dim=2) # (N, L, n_heads, n_pnts, 3) feat_points = global_to_local(R, t, aggr_points) # (N, L, n_heads, n_pnts, 3) feat_distance = feat_points.norm(dim=-1) # (N, L, n_heads, n_pnts) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) # (N, L, n_heads, n_pnts, 3) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def forward_beta(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._beta_logits(R, t, p_CB) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._beta_aggregation(alpha, R, t, p_CB, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward_vpoint(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._spatial_logits(R, t, x) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._spatial_aggregation(alpha, R, t, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward(self, R, t, p_CB, x, z, mask): if self.spatial_attn_mode == 'CB': return self.forward_beta(R, t, p_CB, x, z, mask) else: return self.forward_vpoint(R, t, p_CB, x, z, mask) class GAEncoder(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, num_layers, spatial_attn_mode='CB'): super().__init__() self.blocks = nn.ModuleList([ GeometricAttention(node_feat_dim, pair_feat_dim, spatial_attn_mode=spatial_attn_mode) for _ in range(num_layers) ]) def forward(self, R, t, p_CB, x, z, mask): for block in self.blocks: x = block(R, t, p_CB, x, z, mask) # Residual connection within the block return x
import torch import torch.nn as nn from models.common import PositionalEncoding, construct_3d_basis, global_to_local class PerResidueEncoder(nn.Module): def __init__(self, feat_dim): super().__init__() self.aatype_embed = nn.Embedding(21, feat_dim) self.torsion_embed = PositionalEncoding() self.mlp = nn.Sequential( nn.Linear(21*14*3 + feat_dim, feat_dim * 2), nn.ReLU(), nn.Linear(feat_dim * 2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) def forward(self, aa, pos14, atom_mask): """ Args: aa: (N, L). pos14: (N, L, 14, 3). atom_mask: (N, L, 14). """ N, L = aa.size() R = construct_3d_basis(pos14[:, :, 1], pos14[:, :, 2], pos14[:, :, 0]) # (N, L, 3, 3) t = pos14[:, :, 1] # (N, L, 3) crd14 = global_to_local(R, t, pos14) # (N, L, 14, 3) crd14_mask = atom_mask[:, :, :, None].expand_as(crd14) crd14 = torch.where(crd14_mask, crd14, torch.zeros_like(crd14)) aa_expand = aa[:, :, None, None, None].expand(N, L, 21, 14, 3) rng_expand = torch.arange(0, 21)[None, None, :, None, None].expand(N, L, 21, 14, 3).to(aa_expand) place_mask = (aa_expand == rng_expand) crd_expand = crd14[:, :, None, :, :].expand(N, L, 21, 14, 3) crd_expand = torch.where(place_mask, crd_expand, torch.zeros_like(crd_expand)) crd_feat = crd_expand.reshape(N, L, 21 * 14 * 3) aa_feat = self.aatype_embed(aa) # (N, L, feat) out_feat = self.mlp(torch.cat([crd_feat, aa_feat], dim=-1)) return out_feat
import torch import torch.nn as nn from utils.protein import ATOM_CA, ATOM_CB def get_pos_CB(pos14, atom_mask): """ Args: pos14: (N, L, 14, 3) atom_mask: (N, L, 14) """ N, L = pos14.shape[:2] mask_CB = atom_mask[:, :, ATOM_CB] # (N, L) mask_CB = mask_CB[:, :, None].expand(N, L, 3) pos_CA = pos14[:, :, ATOM_CA] # (N, L, 3) pos_CB = pos14[:, :, ATOM_CB] return torch.where(mask_CB, pos_CB, pos_CA) def mask_zero(mask, value): return torch.where(mask, value, torch.zeros_like(value)) class PositionalEncoding(nn.Module): def __init__(self, num_funcs=6): super().__init__() self.num_funcs = num_funcs self.register_buffer('freq_bands', 2.0 ** torch.linspace(0.0, num_funcs-1, num_funcs)) def get_out_dim(self, in_dim): return in_dim * (2 * self.num_funcs + 1) def forward(self, x): """ Args: x: (..., d). """ shape = list(x.shape[:-1]) + [-1] x = x.unsqueeze(-1) # (..., d, 1) code = torch.cat([x, torch.sin(x * self.freq_bands), torch.cos(x * self.freq_bands)], dim=-1) # (..., d, 2f+1) code = code.reshape(shape) return code def safe_norm(x, dim=-1, keepdim=False, eps=1e-8, sqrt=True): out = torch.clamp(torch.sum(torch.square(x), dim=dim, keepdim=keepdim), min=eps) return torch.sqrt(out) if sqrt else out def normalize_vector(v, dim, eps=1e-6): return v / (torch.linalg.norm(v, ord=2, dim=dim, keepdim=True) + eps) def project_v2v(v, e, dim): """ Description: Project vector `v` onto vector `e`. Args: v: (N, L, 3). e: (N, L, 3). """ return (e * v).sum(dim=dim, keepdim=True) * e def construct_3d_basis(center, p1, p2): """ Args: center: (N, L, 3), usually the position of C_alpha. p1: (N, L, 3), usually the position of C. p2: (N, L, 3), usually the position of N. Returns A batch of orthogonal basis matrix, (N, L, 3, 3cols_index). The matrix is composed of 3 column vectors: [e1, e2, e3]. """ v1 = p1 - center # (N, L, 3) e1 = normalize_vector(v1, dim=-1) v2 = p2 - center # (N, L, 3) u2 = v2 - project_v2v(v2, e1, dim=-1) e2 = normalize_vector(u2, dim=-1) e3 = torch.cross(e1, e2, dim=-1) # (N, L, 3) mat = torch.cat([ e1.unsqueeze(-1), e2.unsqueeze(-1), e3.unsqueeze(-1) ], dim=-1) # (N, L, 3, 3_index) return mat def local_to_global(R, t, p): """ Description: Convert local (internal) coordinates to global (external) coordinates q. q <- Rp + t Args: R: (N, L, 3, 3). t: (N, L, 3). p: Local coordinates, (N, L, ..., 3). Returns: q: Global coordinates, (N, L, ..., 3). """ assert p.size(-1) == 3 p_size = p.size() N, L = p_size[0], p_size[1] p = p.view(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) q = torch.matmul(R, p) + t.unsqueeze(-1) # (N, L, 3, *) q = q.transpose(-1, -2).reshape(p_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return q def global_to_local(R, t, q): """ Description: Convert global (external) coordinates q to local (internal) coordinates p. p <- R^{T}(q - t) Args: R: (N, L, 3, 3). t: (N, L, 3). q: Global coordinates, (N, L, ..., 3). Returns: p: Local coordinates, (N, L, ..., 3). """ assert q.size(-1) == 3 q_size = q.size() N, L = q_size[0], q_size[1] q = q.reshape(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) if t is None: p = torch.matmul(R.transpose(-1, -2), q) # (N, L, 3, *) else: p = torch.matmul(R.transpose(-1, -2), (q - t.unsqueeze(-1))) # (N, L, 3, *) p = p.transpose(-1, -2).reshape(q_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return p
import os import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) import argparse import torch from models.predictor import DDGPredictor from utils.misc import * from utils.data import * from utils.protein import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('wt_pdb', type=str) parser.add_argument('mut_pdb', type=str) parser.add_argument('--model', type=str, default='./data/model.pt') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() batch = load_wt_mut_pdb_pair(args.wt_pdb, args.mut_pdb) batch = recursive_to(batch, args.device) ckpt = torch.load(args.model) config = ckpt['config'] weight = ckpt['model'] model = DDGPredictor(config.model).to(args.device) model.load_state_dict(weight) with torch.no_grad(): model.eval() pred = model(batch['wt'], batch['mut']) print('Predicted ddG: %.2f' % pred.item())
from setuptools import setup, find_packages setup( name = 'aoa_pytorch', packages = find_packages(exclude=['examples']), version = '0.0.2', license='MIT', description = 'Attention on Attention - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/SAoA-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'visual question answering' ], install_requires=[ 'torch>=1.6', 'einops>=0.3' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
from aoa_pytorch.aoa_pytorch import AttentionOnAttention AoA = AttentionOnAttention
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange def exists(val): return val is not None def default(val, d): return val if exists(val) else d class AttentionOnAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., aoa_dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.dropout = nn.Dropout(dropout) self.aoa = nn.Sequential( nn.Linear(2 * inner_dim, 2 * dim), nn.GLU(), nn.Dropout(aoa_dropout) ) def forward(self, x, context = None): h = self.heads q_ = self.to_q(x) context = default(context, x) kv = self.to_kv(context).chunk(2, dim = -1) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q_, *kv)) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # attention attn = dots.softmax(dim = -1) attn = self.dropout(attn) # weighted average of values attn_out = einsum('b h i j, b h j d -> b h i d', attn, v) # concat heads out = rearrange(attn_out, 'b h n d -> b n (h d)', h = h) # attention on attention out = self.aoa(torch.cat((out, q_), dim = -1)) return out
from setuptools import setup, find_packages setup( name = 'autoregressive-linear-attention-cuda', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Autoregressive Linear Attention CUDA kernel', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/autoregressive-linear-attention-cuda', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'linear attention', 'cuda' ], install_requires=[ 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
from setuptools import setup, find_packages setup( name = 'adjacent-attention-pytorch', packages = find_packages(), version = '0.0.12', license='MIT', description = 'Adjacent Attention Network - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/adjacent-attention-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'graph neural network', 'transformers' ], install_requires=[ 'einops>=0.3', 'torch>=1.6', 'isab-pytorch<0.2' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
from adjacent_attention_network.adjacent_attention_network import AdjacentAttentionNetwork
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from isab_pytorch import ISAB # helpers def exists(val): return val is not None def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x, **kwargs): return self.net(x) # adjacent attention class class AdjacentAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 4, dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.null_k = nn.Parameter(torch.randn(heads, dim_head)) self.null_v = nn.Parameter(torch.randn(heads, dim_head)) self.dropout = nn.Dropout(dropout) def forward( self, x, adj_kv_indices, mask ): b, n, d, h = *x.shape, self.heads flat_indices = repeat(adj_kv_indices, 'b n a -> (b h) (n a)', h = h) # derive query, key, value q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # gather keys and values according to adjacency matrix k, v = map(lambda t: rearrange(t, 'b h n d -> (b h) n d'), (k, v)) k = batched_index_select(k, flat_indices) v = batched_index_select(v, flat_indices) k, v = map(lambda t: rearrange(t, '(b h) (n a) d -> b h n a d', h = h, n = n), (k, v)) # add null key / value, so a node can attend to nothing # have come across this in GNN literature as some other name nk, nv = map(lambda t: rearrange(t, 'h d -> () h () () d').expand(b, -1, n, 1, -1), (self.null_k, self.null_v)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) mask = F.pad(mask, (1, 0), value = 1) # similarity of each node to its neighbors sim = einsum('b h n d, b h n a d -> b h n a', q, k) * self.scale # mask out neighbors that are just padding mask_value = -torch.finfo(sim.dtype).max mask = rearrange(mask.bool(), 'b n a -> b () n a') sim.masked_fill_(~mask.bool(), mask_value) # attention attn = sim.softmax(dim = -1) # dropout attn = self.dropout(attn) # get weighted average of the values of all neighbors out = einsum('b h n a, b h n a d -> b h n d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') # combine output return self.to_out(out) # adjacent network (layers of adjacent attention) class AdjacentAttentionNetwork(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 4, num_neighbors_cutoff = None, num_global_nodes = 0, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.num_neighbors_cutoff = num_neighbors_cutoff self.layers = nn.ModuleList([]) for _ in range(depth): global_attn = PreNorm(dim, ISAB( dim = dim, heads = heads, num_induced_points = num_global_nodes )) if num_global_nodes > 0 else None self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, AdjacentAttention( dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout ))), global_attn, Residual(PreNorm(dim, FeedForward( dim = dim, dropout = ff_dropout ))) ])) def forward(self, x, adjacency_mat, mask = None): device, n = x.device, x.shape[1] diag = torch.eye(adjacency_mat.shape[-1], device = device).bool() adjacency_mat |= diag # nodes should pay attention itself (self-interacting) # zero out points on adjacency matrix # where the nodes are just padding if exists(mask): adjacency_mat &= (mask[:, :, None] * mask[:, None, :]) adj_mat = adjacency_mat.float() # if we don't set a hard limit to the number of neighbors: # - get the maximum number of neighbors and pad the rest of the nodes with less than that number of neighbors # else: # - randomly sample the cutoff number of neighbors for any node that exceeds the max # - this would be similar to random sparse attention (bigbird) # get the maximum number of neighbors max_neighbors = int(adj_mat.sum(dim = -1).max()) if exists(self.num_neighbors_cutoff) and max_neighbors > self.num_neighbors_cutoff: # to randomly sample the neighbors, add a small uniform noise to the mask and topk noise = torch.empty((n, n), device = device).uniform_(-0.01, 0.01) adj_mat = adj_mat + noise adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = self.num_neighbors_cutoff) # cast the mask back to 0s and 1s adj_mask = (adj_mask > 0.5).float() else: # todo - get distribution of number of neighbors, and strategically break up attention (message passing) to multiple steps # - start with a bimodal num neighbors test case, then generalize # use topk to get all the neighbors # also pass the mask into the attention, as some neighbors will be just padding and not actually neighbors adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = max_neighbors) for attn, global_attn, ff in self.layers: x = attn( x, adj_kv_indices = adj_kv_indices, mask = adj_mask ) if exists(global_attn): out, _ = global_attn(x, mask = mask) x = x + out x = ff(x) return x
from setuptools import setup, find_packages setup( name = 'chroma-pytorch', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Chroma - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/chroma-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'denoising diffusion', 'protein design' ], install_requires=[ 'einops>=0.6', 'invariant-point-attention', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
import torch import os import logging from transformers import AutoTokenizer, AutoModelForMaskedLM, logging from tf_bind_transformer.cache_utils import cache_fn, run_once logging.set_verbosity_error() def exists(val): return val is not None def map_values(fn, dictionary): return {k: fn(v) for k, v in dictionary.items()} CONTEXT_EMBED_USE_CPU = os.getenv('CONTEXT_EMBED_USE_CPU', None) is not None if CONTEXT_EMBED_USE_CPU: print('calculating context embed only on cpu') MODELS = dict( pubmed = dict( dim = 768, path = 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract', ) ) GLOBAL_VARIABLES = dict(model = None, tokenizer = None) def get_contextual_dim(model_name): assert model_name in MODELS return MODELS[model_name]['dim'] @run_once('init_transformer') def init_transformer(model_name): path = MODELS[model_name]['path'] GLOBAL_VARIABLES['tokenizer'] = AutoTokenizer.from_pretrained(path) model = AutoModelForMaskedLM.from_pretrained(path) if not CONTEXT_EMBED_USE_CPU: model = model.cuda() GLOBAL_VARIABLES['model'] = model @torch.no_grad() def tokenize_text( text, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True ): init_transformer(model_name) model = GLOBAL_VARIABLES['model'] tokenizer = GLOBAL_VARIABLES['tokenizer'] encoding = tokenizer.batch_encode_plus( [text], add_special_tokens = True, padding = True, truncation = True, max_length = max_length, return_attention_mask = True, return_tensors = 'pt' ) if not CONTEXT_EMBED_USE_CPU: encoding = map_values(lambda t: t.cuda(), encoding) model.eval() with torch.no_grad(): outputs = model(**encoding, output_hidden_states = True) hidden_state = outputs.hidden_states[hidden_state_index][0] if return_cls_token: return hidden_state[0] return hidden_state.mean(dim = 0) def get_text_repr( texts, *, device, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True, ): assert model_name in MODELS, f'{model_name} not found in available text transformers to use' if isinstance(texts, str): texts = [texts] get_context_repr_fn = cache_fn(tokenize_text, path = f'contexts/{model_name}') representations = [get_context_repr_fn(text, max_length = max_length, model_name = model_name, hidden_state_index = hidden_state_index, return_cls_token = return_cls_token) for text in texts] return torch.stack(representations).to(device)
from chroma_pytorch.chroma_pytorch import Chroma
import torch from torch import nn, einsum from einops import rearrange, repeat import math from pathlib import Path from random import random from functools import partial from multiprocessing import cpu_count import torch from torch import nn, einsum from torch.special import expm1 import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from torchvision import transforms as T, utils from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange from tqdm.auto import tqdm from ema_pytorch import EMA from accelerate import Accelerator # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cycle(dl): while True: for data in dl: yield data def has_int_squareroot(num): return (math.sqrt(num) ** 2) == num def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def convert_image_to(img_type, image): if image.mode != img_type: return image.convert(img_type) return image # small helper modules class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x def Upsample(dim, dim_out = None): return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), nn.Conv2d(dim, default(dim_out, dim), 3, padding = 1) ) def Downsample(dim, dim_out = None): return nn.Conv2d(dim, default(dim_out, dim), 4, 2, 1) class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x): x = self.norm(x) return self.fn(x) # positional embeds class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered # building block modules class Block(nn.Module): def __init__(self, dim, dim_out, groups = 8): super().__init__() self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward(self, x, scale_shift = None): x = self.proj(x) x = self.norm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.act(x) return x class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8): super().__init__() self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2) ) if exists(time_emb_dim) else None self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb = None): scale_shift = None if exists(self.mlp) and exists(time_emb): time_emb = self.mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, scale_shift = scale_shift) h = self.block2(h) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, 1), LayerNorm(dim) ) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q.softmax(dim = -2) k = k.softmax(dim = -1) q = q * self.scale v = v / (h * w) context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) return self.to_out(out) class Attention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q * self.scale sim = einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out) # model class Unet(nn.Module): def __init__( self, dim, init_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, resnet_block_groups = 8, learned_sinusoidal_dim = 16 ): super().__init__() # determine dimensions self.channels = channels input_channels = channels * 2 init_dim = default(init_dim, dim) self.init_conv = nn.Conv2d(input_channels, init_dim, 7, padding = 3) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) block_klass = partial(ResnetBlock, groups = resnet_block_groups) # time embeddings time_dim = dim * 4 sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim) fourier_dim = learned_sinusoidal_dim + 1 self.time_mlp = nn.Sequential( sinu_pos_emb, nn.Linear(fourier_dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_dim) ) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append(nn.ModuleList([ block_klass(dim_in, dim_in, time_emb_dim = time_dim), block_klass(dim_in, dim_in, time_emb_dim = time_dim), Residual(PreNorm(dim_in, LinearAttention(dim_in))), Downsample(dim_in, dim_out) if not is_last else nn.Conv2d(dim_in, dim_out, 3, padding = 1) ])) mid_dim = dims[-1] self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim))) self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) for ind, (dim_in, dim_out) in enumerate(reversed(in_out)): is_last = ind == (len(in_out) - 1) self.ups.append(nn.ModuleList([ block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), Residual(PreNorm(dim_out, LinearAttention(dim_out))), Upsample(dim_out, dim_in) if not is_last else nn.Conv2d(dim_out, dim_in, 3, padding = 1) ])) self.final_res_block = block_klass(dim * 2, dim, time_emb_dim = time_dim) self.final_conv = nn.Conv2d(dim, channels, 1) def forward(self, x, time, x_self_cond = None): x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x_self_cond, x), dim = 1) x = self.init_conv(x) r = x.clone() t = self.time_mlp(time) h = [] for block1, block2, attn, downsample in self.downs: x = block1(x, t) h.append(x) x = block2(x, t) x = attn(x) h.append(x) x = downsample(x) x = self.mid_block1(x, t) x = self.mid_attn(x) x = self.mid_block2(x, t) for block1, block2, attn, upsample in self.ups: x = torch.cat((x, h.pop()), dim = 1) x = block1(x, t) x = torch.cat((x, h.pop()), dim = 1) x = block2(x, t) x = attn(x) x = upsample(x) x = torch.cat((x, r), dim = 1) x = self.final_res_block(x, t) return self.final_conv(x) # chroma class def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) def beta_linear_log_snr(t): return -torch.log(expm1(1e-4 + 10 * (t ** 2))) def alpha_cosine_log_snr(t, s: float = 0.008): return -log((torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** -2) - 1, eps = 1e-5) # not sure if this accounts for beta being clipped to 0.999 in discrete version def log_snr_to_alpha_sigma(log_snr): return torch.sqrt(torch.sigmoid(log_snr)), torch.sqrt(torch.sigmoid(-log_snr)) class Chroma(nn.Module): def __init__( self, model, *, image_size, timesteps = 1000, use_ddim = False, noise_schedule = 'cosine', time_difference = 0. ): super().__init__() self.model = model self.channels = self.model.channels self.image_size = image_size if noise_schedule == "linear": self.log_snr = beta_linear_log_snr elif noise_schedule == "cosine": self.log_snr = alpha_cosine_log_snr else: raise ValueError(f'invalid noise schedule {noise_schedule}') self.timesteps = timesteps self.use_ddim = use_ddim # proposed in the paper, summed to time_next # as a way to fix a deficiency in self-conditioning and lower FID when the number of sampling timesteps is < 400 self.time_difference = time_difference @property def device(self): return next(self.model.parameters()).device def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times @torch.no_grad() def ddpm_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device=device) x_start = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', total = self.timesteps): # add the time delay time_next = (time_next - self.time_difference).clamp(min = 0.) noise_cond = self.log_snr(time) # get predicted x0 x_start = self.model(img, noise_cond, x_start) # clip x0 x_start.clamp_(-1., 1.) # get log(snr) log_snr = self.log_snr(time) log_snr_next = self.log_snr(time_next) log_snr, log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) # get alpha sigma of time and next time alpha, sigma = log_snr_to_alpha_sigma(log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(log_snr_next) # derive posterior mean and variance c = -expm1(log_snr - log_snr_next) mean = alpha_next * (img * (1 - c) / alpha + c * x_start) variance = (sigma_next ** 2) * c log_variance = log(variance) # get noise noise = torch.where( rearrange(time_next > 0, 'b -> b 1 1 1'), torch.randn_like(img), torch.zeros_like(img) ) img = mean + (0.5 * log_variance).exp() * noise return img @torch.no_grad() def ddim_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device = device) x_start = None for times, times_next in tqdm(time_pairs, desc = 'sampling loop time step'): # get times and noise levels log_snr = self.log_snr(times) log_snr_next = self.log_snr(times_next) padded_log_snr, padded_log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) alpha, sigma = log_snr_to_alpha_sigma(padded_log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(padded_log_snr_next) # add the time delay times_next = (times_next - time_difference).clamp(min = 0.) # predict x0 x_start = self.model(img, log_snr, x_start) # clip x0 x_start.clamp_(-1., 1.) # get predicted noise pred_noise = (img - alpha * x_start) / sigma.clamp(min = 1e-8) # calculate x next img = x_start * alpha_next + pred_noise * sigma_next return img @torch.no_grad() def sample(self, batch_size = 16): image_size, channels = self.image_size, self.channels sample_fn = self.ddpm_sample if not self.use_ddim else self.ddim_sample return sample_fn((batch_size, channels, image_size, image_size)) def forward(self, img, *args, **kwargs): batch, c, h, w, device, img_size, = *img.shape, img.device, self.image_size assert h == img_size and w == img_size, f'height and width of image must be {img_size}' # sample random times times = torch.zeros((batch,), device = device).float().uniform_(0, 1.) # noise sample noise = torch.randn_like(img) noise_level = self.log_snr(times) padded_noise_level = right_pad_dims_to(img, noise_level) alpha, sigma = log_snr_to_alpha_sigma(padded_noise_level) noised_img = alpha * img + sigma * noise # if doing self-conditioning, 50% of the time, predict x_start from current set of times # and condition with unet with that # this technique will slow down training by 25%, but seems to lower FID significantly self_cond = None if random() < 0.5: with torch.no_grad(): self_cond = self.model(noised_img, noise_level).detach_() # predict and take gradient step pred = self.model(noised_img, noise_level, self_cond) return F.mse_loss(pred, img) # trainer class class Trainer(object): def __init__( self, diffusion_model, folder, *, train_batch_size = 16, gradient_accumulate_every = 1, augment_horizontal_flip = True, train_lr = 1e-4, train_num_steps = 100000, ema_update_every = 10, ema_decay = 0.995, adam_betas = (0.9, 0.99), save_and_sample_every = 1000, num_samples = 25, results_folder = './results', amp = False, fp16 = False, split_batches = True, convert_image_to = None ): super().__init__() self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = 'fp16' if fp16 else 'no' ) self.accelerator.native_amp = amp self.model = diffusion_model assert has_int_squareroot(num_samples), 'number of samples must have an integer square root' self.num_samples = num_samples self.save_and_sample_every = save_and_sample_every self.batch_size = train_batch_size self.gradient_accumulate_every = gradient_accumulate_every self.train_num_steps = train_num_steps self.image_size = diffusion_model.image_size # dataset and dataloader self.ds = Dataset(folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = convert_image_to) dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count()) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) # optimizer self.opt = Adam(diffusion_model.parameters(), lr = train_lr, betas = adam_betas) # for logging results in a folder periodically if self.accelerator.is_main_process: self.ema = EMA(diffusion_model, beta = ema_decay, update_every = ema_update_every) self.results_folder = Path(results_folder) self.results_folder.mkdir(exist_ok = True) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'ema': self.ema.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): data = torch.load(str(self.results_folder / f'model-{milestone}.pt')) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) self.ema.load_state_dict(data['ema']) if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train(self): accelerator = self.accelerator device = accelerator.device with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: while self.step < self.train_num_steps: total_loss = 0. for _ in range(self.gradient_accumulate_every): data = next(self.dl).to(device) with self.accelerator.autocast(): loss = self.model(data) loss = loss / self.gradient_accumulate_every total_loss += loss.item() self.accelerator.backward(loss) pbar.set_description(f'loss: {total_loss:.4f}') accelerator.wait_for_everyone() self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() if accelerator.is_main_process: self.ema.to(device) self.ema.update() if self.step != 0 and self.step % self.save_and_sample_every == 0: self.ema.ema_model.eval() with torch.no_grad(): milestone = self.step // self.save_and_sample_every batches = num_to_groups(self.num_samples, self.batch_size) all_images_list = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches)) all_images = torch.cat(all_images_list, dim = 0) utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = int(math.sqrt(self.num_samples))) self.save(milestone) self.step += 1 pbar.update(1) accelerator.print('training complete')
import sys from setuptools import setup, find_packages sys.path[0:0] = ['big_sleep'] from version import __version__ setup( name = 'big-sleep', packages = find_packages(), include_package_data = True, entry_points={ 'console_scripts': [ 'dream = big_sleep.cli:main', ], }, version = __version__, license='MIT', description = 'Big Sleep', author = 'Ryan Murdock, Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/big-sleep', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'text to image', 'generative adversarial networks' ], install_requires=[ 'torch>=1.7.1', 'einops>=0.3', 'fire', 'ftfy', 'pytorch-pretrained-biggan', 'regex', 'torchvision>=0.8.2', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
import time import shutil import torch from big_sleep import Imagine terminate = False def signal_handling(signum,frame): global terminate terminate = True num_attempts = 4 for attempt in range(num_attempts): dream = Imagine( text = "an armchair in the form of pikachu\\an armchair imitating pikachu\\abstract", text_min = "blur\\zoom", lr = 7e-2, image_size = 512, gradient_accumulate_every = 1, save_every = 50, epochs = 5, iterations = 50, save_progress = False, bilinear = False, open_folder = False, seed = None, torch_deterministic = False, max_classes = 20, class_temperature = 2., save_date_time = False, save_best = True, experimental_resample = True, ema_decay = 0.99 ) dream() shutil.copy(dream.textpath + ".best.png", f"{attempt}.png") try: time.sleep(2) del dream time.sleep(2) torch.cuda.empty_cache() except Exception: torch.cuda.empty_cache()
__version__ = '0.9.1'
"""Good differentiable image resampling for PyTorch.""" from functools import update_wrapper import math import torch from torch.nn import functional as F def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] def odd(fn): return update_wrapper(lambda x: torch.sign(x) * fn(abs(x)), fn) def _to_linear_srgb(input): cond = input <= 0.04045 a = input / 12.92 b = ((input + 0.055) / 1.055)**2.4 return torch.where(cond, a, b) def _to_nonlinear_srgb(input): cond = input <= 0.0031308 a = 12.92 * input b = 1.055 * input**(1/2.4) - 0.055 return torch.where(cond, a, b) to_linear_srgb = odd(_to_linear_srgb) to_nonlinear_srgb = odd(_to_nonlinear_srgb) def resample(input, size, align_corners=True, is_srgb=False): n, c, h, w = input.shape dh, dw = size if is_srgb: input = to_linear_srgb(input) input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 3), 3).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect') input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 3), 3).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect') input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) input = F.interpolate(input, size, mode='bicubic', align_corners=align_corners) if is_srgb: input = to_nonlinear_srgb(input) return input
# Exponential Moving Average (from https://gist.github.com/crowsonkb/76b94d5238272722290734bf4725d204) """Exponential moving average for PyTorch. Adapted from https://www.zijianhu.com/post/pytorch/ema/ by crowsonkb """ from copy import deepcopy import torch from torch import nn class EMA(nn.Module): def __init__(self, model, decay): super().__init__() self.model = model self.decay = decay self.register_buffer('accum', torch.tensor(1.)) self._biased = deepcopy(self.model) self.average = deepcopy(self.model) for param in self._biased.parameters(): param.detach_().zero_() for param in self.average.parameters(): param.detach_().zero_() self.update() @torch.no_grad() def update(self): assert self.training, 'Update should only be called during training' self.accum *= self.decay model_params = dict(self.model.named_parameters()) biased_params = dict(self._biased.named_parameters()) average_params = dict(self.average.named_parameters()) assert model_params.keys() == biased_params.keys() == average_params.keys(), f'Model parameter keys incompatible with EMA stored parameter keys' for name, param in model_params.items(): biased_params[name].mul_(self.decay) biased_params[name].add_((1 - self.decay) * param) average_params[name].copy_(biased_params[name]) average_params[name].div_(1 - self.accum) model_buffers = dict(self.model.named_buffers()) biased_buffers = dict(self._biased.named_buffers()) average_buffers = dict(self.average.named_buffers()) assert model_buffers.keys() == biased_buffers.keys() == average_buffers.keys() for name, buffer in model_buffers.items(): biased_buffers[name].copy_(buffer) average_buffers[name].copy_(buffer) def forward(self, *args, **kwargs): if self.training: return self.model(*args, **kwargs) return self.average(*args, **kwargs)
from big_sleep.big_sleep import BigSleep, Imagine
# this code is a copy from huggingface # with some minor modifications import torch import torch.nn as nn import torch.nn.functional as F import math import json import copy import logging import os import shutil import tempfile from functools import wraps from hashlib import sha256 import sys from io import open import boto3 import requests from botocore.exceptions import ClientError from tqdm import tqdm try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path PYTORCH_PRETRAINED_BIGGAN_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE', Path.home() / '.pytorch_pretrained_biggan')) except (AttributeError, ImportError): PYTORCH_PRETRAINED_BIGGAN_CACHE = os.getenv('PYTORCH_PRETRAINED_BIGGAN_CACHE', os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_biggan')) logger = logging.getLogger(__name__) # pylint: disable=invalid-name PRETRAINED_MODEL_ARCHIVE_MAP = { 'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-pytorch_model.bin", 'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-pytorch_model.bin", 'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-pytorch_model.bin", } PRETRAINED_CONFIG_ARCHIVE_MAP = { 'biggan-deep-128': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-128-config.json", 'biggan-deep-256': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-256-config.json", 'biggan-deep-512': "https://s3.amazonaws.com/models.huggingface.co/biggan/biggan-deep-512-config.json", } WEIGHTS_NAME = 'pytorch_model.bin' CONFIG_NAME = 'config.json' def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. """ url_bytes = url.encode('utf-8') url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode('utf-8') etag_hash = sha256(etag_bytes) filename += '.' + etag_hash.hexdigest() return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + '.json' if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata['url'] etag = metadata['etag'] return url, etag def cached_path(url_or_filename, cache_dir=None): """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE if sys.version_info[0] == 3 and isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ('http', 'https', 's3'): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == '': # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url): """Check ETag on S3 object.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def http_get(url, temp_file): req = requests.get(url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url, cache_dir=None): """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_PRETRAINED_BIGGAN_CACHE if sys.version_info[0] == 3 and isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: response = requests.head(url, allow_redirects=True) if response.status_code != 200: raise IOError("HEAD request failed for url {} with status code {}" .format(url, response.status_code)) etag = response.headers.get("ETag") filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, 'wb') as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {'url': url, 'etag': etag} meta_path = cache_path + '.json' with open(meta_path, 'w', encoding="utf-8") as meta_file: json.dump(meta, meta_file) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename): ''' Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. ''' collection = set() with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path, dot=True, lower=True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext class BigGANConfig(object): """ Configuration class to store the configuration of a `BigGAN`. Defaults are for the 128x128 model. layers tuple are (up-sample in the layer ?, input channels, output channels) """ def __init__(self, output_dim=128, z_dim=128, class_embed_dim=128, channel_width=128, num_classes=1000, layers=[(False, 16, 16), (True, 16, 16), (False, 16, 16), (True, 16, 8), (False, 8, 8), (True, 8, 4), (False, 4, 4), (True, 4, 2), (False, 2, 2), (True, 2, 1)], attention_layer_position=8, eps=1e-4, n_stats=51): """Constructs BigGANConfig. """ self.output_dim = output_dim self.z_dim = z_dim self.class_embed_dim = class_embed_dim self.channel_width = channel_width self.num_classes = num_classes self.layers = layers self.attention_layer_position = attention_layer_position self.eps = eps self.n_stats = n_stats @classmethod def from_dict(cls, json_object): """Constructs a `BigGANConfig` from a Python dictionary of parameters.""" config = BigGANConfig() for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BigGANConfig` from a json file of parameters.""" with open(json_file, "r", encoding='utf-8') as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def snconv2d(eps=1e-12, **kwargs): return nn.utils.spectral_norm(nn.Conv2d(**kwargs), eps=eps) def snlinear(eps=1e-12, **kwargs): return nn.utils.spectral_norm(nn.Linear(**kwargs), eps=eps) def sn_embedding(eps=1e-12, **kwargs): return nn.utils.spectral_norm(nn.Embedding(**kwargs), eps=eps) class SelfAttn(nn.Module): """ Self attention Layer""" def __init__(self, in_channels, eps=1e-12): super(SelfAttn, self).__init__() self.in_channels = in_channels self.snconv1x1_theta = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, bias=False, eps=eps) self.snconv1x1_phi = snconv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1, bias=False, eps=eps) self.snconv1x1_g = snconv2d(in_channels=in_channels, out_channels=in_channels//2, kernel_size=1, bias=False, eps=eps) self.snconv1x1_o_conv = snconv2d(in_channels=in_channels//2, out_channels=in_channels, kernel_size=1, bias=False, eps=eps) self.maxpool = nn.MaxPool2d(2, stride=2, padding=0) self.softmax = nn.Softmax(dim=-1) self.gamma = nn.Parameter(torch.zeros(1)) def forward(self, x): _, ch, h, w = x.size() # Theta path theta = self.snconv1x1_theta(x) theta = theta.view(-1, ch//8, h*w) # Phi path phi = self.snconv1x1_phi(x) phi = self.maxpool(phi) phi = phi.view(-1, ch//8, h*w//4) # Attn map attn = torch.bmm(theta.permute(0, 2, 1), phi) attn = self.softmax(attn) # g path g = self.snconv1x1_g(x) g = self.maxpool(g) g = g.view(-1, ch//2, h*w//4) # Attn_g - o_conv attn_g = torch.bmm(g, attn.permute(0, 2, 1)) attn_g = attn_g.view(-1, ch//2, h, w) attn_g = self.snconv1x1_o_conv(attn_g) # Out out = x + self.gamma*attn_g return out class BigGANBatchNorm(nn.Module): """ This is a batch norm module that can handle conditional input and can be provided with pre-computed activation means and variances for various truncation parameters. We cannot just rely on torch.batch_norm since it cannot handle batched weights (pytorch 1.0.1). We computate batch_norm our-self without updating running means and variances. If you want to train this model you should add running means and variance computation logic. """ def __init__(self, num_features, condition_vector_dim=None, n_stats=51, eps=1e-4, conditional=True): super(BigGANBatchNorm, self).__init__() self.num_features = num_features self.eps = eps self.conditional = conditional # We use pre-computed statistics for n_stats values of truncation between 0 and 1 self.register_buffer('running_means', torch.zeros(n_stats, num_features)) self.register_buffer('running_vars', torch.ones(n_stats, num_features)) self.step_size = 1.0 / (n_stats - 1) if conditional: assert condition_vector_dim is not None self.scale = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps) self.offset = snlinear(in_features=condition_vector_dim, out_features=num_features, bias=False, eps=eps) else: self.weight = torch.nn.Parameter(torch.Tensor(num_features)) self.bias = torch.nn.Parameter(torch.Tensor(num_features)) def forward(self, x, truncation, condition_vector=None): # Retreive pre-computed statistics associated to this truncation coef, start_idx = math.modf(truncation / self.step_size) start_idx = int(start_idx) if coef != 0.0: # Interpolate running_mean = self.running_means[start_idx] * coef + self.running_means[start_idx + 1] * (1 - coef) running_var = self.running_vars[start_idx] * coef + self.running_vars[start_idx + 1] * (1 - coef) else: running_mean = self.running_means[start_idx] running_var = self.running_vars[start_idx] if self.conditional: running_mean = running_mean.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) running_var = running_var.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) weight = 1 + self.scale(condition_vector).unsqueeze(-1).unsqueeze(-1) bias = self.offset(condition_vector).unsqueeze(-1).unsqueeze(-1) out = (x - running_mean) / torch.sqrt(running_var + self.eps) * weight + bias else: out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias, training=False, momentum=0.0, eps=self.eps) return out class GenBlock(nn.Module): def __init__(self, in_size, out_size, condition_vector_dim, reduction_factor=4, up_sample=False, n_stats=51, eps=1e-12): super(GenBlock, self).__init__() self.up_sample = up_sample self.drop_channels = (in_size != out_size) middle_size = in_size // reduction_factor self.bn_0 = BigGANBatchNorm(in_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True) self.conv_0 = snconv2d(in_channels=in_size, out_channels=middle_size, kernel_size=1, eps=eps) self.bn_1 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True) self.conv_1 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps) self.bn_2 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True) self.conv_2 = snconv2d(in_channels=middle_size, out_channels=middle_size, kernel_size=3, padding=1, eps=eps) self.bn_3 = BigGANBatchNorm(middle_size, condition_vector_dim, n_stats=n_stats, eps=eps, conditional=True) self.conv_3 = snconv2d(in_channels=middle_size, out_channels=out_size, kernel_size=1, eps=eps) self.relu = nn.ReLU() def forward(self, x, cond_vector, truncation): x0 = x x = self.bn_0(x, truncation, cond_vector) x = self.relu(x) x = self.conv_0(x) x = self.bn_1(x, truncation, cond_vector) x = self.relu(x) if self.up_sample: x = F.interpolate(x, scale_factor=2, mode='nearest') x = self.conv_1(x) x = self.bn_2(x, truncation, cond_vector) x = self.relu(x) x = self.conv_2(x) x = self.bn_3(x, truncation, cond_vector) x = self.relu(x) x = self.conv_3(x) if self.drop_channels: new_channels = x0.shape[1] // 2 x0 = x0[:, :new_channels, ...] if self.up_sample: x0 = F.interpolate(x0, scale_factor=2, mode='nearest') out = x + x0 return out class Generator(nn.Module): def __init__(self, config): super(Generator, self).__init__() self.config = config ch = config.channel_width condition_vector_dim = config.z_dim * 2 self.gen_z = snlinear(in_features=condition_vector_dim, out_features=4 * 4 * 16 * ch, eps=config.eps) layers = [] for i, layer in enumerate(config.layers): if i == config.attention_layer_position: layers.append(SelfAttn(ch*layer[1], eps=config.eps)) layers.append(GenBlock(ch*layer[1], ch*layer[2], condition_vector_dim, up_sample=layer[0], n_stats=config.n_stats, eps=config.eps)) self.layers = nn.ModuleList(layers) self.bn = BigGANBatchNorm(ch, n_stats=config.n_stats, eps=config.eps, conditional=False) self.relu = nn.ReLU() self.conv_to_rgb = snconv2d(in_channels=ch, out_channels=ch, kernel_size=3, padding=1, eps=config.eps) self.tanh = nn.Tanh() def forward(self, cond_vector, truncation): z = self.gen_z(cond_vector[0].unsqueeze(0)) # We use this conversion step to be able to use TF weights: # TF convention on shape is [batch, height, width, channels] # PT convention on shape is [batch, channels, height, width] z = z.view(-1, 4, 4, 16 * self.config.channel_width) z = z.permute(0, 3, 1, 2).contiguous() next_available_latent_index = 1 for layer in self.layers: if isinstance(layer, GenBlock): z = layer(z, cond_vector[next_available_latent_index].unsqueeze(0), truncation) next_available_latent_index += 1 else: z = layer(z) z = self.bn(z, truncation) z = self.relu(z) z = self.conv_to_rgb(z) z = z[:, :3, ...] z = self.tanh(z) return z class BigGAN(nn.Module): """BigGAN Generator.""" @classmethod def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP: model_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path] config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path] else: model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) try: resolved_model_file = cached_path(model_file, cache_dir=cache_dir) resolved_config_file = cached_path(config_file, cache_dir=cache_dir) except EnvironmentError: logger.error("Wrong model name, should be a valid path to a folder containing " "a {} file and a {} file or a model name in {}".format( WEIGHTS_NAME, CONFIG_NAME, PRETRAINED_MODEL_ARCHIVE_MAP.keys())) raise logger.info("loading model {} from cache at {}".format(pretrained_model_name_or_path, resolved_model_file)) # Load config config = BigGANConfig.from_json_file(resolved_config_file) logger.info("Model config {}".format(config)) # Instantiate model. model = cls(config, *inputs, **kwargs) state_dict = torch.load(resolved_model_file, map_location='cpu' if not torch.cuda.is_available() else None) model.load_state_dict(state_dict, strict=False) return model def __init__(self, config): super(BigGAN, self).__init__() self.config = config self.embeddings = nn.Linear(config.num_classes, config.z_dim, bias=False) self.generator = Generator(config) def forward(self, z, class_label, truncation): assert 0 < truncation <= 1 embed = self.embeddings(class_label) cond_vector = torch.cat((z, embed), dim=1) z = self.generator(cond_vector, truncation) return z
import fire import random as rnd from big_sleep import Imagine, version from pathlib import Path from .version import __version__; def train( text=None, img=None, text_min="", lr = .07, image_size = 512, gradient_accumulate_every = 1, epochs = 20, iterations = 1050, save_every = 50, overwrite = False, save_progress = False, save_date_time = False, bilinear = False, open_folder = True, seed = 0, append_seed = False, random = False, torch_deterministic = False, max_classes = None, class_temperature = 2., save_best = False, experimental_resample = False, ema_decay = 0.5, num_cutouts = 128, center_bias = False, larger_model = False ): print(f'Starting up... v{__version__}') if random: seed = rnd.randint(0, 1e6) imagine = Imagine( text=text, img=img, text_min=text_min, lr = lr, image_size = image_size, gradient_accumulate_every = gradient_accumulate_every, epochs = epochs, iterations = iterations, save_every = save_every, save_progress = save_progress, bilinear = bilinear, seed = seed, append_seed = append_seed, torch_deterministic = torch_deterministic, open_folder = open_folder, max_classes = max_classes, class_temperature = class_temperature, save_date_time = save_date_time, save_best = save_best, experimental_resample = experimental_resample, ema_decay = ema_decay, num_cutouts = num_cutouts, center_bias = center_bias, larger_clip = larger_model ) if not overwrite and imagine.filename.exists(): answer = input('Imagined image already exists, do you want to overwrite? (y/n) ').lower() if answer not in ('yes', 'y'): exit() imagine() def main(): fire.Fire(train)
import os import sys import subprocess import signal import string import re from datetime import datetime from pathlib import Path import random import torch import torch.nn.functional as F from torch import nn from torch.optim import Adam from torchvision.utils import save_image import torchvision.transforms as T from PIL import Image from tqdm import tqdm, trange from big_sleep.ema import EMA from big_sleep.resample import resample from big_sleep.biggan import BigGAN from big_sleep.clip import load, tokenize assert torch.cuda.is_available(), 'CUDA must be available in order to use Big Sleep' # graceful keyboard interrupt terminate = False def signal_handling(signum,frame): print('detecting keyboard interrupt, gracefully exiting') global terminate terminate = True signal.signal(signal.SIGINT,signal_handling) # helpers def exists(val): return val is not None def open_folder(path): if os.path.isfile(path): path = os.path.dirname(path) if not os.path.isdir(path): return cmd_list = None if sys.platform == 'darwin': cmd_list = ['open', '--', path] elif sys.platform == 'linux2' or sys.platform == 'linux': cmd_list = ['xdg-open', path] elif sys.platform in ['win32', 'win64']: cmd_list = ['explorer', path.replace('/','\\')] if cmd_list == None: return try: subprocess.check_call(cmd_list) except subprocess.CalledProcessError: pass except OSError: pass def create_text_path(text=None, img=None, encoding=None): input_name = "" if text is not None: input_name += text if img is not None: if isinstance(img, str): img_name = "".join(img.split(".")[:-1]) # replace spaces by underscores, remove img extension img_name = img_name.split("/")[-1] # only take img name, not path else: img_name = "PIL_img" input_name += "_" + img_name if encoding is not None: input_name = "your_encoding" return input_name.replace("-", "_").replace(",", "").replace(" ", "_").replace("|", "--").strip('-_')[:255] # tensor helpers def differentiable_topk(x, k, temperature=1.): n, dim = x.shape topk_tensors = [] for i in range(k): is_last = i == (k - 1) values, indices = (x / temperature).softmax(dim=-1).topk(1, dim=-1) topks = torch.zeros_like(x).scatter_(-1, indices, values) topk_tensors.append(topks) if not is_last: x = x.scatter(-1, indices, float('-inf')) topks = torch.cat(topk_tensors, dim=-1) return topks.reshape(n, k, dim).sum(dim = 1) def create_clip_img_transform(image_width): clip_mean = [0.48145466, 0.4578275, 0.40821073] clip_std = [0.26862954, 0.26130258, 0.27577711] transform = T.Compose([ #T.ToPILImage(), T.Resize(image_width), T.CenterCrop((image_width, image_width)), T.ToTensor(), T.Normalize(mean=clip_mean, std=clip_std) ]) return transform def rand_cutout(image, size, center_bias=False, center_focus=2): width = image.shape[-1] min_offset = 0 max_offset = width - size if center_bias: # sample around image center center = max_offset / 2 std = center / center_focus offset_x = int(random.gauss(mu=center, sigma=std)) offset_y = int(random.gauss(mu=center, sigma=std)) # resample uniformly if over boundaries offset_x = random.randint(min_offset, max_offset) if (offset_x > max_offset or offset_x < min_offset) else offset_x offset_y = random.randint(min_offset, max_offset) if (offset_y > max_offset or offset_y < min_offset) else offset_y else: offset_x = random.randint(min_offset, max_offset) offset_y = random.randint(min_offset, max_offset) cutout = image[:, :, offset_x:offset_x + size, offset_y:offset_y + size] return cutout # load biggan class Latents(torch.nn.Module): def __init__( self, num_latents = 15, num_classes = 1000, z_dim = 128, max_classes = None, class_temperature = 2. ): super().__init__() self.normu = torch.nn.Parameter(torch.zeros(num_latents, z_dim).normal_(std = 1)) self.cls = torch.nn.Parameter(torch.zeros(num_latents, num_classes).normal_(mean = -3.9, std = .3)) self.register_buffer('thresh_lat', torch.tensor(1)) assert not exists(max_classes) or max_classes > 0 and max_classes <= num_classes, f'max_classes must be between 0 and {num_classes}' self.max_classes = max_classes self.class_temperature = class_temperature def forward(self): if exists(self.max_classes): classes = differentiable_topk(self.cls, self.max_classes, temperature = self.class_temperature) else: classes = torch.sigmoid(self.cls) return self.normu, classes class Model(nn.Module): def __init__( self, image_size, max_classes = None, class_temperature = 2., ema_decay = 0.99 ): super().__init__() assert image_size in (128, 256, 512), 'image size must be one of 128, 256, or 512' self.biggan = BigGAN.from_pretrained(f'biggan-deep-{image_size}') self.max_classes = max_classes self.class_temperature = class_temperature self.ema_decay\ = ema_decay self.init_latents() def init_latents(self): latents = Latents( num_latents = len(self.biggan.config.layers) + 1, num_classes = self.biggan.config.num_classes, z_dim = self.biggan.config.z_dim, max_classes = self.max_classes, class_temperature = self.class_temperature ) self.latents = EMA(latents, self.ema_decay) def forward(self): self.biggan.eval() out = self.biggan(*self.latents(), 1) return (out + 1) / 2 class BigSleep(nn.Module): def __init__( self, num_cutouts = 128, loss_coef = 100, image_size = 512, bilinear = False, max_classes = None, class_temperature = 2., experimental_resample = False, ema_decay = 0.99, center_bias = False, larger_clip = False ): super().__init__() self.loss_coef = loss_coef self.image_size = image_size self.num_cutouts = num_cutouts self.experimental_resample = experimental_resample self.center_bias = center_bias self.interpolation_settings = {'mode': 'bilinear', 'align_corners': False} if bilinear else {'mode': 'nearest'} model_name = 'ViT-B/32' if not larger_clip else 'ViT-L/14' self.perceptor, self.normalize_image = load(model_name, jit = False) self.model = Model( image_size = image_size, max_classes = max_classes, class_temperature = class_temperature, ema_decay = ema_decay ) def reset(self): self.model.init_latents() def sim_txt_to_img(self, text_embed, img_embed, text_type="max"): sign = -1 if text_type == "min": sign = 1 return sign * self.loss_coef * torch.cosine_similarity(text_embed, img_embed, dim = -1).mean() def forward(self, text_embeds, text_min_embeds=[], return_loss = True): width, num_cutouts = self.image_size, self.num_cutouts out = self.model() if not return_loss: return out pieces = [] for ch in range(num_cutouts): # sample cutout size size = int(width * torch.zeros(1,).normal_(mean=.8, std=.3).clip(.5, .95)) # get cutout apper = rand_cutout(out, size, center_bias=self.center_bias) if (self.experimental_resample): apper = resample(apper, (224, 224)) else: apper = F.interpolate(apper, (224, 224), **self.interpolation_settings) pieces.append(apper) into = torch.cat(pieces) into = self.normalize_image(into) image_embed = self.perceptor.encode_image(into) latents, soft_one_hot_classes = self.model.latents() num_latents = latents.shape[0] latent_thres = self.model.latents.model.thresh_lat lat_loss = torch.abs(1 - torch.std(latents, dim=1)).mean() + \ torch.abs(torch.mean(latents, dim = 1)).mean() + \ 4 * torch.max(torch.square(latents).mean(), latent_thres) for array in latents: mean = torch.mean(array) diffs = array - mean var = torch.mean(torch.pow(diffs, 2.0)) std = torch.pow(var, 0.5) zscores = diffs / std skews = torch.mean(torch.pow(zscores, 3.0)) kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0 lat_loss = lat_loss + torch.abs(kurtoses) / num_latents + torch.abs(skews) / num_latents cls_loss = ((50 * torch.topk(soft_one_hot_classes, largest = False, dim = 1, k = 999)[0]) ** 2).mean() results = [] for txt_embed in text_embeds: results.append(self.sim_txt_to_img(txt_embed, image_embed)) for txt_min_embed in text_min_embeds: results.append(self.sim_txt_to_img(txt_min_embed, image_embed, "min")) sim_loss = sum(results).mean() return out, (lat_loss, cls_loss, sim_loss) class Imagine(nn.Module): def __init__( self, *, text=None, img=None, encoding=None, text_min = "", lr = .07, image_size = 512, gradient_accumulate_every = 1, save_every = 50, epochs = 20, iterations = 1050, save_progress = False, bilinear = False, open_folder = True, seed = None, append_seed = False, torch_deterministic = False, max_classes = None, class_temperature = 2., save_date_time = False, save_best = False, experimental_resample = False, ema_decay = 0.99, num_cutouts = 128, center_bias = False, larger_clip = False ): super().__init__() if torch_deterministic: assert not bilinear, 'the deterministic (seeded) operation does not work with interpolation (PyTorch 1.7.1)' torch.set_deterministic(True) self.seed = seed self.append_seed = append_seed if exists(seed): print(f'setting seed of {seed}') if seed == 0: print('you can override this with --seed argument in the command line, or --random for a randomly chosen one') torch.manual_seed(seed) self.epochs = epochs self.iterations = iterations model = BigSleep( image_size = image_size, bilinear = bilinear, max_classes = max_classes, class_temperature = class_temperature, experimental_resample = experimental_resample, ema_decay = ema_decay, num_cutouts = num_cutouts, center_bias = center_bias, larger_clip = larger_clip ).cuda() self.model = model self.lr = lr self.optimizer = Adam(model.model.latents.model.parameters(), lr) self.gradient_accumulate_every = gradient_accumulate_every self.save_every = save_every self.save_progress = save_progress self.save_date_time = save_date_time self.save_best = save_best self.current_best_score = 0 self.open_folder = open_folder self.total_image_updates = (self.epochs * self.iterations) / self.save_every self.encoded_texts = { "max": [], "min": [] } # create img transform self.clip_transform = create_clip_img_transform(224) # create starting encoding self.set_clip_encoding(text=text, img=img, encoding=encoding, text_min=text_min) @property def seed_suffix(self): return f'.{self.seed}' if self.append_seed and exists(self.seed) else '' def set_text(self, text): self.set_clip_encoding(text = text) def create_clip_encoding(self, text=None, img=None, encoding=None): self.text = text self.img = img if encoding is not None: encoding = encoding.cuda() #elif self.create_story: # encoding = self.update_story_encoding(epoch=0, iteration=1) elif text is not None and img is not None: encoding = (self.create_text_encoding(text) + self.create_img_encoding(img)) / 2 elif text is not None: encoding = self.create_text_encoding(text) elif img is not None: encoding = self.create_img_encoding(img) return encoding def create_text_encoding(self, text): tokenized_text = tokenize(text).cuda() with torch.no_grad(): text_encoding = self.model.perceptor.encode_text(tokenized_text).detach() return text_encoding def create_img_encoding(self, img): if isinstance(img, str): img = Image.open(img) normed_img = self.clip_transform(img).unsqueeze(0).cuda() with torch.no_grad(): img_encoding = self.model.perceptor.encode_image(normed_img).detach() return img_encoding def encode_multiple_phrases(self, text, img=None, encoding=None, text_type="max"): if text is not None and "|" in text: self.encoded_texts[text_type] = [self.create_clip_encoding(text=prompt_min, img=img, encoding=encoding) for prompt_min in text.split("|")] else: self.encoded_texts[text_type] = [self.create_clip_encoding(text=text, img=img, encoding=encoding)] def encode_max_and_min(self, text, img=None, encoding=None, text_min=""): self.encode_multiple_phrases(text, img=img, encoding=encoding) if text_min is not None and text_min != "": self.encode_multiple_phrases(text_min, img=img, encoding=encoding, text_type="min") def set_clip_encoding(self, text=None, img=None, encoding=None, text_min=""): self.current_best_score = 0 self.text = text self.text_min = text_min if len(text_min) > 0: text = text + "_wout_" + text_min[:255] if text is not None else "wout_" + text_min[:255] text_path = create_text_path(text=text, img=img, encoding=encoding) if self.save_date_time: text_path = datetime.now().strftime("%y%m%d-%H%M%S-") + text_path self.text_path = text_path self.filename = Path(f'./{text_path}{self.seed_suffix}.png') self.encode_max_and_min(text, img=img, encoding=encoding, text_min=text_min) # Tokenize and encode each prompt def reset(self): self.model.reset() self.model = self.model.cuda() self.optimizer = Adam(self.model.model.latents.parameters(), self.lr) def train_step(self, epoch, i, pbar=None): total_loss = 0 for _ in range(self.gradient_accumulate_every): out, losses = self.model(self.encoded_texts["max"], self.encoded_texts["min"]) loss = sum(losses) / self.gradient_accumulate_every total_loss += loss loss.backward() self.optimizer.step() self.model.model.latents.update() self.optimizer.zero_grad() if (i + 1) % self.save_every == 0: with torch.no_grad(): self.model.model.latents.eval() out, losses = self.model(self.encoded_texts["max"], self.encoded_texts["min"]) top_score, best = torch.topk(losses[2], k=1, largest=False) image = self.model.model()[best].cpu() self.model.model.latents.train() save_image(image, str(self.filename)) if pbar is not None: pbar.update(1) else: print(f'image updated at "./{str(self.filename)}"') if self.save_progress: total_iterations = epoch * self.iterations + i num = total_iterations // self.save_every save_image(image, Path(f'./{self.text_path}.{num}{self.seed_suffix}.png')) if self.save_best and top_score.item() < self.current_best_score: self.current_best_score = top_score.item() save_image(image, Path(f'./{self.text_path}{self.seed_suffix}.best.png')) return out, total_loss def forward(self): penalizing = "" if len(self.text_min) > 0: penalizing = f'penalizing "{self.text_min}"' print(f'Imagining "{self.text_path}" {penalizing}...') with torch.no_grad(): self.model(self.encoded_texts["max"][0]) # one warmup step due to issue with CLIP and CUDA if self.open_folder: open_folder('./') self.open_folder = False image_pbar = tqdm(total=self.total_image_updates, desc='image update', position=2, leave=True) epoch_pbar = trange(self.epochs, desc = ' epochs', position=0, leave=True) for epoch in (ep for ep in epoch_pbar if not terminate): pbar = trange(self.iterations, desc=' iteration', position=1, leave=True) image_pbar.update(0) for i in (it for it in pbar if not terminate): out, loss = self.train_step(epoch, i, image_pbar) pbar.set_description(f'loss: {loss.item():04.2f}')
from collections import OrderedDict from typing import Tuple, Union import torch import torch.nn.functional as F from torch import nn from pathlib import Path import hashlib import os import urllib import warnings from typing import Union, List import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" } def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _transform(): return Compose([ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model (default) or more hackable non-JIT model. Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name]) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: model = build_model(state_dict or model.state_dict()).to(device) if str(device) == "cpu": model.float() return model, _transform() # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform() def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([])) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logit_scale * text_features @ image_features.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval() import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = Path(bpe_path).read_text(encoding='utf8').split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text import gzip _tokenizer = SimpleTokenizer()
from setuptools import setup, find_packages setup( name = 'axial_positional_embedding', packages = find_packages(), version = '0.2.1', license='MIT', description = 'Axial Positional Embedding', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/axial-positional-embedding', keywords = ['transformers', 'artificial intelligence'], install_requires=[ 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
import torch from torch import nn from operator import mul from functools import reduce class AxialPositionalEmbedding(nn.Module): def __init__(self, dim, axial_shape, axial_dims = None): super().__init__() self.dim = dim self.shape = axial_shape self.max_seq_len = reduce(mul, axial_shape, 1) self.summed = axial_dims is None axial_dims = ((dim,) * len(axial_shape)) if self.summed else axial_dims assert len(self.shape) == len(axial_dims), 'number of axial dimensions must equal the number of dimensions in the shape' assert self.summed or not self.summed and sum(axial_dims) == dim, f'axial dimensions must sum up to the target dimension {dim}' self.weights = ParameterList(self, 'weights', len(axial_shape)) for ind, (shape, axial_dim) in enumerate(zip(self.shape, axial_dims)): ax_shape = [1] * len(self.shape) ax_shape[ind] = shape ax_shape = (1, *ax_shape, axial_dim) ax_emb = nn.Parameter(torch.zeros(ax_shape).normal_(0, 1)) self.weights.append(ax_emb) def forward(self, x): b, t, e = x.shape assert (t <= self.max_seq_len), f'Sequence length ({t}) must be less than the maximum sequence length allowed ({self.max_seq_len})' embs = [] for ax_emb in self.weights.to_list(): axial_dim = ax_emb.shape[-1] expand_shape = (b, *self.shape, axial_dim) emb = ax_emb.expand(expand_shape).reshape(b, self.max_seq_len, axial_dim) embs.append(emb) pos_emb = sum(embs) if self.summed else torch.cat(embs, dim=-1) return pos_emb[:, :t].to(x) # a mock parameter list object until below issue is resolved # https://github.com/pytorch/pytorch/issues/36035 class ParameterList(object): def __init__(self, kls, prefix, length): self.ind = 0 self.kls = kls self.prefix = prefix self.length = length def _keyname(self, prefix, ind): return f'{prefix}_{ind}' def append(self, x): setattr(self.kls, self._keyname(self.prefix, self.ind), x) self.ind += 1 def to_list(self): return [getattr(self.kls, self._keyname(self.prefix, i)) for i in range(self.length)] # Axial Positional Embedding for Images class AxialPositionalEmbeddingImage(nn.Module): def __init__(self, dim, axial_shape, axial_dims = None): super().__init__() assert len(axial_shape) == 2, 'Axial shape must have 2 dimensions for images' self.pos_emb = AxialPositionalEmbedding(dim, axial_shape, axial_dims) def forward(self, img): b, c, h, w = img.shape img = img.permute(0, 2, 3, 1).reshape(b, h * w, c) pos_emb = self.pos_emb(img) return pos_emb.reshape(b, h, w, c).permute(0, 3, 1, 2)
from axial_positional_embedding.axial_positional_embedding import AxialPositionalEmbedding, AxialPositionalEmbeddingImage
import torch from torch.optim import Adam from torch.utils.data import DataLoader import torch.nn.functional as F from einops import rearrange import sidechainnet as scn from alphafold2_pytorch import Alphafold2 import alphafold2_pytorch.constants as constants from alphafold2_pytorch.utils import get_bucketed_distance_matrix # constants DEVICE = None # defaults to cuda if available, else cpu NUM_BATCHES = int(1e5) GRADIENT_ACCUMULATE_EVERY = 16 LEARNING_RATE = 3e-4 IGNORE_INDEX = -100 THRESHOLD_LENGTH = 250 # set device DISTOGRAM_BUCKETS = constants.DISTOGRAM_BUCKETS DEVICE = constants.DEVICE # helpers def cycle(loader, cond = lambda x: True): while True: for data in loader: if not cond(data): continue yield data # get data data = scn.load( casp_version = 12, thinning = 30, with_pytorch = 'dataloaders', batch_size = 1, dynamic_batching = False ) data = iter(data['train']) data_cond = lambda t: t[1].shape[1] < THRESHOLD_LENGTH dl = cycle(data, data_cond) # model model = Alphafold2( dim = 256, depth = 1, heads = 8, dim_head = 64 ).to(DEVICE) # optimizer optim = Adam(model.parameters(), lr = LEARNING_RATE) # training loop for _ in range(NUM_BATCHES): for _ in range(GRADIENT_ACCUMULATE_EVERY): batch = next(dl) seq, coords, mask = batch.seqs, batch.crds, batch.msks b, l, _ = seq.shape # prepare mask, labels seq, coords, mask = seq.argmax(dim = -1).to(DEVICE), coords.to(DEVICE), mask.to(DEVICE).bool() coords = rearrange(coords, 'b (l c) d -> b l c d', l = l) discretized_distances = get_bucketed_distance_matrix(coords[:, :, 1], mask, DISTOGRAM_BUCKETS, IGNORE_INDEX) # predict distogram = model(seq, mask = mask) distogram = rearrange(distogram, 'b i j c -> b c i j') # loss loss = F.cross_entropy( distogram, discretized_distances, ignore_index = IGNORE_INDEX ) loss.backward() print('loss:', loss.item()) optim.step() optim.zero_grad()
import torch from torch.optim import Adam from torch.utils.data import DataLoader import torch.nn.functional as F from einops import rearrange # data import sidechainnet as scn from sidechainnet.sequence.utils import VOCAB from sidechainnet.structure.build_info import NUM_COORDS_PER_RES # models from alphafold2_pytorch import Alphafold2 import alphafold2_pytorch.constants as constants from se3_transformer_pytorch import SE3Transformer from alphafold2_pytorch.utils import * # constants FEATURES = "esm" # one of ["esm", "msa", "msa_transformer", None] DEVICE = None # defaults to cuda if available, else cpu NUM_BATCHES = int(1e5) GRADIENT_ACCUMULATE_EVERY = 16 LEARNING_RATE = 3e-4 IGNORE_INDEX = -100 THRESHOLD_LENGTH = 250 TO_PDB = False SAVE_DIR = "" # set device DEVICE = constants.DEVICE DISTOGRAM_BUCKETS = constants.DISTOGRAM_BUCKETS # set emebdder model from esm if appropiate - Load ESM-1b model if FEATURES == "esm": # from pytorch hub (almost 30gb) embedd_model, alphabet = torch.hub.load("facebookresearch/esm", "esm1b_t33_650M_UR50S") batch_converter = alphabet.get_batch_converter() ##  alternatively do # import esm # after installing esm # model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S() batch_converter = alphabet.get_batch_converter() # helpers def cycle(loader, cond = lambda x: True): while True: for data in loader: if not cond(data): continue yield data # get data data = scn.load( casp_version = 12, thinning = 30, with_pytorch = 'dataloaders', batch_size = 1, dynamic_batching = False ) data = iter(data['train']) data_cond = lambda t: t[1].shape[1] < THRESHOLD_LENGTH dl = cycle(data, data_cond) # model model = Alphafold2( dim = 256, depth = 1, heads = 8, dim_head = 64, predict_coords = True, structure_module_dim = 8, structure_module_depth = 2, structure_module_heads = 4, structure_module_dim_head = 16, structure_module_refinement_iters = 2 ).to(DEVICE) # optimizer dispersion_weight = 0.1 criterion = nn.MSELoss() optim = Adam(model.parameters(), lr = LEARNING_RATE) # training loop for _ in range(NUM_BATCHES): for _ in range(GRADIENT_ACCUMULATE_EVERY): batch = next(dl) seq, coords, mask = batch.seqs, batch.crds, batch.msks b, l, _ = seq.shape # prepare data and mask labels seq, coords, mask = seq.argmax(dim = -1).to(DEVICE), coords.to(DEVICE), mask.to(DEVICE) # coords = rearrange(coords, 'b (l c) d -> b l c d', l = l) # no need to rearrange for now # mask the atoms and backbone positions for each residue # sequence embedding (msa / esm / attn / or nothing) msa, embedds = None # get embedds if FEATURES == "esm": embedds = get_esm_embedd(seq, embedd_model, batch_converter) # get msa here elif FEATURES == "msa": pass # no embeddings else: pass # predict - out is (batch, L * 3, 3) refined = model( seq, msa = msa, embedds = embedds, mask = mask ) # build SC container. set SC points to CA and optionally place carbonyl O proto_sidechain = sidechain_container(coords_3d, n_aa=batch, cloud_mask=cloud_mask, place_oxygen=False) # rotate / align coords_aligned, labels_aligned = Kabsch(refined, coords[flat_cloud_mask]) # atom mask cloud_mask = scn_cloud_mask(seq, boolean = False) flat_cloud_mask = rearrange(cloud_mask, 'b l c -> b (l c)') # chain_mask is all atoms that will be backpropped thru -> existing + trainable chain_mask = (mask * cloud_mask)[cloud_mask] flat_chain_mask = rearrange(chain_mask, 'b l c -> b (l c)') # save pdb files for visualization if TO_PDB: # idx from batch to save prot and label idx = 0 coords2pdb(seq[idx, :, 0], coords_aligned[idx], cloud_mask, prefix=SAVE_DIR, name="pred.pdb") coords2pdb(seq[idx, :, 0], labels_aligned[idx], cloud_mask, prefix=SAVE_DIR, name="label.pdb") # loss - RMSE + distogram_dispersion loss = torch.sqrt(criterion(coords_aligned[flat_chain_mask], labels_aligned[flat_chain_mask])) + \ dispersion_weight * torch.norm( (1/weights)-1 ) loss.backward() print('loss:', loss.item()) optim.step() optim.zero_grad()
from setuptools import setup, find_packages setup( name = 'alphafold2-pytorch', packages = find_packages(), version = '0.4.32', license='MIT', description = 'AlphaFold2 - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang, Eric Alcaide', author_email = '[email protected], [email protected]', url = 'https://github.com/lucidrains/alphafold2', keywords = [ 'artificial intelligence', 'attention mechanism', 'protein folding' ], install_requires=[ 'einops>=0.3', 'En-transformer>=0.2.3', 'invariant-point-attention', 'mdtraj>=1.8', 'numpy', 'proDy', 'pytorch3d', 'requests', 'sidechainnet', 'torch>=1.6', 'transformers', 'tqdm', 'biopython', 'mp-nerf>=0.1.5' ], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.7', ], )
import torch import torch.nn as nn from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states from contextlib import contextmanager from einops import reduce # helpers def exists(val): return val is not None @contextmanager def null_context(): yield def split_at_index(dim, index, t): pre_slices = (slice(None),) * dim l = (*pre_slices, slice(None, index)) r = (*pre_slices, slice(index, None)) return t[l], t[r] # function wrapper for determinism on backwards class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # reversible self attention block class ReversibleSelfAttnBlock(nn.Module): def __init__(self, f, g, j, k): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) self.j = Deterministic(j) self.k = Deterministic(k) def forward(self, x, m, mask = None, msa_mask = None, seq_shape = None, msa_shape = None, seq_pos_emb = None, msa_pos_emb = None, _reverse = True, **kwargs): x1, x2 = torch.chunk(x, 2, dim = 2) m1, m2 = torch.chunk(m, 2, dim = 2) y1, y2, n1, n2 = None, None, None, None context = torch.no_grad if _reverse else null_context record_rng = self.training and _reverse with context(): y1 = x1 + self.f(x2, shape = seq_shape, record_rng = record_rng, mask = mask, rotary_emb = seq_pos_emb) y2 = x2 + self.g(y1, shape = seq_shape, record_rng = record_rng) n1 = m1 + self.j(m2, shape = msa_shape, record_rng = record_rng, mask = msa_mask, rotary_emb = msa_pos_emb) n2 = m2 + self.k(n1, record_rng = record_rng) return torch.cat((y1, y2), dim = 2), torch.cat((n1, n2), dim = 2) def backward_pass(self, y, n, dy, dn, mask = None, msa_mask = None, seq_shape = None, msa_shape = None, seq_pos_emb = None, msa_pos_emb = None, **kwargs): y1, y2 = torch.chunk(y, 2, dim = 2) del y dy1, dy2 = torch.chunk(dy, 2, dim = 2) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, shape = seq_shape, set_rng = True) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, shape = seq_shape, set_rng = True, mask = mask, rotary_emb = seq_pos_emb) torch.autograd.backward(fx2, dx1, retain_graph = True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim = 2) dx = torch.cat([dx1, dx2], dim = 2) n1, n2 = torch.chunk(n, 2, dim = 2) del n dn1, dn2 = torch.chunk(dn, 2, dim = 2) del dn with torch.enable_grad(): n1.requires_grad = True gn1 = self.k(n1, set_rng = True) torch.autograd.backward(gn1, dn2) with torch.no_grad(): m2 = n2 - gn1 del n2, gn1 dm1 = dn1 + n1.grad del dn1 n1.grad = None with torch.enable_grad(): m2.requires_grad = True fm2 = self.j(m2, shape = msa_shape, set_rng = True, mask = msa_mask, rotary_emb = msa_pos_emb) torch.autograd.backward(fm2, dm1, retain_graph=True) with torch.no_grad(): m1 = n1 - fm2 del n1, fm2 dm2 = dn2 + m2.grad del dn2 m2.grad = None m = torch.cat([m1, m2.detach()], dim = 2) dm = torch.cat([dm1, dm2], dim = 2) return x, m, dx, dm # reversible cross attention block class ReversibleCrossAttnBlock(nn.Module): def __init__(self, f, g, j, k): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) self.j = Deterministic(j) self.k = Deterministic(k) def forward(self, x, m, mask = None, msa_mask = None, seq_shape = None, msa_shape = None, seq_to_msa_pos_emb = None, msa_to_seq_pos_emb = None, _reverse = True, **kwargs): x1, x2 = torch.chunk(x, 2, dim = 2) m1, m2 = torch.chunk(m, 2, dim = 2) y1, y2, n1, n2 = None, None, None, None context = torch.no_grad if _reverse else null_context record_rng = self.training and _reverse with context(): y1 = x1 + self.f(x2, m2, record_rng = record_rng, mask = mask, context_mask = msa_mask, shape = seq_shape, context_shape = msa_shape, rotary_emb = seq_to_msa_pos_emb) y2 = x2 + self.k(y1, shape = seq_shape, record_rng = record_rng) n1 = m1 + self.j(m2, y2, record_rng = record_rng, mask = msa_mask, context_mask = mask, shape = msa_shape, context_shape = seq_shape, rotary_emb = msa_to_seq_pos_emb) n2 = m2 + self.g(n1, record_rng = record_rng) return torch.cat((y1, y2), dim = 2), torch.cat((n1, n2), dim = 2) def backward_pass(self, y, n, dy, dn, mask = None, msa_mask = None, seq_shape = None, msa_shape = None, seq_to_msa_pos_emb = None, msa_to_seq_pos_emb = None, **kwargs): n1, n2 = torch.chunk(n, 2, dim = 2) del n dn1, dn2 = torch.chunk(dn, 2, dim = 2) del dn y1, y2 = torch.chunk(y, 2, dim = 2) del y dy1, dy2 = torch.chunk(dy, 2, dim = 2) del dy with torch.enable_grad(): n1.requires_grad = True gn1 = self.g(n1, set_rng = True) torch.autograd.backward(gn1, dn2) with torch.no_grad(): m2 = n2 - gn1 del n2, gn1 dm1 = dn1 + n1.grad del dn1 n1.grad = None with torch.enable_grad(): m2.requires_grad = True y2.requires_grad = True fm2 = self.j(m2, y2, set_rng=True, mask = msa_mask, context_mask = mask, shape = msa_shape, context_shape = seq_shape, rotary_emb = msa_to_seq_pos_emb) torch.autograd.backward(fm2, dm1) with torch.no_grad(): m1 = n1 - fm2 del n1, fm2 dm2 = dn2 + m2.grad dx2 = dy2 + y2.grad del dn2 del dy2 m2.grad = None y2.grad = None with torch.enable_grad(): y1.requires_grad = True gy1 = self.k(y1, shape = seq_shape, set_rng = True) torch.autograd.backward(gy1, dx2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True m2.requires_grad = True fx2 = self.f(x2, m2, set_rng = True, mask = mask, context_mask = msa_mask, shape = seq_shape, context_shape = msa_shape, rotary_emb = seq_to_msa_pos_emb) torch.autograd.backward(fx2, dx1) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dx2 + x2.grad dm2 = dm2 + m2.grad x2.grad = None m2.grad = None with torch.no_grad(): m = torch.cat([m1, m2.detach()], dim = 2) dm = torch.cat([dm1, dm2], dim = 2) x = torch.cat([x1, x2.detach()], dim = 2) dx = torch.cat([dx1, dx2], dim = 2) return x, m, dx, dm # reverse and non reverse functions class ReversibleFunction(Function): @staticmethod def forward(ctx, inp, ind, blocks, kwargs): x, m = split_at_index(1, ind, inp) for block in blocks: x, m = block(x, m, _reverse = True, **kwargs) ctx.blocks = blocks ctx.kwargs = kwargs ctx.ind = ind ctx.save_for_backward(x.detach(), m.detach()) return torch.cat((x, m), dim = 1) @staticmethod def backward(ctx, d): ind = ctx.ind blocks = ctx.blocks kwargs = ctx.kwargs dy, dn = split_at_index(1, ind, d) y, n = ctx.saved_tensors for block in blocks[::-1]: y, n, dy, dn = block.backward_pass(y, n, dy, dn, **kwargs) d = torch.cat((dy, dn), dim = 1) return d, None, None, None reversible_apply = ReversibleFunction.apply def irreversible_apply(inputs, ind, blocks, kwargs): x, m = split_at_index(1, ind, inputs) for block in blocks: x, m = block(x, m, _reverse = False, **kwargs) return torch.cat((x, m), dim = 1) # main reversible sequence class class ReversibleSequence(nn.Module): def __init__(self, input_blocks, block_types): super().__init__() self.block_types = block_types blocks = nn.ModuleList([]) for block, block_type in zip(input_blocks, block_types): if block_type == 'self': reversible_klass = ReversibleSelfAttnBlock elif block_type == 'cross': reversible_klass = ReversibleCrossAttnBlock elif block_type == 'conv': reversible_klass = ReversibleSelfAttnBlock blocks.append(reversible_klass(*block)) self.blocks = blocks def forward( self, seq, msa, seq_shape = None, msa_shape = None, mask = None, msa_mask = None, seq_pos_emb = None, msa_pos_emb = None, seq_to_msa_pos_emb = None, msa_to_seq_pos_emb = None, reverse = True ): assert exists(msa), 'reversibility does not work with no MSA sequences yet' blocks = self.blocks seq, msa = list(map(lambda t: torch.cat((t, t), dim = -1), (seq, msa))) kwargs = {'mask': mask, 'msa_mask': msa_mask, 'seq_shape': seq_shape, 'msa_shape': msa_shape, 'seq_pos_emb': seq_pos_emb, 'msa_pos_emb': msa_pos_emb, 'seq_to_msa_pos_emb': seq_to_msa_pos_emb, 'msa_to_seq_pos_emb': msa_to_seq_pos_emb} fn = reversible_apply if reverse else irreversible_apply ind = seq.shape[1] inp = torch.cat((seq, msa), dim = 1) out = fn(inp, ind, blocks, kwargs) seq, msa = split_at_index(1, ind, out) return list(map(lambda t: reduce(t, 'b n (c d) -> b n d', 'mean', c = 2), (seq, msa)))
import math import torch import torch.nn.functional as F from torch import nn, einsum from alphafold2_pytorch import constants from einops import rearrange # MSA MLM def get_mask_subset_with_prob(mask, prob): batch, seq_len, device = *mask.shape, mask.device max_masked = math.ceil(prob * seq_len) num_tokens = mask.sum(dim=-1, keepdim=True) mask_excess = (mask.cumsum(dim=-1) > (num_tokens * prob).ceil()) mask_excess = mask_excess[:, :max_masked] rand = torch.rand((batch, seq_len), device=device).masked_fill(~mask, -1e9) _, sampled_indices = rand.topk(max_masked, dim=-1) sampled_indices = (sampled_indices + 1).masked_fill_(mask_excess, 0) new_mask = torch.zeros((batch, seq_len + 1), device=device) new_mask.scatter_(-1, sampled_indices, 1) return new_mask[:, 1:].bool() class MLM(nn.Module): def __init__( self, dim, num_tokens, mask_id, mask_prob = 0.15, random_replace_token_prob = 0.1, keep_token_same_prob = 0.1, exclude_token_ids = (0,) ): super().__init__() self.to_logits = nn.Linear(dim, num_tokens) self.mask_id = mask_id self.mask_prob = mask_prob self.exclude_token_ids = exclude_token_ids self.keep_token_same_prob = keep_token_same_prob self.random_replace_token_prob = random_replace_token_prob def noise(self, seq, mask): num_msa = seq.shape[1] seq = rearrange(seq, 'b n ... -> (b n) ...') mask = rearrange(mask, 'b n ... -> (b n) ...') # prepare masks for noising sequence excluded_tokens_mask = mask for token_id in self.exclude_token_ids: excluded_tokens_mask = excluded_tokens_mask & (seq != token_id) mlm_mask = get_mask_subset_with_prob(excluded_tokens_mask, self.mask_prob) # keep some tokens the same replace_token_with_mask = get_mask_subset_with_prob(mlm_mask, 1. - self.keep_token_same_prob) # replace with mask seq = seq.masked_fill(mlm_mask, self.mask_id) # generate random tokens random_replace_token_prob_mask = get_mask_subset_with_prob(mlm_mask, (1 - self.keep_token_same_prob) * self.random_replace_token_prob) random_tokens = torch.randint(1, constants.NUM_AMINO_ACIDS, seq.shape).to(seq.device) for token_id in self.exclude_token_ids: random_replace_token_prob_mask = random_replace_token_prob_mask & (random_tokens != token_id) # make sure you never substitute a token with an excluded token type (pad, start, end) # noise sequence noised_seq = torch.where(random_replace_token_prob_mask, random_tokens, seq) noised_seq = rearrange(noised_seq, '(b n) ... -> b n ...', n = num_msa) mlm_mask = rearrange(mlm_mask, '(b n) ... -> b n ...', n = num_msa) return noised_seq, mlm_mask def forward(self, seq_embed, original_seq, mask): logits = self.to_logits(seq_embed) seq_logits = logits[mask] seq_labels = original_seq[mask] loss = F.cross_entropy(seq_logits, seq_labels, reduction = 'mean') return loss
import torch # constants MAX_NUM_MSA = 20 MAX_NUM_TEMPLATES = 10 NUM_AMINO_ACIDS = 21 NUM_EMBEDDS_TR = 1280 # best esm model NUM_EMBEDDS_T5 = 1024 # best t5 model NUM_COORDS_PER_RES = 14 DISTOGRAM_BUCKETS = 37 THETA_BUCKETS = 25 PHI_BUCKETS = 13 OMEGA_BUCKETS = 25 # embedding related constants MSA_EMBED_DIM = 768 MSA_MODEL_PATH = ["facebookresearch/esm", "esm_msa1_t12_100M_UR50S"] ESM_EMBED_DIM = 1280 ESM_MODEL_PATH = ["facebookresearch/esm", "esm1b_t33_650M_UR50S"] PROTTRAN_EMBED_DIM = 1024 # default device DEVICE_NAME = 'cuda' if torch.cuda.is_available() else 'cpu' DEVICE = torch.device(DEVICE_NAME) # aminoacid data AA_DATA = { 'A': { 'bonds': [[0,1], [1,2], [2,3], [1,4]] }, 'R': { 'bonds': [[0,1], [1,2], [2,3], [2,4], [4,5], [5,6], [6,7], [7,8], [8,9], [8,10]] }, 'N': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [5,7]] }, 'D': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [5,7]] }, 'C': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5]] }, 'Q': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [6,8]] }, 'E': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8]] }, 'G': { 'bonds': [[0,1], [1,2], [2,3]] }, 'H': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8], [8,9], [5,9]] }, 'I': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [4,7]] }, 'L': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [5,7]] }, 'K': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8]] }, 'M': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7]] }, 'F': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8], [8,9], [9,10], [5,10]] }, 'P': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [0,6]] }, 'S': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5]] }, 'T': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [4,6]] }, 'W': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8], [8,9], [9,10], [10,11], [11,12], [12, 13], [5,13], [8,13]] }, 'Y': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [5,6], [6,7], [7,8], [8,9], [8,10], [10,11], [5,11]] }, 'V': { 'bonds': [[0,1], [1,2], [2,3], [1,4], [4,5], [4,6]] }, '_': { 'bonds': [] } }
from alphafold2_pytorch.alphafold2 import Alphafold2, Evoformer
# utils for working with 3d-protein structures import os import re import numpy as np import torch import contextlib from functools import wraps from einops import rearrange, repeat # import torch_sparse # only needed for sparse nth_deg adj calculation # bio from Bio import SeqIO import itertools import string # sidechainnet from sidechainnet.utils.sequence import ProteinVocabulary, ONE_TO_THREE_LETTER_MAP from sidechainnet.utils.measure import GLOBAL_PAD_CHAR from sidechainnet.structure.build_info import NUM_COORDS_PER_RES, BB_BUILD_INFO, SC_BUILD_INFO from sidechainnet.structure.StructureBuilder import _get_residue_build_iter # custom import mp_nerf # build vocabulary VOCAB = ProteinVocabulary() # constants import alphafold2_pytorch.constants as constants # helpers def exists(val): return val is not None # constants: same as in alphafold2.py DISTANCE_THRESHOLDS = torch.linspace(2, 20, steps = constants.DISTOGRAM_BUCKETS) # distance binning function def get_bucketed_distance_matrix(coords, mask, num_buckets = constants.DISTOGRAM_BUCKETS, ignore_index = -100): distances = torch.cdist(coords, coords, p=2) boundaries = torch.linspace(2, 20, steps = num_buckets, device = coords.device) discretized_distances = torch.bucketize(distances, boundaries[:-1]) discretized_distances.masked_fill_(~(mask[..., None] & mask[..., None, :]), ignore_index) return discretized_distances # decorators def set_backend_kwarg(fn): @wraps(fn) def inner(*args, backend = 'auto', **kwargs): if backend == 'auto': backend = 'torch' if isinstance(args[0], torch.Tensor) else 'numpy' kwargs.update(backend = backend) return fn(*args, **kwargs) return inner def expand_dims_to(t, length = 3): if length == 0: return t return t.reshape(*((1,) * length), *t.shape) # will work with both torch and numpy def expand_arg_dims(dim_len = 3): """ pack here for reuse. turns input into (B x D x N) """ def outer(fn): @wraps(fn) def inner(x, y, **kwargs): assert len(x.shape) == len(y.shape), "Shapes of A and B must match." remaining_len = dim_len - len(x.shape) x = expand_dims_to(x, length = remaining_len) y = expand_dims_to(y, length = remaining_len) return fn(x, y, **kwargs) return inner return outer def invoke_torch_or_numpy(torch_fn, numpy_fn): def outer(fn): @wraps(fn) def inner(*args, **kwargs): backend = kwargs.pop('backend') passed_args = fn(*args, **kwargs) passed_args = list(passed_args) if isinstance(passed_args[-1], dict): passed_kwargs = passed_args.pop() else: passed_kwargs = {} backend_fn = torch_fn if backend == 'torch' else numpy_fn return backend_fn(*passed_args, **passed_kwargs) return inner return outer @contextlib.contextmanager def torch_default_dtype(dtype): prev_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(prev_dtype) # preprocess data def get_atom_ids_dict(): """ Get's a dict mapping each atom to a token. """ ids = set(["", "N", "CA", "C", "O"]) for k,v in SC_BUILD_INFO.items(): for name in v["atom-names"]: ids.add(name) return {k: i for i,k in enumerate(sorted(ids))} def make_cloud_mask(aa): """ relevent points will be 1. paddings will be 0. """ mask = np.zeros(constants.NUM_COORDS_PER_RES) # early stop if padding token if aa == "_": return mask # get num of atoms in aa n_atoms = 4+len( SC_BUILD_INFO[ ONE_TO_THREE_LETTER_MAP[aa] ]["atom-names"] ) mask[:n_atoms] = 1 return mask def make_atom_id_embedds(aa, atom_ids): """ Return the tokens for each atom in the aa. """ mask = np.zeros(constants.NUM_COORDS_PER_RES) # early stop if padding token if aa == "_": return mask # get atom id atom_list = ["N", "CA", "C", "O"] + SC_BUILD_INFO[ ONE_TO_THREE_LETTER_MAP[aa] ]["atom-names"] for i,atom in enumerate(atom_list): mask[i] = ATOM_IDS[atom] return mask ATOM_IDS = get_atom_ids_dict() CUSTOM_INFO = {k: {"cloud_mask": make_cloud_mask(k), "atom_id_embedd": make_atom_id_embedds(k, atom_ids=ATOM_IDS), } for k in "ARNDCQEGHILKMFPSTWYV_"} # common utils # parsing to pdb for easier visualization - other example from sidechainnet is: # https://github.com/jonathanking/sidechainnet/tree/master/sidechainnet/structure def download_pdb(name, route): """ Downloads a PDB entry from the RCSB PDB. Inputs: * name: str. the PDB entry id. 4 characters, capitalized. * route: str. route of the destin file. usually ".pdb" extension Output: route of destin file """ os.system(f"curl https://files.rcsb.org/download/{name}.pdb > {route}") return route def clean_pdb(name, route=None, chain_num=None): """ Cleans the structure to only leave the important part. Inputs: * name: str. route of the input .pdb file * route: str. route of the output. will overwrite input if not provided * chain_num: int. index of chain to select (1-indexed as pdb files) Output: route of destin file. """ import mdtraj destin = route if route is not None else name # read input raw_prot = mdtraj.load_pdb(name) # iterate over prot and select the specified chains idxs = [] for chain in raw_prot.topology.chains: # if arg passed, only select that chain if chain_num is not None: if chain_num != chain.index: continue # select indexes of chain chain_idxs = raw_prot.topology.select(f"chainid == {str(chain.index)}") idxs.extend( chain_idxs.tolist() ) # sort: topology and xyz selection are ordered idxs = sorted(idxs) # get new trajectory from the sleected subset of indexes and save prot = mdtraj.Trajectory(xyz=raw_prot.xyz[:, idxs], topology=raw_prot.topology.subset(idxs)) prot.save(destin) return destin def custom2pdb(coords, proteinnet_id, route): """ Takes a custom representation and turns into a .pdb file. Inputs: * coords: array/tensor of shape (3 x N) or (N x 3). in Angstroms. same order as in the proteinnnet is assumed (same as raw pdb file) * proteinnet_id: str. proteinnet id format (<class>#<pdb_id>_<chain_number>_<chain_id>) see: https://github.com/aqlaboratory/proteinnet/ * route: str. destin route. Output: tuple of routes: (original, generated) for the structures. """ import mdtraj # convert to numpy if isinstance(coords, torch.Tensor): coords = coords.detach().cpu().numpy() # ensure (1, N, 3) if coords.shape[1] == 3: coords = coords.T coords = np.newaxis(coords, axis=0) # get pdb id and chain num pdb_name, chain_num = proteinnet_id.split("#")[-1].split("_")[:-1] pdb_destin = "/".join(route.split("/")[:-1])+"/"+pdb_name+".pdb" # download pdb file and select appropiate download_pdb(pdb_name, pdb_destin) clean_pdb(pdb_destin, chain_num=chain_num) # load trajectory scaffold and replace coordinates - assumes same order scaffold = mdtraj.load_pdb(pdb_destin) scaffold.xyz = coords scaffold.save(route) return pdb_destin, route def coords2pdb(seq, coords, cloud_mask, prefix="", name="af2_struct.pdb"): """ Turns coordinates into PDB files ready to be visualized. Inputs: * seq: (L,) tensor of ints (sidechainnet aa-key pairs) * coords: (3, N) coords of atoms * cloud_mask: (L, C) boolean mask of occupied spaces in scn format * prefix: str. directory to save files. * name: str. name of destin file (ex: pred1.pdb) """ scaffold = torch.zeros( cloud_mask.shape, 3 ) scaffold[cloud_mask] = coords.cpu().float() # build structures and save pred = scn.StructureBuilder( seq, crd=scaffold ) pred.to_pdb(prefix+name) # adapted from https://github.com/facebookresearch/esm def remove_insertions(sequence: str) -> str: """ Removes any insertions into the sequence. Needed to load aligned sequences in an MSA. """ deletekeys = dict.fromkeys(string.ascii_lowercase) deletekeys["."] = None deletekeys["*"] = None translation = str.maketrans(deletekeys) return sequence.translate(translation) def read_msa(filename: str, nseq: int): """ Reads the first nseq sequences from an MSA file, automatically removes insertions.""" return [(record.description, remove_insertions(str(record.seq))) for record in itertools.islice(SeqIO.parse(filename, "fasta"), nseq)] # sidechainnet / MSA / other data utils def ids_to_embed_input(x): """ Returns the amino acid string input for calculating the ESM and MSA transformer embeddings Inputs: * x: any deeply nested list of integers that correspond with amino acid id """ assert isinstance(x, list), 'input must be a list' id2aa = VOCAB._int2char out = [] for el in x: if isinstance(el, list): out.append(ids_to_embed_input(el)) elif isinstance(el, int): out.append(id2aa[el]) else: raise TypeError('type must be either list or character') if all(map(lambda c: isinstance(c, str), out)): return (None, ''.join(out)) return out def ids_to_prottran_input(x): """ Returns the amino acid string input for calculating the ESM and MSA transformer embeddings Inputs: * x: any deeply nested list of integers that correspond with amino acid id """ assert isinstance(x, list), 'input must be a list' id2aa = VOCAB._int2char out = [] for ids in x: chars = ' '.join([id2aa[i] for i in ids]) chars = re.sub(r"[UZOB]", "X", chars) out.append(chars) return out def get_prottran_embedd(seq, model, tokenizer, device = None): from transformers import pipeline fe = pipeline('feature-extraction', model = model, tokenizer = tokenizer, device = (-1 if not exists(device) else device.index)) max_seq_len = seq.shape[1] embedd_inputs = ids_to_prottran_input(seq.cpu().tolist()) embedding = fe(embedd_inputs) embedding = torch.tensor(embedding, device = device) return embedding[:, 1:(max_seq_len + 1)] def get_msa_embedd(msa, embedd_model, batch_converter, device = None): """ Returns the MSA_tr embeddings for a protein. Inputs: * seq: ( (b,) L,) tensor of ints (in sidechainnet int-char convention) * embedd_model: MSA_tr model (see train_end2end.py for an example) * batch_converter: MSA_tr batch converter (see train_end2end.py for an example) Outputs: tensor of (batch, n_seqs, L, embedd_dim) * n_seqs: number of sequences in the MSA * embedd_dim: number of embedding dimensions. 768 for MSA_Transformer """ # use MSA transformer REPR_LAYER_NUM = 12 device = seq.device max_seq_len = msa.shape[-1] embedd_inputs = ids_to_embed_input(msa.cpu().tolist()) msa_batch_labels, msa_batch_strs, msa_batch_tokens = batch_converter(embedd_inputs) with torch.no_grad(): results = embedd_model(msa_batch_tokens.to(device), repr_layers=[REPR_LAYER_NUM], return_contacts=False) # index 0 is for start token. so take from 1 one token_reps = results["representations"][REPR_LAYER_NUM][..., 1:max_seq_len+1, :] return token_reps def get_esm_embedd(seq, embedd_model, batch_converter, msa_data=None): """ Returns the ESM embeddings for a protein. Inputs: * seq: ( (b,) L,) tensor of ints (in sidechainnet int-char convention) * embedd_model: ESM model (see train_end2end.py for an example) * batch_converter: ESM batch converter (see train_end2end.py for an example) Outputs: tensor of (batch, n_seqs, L, embedd_dim) * n_seqs: number of sequences in the MSA. 1 for ESM-1b * embedd_dim: number of embedding dimensions. 1280 for ESM-1b """ # use ESM transformer device = seq.device REPR_LAYER_NUM = 33 max_seq_len = seq.shape[-1] embedd_inputs = ids_to_embed_input(seq.cpu().tolist()) batch_labels, batch_strs, batch_tokens = batch_converter(embedd_inputs) with torch.no_grad(): results = embedd_model(batch_tokens.to(device), repr_layers=[REPR_LAYER_NUM], return_contacts=False) # index 0 is for start token. so take from 1 one token_reps = results["representations"][REPR_LAYER_NUM][..., 1:max_seq_len+1, :].unsqueeze(dim=1) return token_reps def get_t5_embedd(seq, tokenizer, encoder, msa_data=None, device=None): """ Returns the ProtT5-XL-U50 embeddings for a protein. Inputs: * seq: ( (b,) L,) tensor of ints (in sidechainnet int-char convention) * tokenizer: tokenizer model: T5Tokenizer * encoder: encoder model: T5EncoderModel ex: from transformers import T5EncoderModel, T5Tokenizer model_name = "Rostlab/prot_t5_xl_uniref50" tokenizer = T5Tokenizer.from_pretrained(model_name, do_lower_case=False ) model = T5EncoderModel.from_pretrained(model_name) # prepare model model = model.to(device) model = model.eval() if torch.cuda.is_available(): model = model.half() Outputs: tensor of (batch, n_seqs, L, embedd_dim) * n_seqs: number of sequences in the MSA. 1 for T5 models * embedd_dim: number of embedding dimensions. 1024 for T5 models """ # get params and prepare device = seq.device if device is None else device embedd_inputs = ids_to_prottran_input(seq.cpu().tolist()) # embedd - https://huggingface.co/Rostlab/prot_t5_xl_uniref50 inputs_embedding = [] shift_left, shift_right = 0, -1 ids = tokenizer.batch_encode_plus(embedd_inputs, add_special_tokens=True, padding=True, return_tensors="pt") with torch.no_grad(): embedding = encoder(input_ids=torch.tensor(ids['input_ids']).to(device), attention_mask=torch.tensor(ids["attention_mask"]).to(device)) # return (batch, seq_len, embedd_dim) token_reps = embedding.last_hidden_state[:, shift_left:shift_right].to(device) token_reps = expand_dims_to(token_reps, 4-len(token_reps.shape)) return token_reps.float() def get_all_protein_ids(dataloader, verbose=False): """ Given a sidechainnet dataloader for a CASP version, Returns all the ids belonging to proteins. Inputs: * dataloader: a sidechainnet dataloader for a CASP version Outputs: a set containing the ids for all protein entries. """ # store ids here ids = set([]) # iterate for all batches for i,batch in tqdm(enumerate(dataloaders['train'])): # for breaking from 2 loops at once try: for i in range(batch.int_seqs.shape[0]): # check if all fragments are : 4_LETTER_PDB + NUM + CHAIN max_len_10 = len(batch.pids[i]) < 10 fragments = [len(x) <= 4 for x in batch.pids[i].split("_")] fragments_under_4 = sum(fragments) == len(fragments) # AND CONDITION # record id if max_len_10 and fragments_under_4: ids.add(batch.pids[i]) else: if verbose: print("skip:", batch.pids[i], "under 4", fragments) except StopIteration: break # returns set of ids return ids def scn_cloud_mask(scn_seq, boolean=True, coords=None): """ Gets the boolean mask atom positions (not all aas have same atoms). Inputs: * scn_seq: (batch, length) sequence as provided by Sidechainnet package * boolean: whether to return as array of idxs or boolean values * coords: optional .(batch, lc, 3). sidechainnet coords. returns the true mask (solves potential atoms that might not be provided) Outputs: (batch, length, NUM_COORDS_PER_RES) boolean mask """ scn_seq = expand_dims_to(scn_seq, 2 - len(scn_seq.shape)) # early check for coords mask if coords is not None: batch_mask = ( rearrange(coords, '... (l c) d -> ... l c d', c=constants.NUM_COORDS_PER_RES) == 0 ).sum(dim=-1) < coords.shape[-1] if boolean: return batch_mask.bool() else: return batch_mask.nonzero() # do loop in cpu device = scn_seq.device batch_mask = [] scn_seq = scn_seq.cpu().tolist() for i, seq in enumerate(scn_seq): # get masks for each prot (points for each aa) batch_mask.append( torch.tensor([CUSTOM_INFO[VOCAB._int2char[aa]]['cloud_mask'] \ for aa in seq]).bool().to(device) ) # concat in last dim batch_mask = torch.stack(batch_mask, dim=0) # return mask (boolean or indexes) if boolean: return batch_mask.bool() else: return batch_mask.nonzero() def scn_backbone_mask(scn_seq, boolean=True, n_aa=3): """ Gets the boolean mask for N and CA positions. Inputs: * scn_seq: sequence(s) as provided by Sidechainnet package (int tensor/s) * n_aa: number of atoms in a backbone. (may include cbeta as 4th pos) * bool: whether to return as array of idxs or boolean values Outputs: (N_mask, CA_mask, C_mask) """ wrapper = torch.zeros(*scn_seq.shape, n_aa).to(scn_seq.device) # N is the first atom in every AA. CA is the 2nd. wrapper[..., 0] = 1 wrapper[..., 1] = 2 wrapper[..., 2] = 3 wrapper = rearrange(wrapper, '... l c -> ... (l c)') # find idxs N_mask = wrapper == 1 CA_mask = wrapper == 2 C_mask = wrapper == 3 if boolean: return N_mask, CA_mask, C_mask return torch.nonzero(N_mask), torch.nonzero(CA_mask), torch.nonzero(C_mask) def scn_atom_embedd(scn_seq): """ Returns the token for each atom in the aa. Inputs: * scn_seq: sequence(s) as provided by Sidechainnet package (int tensor/s) """ device = scn_seq.device batch_tokens = [] # do loop in cpu scn_seq = scn_seq.cpu().tolist() for i,seq in enumerate(scn_seq): batch_tokens.append( torch.tensor([CUSTOM_INFO[VOCAB.int2char(aa)]["atom_id_embedd"] \ for aa in seq]) ) batch_tokens = torch.stack(batch_tokens, dim=0).long().to(device) return batch_tokens def mat_input_to_masked(x, x_mask=None, edges_mat=None, edges=None, edge_mask=None, edge_attr_mat=None, edge_attr=None): """ Turns the padded input and edges + mask into the non-padded inputs and edges. At least one of (edges_mat, edges) must be provided. The same format for edges and edge_attr must be provided (either adj matrix form or flattened form). Inputs: * x: ((batch), N, D) a tensor of N nodes and D dims for each one * x_mask: ((batch), N,) boolean mask for x * edges: (2, E) optional. indices of the corresponding adjancecy matrix. * edges_mat: ((batch), N, N) optional. adjacency matrix for x * edge_mask: optional. boolean mask of the same shape of either "edge_mat" or "edges". * edge_attr: (E, D_edge) optional. edge attributes of D_edge dims. * edge_attr_mat: ((batch), N, N) optional. adjacency matrix with features Outputs: * x: (N_, D) the masked node features * edge_index: (2, E_) the masked x-indices for the edges * edge_attr: (E_, D_edge) the masked edge attributes * batch: (N_,) the corresponding index in the batch for each node """ # collapse batch dimension if len(x.shape) == 3: batch_dim = x.shape[1] # collapse for x and its mask x = rearrange(x, 'b n d ... -> (b n) d ...') if x_mask is not None: x_mask = rearrange(x_mask, 'b n ... -> (b n) ...') else: x_mask = torch.ones_like(x[..., 0]).bool() # collapse for edge indexes and attributes if needed if edges_mat is not None and edges is None: edges = torch.nonzero(edges_mat, as_tuple=False).t() edges = edges[1:] + edges[:1]*batch_dim # get the batch identifier for each node batch = (torch.arange(x.shape[0], device=x.device) // batch_dim)[x_mask] else: # edges to indices format if edges_mat is not None and edges is None: edges = torch.nonzero(edges_mat, as_tuple=False).t() # get the batch identifier for each node batch = torch.zeros(x.shape[0], device=x.device).to(x.device) # adapt edge attrs if provided if edge_attr_mat is not None and edge_attr is None: edge_attr = edge_attr[edges_mat.bool()] # gen edge_mask if not provided if edge_mask is None: edge_mask = torch.ones_like(edges[-1]).bool() # begin applying masks x = x[x_mask] # process edge indexes: get square mat and remove all non-coding atoms max_num = edges.max().item()+1 wrapper = torch.zeros(max_num, max_num).to(x.device) wrapper[edges[0][edge_mask], edges[1][edge_mask]] = 1 wrapper = wrapper[x_mask, :][:, x_mask] edge_index = torch.nonzero(wrapper, as_tuple=False).t() # process edge attr edge_attr = edge_attr[edge_mask] if edge_attr is not None else None return x, edge_index, edge_attr, batch def nth_deg_adjacency(adj_mat, n=1, sparse=False): """ Calculates the n-th degree adjacency matrix. Performs mm of adj_mat and adds the newly added. Default is dense. Mods for sparse version are done when needed. Inputs: * adj_mat: (N, N) adjacency tensor * n: int. degree of the output adjacency * sparse: bool. whether to use torch-sparse module Outputs: * edge_idxs: ij positions of the adjacency matrix * edge_attrs: degree of connectivity (1 for neighs, 2 for neighs^2, ... ) """ adj_mat = adj_mat.float() attr_mat = torch.zeros_like(adj_mat) new_adj_mat = adj_mat.clone() for i in range(n): if i == 0: attr_mat += adj_mat continue if i == 1 and sparse: idxs = adj_mat.nonzero().t() vals = adj_mat[idxs[0], idxs[1]] new_idxs = idxs.clone() new_vals = vals.clone() m, k, n = 3 * [adj_mat.shape[0]] # (m, n) * (n, k) , but adj_mats are squared: m=n=k if sparse: new_idxs, new_vals = torch_sparse.spspmm(new_idxs, new_vals, idxs, vals, m=m, k=k, n=n) new_vals = new_vals.bool().float() # fill by indexes bc it's faster in sparse mode - will need an intersection function previous = attr_mat[new_idxs[0], new_idxs[1]].bool().float() attr_mat[new_idxs[0], new_idxs[1]] = (1 - previous)*(i+1) else: new_adj_mat = (new_adj_mat @ adj_mat).bool().float() attr_mat.masked_fill( (new_adj_mat - attr_mat.bool().float()).bool(), i+1 ) return new_adj_mat, attr_mat def prot_covalent_bond(seqs, adj_degree=1, cloud_mask=None, mat=True, sparse=False): """ Returns the idxs of covalent bonds for a protein. Inputs * seq: (b, n) torch long. * adj_degree: int. adjacency degree * cloud_mask: mask selecting the present atoms. * mat: whether to return as indexes of only atoms (PyG version) or matrices of masked atoms (for batched training). for indexes, only 1 seq is supported. * sparse: bool. whether to use torch_sparse for adj_mat calc Outputs: edge_idxs, edge_types (degree of adjacency). """ device = seqs.device # set up container adj_mat (will get trimmed - less than 14) next_aa = NUM_COORDS_PER_RES adj_mat = torch.zeros(seqs.shape[0], *[seqs.shape[1]*NUM_COORDS_PER_RES]*2) # not needed to device since it's only for indices seq_list = seqs.cpu().tolist() for s,seq in enumerate(seq_list): next_idx = 0 for i,idx in enumerate(seq): aa_bonds = constants.AA_DATA[VOCAB._int2char[idx]]['bonds'] # if no edges -> padding token -> finish bond creation for this seq if len(aa_bonds) == 0: break # correct next position. for indexes functionality next_aa = max(aa_bonds, key=lambda x: max(x))[-1] # offset by pos in chain ( intra-aa bonds + with next aa ) bonds = next_idx + torch.tensor( aa_bonds + [[2, next_aa]] ).t() next_idx += next_aa # delete link with next if final AA in seq if i == seqs.shape[1] - 1: bonds = bonds[:, :-1] # modify adj mat adj_mat[s, bonds[0], bonds[1]] = 1 # convert to undirected adj_mat[s] = adj_mat[s] + adj_mat[s].t() # do N_th degree adjacency adj_mat, attr_mat = nth_deg_adjacency(adj_mat, n=adj_degree, sparse=sparse) if mat: # return the full matrix/tensor return attr_mat.bool().to(seqs.device), attr_mat.to(device) else: edge_idxs = attr_mat[0].nonzero().t().long() edge_types = attr_mat[0, edge_idxs[0], edge_idxs[1]] return edge_idxs.to(seqs.device), edge_types.to(seqs.device) def sidechain_container(seqs, backbones, atom_mask, cloud_mask=None, padding_tok=20): """ Gets a backbone of the protein, returns the whole coordinates with sidechains (same format as sidechainnet). Keeps differentiability. Inputs: * seqs: (batch, L) either tensor or list * backbones: (batch, L*n_aa, 3): assume batch=1 (could be extended (?not tested)). Coords for (N-term, C-alpha, C-term, (c_beta)) of every aa. * atom_mask: (14,). int or bool tensor specifying which atoms are passed. * cloud_mask: (batch, l, c). optional. cloud mask from scn_cloud_mask`. sets point outside of mask to 0. if passed, else c_alpha * padding: int. padding token. same as in sidechainnet: 20 Outputs: whole coordinates of shape (batch, L, 14, 3) """ atom_mask = atom_mask.bool().cpu().detach() cum_atom_mask = atom_mask.cumsum(dim=-1).tolist() device = backbones.device batch, length = backbones.shape[0], backbones.shape[1] // cum_atom_mask[-1] predicted = rearrange(backbones, 'b (l back) d -> b l back d', l=length) # early check if whole chain is already pred if cum_atom_mask[-1] == 14: return predicted # build scaffold from (N, CA, C, CB) - do in cpu new_coords = torch.zeros(batch, length, constants.NUM_COORDS_PER_RES, 3) predicted = predicted.cpu() if predicted.is_cuda else predicted # fill atoms if they have been passed for i,atom in enumerate(atom_mask.tolist()): if atom: new_coords[:, :, i] = predicted[:, :, cum_atom_mask[i]-1] # generate sidechain if not passed for s,seq in enumerate(seqs): # format seq accordingly if isinstance(seq, torch.Tensor): padding = (seq == padding_tok).sum().item() seq_str = ''.join([VOCAB._int2char[aa] for aa in seq.cpu().numpy()[:-padding or None]]) elif isinstance(seq, str): padding = 0 seq_str = seq # get scaffolds - will overwrite oxygen since its position is fully determined by N-C-CA scaffolds = mp_nerf.proteins.build_scaffolds_from_scn_angles(seq_str, angles=None, device="cpu") coords, _ = mp_nerf.proteins.sidechain_fold(wrapper = new_coords[s, :-padding or None].detach(), **scaffolds, c_beta = cum_atom_mask[4]==5) # add detached scn for i,atom in enumerate(atom_mask.tolist()): if not atom: new_coords[:, :-padding or None, i] = coords[:, i] new_coords = new_coords.to(device) if cloud_mask is not None: new_coords[torch.logical_not(cloud_mask)] = 0. # replace any nan-s with previous point location (or N if pos is 13th of AA) nan_mask = list(torch.nonzero(new_coords!=new_coords, as_tuple=True)) new_coords[nan_mask[0], nan_mask[1], nan_mask[2]] = new_coords[nan_mask[0], nan_mask[1], (nan_mask[-2]+1) % new_coords.shape[-1]] return new_coords.to(device) # distance utils (distogram to dist mat + masking) def center_distogram_torch(distogram, bins=DISTANCE_THRESHOLDS, min_t=1., center="mean", wide="std"): """ Returns the central estimate of a distogram. Median for now. Inputs: * distogram: (batch, N, N, B) where B is the number of buckets. * bins: (B,) containing the cutoffs for the different buckets * min_t: float. lower bound for distances. Outputs: * central: (batch, N, N) * dispersion: (batch, N, N) * weights: (batch, N, N) """ shape, device = distogram.shape, distogram.device # threshold to weights and find mean value of each bin n_bins = ( bins - 0.5 * (bins[2] - bins[1]) ).to(device) n_bins[0] = 1.5 n_bins[-1] = 1.33*bins[-1] # above last threshold is ignored max_bin_allowed = torch.tensor(n_bins.shape[0]-1).to(device).long() # calculate measures of centrality and dispersion - magnitudes = distogram.sum(dim=-1) if center == "median": cum_dist = torch.cumsum(distogram, dim=-1) medium = 0.5 * cum_dist[..., -1:] central = torch.searchsorted(cum_dist, medium).squeeze() central = n_bins[ torch.min(central, max_bin_allowed) ] elif center == "mean": central = (distogram * n_bins).sum(dim=-1) / magnitudes # create mask for last class - (IGNORE_INDEX) mask = (central <= bins[-2].item()).float() # mask diagonal to 0 dist - don't do masked filling to avoid inplace errors diag_idxs = np.arange(shape[-2]) central = expand_dims_to(central, 3 - len(central.shape)) central[:, diag_idxs, diag_idxs] *= 0. # provide weights if wide == "var": dispersion = (distogram * (n_bins - central.unsqueeze(-1))**2).sum(dim=-1) / magnitudes elif wide == "std": dispersion = ((distogram * (n_bins - central.unsqueeze(-1))**2).sum(dim=-1) / magnitudes).sqrt() else: dispersion = torch.zeros_like(central, device=device) # rescale to 0-1. lower std / var --> weight=1. set potential nan's to 0 weights = mask / (1+dispersion) weights[weights != weights] *= 0. weights[:, diag_idxs, diag_idxs] *= 0. return central, weights # distance matrix to 3d coords: https://github.com/scikit-learn/scikit-learn/blob/42aff4e2e/sklearn/manifold/_mds.py#L279 def mds_torch(pre_dist_mat, weights=None, iters=10, tol=1e-5, eigen=False, verbose=2): """ Gets distance matrix. Outputs 3d. See below for wrapper. Assumes (for now) distogram is (N x N) and symmetric Outs: * best_3d_coords: (batch x 3 x N) * historic_stresses: (batch x steps) """ device, dtype = pre_dist_mat.device, pre_dist_mat.type() # ensure batched MDS pre_dist_mat = expand_dims_to(pre_dist_mat, length = ( 3 - len(pre_dist_mat.shape) )) # start batch, N, _ = pre_dist_mat.shape diag_idxs = np.arange(N) his = [torch.tensor([np.inf]*batch, device=device)] # initialize by eigendecomposition: https://www.lptmc.jussieu.fr/user/lesne/bioinformatics.pdf # follow : https://www.biorxiv.org/content/10.1101/2020.11.27.401232v1.full.pdf D = pre_dist_mat**2 M = 0.5 * (D[:, :1, :] + D[:, :, :1] - D) # do loop svd bc it's faster: (2-3x in CPU and 1-2x in GPU) # https://discuss.pytorch.org/t/batched-svd-lowrank-being-much-slower-than-loop-implementation-both-cpu-and-gpu/119336 svds = [torch.svd_lowrank(mi) for mi in M] u = torch.stack([svd[0] for svd in svds], dim=0) s = torch.stack([svd[1] for svd in svds], dim=0) v = torch.stack([svd[2] for svd in svds], dim=0) best_3d_coords = torch.bmm(u, torch.diag_embed(s).abs().sqrt())[..., :3] # only eigen - way faster but not weights if weights is None and eigen==True: return torch.transpose( best_3d_coords, -1, -2), torch.zeros_like(torch.stack(his, dim=0)) elif eigen==True: if verbose: print("Can't use eigen flag if weights are active. Fallback to iterative") # continue the iterative way if weights is None: weights = torch.ones_like(pre_dist_mat) # iterative updates: for i in range(iters): # compute distance matrix of coords and stress best_3d_coords = best_3d_coords.contiguous() dist_mat = torch.cdist(best_3d_coords, best_3d_coords, p=2).clone() stress = ( weights * (dist_mat - pre_dist_mat)**2 ).sum(dim=(-1,-2)) * 0.5 # perturb - update X using the Guttman transform - sklearn-like dist_mat[ dist_mat <= 0 ] += 1e-7 ratio = weights * (pre_dist_mat / dist_mat) B = -ratio B[:, diag_idxs, diag_idxs] += ratio.sum(dim=-1) # update coords = (1. / N * torch.matmul(B, best_3d_coords)) dis = torch.norm(coords, dim=(-1, -2)) if verbose >= 2: print('it: %d, stress %s' % (i, stress)) # update metrics if relative improvement above tolerance if (his[-1] - stress / dis).mean() <= tol: if verbose: print('breaking at iteration %d with stress %s' % (i, stress / dis)) break best_3d_coords = coords his.append( stress / dis ) return torch.transpose(best_3d_coords, -1,-2), torch.stack(his, dim=0) def mds_numpy(pre_dist_mat, weights=None, iters=10, tol=1e-5, eigen=False, verbose=2): """ Gets distance matrix. Outputs 3d. See below for wrapper. Assumes (for now) distrogram is (N x N) and symmetric Out: * best_3d_coords: (3 x N) * historic_stress """ if weights is None: weights = np.ones_like(pre_dist_mat) # ensure batched MDS pre_dist_mat = expand_dims_to(pre_dist_mat, length = ( 3 - len(pre_dist_mat.shape) )) # start batch, N, _ = pre_dist_mat.shape his = [np.inf] # init random coords best_stress = np.inf * np.ones(batch) best_3d_coords = 2*np.random.rand(batch, 3, N) - 1 # iterative updates: for i in range(iters): # compute distance matrix of coords and stress dist_mat = np.linalg.norm(best_3d_coords[:, :, :, None] - best_3d_coords[:, :, None, :], axis=-3) stress = (( weights * (dist_mat - pre_dist_mat) )**2).sum(axis=(-1, -2)) * 0.5 # perturb - update X using the Guttman transform - sklearn-like dist_mat[dist_mat == 0] = 1e-7 ratio = weights * (pre_dist_mat / dist_mat) B = -ratio B[:, np.arange(N), np.arange(N)] += ratio.sum(axis=-1) # update - double transpose. TODO: consider fix coords = (1. / N * np.matmul(best_3d_coords, B)) dis = np.linalg.norm(coords, axis=(-1, -2)) if verbose >= 2: print('it: %d, stress %s' % (i, stress)) # update metrics if relative improvement above tolerance if (best_stress - stress / dis).mean() <= tol: if verbose: print('breaking at iteration %d with stress %s' % (i, stress / dis)) break best_3d_coords = coords best_stress = stress / dis his.append(best_stress) return best_3d_coords, np.array(his) def get_dihedral_torch(c1, c2, c3, c4): """ Returns the dihedral angle in radians. Will use atan2 formula from: https://en.wikipedia.org/wiki/Dihedral_angle#In_polymer_physics Can't use torch.dot bc it does not broadcast Inputs: * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) """ u1 = c2 - c1 u2 = c3 - c2 u3 = c4 - c3 return torch.atan2( ( (torch.norm(u2, dim=-1, keepdim=True) * u1) * torch.cross(u2,u3, dim=-1) ).sum(dim=-1) , ( torch.cross(u1,u2, dim=-1) * torch.cross(u2, u3, dim=-1) ).sum(dim=-1) ) def get_dihedral_numpy(c1, c2, c3, c4): """ Returns the dihedral angle in radians. Will use atan2 formula from: https://en.wikipedia.org/wiki/Dihedral_angle#In_polymer_physics Inputs: * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) * c1: (batch, 3) or (3,) """ u1 = c2 - c1 u2 = c3 - c2 u3 = c4 - c3 return np.arctan2( ( (np.linalg.norm(u2, axis=-1, keepdims=True) * u1) * np.cross(u2,u3, axis=-1)).sum(axis=-1), ( np.cross(u1,u2, axis=-1) * np.cross(u2, u3, axis=-1) ).sum(axis=-1) ) def calc_phis_torch(pred_coords, N_mask, CA_mask, C_mask=None, prop=True, verbose=0): """ Filters mirrors selecting the 1 with most N of negative phis. Used as part of the MDScaling wrapper if arg is passed. See below. Angle Phi between planes: (Cterm{-1}, N, Ca{0}) and (N{0}, Ca{+1}, Cterm{+1}) Inputs: * pred_coords: (batch, 3, N) predicted coordinates * N_mask: (batch, N) boolean mask for N-term positions * CA_mask: (batch, N) boolean mask for C-alpha positions * C_mask: (batch, N) or None. boolean mask for C-alpha positions or automatically calculate from N_mask and CA_mask if None. * prop: bool. whether to return as a proportion of negative phis. * verbose: bool. verbosity level Output: (batch, N) containing the phi angles or (batch,) containing the proportions. Note: use [0] since all prots in batch have same backbone """ # detach gradients for angle calculation - mirror selection pred_coords_ = torch.transpose(pred_coords.detach(), -1 , -2).cpu() # ensure dims N_mask = expand_dims_to( N_mask, 2-len(N_mask.shape) ) CA_mask = expand_dims_to( CA_mask, 2-len(CA_mask.shape) ) if C_mask is not None: C_mask = expand_dims_to( C_mask, 2-len(C_mask.shape) ) else: C_mask = torch.logical_not(torch.logical_or(N_mask,CA_mask)) # select points n_terms = pred_coords_[:, N_mask[0].squeeze()] c_alphas = pred_coords_[:, CA_mask[0].squeeze()] c_terms = pred_coords_[:, C_mask[0].squeeze()] # compute phis for every pritein in the batch phis = [get_dihedral_torch(c_terms[i, :-1], n_terms[i, 1:], c_alphas[i, 1:], c_terms[i, 1:]) for i in range(pred_coords.shape[0])] # return percentage of lower than 0 if prop: return torch.stack([(x<0).float().mean() for x in phis], dim=0 ) return phis def calc_phis_numpy(pred_coords, N_mask, CA_mask, C_mask=None, prop=True, verbose=0): """ Filters mirrors selecting the 1 with most N of negative phis. Used as part of the MDScaling wrapper if arg is passed. See below. Angle Phi between planes: (Cterm{-1}, N, Ca{0}) and (N{0}, Ca{+1}, Cterm{+1}) Inputs: * pred_coords: (batch, 3, N) predicted coordinates * N_mask: (N, ) boolean mask for N-term positions * CA_mask: (N, ) boolean mask for C-alpha positions * C_mask: (N, ) or None. boolean mask for C-alpha positions or automatically calculate from N_mask and CA_mask if None. * prop: bool. whether to return as a proportion of negative phis. * verbose: bool. verbosity level Output: (batch, N) containing the phi angles or (batch,) containing the proportions. """ # detach gradients for angle calculation - mirror selection pred_coords_ = np.transpose(pred_coords, (0, 2, 1)) n_terms = pred_coords_[:, N_mask.squeeze()] c_alphas = pred_coords_[:, CA_mask.squeeze()] # select c_term auto if not passed if C_mask is not None: c_terms = pred_coords_[:, C_mask] else: c_terms = pred_coords_[:, (np.ones_like(N_mask)-N_mask-CA_mask).squeeze().astype(bool) ] # compute phis for every pritein in the batch phis = [get_dihedral_numpy(c_terms[i, :-1], n_terms[i, 1:], c_alphas[i, 1:], c_terms[i, 1:]) for i in range(pred_coords.shape[0])] # return percentage of lower than 0 if prop: return np.array( [(x<0).mean() for x in phis] ) return phis # alignment by centering + rotation to compute optimal RMSD # adapted from : https://github.com/charnley/rmsd/ def kabsch_torch(X, Y, cpu=True): """ Kabsch alignment of X into Y. Assumes X,Y are both (Dims x N_points). See below for wrapper. """ device = X.device # center X and Y to the origin X_ = X - X.mean(dim=-1, keepdim=True) Y_ = Y - Y.mean(dim=-1, keepdim=True) # calculate convariance matrix (for each prot in the batch) C = torch.matmul(X_, Y_.t()).detach() if cpu: C = C.cpu() # Optimal rotation matrix via SVD if int(torch.__version__.split(".")[1]) < 8: # warning! int torch 1.<8 : W must be transposed V, S, W = torch.svd(C) W = W.t() else: V, S, W = torch.linalg.svd(C) # determinant sign for direction correction d = (torch.det(V) * torch.det(W)) < 0.0 if d: S[-1] = S[-1] * (-1) V[:, -1] = V[:, -1] * (-1) # Create Rotation matrix U U = torch.matmul(V, W).to(device) # calculate rotations X_ = torch.matmul(X_.t(), U).t() # return centered and aligned return X_, Y_ def kabsch_numpy(X, Y): """ Kabsch alignment of X into Y. Assumes X,Y are both (Dims x N_points). See below for wrapper. """ # center X and Y to the origin X_ = X - X.mean(axis=-1, keepdims=True) Y_ = Y - Y.mean(axis=-1, keepdims=True) # calculate convariance matrix (for each prot in the batch) C = np.dot(X_, Y_.transpose()) # Optimal rotation matrix via SVD V, S, W = np.linalg.svd(C) # determinant sign for direction correction d = (np.linalg.det(V) * np.linalg.det(W)) < 0.0 if d: S[-1] = S[-1] * (-1) V[:, -1] = V[:, -1] * (-1) # Create Rotation matrix U U = np.dot(V, W) # calculate rotations X_ = np.dot(X_.T, U).T # return centered and aligned return X_, Y_ # metrics - more formulas here: http://predictioncenter.org/casp12/doc/help.html def distmat_loss_torch(X=None, Y=None, X_mat=None, Y_mat=None, p=2, q=2, custom=None, distmat_mask=None, clamp=None): """ Calculates a loss on the distance matrix - no need to align structs. Inputs: * X: (N, d) tensor. the predicted structure. One of (X, X_mat) is needed. * X_mat: (N, N) tensor. the predicted distance matrix. Optional () * Y: (N, d) tensor. the true structure. One of (Y, Y_mat) is needed. * Y_mat: (N, N) tensor. the predicted distance matrix. Optional () * p: int. power for the distance calculation (2 for euclidean) * q: float. power for the scaling of the loss (2 for MSE, 1 for MAE, etc) * custom: func or None. custom loss over distance matrices. ex: lambda x,y: 1 - 1/ (1 + ((x-y))**2) (1 is very bad. 0 is good) * distmat_mask: (N, N) mask (boolean or weights for each ij pos). optional. * clamp: tuple of (min,max) values for clipping distance matrices. ex: (0,150) """ assert (X is not None or X_mat is not None) and \ (Y is not None or Y_mat is not None), "The true and predicted coords or dist mats must be provided" # calculate distance matrices if X_mat is None: X = X.squeeze() if clamp is not None: X = torch.clamp(X, *clamp) X_mat = torch.cdist(X, X, p=p) if Y_mat is None: Y = Y.squeeze() if clamp is not None: Y = torch.clamp(Y, *clamp) Y_mat = torch.cdist(Y, Y, p=p) if distmat_mask is None: distmat_mask = torch.ones_like(Y_mat).bool() # do custom expression if passed if custom is not None: return custom(X_mat.squeeze(), Y_mat.squeeze()).mean() # **2 ensures always positive. Later scale back to desired power else: loss = ( X_mat - Y_mat )**2 if q != 2: loss = loss**(q/2) return loss[distmat_mask].mean() def rmsd_torch(X, Y): """ Assumes x,y are both (B x D x N). See below for wrapper. """ return torch.sqrt( torch.mean((X - Y)**2, axis=(-1, -2)) ) def rmsd_numpy(X, Y): """ Assumes x,y are both (B x D x N). See below for wrapper. """ return np.sqrt( np.mean((X - Y)**2, axis=(-1, -2)) ) def gdt_torch(X, Y, cutoffs, weights=None): """ Assumes x,y are both (B x D x N). see below for wrapper. * cutoffs is a list of `K` thresholds * weights is a list of `K` weights (1 x each threshold) """ device = X.device if weights is None: weights = torch.ones(1,len(cutoffs)) else: weights = torch.tensor([weights]).to(device) # set zeros and fill with values GDT = torch.zeros(X.shape[0], len(cutoffs), device=device) dist = ((X - Y)**2).sum(dim=1).sqrt() # iterate over thresholds for i,cutoff in enumerate(cutoffs): GDT[:, i] = (dist <= cutoff).float().mean(dim=-1) # weighted mean return (GDT*weights).mean(-1) def gdt_numpy(X, Y, cutoffs, weights=None): """ Assumes x,y are both (B x D x N). see below for wrapper. * cutoffs is a list of `K` thresholds * weights is a list of `K` weights (1 x each threshold) """ if weights is None: weights = np.ones( (1,len(cutoffs)) ) else: weights = np.array([weights]) # set zeros and fill with values GDT = np.zeros( (X.shape[0], len(cutoffs)) ) dist = np.sqrt( ((X - Y)**2).sum(axis=1) ) # iterate over thresholds for i,cutoff in enumerate(cutoffs): GDT[:, i] = (dist <= cutoff).mean(axis=-1) # weighted mean return (GDT*weights).mean(-1) def tmscore_torch(X, Y): """ Assumes x,y are both (B x D x N). see below for wrapper. """ L = max(15, X.shape[-1]) d0 = 1.24 * (L - 15)**(1/3) - 1.8 # get distance dist = ((X - Y)**2).sum(dim=1).sqrt() # formula (see wrapper for source): return (1 / (1 + (dist/d0)**2)).mean(dim=-1) def tmscore_numpy(X, Y): """ Assumes x,y are both (B x D x N). see below for wrapper. """ L = max(15, X.shape[-1]) d0 = 1.24 * np.cbrt(L - 15) - 1.8 # get distance dist = np.sqrt( ((X - Y)**2).sum(axis=1) ) # formula (see wrapper for source): return (1 / (1 + (dist/d0)**2)).mean(axis=-1) def mdscaling_torch(pre_dist_mat, weights=None, iters=10, tol=1e-5, fix_mirror=True, N_mask=None, CA_mask=None, C_mask=None, eigen=False, verbose=2): """ Handles the specifics of MDS for proteins (mirrors, ...) """ # batched mds for full parallel preds, stresses = mds_torch(pre_dist_mat, weights=weights,iters=iters, tol=tol, eigen=eigen, verbose=verbose) if not fix_mirror: return preds, stresses # no need to caculate multiple mirrors - just correct Z axis phi_ratios = calc_phis_torch(preds, N_mask, CA_mask, C_mask, prop=True) to_correct = torch.nonzero( (phi_ratios < 0.5)).view(-1) # fix mirrors by (-1)*Z if more (+) than (-) phi angles preds[to_correct, -1] = (-1)*preds[to_correct, -1] if verbose == 2: print("Corrected mirror idxs:", to_correct) return preds, stresses def mdscaling_numpy(pre_dist_mat, weights=None, iters=10, tol=1e-5, fix_mirror=True, N_mask=None, CA_mask=None, C_mask=None, verbose=2): """ Handles the specifics of MDS for proteins (mirrors, ...) """ # batched mds for full parallel preds, stresses = mds_numpy(pre_dist_mat, weights=weights,iters=iters, tol=tol, verbose=verbose) if not fix_mirror: return preds, stresses # no need to caculate multiple mirrors - just correct Z axis phi_ratios = calc_phis_numpy(preds, N_mask, CA_mask, C_mask, prop=True) for i,pred in enumerate(preds): # fix mirrors by (-1)*Z if more (+) than (-) phi angles if phi_ratios < 0.5: preds[i, -1] = (-1)*preds[i, -1] if verbose == 2: print("Corrected mirror in struct no.", i) return preds, stresses def lddt_ca_torch(true_coords, pred_coords, cloud_mask, r_0=15.): """ Computes the lddt score for each C_alpha. https://academic.oup.com/bioinformatics/article/29/21/2722/195896 Inputs: * true_coords: (b, l, c, d) in sidechainnet format. * pred_coords: (b, l, c, d) in sidechainnet format. * cloud_mask : (b, l, c) adapted for scn format. * r_0: float. maximum inclusion radius in reference struct. Outputs: * (b, l) lddt for c_alpha scores (ranging between 0 and 1) See wrapper below. """ device, dtype = true_coords.device, true_coords.type() thresholds = torch.tensor([0.5, 1, 2, 4], device=device).type(dtype) # adapt masks cloud_mask = cloud_mask.bool().cpu() c_alpha_mask = torch.zeros(cloud_mask.shape[1:], device=device).bool() # doesn't have batch dim c_alpha_mask[..., 1] = True # container for c_alpha scores (between 0,1) wrapper = torch.zeros(true_coords.shape[:2], device=device).type(dtype) for bi, seq in enumerate(true_coords): # select atoms for study c_alphas = cloud_mask[bi]*c_alpha_mask # only pick c_alpha positions selected_pred = pred_coords[bi, c_alphas, :] selected_target = true_coords[bi, c_alphas, :] # get number under distance dist_mat_pred = torch.cdist(selected_pred, selected_pred, p=2) dist_mat_target = torch.cdist(selected_target, selected_target, p=2) under_r0_target = dist_mat_target < r_0 compare_dists = torch.abs(dist_mat_pred - dist_mat_target)[under_r0_target] # measure diff below threshold score = torch.zeros_like(under_r0_target).float() max_score = torch.zeros_like(under_r0_target).float() max_score[under_r0_target] = 4. # measure under how many thresholds score[under_r0_target] = thresholds.shape[0] - \ torch.bucketize( compare_dists, boundaries=thresholds ).float() # dont include diagonal l_mask = c_alphas.float().sum(dim=-1).bool() wrapper[bi, l_mask] = ( score.sum(dim=-1) - thresholds.shape[0] ) / \ ( max_score.sum(dim=-1) - thresholds.shape[0] ) return wrapper ################ ### WRAPPERS ### ################ @set_backend_kwarg @invoke_torch_or_numpy(mdscaling_torch, mdscaling_numpy) def MDScaling(pre_dist_mat, **kwargs): """ Gets distance matrix (-ces). Outputs 3d. Assumes (for now) distrogram is (N x N) and symmetric. For support of ditograms: see `center_distogram_torch()` Inputs: * pre_dist_mat: (1, N, N) distance matrix. * weights: optional. (N x N) pairwise relative weights . * iters: number of iterations to run the algorithm on * tol: relative tolerance at which to stop the algorithm if no better improvement is achieved * backend: one of ["numpy", "torch", "auto"] for backend choice * fix_mirror: int. number of iterations to run the 3d generation and pick the best mirror (highest number of negative phis) * N_mask: indexing array/tensor for indices of backbone N. Only used if fix_mirror > 0. * CA_mask: indexing array/tensor for indices of backbone C_alpha. Only used if fix_mirror > 0. * verbose: whether to print logs Outputs: * best_3d_coords: (3 x N) * historic_stress: (timesteps, ) """ pre_dist_mat = expand_dims_to(pre_dist_mat, 3 - len(pre_dist_mat.shape)) return pre_dist_mat, kwargs @expand_arg_dims(dim_len = 2) @set_backend_kwarg @invoke_torch_or_numpy(kabsch_torch, kabsch_numpy) def Kabsch(A, B): """ Returns Kabsch-rotated matrices resulting from aligning A into B. Adapted from: https://github.com/charnley/rmsd/ * Inputs: * A,B are (3 x N) * backend: one of ["numpy", "torch", "auto"] for backend choice * Outputs: tensor/array of shape (3 x N) """ # run calcs - pick the 0th bc an additional dim was created return A, B @expand_arg_dims() @set_backend_kwarg @invoke_torch_or_numpy(rmsd_torch, rmsd_numpy) def RMSD(A, B): """ Returns RMSD score as defined here (lower is better): https://en.wikipedia.org/wiki/ Root-mean-square_deviation_of_atomic_positions * Inputs: * A,B are (B x 3 x N) or (3 x N) * backend: one of ["numpy", "torch", "auto"] for backend choice * Outputs: tensor/array of size (B,) """ return A, B @expand_arg_dims() @set_backend_kwarg @invoke_torch_or_numpy(gdt_torch, gdt_numpy) def GDT(A, B, *, mode="TS", cutoffs=[1,2,4,8], weights=None): """ Returns GDT score as defined here (highre is better): Supports both TS and HA http://predictioncenter.org/casp12/doc/help.html * Inputs: * A,B are (B x 3 x N) (np.array or torch.tensor) * cutoffs: defines thresholds for gdt * weights: list containing the weights * mode: one of ["numpy", "torch", "auto"] for backend * Outputs: tensor/array of size (B,) """ # define cutoffs for each type of gdt and weights cutoffs = [0.5,1,2,4] if mode in ["HA", "ha"] else [1,2,4,8] # calculate GDT return A, B, cutoffs, {'weights': weights} @expand_arg_dims() @set_backend_kwarg @invoke_torch_or_numpy(tmscore_torch, tmscore_numpy) def TMscore(A, B): """ Returns TMscore as defined here (higher is better): >0.5 (likely) >0.6 (highly likely) same folding. = 0.2. https://en.wikipedia.org/wiki/Template_modeling_score Warning! It's not exactly the code in: https://zhanglab.ccmb.med.umich.edu/TM-score/TMscore.cpp but will suffice for now. Inputs: * A,B are (B x 3 x N) (np.array or torch.tensor) * mode: one of ["numpy", "torch", "auto"] for backend Outputs: tensor/array of size (B,) """ return A, B
import torch from torch import nn, einsum from torch.utils.checkpoint import checkpoint, checkpoint_sequential from inspect import isfunction from functools import partial from dataclasses import dataclass import torch.nn.functional as F from math import sqrt from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange from alphafold2_pytorch.utils import * import alphafold2_pytorch.constants as constants from alphafold2_pytorch.mlm import MLM # structure module from invariant_point_attention import IPABlock from pytorch3d.transforms import quaternion_multiply, quaternion_to_matrix # constants @dataclass class Recyclables: coords: torch.Tensor single_msa_repr_row: torch.Tensor pairwise_repr: torch.Tensor @dataclass class ReturnValues: distance: torch.Tensor = None theta: torch.Tensor = None phi: torch.Tensor = None omega: torch.Tensor = None msa_mlm_loss: torch.Tensor = None recyclables: Recyclables = None # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth = 1): return val if isinstance(val, tuple) else (val,) * depth def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # helper classes class Always(nn.Module): def __init__(self, val): super().__init__() self.val = val def forward(self, x): return self.val # feed forward class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return x * F.gelu(gates) class FeedForward(nn.Module): def __init__( self, dim, mult = 4, dropout = 0. ): super().__init__() self.norm = nn.LayerNorm(dim) self.net = nn.Sequential( nn.Linear(dim, dim * mult * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) init_zero_(self.net[-1]) def forward(self, x, **kwargs): x = self.norm(x) return self.net(x) # attention class Attention(nn.Module): def __init__( self, dim, seq_len = None, heads = 8, dim_head = 64, dropout = 0., gating = True ): super().__init__() inner_dim = dim_head * heads self.seq_len = seq_len self.heads= heads self.scale = dim_head ** -0.5 self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.gating = nn.Linear(dim, inner_dim) nn.init.constant_(self.gating.weight, 0.) nn.init.constant_(self.gating.bias, 1.) self.dropout = nn.Dropout(dropout) init_zero_(self.to_out) def forward(self, x, mask = None, attn_bias = None, context = None, context_mask = None, tie_dim = None): device, orig_shape, h, has_context = x.device, x.shape, self.heads, exists(context) context = default(context, x) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) i, j = q.shape[-2], k.shape[-2] q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # scale q = q * self.scale # query / key similarities if exists(tie_dim): # as in the paper, for the extra MSAs # they average the queries along the rows of the MSAs # they named this particular module MSAColumnGlobalAttention q, k = map(lambda t: rearrange(t, '(b r) ... -> b r ...', r = tie_dim), (q, k)) q = q.mean(dim = 1) dots = einsum('b h i d, b r h j d -> b r h i j', q, k) dots = rearrange(dots, 'b r ... -> (b r) ...') else: dots = einsum('b h i d, b h j d -> b h i j', q, k) # add attention bias, if supplied (for pairwise to msa attention communication) if exists(attn_bias): dots = dots + attn_bias # masking if exists(mask): mask = default(mask, lambda: torch.ones(1, i, device = device).bool()) context_mask = mask if not has_context else default(context_mask, lambda: torch.ones(1, k.shape[-2], device = device).bool()) mask_value = -torch.finfo(dots.dtype).max mask = mask[:, None, :, None] * context_mask[:, None, None, :] dots = dots.masked_fill(~mask, mask_value) # attention attn = dots.softmax(dim = -1) attn = self.dropout(attn) # aggregate out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # gating gates = self.gating(x) out = out * gates.sigmoid() # combine to out out = self.to_out(out) return out class AxialAttention(nn.Module): def __init__( self, dim, heads, row_attn = True, col_attn = True, accept_edges = False, global_query_attn = False, **kwargs ): super().__init__() assert not (not row_attn and not col_attn), 'row or column attention must be turned on' self.row_attn = row_attn self.col_attn = col_attn self.global_query_attn = global_query_attn self.norm = nn.LayerNorm(dim) self.attn = Attention(dim = dim, heads = heads, **kwargs) self.edges_to_attn_bias = nn.Sequential( nn.Linear(dim, heads, bias = False), Rearrange('b i j h -> b h i j') ) if accept_edges else None def forward(self, x, edges = None, mask = None): assert self.row_attn ^ self.col_attn, 'has to be either row or column attention, but not both' b, h, w, d = x.shape x = self.norm(x) # axial attention if self.col_attn: axial_dim = w mask_fold_axial_eq = 'b h w -> (b w) h' input_fold_eq = 'b h w d -> (b w) h d' output_fold_eq = '(b w) h d -> b h w d' elif self.row_attn: axial_dim = h mask_fold_axial_eq = 'b h w -> (b h) w' input_fold_eq = 'b h w d -> (b h) w d' output_fold_eq = '(b h) w d -> b h w d' x = rearrange(x, input_fold_eq) if exists(mask): mask = rearrange(mask, mask_fold_axial_eq) attn_bias = None if exists(self.edges_to_attn_bias) and exists(edges): attn_bias = self.edges_to_attn_bias(edges) attn_bias = repeat(attn_bias, 'b h i j -> (b x) h i j', x = axial_dim) tie_dim = axial_dim if self.global_query_attn else None out = self.attn(x, mask = mask, attn_bias = attn_bias, tie_dim = tie_dim) out = rearrange(out, output_fold_eq, h = h, w = w) return out class TriangleMultiplicativeModule(nn.Module): def __init__( self, *, dim, hidden_dim = None, mix = 'ingoing' ): super().__init__() assert mix in {'ingoing', 'outgoing'}, 'mix must be either ingoing or outgoing' hidden_dim = default(hidden_dim, dim) self.norm = nn.LayerNorm(dim) self.left_proj = nn.Linear(dim, hidden_dim) self.right_proj = nn.Linear(dim, hidden_dim) self.left_gate = nn.Linear(dim, hidden_dim) self.right_gate = nn.Linear(dim, hidden_dim) self.out_gate = nn.Linear(dim, hidden_dim) # initialize all gating to be identity for gate in (self.left_gate, self.right_gate, self.out_gate): nn.init.constant_(gate.weight, 0.) nn.init.constant_(gate.bias, 1.) if mix == 'outgoing': self.mix_einsum_eq = '... i k d, ... j k d -> ... i j d' elif mix == 'ingoing': self.mix_einsum_eq = '... k j d, ... k i d -> ... i j d' self.to_out_norm = nn.LayerNorm(hidden_dim) self.to_out = nn.Linear(hidden_dim, dim) def forward(self, x, mask = None): assert x.shape[1] == x.shape[2], 'feature map must be symmetrical' if exists(mask): mask = rearrange(mask, 'b i j -> b i j ()') x = self.norm(x) left = self.left_proj(x) right = self.right_proj(x) if exists(mask): left = left * mask right = right * mask left_gate = self.left_gate(x).sigmoid() right_gate = self.right_gate(x).sigmoid() out_gate = self.out_gate(x).sigmoid() left = left * left_gate right = right * right_gate out = einsum(self.mix_einsum_eq, left, right) out = self.to_out_norm(out) out = out * out_gate return self.to_out(out) # evoformer blocks class OuterMean(nn.Module): def __init__( self, dim, hidden_dim = None, eps = 1e-5 ): super().__init__() self.eps = eps self.norm = nn.LayerNorm(dim) hidden_dim = default(hidden_dim, dim) self.left_proj = nn.Linear(dim, hidden_dim) self.right_proj = nn.Linear(dim, hidden_dim) self.proj_out = nn.Linear(hidden_dim, dim) def forward(self, x, mask = None): x = self.norm(x) left = self.left_proj(x) right = self.right_proj(x) outer = rearrange(left, 'b m i d -> b m i () d') * rearrange(right, 'b m j d -> b m () j d') if exists(mask): # masked mean, if there are padding in the rows of the MSA mask = rearrange(mask, 'b m i -> b m i () ()') * rearrange(mask, 'b m j -> b m () j ()') outer = outer.masked_fill(~mask, 0.) outer = outer.mean(dim = 1) / (mask.sum(dim = 1) + self.eps) else: outer = outer.mean(dim = 1) return self.proj_out(outer) class PairwiseAttentionBlock(nn.Module): def __init__( self, dim, seq_len, heads, dim_head, dropout = 0., global_column_attn = False ): super().__init__() self.outer_mean = OuterMean(dim) self.triangle_attention_outgoing = AxialAttention(dim = dim, heads = heads, dim_head = dim_head, row_attn = True, col_attn = False, accept_edges = True) self.triangle_attention_ingoing = AxialAttention(dim = dim, heads = heads, dim_head = dim_head, row_attn = False, col_attn = True, accept_edges = True, global_query_attn = global_column_attn) self.triangle_multiply_outgoing = TriangleMultiplicativeModule(dim = dim, mix = 'outgoing') self.triangle_multiply_ingoing = TriangleMultiplicativeModule(dim = dim, mix = 'ingoing') def forward( self, x, mask = None, msa_repr = None, msa_mask = None ): if exists(msa_repr): x = x + self.outer_mean(msa_repr, mask = msa_mask) x = self.triangle_multiply_outgoing(x, mask = mask) + x x = self.triangle_multiply_ingoing(x, mask = mask) + x x = self.triangle_attention_outgoing(x, edges = x, mask = mask) + x x = self.triangle_attention_ingoing(x, edges = x, mask = mask) + x return x class MsaAttentionBlock(nn.Module): def __init__( self, dim, seq_len, heads, dim_head, dropout = 0. ): super().__init__() self.row_attn = AxialAttention(dim = dim, heads = heads, dim_head = dim_head, row_attn = True, col_attn = False, accept_edges = True) self.col_attn = AxialAttention(dim = dim, heads = heads, dim_head = dim_head, row_attn = False, col_attn = True) def forward( self, x, mask = None, pairwise_repr = None ): x = self.row_attn(x, mask = mask, edges = pairwise_repr) + x x = self.col_attn(x, mask = mask) + x return x # main evoformer class class EvoformerBlock(nn.Module): def __init__( self, *, dim, seq_len, heads, dim_head, attn_dropout, ff_dropout, global_column_attn = False ): super().__init__() self.layer = nn.ModuleList([ PairwiseAttentionBlock(dim = dim, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout, global_column_attn = global_column_attn), FeedForward(dim = dim, dropout = ff_dropout), MsaAttentionBlock(dim = dim, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout), FeedForward(dim = dim, dropout = ff_dropout), ]) def forward(self, inputs): x, m, mask, msa_mask = inputs attn, ff, msa_attn, msa_ff = self.layer # msa attention and transition m = msa_attn(m, mask = msa_mask, pairwise_repr = x) m = msa_ff(m) + m # pairwise attention and transition x = attn(x, mask = mask, msa_repr = m, msa_mask = msa_mask) x = ff(x) + x return x, m, mask, msa_mask class Evoformer(nn.Module): def __init__( self, *, depth, **kwargs ): super().__init__() self.layers = nn.ModuleList([EvoformerBlock(**kwargs) for _ in range(depth)]) def forward( self, x, m, mask = None, msa_mask = None ): inp = (x, m, mask, msa_mask) x, m, *_ = checkpoint_sequential(self.layers, 1, inp) return x, m class Alphafold2(nn.Module): def __init__( self, *, dim, max_seq_len = 2048, depth = 6, heads = 8, dim_head = 64, max_rel_dist = 32, num_tokens = constants.NUM_AMINO_ACIDS, num_embedds = constants.NUM_EMBEDDS_TR, max_num_msas = constants.MAX_NUM_MSA, max_num_templates = constants.MAX_NUM_TEMPLATES, extra_msa_evoformer_layers = 4, attn_dropout = 0., ff_dropout = 0., templates_dim = 32, templates_embed_layers = 4, templates_angles_feats_dim = 55, predict_angles = False, symmetrize_omega = False, predict_coords = False, # structure module related keyword arguments below structure_module_depth = 4, structure_module_heads = 1, structure_module_dim_head = 4, disable_token_embed = False, mlm_mask_prob = 0.15, mlm_random_replace_token_prob = 0.1, mlm_keep_token_same_prob = 0.1, mlm_exclude_token_ids = (0,), recycling_distance_buckets = 32 ): super().__init__() self.dim = dim # token embedding self.token_emb = nn.Embedding(num_tokens + 1, dim) if not disable_token_embed else Always(0) self.to_pairwise_repr = nn.Linear(dim, dim * 2) self.disable_token_embed = disable_token_embed # positional embedding self.max_rel_dist = max_rel_dist self.pos_emb = nn.Embedding(max_rel_dist * 2 + 1, dim) # extra msa embedding self.extra_msa_evoformer = Evoformer( dim = dim, depth = extra_msa_evoformer_layers, seq_len = max_seq_len, heads = heads, dim_head = dim_head, attn_dropout = attn_dropout, ff_dropout = ff_dropout, global_column_attn = True ) # template embedding self.to_template_embed = nn.Linear(templates_dim, dim) self.templates_embed_layers = templates_embed_layers self.template_pairwise_embedder = PairwiseAttentionBlock( dim = dim, dim_head = dim_head, heads = heads, seq_len = max_seq_len ) self.template_pointwise_attn = Attention( dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout ) self.template_angle_mlp = nn.Sequential( nn.Linear(templates_angles_feats_dim, dim), nn.GELU(), nn.Linear(dim, dim) ) # projection for angles, if needed self.predict_angles = predict_angles self.symmetrize_omega = symmetrize_omega if predict_angles: self.to_prob_theta = nn.Linear(dim, constants.THETA_BUCKETS) self.to_prob_phi = nn.Linear(dim, constants.PHI_BUCKETS) self.to_prob_omega = nn.Linear(dim, constants.OMEGA_BUCKETS) # custom embedding projection self.embedd_project = nn.Linear(num_embedds, dim) # main trunk modules self.net = Evoformer( dim = dim, depth = depth, seq_len = max_seq_len, heads = heads, dim_head = dim_head, attn_dropout = attn_dropout, ff_dropout = ff_dropout ) # MSA SSL MLM self.mlm = MLM( dim = dim, num_tokens = num_tokens, mask_id = num_tokens, # last token of embedding is used for masking mask_prob = mlm_mask_prob, keep_token_same_prob = mlm_keep_token_same_prob, random_replace_token_prob = mlm_random_replace_token_prob, exclude_token_ids = mlm_exclude_token_ids ) # calculate distogram logits self.to_distogram_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, constants.DISTOGRAM_BUCKETS) ) # to coordinate output self.predict_coords = predict_coords self.structure_module_depth = structure_module_depth self.msa_to_single_repr_dim = nn.Linear(dim, dim) self.trunk_to_pairwise_repr_dim = nn.Linear(dim, dim) with torch_default_dtype(torch.float32): self.ipa_block = IPABlock( dim = dim, heads = structure_module_heads, ) self.to_quaternion_update = nn.Linear(dim, 6) init_zero_(self.ipa_block.attn.to_out) self.to_points = nn.Linear(dim, 3) # aux confidence measure self.lddt_linear = nn.Linear(dim, 1) # recycling params self.recycling_msa_norm = nn.LayerNorm(dim) self.recycling_pairwise_norm = nn.LayerNorm(dim) self.recycling_distance_embed = nn.Embedding(recycling_distance_buckets, dim) self.recycling_distance_buckets = recycling_distance_buckets def forward( self, seq, msa = None, mask = None, msa_mask = None, extra_msa = None, extra_msa_mask = None, seq_index = None, seq_embed = None, msa_embed = None, templates_feats = None, templates_mask = None, templates_angles = None, embedds = None, recyclables = None, return_trunk = False, return_confidence = False, return_recyclables = False, return_aux_logits = False ): assert not (self.disable_token_embed and not exists(seq_embed)), 'sequence embedding must be supplied if one has disabled token embedding' assert not (self.disable_token_embed and not exists(msa_embed)), 'msa embedding must be supplied if one has disabled token embedding' # if MSA is not passed in, just use the sequence itself if not exists(msa): msa = rearrange(seq, 'b n -> b () n') msa_mask = rearrange(mask, 'b n -> b () n') # assert on sequence length assert msa.shape[-1] == seq.shape[-1], 'sequence length of MSA and primary sequence must be the same' # variables b, n, device = *seq.shape[:2], seq.device n_range = torch.arange(n, device = device) # unpack (AA_code, atom_pos) if isinstance(seq, (list, tuple)): seq, seq_pos = seq # embed main sequence x = self.token_emb(seq) if exists(seq_embed): x += seq_embed # mlm for MSAs if self.training and exists(msa): original_msa = msa msa_mask = default(msa_mask, lambda: torch.ones_like(msa).bool()) noised_msa, replaced_msa_mask = self.mlm.noise(msa, msa_mask) msa = noised_msa # embed multiple sequence alignment (msa) if exists(msa): m = self.token_emb(msa) if exists(msa_embed): m = m + msa_embed # add single representation to msa representation m = m + rearrange(x, 'b n d -> b () n d') # get msa_mask to all ones if none was passed msa_mask = default(msa_mask, lambda: torch.ones_like(msa).bool()) elif exists(embedds): m = self.embedd_project(embedds) # get msa_mask to all ones if none was passed msa_mask = default(msa_mask, lambda: torch.ones_like(embedds[..., -1]).bool()) else: raise Error('either MSA or embeds must be given') # derive pairwise representation x_left, x_right = self.to_pairwise_repr(x).chunk(2, dim = -1) x = rearrange(x_left, 'b i d -> b i () d') + rearrange(x_right, 'b j d-> b () j d') # create pair-wise residue embeds x_mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') if exists(mask) else None # add relative positional embedding seq_index = default(seq_index, lambda: torch.arange(n, device = device)) seq_rel_dist = rearrange(seq_index, 'i -> () i ()') - rearrange(seq_index, 'j -> () () j') seq_rel_dist = seq_rel_dist.clamp(-self.max_rel_dist, self.max_rel_dist) + self.max_rel_dist rel_pos_emb = self.pos_emb(seq_rel_dist) x = x + rel_pos_emb # add recyclables, if present if exists(recyclables): m[:, 0] = m[:, 0] + self.recycling_msa_norm(recyclables.single_msa_repr_row) x = x + self.recycling_pairwise_norm(recyclables.pairwise_repr) distances = torch.cdist(recyclables.coords, recyclables.coords, p=2) boundaries = torch.linspace(2, 20, steps = self.recycling_distance_buckets, device = device) discretized_distances = torch.bucketize(distances, boundaries[:-1]) distance_embed = self.recycling_distance_embed(discretized_distances) x = x + distance_embed # embed templates, if present if exists(templates_feats): _, num_templates, *_ = templates_feats.shape # embed template t = self.to_template_embed(templates_feats) t_mask_crossed = rearrange(templates_mask, 'b t i -> b t i ()') * rearrange(templates_mask, 'b t j -> b t () j') t = rearrange(t, 'b t ... -> (b t) ...') t_mask_crossed = rearrange(t_mask_crossed, 'b t ... -> (b t) ...') for _ in range(self.templates_embed_layers): t = self.template_pairwise_embedder(t, mask = t_mask_crossed) t = rearrange(t, '(b t) ... -> b t ...', t = num_templates) t_mask_crossed = rearrange(t_mask_crossed, '(b t) ... -> b t ...', t = num_templates) # template pos emb x_point = rearrange(x, 'b i j d -> (b i j) () d') t_point = rearrange(t, 'b t i j d -> (b i j) t d') x_mask_point = rearrange(x_mask, 'b i j -> (b i j) ()') t_mask_point = rearrange(t_mask_crossed, 'b t i j -> (b i j) t') template_pooled = self.template_pointwise_attn( x_point, context = t_point, mask = x_mask_point, context_mask = t_mask_point ) template_pooled_mask = rearrange(t_mask_point.sum(dim = -1) > 0, 'b -> b () ()') template_pooled = template_pooled * template_pooled_mask template_pooled = rearrange(template_pooled, '(b i j) () d -> b i j d', i = n, j = n) x = x + template_pooled # add template angle features to MSAs by passing through MLP and then concat if exists(templates_angles): t_angle_feats = self.template_angle_mlp(templates_angles) m = torch.cat((m, t_angle_feats), dim = 1) msa_mask = torch.cat((msa_mask, templates_mask), dim = 1) # embed extra msa, if present if exists(extra_msa): extra_m = self.token_emb(msa) extra_msa_mask = default(extra_msa_mask, torch.ones_like(extra_m).bool()) x, extra_m = self.extra_msa_evoformer( x, extra_m, mask = x_mask, msa_mask = extra_msa_mask ) # trunk x, m = self.net( x, m, mask = x_mask, msa_mask = msa_mask ) # ready output container ret = ReturnValues() # calculate theta and phi before symmetrization if self.predict_angles: ret.theta_logits = self.to_prob_theta(x) ret.phi_logits = self.to_prob_phi(x) # embeds to distogram trunk_embeds = (x + rearrange(x, 'b i j d -> b j i d')) * 0.5 # symmetrize distance_pred = self.to_distogram_logits(trunk_embeds) ret.distance = distance_pred # calculate mlm loss, if training msa_mlm_loss = None if self.training and exists(msa): num_msa = original_msa.shape[1] msa_mlm_loss = self.mlm(m[:, :num_msa], original_msa, replaced_msa_mask) # determine angles, if specified if self.predict_angles: omega_input = trunk_embeds if self.symmetrize_omega else x ret.omega_logits = self.to_prob_omega(omega_input) if not self.predict_coords or return_trunk: return ret # derive single and pairwise embeddings for structural refinement single_msa_repr_row = m[:, 0] single_repr = self.msa_to_single_repr_dim(single_msa_repr_row) pairwise_repr = self.trunk_to_pairwise_repr_dim(x) # prepare float32 precision for equivariance original_dtype = single_repr.dtype single_repr, pairwise_repr = map(lambda t: t.float(), (single_repr, pairwise_repr)) # iterative refinement with equivariant transformer in high precision with torch_default_dtype(torch.float32): quaternions = torch.tensor([1., 0., 0., 0.], device = device) # initial rotations quaternions = repeat(quaternions, 'd -> b n d', b = b, n = n) translations = torch.zeros((b, n, 3), device = device) # go through the layers and apply invariant point attention and feedforward for i in range(self.structure_module_depth): is_last = i == (self.structure_module_depth - 1) # the detach comes from # https://github.com/deepmind/alphafold/blob/0bab1bf84d9d887aba5cfb6d09af1e8c3ecbc408/alphafold/model/folding.py#L383 rotations = quaternion_to_matrix(quaternions) if not is_last: rotations = rotations.detach() single_repr = self.ipa_block( single_repr, mask = mask, pairwise_repr = pairwise_repr, rotations = rotations, translations = translations ) # update quaternion and translation quaternion_update, translation_update = self.to_quaternion_update(single_repr).chunk(2, dim = -1) quaternion_update = F.pad(quaternion_update, (1, 0), value = 1.) quaternions = quaternion_multiply(quaternions, quaternion_update) translations = translations + einsum('b n c, b n c r -> b n r', translation_update, rotations) points_local = self.to_points(single_repr) rotations = quaternion_to_matrix(quaternions) coords = einsum('b n c, b n c d -> b n d', points_local, rotations) + translations coords.type(original_dtype) if return_recyclables: coords, single_msa_repr_row, pairwise_repr = map(torch.detach, (coords, single_msa_repr_row, pairwise_repr)) ret.recyclables = Recyclables(coords, single_msa_repr_row, pairwise_repr) if return_aux_logits: return coords, ret if return_confidence: return coords, self.lddt_linear(single_repr.float()) return coords
import torch import torch.nn.functional as F from torch import nn from alphafold2_pytorch.utils import get_msa_embedd, get_esm_embedd, get_prottran_embedd, exists from alphafold2_pytorch.constants import MSA_MODEL_PATH, MSA_EMBED_DIM, ESM_MODEL_PATH, ESM_EMBED_DIM, PROTTRAN_EMBED_DIM from einops import rearrange class ProtTranEmbedWrapper(nn.Module): def __init__(self, *, alphafold2): super().__init__() from transformers import AutoTokenizer, AutoModel self.alphafold2 = alphafold2 self.project_embed = nn.Linear(PROTTRAN_EMBED_DIM, alphafold2.dim) self.tokenizer = AutoTokenizer.from_pretrained('Rostlab/prot_bert', do_lower_case=False) self.model = AutoModel.from_pretrained('Rostlab/prot_bert') def forward(self, seq, msa, msa_mask = None, **kwargs): device = seq.device num_msa = msa.shape[1] msa_flat = rearrange(msa, 'b m n -> (b m) n') seq_embed = get_prottran_embedd(seq, self.model, self.tokenizer, device = device) msa_embed = get_prottran_embedd(msa_flat, self.model, self.tokenizer, device = device) seq_embed, msa_embed = map(self.project_embed, (seq_embed, msa_embed)) msa_embed = rearrange(msa_embed, '(b m) n d -> b m n d', m = num_msa) return self.alphafold2(seq, msa, seq_embed = seq_embed, msa_embed = msa_embed, msa_mask = msa_mask, **kwargs) class MSAEmbedWrapper(nn.Module): def __init__(self, *, alphafold2): super().__init__() self.alphafold2 = alphafold2 model, alphabet = torch.hub.load(*MSA_MODEL_PATH) batch_converter = alphabet.get_batch_converter() self.model = model self.batch_converter = batch_converter self.project_embed = nn.Linear(MSA_EMBED_DIM, alphafold2.dim) if MSA_EMBED_DIM != alphafold2.dim else nn.Identity() def forward(self, seq, msa, msa_mask = None, **kwargs): assert seq.shape[-1] == msa.shape[-1], 'sequence and msa must have the same length if you wish to use MSA transformer embeddings' model, batch_converter, device = self.model, self.batch_converter, seq.device seq_and_msa = torch.cat((seq.unsqueeze(1), msa), dim = 1) if exists(msa_mask): # in the event that there are rows in the MSA that are completely padding # process each batch element individually, so that padding isn't processed # with row-tied attention num_msa = msa_mask.any(dim = -1).sum(dim = -1).tolist() seq_and_msa_list = seq_and_msa.unbind(dim = 0) num_rows = seq_and_msa.shape[1] embeds = [] for num, batch_el in zip(num_msa, seq_and_msa_list): batch_el = rearrange(batch_el, '... -> () ...') batch_el = batch_el[:, :num] embed = get_msa_embedd(batch_el, model, batch_converter, device = device) embed = F.pad(embed, (0, 0, 0, 0, 0, num_rows - num), value = 0.) embeds.append(embed) embeds = torch.cat(embeds, dim = 0) else: embeds = get_msa_embedd(seq_and_msa, model, batch_converter, device = device) embeds = self.project_embed(embeds) seq_embed, msa_embed = embeds[:, 0], embeds[:, 1:] return self.alphafold2(seq, msa, seq_embed = seq_embed, msa_embed = msa_embed, msa_mask = msa_mask, **kwargs) class ESMEmbedWrapper(nn.Module): def __init__(self, *, alphafold2): super().__init__() self.alphafold2 = alphafold2 model, alphabet = torch.hub.load(*ESM_MODEL_PATH) batch_converter = alphabet.get_batch_converter() self.model = model self.batch_converter = batch_converter self.project_embed = nn.Linear(ESM_EMBED_DIM, alphafold2.dim) if ESM_EMBED_DIM != alphafold2.dim else nn.Identity() def forward(self, seq, msa=None, **kwargs): model, batch_converter, device = self.model, self.batch_converter, seq.device seq_embeds = get_esm_embedd(seq, model, batch_converter, device = device) seq_embeds = self.project_embed(seq_embeds) if msa is not None: flat_msa = rearrange(msa, 'b m n -> (b m) n') msa_embeds = get_esm_embedd(flat_msa, model, batch_converter, device = device) msa_embeds = rearrange(msa_embeds, '(b m) n d -> b m n d') msa_embeds = self.project_embed(msa_embeds) else: msa_embeds = None return self.alphafold2(seq, msa, seq_embed = seq_embeds, msa_embed = msa_embeds, **kwargs)
from math import log, sqrt, pi import torch from torch import nn, einsum from einops import rearrange, repeat # rotary embedding helpers def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') def apply_rotary_pos_emb(x, sinu_pos): sin, cos = map(lambda t: rearrange(t, 'b ... -> b () ...'), sinu_pos) rot_dim = sin.shape[-1] x, x_pass = x[..., :rot_dim], x[..., rot_dim:] x = x * cos + rotate_every_two(x) * sin return torch.cat((x, x_pass), dim = -1) # positional embeddings class DepthWiseConv1d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding = 0, stride = 1, bias = True, groups = None): super().__init__() groups = default(groups, dim_in) self.net = nn.Sequential( nn.Conv1d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = groups, stride = stride, bias = bias), nn.Conv1d(dim_in, dim_out, 1, bias = bias) ) def forward(self, x): return self.net(x) class FixedPositionalEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, n, device): seq = torch.arange(n, device = device).type_as(self.inv_freq) freqs = einsum('i , j -> i j', seq, self.inv_freq) freqs = repeat(freqs, 'i j -> () i (j r)', r = 2) return [freqs.sin(), freqs.cos()] class AxialRotaryEmbedding(nn.Module): def __init__(self, dim, max_freq = 10): super().__init__() self.dim = dim // 2 inv_freq = 1. / (10000 ** (torch.arange(0, self.dim, 2).float() / self.dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, n, device): seq = torch.arange(n, device = device).type_as(self.inv_freq) x = einsum('n, d -> n d', seq, self.inv_freq) y = einsum('n, d -> n d', seq, self.inv_freq) x_sinu = repeat(x, 'i d -> i j d', j = n) y_sinu = repeat(y, 'j d -> i j d', i = n) sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim = -1) cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim = -1) sin, cos = map(lambda t: repeat(t, 'i j d -> () (i j) (d r)', r = 2), (sin, cos)) return [sin, cos]
import torch import numpy as np from alphafold2_pytorch.utils import * def test_mat_to_masked(): # nodes x = torch.ones(19, 3) x_mask = torch.randn(19) > -0.3 # edges edges_mat = torch.randn(19, 19) < 1 edges = torch.nonzero(edges_mat, as_tuple=False).t() # test normal edges / nodes cleaned = mat_input_to_masked(x, x_mask, edges=edges) cleaned_2 = mat_input_to_masked(x, x_mask, edges_mat=edges_mat) # test batch dimension x_ = torch.stack([x]*2, dim=0) x_mask_ = torch.stack([x_mask]*2, dim=0) edges_mat_ = torch.stack([edges_mat]*2, dim=0) cleaned_3 = mat_input_to_masked(x_, x_mask_, edges_mat=edges_mat_) assert True def test_center_distogram_median(): distogram = torch.randn(1, 128, 128, 37) distances, weights = center_distogram_torch(distogram, center = 'median') assert True def test_masks(): seqs = torch.randint(20, size=(2, 50)) # cloud point mask - can't test bc it needs sidechainnet installed # cloud_masks = scn_cloud_mask(seqs, boolean=True) # atom masking N_mask, CA_mask, C_mask = scn_backbone_mask(seqs, boolean = True) assert True def test_mds_and_mirrors(): distogram = torch.randn(2, 32*3, 32*3, 37) distances, weights = center_distogram_torch(distogram) # set out some points (due to padding) paddings = [7,0] for i,pad in enumerate(paddings): if pad > 0: weights[i, -pad:, -pad:] = 0. # masks masker = torch.arange(distogram.shape[1]) % 3 N_mask = (masker==0).bool() CA_mask = (masker==1).bool() coords_3d, _ = MDScaling(distances, weights = weights, iters = 5, fix_mirror = 2, N_mask = N_mask, CA_mask = CA_mask, C_mask = None ) assert list(coords_3d.shape) == [2, 3, 32*3], 'coordinates must be of the right shape after MDS' def test_sidechain_container(): seqs = torch.tensor([[0]*137, [3]*137]).long() bb = torch.randn(2, 137*4, 3) atom_mask = torch.tensor( [1]*4 + [0]*(14-4) ) proto_3d = sidechain_container(seqs, bb, atom_mask=atom_mask) assert list(proto_3d.shape) == [2, 137, 14, 3] def test_distmat_loss(): a = torch.randn(2, 137, 14, 3) b = torch.randn(2, 137, 14, 3) loss = distmat_loss_torch(a, b, p=2, q=2) # mse on distmat assert True def test_lddt(): a = torch.randn(2, 137, 14, 3) b = torch.randn(2, 137, 14, 3) cloud_mask = torch.ones(a.shape[:-1]).bool() lddt_result = lddt_ca_torch(a, b, cloud_mask) assert list(lddt_result.shape) == [2, 137] def test_kabsch(): a = torch.randn(3, 8) b = torch.randn(3, 8) a_, b_ = Kabsch(a,b) assert a.shape == a_.shape def test_tmscore(): a = torch.randn(2, 3, 8) b = torch.randn(2, 3, 8) out = TMscore(a, b) assert True def test_gdt(): a = torch.randn(1, 3, 8) b = torch.randn(1, 3, 8) GDT(a, b, weights = 1) assert True
import torch from torch import nn from einops import repeat from alphafold2_pytorch.alphafold2 import Alphafold2 from alphafold2_pytorch.utils import * def test_main(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32 ) seq = torch.randint(0, 21, (2, 128)) msa = torch.randint(0, 21, (2, 5, 128)) mask = torch.ones_like(seq).bool() msa_mask = torch.ones_like(msa).bool() distogram = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert True def test_no_msa(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32 ) seq = torch.randint(0, 21, (2, 128)) mask = torch.ones_like(seq).bool() distogram = model( seq, mask = mask ) assert True def test_anglegrams(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, predict_angles = True ) seq = torch.randint(0, 21, (2, 128)) msa = torch.randint(0, 21, (2, 5, 128)) mask = torch.ones_like(seq).bool() msa_mask = torch.ones_like(msa).bool() ret = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert True def test_templates(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, templates_dim = 32, templates_angles_feats_dim = 32 ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() templates_feats = torch.randn(2, 3, 16, 16, 32) templates_angles = torch.randn(2, 3, 16, 32) templates_mask = torch.ones(2, 3, 16).bool() distogram = model( seq, msa, mask = mask, msa_mask = msa_mask, templates_feats = templates_feats, templates_angles = templates_angles, templates_mask = templates_mask ) assert True def test_extra_msa(): model = Alphafold2( dim = 128, depth = 2, heads = 2, dim_head = 32, predict_coords = True ) seq = torch.randint(0, 21, (2, 4)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 4)) msa_mask = torch.ones_like(msa).bool() extra_msa = torch.randint(0, 21, (2, 5, 4)) extra_msa_mask = torch.ones_like(extra_msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask, extra_msa = extra_msa, extra_msa_mask = extra_msa_mask ) assert True def test_embeddings(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32 ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() embedds = torch.randn(2, 1, 16, 1280) # without mask distogram = model( seq, mask = mask, embedds = embedds, msa_mask = None ) # with mask embedds_mask = torch.ones_like(embedds[..., -1]).bool() distogram = model( seq, mask = mask, embedds = embedds, msa_mask = embedds_mask ) assert True def test_coords(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, predict_coords = True, structure_module_depth = 1, structure_module_heads = 1, structure_module_dim_head = 1, ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert coords.shape == (2, 16, 3), 'must output coordinates' def test_coords_backbone_with_cbeta(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, predict_coords = True, structure_module_depth = 1, structure_module_heads = 1, structure_module_dim_head = 1, ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert coords.shape == (2, 16, 3), 'must output coordinates' def test_coords_all_atoms(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, predict_coords = True, structure_module_depth = 1, structure_module_heads = 1, structure_module_dim_head = 1, ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert coords.shape == (2, 16, 3), 'must output coordinates' def test_mds(): model = Alphafold2( dim = 32, depth = 2, heads = 2, dim_head = 32, predict_coords = True, structure_module_depth = 1, structure_module_heads = 1, structure_module_dim_head = 1, ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask ) assert coords.shape == (2, 16, 3), 'must output coordinates' def test_edges_to_equivariant_network(): model = Alphafold2( dim = 32, depth = 1, heads = 2, dim_head = 32, predict_coords = True, predict_angles = True ) seq = torch.randint(0, 21, (2, 32)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 32)) msa_mask = torch.ones_like(msa).bool() coords, confidences = model( seq, msa, mask = mask, msa_mask = msa_mask, return_confidence = True ) assert True, 'should run without errors' def test_coords_backwards(): model = Alphafold2( dim = 256, depth = 2, heads = 2, dim_head = 32, predict_coords = True, structure_module_depth = 1, structure_module_heads = 1, structure_module_dim_head = 1, ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords = model( seq, msa, mask = mask, msa_mask = msa_mask ) coords.sum().backward() assert True, 'must be able to go backwards through MDS and center distogram' def test_confidence(): model = Alphafold2( dim = 256, depth = 1, heads = 2, dim_head = 32, predict_coords = True ) seq = torch.randint(0, 21, (2, 16)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 16)) msa_mask = torch.ones_like(msa).bool() coords, confidences = model( seq, msa, mask = mask, msa_mask = msa_mask, return_confidence = True ) assert coords.shape[:-1] == confidences.shape[:-1] def test_recycling(): model = Alphafold2( dim = 128, depth = 2, heads = 2, dim_head = 32, predict_coords = True, ) seq = torch.randint(0, 21, (2, 4)) mask = torch.ones_like(seq).bool() msa = torch.randint(0, 21, (2, 5, 4)) msa_mask = torch.ones_like(msa).bool() extra_msa = torch.randint(0, 21, (2, 5, 4)) extra_msa_mask = torch.ones_like(extra_msa).bool() coords, ret = model( seq, msa, mask = mask, msa_mask = msa_mask, extra_msa = extra_msa, extra_msa_mask = extra_msa_mask, return_aux_logits = True, return_recyclables = True ) coords, ret = model( seq, msa, mask = mask, msa_mask = msa_mask, extra_msa = extra_msa, extra_msa_mask = extra_msa_mask, recyclables = ret.recyclables, return_aux_logits = True, return_recyclables = True ) assert True
import pickle import string from argparse import ArgumentParser from pathlib import Path from typing import Callable, List, Optional, Tuple, Union import numpy as np import numpy.linalg as LA import prody import torch from Bio import SeqIO from einops import repeat from sidechainnet.utils.measure import get_seq_coords_and_angles from sidechainnet.utils.sequence import ProteinVocabulary from torch.utils.data import DataLoader, Dataset from alphafold2_pytorch.constants import DISTOGRAM_BUCKETS from tqdm import tqdm try: import pytorch_lightning as pl LightningDataModule = pl.LightningDataModule except ImportError: LightningDataModule = object CACHE_PATH = Path("~/.cache/alphafold2_pytorch").expanduser() DATA_DIR = CACHE_PATH / "trrosetta" / "trrosetta" URL = "http://s3.amazonaws.com/proteindata/data_pytorch/trrosetta.tar.gz" REMOVE_KEYS = dict.fromkeys(string.ascii_lowercase) REMOVE_KEYS["."] = None REMOVE_KEYS["*"] = None translation = str.maketrans(REMOVE_KEYS) DEFAULT_VOCAB = ProteinVocabulary() def default_tokenize(seq: str) -> List[int]: return [DEFAULT_VOCAB[ch] for ch in seq] def read_fasta(filename: str) -> List[Tuple[str, str]]: def remove_insertions(sequence: str) -> str: return sequence.translate(translation) return [ (record.description, remove_insertions(str(record.seq))) for record in SeqIO.parse(filename, "fasta") ] def read_pdb(pdb: str): ag = prody.parsePDB(pdb) for chain in ag.iterChains(): angles, coords, seq = get_seq_coords_and_angles(chain) return angles, coords, seq def download_file(url, filename=None, root=CACHE_PATH): import os import urllib root.mkdir(exist_ok=True, parents=True) filename = filename or os.path.basename(url) download_target = root / filename download_target_tmp = root / f"tmp.{filename}" if download_target.exists() and not download_target.is_file(): raise RuntimeError(f"{download_target} exists and is not a regular file") if download_target.is_file(): return download_target with urllib.request.urlopen(url) as source, open( download_target_tmp, "wb" ) as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) download_target_tmp.rename(download_target) return download_target def get_or_download(url: str = URL): """ download and extract trrosetta data """ import tarfile file = CACHE_PATH / "trrosetta.tar.gz" dir = CACHE_PATH / "trrosetta" dir_temp = CACHE_PATH / "trrosetta_tmp" if dir.is_dir(): print(f"Load cached data from {dir}") return dir if not file.is_file(): print(f"Cache not found, download from {url} to {file}") download_file(url) print(f"Extract data from {file} to {dir}") with tarfile.open(file, "r:gz") as tar: tar.extractall(dir_temp) dir_temp.rename(dir) return dir def pad_sequences(sequences, constant_value=0, dtype=None) -> np.ndarray: batch_size = len(sequences) shape = [batch_size] + np.max([seq.shape for seq in sequences], 0).tolist() if dtype is None: dtype = sequences[0].dtype if isinstance(sequences[0], np.ndarray): array = np.full(shape, constant_value, dtype=dtype) elif isinstance(sequences[0], torch.Tensor): array = torch.full(shape, constant_value, dtype=dtype) for arr, seq in zip(array, sequences): arrslice = tuple(slice(dim) for dim in seq.shape) arr[arrslice] = seq return array class TrRosettaDataset(Dataset): def __init__( self, data_dir: Path, list_path: Path, tokenize: Callable[[str], List[int]], seq_pad_value: int = 20, random_sample_msa: bool = False, max_seq_len: int = 300, max_msa_num: int = 300, overwrite: bool = False, ): self.data_dir = data_dir self.file_list: List[Path] = self.read_file_list(data_dir, list_path) self.tokenize = tokenize self.seq_pad_value = seq_pad_value self.random_sample_msa = random_sample_msa self.max_seq_len = max_seq_len self.max_msa_num = max_msa_num self.overwrite = overwrite def __len__(self) -> int: return len(self.file_list) def read_file_list(self, data_dir: Path, list_path: Path): file_glob = (data_dir / "npz").glob("*.npz") files = set(list_path.read_text().split()) if len(files) == 0: raise ValueError("Passed an empty split file set") file_list = [f for f in file_glob if f.name in files] if len(file_list) != len(files): num_missing = len(files) - len(file_list) raise FileNotFoundError( f"{num_missing} specified split files not found in directory" ) return file_list def has_cache(self, index): if self.overwrite: return False path = (self.data_dir / "cache" / self.file_list[index].stem).with_suffix( ".pkl" ) return path.is_file() def write_cache(self, index, data): path = (self.data_dir / "cache" / self.file_list[index].stem).with_suffix( ".pkl" ) path.parent.mkdir(exist_ok=True, parents=True) with open(path, "wb") as file: pickle.dump(data, file) def read_cache(self, index): path = (self.data_dir / "cache" / self.file_list[index].stem).with_suffix( ".pkl" ) with open(path, "rb") as file: return pickle.load(file) def __getitem__(self, index): if self.has_cache(index): item = self.read_cache(index) else: id = self.file_list[index].stem pdb_path = self.data_dir / "pdb" / f"{id}.pdb" msa_path = self.data_dir / "a3m" / f"{id}.a3m" _, msa = zip(*read_fasta(str(msa_path))) msa = np.array([np.array(list(seq)) for seq in msa]) angles, coords, seq = read_pdb(str(pdb_path)) seq = np.array(list(seq)) coords = coords.reshape((coords.shape[0] // 14, 14, 3)) dist = self.get_bucketed_distance(seq, coords, subset="ca") item = { "id": id, "seq": seq, "msa": msa, "coords": coords, "angles": angles, "dist": dist } self.write_cache(index, item) item["msa"] = self.sample(item["msa"], self.max_msa_num, self.random_sample_msa) item = self.crop(item, self.max_seq_len) return item def calc_cb(self, coord): N = coord[0] CA = coord[1] C = coord[2] b = CA - N c = C - CA a = np.cross(b, c) CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA return CB def get_bucketed_distance( self, seq, coords, subset="ca", start=2, bins=DISTOGRAM_BUCKETS-1, step=0.5 ): assert subset in ("ca", "cb") if subset == "ca": coords = coords[:, 1, :] elif subset == "cb": cb_coords = [] for res, coord in zip(seq, coords): if res == "G": cb = self.calc_cb(coord) cb_coords.append(cb) else: cb_coords.append(coord[4, :]) coords = np.array(cb_coords) vcs = coords + np.zeros([coords.shape[0]] + list(coords.shape)) vcs = vcs - np.swapaxes(vcs, 0, 1) distance_map = LA.norm(vcs, axis=2) mask = np.ones(distance_map.shape) - np.eye(distance_map.shape[0]) low_pos = np.where(distance_map < start) high_pos = np.where(distance_map >= start + step * bins) mask[low_pos] = 0 distance_map = (distance_map - start) // step distance_map[high_pos] = bins dist = (distance_map * mask).astype(int) return dist def crop(self, item, max_seq_len: int): seq_len = len(item["seq"]) if seq_len <= max_seq_len or max_seq_len <= 0: return item start = 0 end = start + max_seq_len item["seq"] = item["seq"][start:end] item["msa"] = item["msa"][:, start:end] item["coords"] = item["coords"][start:end] item["angles"] = item["angles"][start:end] item["dist"] = item["dist"][start:end, start:end] return item def sample(self, msa, max_msa_num: int, random: bool): num_msa, seq_len = len(msa), len(msa[0]) if num_msa <= max_msa_num or max_msa_num <= 0: return msa if random: num_sample = max_msa_num - 1 indices = np.random.choice(num_msa - 1, size=num_sample, replace=False) + 1 indices = np.pad(indices, [1, 0], "constant") return msa[indices] else: return msa[:max_msa_num] def collate_fn(self, batch): b = len(batch) batch = {k: [item[k] for item in batch] for k in batch[0]} id = batch["id"] seq = batch["seq"] msa = batch["msa"] coords = batch["coords"] angles = batch["angles"] dist = batch["dist"] lengths = torch.LongTensor([len(x[0]) for x in msa]) depths = torch.LongTensor([len(x) for x in msa]) max_len = lengths.max() max_depth = depths.max() seq = pad_sequences( [torch.LongTensor(self.tokenize(seq_)) for seq_ in seq], self.seq_pad_value, ) msa = pad_sequences( [torch.LongTensor([self.tokenize(seq_) for seq_ in msa_]) for msa_ in msa], self.seq_pad_value, ) coords = pad_sequences([torch.FloatTensor(x) for x in coords], 0.0) angles = pad_sequences([torch.FloatTensor(x) for x in angles], 0.0) dist = pad_sequences([torch.LongTensor(x) for x in dist], -100) mask = repeat(torch.arange(max_len), "l -> b l", b=b) < repeat( lengths, "b -> b l", l=max_len ) msa_seq_mask = repeat( torch.arange(max_len), "l -> b s l", b=b, s=max_depth ) < repeat(lengths, "b -> b s l", s=max_depth, l=max_len) msa_depth_mask = repeat( torch.arange(max_depth), "s -> b s l", b=b, l=max_len ) < repeat(depths, "b -> b s l", s=max_depth, l=max_len) msa_mask = msa_seq_mask & msa_depth_mask return { "id": id, "seq": seq, "msa": msa, "coords": coords, "angles": angles, "mask": mask, "msa_mask": msa_mask, "dist": dist, } class TrRosettaDataModule(LightningDataModule): @staticmethod def add_data_specific_args(parent_parser): parser = ArgumentParser(parents=[parent_parser], add_help=False) parser.add_argument("--data_dir", type=str, default=str(DATA_DIR)) parser.add_argument("--train_batch_size", type=int, default=1) parser.add_argument("--eval_batch_size", type=int, default=1) parser.add_argument("--test_batch_size", type=int, default=1) parser.add_argument("--num_workers", type=int, default=0) parser.add_argument("--train_max_seq_len", type=int, default=256) parser.add_argument("--eval_max_seq_len", type=int, default=256) parser.add_argument("--test_max_seq_len", type=int, default=-1) parser.add_argument("--train_max_msa_num", type=int, default=256) parser.add_argument("--eval_max_msa_num", type=int, default=256) parser.add_argument("--test_max_msa_num", type=int, default=1000) parser.add_argument("--overwrite", dest="overwrite", action="store_true") return parser def __init__( self, data_dir: str = DATA_DIR, train_batch_size: int = 1, eval_batch_size: int = 1, test_batch_size: int = 1, num_workers: int = 0, train_max_seq_len: int = 256, eval_max_seq_len: int = 256, test_max_seq_len: int = -1, train_max_msa_num: int = 32, eval_max_msa_num: int = 32, test_max_msa_num: int = 64, tokenize: Callable[[str], List[int]] = default_tokenize, seq_pad_value: int = 20, overwrite: bool = False, **kwargs, ): super(TrRosettaDataModule, self).__init__() self.data_dir = Path(data_dir).expanduser().resolve() self.train_batch_size = train_batch_size self.eval_batch_size = eval_batch_size self.test_batch_size = test_batch_size self.num_workers = num_workers self.train_max_seq_len = train_max_seq_len self.eval_max_seq_len = eval_max_seq_len self.test_max_seq_len = test_max_seq_len self.train_max_msa_num = train_max_msa_num self.eval_max_msa_num = eval_max_msa_num self.test_max_msa_num = test_max_msa_num self.tokenize = tokenize self.seq_pad_value = seq_pad_value self.overwrite = overwrite get_or_download() def setup(self, stage: Optional[str] = None): self.train = TrRosettaDataset( self.data_dir, self.data_dir / "train_files.txt", self.tokenize, self.seq_pad_value, random_sample_msa=True, max_seq_len=self.train_max_seq_len, max_msa_num=self.train_max_msa_num, overwrite=self.overwrite, ) self.val = TrRosettaDataset( self.data_dir, self.data_dir / "valid_files.txt", self.tokenize, self.seq_pad_value, random_sample_msa=False, max_seq_len=self.eval_max_seq_len, max_msa_num=self.eval_max_msa_num, overwrite=self.overwrite, ) self.test = TrRosettaDataset( self.data_dir, self.data_dir / "valid_files.txt", self.tokenize, self.seq_pad_value, random_sample_msa=False, max_seq_len=self.test_max_seq_len, max_msa_num=self.test_max_msa_num, overwrite=self.overwrite, ) def train_dataloader(self, *args, **kwargs) -> DataLoader: return DataLoader( self.train, batch_size=self.train_batch_size, shuffle=True, collate_fn=self.train.collate_fn, num_workers=self.num_workers, ) def val_dataloader(self, *args, **kwargs) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.val, batch_size=self.eval_batch_size, shuffle=False, collate_fn=self.val.collate_fn, num_workers=self.num_workers, ) def test_dataloader(self, *args, **kwargs) -> Union[DataLoader, List[DataLoader]]: return DataLoader( self.test, batch_size=self.test_batch_size, shuffle=False, collate_fn=self.test.collate_fn, num_workers=self.num_workers, ) def test(): dm = TrRosettaDataModule(train_batch_size=1, num_workers=4) dm.setup() for batch in dm.train_dataloader(): print("id", batch["id"]) print("seq", batch["seq"].shape, batch["seq"]) print("msa", batch["msa"].shape, batch["msa"][..., :20]) print("msa", batch["msa"].shape, batch["msa"][..., -20:]) print("coords", batch["coords"].shape) print("angles", batch["angles"].shape) print("mask", batch["mask"].shape) print("msa_mask", batch["msa_mask"].shape) print("dist", batch["dist"].shape, batch["dist"]) break if __name__ == "__main__": test()
# will use FastRelax routine to refine structure import os import json import warnings # science import numpy as np # pyrosetta installation instructs in readme try: import pyrosetta except ModuleNotFoundError: msg = "Unable to find an existing installation of the PyRosetta module. " +\ "Functions involving this module such as the FastRelax pipeline " +\ "will not work." warnings.warn(msg) # no pyRosetta was found ##################### ### ROSETTA STUFF ### ##################### def pdb2rosetta(route): """ Takes pdb file route(s) as input and returns rosetta pose(s). Input: * route: list or string. Output: list of 1 or many according to input """ if isinstance(route, str): return [pyrosetta.io.pose_from_pdb(route)] else: return list(pyrosetta.io.poses_from_files(route)) def rosetta2pdb(pose, route, verbose=True): """ Takes pose(s) as input and saves pdb(s) to disk. Input: * pose: list or string. rosetta poses object(s). * route: list or string. destin filenames to be written. * verbose: bool. warns if lengths dont match and @ every write. Inspo: * https://www.rosettacommons.org/demos/latest/tutorials/input_and_output/input_and_output#controlling-output_common-structure-output-files_pdb-file * https://graylab.jhu.edu/PyRosetta.documentation/pyrosetta.rosetta.core.io.pdb.html#pyrosetta.rosetta.core.io.pdb.dump_pdb """ # convert to list pose = [pose] if isinstance(pose, str) else pose route = [route] if isinstance(route, str) else route # check lengths and warn if necessary if verbose and ( len(pose) != len(route) ): print("Length of pose and route are not the same. Will stop at the minimum.") # convert and save for i,pos in enumerate(pose): pyrosetta.rosetta.core.io.pdb.dump_pdb(pos, route[i]) if verbose: print("Saved structure @ "+route) return def run_fast_relax(config_route, pdb_route=None, pose=None): """ Runs the Fast-Relax pipeline. * config_route: route to json file with config * pose: rosetta pose to run the pipeline on Output: rosetta pose """ # load rosetta pose - if string or list is passed, convert to pose + recall if isinstance(pdb_route, str): pose = pdb2rosetta(pdb_route) return run_fast_relax(config, pose=pose) elif isinstance(pdb_route, list): return [run_fast_relax(config, pdb_route=pdb) for pdb in pdb_route] # load config: config = json.load(config_route) # run fast relax pipeline - examples: # https://colab.research.google.com/github/RosettaCommons/PyRosetta.notebooks/blob/master/notebooks/06.02-Packing-design-and-regional-relax.ipynb#scrollTo=PYr025Rn1Q8i # https://nbviewer.jupyter.org/github/RosettaCommons/PyRosetta.notebooks/blob/master/notebooks/06.03-Design-with-a-resfile-and-relax.ipynb # https://faculty.washington.edu/dimaio/files/demo2.py raise NotImplementedError("Last step. Not implemented yet.")
from setuptools import setup, find_packages setup( name = 'axial_attention', packages = find_packages(), version = '0.6.1', license='MIT', description = 'Axial Attention', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/axial-attention', keywords = ['attention', 'artificial intelligence'], install_requires=[ 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
import torch import torch.nn as nn from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) def forward(self, x, f_args = {}, g_args = {}): x1, x2 = torch.chunk(x, 2, dim = 1) y1, y2 = None, None with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim = 1) def backward_pass(self, y, dy, f_args = {}, g_args = {}): y1, y2 = torch.chunk(y, 2, dim = 1) del y dy1, dy2 = torch.chunk(dy, 2, dim = 1) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1, retain_graph=True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim = 1) dx = torch.cat([dx1, dx2], dim = 1) return x, dx class IrreversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = f self.g = g def forward(self, x, f_args, g_args): x1, x2 = torch.chunk(x, 2, dim = 1) y1 = x1 + self.f(x2, **f_args) y2 = x2 + self.g(y1, **g_args) return torch.cat([y1, y2], dim = 1) class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, kwargs): ctx.kwargs = kwargs for block in blocks: x = block(x, **kwargs) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward(ctx, dy): y = ctx.y kwargs = ctx.kwargs for block in ctx.blocks[::-1]: y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class ReversibleSequence(nn.Module): def __init__(self, blocks, ): super().__init__() self.blocks = nn.ModuleList([ReversibleBlock(f, g) for (f, g) in blocks]) def forward(self, x, arg_route = (True, True), **kwargs): f_args, g_args = map(lambda route: kwargs if route else {}, arg_route) block_kwargs = {'f_args': f_args, 'g_args': g_args} x = torch.cat((x, x), dim = 1) x = _ReversibleFunction.apply(x, self.blocks, block_kwargs) return torch.stack(x.chunk(2, dim = 1)).mean(dim = 0)
from axial_attention.axial_attention import AxialAttention, AxialPositionalEmbedding, AxialImageTransformer, SelfAttention
import torch from torch import nn from operator import itemgetter from axial_attention.reversible import ReversibleSequence # helper functions def exists(val): return val is not None def map_el_ind(arr, ind): return list(map(itemgetter(ind), arr)) def sort_and_return_indices(arr): indices = [ind for ind in range(len(arr))] arr = zip(arr, indices) arr = sorted(arr) return map_el_ind(arr, 0), map_el_ind(arr, 1) # calculates the permutation to bring the input tensor to something attend-able # also calculates the inverse permutation to bring the tensor back to its original shape def calculate_permutations(num_dimensions, emb_dim): total_dimensions = num_dimensions + 2 emb_dim = emb_dim if emb_dim > 0 else (emb_dim + total_dimensions) axial_dims = [ind for ind in range(1, total_dimensions) if ind != emb_dim] permutations = [] for axial_dim in axial_dims: last_two_dims = [axial_dim, emb_dim] dims_rest = set(range(0, total_dimensions)) - set(last_two_dims) permutation = [*dims_rest, *last_two_dims] permutations.append(permutation) return permutations # helper classes class ChanLayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt() mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (std + self.eps) * self.g + self.b class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x): x = self.norm(x) return self.fn(x) class Sequential(nn.Module): def __init__(self, blocks): super().__init__() self.blocks = blocks def forward(self, x): for f, g in self.blocks: x = x + f(x) x = x + g(x) return x class PermuteToFrom(nn.Module): def __init__(self, permutation, fn): super().__init__() self.fn = fn _, inv_permutation = sort_and_return_indices(permutation) self.permutation = permutation self.inv_permutation = inv_permutation def forward(self, x, **kwargs): axial = x.permute(*self.permutation).contiguous() shape = axial.shape *_, t, d = shape # merge all but axial dimension axial = axial.reshape(-1, t, d) # attention axial = self.fn(axial, **kwargs) # restore to original shape and permutation axial = axial.reshape(*shape) axial = axial.permute(*self.inv_permutation).contiguous() return axial # axial pos emb class AxialPositionalEmbedding(nn.Module): def __init__(self, dim, shape, emb_dim_index = 1): super().__init__() parameters = [] total_dimensions = len(shape) + 2 ax_dim_indexes = [i for i in range(1, total_dimensions) if i != emb_dim_index] self.num_axials = len(shape) for i, (axial_dim, axial_dim_index) in enumerate(zip(shape, ax_dim_indexes)): shape = [1] * total_dimensions shape[emb_dim_index] = dim shape[axial_dim_index] = axial_dim parameter = nn.Parameter(torch.randn(*shape)) setattr(self, f'param_{i}', parameter) def forward(self, x): for i in range(self.num_axials): x = x + getattr(self, f'param_{i}') return x # attention class SelfAttention(nn.Module): def __init__(self, dim, heads, dim_heads = None): super().__init__() self.dim_heads = (dim // heads) if dim_heads is None else dim_heads dim_hidden = self.dim_heads * heads self.heads = heads self.to_q = nn.Linear(dim, dim_hidden, bias = False) self.to_kv = nn.Linear(dim, 2 * dim_hidden, bias = False) self.to_out = nn.Linear(dim_hidden, dim) def forward(self, x, kv = None): kv = x if kv is None else kv q, k, v = (self.to_q(x), *self.to_kv(kv).chunk(2, dim=-1)) b, t, d, h, e = *q.shape, self.heads, self.dim_heads merge_heads = lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e) q, k, v = map(merge_heads, (q, k, v)) dots = torch.einsum('bie,bje->bij', q, k) * (e ** -0.5) dots = dots.softmax(dim=-1) out = torch.einsum('bij,bje->bie', dots, v) out = out.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d) out = self.to_out(out) return out # axial attention class class AxialAttention(nn.Module): def __init__(self, dim, num_dimensions = 2, heads = 8, dim_heads = None, dim_index = -1, sum_axial_out = True): assert (dim % heads) == 0, 'hidden dimension must be divisible by number of heads' super().__init__() self.dim = dim self.total_dimensions = num_dimensions + 2 self.dim_index = dim_index if dim_index > 0 else (dim_index + self.total_dimensions) attentions = [] for permutation in calculate_permutations(num_dimensions, dim_index): attentions.append(PermuteToFrom(permutation, SelfAttention(dim, heads, dim_heads))) self.axial_attentions = nn.ModuleList(attentions) self.sum_axial_out = sum_axial_out def forward(self, x): assert len(x.shape) == self.total_dimensions, 'input tensor does not have the correct number of dimensions' assert x.shape[self.dim_index] == self.dim, 'input tensor does not have the correct input dimension' if self.sum_axial_out: return sum(map(lambda axial_attn: axial_attn(x), self.axial_attentions)) out = x for axial_attn in self.axial_attentions: out = axial_attn(out) return out # axial image transformer class AxialImageTransformer(nn.Module): def __init__(self, dim, depth, heads = 8, dim_heads = None, dim_index = 1, reversible = True, axial_pos_emb_shape = None): super().__init__() permutations = calculate_permutations(2, dim_index) get_ff = lambda: nn.Sequential( ChanLayerNorm(dim), nn.Conv2d(dim, dim * 4, 3, padding = 1), nn.LeakyReLU(inplace=True), nn.Conv2d(dim * 4, dim, 3, padding = 1) ) self.pos_emb = AxialPositionalEmbedding(dim, axial_pos_emb_shape, dim_index) if exists(axial_pos_emb_shape) else nn.Identity() layers = nn.ModuleList([]) for _ in range(depth): attn_functions = nn.ModuleList([PermuteToFrom(permutation, PreNorm(dim, SelfAttention(dim, heads, dim_heads))) for permutation in permutations]) conv_functions = nn.ModuleList([get_ff(), get_ff()]) layers.append(attn_functions) layers.append(conv_functions) execute_type = ReversibleSequence if reversible else Sequential self.layers = execute_type(layers) def forward(self, x): x = self.pos_emb(x) return self.layers(x)
from setuptools import setup, find_packages setup( name = 'bit-diffusion', packages = find_packages(exclude=[]), version = '0.1.2', license='MIT', description = 'Bit Diffusion - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/bit-diffusion', keywords = [ 'artificial intelligence', 'deep learning', 'denoising diffusion' ], install_requires=[ 'accelerate', 'einops', 'ema-pytorch', 'pillow', 'torch>=1.12.0', 'torchvision', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
import math from pathlib import Path from functools import partial from multiprocessing import cpu_count import torch from torch import nn, einsum from torch.special import expm1 import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from torchvision import transforms as T, utils from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange from PIL import Image from tqdm.auto import tqdm from ema_pytorch import EMA from accelerate import Accelerator # constants BITS = 8 # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cycle(dl): while True: for data in dl: yield data def has_int_squareroot(num): return (math.sqrt(num) ** 2) == num def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def convert_image_to(pil_img_type, image): if image.mode != pil_img_type: return image.convert(pil_img_type) return image # small helper modules class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x def Upsample(dim, dim_out = None): return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), nn.Conv2d(dim, default(dim_out, dim), 3, padding = 1) ) def Downsample(dim, dim_out = None): return nn.Conv2d(dim, default(dim_out, dim), 4, 2, 1) class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x): x = self.norm(x) return self.fn(x) # positional embeds class LearnedSinusoidalPosEmb(nn.Module): """ following @crowsonkb 's lead with learned sinusoidal pos emb """ """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """ def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered # building block modules class Block(nn.Module): def __init__(self, dim, dim_out, groups = 8): super().__init__() self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward(self, x, scale_shift = None): x = self.proj(x) x = self.norm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.act(x) return x class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8): super().__init__() self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2) ) if exists(time_emb_dim) else None self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb = None): scale_shift = None if exists(self.mlp) and exists(time_emb): time_emb = self.mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, scale_shift = scale_shift) h = self.block2(h) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, 1), LayerNorm(dim) ) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q.softmax(dim = -2) k = k.softmax(dim = -1) q = q * self.scale v = v / (h * w) context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) return self.to_out(out) class Attention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q * self.scale sim = einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out) # model class Unet(nn.Module): def __init__( self, dim, init_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, bits = BITS, resnet_block_groups = 8, learned_sinusoidal_dim = 16 ): super().__init__() # determine dimensions channels *= bits self.channels = channels input_channels = channels * 2 init_dim = default(init_dim, dim) self.init_conv = nn.Conv2d(input_channels, init_dim, 7, padding = 3) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) block_klass = partial(ResnetBlock, groups = resnet_block_groups) # time embeddings time_dim = dim * 4 sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim) fourier_dim = learned_sinusoidal_dim + 1 self.time_mlp = nn.Sequential( sinu_pos_emb, nn.Linear(fourier_dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_dim) ) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append(nn.ModuleList([ block_klass(dim_in, dim_in, time_emb_dim = time_dim), block_klass(dim_in, dim_in, time_emb_dim = time_dim), Residual(PreNorm(dim_in, LinearAttention(dim_in))), Downsample(dim_in, dim_out) if not is_last else nn.Conv2d(dim_in, dim_out, 3, padding = 1) ])) mid_dim = dims[-1] self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim))) self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) for ind, (dim_in, dim_out) in enumerate(reversed(in_out)): is_last = ind == (len(in_out) - 1) self.ups.append(nn.ModuleList([ block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), Residual(PreNorm(dim_out, LinearAttention(dim_out))), Upsample(dim_out, dim_in) if not is_last else nn.Conv2d(dim_out, dim_in, 3, padding = 1) ])) self.final_res_block = block_klass(dim * 2, dim, time_emb_dim = time_dim) self.final_conv = nn.Conv2d(dim, channels, 1) def forward(self, x, time, x_self_cond = None): x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x_self_cond, x), dim = 1) x = self.init_conv(x) r = x.clone() t = self.time_mlp(time) h = [] for block1, block2, attn, downsample in self.downs: x = block1(x, t) h.append(x) x = block2(x, t) x = attn(x) h.append(x) x = downsample(x) x = self.mid_block1(x, t) x = self.mid_attn(x) x = self.mid_block2(x, t) for block1, block2, attn, upsample in self.ups: x = torch.cat((x, h.pop()), dim = 1) x = block1(x, t) x = torch.cat((x, h.pop()), dim = 1) x = block2(x, t) x = attn(x) x = upsample(x) x = torch.cat((x, r), dim = 1) x = self.final_res_block(x, t) return self.final_conv(x) # convert to bit representations and back def decimal_to_bits(x, bits = BITS): """ expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1 """ device = x.device x = (x * 255).int().clamp(0, 255) mask = 2 ** torch.arange(bits - 1, -1, -1, device = device) mask = rearrange(mask, 'd -> d 1 1') x = rearrange(x, 'b c h w -> b c 1 h w') bits = ((x & mask) != 0).float() bits = rearrange(bits, 'b c d h w -> b (c d) h w') bits = bits * 2 - 1 return bits def bits_to_decimal(x, bits = BITS): """ expects bits from -1 to 1, outputs image tensor from 0 to 1 """ device = x.device x = (x > 0).int() mask = 2 ** torch.arange(bits - 1, -1, -1, device = device, dtype = torch.int32) mask = rearrange(mask, 'd -> d 1 1') x = rearrange(x, 'b (c d) h w -> b c d h w', d = bits) dec = reduce(x * mask, 'b c d h w -> b c h w', 'sum') return (dec / 255).clamp(0., 1.) # bit diffusion class def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) def beta_linear_log_snr(t): return -torch.log(expm1(1e-4 + 10 * (t ** 2))) def alpha_cosine_log_snr(t, s: float = 0.008): return -log((torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** -2) - 1, eps = 1e-5) # not sure if this accounts for beta being clipped to 0.999 in discrete version def log_snr_to_alpha_sigma(log_snr): return torch.sqrt(torch.sigmoid(log_snr)), torch.sqrt(torch.sigmoid(-log_snr)) class BitDiffusion(nn.Module): def __init__( self, model, *, image_size, timesteps = 1000, use_ddim = False, noise_schedule = 'cosine', time_difference = 0., bit_scale = 1. ): super().__init__() self.model = model self.channels = self.model.channels self.image_size = image_size if noise_schedule == "linear": self.log_snr = beta_linear_log_snr elif noise_schedule == "cosine": self.log_snr = alpha_cosine_log_snr else: raise ValueError(f'invalid noise schedule {noise_schedule}') self.bit_scale = bit_scale self.timesteps = timesteps self.use_ddim = use_ddim # proposed in the paper, summed to time_next # as a way to fix a deficiency in self-conditioning and lower FID when the number of sampling timesteps is < 400 self.time_difference = time_difference @property def device(self): return next(self.model.parameters()).device def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times @torch.no_grad() def ddpm_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device=device) x_start = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', total = self.timesteps): # add the time delay time_next = (time_next - self.time_difference).clamp(min = 0.) noise_cond = self.log_snr(time) # get predicted x0 x_start = self.model(img, noise_cond, x_start) # clip x0 x_start.clamp_(-self.bit_scale, self.bit_scale) # get log(snr) log_snr = self.log_snr(time) log_snr_next = self.log_snr(time_next) log_snr, log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) # get alpha sigma of time and next time alpha, sigma = log_snr_to_alpha_sigma(log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(log_snr_next) # derive posterior mean and variance c = -expm1(log_snr - log_snr_next) mean = alpha_next * (img * (1 - c) / alpha + c * x_start) variance = (sigma_next ** 2) * c log_variance = log(variance) # get noise noise = torch.where( rearrange(time_next > 0, 'b -> b 1 1 1'), torch.randn_like(img), torch.zeros_like(img) ) img = mean + (0.5 * log_variance).exp() * noise return bits_to_decimal(img) @torch.no_grad() def ddim_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device = device) x_start = None for times, times_next in tqdm(time_pairs, desc = 'sampling loop time step'): # add the time delay times_next = (times_next - time_difference).clamp(min = 0.) # get times and noise levels log_snr = self.log_snr(times) log_snr_next = self.log_snr(times_next) padded_log_snr, padded_log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) alpha, sigma = log_snr_to_alpha_sigma(padded_log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(padded_log_snr_next) # predict x0 x_start = self.model(img, log_snr, x_start) # clip x0 x_start.clamp_(-self.bit_scale, self.bit_scale) # get predicted noise pred_noise = (img - alpha * x_start) / sigma.clamp(min = 1e-8) # calculate x next img = x_start * alpha_next + pred_noise * sigma_next return bits_to_decimal(img) @torch.no_grad() def sample(self, batch_size = 16): image_size, channels = self.image_size, self.channels sample_fn = self.ddpm_sample if not self.use_ddim else self.ddim_sample return sample_fn((batch_size, channels, image_size, image_size)) def forward(self, img, *args, **kwargs): batch, c, h, w, device, img_size, = *img.shape, img.device, self.image_size assert h == img_size and w == img_size, f'height and width of image must be {img_size}' # sample random times times = torch.zeros((batch,), device = device).float().uniform_(0, 1.) # convert image to bit representation img = decimal_to_bits(img) * self.bit_scale # noise sample noise = torch.randn_like(img) noise_level = self.log_snr(times) padded_noise_level = right_pad_dims_to(img, noise_level) alpha, sigma = log_snr_to_alpha_sigma(padded_noise_level) noised_img = alpha * img + sigma * noise # if doing self-conditioning, 50% of the time, predict x_start from current set of times # and condition with unet with that # this technique will slow down training by 25%, but seems to lower FID significantly self_cond = None if torch.rand((1)) < 0.5: with torch.no_grad(): self_cond = self.model(noised_img, noise_level).detach_() # predict and take gradient step pred = self.model(noised_img, noise_level, self_cond) return F.mse_loss(pred, img) # dataset classes class Dataset(Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png', 'tiff'], augment_horizontal_flip = False, pil_img_type = None ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] maybe_convert_fn = partial(convert_image_to, pil_img_type) if exists(pil_img_type) else nn.Identity() self.transform = T.Compose([ T.Lambda(maybe_convert_fn), T.Resize(image_size), T.RandomHorizontalFlip() if augment_horizontal_flip else nn.Identity(), T.CenterCrop(image_size), T.ToTensor() ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) # trainer class class Trainer(object): def __init__( self, diffusion_model, folder, *, train_batch_size = 16, gradient_accumulate_every = 1, augment_horizontal_flip = True, train_lr = 1e-4, train_num_steps = 100000, ema_update_every = 10, ema_decay = 0.995, adam_betas = (0.9, 0.99), save_and_sample_every = 1000, num_samples = 25, results_folder = './results', amp = False, mixed_precision_type = 'fp16', split_batches = True, pil_img_type = None ): super().__init__() self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = mixed_precision_type if amp else 'no' ) self.model = diffusion_model assert has_int_squareroot(num_samples), 'number of samples must have an integer square root' self.num_samples = num_samples self.save_and_sample_every = save_and_sample_every self.batch_size = train_batch_size self.gradient_accumulate_every = gradient_accumulate_every self.train_num_steps = train_num_steps self.image_size = diffusion_model.image_size # dataset and dataloader self.ds = Dataset(folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = pil_img_type) dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count()) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) # optimizer self.opt = Adam(diffusion_model.parameters(), lr = train_lr, betas = adam_betas) # for logging results in a folder periodically if self.accelerator.is_main_process: self.ema = EMA(diffusion_model, beta = ema_decay, update_every = ema_update_every) self.results_folder = Path(results_folder) self.results_folder.mkdir(exist_ok = True) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'ema': self.ema.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): data = torch.load(str(self.results_folder / f'model-{milestone}.pt')) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) self.ema.load_state_dict(data['ema']) if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train(self): accelerator = self.accelerator device = accelerator.device with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: while self.step < self.train_num_steps: total_loss = 0. for _ in range(self.gradient_accumulate_every): data = next(self.dl).to(device) with self.accelerator.autocast(): loss = self.model(data) loss = loss / self.gradient_accumulate_every total_loss += loss.item() self.accelerator.backward(loss) pbar.set_description(f'loss: {total_loss:.4f}') accelerator.wait_for_everyone() self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() if accelerator.is_main_process: self.ema.to(device) self.ema.update() if self.step != 0 and self.step % self.save_and_sample_every == 0: self.ema.ema_model.eval() with torch.no_grad(): milestone = self.step // self.save_and_sample_every batches = num_to_groups(self.num_samples, self.batch_size) all_images_list = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches)) all_images = torch.cat(all_images_list, dim = 0) utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = int(math.sqrt(self.num_samples))) self.save(milestone) self.step += 1 pbar.update(1) accelerator.print('training complete')
from bit_diffusion.bit_diffusion import Unet, BitDiffusion, Trainer
from setuptools import setup __VERSION__ = '0.0.3' setup(name='adamod', version=__VERSION__, description='AdaMod optimization algorithm, build on PyTorch.', long_description=open("README.md", encoding='utf-8').read(), long_description_content_type="text/markdown", keywords=['machine learning', 'deep learning'], classifiers=[ 'Intended Audience :: Science/Research', 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], url='https://github.com/karrynest/AdaMod', author='Jianbang Ding', author_email='[email protected]', license='Apache', packages=['adamod'], install_requires=[ 'torch>=0.4.0', ], zip_safe=False, python_requires='>=3.6.0')
from .adamod import AdaMod
import math import torch from torch.optim import Optimizer class AdaMod(Optimizer): """Implements AdaMod algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101) It has been proposed in `Adaptive and Momental Bounds for Adaptive Learning Rate Methods`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) beta3 (float, optional): smoothing coefficient for adaptive learning rates (default: 0.9999) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), beta3=0.999, eps=1e-8, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= beta3 < 1.0: raise ValueError("Invalid beta3 parameter: {}".format(beta3)) defaults = dict(lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay) super(AdaMod, self).__init__(params, defaults) def __setstate__(self, state): super(AdaMod, self).__setstate__(state) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'AdaMod does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # Exponential moving average of actual learning rates state['exp_avg_lr'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq, exp_avg_lr = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_lr'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p.data.add_(-group['weight_decay'] * group['lr'], p.data) # Applies momental bounds on actual learning rates step_size = torch.full_like(denom, step_size) step_size.div_(denom) exp_avg_lr.mul_(group['beta3']).add_(1 - group['beta3'], step_size) step_size = torch.min(step_size, exp_avg_lr) step_size.mul_(exp_avg) p.data.add_(-step_size) return loss
import os #%matplotlib notebook import matplotlib.pyplot as plt import torch import numpy as np LABELS = ['SGD','Adam', 'AdaMod'] def get_folder_path(use_pretrained=True): if use_pretrained: path = 'pretrained' else: path = 'curve' return path def get_curve_data(use_pretrained=True, model='ResNet'): folder_path = get_folder_path(use_pretrained) filenames = [name for name in os.listdir(folder_path) if name.startswith(model.lower())] paths = [os.path.join(folder_path, name) for name in filenames] keys = [name.split('-')[1] for name in filenames] return {key: torch.load(fp) for key, fp in zip(keys, paths)} def plot(use_pretrained=True, model='ResNet', optimizers=None, curve_type='train'): assert model in ['ResNet', 'DenseNet'], 'Invalid model name: {}'.format(model) assert curve_type in ['train', 'test'], 'Invalid curve type: {}'.format(curve_type) assert all(_ in LABELS for _ in optimizers), 'Invalid optimizer' curve_data = get_curve_data(use_pretrained, model=model) plt.figure() plt.title('{} Accuracy for {} on CIFAR-100'.format(curve_type.capitalize(), model)) plt.xlabel('Epoch') plt.ylabel('{} Accuracy %'.format(curve_type.capitalize())) if curve_type == 'train': plt.ylim(80, 101) else: plt.ylim(50, 81) for optim in optimizers: accuracies = np.array(curve_data[optim.lower()]['{}_acc'.format(curve_type)]) plt.plot(accuracies, label=optim) plt.grid(ls='--') plt.legend() plt.show() plt.savefig('cifar100-{}-{}.png'.format(model, curve_type.capitalize())) def main(): # plot(use_pretrained=True, model='ResNet', optimizers=LABELS, curve_type='train') # plot(use_pretrained=True, model='ResNet', optimizers=LABELS, curve_type='test') plot(use_pretrained=True, model='DenseNet', optimizers=LABELS, curve_type='train') plot(use_pretrained=True, model='DenseNet', optimizers=LABELS, curve_type='test') if __name__ == '__main__': main()
"""Train CIFAR100 with PyTorch.""" from __future__ import print_function import torch import torch.optim as optim import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse from models import * from adamod import AdaMod def get_parser(): parser = argparse.ArgumentParser(description='PyTorch CIFAR100 Training') parser.add_argument('--model', default='resnet', type=str, help='model', choices=['resnet', 'densenet']) parser.add_argument('--optim', default='adamod', type=str, help='optimizer', choices=['sgd', 'adam', 'adamod']) parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--beta3', default=0.999, type=float, help=' smoothing coefficient term of AdaMod') parser.add_argument('--momentum', default=0.9, type=float, help='momentum term') parser.add_argument('--beta1', default=0.9, type=float, help='Adam coefficients beta_1') parser.add_argument('--beta2', default=0.999, type=float, help='Adam coefficients beta_2') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay for optimizers') return parser def build_dataset(): print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)), ]) trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) # classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') return train_loader, test_loader def get_ckpt_name(dataset='cifar100', model='resnet', optimizer='adamod', lr=0.1, momentum=0.9, beta1=0.9, beta2=0.999, beta3=0.999): name = { 'sgd': 'lr{}-momentum{}'.format(lr, momentum), 'adam': 'lr{}-betas{}-{}'.format(lr, beta1, beta2), 'adamod': 'lr{}-betas{}-{}-{}'.format(lr, beta1, beta2, beta3), }[optimizer] return '{}-{}-{}'.format(model, optimizer, name) def load_checkpoint(ckpt_name): print('==> Resuming from checkpoint..') path = os.path.join('checkpoint', ckpt_name) assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' assert os.path.exists(path), 'Error: checkpoint {} not found'.format(ckpt_name) return torch.load(ckpt_name) def build_model(args, device, ckpt=None): print('==> Building model..') net = { 'resnet': ResNet34, 'densenet': DenseNet121, }[args.model]() net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if ckpt: net.load_state_dict(ckpt['net']) return net def create_optimizer(args, model_params): if args.optim == 'sgd': return optim.SGD(model_params, args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optim == 'adam': return optim.AdamW(model_params, args.lr, betas=(args.beta1, args.beta2), weight_decay=args.weight_decay) elif args.optim == 'adamod': return AdaMod(model_params, args.lr, betas=(args.beta1, args.beta2), beta3=args.beta3, weight_decay=args.weight_decay) def train(net, epoch, device, data_loader, optimizer, criterion): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(data_loader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() accuracy = 100. * correct / total print('train acc %.3f' % accuracy) return accuracy def test(net, device, data_loader, criterion): net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(data_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() accuracy = 100. * correct / total print(' test acc %.3f' % accuracy) return accuracy def main(): parser = get_parser() args = parser.parse_args() train_loader, test_loader = build_dataset() device = 'cuda' if torch.cuda.is_available() else 'cpu' ckpt_name = get_ckpt_name(model=args.model, optimizer=args.optim, lr=args.lr, momentum=args.momentum, beta1=args.beta1, beta2=args.beta2, beta3=args.beta3) if args.resume: ckpt = load_checkpoint(ckpt_name) best_acc = ckpt['acc'] start_epoch = ckpt['epoch'] else: ckpt = None best_acc = 0 start_epoch = -1 net = build_model(args, device, ckpt=ckpt) criterion = nn.CrossEntropyLoss() optimizer = create_optimizer(args, net.parameters()) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [150, 225], gamma=0.1, last_epoch=start_epoch) train_accuracies = [] test_accuracies = [] for epoch in range(start_epoch + 1, 300): scheduler.step() train_acc = train(net, epoch, device, train_loader, optimizer, criterion) test_acc = test(net, device, test_loader, criterion) # Save checkpoint. if test_acc > best_acc: print('Saving..') state = { 'net': net.state_dict(), 'acc': test_acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, os.path.join('checkpoint', ckpt_name)) best_acc = test_acc train_accuracies.append(train_acc) test_accuracies.append(test_acc) if not os.path.isdir('curve'): os.mkdir('curve') torch.save({'train_acc': train_accuracies, 'test_acc': test_accuracies}, os.path.join('curve', ckpt_name)) if __name__ == '__main__': main()