python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Optional import torch from beanmachine.ppl.experimental.causal_inference.models.bart.node import LeafNode from torch.distributions.gamma import Gamma from torch.distributions.normal import Normal class NoiseStandardDeviation: """The NoiseStandardDeviation class encapsulates the noise standard deviation. The variance is parametrized by an inverse-gamma prior which is conjugate to a normal likelihood. Args: prior_concentration (float): Also called alpha. Must be greater than zero. prior_rate (float): Also called beta. Must be greater than 0. val (float): Current value of noise standard deviation. """ def __init__( self, prior_concentration: float, prior_rate: float, val: Optional[float] = None ): if prior_concentration <= 0 or prior_rate <= 0: raise ValueError("Invalid prior hyperparameters") self.prior_concentration = prior_concentration self.prior_rate = prior_rate if val is None: self.sample(X=torch.Tensor([]), residual=torch.Tensor([])) # prior init else: self._val = val @property def val(self) -> float: return self._val @val.setter def val(self, val: float): self._val = val def sample(self, X: torch.Tensor, residual: torch.Tensor) -> float: """Sample from the posterior distribution of sigma. If empty tensors are passed for X and residual, there will be no update so the sampling will be from the prior. Note: This sets the value of the `val` attribute to the drawn sample. Args: X: Covariate matrix / training data shape (num_observations, input_dimensions). residual: The current residual of the model shape (num_observations, 1). """ self.val = self._get_sample(X, residual) return self.val def _get_sample(self, X: torch.Tensor, residual: torch.Tensor) -> float: """ Draw a sample from the posterior. Args: X: Covariate matrix / training data of shape (num_observations, input_dimensions). residual: The current residual of the model of shape (num_observations, 1). """ posterior_concentration = self.prior_concentration + (len(X) / 2.0) posterior_rate = self.prior_rate + (0.5 * (torch.sum(torch.square(residual)))) draw = torch.pow(Gamma(posterior_concentration, posterior_rate).sample(), -0.5) return draw.item() class LeafMean: """ Class to sample form the prior and posterior distributions of the leaf nodes in BART. Reference: [1] Hugh A. Chipman, Edward I. George, Robert E. McCulloch (2010). "BART: Bayesian additive regression trees" https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full Args: prior_loc: Prior location parameter. prior_scale: Prior scale parameter. """ def __init__(self, prior_loc: float, prior_scale: float): if prior_scale < 0: raise ValueError("Invalid prior hyperparameters") self._prior_loc = prior_loc self._prior_scale = prior_scale @property def prior_scale(self): return self._prior_scale def sample_prior(self): return Normal(loc=self._prior_loc, scale=self._prior_scale).sample().item() def sample_posterior( self, node: LeafNode, X: torch.Tensor, y: torch.Tensor, current_sigma_val: float, ): X_in_node, y_in_node = node.data_in_node(X, y) if len(X_in_node) == 0: return None # no new data num_points_in_node = len(X_in_node) prior_variance = (self._prior_scale) ** 2 likelihood_variance = (current_sigma_val**2) / num_points_in_node likelihood_mean = torch.sum(y_in_node) / num_points_in_node posterior_variance = 1.0 / (1.0 / prior_variance + 1.0 / likelihood_variance) posterior_mean = ( likelihood_mean * prior_variance + self._prior_loc * likelihood_variance ) / (likelihood_variance + prior_variance) return ( Normal(loc=posterior_mean, scale=math.sqrt(posterior_variance)) .sample() .item() )
beanmachine-main
src/beanmachine/ppl/experimental/causal_inference/models/bart/scalar_samplers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, overload, Tuple, Union import torch from beanmachine.ppl.experimental.causal_inference.models.bart.exceptions import ( PruneError, ) from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, SplitRule, ) class BaseNode: """ Base class for node structures. Contains reference to a left and right child which can be used to traverse the tree. Args: depth (int): Distance of node from root node. composite_rules (CompositeRules): Dimensional rules that are satisfied by this node. left_child ("BaseNode"): Left child of the node. right_child ("BaseNode"): Right child of the node. """ def __init__( self, depth: int, composite_rules: CompositeRules, left_child: Optional["BaseNode"] = None, right_child: Optional["BaseNode"] = None, ): """ """ self.depth = depth self.composite_rules = composite_rules self._left_child = left_child self._right_child = right_child @property def left_child(self) -> Optional["BaseNode"]: """Returns the left_child of the node.""" return self._left_child @left_child.setter def left_child(self, left_child: Optional["BaseNode"]): self._left_child = left_child @property def right_child(self) -> Optional["BaseNode"]: """Returns the right_child of the node.""" return self._right_child @right_child.setter def right_child(self, right_child: Optional["BaseNode"]): self._right_child = right_child @overload def data_in_node( self, X: torch.Tensor, y: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: ... @overload def data_in_node(self, X: torch.Tensor) -> torch.Tensor: ... def data_in_node( self, X: torch.Tensor, y: Optional[torch.Tensor] = None ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ Conditions the covariate matrix and (optionally) response vector to return the respective subsets which satisfy the composite rules of this node. Note that the conditioning only looks at the input / covariate matrix to determine this conditioning. Args: X: Input / covariate matrix. y: (Optional) response vector. """ condition_mask = self.composite_rules.condition_on_rules(X) if y is not None: return X[condition_mask], y[condition_mask] return X[condition_mask] class LeafNode(BaseNode): """ A representation of a leaf node in the tree. Does not have children. In addition to the normal work of a `BaseNode`, a `LeafNode` is responsible for making predictions based on its value. Args: depth (int): Distance of node from root node. composite_rules (CompositeRules): Dimensional rules that are satisfied by this node. val (float): The prediction value of the node. """ def __init__( self, depth: int, composite_rules: CompositeRules, val: float = 0.0, ): self.val = val super().__init__( depth=depth, composite_rules=composite_rules, left_child=None, right_child=None, ) def predict(self) -> float: """ Returns the val attribute as a prediction. """ return self.val def is_growable(self, X: torch.Tensor) -> bool: """ Returns true if this leaf node can be grown. This is checked by ensuring the input covariate matrix has atleast more than 1 unique values along any dimension. Args: X: Input / covariate matrix. """ return len(self.get_growable_dims(X)) > 0 def get_growable_dims(self, X: torch.Tensor) -> List[int]: """ Returns the list of dimensions along which this leaf node can be gronw. This is checked by ensuring the input covariate matrix has more than 1 unique values along any dimension. Args: X: Input / covariate matrix. """ X_conditioned = self.data_in_node(X) if len(X_conditioned) == 0: return [] return [ dim for dim in range(X_conditioned.shape[-1]) if len(torch.unique(self.get_growable_vals(X_conditioned, dim))) > 1 ] def get_num_growable_dims(self, X: torch.Tensor) -> int: """ Returns the number of dimensions along which this leaf node can be grown. This is checked by ensuring the input covariate matrix has atleast more than 1 unique values along any dimension. Args: X: Input / covariate matrix. """ return len(self.get_growable_dims(X)) def get_growable_vals(self, X: torch.Tensor, grow_dim: int) -> torch.Tensor: """Returns the values in a feature dimension. Args: X: Input / covariate matrix. grow_dim: Input dimensions along which values are required """ return self.data_in_node(X)[:, grow_dim] def get_partition_of_split( self, X: torch.Tensor, grow_dim: int, grow_val: float ) -> float: """ Get probability that a split value is chosen among possible values in an input dimension defined as N(values_in_dimension == split_val) / N(values_in_dimension). Args: X: Input / covariate matrix. grow_dim: Input dimensions along which values are required. grow_va;: The value along which the split is being carried out. """ growable_vals = self.get_growable_vals(X, grow_dim) return torch.mean( (growable_vals == grow_val).to(torch.float), dtype=torch.float ).item() @staticmethod def grow_node( node: "LeafNode", left_rule: SplitRule, right_rule: SplitRule, ) -> "SplitNode": """ Converts a LeafNode into an internal SplitNode by applying the split rules for the left and right nodes. This returns a copy of the oriingal node. Args: left_rule: Rule applied to left child of the grown node. right_rule: Rule applied to the right child of the grown node. """ left_composite_rules = node.composite_rules.add_rule(left_rule) right_composite_rules = node.composite_rules.add_rule(right_rule) return SplitNode( depth=node.depth, composite_rules=node.composite_rules, left_child=LeafNode( depth=node.depth + 1, composite_rules=left_composite_rules ), right_child=LeafNode( depth=node.depth + 1, composite_rules=right_composite_rules ), ) class SplitNode(BaseNode): """ Encapsulates internal node in the tree. It has the same attributes as BaseNode. It contains the additional logic to determine if this node can be pruned. Args: depth (int): Distance of node from root node. composite_rules (CompositeRules): Dimensional rules that are satisfied by this node. left_child ("BaseNode"): Left child of the node. right_child ("BaseNode"): Right child of the node. """ def __init__( self, depth: int, composite_rules: CompositeRules, left_child: Optional["BaseNode"] = None, right_child: Optional["BaseNode"] = None, ): """ Args: depth: Distance of node from root node. composite_rules: Dimensional rules that are satisfied by this node. left_child: Left child of the node. right_child: Right child of the node. """ super().__init__( depth=depth, composite_rules=composite_rules, left_child=left_child, right_child=right_child, ) def is_prunable(self) -> bool: """Returns true if this node is prunable. This is decided by the fact if its children are `LeafNodes`.""" return isinstance(self.left_child, LeafNode) and isinstance( self.right_child, LeafNode ) def most_recent_rule(self) -> Optional[SplitRule]: """Returns the rule which grew this node from a `LeafNode` and is specifically the rule which created its left child.""" if self.left_child is None: raise AttributeError("This node is not split") return self.left_child.composite_rules.most_recent_split_rule() @staticmethod def prune_node( node: "SplitNode", ) -> LeafNode: """ Converts a SplitNode to a LeafNode by eliminating its children (if they are leaf nodes). Returns a copy. Args: node: Node to prune. Raises: PruneError: If this node is not prunable. """ if not node.is_prunable(): raise PruneError("Not a valid prunable node") return LeafNode(depth=node.depth, composite_rules=node.composite_rules)
beanmachine-main
src/beanmachine/ppl/experimental/causal_inference/models/bart/node.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import enum import math from typing import Union import torch from beanmachine.ppl.experimental.causal_inference.models.bart.exceptions import ( GrowError, PruneError, TreeStructureError, ) from beanmachine.ppl.experimental.causal_inference.models.bart.mutation import ( GrowMutation, Mutation, PruneMutation, ) from beanmachine.ppl.experimental.causal_inference.models.bart.node import ( LeafNode, SplitNode, ) from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( Operator, SplitRule, ) from beanmachine.ppl.experimental.causal_inference.models.bart.tree import Tree from beanmachine.ppl.experimental.causal_inference.models.bart.tree_proposer import ( TreeProposer, ) from numpy.random import choice from torch.distributions.uniform import Uniform class MutationKind(enum.Enum): grow = "grow operation" prune = "prune operation" class GrowPruneTreeProposer(TreeProposer): """This implements the Grow Prune tree sampling approach of Pratola [1] where the additional steps of BART (Change and Swap) are eliminated for computational efficiency. Reference: [1] Pratola MT, Chipman H, Higdon D, McCulloch R, Rust W (2013). “Parallel Bayesian Additive Regression Trees.” Technical report, University of Chicago. https://arxiv.org/pdf/1309.1906.pdf Args: grow_probability: Probability of growing a node. """ def __init__(self, grow_probability: float = 0.5): if grow_probability > 1.0 or grow_probability < 0.0: raise ValueError( f"Grow probability {grow_probability} not a valid probabiity" ) self.grow_probability = grow_probability self.prune_probability = 1 - self.grow_probability self._uniform = Uniform(0.0, 1.0) def propose( self, tree: Tree, X: torch.Tensor, partial_residual: torch.Tensor, alpha: float, beta: float, sigma_val: float, leaf_mean_prior_scale: float, ) -> Tree: """Propose a tree based on a Metropolis-Hastings step. Refer to [1] for details. Reference: [1] Adam Kapelner & Justin Bleich (2014). "bartMachine: Machine Learning with Bayesian Additive Regression Trees". https://arxiv.org/pdf/1312.2171.pdf Args: tree: Previous tree. X: Covariate matrix / training data. partial_residual: Partial residual of the current tree model with respect to the training data. alpha: Hyperparameter used in tree prior. beta: Hyperparameter used in tree prior. sigma_val: Current estimate of noise standard deviation in the data. leaf_mean_prior_scale: Prior of the scale hyperparameter in the normal distribution of the leaf mean. """ new_mutation = self._get_new_mutation(tree, X) # carry out move if new_mutation == MutationKind.grow: try: leaf_to_grow = self._select_leaf_to_grow(tree=tree, X=X) except GrowError: return self.propose( tree, X, partial_residual, alpha, beta, sigma_val, leaf_mean_prior_scale, ) grow_dim = self._select_grow_dim(leaf_to_grow, X) grow_val = self._get_grow_val( leaf_to_grow=leaf_to_grow, grow_dim=grow_dim, X=X ) left_rule, right_rule = SplitRule( grow_dim=grow_dim, grow_val=grow_val, operator=Operator.le ), SplitRule(grow_dim=grow_dim, grow_val=grow_val, operator=Operator.gt) mutation = GrowMutation( old_node=leaf_to_grow, new_node=LeafNode.grow_node( leaf_to_grow, left_rule=left_rule, right_rule=right_rule ), ) elif new_mutation == MutationKind.prune: try: split_node_to_prune = self._select_split_node_to_prune(tree) except PruneError: return self.propose( tree, X, partial_residual, alpha, beta, sigma_val, leaf_mean_prior_scale, ) mutation = PruneMutation( old_node=split_node_to_prune, new_node=SplitNode.prune_node(split_node_to_prune), ) else: raise TreeStructureError("Can only grow or prune") # Metropolis-Hasting step log_draw_probability = ( self._get_log_transition_ratio( tree=tree, mutation=mutation, X=X, ) + self._get_log_likelihood_ratio( mutation=mutation, X=X, partial_residual=partial_residual, sigma_val=sigma_val, leaf_mean_prior_scale=leaf_mean_prior_scale, ) + self._get_log_structure_ratio( mutation=mutation, alpha=alpha, beta=beta, X=X, ) ) if self._uniform.sample().item() < math.exp(log_draw_probability): tree.mutate(mutation) return tree return tree def _get_new_mutation(self, tree: Tree, X: torch.Tensor) -> MutationKind: """Get a new mutation. Args: tree: Previous tree. X: Covariate matrix / training data. """ if tree.num_nodes() == 1 or tree.num_prunable_split_nodes() == 0: return MutationKind.grow if tree.num_growable_leaf_nodes(X) == 0: return MutationKind.prune if bool(torch.bernoulli(torch.Tensor([self.grow_probability])).item()): return MutationKind.grow return MutationKind.prune def _select_leaf_to_grow(self, tree: Tree, X: torch.Tensor) -> LeafNode: """ Select which leaf to grow. Args: tree: Previous tree. X: Covariate matrix / training data. """ growable_leaf_nodes = tree.growable_leaf_nodes(X) if len(growable_leaf_nodes) < 1: raise GrowError("Leaf cannot be grown") return choice(growable_leaf_nodes) def _select_grow_dim(self, leaf_to_grow: LeafNode, X: torch.Tensor) -> int: """ Select an input dimension to grow along. Args: tree: Previous tree. leaf_to_grow: Leaf currently being grown. X: Covariate matrix / training data. """ if not leaf_to_grow.is_growable(X): raise GrowError("Leaf cannot be grown") return choice(leaf_to_grow.get_growable_dims(X)) def _get_grow_val( self, leaf_to_grow: LeafNode, grow_dim: int, X: torch.Tensor ) -> float: """ Select a value in the chosen input dimension to grow along. Args: tree: Previous tree. leaf_to_grow: Leaf currently being grown. grow_dim: Input dimension to grow along. X: Covariate matrix / training data. """ if not leaf_to_grow.is_growable(X): raise GrowError("Leaf cannot be grown") growable_vals = leaf_to_grow.get_growable_vals(X, grow_dim) max_growable_val = torch.max(growable_vals) candidate_val = choice(growable_vals) degenerate_grow_condition = candidate_val == max_growable_val while degenerate_grow_condition: return choice(growable_vals) return candidate_val def _select_split_node_to_prune(self, tree: Tree) -> SplitNode: """ Select and internal node to prune. Args: tree: Previous tree. """ prunable_split_nodes = tree.prunable_split_nodes() if len(prunable_split_nodes) < 1: raise PruneError return choice(prunable_split_nodes) def _get_log_transition_ratio( self, tree: Tree, mutation: Mutation, X: torch.Tensor, ) -> float: """ Get the log transition ratio as discussed in [1]. [1] Adam Kapelner & Justin Bleich (2014). "bartMachine: Machine Learning with Bayesian Additive Regression Trees". https://arxiv.org/pdf/1312.2171.pdf Args: tree: Previous tree. mutation: Proposed mutation, X: Covariate matrix / training data. """ if isinstance(mutation, GrowMutation): return self._grow_log_transition_ratio(tree=tree, mutation=mutation, X=X) elif isinstance(mutation, PruneMutation): return self._prune_log_transition_ratio(tree=tree, mutation=mutation, X=X) else: raise TreeStructureError("Can only grow or prune") def _grow_log_transition_ratio( self, tree: Tree, mutation: GrowMutation, X: torch.Tensor, ) -> float: """ Implement expression for log( P(T -> T*) / P(T* -> T) ) in a GROW move as discussed in eq. 8 of [1] Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: tree: Previous tree. mutation: Proposed mutation, X: Covariate matrix / training data. """ log_p_new_to_old_tree = math.log(self.prune_probability) - math.log( tree.num_prunable_split_nodes() + 1 ) log_p_old_to_new_tree = math.log( self.grow_probability ) + _log_probability_of_growing_a_tree( tree=tree, mutation=mutation, X=X, ) return log_p_new_to_old_tree - log_p_old_to_new_tree def _prune_log_transition_ratio( self, tree: Tree, mutation: PruneMutation, X: torch.Tensor, ) -> float: """ Implement expression for log( P(T -> T*) / P(T* -> T) ) in a PRUNE move as discussed in section A.2 of [1] Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: tree: Previous tree. mutation: Proposed mutation, X: Covariate matrix / training data. """ num_growable_leaves_in_pruned_tree = ( tree.num_growable_leaf_nodes(X) - mutation.old_node.left_child.is_growable(X=X) - mutation.old_node.right_child.is_growable(X=X) + mutation.new_node.is_growable(X=X) ) if num_growable_leaves_in_pruned_tree == 0: return -float("inf") # impossible prune log_p_old_to_new_tree = math.log(self.prune_probability) - math.log( tree.num_prunable_split_nodes() ) log_probability_selecting_leaf_to_grow = -math.log( num_growable_leaves_in_pruned_tree ) log_probability_growing_leaf = _log_probability_of_growing_node( mutation=GrowMutation( old_node=mutation.new_node, new_node=mutation.old_node ), X=X, ) log_p_new_to_old_tree = ( math.log(self.grow_probability) + log_probability_selecting_leaf_to_grow + log_probability_growing_leaf ) return log_p_new_to_old_tree - log_p_old_to_new_tree def _get_log_likelihood_ratio( self, mutation: Mutation, X: torch.Tensor, partial_residual: torch.Tensor, sigma_val: float, leaf_mean_prior_scale: float, ) -> float: """ Implement expression for log( P(R | T*, sigma) / P(R | T, sigma) ) in a GROW move as discussed in [1] Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: tree: Previous tree. mutation: Proposed mutation, sigma_val:urrent estimate of noise standard deviation in the data. leaf_mean_prior_scale: Prior of the scale hyperparameter in the normal distribution of the leaf mean. X: Covariate matrix / training data. partial_residual: Partial residual of the current tree model with respect to the training data. """ if isinstance(mutation, GrowMutation): return self._grow_log_likelihood_ratio( mutation=mutation, sigma_val=sigma_val, leaf_mean_prior_scale=leaf_mean_prior_scale, X=X, partial_residual=partial_residual, ) elif isinstance(mutation, PruneMutation): return -self._grow_log_likelihood_ratio( mutation=GrowMutation( old_node=mutation.new_node, new_node=mutation.old_node ), sigma_val=sigma_val, leaf_mean_prior_scale=leaf_mean_prior_scale, X=X, partial_residual=partial_residual, ) else: raise TreeStructureError(" Can only grow or prune") def _grow_log_likelihood_ratio( self, mutation: GrowMutation, sigma_val: float, leaf_mean_prior_scale: float, X: torch.Tensor, partial_residual: torch.Tensor, ) -> float: """ Implement expression for log( P(R | T*, sigma) / P(R | T, sigma) ) in a GROW move as discussed in eq. 10 of [1] Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: tree: Previous tree. mutation: Proposed mutation, sigma_val:urrent estimate of noise standard deviation in the data. leaf_mean_prior_scale: Prior of the scale hyperparameter in the normal distribution of the leaf mean. X: Covariate matrix / training data. partial_residual: Partial residual of the current tree model with respect to the training data. """ var = sigma_val**2 var_mu = leaf_mean_prior_scale**2 nodes = { "parent": mutation.old_node, "left": mutation.new_node.left_child, "right": mutation.new_node.right_child, } y_sum, num_points = {}, {} for node_label, node in nodes.items(): X_conditioned, y_conditioned = node.data_in_node(X, partial_residual) y_sum[node_label] = torch.sum(y_conditioned) num_points[node_label] = len(X_conditioned) first_term = (var * (var + num_points["parent"] * leaf_mean_prior_scale)) / ( (var + num_points["left"] * var_mu) * (var + num_points["right"] * var_mu) ) first_term = math.log(math.sqrt(first_term)) left_contribution = torch.square(y_sum["left"]) / ( var + num_points["left"] * leaf_mean_prior_scale ) right_contribution = torch.square(y_sum["right"]) / ( var + num_points["right"] * leaf_mean_prior_scale ) parent_contribution = torch.square(y_sum["parent"]) / ( var + num_points["parent"] * leaf_mean_prior_scale ) second_term = left_contribution + right_contribution - parent_contribution return first_term + (var_mu / (2 * var)) * second_term.item() def _get_log_structure_ratio( self, mutation: Mutation, alpha: float, beta: float, X: torch.Tensor, ) -> float: """ Implement expression for log( P(T*) / P(T) ) in as discussed in [1]. Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: mutation: Proposed mutation, X: Covariate matrix / training data. alpha: Hyperparameter used in tree prior. beta: Hyperparameter used in tree prior. """ if isinstance(mutation, GrowMutation): return self._grow_log_structure_ratio( mutation=mutation, alpha=alpha, beta=beta, X=X, ) elif isinstance(mutation, PruneMutation): return -self._grow_log_structure_ratio( mutation=GrowMutation( old_node=mutation.new_node, new_node=mutation.old_node ), alpha=alpha, beta=beta, X=X, ) else: raise TreeStructureError("Only grow or prune mutations are allowed") def _grow_log_structure_ratio( self, mutation: GrowMutation, alpha: float, beta: float, X: torch.Tensor, ) -> float: """ Implement expression for log( P(T*) / P(T) ) in a GROW step as discussed in section A.1 of [1]. Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: mutation: Proposed mutation, X: Covariate matrix / training data. alpha: Hyperparameter used in tree prior. beta: Hyperparameter used in tree prior. """ denominator = _log_probability_node_is_terminal(alpha, beta, mutation.old_node) log_probability_left_is_terminal = _log_probability_node_is_terminal( alpha, beta, mutation.new_node.left_child ) log_probability_right_is_terminal = _log_probability_node_is_terminal( alpha, beta, mutation.new_node.right_child ) log_probability_parent_is_nonterminal = _log_probability_node_is_nonterminal( alpha, beta, mutation.old_node ) log_probability_rule = _log_probability_of_growing_node(mutation=mutation, X=X) numerator = ( log_probability_left_is_terminal + log_probability_right_is_terminal + log_probability_parent_is_nonterminal + log_probability_rule ) return numerator - denominator def _log_probability_node_is_nonterminal( alpha: float, beta: float, node: Union[LeafNode, SplitNode] ) -> float: """Get log probability of node being non-terminal (internal node) as discussed in Eq. 7 of [1]. Reference: [1] Hugh A. Chipman, Edward I. George, Robert E. McCulloch (2010). "BART: Bayesian additive regression trees" https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full Args: alpha: Hyperparameter used in tree prior. beta: Hyperparameter used in tree prior. node: Node for which probability is being calculated. """ return math.log(alpha * math.pow(1 + node.depth, -beta)) def _log_probability_node_is_terminal( alpha: float, beta: float, node: Union[LeafNode, SplitNode] ) -> float: """Get log probability of node being terminal (leaf node) as discussed in Eq. 7 of [1]. Reference: [1] Hugh A. Chipman, Edward I. George, Robert E. McCulloch (2010). "BART: Bayesian additive regression trees" https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regression-trees/10.1214/09-AOAS285.full Args: alpha: Hyperparameter used in tree prior. beta: Hyperparameter used in tree prior. node: Node for which probability is being calculated. """ return 1 - _log_probability_node_is_nonterminal(alpha=alpha, beta=beta, node=node) def _log_probability_of_growing_a_tree( tree: Tree, mutation: GrowMutation, X: torch.Tensor ) -> float: """ Get probability of choosing a node and growing it as discussed in section A.1 of [1]. Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: tree: Previous tree. mutation: Growth mutation being applied. X: Covariate matrix / training data. """ return -math.log(tree.num_growable_leaf_nodes(X)) +_log_probability_of_growing_node(mutation=mutation, X=X) def _log_probability_of_growing_node(mutation: GrowMutation, X: torch.Tensor) -> float: """ Get probability of growing a node as discussed in section A.1 of [1]. Reference: [1] Adam Kapelner & Justin Bleich. "bartMachine: Machine Learning with Bayesian Additive Regression Trees" (2013). https://arxiv.org/abs/1312.2171 Args: mutation: Growth mutation being applied. X: Covariate matrix / training data. """ log_probability_of_selecting_dim = -math.log( mutation.old_node.get_num_growable_dims(X) ) grow_dim = mutation.new_node.most_recent_rule().grow_dim grow_val = mutation.new_node.most_recent_rule().grow_val log_probability_of_growing_at_val = -math.log( mutation.old_node.get_partition_of_split(X, grow_dim, grow_val) ) return log_probability_of_selecting_dim + log_probability_of_growing_at_val
beanmachine-main
src/beanmachine/ppl/experimental/causal_inference/models/bart/grow_prune_tree_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import dataclasses from typing import ( Collection, Dict, Iterable, Iterator, List, Mapping, Optional, Set, Tuple, TypeVar, ) import torch import torch.distributions as dist from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import init_to_uniform from beanmachine.ppl.world.base_world import BaseWorld from beanmachine.ppl.world.initialize_fn import init_from_prior, InitializeFn from beanmachine.ppl.world.variable import Variable RVDict = Dict[RVIdentifier, torch.Tensor] T = TypeVar("T", bound="World") @dataclasses.dataclass class _TempVar: node: RVIdentifier parents: Set[RVIdentifier] = dataclasses.field(default_factory=set) class World(BaseWorld, Mapping[RVIdentifier, torch.Tensor]): """ A World represents an instantiation of the graphical model and can be manipulated or evaluated. In the context of MCMC inference, a world represents a single Monte Carlo posterior sample. A World can also be used as a context manager to run and sample random variables. Example:: @bm.random_variable def foo(): return Normal(0., 1.) world = World() with world: x = foo() # returns a sample, ie tensor. with world: y = foo() # same world = same tensor assert x == y Args: observations (Optional): Optional observations, which fixes the random variables to observed values initialize_fn (callable, Optional): Callable which takes a ``torch.distribution`` object as argument and returns a ``torch.Tensor`` """ def __init__( self, observations: Optional[RVDict] = None, initialize_fn: InitializeFn = init_from_prior, ) -> None: self.observations: RVDict = observations or {} self._initialize_fn: InitializeFn = initialize_fn self._variables: Dict[RVIdentifier, Variable] = {} self._call_stack: List[_TempVar] = [] @classmethod def initialize_world( cls: type[T], queries: Iterable[RVIdentifier], observations: Optional[RVDict] = None, initialize_fn: InitializeFn = init_to_uniform, max_retries: int = 100, **kwargs, ) -> T: """ Initializes a world with all of the random variables (queries and observations). In case of initializing values outside of support of the distributions, the method will keep resampling until a valid initialization is found up to ``max_retries`` times. Args: queries: A list of random variables that need to be inferred. observations: Observations, which fixes the random variables to observed values initialize_fn: Function for initializing the values of random variables max_retries: The number of attempts this method will make before throwing an error (default to 100). """ observations = observations or {} for _ in range(max_retries): world = cls(observations, initialize_fn, **kwargs) # recursively add parent nodes to the graph for node in queries: world.call(node) for node in observations: world.call(node) # check if the initial state is valid log_prob = world.log_prob() if not torch.isinf(log_prob) and not torch.isnan(log_prob): return world # None of the world gives us a valid initial state raise ValueError( f"Cannot find a valid initialization after {max_retries} retries. The model" " might be misspecified." ) def __getitem__(self, node: RVIdentifier) -> torch.Tensor: """ Args: node (RVIdentifier): RVIdentifier of node. Returns: torch.Tensor: The sampled value. """ return self._variables[node].value def get_variable(self, node: RVIdentifier) -> Variable: """ Args: node (RVIdentifier): RVIdentifier of node. Returns: Variable object that contains the metadata of the current node in the world. """ return self._variables[node] def replace(self, values: RVDict) -> World: """ Args: values (RVDict): Dict of RVIdentifiers and their values to replace. Returns: A new world where values specified in the dictionary are replaced. This method will update the internal graph structure. """ assert not any(node in self.observations for node in values) new_world = self.copy() for node, value in values.items(): new_world._variables[node] = new_world._variables[node].replace( value=value.clone() ) # changing the value of a node can change the dependencies of its children nodes nodes_to_update = set().union( *(self._variables[node].children for node in values) ) for node in nodes_to_update: # Invoke node conditioned on the provided values new_distribution, new_parents = new_world._run_node(node) # Update children's dependencies old_node_var = new_world._variables[node] new_world._variables[node] = old_node_var.replace( parents=new_parents, distribution=new_distribution ) dropped_parents = old_node_var.parents - new_parents for parent in dropped_parents: parent_var = new_world._variables[parent] new_world._variables[parent] = parent_var.replace( children=parent_var.children - {node} ) return new_world def __iter__(self) -> Iterator[RVIdentifier]: return iter(self._variables) def __len__(self) -> int: return len(self._variables) @property def latent_nodes(self) -> Set[RVIdentifier]: """ All the latent nodes in the current world. """ return self._variables.keys() - self.observations.keys() def copy(self) -> World: """ Returns: Shallow copy of the current world. """ world_copy = World(self.observations.copy(), self._initialize_fn) world_copy._variables = self._variables.copy() return world_copy def initialize_value(self, node: RVIdentifier) -> None: # recursively calls into parent nodes distribution, parents = self._run_node(node) if node in self.observations: node_val = self.observations[node] else: node_val = self._initialize_fn(distribution) self._variables[node] = Variable( value=node_val, distribution=distribution, parents=parents, ) def update_graph(self, node: RVIdentifier) -> torch.Tensor: """ This function adds a node to the graph and initialize its value if the node is not found in the graph already. Args: node (RVIdentifier): RVIdentifier of node to update in the graph. Returns: The value of the node stored in world (in original space). """ if node not in self._variables: self.initialize_value(node) node_var = self._variables[node] if len(self._call_stack) > 0: tmp_child_var = self._call_stack[-1] tmp_child_var.parents.add(node) node_var.children.add(tmp_child_var.node) return node_var.value def log_prob( self, nodes: Optional[Collection[RVIdentifier]] = None ) -> torch.Tensor: """ Args: nodes (Optional): Optional collection of RVIdentifiers to evaluate the log prob of a subset of the graph. If none is specified, then all the variables in the world are used. Returns: The joint log prob of all of the nodes in the current world """ if nodes is None: nodes = self._variables.keys() log_prob = torch.tensor(0.0) for node in set(nodes): log_prob = log_prob + torch.sum(self._variables[node].log_prob) return log_prob def enumerate_node(self, node: RVIdentifier) -> torch.Tensor: """ Args: node (RVIdentifier): RVIdentifier of node. Returns: A tensor enumerating the support of the node. """ distribution = self._variables[node].distribution if not distribution.has_enumerate_support: raise ValueError(str(node) + " is not enumerable") return distribution.enumerate_support() def _run_node( self, node: RVIdentifier ) -> Tuple[dist.Distribution, Set[RVIdentifier]]: """ Invoke a random variable function conditioned on the current world. Args: node (RVIdentifier): RVIdentifier of node. Returns: Its distribution and set of parent nodes """ self._call_stack.append(_TempVar(node)) with self: distribution = node.function(*node.arguments) temp_var = self._call_stack.pop() if not isinstance(distribution, dist.Distribution): raise TypeError("A random_variable is required to return a distribution.") return distribution, temp_var.parents
beanmachine-main
src/beanmachine/ppl/world/world.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[16, 20] from typing import Callable import torch import torch.distributions as dist InitializeFn = Callable[[dist.Distribution], torch.Tensor] def init_to_uniform(distribution: dist.Distribution) -> torch.Tensor: """ Initializes a uniform distribution to sample from transformed to the support of ``distribution``. A Categorical is used for discrete distributions, a bijective transform is used for constrained continuous distributions, and ``distribution`` is used otherwise. Used as an arg for ``World`` Args: distribution: ``torch.distribution.Distribution`` of the RV, usually the prior distribution. """ sample_val = distribution.sample() if distribution.has_enumerate_support: support = distribution.enumerate_support(expand=False).flatten() return support[torch.randint_like(sample_val, support.numel()).long()] elif not distribution.support.is_discrete: transform = dist.biject_to(distribution.support) return transform(torch.rand_like(transform.inv(sample_val)) * 4 - 2) else: # fall back to sample from prior return init_from_prior(distribution) def init_from_prior(distribution: dist.Distribution) -> torch.Tensor: """ Samples from the distribution. Used as an arg for ``World`` Args: distribution: ``torch.distribution.Distribution`` corresponding to the distribution to sample from """ return distribution.sample()
beanmachine-main
src/beanmachine/ppl/world/initialize_fn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.world.base_world import get_world_context from beanmachine.ppl.world.initialize_fn import ( init_from_prior, init_to_uniform, InitializeFn, ) from beanmachine.ppl.world.utils import BetaDimensionTransform, get_default_transforms from beanmachine.ppl.world.world import RVDict, World __all__ = [ "BetaDimensionTransform", "InitializeFn", "RVDict", "World", "get_default_transforms", "get_world_context", "init_from_prior", "init_to_uniform", ]
beanmachine-main
src/beanmachine/ppl/world/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import dataclasses from typing import Set import torch import torch.distributions as dist from beanmachine.ppl.model.rv_identifier import RVIdentifier from torch.distributions.utils import lazy_property @dataclasses.dataclass class Variable: """ Primitive used for maintaining metadata of random variables. Usually used in conjunction with `World` during inference. """ value: torch.Tensor "Sampled value of random variable" distribution: dist.Distribution "Distribution random variable was sampled from" parents: Set[RVIdentifier] = dataclasses.field(default_factory=set) "Set containing the RVIdentifiers of the parents of the random variable" children: Set[RVIdentifier] = dataclasses.field(default_factory=set) "Set containing the RVIdentifiers of the children of the random variable" @lazy_property def log_prob(self) -> torch.Tensor: """ Returns The logprob of the `value` of the value given the distribution. """ return self.distribution.log_prob(self.value) def replace(self, **changes) -> Variable: """Return a new Variable object with fields replaced by the changes""" return dataclasses.replace(self, **changes)
beanmachine-main
src/beanmachine/ppl/world/variable.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections.abc import Iterable from typing import Iterable as IterableType, overload, Type, Union import torch import torch.distributions as dist import torch.distributions.constraints as constraints from torch.distributions import Distribution from torch.distributions.transforms import Transform ConstraintType = Union[constraints.Constraint, Type] class BetaDimensionTransform(Transform): """ Volume preserving transformation to the Beta distribution support. """ bijective = True domain = constraints.real codomain = constraints.real_vector def __eq__(self, other): return isinstance(other, BetaDimensionTransform) def _call(self, x): return torch.cat((x.unsqueeze(-1), (1 - x).unsqueeze(-1)), -1) def _inverse(self, y): return y[..., 0] / y.sum(dim=-1) def forward_shape(self, shape): return shape + (2,) def inverse_shape(self, shape): return shape[:-1] def log_abs_det_jacobian(self, x, y): return torch.zeros_like(x) def _unwrap(constraint: ConstraintType): if isinstance(constraint, constraints.independent): return _unwrap(constraint.base_constraint) return constraint if isinstance(constraint, type) else constraint.__class__ def _is_constraint_eq(constraint1: ConstraintType, constraint2: ConstraintType): return _unwrap(constraint1) == _unwrap(constraint2) @overload def is_constraint_eq( constraint: ConstraintType, check_constraints: ConstraintType ) -> bool: ... @overload def is_constraint_eq( constraint: ConstraintType, check_constraints: IterableType[ConstraintType] ) -> IterableType[bool]: ... def is_constraint_eq( constraint: ConstraintType, check_constraints: Union[ConstraintType, IterableType[ConstraintType]], ) -> Union[bool, IterableType[bool]]: """ This provides an equality check that works for different constraints specified in :mod:`torch.distributions.constraints`. If `constraint` is `constraints.Independent`, then the `base_constraint` is checked. If `check_constraints` is a single `Constraint` type or instance this returns a `True` if the given `constraint` matches `check_constraints`. Otherwise, if `check_constraints` is an iterable, this returns a `bool` list that represents an element-wise check. :param constraint: A constraint class or instance. :param check_constraints: A constraint class or instance or an iterable containing constraint classes or instances to check against. :returns: bool (or a list of bool) values indicating if the given constraint equals the constraint in `check_constraints`. """ if isinstance(check_constraints, Iterable): return [_is_constraint_eq(constraint, c) for c in check_constraints] return _is_constraint_eq(constraint, check_constraints) def get_default_transforms(distribution: Distribution) -> dist.Transform: """ Get transforms of a distribution to transform it from constrained space into unconstrained space. :param distribution: the distribution to check :returns: a Transform that need to be applied to the distribution to transform it from constrained space into unconstrained space """ if distribution.support.is_discrete: return dist.transforms.identity_transform else: return dist.biject_to(distribution.support).inv def initialize_value(distribution: Distribution, initialize_from_prior: bool = False): """ Initialized the Variable value :param initialize_from_prior: if true, returns sample from prior :returns: the value to the set the Variable value to """ sample_val = distribution.sample() if initialize_from_prior: return sample_val support = distribution.support if isinstance(support, dist.constraints.independent): support = support.base_constraint if initialize_from_prior: return sample_val elif is_constraint_eq(support, dist.constraints.real): return torch.zeros_like(sample_val) elif is_constraint_eq(support, dist.constraints.simplex): value = torch.ones_like(sample_val) return value / sample_val.shape[-1] elif is_constraint_eq(support, dist.constraints.greater_than): return ( torch.ones( sample_val.shape, dtype=sample_val.dtype, device=sample_val.device ) + support.lower_bound ) elif is_constraint_eq(support, dist.constraints.boolean): return dist.Bernoulli(torch.ones_like(sample_val) / 2).sample() elif is_constraint_eq(support, dist.constraints.interval): lower_bound = torch.ones_like(sample_val) * support.lower_bound upper_bound = torch.ones_like(sample_val) * support.upper_bound return dist.Uniform(lower_bound, upper_bound).sample() elif is_constraint_eq(support, dist.constraints.integer_interval): integer_interval = support.upper_bound - support.lower_bound return dist.Categorical( (torch.ones(integer_interval, device=sample_val.device)).expand( sample_val.shape + (integer_interval,) ) ).sample() elif is_constraint_eq(support, dist.constraints.nonnegative_integer): return ( torch.ones( sample_val.shape, dtype=sample_val.dtype, device=sample_val.device ) + support.lower_bound ) return sample_val
beanmachine-main
src/beanmachine/ppl/world/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from abc import ABCMeta, abstractmethod from typing import Optional import torch from beanmachine.ppl.model.rv_identifier import RVIdentifier _WORLD_STACK: list[BaseWorld] = [] def get_world_context() -> Optional[BaseWorld]: return _WORLD_STACK[-1] if _WORLD_STACK else None class BaseWorld(metaclass=ABCMeta): def __enter__(self) -> BaseWorld: """ This method, together with __exit__, allow us to use world as a context, e.g. ``` with World(): # invoke random variables to update the graph ``` By keeping a stack of context tokens, we can easily nest multiple worlds and restore the outer context if needed, e.g. ``` world1, world2 = World(), World() with world1: # do some graph update specific to world1 with world2: # update world2 # back to updating world1 ``` """ _WORLD_STACK.append(self) return self def __exit__(self, *args) -> None: _WORLD_STACK.pop() def call(self, node: RVIdentifier): """ A helper function that invokes the random variable and return its value """ with self: return node.wrapper(*node.arguments) @abstractmethod def update_graph(self, node: RVIdentifier) -> torch.Tensor: raise NotImplementedError
beanmachine-main
src/beanmachine/ppl/world/base_world.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect from functools import wraps from typing import Any, Callable, Dict, Tuple from beanmachine.ppl.utils.item_counter import ItemCounter from torch import Tensor def _tuplify(t: Any) -> Any: if isinstance(t, list): return tuple(_tuplify(y) for y in t) return t # This returns a tuple or value whose shape is the same as the input tensor. # That is: # # tensor(1) --> 1 # tensor([]) --> () # tensor([1]) --> (1,) # tensor([1, 2]) --> (1, 2) # tensor([[1, 2], [3, 4]]) --> ((1, 2), (3, 4)) # # and so on def tensor_to_tuple(t: Tensor) -> Any: result = _tuplify(t.tolist()) return result class MemoizationKey: # It would be nice to just use a tuple (wrapper, args) for the memoization # key, but tensors can only be compared for equality with torch.equal(t1, t2), # and tensors do not hash via value equality. # # We therefore replace tensors with tuples that contain all the values of the # tensor. For example, if our arguments are (1, tensor([2, 3]), 4) then our # new arguments are (1, (2, 3), 4) wrapper: Callable arguments: Tuple hashcode: int def __init__(self, wrapper: Callable, arguments: Tuple) -> None: self.arguments = ( wrapper, tuple( tensor_to_tuple(a) if isinstance(a, Tensor) else a for a in arguments ), ) self.wrapper = wrapper self.hashcode = hash(self.arguments) def __hash__(self) -> int: return self.hashcode def __eq__(self, o) -> bool: return ( isinstance(o, MemoizationKey) and self.hashcode == o.hashcode and self.wrapper == o.wrapper and self.arguments == o.arguments ) total_memoized_functions = 0 total_memoized_calls = 0 total_cache_misses = 0 count_calls = False function_calls = ItemCounter() def memoizer_report() -> str: call_report = [ f"{item.__name__}: {count}\n" for (item, count) in function_calls.items.items() ] return ( f"funcs: {total_memoized_functions} " + f"calls: {total_memoized_calls} " + f"misses: {total_cache_misses}\n" + "".join(call_report) ) def memoize(f): """ Decorator to be used to memoize arbitrary functions. """ global total_memoized_functions total_memoized_functions += 1 cache: Dict[Any, Any] = {} @wraps(f) def wrapper(*args): if count_calls: global total_memoized_calls total_memoized_calls += 1 function_calls.add_item(f) key = MemoizationKey(wrapper, args) if key not in cache: global total_cache_misses total_cache_misses += 1 result = f(*args) cache[key] = result return result return cache[key] if inspect.ismethod(f): meth_name = f.__name__ + "_wrapper" setattr(f.__self__, meth_name, wrapper) else: f._wrapper = wrapper return wrapper # In Python, how do we memoize a constructor to ensure that instances of # a class with the same constructor arguments are reference-equal? We could # put the @memoize attribute on the class, but this leads to many problems. # # ASIDE: What problems? And why? # # A class is a function that constructs instances; a decorator is a function # from functions to functions. "@memoize class C: ..." passes the instance- # construction function to the decorator and assigns the result to C; this means # that C is no longer a *type*; it is the *function* returned by the decorator. # This in turn means that "instanceof(c, C)" no longer works because C is not a type. # Similarly C cannot be a base class because it is not a type. And so on. # # END ASIDE # # The correct way to do this in Python is to create a metaclass. A class is a factory # for instances; a metaclass is a factory for classes. We can create a metaclass which # produces classes that are memoized. # # The default metaclass in Python is "type"; if you call "type(name, bases, attrs)" # where name is the name of the new type, bases is a tuple of base types, and attrs # is a dictionary of name-value pairs, then you get back a new class with that name, # base classes, and attributes. We can derive from type to make new metaclasses: class MemoizedClass(type): # __new__ is called when the metaclass creates a new class. # metacls is the "self" of the metaclass # name is the name of the class we're creating # bases is a tuple of base types # attrs is a dictionary of attributes def __new__( metacls, name: str, bases: Tuple[type, ...], attrs: Dict[str, Any] ) -> type: # The memoized values will be stored in a per-class dictionary called # _cache, so make sure that the attributes dictionary has that. if "_cache" not in attrs: attrs["_cache"] = {} # That's the only special thing we need to do, so defer the actual # type creation to the "type" metaclass -- our base type. return super(MemoizedClass, metacls).__new__(metacls, name, bases, attrs) # A class is a function which constructs instances; when that function is # called to construct an instance, the __call__ handler is invoked in the # metaclass. By default type.__call__ simply creates a new instance. We # can replace that behavior by overriding the __call__ handler to do something # else. # # cls is the class that we are trying to create an instance of; *args is # the argument list passed to the constructor. def __call__(cls, *args): # TODO: We do not collect statistics on memoization use here. # TODO: We do not canonicalize arguments as the memoizer does above. if args not in cls._cache: # This is the first time we've constructed this class with these # arguments. Defer to the __call__ behavior of "type", which is the # superclass of this metaclass. new_instance = super(MemoizedClass, cls).__call__(*args) cls._cache[args] = new_instance return new_instance return cls._cache[args] # You then use this as # class Foo(FooBase, metaclass=MemoizedClass): ...
beanmachine-main
src/beanmachine/ppl/utils/memoize.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """A helper class to give unique names to a set of objects.""" from typing import Any, Callable, Dict, Optional def make_namer( namer: Optional[Callable[[Any], str]] = None, prefix: str = "" ) -> Callable[[Any], str]: if namer is None: un = UniqueNames(prefix) return lambda x: un.name(x) else: return namer class UniqueNames(object): _map: Dict[Any, str] _prefix: str def __init__(self, prefix: str = ""): self._map = {} self._prefix = prefix def name(self, o: Any) -> str: if o.__hash__ is None: # This can lead to a situation where two objects are given the # same name; if the object is named, then freed, and then a different # object is allocated at the same address, the ID will be re-used. # Ideally, the instance of UniqueNames should be longer-lived than # any of the named objects. o = "unhashable " + str(id(o)) if o not in self._map: self._map[o] = self._prefix + str(len(self._map)) return self._map[o]
beanmachine-main
src/beanmachine/ppl/utils/unique_name.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """A mutable graph builder""" from hashlib import md5 from typing import Callable, Dict, Generic, List, Optional, TypeVar from beanmachine.ppl.utils.dotbuilder import DotBuilder from beanmachine.ppl.utils.equivalence import partition_by_kernel from beanmachine.ppl.utils.unique_name import make_namer # A plate is a collection of nodes and plates. # A graph is a single plate with a collection of edges. # That is, in this model of a graph, only the topmost level # contains the edges; plates contain no edges. T = TypeVar("T") # Node type class Plate(Generic[T]): # Yes, using lists means that we have O(n) removal. But removals are # rare, the lists are typically short, and lists guarantee that # the enumeration order is deterministic, which means that we get # repeatable behavior for testing. _plates: "List[Plate[T]]" _parent: "Optional[Plate[T]]" _graph: "Graph[T]" _nodes: List[T] def __init__(self, graph: "Graph[T]", parent: "Optional[Plate[T]]") -> None: self._plates = [] self._parent = parent self._graph = graph self._nodes = [] def with_plate(self) -> "Plate[T]": """Add a new Plate to this Plate; returns the new Plate""" sub = Plate(self._graph, self) self._plates.append(sub) return sub def without_plate(self, sub: "Plate[T]") -> "Plate[T]": """Removes a given Plate, and all its Plates, and all its nodes.""" if sub in self._plates: # Recursively destroy every nested Plate. # We're going to be modifying a collection as we enumerate it # so make a copy. for subsub in sub._plates.copy(): sub.without_plate(subsub) # Destroy every node. for node in sub._nodes.copy(): sub.without_node(node) # Delete the Plate self._plates.remove(sub) return self def with_node(self, node: T) -> "Plate[T]": """Adds a new node to the plate, or, if the node is already in the graph, moves it to this plate. Edges are unaffected by moves.""" if node not in self._nodes: # Remove the node from its current Plate. if node in self._graph._nodes: self._graph._nodes[node]._nodes.remove(node) # Let the graph know that this node is in this Plate. self._graph._nodes[node] = self self._nodes.append(node) # If this is a new node, set its incoming and outgoing # edge sets to empty. If it is not a new node, keep # them the same. if node not in self._graph._outgoing: self._graph._outgoing[node] = [] if node not in self._graph._incoming: self._graph._incoming[node] = [] return self def without_node(self, node: T) -> "Plate[T]": if node in self._nodes: # Remove the node del self._graph._nodes[node] self._nodes.remove(node) # Delete all the edges associated with this node for o in list(self._graph._outgoing[node]): self._graph._incoming[o].remove(node) for i in list(self._graph._incoming[node]): self._graph._outgoing[i].remove(node) del self._graph._outgoing[node] del self._graph._incoming[node] return self def with_edge(self, start: T, end: T) -> "Plate[T]": if start not in self._graph._nodes: self.with_node(start) if end not in self._graph._nodes: self.with_node(end) self._graph._incoming[end].append(start) self._graph._outgoing[start].append(end) return self class Graph(Generic[T]): _nodes: Dict[T, Plate[T]] _outgoing: Dict[T, List[T]] _incoming: Dict[T, List[T]] _top: Plate[T] _to_name: Callable[[T], str] _to_label: Callable[[T], str] _to_kernel: Callable[[T], str] def __init__( self, to_name: Optional[Callable[[T], str]] = None, to_label: Callable[[T], str] = str, to_kernel: Callable[[T], str] = str, ): # to_name gives a *unique* name to a node. # to_label gives a *not necessarily unique* label when *displaying* a graph. # to_kernel gives a string that is always the same if two nodes are to # be treated as isomorphic. This lets us make labels in the output that # are different than the isomorphism kernel. self._nodes = {} self._outgoing = {} self._incoming = {} self._top = Plate(self, None) self._to_name = make_namer(to_name, "N") self._to_label = to_label self._to_kernel = to_kernel def with_plate(self) -> "Plate[T]": """Add a plate to the top level; returns the plate""" return self._top.with_plate() def without_plate(self, sub: Plate[T]) -> "Graph[T]": """Removes a plate from the top level, and all its plates, and all its nodes.""" self._top.without_plate(sub) return self def global_without_plate(self, sub: Plate[T]) -> "Graph[T]": """Remove a plate no matter where it is, and all its plates, and all its nodes.""" if sub._graph == self: p = sub._parent if p is not None: # This should never happen p.without_plate(sub) return self def with_node(self, node: T) -> "Graph[T]": """Add a node to the top level""" self._top.with_node(node) return self def without_node(self, node: T) -> "Graph[T]": """Remove a node from the top level""" self._top.without_node(node) return self def global_without_node(self, node: T) -> "Graph[T]": """Remove a node no matter where it is""" if node in self._nodes: self._nodes[node].without_node(node) return self def with_edge(self, start: T, end: T) -> "Graph[T]": if start not in self._nodes: self.with_node(start) if end not in self._nodes: self.with_node(end) if start not in self._incoming[end]: self._incoming[end].append(start) if end not in self._outgoing[start]: self._outgoing[start].append(end) return self def without_edge(self, start: T, end: T) -> "Graph[T]": if start in self._nodes and end in self._nodes: self._incoming[end].remove(start) self._outgoing[start].remove(end) return self def _is_dag(self, node: T) -> bool: if node not in self._nodes: return True in_flight: List[T] = [] done: List[T] = [] def depth_first(current: T) -> bool: if current in in_flight: return False if current in done: return True in_flight.append(current) for child in self._outgoing[current]: if not depth_first(child): return False in_flight.remove(current) done.append(current) return True return depth_first(node) def _dag_hash(self, current: T, map: Dict[T, str]) -> str: if current in map: return map[current] label = self._to_kernel(current) children = (self._dag_hash(c, map) for c in self._outgoing[current]) summary = label + "/".join(sorted(children)) hash = md5(summary.encode("utf-8")).hexdigest() map[current] = hash return hash def are_dags_isomorphic(self, n1: T, n2: T) -> bool: """Determines if two nodes in a graph, which must both be roots of a DAG, are isomorphic. Node labels are given by the function, which must return the same string for two nodes iff the two nodes are value-equal for the purposes of isomorphism detection.""" map: Dict[T, str] = {} assert self._is_dag(n1) assert self._is_dag(n2) h1 = self._dag_hash(n1, map) h2 = self._dag_hash(n2, map) return h1 == h2 def merge_isomorphic(self, n1: T, n2: T) -> bool: """Merges two isomorphic nodes. Returns true if there was any merge made.""" # All edges of n2 become edges of n1, and n2 is deleted. if n1 not in self._nodes or n2 not in self._nodes: return False for in_n2 in self._incoming[n2]: self.with_edge(in_n2, n1) for out_n2 in self._outgoing[n2]: self.with_edge(n1, out_n2) self.without_node(n2) return True def merge_isomorphic_many(self, nodes: List[T]) -> bool: """Merges a collection of two or more isomorphic nodes into nodes[0] Returns true if there was any merge made.""" result = False for i in range(1, len(nodes)): result = self.merge_isomorphic(nodes[0], nodes[i]) or result return result def merge_isomorphic_children(self, node: T) -> bool: """Merges all the isomorphic children of a node. Returns true if there was any merge made. The surviving node is the one with the least name.""" if node not in self._outgoing: return False map: Dict[T, str] = {} def kernel(n: T) -> str: return self._dag_hash(n, map) equivalence_classes = partition_by_kernel(self._outgoing[node], kernel) result = False for eqv in equivalence_classes: result = ( self.merge_isomorphic_many(sorted(eqv, key=self._to_name)) or result ) return result def outgoing(self, node: T) -> List[T]: if node in self._outgoing: return list(self._outgoing[node]) return [] def incoming(self, node: T) -> List[T]: if node in self._incoming: return list(self._incoming[node]) return [] def reachable(self, node: T) -> List[T]: # Given a node in a graph, return the transitive closure of outgoing # nodes, including the original node. if node not in self._nodes: return [] in_flight: List[T] = [] done: List[T] = [] def depth_first(current: T) -> None: if (current not in in_flight) and (current not in done): in_flight.append(current) for child in self._outgoing[current]: depth_first(child) in_flight.remove(current) done.append(current) depth_first(node) return done def to_dot(self) -> str: """Converts a graph to a program in the DOT language.""" db: DotBuilder = DotBuilder() def add_nodes(sub: Plate[T], name: str) -> None: if name != "": db.start_subgraph(name, True) namer = make_namer(prefix=name + "_") for subsub in sub._plates: add_nodes(subsub, namer(subsub)) for n in sub._nodes: db.with_node(self._to_name(n), self._to_label(n)) if name != "": db.end_subgraph() add_nodes(self._top, "") for start, ends in self._outgoing.items(): for end in ends: db.with_edge(self._to_name(start), self._to_name(end)) return str(db)
beanmachine-main
src/beanmachine/ppl/utils/graph.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.utils.dotbuilder import DotBuilder, print_graph from beanmachine.ppl.utils.equivalence import partition_by_kernel, partition_by_relation from beanmachine.ppl.utils.treeprinter import _is_named_tuple, _to_string, print_tree from beanmachine.ppl.utils.unique_name import make_namer __all__ = [ "print_tree", "_is_named_tuple", "_to_string", "partition_by_relation", "partition_by_kernel", "print_graph", "DotBuilder", "make_namer", ]
beanmachine-main
src/beanmachine/ppl/utils/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """A builder for the graphviz DOT language""" import json import re from typing import Any, Callable, Dict, List, Optional, Set, Tuple from beanmachine.ppl.utils.treeprinter import _is_named_tuple, _to_string from beanmachine.ppl.utils.unique_name import make_namer def _get_children(n: Any) -> List[Tuple[str, Any]]: if isinstance(n, dict): return list(n.items()) if _is_named_tuple(n): return [(k, getattr(n, k)) for k in type(n)._fields] if isinstance(n, tuple) or isinstance(n, list): return [(str(ind), item) for (ind, item) in enumerate(n)] return [] def print_graph( roots: List[Any], get_children: Callable[[Any], List[Tuple[str, Any]]] = _get_children, to_node_name: Optional[Callable[[Any], str]] = None, to_label: Callable[[Any], str] = _to_string, ) -> str: """ This function converts an object representing a graph into a string in the DOT graph display language. The roots are a set of nodes in the graph; the final graph description will contain the transitive closure of the children of all roots. get_children returns a list of (edge_label, node) pairs; if no argument is supplied then a default function that can handle lists, tuples and dictionaries is used. to_node_name returns a *unique* string used to identify the node in the graph. to_label gives a *not necessarily unique* label for a node in a graph. Again if not supplied, a default that can handle dictionaries, lists and tuples is used. """ tnn = make_namer(to_node_name, "N") builder: DotBuilder = DotBuilder() stack: List[Any] = [] stack.extend(roots) done: Set[str] = set() for root in roots: builder.with_node(tnn(root), to_label(root)) while len(stack) > 0: current = stack.pop() current_node = tnn(current) if current_node not in done: for (edge_label, child) in get_children(current): child_node = tnn(child) builder.with_node(child_node, to_label(child)) builder.with_edge(current_node, child_node, edge_label) stack.append(child) done.add(current_node) return str(builder) class DotBuilder: name: str is_subgraph: bool is_cluster: bool _label: str _node_map: "Dict[str, DotNode]" _edges: "Set[DotEdge]" _comments: List[str] _subgraphs: "List[DotBuilder]" _nodes: "List[DotNode]" _current_subgraph: "Optional[DotBuilder]" def __init__( self, name: str = "graph", is_subgraph: bool = False, is_cluster: bool = False ): self.name = name self.is_subgraph = is_subgraph self.is_cluster = is_cluster self._label = "" self._node_map = {} self._edges = set() self._comments = [] self._subgraphs = [] self._nodes = [] self._current_subgraph = None def with_label(self, label: str) -> "DotBuilder": sg = self._current_subgraph if sg is None: self._label = label else: sg.with_label(label) return self def start_subgraph(self, name: str, is_cluster: bool) -> "DotBuilder": sg = self._current_subgraph if sg is None: csg = DotBuilder(name, True, is_cluster) self._current_subgraph = csg self._subgraphs.append(csg) else: sg.start_subgraph(name, is_cluster) return self def end_subgraph(self) -> "DotBuilder": sg = self._current_subgraph if sg is None: raise ValueError("Cannot end a non-existing subgraph.") elif sg._current_subgraph is None: self._current_subgraph = None else: sg.end_subgraph() return self def _get_node(self, name: str) -> "DotNode": if name in self._node_map: return self._node_map[name] new_node = DotNode(name, "", "") self._node_map[name] = new_node self._nodes.append(new_node) return new_node def with_comment(self, comment: str) -> "DotBuilder": sg = self._current_subgraph if sg is None: self._comments.append(comment) else: sg.with_comment(comment) return self def with_node(self, name: str, label: str, color: str = "") -> "DotBuilder": sg = self._current_subgraph if sg is None: n = self._get_node(name) n.label = label n.color = color else: sg.with_node(name, label, color) return self def with_edge( self, frm: str, to: str, label: str = "", color: str = "", constrained: bool = True, ) -> "DotBuilder": sg = self._current_subgraph if sg is None: f = self._get_node(frm) t = self._get_node(to) self._edges.add(DotEdge(f, t, label, color, constrained)) else: sg.with_edge(frm, to, label, color, constrained) return self def _to_string(self, indent: str, sb: List[str]) -> List[str]: new_indent = indent + " " sb.append(indent) sb.append("subgraph" if self.is_subgraph else "digraph") i = "" has_name = len(self.name) > 0 if has_name and self.is_cluster: i = smart_quote("cluster_" + self.name) elif has_name: i = smart_quote(self.name) elif self.is_cluster: i = "cluster" if len(i) > 0: sb.append(" " + i) sb.append(" {\n") for c in self._comments: sb.append(new_indent + "// " + c + "\n") if len(self._label) > 0: sb.append(new_indent + "label=" + smart_quote(self._label) + "\n") nodes = sorted(new_indent + str(n) + "\n" for n in self._nodes) sb.extend(nodes) edges = sorted(new_indent + str(e) + "\n" for e in self._edges) sb.extend(edges) for db in self._subgraphs: sb = db._to_string(new_indent, sb) sb.append(indent + "}\n") return sb def __str__(self): return "".join(self._to_string("", [])) class DotNode: name: str label: str color: str def __init__(self, name: str, label: str, color: str): self.name = name self.label = label self.color = color def __str__(self) -> str: props: List[str] = [] if len(self.label) != 0 and self.label != self.name: props.append("label=" + smart_quote(self.label)) if len(self.color) != 0: props.append("color=" + smart_quote(self.label)) p = "" if len(props) == 0 else "[" + " ".join(props) + "]" return smart_quote(self.name) + p + ";" class DotEdge: frm: DotNode to: DotNode label: str color: str constrained: bool def __init__( self, frm: DotNode, to: DotNode, label: str, color: str, constrained: bool ): self.frm = frm self.to = to self.label = label self.color = color self.constrained = constrained def __str__(self) -> str: props: List[str] = [] if len(self.label) != 0: props.append("label=" + smart_quote(self.label)) if len(self.color) != 0: props.append("color=" + smart_quote(self.label)) if not self.constrained: props.append("constraint=false") p = "" if len(props) == 0 else "[" + " ".join(props) + "]" return smart_quote(self.frm.name) + " -> " + smart_quote(self.to.name) + p + ";" _keywords: List[str] = ["digraph", "edge", "graph", "node", "strict", "subgraph"] _alphanum = re.compile("^[A-Za-z_][A-Za-z_0-9]*$") _numeric = re.compile("^[-]?(\\.[0-9]+|[0-9]+(\\.[0-9]*)?)$") def smart_quote(s: str) -> str: if s is None or len(s) == 0: return '""' if s.lower() in _keywords: return json.dumps(s) if _alphanum.match(s): return s if _numeric.match(s): return s return json.dumps(s)
beanmachine-main
src/beanmachine/ppl/utils/dotbuilder.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re def _first_word(s: str) -> str: r = re.search("\\w+", s) return r.group(0) if r else "" _always_a = {"uniform"} _always_an = {"18"} _vowel_sounds = "aeiouxAEIOUX8" def use_an(s: str) -> bool: w = _first_word(s) if len(w) == 0: return False if any(w.startswith(prefix) for prefix in _always_a): return False if any(w.startswith(prefix) for prefix in _always_an): return True return w[0] in _vowel_sounds def a_or_an(s: str) -> str: return "an " + s if use_an(s) else "a " + s def A_or_An(s: str) -> str: return "An " + s if use_an(s) else "A " + s
beanmachine-main
src/beanmachine/ppl/utils/a_or_an.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Defines print_tree, a helper function to render Python objects as trees.""" from typing import Any, Callable, List def _is_named_tuple_type(t: type) -> bool: if not isinstance(getattr(t, "_fields", None), tuple): return False if len(t.__bases__) == 1 and t.__bases__[0] == tuple: return True return any(_is_named_tuple_type(b) for b in t.__bases__) def _is_named_tuple(x: Any) -> bool: return _is_named_tuple_type(type(x)) def _get_children_key_value(v: Any) -> List[Any]: if isinstance(v, dict): return list(v.items()) if isinstance(v, list): return v if _is_named_tuple(v): return [(k, getattr(v, k)) for k in type(v)._fields] if isinstance(v, tuple): return list(v) return [v] def _get_children(n: Any) -> List[Any]: if isinstance(n, dict): return list(n.items()) if isinstance(n, list): return n if _is_named_tuple(n): return [(k, getattr(n, k)) for k in type(n)._fields] # for key-value pairs we do not want subtypes of tuple, just tuple. if type(n) == tuple and len(n) == 2: return _get_children_key_value(n[1]) if isinstance(n, tuple): return list(n) return [] def _to_string(n: Any) -> str: if isinstance(n, dict): return "dict" if isinstance(n, list): return "list" # for key-value pairs we do not want subtypes of tuple, just tuple. if type(n) == tuple and len(n) == 2: return str(n[0]) if _is_named_tuple(n): return type(n).__name__ if isinstance(n, tuple): return "tuple" return str(n) def print_tree( root: Any, get_children: Callable[[Any], List[Any]] = _get_children, to_string: Callable[[Any], str] = _to_string, unicode: bool = True, ) -> str: """ Renders an arbitrary Python object as a tree. This is handy for debugging. If you have a specific tree structure imposed on an object, you can pass in your own get_children method; if omitted, a function that handles Python dictionaries, tuples, named tuples and lists is the default. The text of each node is determined by the to_string argument; if omitted a default function is used. The tree produced uses the Unicode box-drawing characters by default; to use straight ASCII characters, pass False for the unicode parameter. """ def pt(node, indent): builder.append(to_string(node)) builder.append("\n") children = get_children(node) for i in range(len(children)): last = i == len(children) - 1 child = children[i] builder.append(indent) builder.append(el if last else tee) builder.append(dash) pt(child, indent + (" " if last else bar) + " ") el = "\u2514" if unicode else "+" tee = "\u251c" if unicode else "+" dash = "\u2500" if unicode else "-" bar = "\u2502" if unicode else "|" builder = [] pt(root, "") return "".join(builder)
beanmachine-main
src/beanmachine/ppl/utils/treeprinter.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This is just a little wrapper class around a dictionary for quickly # and easily counting how many of each item you've got. from typing import Any, Dict class ItemCounter: items: Dict[Any, int] def __init__(self) -> None: self.items = {} def add_item(self, item: Any) -> None: if item not in self.items: self.items[item] = 1 else: self.items[item] = self.items[item] + 1 def remove_item(self, item: Any) -> None: if item not in self.items: return count = self.items[item] - 1 if count == 0: del self.items[item] else: assert count > 0 self.items[item] = count
beanmachine-main
src/beanmachine/ppl/utils/item_counter.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple import torch import torch.autograd from torch._vmap_internals import _vmap as vmap def gradients( outputs: torch.Tensor, inputs: torch.Tensor, allow_unused: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute the first and the second gradient of the output Tensor w.r.t. the input Tensor. :param output: A Tensor variable with a single element. :param input: A 1-d tensor input variable that was used to compute the output. Note: the input must have requires_grad=True :returns: tuple of Tensor variables -- The first and the second gradient. """ if outputs.numel() != 1: raise ValueError( f"output tensor must have exactly one element, got {outputs.numel()}" ) grad1 = torch.autograd.grad( outputs, inputs, create_graph=True, retain_graph=True, allow_unused=allow_unused )[0].reshape(-1) # using identity matrix to reconstruct the full hessian from vector-Jacobian product hessians = vmap( lambda vec: torch.autograd.grad( grad1, inputs, vec, create_graph=True, retain_graph=True, allow_unused=allow_unused, )[0].reshape(-1) )(torch.eye(grad1.size(0))) return grad1.detach(), hessians.detach() def halfspace_gradients( outputs: torch.Tensor, inputs: torch.Tensor, allow_unused: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute the first and the second gradient of the output Tensor w.r.t. the input Tensor for half space. :param output: A Tensor variable with a single element. :param input: A 1-d tensor input variable that was used to compute the output. Note: the input must have requires_grad=True :returns: tuple of Tensor variables -- The first and the second gradient. """ grad1, hessians = gradients(outputs, inputs, allow_unused) return grad1, torch.diagonal(hessians) def simplex_gradients( outputs: torch.Tensor, inputs: torch.Tensor, allow_unused: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute the first and the second gradient of the output Tensor w.r.t. the input Tensor for simplex. :param output: A Tensor variable with a single element. :param input: A 1-d tensor input variable that was used to compute the output. Note: the input must have requires_grad=True :returns: tuple of Tensor variables -- The first and the second gradient. """ grad1, hessians = gradients(outputs, inputs, allow_unused) hessian_diag = torch.diagonal(hessians).clone() # mask diagonal entries hessians[torch.eye(hessians.size(0)).bool()] = float("-inf") hessian_diag -= hessians.max(dim=0)[0] return grad1, hessian_diag
beanmachine-main
src/beanmachine/ppl/utils/tensorops.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Defines partition, a helper function to partition a set into equivalence classes by an equivalence relation.""" from collections import defaultdict from typing import Callable, Iterable, List, Set, TypeVar _T = TypeVar("T") _K = TypeVar("K") def partition_by_relation( items: Iterable[_T], relation: Callable[[_T, _T], bool] ) -> List[Set[_T]]: # This is a quadratic algorithm, but n is likely to be small. result = [] for item in items: eqv = next(filter((lambda s: relation(next(iter(s)), item)), result), None) if eqv is None: eqv = set() result.append(eqv) eqv.add(item) return result def partition_by_kernel( items: Iterable[_T], kernel: Callable[[_T], _K] ) -> List[Set[_T]]: d = defaultdict(set) for item in items: d[kernel(item)].add(item) return list(d.values())
beanmachine-main
src/beanmachine/ppl/utils/equivalence.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections from typing import Set, Tuple from beanmachine.ppl.utils.memoize import tensor_to_tuple from torch import Tensor, tensor # When constructing the support of various nodes we often # must remove duplicates from a set of possible values. # Unfortunately, it is not easy to do so with torch tensors. # This helper class implements a set of tensors using the same # technique as is used in the function call memoizer: we encode # the data in the tensor into a tuple with the same shape. The # tuple implements hashing and equality correctly, so we can put # it in a set. class SetOfTensors(collections.abc.Set): _elements: Set[Tuple] def __init__(self, iterable): self._elements = set() for value in iterable: t = value if isinstance(value, Tensor) else tensor(value) self._elements.add(tensor_to_tuple(t)) def __iter__(self): return (tensor(t) for t in self._elements) def __contains__(self, value): t = value if isinstance(value, Tensor) else tensor(value) return tensor_to_tuple(t) in self._elements def __len__(self): return len(self._elements) def __str__(self): return "\n".join(sorted(str(t) for t in self))
beanmachine-main
src/beanmachine/ppl/utils/set_of_tensors.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Set class MultiDictionary: """A simple append-only multidictionary; values are deduplicated and must be hashable.""" _d: Dict[Any, Set[Any]] def __init__(self) -> None: self._d = {} def add(self, key: Any, value: Any) -> None: if key not in self._d: self._d[key] = {value} else: self._d[key].add(value) def __getitem__(self, key: Any) -> Set[Any]: return self._d[key] if key in self else set() def __iter__(self): return iter(self._d) def __len__(self): return len(self._d) def __contains__(self, key: Any): return key in self._d def keys(self): return self._d.keys() def items(self): return self._d.items() def __repr__(self) -> str: return ( "{" + "\n".join( str(key) + ":{" + ",\n".join(sorted(str(v) for v in self[key])) + "}" for key in self ) + "}" )
beanmachine-main
src/beanmachine/ppl/utils/multidictionary.py
beanmachine-main
src/beanmachine/ppl/examples/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch.distributions as dist from torch import Tensor class BetaBinomialModel: """This Bean Machine model is an example of conjugacy, where the prior and the likelihood are the Beta and the Binomial distributions respectively. Conjugacy means the posterior will also be in the same family as the prior, Beta. The random variable names theta and x follow the typical presentation of the conjugate prior relation in the form of p(theta|x) = p(x|theta) * p(theta)/p(x). Note: Variable names here follow those used on: https://en.wikipedia.org/wiki/Conjugate_prior """ def __init__(self, alpha: Tensor, beta: Tensor, n: Tensor) -> None: self.alpha_ = alpha self.beta_ = beta self.n_ = n @bm.random_variable def theta(self) -> dist.Distribution: return dist.Beta(self.alpha_, self.beta_) @bm.random_variable def x(self) -> dist.Distribution: return dist.Binomial(self.n_, self.theta())
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/beta_binomial.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.examples.conjugate_models.beta_binomial import BetaBinomialModel from beanmachine.ppl.examples.conjugate_models.categorical_dirichlet import ( CategoricalDirichletModel, ) from beanmachine.ppl.examples.conjugate_models.gamma_gamma import GammaGammaModel from beanmachine.ppl.examples.conjugate_models.gamma_normal import GammaNormalModel from beanmachine.ppl.examples.conjugate_models.normal_normal import NormalNormalModel __all__ = [ "BetaBinomialModel", "CategoricalDirichletModel", "GammaGammaModel", "GammaNormalModel", "NormalNormalModel", ]
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch.distributions as dist from torch import Tensor class CategoricalDirichletModel: def __init__(self, alpha: Tensor) -> None: self.alpha_ = alpha @bm.random_variable def dirichlet(self) -> dist.Distribution: return dist.Dirichlet(self.alpha_) @bm.random_variable def categorical(self) -> dist.Distribution: return dist.Categorical(self.dirichlet())
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/categorical_dirichlet.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch.distributions as dist from torch import Tensor class NormalNormalModel: def __init__(self, mu: Tensor, std: Tensor, sigma: Tensor) -> None: self.mu_ = mu self.std_ = std self.sigma_ = sigma @bm.random_variable def normal_p(self) -> dist.Distribution: return dist.Normal(self.mu_, self.std_) @bm.random_variable def normal(self) -> dist.Distribution: return dist.Normal(self.normal_p(), self.sigma_)
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/normal_normal.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch.distributions as dist from torch import Tensor class BetaBernoulliModel: def __init__(self, alpha: Tensor, beta: Tensor) -> None: self.alpha_ = alpha self.beta_ = beta @bm.random_variable def theta(self) -> dist.Distribution: return dist.Beta(self.alpha_, self.beta_) @bm.random_variable def y(self, i: int) -> dist.Distribution: return dist.Bernoulli(self.theta())
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/beta_bernoulli.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch import torch.distributions as dist from torch import Tensor class GammaNormalModel: def __init__(self, shape: Tensor, rate: Tensor, mu: Tensor) -> None: self.shape_ = shape self.rate_ = rate self.mu_ = mu @bm.random_variable def gamma(self) -> dist.Distribution: return dist.Gamma(self.shape_, self.rate_) @bm.random_variable def normal(self) -> dist.Distribution: # pyre-fixme[58]: `/` is not supported for operand types `int` and `Tensor`. return dist.Normal(self.mu_, 1 / torch.sqrt(self.gamma()))
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/gamma_normal.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch.distributions as dist from torch import Tensor class GammaGammaModel: def __init__(self, shape: Tensor, rate: Tensor, alpha: Tensor) -> None: self.shape_ = shape self.rate_ = rate self.alpha_ = alpha @bm.random_variable def gamma_p(self) -> dist.Distribution: return dist.Gamma(self.shape_, self.rate_) @bm.random_variable def gamma(self) -> dist.Distribution: return dist.Gamma(self.alpha_, self.gamma_p())
beanmachine-main
src/beanmachine/ppl/examples/conjugate_models/gamma_gamma.py
beanmachine-main
src/beanmachine/ppl/testlib/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from typing import Dict, List, Optional, Tuple import numpy as np import scipy.stats import torch from beanmachine.ppl.diagnostics.common_statistics import effective_sample_size from beanmachine.ppl.examples.conjugate_models.beta_binomial import BetaBinomialModel from beanmachine.ppl.examples.conjugate_models.categorical_dirichlet import ( CategoricalDirichletModel, ) from beanmachine.ppl.examples.conjugate_models.gamma_gamma import GammaGammaModel from beanmachine.ppl.examples.conjugate_models.gamma_normal import GammaNormalModel from beanmachine.ppl.examples.conjugate_models.normal_normal import NormalNormalModel from beanmachine.ppl.inference import utils from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.testlib.hypothesis_testing import ( mean_equality_hypothesis_confidence_interval, variance_equality_hypothesis_confidence_interval, ) from torch import Tensor, tensor class AbstractConjugateTests(metaclass=ABCMeta): """ Computes the posterior mean and standard deviation of some of the conjugate distributions included below. https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions Note: Whenever possible, we will use same variable names as on that page. """ def compute_statistics(self, predictions: Tensor) -> Tuple[Tensor, Tensor]: """ Computes mean and standard deviation of a given tensor of samples. :param predictions: tensor of samples :returns: mean and standard deviation of the tensor of samples. """ return ( torch.mean(predictions, 0), torch.std(predictions, 0, unbiased=True, keepdim=True), ) def compute_beta_binomial_moments( self, ) -> Tuple[Tensor, Tensor, List[RVIdentifier], Dict[RVIdentifier, Tensor]]: """ Computes mean and standard deviation of a small beta binomial model. :return: expected mean, expected standard deviation, conjugate model queries and observations """ alpha = tensor([2.0, 2.0]) beta = tensor([1.0, 1.0]) n = tensor([1.0, 1.0]) obs = tensor([1.0, 0.0]) model = BetaBinomialModel(alpha, beta, n) queries = [model.theta()] observations = {model.x(): obs} alpha_prime = alpha + obs beta_prime = beta - obs + n mean_prime = alpha_prime / (alpha_prime + beta_prime) std_prime = ( (alpha_prime * beta_prime) / ((alpha_prime + beta_prime).pow(2.0) * (alpha_prime + beta_prime + 1.0)) ).pow(0.5) return (mean_prime, std_prime, queries, observations) def compute_gamma_gamma_moments( self, ) -> Tuple[Tensor, Tensor, List[RVIdentifier], Dict[RVIdentifier, Tensor]]: """ Computes mean and standard deviation of a small gamma gamma model. :return: expected mean, expected standard deviation, conjugate model queries and observations """ shape = tensor([2.0, 2.0]) rate = tensor([2.0, 2.0]) alpha = tensor([1.5, 1.5]) obs = tensor([2.0, 4.0]) model = GammaGammaModel(shape, rate, alpha) queries = [model.gamma_p()] observations = {model.gamma(): obs} shape = shape + alpha rate = rate + obs expected_mean = shape / rate expected_std = (expected_mean / rate).pow(0.5) return (expected_mean, expected_std, queries, observations) def compute_gamma_normal_moments( self, ) -> Tuple[Tensor, Tensor, List[RVIdentifier], Dict[RVIdentifier, Tensor]]: """ Computes mean and standard deviation of a small gamma normal model. :return: expected mean, expected standard deviation, conjugate model queries and observations """ shape = tensor([1.0, 1.0]) rate = tensor([2.0, 2.0]) mu = tensor([1.0, 2.0]) obs = tensor([1.5, 2.5]) model = GammaNormalModel(shape, rate, mu) queries = [model.gamma()] observations = {model.normal(): obs} shape = shape + tensor([0.5, 0.5]) deviations = (obs - mu).pow(2.0) rate = rate + (deviations * (0.5)) expected_mean = shape / rate expected_std = (expected_mean / rate).pow(0.5) return (expected_mean, expected_std, queries, observations) def compute_normal_normal_moments( self, ) -> Tuple[Tensor, Tensor, List[RVIdentifier], Dict[RVIdentifier, Tensor]]: """ Computes mean and standard deviation of a small normal normal model. :return: expected mean, expected standard deviation, conjugate model queries and observations """ mu = tensor([1.0, 1.0]) std = tensor([1.0, 1.0]) sigma = tensor([1.0, 1.0]) obs = tensor([1.5, 2.5]) model = NormalNormalModel(mu, std, sigma) queries = [model.normal_p()] observations = {model.normal(): obs} expected_mean = (mu / std.pow(2.0) + obs / sigma.pow(2.0)) / ( # pyre-fixme[58]: `/` is not supported for operand types `float` and # `Tensor`. 1.0 / sigma.pow(2.0) # pyre-fixme[58]: `/` is not supported for operand types `float` and # `Tensor`. + 1.0 / std.pow(2.0) ) expected_std = (std.pow(-2.0) + sigma.pow(-2.0)).pow(-0.5) return (expected_mean, expected_std, queries, observations) def compute_dirichlet_categorical_moments(self): """ Computes mean and standard deviation of a small dirichlet categorical model. :return: expected mean, expected standard deviation, conjugate model queries and observations """ alpha = tensor([0.5, 0.5]) model = CategoricalDirichletModel(alpha) obs = tensor([1.0]) queries = [model.dirichlet()] observations = {model.categorical(): obs} alpha = alpha + tensor([0.0, 1.0]) expected_mean = alpha / alpha.sum() expected_std = (expected_mean * (1 - expected_mean) / (alpha.sum() + 1)).pow( 0.5 ) return (expected_mean, expected_std, queries, observations) def _compare_run( self, moments: Tuple[Tensor, Tensor, List[RVIdentifier], Dict[RVIdentifier, Tensor]], mh: BaseInference, num_chains: int, num_samples: int, random_seed: Optional[int], num_adaptive_samples: int = 0, alpha: float = 0.01, ): # Helper functions for hypothesis tests def chi2(alpha, df): return scipy.stats.chi2.ppf(alpha, df) def z(alpha): return scipy.stats.norm.ppf(alpha) expected_mean, expected_std, queries, observations = moments if random_seed is None: random_seed = 123 utils.seed(random_seed) predictions = mh.infer( queries, observations, num_samples, num_chains=num_chains, num_adaptive_samples=num_adaptive_samples, ) for i in range(predictions.num_chains): sample = predictions.get_chain(i)[queries[0]] mean, std = self.compute_statistics(sample) total_samples = tensor(sample.size())[0].item() n_eff = effective_sample_size(sample.unsqueeze(dim=0)) # For out purposes, it seems more appropriate to use n_eff ONLY # to discount sample size. In particular, we should not allow # n_eff > total_samples n_eff = torch.min(n_eff, tensor(total_samples)) # Hypothesis Testing # First, let's start by making sure that we can assume normalcy of means # pyre-fixme[16]: `AbstractConjugateTests` has no attribute # `assertGreaterEqual`. self.assertGreaterEqual( total_samples, 30, msg="Sample size too small for normalcy assumption" ) self.assertGreaterEqual( torch.min(n_eff).item(), 30, msg="Effective sample size too small for normalcy assumption", ) # Second, let us check the means using confidence intervals: lower_bound, upper_bound = mean_equality_hypothesis_confidence_interval( expected_mean, expected_std, n_eff, # pyre-fixme[6]: For 4th param expected `int` but got `float`. alpha, ) below_upper = torch.min(lower_bound <= mean).item() above_lower = torch.min(mean <= upper_bound).item() accept_interval = below_upper and above_lower message = "abs(mean - expected_mean) * sqr(n_eff) / expected_std = " + str( torch.abs(mean - expected_mean) / (expected_std / np.sqrt(n_eff)) ) message = ( " alpha = " + str(alpha) + " z_alpha/2 = " + str(z(1 - alpha / 2)) + " => " + message ) message = ( str(lower_bound) + " <= " + str(mean) + " <= " + str(upper_bound) + ". " + message ) message = ( "Mean outside confidence interval.\n" + "n_eff = " + str(n_eff) + ".\nExpected: " + message ) # pyre-fixme[16]: `AbstractConjugateTests` has no attribute # `assertTrue`. self.assertTrue(accept_interval, msg=message) # Third, let us check the variance using confidence intervals: lower_bound, upper_bound = variance_equality_hypothesis_confidence_interval( expected_std, n_eff - 1, # pyre-fixme[6]: For 3rd param expected `int` but got `float`. alpha, ) below_upper = torch.min(lower_bound <= std).item() above_lower = torch.min(std <= upper_bound).item() accept_interval = below_upper and above_lower message = "(n_eff - 1) * (std/ expected_std) ** 2 = " + str( (n_eff - 1) # pyre-fixme[58]: `**` is not supported for operand types `Tensor` # and `int`. * (std / expected_std) ** 2 ) message = ( " alpha = " + str(alpha) + " chi2_alpha/2 = " + str(chi2(alpha / 2, n_eff - 1)) + " <= " + message + " <= " + " chi2_(1-alpha/2) = " + str(chi2(1 - alpha / 2, n_eff - 1)) ) message = ( str(lower_bound) + " <= " + str(std) + " <= " + str(upper_bound) + ". " + message ) message = ( "Standard deviation outside confidence interval.\n" + "n_eff = " + str(n_eff) + ".\nExpected: " + message ) self.assertTrue(accept_interval, msg=message) continue def beta_binomial_conjugate_run( self, mh: BaseInference, num_chains: int = 1, num_samples: int = 1000, random_seed: Optional[int] = 17, num_adaptive_samples: int = 0, ): """ Tests the inference run for a small beta binomial model. :param mh: inference algorithm :param num_samples: number of samples :param num_chains: number of chains :param random_seed: seed for pytorch random number generator """ moments = self.compute_beta_binomial_moments() self._compare_run( moments, mh, num_chains, num_samples, random_seed, num_adaptive_samples, ) def gamma_gamma_conjugate_run( self, mh: BaseInference, num_chains: int = 1, num_samples: int = 1000, random_seed: Optional[int] = 17, num_adaptive_samples: int = 0, ): """ Tests the inference run for a small gamma gamma model. :param mh: inference algorithm :param num_samples: number of samples :param num_chains: number of chains :param random_seed: seed for pytorch random number generator """ moments = self.compute_gamma_gamma_moments() self._compare_run( moments, mh, num_chains, num_samples, random_seed, num_adaptive_samples, ) def gamma_normal_conjugate_run( self, mh: BaseInference, num_chains: int = 1, num_samples: int = 1000, random_seed: Optional[int] = 17, num_adaptive_samples: int = 0, ): """ Tests the inference run for a small gamma normal model. :param mh: inference algorithm :param num_samples: number of samples :param num_chains: number of chains :param random_seed: seed for pytorch random number generator """ moments = self.compute_gamma_normal_moments() self._compare_run( moments, mh, num_chains, num_samples, random_seed, num_adaptive_samples, ) def normal_normal_conjugate_run( self, mh: BaseInference, num_chains: int = 1, num_samples: int = 1000, random_seed: Optional[int] = 17, num_adaptive_samples: int = 0, ): """ Tests the inference run for a small normal normal model. :param mh: inference algorithm :param num_samples: number of samples :param num_chains: number of chains :param random_seed: seed for pytorch random number generator """ moments = self.compute_normal_normal_moments() self._compare_run( moments, mh, num_chains, num_samples, random_seed, num_adaptive_samples, ) def dirichlet_categorical_conjugate_run( self, mh: BaseInference, num_chains: int = 1, num_samples: int = 1000, random_seed: Optional[int] = 17, num_adaptive_samples: int = 0, ): """ Tests the inference run for a small dirichlet categorical model. :param mh: inference algorithm :param num_samples: number of samples :param num_chains: number of chains :param random_seed: seed for pytorch random number generator """ moments = self.compute_dirichlet_categorical_moments() self._compare_run( moments, mh, num_chains, num_samples, random_seed, num_adaptive_samples, ) @abstractmethod def test_beta_binomial_conjugate_run(self): """ To be implemented for all classes extending AbstractConjugateTests. """ raise NotImplementedError( "Conjugate test must implement test_beta_binomial_conjugate_run." ) @abstractmethod def test_gamma_gamma_conjugate_run(self): """ To be implemented for all classes extending AbstractConjugateTests. """ raise NotImplementedError( "Conjugate test must implement test_gamma_gamma_conjugate_run." ) @abstractmethod def test_gamma_normal_conjugate_run(self): """ To be implemented for all classes extending AbstractConjugateTests. """ raise NotImplementedError( "Conjugate test must implement test_gamma_normal_conjugate_run." ) @abstractmethod def test_normal_normal_conjugate_run(self): """ To be implemented for all classes extending AbstractConjugateTests. """ raise NotImplementedError( "Conjugate test must implement test_normal_normal_conjugate_run." ) @abstractmethod def test_dirichlet_categorical_conjugate_run(self): """ To be implemented for all classes extending AbstractConjugateTests. """ raise NotImplementedError( "Conjugate test must implement test_categorical_dirichlet_conjugate_run." )
beanmachine-main
src/beanmachine/ppl/testlib/abstract_conjugate.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import scipy.stats as stats import torch # This module defines hypothesis tests for equal means and equal variance # Helper functions: # Inverse of CDF of normal distribution at given probability inverse_normal_cdf = stats.norm.ppf # Inverse of CDF of chi-squared distribution at given probability def inverse_chi2_cdf(df, p): return stats.chi2(df).ppf(p) # Hypothesis test for equality of sample mean to a true mean def mean_equality_hypothesis_test( sample_mean: torch.Tensor, true_mean: torch.Tensor, true_std: torch.Tensor, sample_size: torch.Tensor, p_value: int, ): """Test for the null hypothesis that the mean of a Gaussian distribution is within the central 1 - alpha confidence interval (CI) for a sample of size sample_size. We also apply an adjustment that takes into account that we do the test pointwise independently for each element of the tensor. This is basically the Dunn-Šidák correction, https://en.wikipedia.org/wiki/%C5%A0id%C3%A1k_correction""" if torch.min(sample_size) <= 0: return False dimensions = torch.numel(true_mean) # treat scalar and 1-D tensors the same # early exit for empty tensor if dimensions == 0: return False if torch.max(true_std <= 0): return False adjusted_p_value = 1 - (1 - p_value) ** (1.0 / dimensions) test_result = torch.max( torch.abs(sample_mean - true_mean) * np.sqrt(sample_size) / true_std ) <= inverse_normal_cdf(1 - adjusted_p_value / 2) return test_result # The following function explicitly constructs a confidence interval. # This provides an alternative way for performing the hypothesis test, # but which also makes reporting test failures easier. def mean_equality_hypothesis_confidence_interval( true_mean: torch.Tensor, true_std: torch.Tensor, sample_size: torch.Tensor, p_value: int, ): """Computes the central 1 - p_value confidence interval in which the sample mean can fall without causing us to reject the null hypothesis that the mean of a Gaussian distribution for a sample of size sample_size. We also apply an adjustment that takes into account that we do the test pointwise independently for each element of the tensor. This is basically the Dunn-Šidák correction, https://en.wikipedia.org/wiki/%C5%A0id%C3%A1k_correction""" # TODO: Consider refactoring the common input checks for both methods if torch.min(sample_size) <= 0: return None dimensions = torch.numel(true_mean) # treat scalar and 1-D tensors the same # early exit for empty tensor if dimensions == 0: return None if torch.max(true_std == 0): return None adjusted_p_value = 1 - (1 - p_value) ** (1.0 / dimensions) bound_std = true_std / np.sqrt(sample_size) z_score = inverse_normal_cdf(1 - adjusted_p_value / 2) # TODO: We use z_{1-alpha} instead of -z_alpha for compatibility # with mean_equality_hypothesis_test. Ideally, both should be # changed to use the unmodified bounds. In any case, the two # functions should be matched for consistency lower_bound = true_mean - bound_std * z_score upper_bound = true_mean + bound_std * z_score return lower_bound, upper_bound # Hypothesis test for equality of sample variance to a true variance def variance_equality_hypothesis_test( sample_std: torch.Tensor, true_std: torch.Tensor, degrees_of_freedom: torch.Tensor, alpha: int, ): """Test for the null hypothesis that the variance of a Gaussian distribution is within the central 1 - alpha confidence interval (CI) for a sample of effective sample size (ESS) degrees_of_freedom. We also apply an adjustment that takes into account that we do the test pointwise independently for each element of the tensor. This is basically the Dunn-Šidák correction, https://en.wikipedia.org/wiki/%C5%A0id%C3%A1k_correction""" if torch.min(degrees_of_freedom).item() <= 0: return False dimensions = torch.prod(torch.tensor(torch.Tensor.size(true_std))).item() if dimensions == 0: return False if torch.max(true_std <= 0).item(): return False adjusted_alpha = 1 - (1 - alpha) ** (1.0 / dimensions) # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. test_statistic = degrees_of_freedom * (sample_std / true_std) ** 2 lower_bound = inverse_chi2_cdf(degrees_of_freedom, adjusted_alpha / 2) upper_bound = inverse_chi2_cdf(degrees_of_freedom, 1 - adjusted_alpha / 2) lower_bound_result = lower_bound <= torch.min(test_statistic).item() upper_bound_result = torch.max(test_statistic).item() <= upper_bound test_result = lower_bound_result and upper_bound_result return test_result # The following function explicitly constructs a confidence interval. # This provides an alternative way for performing the hypothesis test, # but which also makes reporting test failures easier. def variance_equality_hypothesis_confidence_interval( true_std: torch.Tensor, degrees_of_freedom: torch.Tensor, alpha: int ): """Computes the central 1 - alpha confidence interval in which the sample variance can fall without causing us to reject the null hypothesis that the variance of a Gaussian distribution for a sample of size sample_size. We also apply an adjustment that takes into account that we do the test pointwise independently for each element of the tensor. This is basically the Dunn-Šidák correction, https://en.wikipedia.org/wiki/%C5%A0id%C3%A1k_correction""" if torch.min(degrees_of_freedom).item() <= 0: return None dimensions = torch.prod(torch.tensor(torch.Tensor.size(true_std))).item() if dimensions == 0: return None if torch.max(true_std == 0).item(): return None adjusted_alpha = 1 - (1 - alpha) ** (1.0 / dimensions) lower_bound = ( inverse_chi2_cdf(degrees_of_freedom, adjusted_alpha / 2) / degrees_of_freedom ) ** 0.5 * true_std upper_bound = ( inverse_chi2_cdf(degrees_of_freedom, 1 - adjusted_alpha / 2) / degrees_of_freedom ) ** 0.5 * true_std return lower_bound, upper_bound
beanmachine-main
src/beanmachine/ppl/testlib/hypothesis_testing.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import wraps from typing import Callable, Union import torch import torch.distributions as dist from beanmachine.ppl.inference.vi.variational_world import VariationalWorld from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import get_world_context from typing_extensions import ParamSpec P = ParamSpec("P") class StatisticalModel: """ Parent class to all statistical models implemented in Bean Machine. Every random variable in the model needs to be defined with function declaration wrapped the ``bm.random_variable`` . Every deterministic functional that a user would like to query during inference should be wrapped in a ``bm.functional`` . Every parameter of the guide distribution that is to be learned via variational inference should be wrapped in a ``bm.param`` . """ @staticmethod def get_func_key(wrapper, arguments) -> RVIdentifier: """ Creates a key to uniquely identify the Random Variable. Args: wrapper: reference to the wrapper function arguments: function arguments Returns: Tuple of function and arguments which is to be used to identify a particular function call. """ return RVIdentifier(wrapper=wrapper, arguments=arguments) @staticmethod def random_variable( f: Callable[P, dist.Distribution] ) -> Callable[P, Union[RVIdentifier, torch.Tensor]]: """ Decorator to be used for every stochastic random variable defined in all statistical models. E.g.:: @bm.random_variable def foo(): return Normal(0., 1.) def foo(): return Normal(0., 1.) foo = bm.random_variable(foo) """ @wraps(f) def wrapper( *args: P.args, **kwargs: P.kwargs ) -> Union[RVIdentifier, torch.Tensor]: func_key = StatisticalModel.get_func_key(wrapper, args, **kwargs) world = get_world_context() if world is None: return func_key else: return world.update_graph(func_key) wrapper.is_functional = False wrapper.is_random_variable = True return wrapper @staticmethod def functional( f: Callable[P, torch.Tensor] ) -> Callable[P, Union[RVIdentifier, torch.Tensor]]: """ Decorator to be used for every query defined in statistical model, which are functions of ``bm.random_variable`` :: @bm.random_variable def foo(): return Normal(0., 1.) @bm.functional(): def bar(): return foo() * 2.0 """ @wraps(f) def wrapper( *args: P.args, **kwargs: P.kwargs ) -> Union[RVIdentifier, torch.Tensor]: world = get_world_context() if world is None: return StatisticalModel.get_func_key(wrapper, args, **kwargs) else: return f(*args, **kwargs) wrapper.is_functional = True wrapper.is_random_variable = False return wrapper @staticmethod def param(init_fn): """ Decorator to be used for params (variable to be optimized with VI).:: @bm.param def mu(): return torch.zeros(2) @bm.random_variable def foo(): return Normal(mu(), 1.) """ @wraps(init_fn) def wrapper(*args): func_key = StatisticalModel.get_func_key(wrapper, args) world = get_world_context() if world is None: return func_key else: assert isinstance( world, VariationalWorld ), "encountered params outside of VariationalWorld, this should never happen." return world.get_param(func_key) return wrapper random_variable = StatisticalModel.random_variable functional = StatisticalModel.functional param = StatisticalModel.param
beanmachine-main
src/beanmachine/ppl/model/statistical_model.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.model.statistical_model import ( functional, param, random_variable, StatisticalModel, ) from beanmachine.ppl.model.utils import get_beanmachine_logger __all__ = [ "Mode", "RVIdentifier", "StatisticalModel", "functional", "param", "query", "random_variable", "sample", "get_beanmachine_logger", ]
beanmachine-main
src/beanmachine/ppl/model/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings from dataclasses import dataclass from typing import Any, Callable, Tuple import torch @dataclass(eq=True, frozen=True) class RVIdentifier: """ Struct representing the unique key corresponding to a BM random variable. """ wrapper: Callable arguments: Tuple def __post_init__(self): for arg in self.arguments: if torch.is_tensor(arg): warnings.warn( "PyTorch tensors are hashed by memory address instead of value. " "Therefore, it is not recommended to use tensors as indices of random variables.", stacklevel=3, ) def __str__(self): return str(self.function.__name__) + str(self.arguments) def __lt__(self, other: Any) -> bool: # define comparison so that functorch doesn't raise when it tries to # sort dictionary keys (https://fburl.com/0gomiv80). This can be # removed with the v0.2.1+ release of functorch. if isinstance(other, RVIdentifier): return str(self) < str(other) return NotImplemented @property def function(self): return self.wrapper.__wrapped__ @property def is_functional(self): w = self.wrapper assert hasattr(w, "is_functional") return w.is_functional @property def is_random_variable(self): w = self.wrapper assert hasattr(w, "is_random_variable") return w.is_random_variable
beanmachine-main
src/beanmachine/ppl/model/rv_identifier.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from enum import Enum import torch class LogLevel(Enum): """ Enum class mapping the logging levels to numeric values. """ ERROR = 40 WARNING = 30 INFO = 20 DEBUG_UPDATES = 16 DEBUG_PROPOSER = 14 DEBUG_GRAPH = 12 def get_beanmachine_logger( console_level: LogLevel = LogLevel.WARNING, file_level: LogLevel = LogLevel.INFO ) -> logging.Logger: console_handler = logging.StreamHandler() console_handler.setLevel(console_level.value) file_handler = logging.FileHandler("beanmachine.log") file_handler.setLevel(file_level.value) logger = logging.getLogger("beanmachine") logger.setLevel( file_level.value if file_level.value < console_level.value else console_level.value ) logger.handlers.clear() logger.addHandler(console_handler) logger.addHandler(file_handler) return logger float_types = (torch.FloatTensor, torch.DoubleTensor, torch.HalfTensor)
beanmachine-main
src/beanmachine/ppl/model/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Optional, Tuple import numpy as np import torch import torch.fft from torch import Tensor """ Common statistic functions, they all get a Tensor as input and return a Tensor as output """ def mean(query_samples: Tensor) -> Tensor: return query_samples.mean(dim=[0, 1]) def std(query_samples: Tensor) -> Tensor: return torch.std(query_samples, dim=[0, 1]) def confidence_interval(query_samples: Tensor) -> Tensor: percentile_list = [2.5, 50, 97.5] query_dim = query_samples.shape[2:] query_samples = query_samples.reshape(-1, *query_dim) return torch.tensor( np.percentile(query_samples.detach().numpy(), percentile_list, axis=0) ) def _compute_var(query_samples: Tensor) -> Tuple[Tensor, Tensor]: n_chains, n_samples = query_samples.shape[:2] if query_samples.dtype not in [torch.float32, torch.float64]: """TODO have separate diagnostics for discrete variables. This would require passing supprt-type information to Diagnostics. """ query_samples = query_samples.float() if n_chains > 1: per_chain_avg = query_samples.mean(1) b = n_samples * torch.var(per_chain_avg, dim=0) else: b = 0 w = torch.mean(torch.var(query_samples, dim=1), dim=0) # pyre-fixme[58]: `*` is not supported for operand types `float` and `Union[int, # torch._tensor.Tensor]`. var_hat = (n_samples - 1) / n_samples * w + (1 / n_samples) * b return w, var_hat.clamp(min=1e-10) def r_hat(query_samples: Tensor) -> Optional[Tensor]: n_chains = query_samples.shape[0] if n_chains < 2: return None w, var_hat = _compute_var(query_samples) return torch.sqrt(var_hat / w) def split_r_hat(query_samples: Tensor) -> Optional[Tensor]: n_chains, n_samples = query_samples.shape[:2] if n_chains < 2: return None n_chains = n_chains * 2 n_samples = n_samples // 2 query_samples = torch.cat(torch.split(query_samples, n_samples, dim=1)[0:2]) w, var_hat = _compute_var(query_samples) return torch.sqrt(var_hat / w) def effective_sample_size(query_samples: Tensor) -> Tensor: n_chains, n_samples, *query_dim = query_samples.shape if query_samples.dtype not in [torch.float32, torch.float64]: """TODO have separate diagnostics for discrete variables. This would require passing supprt-type information to Diagnostics. """ query_samples = query_samples.float() samples = query_samples - query_samples.mean(dim=1, keepdim=True) samples = samples.transpose(1, -1) # computes fourier transform (with padding) padding = torch.zeros(samples.shape, dtype=samples.dtype) padded_samples = torch.cat((samples, padding), dim=-1) fvi = torch.view_as_real(torch.fft.fft(padded_samples)) # multiply by complex conjugate acf = fvi.pow(2).sum(-1, keepdim=True) # transform back to reals (with padding) padding = torch.zeros(acf.shape, dtype=acf.dtype) padded_acf = torch.cat((acf, padding), dim=-1) rho_per_chain = torch.fft.ifft(torch.view_as_complex(padded_acf)).real rho_per_chain = rho_per_chain.narrow(-1, 0, n_samples) num_per_lag = torch.tensor(range(n_samples, 0, -1), dtype=samples.dtype) rho_per_chain = torch.div(rho_per_chain, num_per_lag) rho_per_chain = rho_per_chain.transpose(1, -1) rho_avg = rho_per_chain.mean(dim=0) w, var_hat = _compute_var(query_samples) if n_chains > 1: rho = 1 - ((w - rho_avg) / var_hat) else: rho = rho_avg / var_hat rho[0] = 1 # reshape to 2d matrix where each row contains all samples for specific dim rho_2d = torch.stack(torch.unbind(rho, dim=0), dim=-1).reshape(-1, n_samples) rho_sum = torch.zeros(rho_2d.shape[0]) for i, chain in enumerate(torch.unbind(rho_2d, dim=0)): total_sum = torch.tensor(0.0, dtype=samples.dtype) for t in range(n_samples // 2): rho_even = chain[2 * t] rho_odd = chain[2 * t + 1] if rho_even + rho_odd < 0: break else: total_sum += rho_even + rho_odd rho_sum[i] = total_sum rho_sum = torch.reshape(rho_sum, query_dim) tau = -1 + 2 * rho_sum n_eff = torch.div(n_chains * n_samples, tau) if n_eff.isnan().any(): warnings.warn("NaN encountered in computing effective sample size.") return torch.tensor(0.0) return n_eff
beanmachine-main
src/beanmachine/ppl/diagnostics/common_statistics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import math import warnings from typing import Callable, Dict, List, Optional, Tuple import numpy as np import pandas as pd import plotly from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from beanmachine.ppl.model.rv_identifier import RVIdentifier from plotly.subplots import make_subplots from torch import Tensor from . import common_plots, common_statistics as common_stats class BaseDiagnostics: def __init__(self, samples: MonteCarloSamples): self.samples = samples self.statistics_dict = {} self.plots_dict = {} def _prepare_query_list( self, query_list: Optional[List[RVIdentifier]] = None ) -> List[RVIdentifier]: if query_list is None: return list(self.samples.keys()) for query in query_list: if not (query in self.samples): raise ValueError(f"query {self._stringify_query(query)} does not exist") return query_list def summaryfn(self, func: Callable, display_names: List[str]) -> Callable: """ this function keeps a directory of all summary-related functions, so it could handle the overridden functions and new ones that user defines :param func: method which is going to be executed when summary() is called. :param display_name: the name appears in the summary() output dataframe :returns: user-visible function that can be called over a list of queries """ statistics_name = func.__name__ self.statistics_dict[statistics_name] = (func, display_names) return self._standalone_summary_stat_function(statistics_name, func) def _prepare_summary_stat_input( self, query: RVIdentifier, chain: Optional[int] = None ): query_samples = self.samples[query] if query_samples.shape[0] != 1: # squeeze out non-chain singleton dims query_samples = query_samples.squeeze() if chain is not None: query_samples = query_samples[chain].unsqueeze(0) return query_samples def _create_table( self, query: RVIdentifier, results: List[Tensor], func_list: List[str] ) -> pd.DataFrame: """ this function turns output of each summary stat function to a dataframe """ out_pd = pd.DataFrame() if len(results) > 0: single_result_set = results[0] if single_result_set is not None and len(single_result_set) > 0: for flattened_index in range(single_result_set[0].numel()): index = np.unravel_index( flattened_index, tuple(single_result_set[0].size()) ) row_data = [] rowname = f"{self._stringify_query(query)}{list(index)}" for result in results: num_of_sets = result.size()[0] for set_num in range(num_of_sets): row_data.append(result[set_num][index].item()) cur = pd.DataFrame([row_data], columns=func_list, index=[rowname]) if out_pd.empty: out_pd = cur else: out_pd = pd.concat([out_pd, cur]) return out_pd def _stringify_query(self, query: RVIdentifier) -> str: return f"{query.function.__name__}{query.arguments}" def _execute_summary_stat_funcs( self, query: RVIdentifier, func_dict: Dict[str, Tuple[Callable, str]], chain: Optional[int] = None, raise_warning: bool = False, ): frames = pd.DataFrame() query_results = [] func_list = [] queried_samples = self._prepare_summary_stat_input(query, chain) for _k, (func, display_names) in func_dict.items(): result = func(queried_samples) if result is None: # in the case of r hat and other algorithms, they may return None # if the samples do not have enough chains or have the wrong shape if raise_warning: warnings.warn( f"{display_names} cannot be calculated for the provided samples" ) continue # the first dimension is equivalant to the size of the display_names if len(display_names) <= 1: result = result.unsqueeze(0) query_results.append(result) func_list.extend(display_names) out_df = self._create_table(query, query_results, func_list) if frames.empty: frames = out_df else: frames = pd.concat([frames, out_df]) return frames def summary( self, query_list: Optional[List[RVIdentifier]] = None, chain: Optional[int] = None, ) -> pd.DataFrame: """ this function outputs a table summarizing results of registered functions in self.statistics_dict for requested queries in query_list, if chain is None, results correspond to the aggreagated chains """ frames = pd.DataFrame() query_list = self._prepare_query_list(query_list) for query in query_list: out_df = self._execute_summary_stat_funcs( query, self.statistics_dict, chain ) frames = pd.concat([frames, out_df]) frames.sort_index(inplace=True) return frames def _prepare_plots_input( self, query: RVIdentifier, chain: Optional[int] = None ) -> Tensor: """ :param query: the query for which registered plot functions are called :param chain: the chain that query samples are extracted from :returns: tensor of query samples """ query_samples = self.samples[query] if chain is not None: return query_samples[chain].unsqueeze(0) return query_samples def plotfn(self, func: Callable, display_name: str) -> Callable: """ this function keeps a directory of all plot-related functions so it could handle the overridden functions and new ones that user defines :param func: method which is going to be executed when plot() is called. :param display_name: appears as part of the plot title for func :returns: user-visible function that can be called over a list of queries """ self.plots_dict[func.__name__] = (func, display_name) return self._standalone_plot_function(func.__name__, func) def _execute_plot_funcs( self, query: RVIdentifier, func_dict: Dict[str, Tuple[Callable, str]], chain: Optional[int] = None, display: Optional[bool] = False, ): # task T57168727 to add type figs = [] queried_samples = self._prepare_plots_input(query, chain) for _k, (func, display_name) in func_dict.items(): trace, labels = common_plots.plot_helper(queried_samples, func) title = f"{self._stringify_query(query)} {display_name}" fig = self._display_results( trace, [title + label for label in labels], # pyre-fixme[6]: Expected `bool` for 3rd param but got `Optional[bool]`. display, ) figs.append(fig) return figs def plot( self, query_list: Optional[List[RVIdentifier]] = None, display: Optional[bool] = False, chain: Optional[int] = None, ): # task T57168727 to add type """ this function outputs plots related to registered functions in self.plots_dict for requested queries in query_list :param query_list: list of queries for which plot functions will be called :param chain: the chain that query samples are extracted from :returns: plotly object holding the results from registered plot functions """ figs = [] query_list = self._prepare_query_list(query_list) for query in query_list: fig = self._execute_plot_funcs(query, self.plots_dict, chain, display) figs.extend(fig) return figs def _display_results( self, traces, labels: List[str], display: bool ): # task T57168727 to add type """ :param traces: a list of plotly objects :param labels: plot labels :returns: a plotly subplot object """ fig = make_subplots( rows=math.ceil(len(traces) / 2), cols=2, subplot_titles=tuple(labels) ) r = 1 for trace in traces: for data in trace: fig.add_trace(data, row=math.ceil(r / 2), col=((r - 1) % 2) + 1) r += 1 if display: plotly.offline.iplot(fig) return fig def _standalone_plot_function(self, func_name: str, func: Callable) -> Callable: """ this function makes each registered plot function directly callable by the user """ @functools.wraps(func) def _wrapper( query_list: List[RVIdentifier], chain: Optional[int] = None, display: Optional[bool] = False, ): figs = [] query_list = self._prepare_query_list(query_list) for query in query_list: fig = self._execute_plot_funcs( query, {func_name: self.plots_dict[func_name]}, chain, display ) figs.extend(fig) return figs return _wrapper def _standalone_summary_stat_function( self, func_name: str, func: Callable ) -> Callable: """ this function makes each registered summary-stat related function directly callable by the user """ @functools.wraps(func) def _wrapper(query_list: List[RVIdentifier], chain: Optional[int] = None): frames = pd.DataFrame() query_list = self._prepare_query_list(query_list) for query in query_list: out_df = self._execute_summary_stat_funcs( query, {func_name: self.statistics_dict[func_name]}, chain, True ) frames = pd.concat([frames, out_df]) return frames return _wrapper class Diagnostics(BaseDiagnostics): def __init__(self, samples: MonteCarloSamples): super().__init__(samples) """ every function related to summary stat should be registered in the constructor """ self.mean = self.summaryfn(common_stats.mean, display_names=["avg"]) self.std = self.summaryfn(common_stats.std, display_names=["std"]) self.confidence_interval = self.summaryfn( common_stats.confidence_interval, display_names=["2.5%", "50%", "97.5%"] ) self.split_r_hat = self.summaryfn( common_stats.split_r_hat, display_names=["r_hat"] ) self.effective_sample_size = self.summaryfn( common_stats.effective_sample_size, display_names=["n_eff"] ) self.trace = self.plotfn(common_plots.trace_plot, display_name="trace") self.autocorr = self.plotfn(common_plots.autocorr, display_name="autocorr")
beanmachine-main
src/beanmachine/ppl/diagnostics/diagnostics.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Tools for supporting MCMC qiagnostics. Will be deprecated in a future release in favor of arviz integration. """ from beanmachine.ppl.diagnostics.diagnostics import Diagnostics __all__ = ["Diagnostics"]
beanmachine-main
src/beanmachine/ppl/diagnostics/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, List, NamedTuple, Tuple import numpy as np import plotly.graph_objs as go import torch from torch import Tensor class SamplesSummary(NamedTuple): num_chain: int num_samples: int single_sample_sz: Tensor def _samples_info(query_samples: Tensor) -> SamplesSummary: return SamplesSummary( num_chain=query_samples.size(0), num_samples=query_samples.size(1), # pyre-fixme[6]: For 3rd param expected `Tensor` but got `Size`. single_sample_sz=query_samples.size()[2:], ) def trace_helper( x: List[List[List[int]]], y: List[List[List[float]]], labels: List[str] ) -> Tuple[List[go.Scatter], List[str]]: """ this function gets results prepared by a plot-related function and outputs a tuple including plotly object and its corresponding legend. """ all_traces = [] num_chains = len(x) num_indices = len(x[0]) for index in range(num_indices): trace = [] for chain in range(num_chains): trace.append( go.Scatter( x=x[chain][index], y=y[chain][index], mode="lines", name="chain" + str(chain), ) ) all_traces.append(trace) return (all_traces, labels) def plot_helper( query_samples: Tensor, func: Callable ) -> Tuple[List[go.Scatter], List[str]]: """ this function executes a plot-related function, passed as input parameter func, and outputs a tuple including plotly object and its corresponding legend. """ num_chain, num_samples, single_sample_sz = _samples_info(query_samples) x_axis, y_axis, all_labels = [], [], [] for chain in range(num_chain): flattened_data = query_samples[chain].reshape(num_samples, -1) numel = flattened_data[0].numel() x_axis_data, y_axis_data, labels = [], [], [] for i in range(numel): index = np.unravel_index(i, single_sample_sz) data = flattened_data[:, i] partial_label = f" for {list(index)}" x_data, y_data = func(data.detach()) x_axis_data.append(x_data) y_axis_data.append(y_data) labels.append(partial_label) x_axis.append(x_axis_data) y_axis.append(y_axis_data) all_labels.append(labels) return trace_helper(x_axis, y_axis, all_labels[0]) def autocorr(x: Tensor) -> Tuple[List[int], List[float]]: def autocorr_calculation(x: Tensor, lag: int) -> Tensor: y1 = x[: (len(x) - lag)] y2 = x[lag:] sum_product = ( (y1 - (x.mean(dim=0).expand(y1.size()))) * (y2 - (x.mean(dim=0).expand(y2.size()))) ).sum(0) return sum_product / ((len(x) - lag) * torch.var(x, dim=0)) max_lag = x.size(0) y_axis_data = [autocorr_calculation(x, lag).item() for lag in range(max_lag)] x_axis_data = list(range(max_lag)) return (x_axis_data, y_axis_data) def trace_plot(x: Tensor) -> Tuple[List[int], Tensor]: return (list(range(x.size(0))), x)
beanmachine-main
src/beanmachine/ppl/diagnostics/common_plots.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa """Visual diagnostic tools for Bean Machine models.""" import sys from pathlib import Path if sys.version_info >= (3, 8): # NOTE: We need to import NotRequired from typing_extensions until PEP 655 is # accepted, see https://peps.python.org/pep-0655/. This is to follow the # interface objects in JavaScript that allow keys to not be required using ?. from typing import TypedDict from typing_extensions import NotRequired else: from typing_extensions import NotRequired, TypedDict TOOLS_DIR = Path(__file__).parent.resolve() JS_DIR = TOOLS_DIR.joinpath("js") JS_DIST_DIR = JS_DIR.joinpath("dist")
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Visual diagnostics tools for Bean Machine models.""" from __future__ import annotations from functools import wraps from typing import Callable, TypeVar from beanmachine.ppl.diagnostics.tools.utils import accessor from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from typing_extensions import ParamSpec P = ParamSpec("P") R = TypeVar("R") def _requires_dev_packages(f: Callable[P, R]) -> Callable[P, R]: """A utility decorator that allow us to lazily imports the plotting modules and throw a useful error message when the required dependencies are not installed.""" @wraps(f) def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: try: return f(*args, **kwargs) except ModuleNotFoundError as e: # The diagnostic tools uses packages that are not part of the core # BM dependency, so we need to prompt users to manually install # those raise ModuleNotFoundError( "Dev packages are required for the diagnostic widgets, which " "can be installed with `pip install 'beanmachine[dev]'" ) from e return wrapper @accessor.register_mcs_accessor("diagnostics") class DiagnosticsTools: """Accessor object for the visual diagnostics tools.""" def __init__(self: DiagnosticsTools, mcs: MonteCarloSamples) -> None: """Initialize.""" self.mcs = mcs self.idata = self.mcs.to_inference_data() @_requires_dev_packages def marginal1d(self: DiagnosticsTools) -> None: """ Marginal 1D diagnostic tool for a Bean Machine model. Returns: None: Displays the tool directly in a Jupyter notebook. """ from beanmachine.ppl.diagnostics.tools.marginal1d.tool import Marginal1d Marginal1d(self.mcs).show() @_requires_dev_packages def trace(self: DiagnosticsTools) -> None: """ Trace diagnostic tool for a Bean Machine model. Returns: None: Displays the tool directly in a Jupyter notebook. """ from beanmachine.ppl.diagnostics.tools.trace.tool import Trace Trace(self.mcs).show()
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/viz.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/trace/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Methods used to generate the diagnostic tool.""" from typing import List from beanmachine.ppl.diagnostics.tools.trace import typing from beanmachine.ppl.diagnostics.tools.utils import plotting_utils from bokeh.core.property.wrappers import PropertyValueList from bokeh.models.annotations import Legend, LegendItem from bokeh.models.glyphs import Circle, Line, Quad from bokeh.models.layouts import Column, Row from bokeh.models.sources import ColumnDataSource from bokeh.models.tools import HoverTool from bokeh.models.widgets.inputs import Select from bokeh.models.widgets.markups import Div from bokeh.models.widgets.panels import Panel, Tabs from bokeh.models.widgets.sliders import Slider from bokeh.plotting.figure import figure PLOT_WIDTH = 400 PLOT_HEIGHT = 500 TRACE_PLOT_WIDTH = 600 FIGURE_NAMES = ["marginals", "forests", "traces", "ranks"] # Define what the empty data object looks like in order to make the browser handle all # computations. EMPTY_DATA = {} def create_empty_data(num_chains: int) -> typing.Data: """Create an empty data object for the tool. We do not know a priori how many chains a model will have, so we use this method to build an empty data object with the given number of chains. Parameters ---------- num_chains : int The number of chains from the model. Returns ------- typing.Data An empty data object to be filled by JavaScript. """ output = { "marginals": {}, "forests": {}, "traces": {}, "ranks": {}, } for chain in range(num_chains): chain_index = chain + 1 chain_name = f"chain{chain_index}" marginal = { "line": {"x": [], "y": []}, "chain": [], "mean": [], "bandwidth": [], } forest = { "line": {"x": [], "y": []}, "circle": {"x": [], "y": []}, "chain": [], "mean": [], } trace = { "line": {"x": [], "y": []}, "chain": [], "mean": [], } rank = { "quad": { "left": [], "top": [], "right": [], "bottom": [], "chain": [], "draws": [], "rank": [], }, "line": {"x": [], "y": []}, "chain": [], "rankMean": [], "mean": [], } single_chain_data = [marginal, forest, trace, rank] chain_data = dict(zip(FIGURE_NAMES, single_chain_data)) for figure_name in FIGURE_NAMES: output[figure_name][chain_name] = chain_data[figure_name] return output def create_sources(num_chains: int) -> typing.Sources: """Create Bokeh sources from the given data that will be bound to glyphs. Parameters ---------- num_chains : int The number of chains from the model. Returns ------- typing.Sources A dictionary of Bokeh ColumnDataSource objects. """ global EMPTY_DATA if not EMPTY_DATA: EMPTY_DATA = create_empty_data(num_chains=num_chains) output = {} for figure_name, figure_data in EMPTY_DATA.items(): output[figure_name] = {} for chain_name, chain_data in figure_data.items(): output[figure_name][chain_name] = {} if figure_name == "marginals": output[figure_name][chain_name]["line"] = ColumnDataSource( { "x": chain_data["line"]["x"], "y": chain_data["line"]["y"], "chain": chain_data["chain"], "mean": chain_data["mean"], }, ) if figure_name == "forests": output[figure_name][chain_name]["line"] = ColumnDataSource( { "x": chain_data["line"]["x"], "y": chain_data["line"]["y"], }, ) output[figure_name][chain_name]["circle"] = ColumnDataSource( { "x": chain_data["circle"]["x"], "y": chain_data["circle"]["y"], "chain": chain_data["chain"], }, ) if figure_name == "traces": output[figure_name][chain_name]["line"] = ColumnDataSource( { "x": chain_data["line"]["x"], "y": chain_data["line"]["y"], "chain": chain_data["chain"], "mean": chain_data["mean"], }, ) if figure_name == "ranks": output[figure_name][chain_name]["line"] = ColumnDataSource( { "x": chain_data["line"]["x"], "y": chain_data["line"]["y"], "chain": chain_data["chain"], "rankMean": chain_data["rankMean"], }, ) output[figure_name][chain_name]["quad"] = ColumnDataSource( { "left": chain_data["quad"]["left"], "top": chain_data["quad"]["top"], "right": chain_data["quad"]["right"], "bottom": chain_data["quad"]["bottom"], "chain": chain_data["chain"], "draws": chain_data["quad"]["draws"], "rank": chain_data["quad"]["rank"], }, ) return output def create_figures(rv_name: str, num_chains: int) -> typing.Figures: """Create the Bokeh figures used for the tool. Parameters ---------- rv_name : str The string representation of the random variable data. num_chains : int The number of chains from the model. Returns ------- typing.Figures A dictionary of Bokeh Figure objects. """ output = {} for figure_name in FIGURE_NAMES: fig = figure( width=PLOT_WIDTH, height=PLOT_HEIGHT, outline_line_color="black", sizing_mode="scale_both", ) plotting_utils.style_figure(fig) # NOTE: There are several figures where we do not want the x-axis to change its # limits. This is why we set the x_range to an object from Bokeh called # Range1d. if figure_name == "marginals": fig.title = "Marginal" fig.xaxis.axis_label = rv_name fig.yaxis.visible = False elif figure_name == "forests": fig.title = "Forest" fig.xaxis.axis_label = rv_name fig.yaxis.axis_label = "Chain" fig.yaxis.minor_tick_line_color = None fig.yaxis.ticker.desired_num_ticks = num_chains elif figure_name == "traces": fig.title = "Trace" fig.xaxis.axis_label = "Draw from single chain" fig.yaxis.axis_label = rv_name fig.width = TRACE_PLOT_WIDTH elif figure_name == "ranks": fig.title = "Rank" fig.xaxis.axis_label = "Rank from all chains" fig.yaxis.axis_label = "Chain" fig.width = TRACE_PLOT_WIDTH fig.yaxis.minor_tick_line_color = None fig.yaxis.ticker.desired_num_ticks = num_chains output[figure_name] = fig return output def create_glyphs(num_chains: int) -> typing.Glyphs: """Create the glyphs used for the figures of the tool. Parameters ---------- num_chains : int The number of chains from the model. Returns ------- typing.Glyphs A dictionary of Bokeh Glyphs objects. """ global EMPTY_DATA if not EMPTY_DATA: EMPTY_DATA = create_empty_data(num_chains=num_chains) palette = plotting_utils.choose_palette(num_colors=num_chains) output = {} for figure_name, figure_data in EMPTY_DATA.items(): output[figure_name] = {} for i, (chain_name, _) in enumerate(figure_data.items()): output[figure_name][chain_name] = {} color = palette[i] if figure_name == "marginals": output[figure_name][chain_name]["line"] = { "glyph": Line( x="x", y="y", line_color=color, line_alpha=0.7, line_width=2.0, name=f"{figure_name}{chain_name.title()}LineGlyph", ), "hover_glyph": Line( x="x", y="y", line_color=color, line_alpha=1.0, line_width=2.0, name=f"{figure_name}{chain_name.title()}LineHoverGlyph", ), } elif figure_name == "forests": output[figure_name][chain_name] = { "line": { "glyph": Line( x="x", y="y", line_color=color, line_alpha=0.7, line_width=2.0, name=f"{figure_name}{chain_name.title()}LineGlyph", ), "hover_glyph": Line( x="x", y="y", line_color=color, line_alpha=1.0, line_width=2.0, name=f"{figure_name}{chain_name.title()}LineHoverGlyph", ), }, "circle": { "glyph": Circle( x="x", y="y", size=10, fill_color=color, fill_alpha=0.7, line_color="white", name=f"{figure_name}{chain_name.title()}CircleGlyph", ), "hover_glyph": Circle( x="x", y="y", size=10, fill_color=color, fill_alpha=1.0, line_color="black", name=f"{figure_name}{chain_name.title()}CircleHoverGlyph", ), }, } if figure_name == "traces": output[figure_name][chain_name]["line"] = { "glyph": Line( x="x", y="y", line_color=color, line_alpha=0.6, line_width=0.6, name=f"{figure_name}{chain_name.title()}LineGlyph", ), "hover_glyph": Line( x="x", y="y", line_color=color, line_alpha=0.6, line_width=1.0, name=f"{figure_name}{chain_name.title()}LineHoverGlyph", ), } if figure_name == "ranks": output[figure_name][chain_name] = { "quad": { "glyph": Quad( left="left", top="top", right="right", bottom="bottom", fill_color=color, fill_alpha=0.7, line_color="white", name=f"{figure_name}{chain_name.title()}QuadGlyph", ), "hover_glyph": Quad( left="left", top="top", right="right", bottom="bottom", fill_color=color, fill_alpha=1.0, line_color="black", name=f"{figure_name}{chain_name.title()}QuadHoverGlyph", ), }, "line": { "glyph": Line( x="x", y="y", line_color="grey", line_alpha=0.7, line_width=3.0, line_dash="dashed", name=f"{figure_name}{chain_name.title()}LineGlyph", ), "hover_glyph": Line( x="x", y="y", line_color="grey", line_alpha=1.0, line_width=3.0, line_dash="solid", name=f"{figure_name}{chain_name.title()}LineGlyph", ), }, } return output def add_glyphs( figures: typing.Figures, glyphs: typing.Glyphs, sources: typing.Sources, ) -> None: """Bind source data to glyphs and add the glyphs to the given figures. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. glyphs : typing.Glyphs A dictionary of Bokeh Glyphs objects. sources : typing.Sources A dictionary of Bokeh ColumnDataSource objects. Returns ------- None Adds data bound glyphs to the given figures directly. """ for figure_name, figure_sources in sources.items(): fig = figures[figure_name] for chain_name, source in figure_sources.items(): chain_glyphs = glyphs[figure_name][chain_name] # NOTE: Every figure has a line glyph, so we always add it here. fig.add_glyph( source_or_glyph=source["line"], glyph=chain_glyphs["line"]["glyph"], hover_glyph=chain_glyphs["line"]["hover_glyph"], name=chain_glyphs["line"]["glyph"].name, ) # We want to keep the x-axis from moving when changing queries, so we add # the bounds below from the marginal figure. All figures that need to keep # its range stable are linked to the marginal figure's range below. if figure_name == "marginals": pass elif figure_name == "forests": fig.add_glyph( source_or_glyph=source["circle"], glyph=chain_glyphs["circle"]["glyph"], hover_glyph=chain_glyphs["circle"]["hover_glyph"], name=chain_glyphs["circle"]["glyph"].name, ) elif figure_name == "ranks": fig.add_glyph( source_or_glyph=source["quad"], glyph=chain_glyphs["quad"]["glyph"], hover_glyph=chain_glyphs["quad"]["hover_glyph"], name=chain_glyphs["quad"]["glyph"].name, ) # Link figure ranges together. figures["forests"].x_range = figures["marginals"].x_range def create_annotations(figures: typing.Figures, num_chains: int) -> typing.Annotations: """Create any annotations for the figures of the tool. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. num_chains : int The number of chains of the model. Returns ------- typing.Annotations A dictionary of Bokeh Annotation objects. """ renderers = [] for _, fig in figures.items(): renderers.extend(PropertyValueList(fig.renderers)) legend_items = [] for chain in range(num_chains): chain_index = chain + 1 chain_name = f"chain{chain_index}" legend_items.append( LegendItem( renderers=[ renderer for renderer in renderers if chain_name in renderer.name.lower() ], label=chain_name, ), ) legend = Legend( items=legend_items, orientation="horizontal", border_line_color="black", click_policy="hide", ) output = {"traces": {"legend": legend}, "ranks": {"legend": legend}} return output def add_annotations(figures: typing.Figures, annotations: typing.Annotations) -> None: """Add the given annotations to the given figures of the tool. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. annotations : typing.Annotations A dictionary of Bokeh Annotation objects. Returns ------- None Adds annotations directly to the given figures. """ for figure_name, figure_annotations in annotations.items(): fig = figures[figure_name] for _, annotation in figure_annotations.items(): fig.add_layout(annotation, "below") def create_tooltips( rv_name: str, figures: typing.Figures, num_chains: int, ) -> typing.Tooltips: """Create hover tools for the glyphs used in the figures of the tool. Parameters ---------- rv_name : str The string representation of the random variable data. figures : typing.Figures A dictionary of Bokeh Figure objects. num_chains : int The number of chains of the model. Returns ------- typing.Tooltips A dictionary of Bokeh HoverTools objects. """ output = {} for figure_name, fig in figures.items(): output[figure_name] = [] for chain in range(num_chains): chain_index = chain + 1 chain_name = f"chain{chain_index}" if figure_name == "marginals": glyph_name = f"{figure_name}{chain_name.title()}LineGlyph" output[figure_name].append( HoverTool( renderers=plotting_utils.filter_renderers(fig, glyph_name), tooltips=[ ("Chain", "@chain"), ("Mean", "@mean"), (rv_name, "@x"), ], ), ) if figure_name == "forests": glyph_name = f"{figure_name}{chain_name.title()}CircleGlyph" output[figure_name].append( HoverTool( renderers=plotting_utils.filter_renderers(fig, glyph_name), tooltips=[ ("Chain", "@chain"), (rv_name, "@x"), ], ), ) if figure_name == "traces": glyph_name = f"{figure_name}{chain_name.title()}LineGlyph" output[figure_name].append( HoverTool( renderers=plotting_utils.filter_renderers(fig, glyph_name), tooltips=[ ("Chain", "@chain"), ("Mean", "@mean"), (rv_name, "@y"), ], ), ) if figure_name == "ranks": output[figure_name].append( { "line": HoverTool( renderers=plotting_utils.filter_renderers( fig, f"{figure_name}{chain_name.title()}LineGlyph", ), tooltips=[("Chain", "@chain"), ("Rank mean", "@rankMean")], ), "quad": HoverTool( renderers=plotting_utils.filter_renderers( fig, f"{figure_name}{chain_name.title()}QuadGlyph", ), tooltips=[ ("Chain", "@chain"), ("Draws", "@draws"), ("Rank", "@rank"), ], ), }, ) return output def add_tooltips(figures: typing.Figures, tooltips: typing.Tooltips) -> None: """Add the given tools to the figures. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. tooltips : typing.Tooltips A dictionary of Bokeh HoverTools objects. Returns ------- None Adds the tooltips directly to the given figures. """ for figure_name, fig in figures.items(): for tips in tooltips[figure_name]: if figure_name == "ranks": for _, tips_ in tips.items(): fig.add_tools(tips_) else: fig.add_tools(tips) def create_widgets(rv_names: List[str], rv_name: str) -> typing.Widgets: """Create the widgets used in the tool. Parameters ---------- rv_names : List[str] A list of all available random variable names. rv_name : str The string representation of the random variable data. Returns ------- typing.Widgets A dictionary of Bokeh widget objects. """ output = { "rv_select": Select(value=rv_name, options=rv_names, title="Query"), "bw_factor_slider": Slider( start=0.01, end=2.00, step=0.01, value=1.0, title="Bandwidth factor", ), "hdi_slider": Slider(start=1, end=99, step=1, value=89, title="HDI"), } return output def help_page() -> Div: """Help tab for the tool. Returns ------- Div Bokeh Div widget containing the help tab information. """ text = """ <h2>Rank plots</h2> <p style="margin-bottom: 10px"> Rank plots are a histogram of the samples over time. All samples across all chains are ranked and then we plot the average rank for each chain on regular intervals. If the chains are mixing well this histogram should look roughly uniform. If it looks highly irregular that suggests chains might be getting stuck and not adequately exploring the sample space. See the paper by Vehtari <em>et al</em> for more information. </p> <h2>Trace plots</h2> <p style="margin-bottom: 10px"> The more familiar trace plots are also included in this widget. You can click on the legend to show/hide different chains and compare them to the rank plots. </p> <ul> <li> Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC (2021) <b> Rank-normalization, folding, and localization: An improved \\(\\hat{R}\\) for assessing convergence of MCMC (with discussion) </b>. <em>Bayesian Analysis</em> 16(2) 667–718. <a href=https://dx.doi.org/10.1214/20-BA1221 style="color: blue" target="_blank" > doi: 10.1214/20-BA1221 </a>. </li> </ul> """ return Div(text=text, disable_math=False, min_width=PLOT_WIDTH) def create_view(figures: typing.Figures, widgets: typing.Widgets) -> Tabs: """Create the tool view. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. widgets : typing.Widgets A dictionary of Bokeh widget objects. Returns ------- Tabs Bokeh Tabs objects. """ toolbar = plotting_utils.create_toolbar(list(figures.values())) help_panel = Panel(child=help_page(), title="Help", name="helpPanel") marginal_panel = Panel( child=Column( children=[figures["marginals"], widgets["bw_factor_slider"]], sizing_mode="scale_both", ), title="Marginals", ) forest_panel = Panel( child=Column( children=[figures["forests"], widgets["hdi_slider"]], sizing_mode="scale_both", ), title="HDIs", ) left_panels = Tabs(tabs=[marginal_panel, forest_panel], sizing_mode="scale_both") trace_panel = Panel( child=Column(children=[figures["traces"]], sizing_mode="scale_both"), title="Traces", ) rank_panel = Panel( child=Column(children=[figures["ranks"]], sizing_mode="scale_both"), title="Ranks", ) right_panels = Tabs(tabs=[trace_panel, rank_panel], sizing_mode="scale_both") tool_panel = Panel( child=Column( children=[ widgets["rv_select"], Row( children=[left_panels, right_panels, toolbar], sizing_mode="scale_both", ), ], sizing_mode="scale_both", ), title="Trace tool", ) return Tabs(tabs=[tool_panel, help_panel], sizing_mode="scale_both")
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/trace/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Trace diagnostic tool types for a Bean Machine model.""" from typing import Any, Dict, List, Union from beanmachine.ppl.diagnostics.tools import NotRequired, TypedDict from bokeh.models.annotations import Legend from bokeh.models.glyphs import Circle, Line, Quad from bokeh.models.sources import ColumnDataSource from bokeh.models.tools import HoverTool from bokeh.models.widgets.inputs import Select from bokeh.models.widgets.sliders import Slider from bokeh.plotting.figure import Figure # NOTE: These are the types pyre gives us when using `reveal_type(...)` on the outputs # of the methods. Data = Dict[str, Dict[Any, Any]] Sources = Dict[Any, Any] Figures = Dict[Any, Any] Glyphs = Dict[Any, Any] Annotations = Dict[str, Dict[str, Legend]] Tooltips = Dict[Any, Any] Widgets = Dict[str, Union[Select, Slider]] # NOTE: TypedDict objects are for reference only. Due to the way pyre accesses keys in # dictionaries, and how NumPy casts arrays when using tolist(), we are unable to # use them, but they provide semantic information for the different types. We must # ignore a lot of lines due to the issue discussed here # https://pyre-check.org/docs/errors/#13-uninitialized-attribute. class _LineOrCircleGlyphData(TypedDict): # pyre-ignore x: List[float] y: List[float] class _QuadGlyphData(TypedDict): # pyre-ignore """Follow the RankHistogram interface in stats/histogram.js.""" left: List[float] top: List[float] right: List[float] bottom: List[float] chain: List[int] draws: List[str] rank: List[float] class _MarginalDataSingleChain(TypedDict): # pyre-ignore line: _LineOrCircleGlyphData chain: int mean: float bandwidth: float class _ForestDataSingleChain(TypedDict): # pyre-ignore line: _LineOrCircleGlyphData circle: _LineOrCircleGlyphData chain: int mean: float class _TraceDataSingleChain(TypedDict): # pyre-ignore line: _LineOrCircleGlyphData chain: int mean: float class _RankDataSingleChain(TypedDict): # pyre-ignore quad: _QuadGlyphData line: _LineOrCircleGlyphData chain: List[int] rankMean: List[float] mean: List[float] _MarginalDataAllChains = Dict[str, _MarginalDataSingleChain] _ForestDataAllChains = Dict[str, _ForestDataSingleChain] _TraceDataAllChains = Dict[str, _TraceDataSingleChain] _RankDataAllChains = Dict[str, _RankDataSingleChain] class _Data(TypedDict): # pyre-ignore marginals: _MarginalDataAllChains forests: _ForestDataAllChains traces: _TraceDataAllChains ranks: _RankDataAllChains class _SourceSingleChain(TypedDict): # pyre-ignore line: ColumnDataSource circle: NotRequired[ColumnDataSource] quad: NotRequired[ColumnDataSource] _SourceAllChains = Dict[str, _SourceSingleChain] class _Sources(TypedDict): # pyre-ignore marginals: _SourceAllChains forests: _SourceAllChains traces: _SourceAllChains ranks: _SourceAllChains class _Figures(TypedDict): # pyre-ignore marginals: Figure forests: Figure traces: Figure ranks: Figure class _RankTooltip(TypedDict): # pyre-ignore line: HoverTool quad: HoverTool class _Tooltips(TypedDict): # pyre-ignore marginals: List[HoverTool] forests: List[HoverTool] traces: List[HoverTool] ranks: List[_RankTooltip] class _Glyph(TypedDict): # pyre-ignore glyph: Union[Circle, Line, Quad] hover_glyph: Union[Circle, Line, Quad] class _GlyphSingleChain(TypedDict): # pyre-ignore line: _Glyph circle: NotRequired[_Glyph] quad: NotRequired[_Glyph] _GlyphAllChains = Dict[str, _GlyphSingleChain] class _Glyphs(TypedDict): # pyre-ignore marginals: _GlyphAllChains forests: _GlyphAllChains traces: _GlyphAllChains ranks: _GlyphAllChains _Annotations = Dict[str, Dict[str, Legend]] class _Widgets(TypedDict): # pyre-ignore rv_select: Select bw_factor_slider: Slider hdi_slider: Slider
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/trace/typing.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Trace diagnostic tool for a Bean Machine model.""" from __future__ import annotations from beanmachine.ppl.diagnostics.tools.trace import utils from beanmachine.ppl.diagnostics.tools.utils.diagnostic_tool_base import ( DiagnosticToolBaseClass, ) from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from bokeh.models import Model from bokeh.models.callbacks import CustomJS class Trace(DiagnosticToolBaseClass): """Trace tool. Args: mcs (MonteCarloSamples): The return object from running a Bean Machine model. Attributes: data (Dict[str, List[List[float]]]): JSON serializable representation of the given `mcs` object. rv_names (List[str]): The list of random variables string names for the given model. num_chains (int): The number of chains of the model. num_draws (int): The number of draws of the model for each chain. palette (List[str]): A list of color values used for the glyphs in the figures. The colors are specifically chosen from the Colorblind palette defined in Bokeh. tool_js (str):The JavaScript callbacks needed to render the Bokeh tool independently from a Python server. """ def __init__(self: Trace, mcs: MonteCarloSamples) -> None: super(Trace, self).__init__(mcs) def create_document(self: Trace) -> Model: # Initialize widget values using Python. rv_name = self.rv_names[0] # NOTE: We are going to use Python and Bokeh to render the tool in the notebook # output cell, however, we WILL NOT use Python to calculate any of the # statistics displayed in the tool. We do this so we can make the BROWSER # run all the calculations based on user interactions. If we did not # employ this strategy, then the initial display a user would receive # would be calculated by Python, and any subsequent updates would be # calculated by JavaScript. The side-effect of having two backends # calculate data could cause the figures to flicker, which would not be a # good end user experience. # # Bokeh 3.0 is implementing an "on load" feature, which would nullify this # requirement, and until that version is released, we have to employ this # work-around. # Create empty Bokeh sources using Python. sources = utils.create_sources(num_chains=self.num_chains) # Create empty figures for the tool using Python. figures = utils.create_figures(rv_name=rv_name, num_chains=self.num_chains) # Create empty glyphs and attach them to the figures using Python. glyphs = utils.create_glyphs(num_chains=self.num_chains) utils.add_glyphs(sources=sources, figures=figures, glyphs=glyphs) # Create empty annotations and attach them to the figures using Python. annotations = utils.create_annotations( figures=figures, num_chains=self.num_chains, ) utils.add_annotations(figures=figures, annotations=annotations) # Create empty tool tips and attach them to the figures using Python. tooltips = utils.create_tooltips( figures=figures, rv_name=rv_name, num_chains=self.num_chains, ) utils.add_tooltips(figures=figures, tooltips=tooltips) # Create the widgets for the tool using Python. widgets = utils.create_widgets(rv_names=self.rv_names, rv_name=rv_name) # Create the view of the tool and serialize it into HTML using static resources # from Bokeh. Embedding the tool in this manner prevents external CDN calls for # JavaScript resources, and prevents the user from having to know where the # Bokeh server is. tool_view = utils.create_view(figures=figures, widgets=widgets) # Create callbacks for the tool using JavaScript. callback_js = f""" const rvName = widgets.rv_select.value; const rvData = data[rvName]; let bw = 0.0; // Remove the CSS classes that dim the tool output on initial load. const toolTab = toolView.tabs[0]; const toolChildren = toolTab.child.children; const dimmedComponent = toolChildren[1]; dimmedComponent.css_classes = []; try {{ trace.update( rvData, rvName, bwFactor, hdiProbability, sources, figures, tooltips, ); }} catch (error) {{ {self.tool_js} trace.update( rvData, rvName, bwFactor, hdiProbability, sources, figures, tooltips, ); }} """ # Each widget requires the following dictionary for the CustomJS method. Notice # that the callback_js object above uses the names defined as keys in the below # object with values defined by the Python objects. callback_arguments = { "data": self.data, "widgets": widgets, "sources": sources, "figures": figures, "tooltips": tooltips, "toolView": tool_view, } # Each widget requires slightly different JS. rv_select_js = f""" const bwFactor = 1.0; const hdiProbability = 0.89; widgets.bw_factor_slider.value = bwFactor; widgets.hdi_slider.value = 100 * hdiProbability; {callback_js}; figures.marginals.reset.emit(); """ slider_js = f""" const bwFactor = widgets.bw_factor_slider.value; const hdiProbability = widgets.hdi_slider.value / 100; {callback_js}; """ slider_callback = CustomJS(args=callback_arguments, code=slider_js) rv_select_callback = CustomJS(args=callback_arguments, code=rv_select_js) # Tell Python to use the JavaScript. widgets["rv_select"].js_on_change("value", rv_select_callback) widgets["bw_factor_slider"].js_on_change("value", slider_callback) widgets["hdi_slider"].js_on_change("value", slider_callback) return tool_view
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/trace/tool.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/marginal1d/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Methods used to generate the diagnostic tool.""" from typing import List import numpy as np from beanmachine.ppl.diagnostics.tools.marginal1d import typing from beanmachine.ppl.diagnostics.tools.utils import plotting_utils from bokeh.models.annotations import Band, LabelSet from bokeh.models.glyphs import Circle, Line from bokeh.models.layouts import Column, Row from bokeh.models.sources import ColumnDataSource from bokeh.models.tools import HoverTool from bokeh.models.widgets.inputs import Select from bokeh.models.widgets.markups import Div from bokeh.models.widgets.panels import Panel, Tabs from bokeh.models.widgets.sliders import Slider from bokeh.plotting.figure import figure PLOT_WIDTH = 500 PLOT_HEIGHT = 500 FIGURE_NAMES = ["marginal", "cumulative"] # Define what the empty data object looks like in order to make the browser handle all # computations. EMPTY_DATA = { "marginal": { "distribution": {"x": [], "y": [], "bandwidth": np.NaN}, "hdi": {"base": [], "lower": [], "upper": []}, "stats": {"x": [], "y": [], "text": []}, "labels": { "x": [], "y": [], "text": [], "text_align": [], "x_offset": [], "y_offset": [], }, }, "cumulative": { "distribution": {"x": [], "y": [], "bandwidth": np.NaN}, "hdi": {"base": [], "lower": [], "upper": []}, "stats": {"x": [], "y": [], "text": []}, "labels": { "x": [], "y": [], "text": [], "text_align": [], "x_offset": [], "y_offset": [], }, }, } SIZING = { "sizing_mode": "scale_both", "max_height": PLOT_HEIGHT + 250, # drop down menus and tabs "max_width": 2 * PLOT_WIDTH + 30, # tool bars } def create_sources() -> typing.Sources: """Create Bokeh sources from the given data that will be bound to glyphs. Returns ------- typing.Sources A dictionary of Bokeh ColumnDataSource objects. """ output = {} for figure_name, figure_data in EMPTY_DATA.items(): output[figure_name] = {} for glyph_name, glyph_data in figure_data.items(): if "bandwidth" in list(glyph_data.keys()): glyph_data.pop("bandwidth") output[figure_name][glyph_name] = ColumnDataSource(data=glyph_data) return output def create_figures(rv_name: str) -> typing.Figures: """Create the Bokeh figures used for the tool. Parameters ---------- rv_name : str The string representation of the random variable data. Returns ------- typing.Figures A dictionary of Bokeh Figure objects. """ output = {} for figure_name in FIGURE_NAMES: fig = figure( max_width=PLOT_WIDTH, max_height=PLOT_HEIGHT, outline_line_color="black", title=f"{figure_name} distribution", x_axis_label=rv_name, y_axis_label=None, sizing_mode="scale_both", ) fig.yaxis.visible = False plotting_utils.style_figure(fig) output[figure_name] = fig output[FIGURE_NAMES[0]].x_range = output[FIGURE_NAMES[1]].x_range output[FIGURE_NAMES[0]].y_range = output[FIGURE_NAMES[1]].y_range return output def create_glyphs() -> typing.Glyphs: """Create the glyphs used for the figures of the tool. Returns ------- typing.Glyphs A dictionary of Bokeh Glyphs objects. """ palette = plotting_utils.choose_palette(num_colors=2) output = {} for figure_name, figure_data in EMPTY_DATA.items(): output[figure_name] = {} for glyph_name, _ in figure_data.items(): if glyph_name in ["distribution", "stats"]: if glyph_name == "distribution": output[figure_name][glyph_name] = { "glyph": Line( x="x", y="y", line_color=palette[0], line_alpha=0.7, line_width=2.0, name=f"{figure_name}DistributionGlyph", ), "hover_glyph": Line( x="x", y="y", line_color=palette[1], line_alpha=1.0, line_width=2.0, name=f"{figure_name}DistributionHoverGlyph", ), } if glyph_name == "stats": output[figure_name][glyph_name] = { "glyph": Circle( x="x", y="y", size=10, fill_color=palette[0], line_color="white", fill_alpha=1.0, name=f"{figure_name}StatsGlyph", ), "hover_glyph": Circle( x="x", y="y", size=10, fill_color=palette[1], line_color="black", fill_alpha=1.0, name=f"{figure_name}StatsHoverGlyph", ), } return output def add_glyphs( figures: typing.Figures, glyphs: typing.Glyphs, sources: typing.Sources, ) -> None: """Bind source data to glyphs and add the glyphs to the given figures. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. glyphs : typing.Glyphs A dictionary of Bokeh Glyphs objects. sources : typing.Sources A dictionary of Bokeh ColumnDataSource objects. Returns ------- None Adds data bound glyphs to the given figures directly. """ for figure_name, figure_glyphs in glyphs.items(): fig = figures[figure_name] figure_sources = sources[figure_name] for glyph_name, glyphs in figure_glyphs.items(): glyph_source = figure_sources[glyph_name] fig.add_glyph( source_or_glyph=glyph_source, glyph=glyphs["glyph"], hover_glyph=glyphs["hover_glyph"], name=glyphs["glyph"].name, ) def create_annotations(sources: typing.Sources) -> typing.Annotations: """Create any annotations for the figures of the tool. Parameters ---------- source : typing.Sources A dictionary of Bokeh ColumnDataSource objects. Returns ------- typing.Annotations A dictionary of Bokeh Annotation objects. """ palette = plotting_utils.choose_palette(num_colors=1) output = {} for figure_name, figure_sources in sources.items(): output[figure_name] = {} for glyph_name, glyph_source in figure_sources.items(): if glyph_name == "hdi": output[figure_name][glyph_name] = Band( base="base", lower="lower", upper="upper", source=glyph_source, level="underlay", fill_color=palette[0], fill_alpha=0.2, line_width=1.0, line_color="white", name=f"{figure_name}HdiAnnotation", ) elif glyph_name == "labels": output[figure_name][glyph_name] = LabelSet( x="x", y="y", text="text", x_offset="x_offset", y_offset="y_offset", text_align="text_align", source=glyph_source, background_fill_color="white", background_fill_alpha=0.8, name=f"{figure_name}LabelAnnotation", ) return output def add_annotations(figures: typing.Figures, annotations: typing.Annotations) -> None: """Add the given annotations to the given figures of the tool. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. annotations : typing.Annotations A dictionary of Bokeh Annotation objects. Returns ------- None Adds annotations directly to the given figures. """ for figure_name, annotation_sources in annotations.items(): fig = figures[figure_name] for _, annotation in annotation_sources.items(): fig.add_layout(annotation) def create_tooltips(rv_name: str, figures: typing.Figures) -> typing.Tooltips: """Create hover tools for the glyphs used in the figures of the tool. Parameters ---------- rv_name : str The string representation of the random variable data. figures : typing.Figures A dictionary of Bokeh Figure objects. Returns ------- typing.Tooltips A dictionary of Bokeh HoverTools objects. """ output = {} for figure_name, fig in figures.items(): output[figure_name] = { "distribution": HoverTool( renderers=plotting_utils.filter_renderers( figure=fig, search="DistributionGlyph", glyph_type="GlyphRenderer", substring=True, ), tooltips=[(rv_name, "@x")], ), "stats": HoverTool( renderers=plotting_utils.filter_renderers( figure=fig, search="StatsGlyph", glyph_type="GlyphRenderer", substring=True, ), tooltips=[("", "@text")], ), } return output def add_tooltips(figures: typing.Figures, tooltips: typing.Tooltips) -> None: """Add the given tools to the figures. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. tooltips : typing.Tooltips A dictionary of Bokeh HoverTools objects. Returns ------- None Adds the tooltips directly to the given figures. """ for figure_name, figure_tooltips in tooltips.items(): fig = figures[figure_name] for _, tooltip in figure_tooltips.items(): fig.add_tools(tooltip) def create_widgets( rv_name: str, rv_names: List[str], bw_factor: float, bandwidth: float, ) -> typing.Widgets: """Create the widgets used in the tool. Parameters ---------- rv_name : str The string representation of the random variable data. rv_names : List[str] A list of all available random variable names. bw_factor : float Multiplicative factor used when calculating the kernel density estimate. bandwidth : float The bandwidth used to calculate the KDE. Returns ------- typing.Widgets A dictionary of Bokeh widget objects. """ return { "rv_select": Select(value=rv_name, options=rv_names, title="Query"), "bw_factor_slider": Slider( title="Bandwidth factor", start=0.01, end=2.00, value=1.00, step=0.01, ), "bw_div": Div(text=f"Bandwidth: {bw_factor * bandwidth}"), "hdi_slider": Slider(start=1, end=99, step=1, value=89, title="HDI"), } def help_page() -> Div: """Help tab for the tool. Returns ------- Div Bokeh Div widget containing the help tab information. """ text = """ <h2> Highest density interval </h2> <p style="margin-bottom: 10px"> The highest density interval region is not equal tailed like a typical equal tailed interval of 2.5%. Thus it will include the mode(s) of the posterior distribution. </p> <p style="margin-bottom: 10px"> There is nothing particularly specific about having a default HDI of 89%. If fact, the only remarkable thing about defaulting to 89% is that it is the highest prime number that does not exceed the unstable 95% threshold. See the link to McElreath's book below for further discussion. </p> <ul> <li> McElreath R (2020) <b> Statistical Rethinking: A Bayesian Course with Examples in R and Stan 2nd edition. </b> <em>Chapman and Hall/CRC</em> <a href=https://dx.doi.org/10.1201/9780429029608 style="color: blue" target="_blank" > doi: 10.1201/9780429029608 </a>. </li> </ul> """ return Div(text=text, disable_math=False, min_width=PLOT_WIDTH) def create_figure_grid(figures: typing.Figures) -> Row: """Layout the given figures in a grid, and make one toolbar. Parameters ---------- figures : typing.Figures A dictionary of Bokeh Figure objects. Returns ------- Row A Bokeh layout object. """ toolbar = plotting_utils.create_toolbar(figures=list(figures.values())) return Row(children=[*list(figures.values()), toolbar], css_classes=["bk-loading"]) def create_view(widgets: typing.Widgets, figures: typing.Figures) -> Tabs: """Create the tool view. Parameters ---------- widgets : typing.Widgets A dictionary of Bokeh widget objects. figures : typing.Figures A dictionary of Bokeh Figure objects. Returns ------- Tabs Bokeh Tabs objects. """ help_panel = Panel(child=help_page(), title="Help", name="helpPanel") fig_child = Column( children=[ create_figure_grid(figures), widgets["bw_factor_slider"], widgets["bw_div"], widgets["hdi_slider"], ], css_classes=["bm-tool-loading", "arcs"], ) fig_child.update_from_json(SIZING) tool_child = Column(children=[widgets["rv_select"], fig_child]) tool_child.update_from_json(SIZING) tool_panel = Panel( child=tool_child, title="Marginal 1D", name="toolPanel", ) tabs = Tabs(tabs=[tool_panel, help_panel]) tabs.update_from_json(SIZING) return tabs
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/marginal1d/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Marginal 1D diagnostic tool types for a Bean Machine model.""" from typing import Any, Dict, List, Union from beanmachine.ppl.diagnostics.tools import TypedDict from bokeh.models.annotations import Band, LabelSet from bokeh.models.glyphs import Circle, Line from bokeh.models.sources import ColumnDataSource from bokeh.models.tools import HoverTool from bokeh.models.widgets.inputs import Select from bokeh.models.widgets.markups import Div from bokeh.models.widgets.sliders import Slider from bokeh.plotting.figure import Figure # NOTE: These are the types pyre gives us when using `reveal_type(...)` on the outputs # of the methods. StatsAndLabelsData = Dict[str, Dict[str, Any]] HDIData = Dict[str, Any] Data = Dict[Any, Any] Sources = Dict[Any, Any] Figures = Dict[Any, Any] Glyphs = Dict[Any, Any] Annotations = Dict[Any, Any] Tooltips = Dict[Any, Any] Widgets = Dict[str, Union[Div, Select, Slider]] # NOTE: TypedDict objects are for reference only. Due to the way pyre accesses keys in # dictionaries, and how NumPy casts arrays when using tolist(), we are unable to # use them, but they provide semantic information for the different types. We must # ignore a lot of lines due to the issue discussed here # https://pyre-check.org/docs/errors/#13-uninitialized-attribute. class _DistributionData(TypedDict): # pyre-ignore x: List[float] y: List[float] bandwidth: float class _HDIData(TypedDict): # pyre-ignore base: List[float] lower: List[float] upper: List[float] class _StatsData(TypedDict): # pyre-ignore x: List[float] y: List[float] text: List[str] class _LabelsData(TypedDict): # pyre-ignore x: List[float] y: List[float] text: List[str] text_align: List[str] x_offset: List[int] y_offset: List[int] class _GlyphData(TypedDict): # pyre-ignore distribtution: _DistributionData hdi: _HDIData stats: _StatsData labels: _LabelsData class _Data(TypedDict): # pyre-ignore marginal: _GlyphData cumulative: _GlyphData class _Source(TypedDict): # pyre-ignore distribution: ColumnDataSource hdi: ColumnDataSource stats: ColumnDataSource labels: ColumnDataSource class _Sources(TypedDict): # pyre-ignore marginal: _Source cumulative: _Source class _Figures(TypedDict): # pyre-ignore marginal: Figure cumulative: Figure class _DistributionGlyph(TypedDict): # pyre-ignore glyph: Line hover_glyph: Line class _StatsGlyph(TypedDict): # pyre-ignore glyph: Circle hover_glyph: Circle class _FigureGlyphs(TypedDict): # pyre-ignore distribution: _DistributionGlyph stats: _StatsGlyph class _Glyphs(TypedDict): # pyre-ignore marginal: _FigureGlyphs cumulative: _FigureGlyphs class _FigureAnnotations(TypedDict): # pyre-ignore hdi: Band labels: LabelSet class _Annotations(TypedDict): # pyre-ignore marginal: _FigureAnnotations cumulative: _FigureAnnotations class _Tooltip(TypedDict): # pyre-ignore distribution: HoverTool stats: HoverTool class _Tooltips(TypedDict): # pyre-ignore marginal: _Tooltip cumulative: _Tooltip class _Widgets(TypedDict): # pyre-ignore rv_select: Select bw_factor_slider: Slider bw_div: Div hdi_slider: Slider
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/marginal1d/typing.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Marginal 1D diagnostic tool for a Bean Machine model.""" from __future__ import annotations from beanmachine.ppl.diagnostics.tools.marginal1d import utils from beanmachine.ppl.diagnostics.tools.utils.diagnostic_tool_base import ( DiagnosticToolBaseClass, ) from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from bokeh.models import Model from bokeh.models.callbacks import CustomJS class Marginal1d(DiagnosticToolBaseClass): """ Marginal 1D diagnostic tool. Args: mcs (MonteCarloSamples): The return object from running a Bean Machine model. Attributes: data (Dict[str, List[List[float]]]): JSON serializable representation of the given `mcs` object. rv_names (List[str]): The list of random variables string names for the given model. num_chains (int): The number of chains of the model. num_draws (int): The number of draws of the model for each chain. palette (List[str]): A list of color values used for the glyphs in the figures. The colors are specifically chosen from the Colorblind palette defined in Bokeh. tool_js (str):The JavaScript callbacks needed to render the Bokeh tool independently from a Python server. """ def __init__(self: Marginal1d, mcs: MonteCarloSamples) -> None: super(Marginal1d, self).__init__(mcs) def create_document(self: Marginal1d) -> Model: # Initialize widget values using Python. rv_name = self.rv_names[0] bw_factor = 1.0 bandwidth = 1.0 # NOTE: We are going to use Python and Bokeh to render the tool in the notebook # output cell, however, we WILL NOT use Python to calculate any of the # statistics displayed in the tool. We do this so we can make the BROWSER # run all the calculations based on user interactions. If we did not # employ this strategy, then the initial display a user would receive # would be calculated by Python, and any subsequent updates would be # calculated by JavaScript. The side-effect of having two backends # calculate data could cause the figures to flicker, which would not be a # good end user experience. # # Bokeh 3.0 is implementing an "on load" feature, which would nullify this # requirement, and until that version is released, we have to employ this # work-around. # Create empty Bokeh sources using Python. sources = utils.create_sources() # Create empty figures for the tool using Python. figures = utils.create_figures(rv_name=rv_name) # Create empty glyphs and attach them to the figures using Python. glyphs = utils.create_glyphs() utils.add_glyphs(sources=sources, figures=figures, glyphs=glyphs) # Create empty annotations and attach them to the figures using Python. annotations = utils.create_annotations(sources=sources) utils.add_annotations(figures=figures, annotations=annotations) # Create empty tool tips and attach them to the figures using Python. tooltips = utils.create_tooltips(figures=figures, rv_name=rv_name) utils.add_tooltips(figures=figures, tooltips=tooltips) # Create the widgets for the tool using Python. widgets = utils.create_widgets( rv_names=self.rv_names, rv_name=rv_name, bandwidth=bandwidth, bw_factor=bw_factor, ) # Create the view of the tool and serialize it into HTML using static resources # from Bokeh. Embedding the tool in this manner prevents external CDN calls for # JavaScript resources, and prevents the user from having to know where the # Bokeh server is. tool_view = utils.create_view(figures=figures, widgets=widgets) # Create callbacks for the tool using JavaScript. callback_js = f""" const rvName = widgets.rv_select.value; const rvData = data[rvName].flat(); let bw = 0.0; // Remove the CSS classes that dim the tool output on initial load. const toolTab = toolView.tabs[0]; const toolChildren = toolTab.child.children; const dimmedComponent = toolChildren[1]; dimmedComponent.css_classes = []; try {{ bw = marginal1d.update( rvData, rvName, bwFactor, hdiProbability, sources, figures, tooltips, ); }} catch (error) {{ {self.tool_js} bw = marginal1d.update( rvData, rvName, bwFactor, hdiProbability, sources, figures, tooltips, ); }} """ # Each widget requires the following dictionary for the CustomJS method. Notice # that the callback_js object above uses the names defined as keys in the below # object with values defined by the Python objects. callback_arguments = { "data": self.data, "widgets": widgets, "sources": sources, "figures": figures, "tooltips": tooltips, "toolView": tool_view, } # Each widget requires slightly different JS, except for the sliders. rv_select_js = f""" const bwFactor = 1.0; const hdiProbability = 0.89; widgets.bw_factor_slider.value = bwFactor; widgets.hdi_slider.value = 100 * hdiProbability; {callback_js}; widgets.bw_div.text = `Bandwidth: ${{bwFactor * bw}}`; figures.marginal.reset.emit(); """ slider_js = f""" const bwFactor = widgets.bw_factor_slider.value; const hdiProbability = widgets.hdi_slider.value / 100; {callback_js}; widgets.bw_div.text = `Bandwidth: ${{bwFactor * bw}}`; """ rv_select_callback = CustomJS(args=callback_arguments, code=rv_select_js) slider_callback = CustomJS(args=callback_arguments, code=slider_js) # Tell Python to use the JavaScript. widgets["rv_select"].js_on_change("value", rv_select_callback) widgets["bw_factor_slider"].js_on_change("value", slider_callback) widgets["hdi_slider"].js_on_change("value", slider_callback) return tool_view
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/marginal1d/tool.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Plotting utilities for the diagnostic tools.""" from typing import List from bokeh.core.property.nullable import Nullable from bokeh.core.property.primitive import Null from bokeh.core.property.wrappers import PropertyValueList from bokeh.models.layouts import Column, Row from bokeh.models.renderers import GlyphRenderer from bokeh.models.tools import ProxyToolbar, ResetTool, SaveTool, ToolbarBox from bokeh.palettes import Colorblind from bokeh.plotting.figure import Figure def style_figure(figure: Figure) -> None: """ Style the given Bokeh `figure`. Args: figure (Figure): A Bokeh `Figure` object. Returns: None: Styles the given figure without copying. """ figure.grid.grid_line_alpha = 0.3 figure.grid.grid_line_color = "grey" figure.grid.grid_line_width = 0.3 figure.xaxis.minor_tick_line_color = "grey" figure.yaxis.minor_tick_line_color = "grey" def choose_palette(num_colors: int) -> List[str]: """ Determine which palette from Bokeh's Colorblind to use. Args: num_colors (int): The number of colors to use for the palette. Returns: List[str]: A list of colors to be used as the palette for a figure. """ palette_indices = [key for key in Colorblind.keys() if num_colors <= key] if not palette_indices: palette_index = max(Colorblind.keys()) else: palette_index = min(palette_indices) return Colorblind[palette_index] def create_toolbar(figures: List[Figure]) -> ToolbarBox: """ Create a single toolbar for the given list of figures. This method ignores all `HoverTool` entries in the final toolbar object. The rational for ignoring them is to prevent the final toolbar from having too much visual clutter. Args: figures (List[Figure]): A list of Bokeh `Figure` objects that all have their own toolbars that will be merged into one. Returns: ToolbarBox: The merged toolbar. """ toolbars = [] for figure in figures: toolbars.append(figure.toolbar) figure.toolbar_location = Nullable(Null)._default tools = [] for toolbar in toolbars: tools.extend(toolbar.tools) tools = [tool for tool in tools if type(tool).__name__ != "HoverTool"] if len(tools) == 0: tools = [SaveTool(), ResetTool()] return ToolbarBox( toolbar=ProxyToolbar(toolbars=toolbars, tools=tools), toolbar_location="right", ) def create_figure_grid(figures: List[Figure], num_figure_columns: int) -> Row: """ Similar to Bokeh's `grid_plot` method, except we merge toolbars in this method. Args: figures (List[Figure]): A list of Bokeh `Figure` objects. num_figure_columns (int): The number of columns for the grid. Returns: Row: Returns a single Bokeh `Row` object that contains all the given figures. """ toolbar = create_toolbar(figures) figure_rows = [] while len(figures): figs = figures[:num_figure_columns] for i, fig in enumerate(figs): if i != 0: fig.yaxis.axis_label = None figure_rows.append(figs) for fig in figs: figures.pop(figures.index(fig)) for i, figure_row in enumerate(figure_rows): if i != len(figure_rows) - 1: for fig in figure_row: fig.xaxis.axis_label = None figure_layout = [] for i in range(len(figure_rows)): figure_layout.append(Row(children=figure_rows[i])) return Row(children=[Column(children=figure_layout), toolbar]) def filter_renderers( figure: Figure, search: str, glyph_type: str = "GlyphRenderer", substring: bool = False, ) -> List[GlyphRenderer]: """ Find renderers in the given figure using the `search` string. Filters renderers from the given figure based on renderer names that match the given search parameters. Args: figure (Figure): A Bokeh `Figure` object. search (str): A string to filter renderer names with. glyph_type (:obj:`str`, optional): The type of renderer to search for in the figure. Default is `GlyphRenderer`. substring (:obj:`bool`, optional): Flag to indicate if the given `search` string should be used as a substring search. Default is `False`. Returns: List[GlyphRenderer]: A list of renderers that match the search parameters. """ output = [] renderers = PropertyValueList(figure.renderers) for renderer in renderers: if renderer.name is not None and type(renderer).__name__ == glyph_type: if substring and search in renderer.name: output.append(renderer) if not substring and renderer.name == search: output.append(renderer) return output
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/utils/plotting_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Accessor definition for extending Bean Machine `MonteCarloSamples` objects. These methods are heavily influenced by the implementations by pandas and xarray. - `pandas`: https://github.com/pandas-dev/pandas/blob/main/pandas/core/accessor.py - `xarray`: https://github.com/pydata/xarray/blob/main/xarray/core/extensions.py """ from __future__ import annotations import contextlib import warnings from typing import Callable from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples class CachedAccessor: """ A descriptor for caching accessors. Args: name (str): Namespace for the accessor. accessor (object): Class that defines the extension methods. Attributes: _name (str): Namespace for the accessor. _accessor (object): Class that defines the extension methods. Raises: RuntimeError: Returned if attempting to overwrite an existing accessor on the object. """ def __init__(self: CachedAccessor, name: str, accessor: object) -> None: self._name = name self._accessor = accessor def __get__(self: CachedAccessor, obj: object, cls: object) -> object: """ Method to retrieve the accessor namespace. Args: obj (object): Object that the accessor is attached to. cls (object): Needed for registering the accessor. Returns: object: The accessor object. """ # Accessing an attribute of the class. if obj is None: return self._accessor try: cache = obj._cache # type: ignore except AttributeError: cache = obj._cache = {} try: return cache[self._name] except KeyError: contextlib.suppress(KeyError) try: accessor_obj = self._accessor(obj) # type: ignore except Exception as error: msg = f"error initializing {self._name!r} accessor." raise RuntimeError(msg) from error cache[self._name] = accessor_obj return accessor_obj # noqa: R504 (unnecessary variable assignment) def _register_accessor(name: str, cls: object) -> Callable: """ Method used for registering an accessor to a given object. Args: name (str): The name for the accessor. cls (object): The object the accessor should be attached to. Returns: Callable: A decorator for creating accessors. Raises: RuntimeError: Returned if attempting to overwrite an existing accessor on the object. """ def decorator(accessor: object) -> object: if hasattr(cls, name): warnings.warn( f"registration of accessor {repr(accessor)} under name " f"{repr(name)} for type {repr(cls)} is overriding a preexisting " f"attribute with the same name.", UserWarning, stacklevel=2, ) setattr(cls, name, CachedAccessor(name, accessor)) return accessor return decorator def register_mcs_accessor(name: str) -> Callable: """ Register an accessor object for `MonteCarloSamples` objects. Args: name (str): The name for the accessor. Returns: Callable: A decorator for creating the `MonteCarloSamples` accessor. Raises: RuntimeError: Returned if attempting to overwrite an existing accessor on the object. Example: >>> from __future__ import annotations >>> from typing import Dict, List >>> >>> import beanmachine.ppl as bm >>> import numpy as np >>> import torch.distributions as dist >>> from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples >>> from beanmachine.ppl.diagnostics.tools.utils import accessor >>> from torch import tensor >>> >>> @bm.random_variable >>> def alpha(): >>> return dist.Normal(0, 1) >>> >>> @bm.random_variable >>> def beta(): >>> return dist.Normal(0, 1) >>> >>> @accessor.register_mcs_accessor("magic") >>> class MagicAccessor: >>> def __init__(self: MagicAccessor, mcs: MonteCarloSamples) -> None: >>> self.mcs = mcs >>> def show_me(self: MagicAccessor) -> Dict[str, List[List[float]]]: >>> # Return a JSON serializable object from a MonteCarloSamples object. >>> return dict( >>> sorted( >>> { >>> str(key): value.tolist() >>> for key, value in self.mcs.items() >>> }.items(), >>> key=lambda item: item[0], >>> ), >>> ) >>> >>> chain_results = { >>> beta(): tensor([4, 3], [2, 1]), >>> alpha(): tensor([[1, 2], [3, 4]]), >>> } >>> samples = MonteCarloSamples(chain_results=chain_results) >>> samples.magic.show_me() {'alpha()': [[1, 2], [3, 4]], 'beta()': [[4, 3], [2, 1]]} """ return _register_accessor(name, MonteCarloSamples)
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/utils/accessor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Base class for diagnostic tools of a Bean Machine model.""" from __future__ import annotations import re from abc import ABC, abstractmethod from typing import Any, Mapping from beanmachine.ppl.diagnostics.tools import JS_DIST_DIR from beanmachine.ppl.diagnostics.tools.utils import plotting_utils from beanmachine.ppl.diagnostics.tools.utils.model_serializers import serialize_bm from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from bokeh.embed import file_html, json_item from bokeh.models import Model from bokeh.resources import INLINE class DiagnosticToolBaseClass(ABC): """ Base class for visual diagnostic tools. Args: mcs (MonteCarloSamples): The return object from running a Bean Machine model. Attributes: data (Dict[str, List[List[float]]]): JSON serializable representation of the given `mcs` object. rv_names (List[str]): The list of random variables string names for the given model. num_chains (int): The number of chains of the model. num_draws (int): The number of draws of the model for each chain. palette (List[str]): A list of color values used for the glyphs in the figures. The colors are specifically chosen from the Colorblind palette defined in Bokeh. tool_js (str):The JavaScript callbacks needed to render the Bokeh tool independently from a Python server. """ @abstractmethod def __init__(self: DiagnosticToolBaseClass, mcs: MonteCarloSamples) -> None: self.data = serialize_bm(mcs) self.rv_names = ["Select a random variable..."] + list(self.data.keys()) self.num_chains = mcs.num_chains self.num_draws = mcs.get_num_samples() self.palette = plotting_utils.choose_palette(self.num_chains) self.tool_js = self.load_tool_js() def load_tool_js(self: DiagnosticToolBaseClass) -> str: """ Load the JavaScript for the diagnostic tool. Tools must be built by `yarn` in order for this method to find the appropriate file. If no file is found, then the tools will not function, and an error will be shown to the user. Returns: str: A string containing all the JavaScript necessary to run the tool in a notebook. Raises: FileNotFoundError: Raised if the diagnostic tool has not been built by `yarn` prior to its use. """ name = self.__class__.__name__ name_tokens = re.findall(r"[A-Z][^A-Z]*", name) name = "_".join(name_tokens) path = JS_DIST_DIR.joinpath(f"{name.lower()}.js") with path.open() as f: tool_js = f.read() return tool_js def show(self: DiagnosticToolBaseClass) -> None: """ Show the diagnostic tool in the notebook. This method uses IPython's `display` and `HTML` methods in order to display the diagnostic tool in a notebook. The Bokeh `Model` object returned by the `create_document` method is converted to HTML using Bokeh's `file_html` method. The advantage of encapsulating the tool in this manner is that it allows all the JavaScript needed to render the tool to exist in the output cell of the notebook. Doing so will allow the Bokeh Application to render in Google's Colab or Meta's Bento notebooks, which do not allow calls to third party JavaScript to be loaded and executed. The disadvantage is that it embeds duplicate JavaScript if more than one tool is used in a notebook. """ # import Ipython only when we need to render the plot, so that we don't # need to have jupyter notebook as one of our dependencies from IPython.display import display, HTML doc = self.create_document() html = file_html(doc, resources=INLINE, template=self.html_template()) display(HTML(html)) def html_template(self: DiagnosticToolBaseClass) -> str: """ HTML template object used to inject CSS styles for Bokeh Applications. We inject CSS into the output for the diagnostic tools because we need users to interact with the tool before it renders any statistics. The reason for this is due to the lack of a callback between Bokeh and BokehJS for an "on load" event. The necessary callback for an "on load" event is being worked on for the Bokeh 3.0 release. Until Bokeh 3.0 is released, this is a work-around that makes the user interact with the tool before any rendering occurs. Returns: str: Template for injecting CSS in the HTML returned by `create_document`. """ return """ {% block postamble %} <style> .bk.bm-tool-loading { overflow: hidden; } .bk.bm-tool-loading:before { position: absolute; height: 100%; width: 100%; content: ''; z-index: 1000; background-color: rgb(255, 255, 255, 0.75); border-color: lightgray; background-repeat: no-repeat; background-position: center; background-size: auto 50%; border-width: 1px; cursor: progress|; } .bk.bm-tool-loading.arcs:hover:before { content: "Please select a Query from the Select menu above."; font: x-large Arial, sans-serif; color: black; cursor: progress; display: flex; justify-content: center; align-items: center; } </style> {% endblock %} """ @abstractmethod def create_document(self: DiagnosticToolBaseClass) -> Model: """To be implemented by the inheriting class.""" ... def _tool_json(self: DiagnosticToolBaseClass) -> Mapping[Any, Any]: """ Debugging method used primarily when creating a new diagnostic tool. Returns: Dict[Any, Any]: Creates a JSON serializable object using Bokeh's `json_item` method and the output from `create_document`. """ doc = self.create_document() json_data = json_item(doc) return json_data
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/utils/diagnostic_tool_base.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Collection of serializers for the diagnostics tool use.""" from typing import Dict, List from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples def serialize_bm(samples: MonteCarloSamples) -> Dict[str, List[List[float]]]: """ Convert Bean Machine models to a JSON serializable object. Args: samples (MonteCarloSamples): Output of a model from Bean Machine. Returns Dict[str, List[List[float]]]: The JSON serializable object for use in the diagnostics tools. """ rv_identifiers = list(samples.keys()) reshaped_data = {} for rv_identifier in rv_identifiers: rv_data = samples[rv_identifier] rv_shape = rv_data.shape num_rv_chains = rv_shape[0] reshaped_data[f"{str(rv_identifier)}"] = [] for rv_chain in range(num_rv_chains): chain_data = rv_data[rv_chain, :] chain_shape = chain_data.shape if len(chain_shape) > 3 and 1 not in list(chain_shape): msg = ( "Unable to handle data with dimensionality larger than " "mxnxkx1." ) raise ValueError(msg) elif len(chain_shape) == 3 and 1 in list(chain_shape): if chain_shape[1] == 1 in list(chain_shape): reshape_dimensions = chain_shape[2] else: reshape_dimensions = chain_shape[1] for i, reshape_dimension in enumerate(range(reshape_dimensions)): data = rv_data[rv_chain, :, reshape_dimension].reshape(-1) if f"{str(rv_identifier)}[{i}]" not in reshaped_data: reshaped_data[f"{str(rv_identifier)}[{i}]"] = [] reshaped_data[f"{str(rv_identifier)}[{i}]"].append(data.tolist()) elif len(chain_shape) == 1: reshaped_data[f"{str(rv_identifier)}"].append( rv_data[rv_chain, :].tolist(), ) model = dict(sorted(reshaped_data.items(), key=lambda item: item[0])) return model
beanmachine-main
src/beanmachine/ppl/diagnostics/tools/utils/model_serializers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.inference.proposer.single_site_uniform_proposer import ( SingleSiteUniformProposer, ) from beanmachine.ppl.inference.single_site_inference import SingleSiteInference class SingleSiteUniformMetropolisHastings(SingleSiteInference): """ Single site uniform Metropolis-Hastings. This single site algorithm proposes from a uniform distribution (uniform Categorical for discrete variables). """ def __init__(self): super().__init__(SingleSiteUniformProposer)
beanmachine-main
src/beanmachine/ppl/inference/single_site_uniform_mh.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.inference.single_site_inference import SingleSiteInference class SingleSiteAncestralMetropolisHastings(SingleSiteInference): def __init__(self): super().__init__(SingleSiteAncestralProposer)
beanmachine-main
src/beanmachine/ppl/inference/single_site_ancestral_mh.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional, Union import torch from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from beanmachine.ppl.inference.single_site_ancestral_mh import ( SingleSiteAncestralMetropolisHastings, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import init_from_prior, RVDict, World from torch import Tensor from torch.distributions import Categorical from tqdm.auto import trange def _concat_rv_dicts(rvdict: List) -> Dict: out_dict = {} keys = list(rvdict[0].keys()) for k in keys: t = [] for x in rvdict: t.append(x[k]) out_dict[k] = torch.cat(t, -1).squeeze(0) return out_dict class Predictive(object): """ Class for the posterior predictive distribution. """ @staticmethod def _extract_values_from_world( world: World, queries: List[RVIdentifier] ) -> Dict[RVIdentifier, Tensor]: query_dict = {query: [] for query in queries} # Extract samples for query in queries: raw_val = world.call(query) if not isinstance(raw_val, torch.Tensor): raise TypeError( "The value returned by a queried function must be a tensor." ) query_dict[query].append(raw_val) query_dict = {node: torch.stack(val) for node, val in query_dict.items()} return query_dict @staticmethod # noqa: C901 def simulate( # noqa: C901 queries: List[RVIdentifier], posterior: Optional[Union[MonteCarloSamples, RVDict]] = None, num_samples: Optional[int] = None, vectorized: Optional[bool] = False, progress_bar: Optional[bool] = True, ) -> MonteCarloSamples: """ Generates predictives from a generative model. For example:: obs_queries = [likelihood(i) for i in range(10))] posterior = SinglesiteHamiltonianMonteCarlo(10, 0.1).infer(...) # generates one sample per world (same shape as `posterior` samples) predictives = simulate(obs_queries, posterior=posterior) To generate prior predictives:: queries = [prior(), likelihood()] # specify the full generative model # Monte carlo samples of shape (num_samples, sample_shape) predictives = simulate(queries, num_samples=1000) :param query: list of `random_variable`'s corresponding to the observations. :param posterior: Optional `MonteCarloSamples` or `RVDict` of the latent variables. :param num_samples: Number of prior predictive samples, defaults to 1. Should not be specified if `posterior` is specified. :returns: `MonteCarloSamples` of the generated predictives. """ assert ( (posterior is not None) + (num_samples is not None) ) == 1, "Only one of posterior or num_samples should be set." inference = SingleSiteAncestralMetropolisHastings() if posterior is not None: if isinstance(posterior, dict): posterior = MonteCarloSamples([posterior]) obs = dict(posterior) if vectorized: sampler = inference.sampler( queries, obs, num_samples, initialize_fn=init_from_prior ) query_dict = Predictive._extract_values_from_world( next(sampler), queries ) for rvid, rv in query_dict.items(): if rv.dim() > 2: query_dict[rvid] = rv.squeeze(0) post_pred = MonteCarloSamples( query_dict, default_namespace="posterior_predictive", ) post_pred.add_groups(posterior) return post_pred else: # predictives are sequentially sampled preds = [] for c in range(posterior.num_chains): rv_dicts = [] for i in trange( posterior.get_num_samples(), desc="Samples collected", disable=not progress_bar, ): obs = {rv: posterior.get_chain(c)[rv][i] for rv in posterior} sampler = inference.sampler( queries, obs, num_samples, initialize_fn=init_from_prior ) rv_dicts.append( Predictive._extract_values_from_world( next(sampler), queries ) ) preds.append(_concat_rv_dicts(rv_dicts)) post_pred = MonteCarloSamples( preds, default_namespace="posterior_predictive", ) post_pred.add_groups(posterior) return post_pred else: obs = {} predictives = [] for _ in trange( # pyre-fixme[6]: For 1st param expected `int` but got `Optional[int]`. num_samples, desc="Samples collected", disable=not progress_bar, ): sampler = inference.sampler( queries, obs, num_samples, initialize_fn=init_from_prior ) query_dict = Predictive._extract_values_from_world( next(sampler), queries ) predictives.append(query_dict) rv_dict = {} for k in predictives: for rvid, rv in k.items(): if rvid not in rv_dict: rv_dict[rvid] = [] if rv.dim() < 2: rv = rv.unsqueeze(0) rv_dict[rvid].append(rv) for k, v in rv_dict.items(): rv_dict[k] = torch.cat(v, dim=1) prior_pred = MonteCarloSamples( rv_dict, default_namespace="prior_predictive", ) return prior_pred @staticmethod def empirical( queries: List[RVIdentifier], samples: MonteCarloSamples, num_samples: Optional[int] = 1, ) -> MonteCarloSamples: """ Samples from the empirical (marginal) distribution of the queried variables. :param queries: list of `random_variable`'s to be sampled. :param samples: `MonteCarloSamples` of the distribution. :param num_samples: Number of samples to sample (with replacement). Defaults to 1. :returns: `MonteCarloSamples` object containing the sampled random variables. """ rv_dict = {} num_chains = samples.num_chains total_num_samples = samples.get_num_samples() chain_indices = Categorical(torch.ones(num_chains)).sample((num_samples,)) sample_indices = Categorical(torch.ones(total_num_samples)).sample( (num_samples,) ) for q in queries: rv_dict[q] = samples.get_variable(q, include_adapt_steps=False)[ chain_indices, sample_indices ] return MonteCarloSamples([rv_dict]) simulate = Predictive.simulate empirical = Predictive.empirical
beanmachine-main
src/beanmachine/ppl/inference/predictive.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect from collections import defaultdict from typing import ( Callable, cast, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union, ) from beanmachine.ppl.experimental.torch_jit_backend import get_backend from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.nuts_proposer import NUTSProposer from beanmachine.ppl.inference.proposer.sequential_proposer import SequentialProposer from beanmachine.ppl.inference.proposer.single_site_uniform_proposer import ( SingleSiteUniformProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World if TYPE_CHECKING: from enum import Enum class EllipsisClass(Enum): Ellipsis = "..." def __iter__(self): pass Ellipsis: EllipsisClass = EllipsisClass.Ellipsis else: EllipsisClass = type(Ellipsis) class _DefaultInference(BaseInference): """ Mixed inference class that handles both discrete and continuous RVs """ def __init__(self, nnc_compile: bool = True): self._disc_proposers = {} self._cont_proposer = None self._continuous_rvs = set() self._jit_backend = get_backend(nnc_compile, False) def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._disc_proposers: support = world.get_variable(node).distribution.support if not support.is_discrete: self._continuous_rvs.add(node) continue else: self._disc_proposers[node] = SingleSiteUniformProposer(node) proposers.append(self._disc_proposers[node]) if self._cont_proposer is not None: if len(self._cont_proposer._target_rvs) != len(self._continuous_rvs): raise ValueError( "Graph has changed between iterations. NUTS requires a" " static model." ) proposers.append(self._cont_proposer) else: if len(self._continuous_rvs): continuous_proposer = NUTSProposer( world, self._continuous_rvs, num_adaptive_sample, jit_backend=self._jit_backend, ) self._cont_proposer = continuous_proposer proposers.append(self._cont_proposer) return proposers def _get_rv_family(rv_wrapper: Callable) -> Callable: """A helper function that return the unbounded function for a give random variable wrapper""" if inspect.ismethod(rv_wrapper): # For methods, we'll need to use the unbounded function instead of the # bounded method to determine which proposer to apply return cast(Callable, rv_wrapper.__func__) else: return rv_wrapper def _get_nodes_for_rv_family( rv_families: Union[Callable, Tuple[Callable, ...]], rv_family_to_node: Dict[Callable, Set[RVIdentifier]], ) -> Set[RVIdentifier]: """A helper function that returns a list of nodes that belong to a particular RV family (or a particular tuple of RV families)""" # collect all nodes that belong to rv_families families = {rv_families} if isinstance(rv_families, Callable) else set(rv_families) nodes = set().union(*(rv_family_to_node.get(family, set()) for family in families)) return nodes class CompositionalInference(BaseInference): """ The ``CompositionalInference`` class enables combining multiple inference algorithms and blocking random variables together. By default, continuous variables will be blocked together and use the ``GlobalNoUTurnProposer``. Discrete variables will be proposed independently with ``SingleSiteUniformProposer``. To override the default behavior, you can pass an ``inference_dict``. To learn more about Compositional Inference, please see the `Compositional Inference <https://beanmachine.org/docs/compositional_inference/>`_ page on our website. Example 0 (use different inference method for different random variable families):: CompositionalInference({ model.foo: bm.SingleSiteAncestralMetropolisHastings(), model.bar: bm.SingleSiteNewtonianMonteCarlo(), }) Example 1 (override default inference method):: CompositionalInference({...: bm.SingleSiteAncestralMetropolisHastings()}) Example 2 (block inference (jointly propose) ``model.foo`` and ``model.bar``):: CompositionalInference({(model.foo, model.bar): bm.GlobalNoUTurnSampler()}) .. warning:: When using the default inference behavior, graphs (i.e. the number of latent variables) must be static and cannot change between iterations. Args: inference_dict: an optional inference configuration as shown above. nnc_compile: where available, use NNC to compile proposers. """ def __init__( self, inference_dict: Optional[ Dict[ Union[Callable, Tuple[Callable, ...], EllipsisClass], Union[BaseInference, Tuple[BaseInference, ...], EllipsisClass], ] ] = None, nnc_compile: bool = True, ): self.config: Dict[Union[Callable, Tuple[Callable, ...]], BaseInference] = {} # create a set for the RV families that are being covered in the config; this is # useful in get_proposers to determine which RV needs to be handle by the # default inference method self._covered_rv_families = set() default_inference = _DefaultInference(nnc_compile=nnc_compile) if inference_dict is not None: default_inference = inference_dict.pop(Ellipsis, default_inference) assert isinstance(default_inference, BaseInference) # preprocess inference dict for rv_families, inference in inference_dict.items(): # parse key if isinstance(rv_families, Callable): config_key = _get_rv_family(rv_families) self._covered_rv_families.add(config_key) else: # key is a tuple/block of families config_key = tuple(map(_get_rv_family, rv_families)) self._covered_rv_families.update(config_key) # parse value if isinstance(inference, BaseInference): config_val = inference elif inference == Ellipsis: config_val = default_inference else: # value is a tuple of inferences assert isinstance(inference, tuple) # there should be a one to one relationship between key and value assert isinstance(config_key, tuple) and len(config_key) == len( inference ) # convert to an equivalent nested compositional inference config_val = CompositionalInference( { rv_family: algorithm for rv_family, algorithm in zip(config_key, inference) } ) self.config[config_key] = config_val self._default_inference = default_inference def _get_default_num_adaptive_samples(self, num_samples: int) -> int: """Returns the default number of adaptive samples for CompositionalInference, which equals to the maximum number of adaptive samples recommended by each algorithm in the inference config.""" num_adaptive_per_algorithm = [ self._default_inference._get_default_num_adaptive_samples(num_samples) ] for inference in self.config.values(): num_adaptive_per_algorithm.append( inference._get_default_num_adaptive_samples(num_samples) ) return max(num_adaptive_per_algorithm) def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: # create a RV family to RVIdentifier lookup map rv_family_to_node = defaultdict(set) for node in target_rvs: rv_family_to_node[node.wrapper].add(node) all_proposers = [] for target_families, inference in self.config.items(): nodes = _get_nodes_for_rv_family(target_families, rv_family_to_node) if len(nodes) > 0: proposers = inference.get_proposers(world, nodes, num_adaptive_sample) if isinstance(target_families, tuple): # tuple of RVs == block into a single accept/reject step proposers = [SequentialProposer(proposers)] all_proposers.extend(proposers) # apply default proposers on nodes whose family are not covered by any of the # proposers listed in the config remaining_families = rv_family_to_node.keys() - self._covered_rv_families remaining_nodes = _get_nodes_for_rv_family( tuple(remaining_families), rv_family_to_node ) if len(remaining_nodes) > 0: proposers = self._default_inference.get_proposers( world, remaining_nodes, num_adaptive_sample ) all_proposers.extend(proposers) return all_proposers
beanmachine-main
src/beanmachine/ppl/inference/compositional_infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import warnings from abc import ABCMeta, abstractmethod from functools import partial from typing import List, Optional, Set, Tuple import torch from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.sampler import Sampler from beanmachine.ppl.inference.utils import ( _execute_in_new_thread, _verify_queries_and_observations, seed as set_seed, VerboseLevel, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import init_to_uniform, InitializeFn, RVDict, World from torch import multiprocessing as mp from tqdm.auto import tqdm from tqdm.notebook import tqdm as notebook_tqdm from typing_extensions import Literal class BaseInference(metaclass=ABCMeta): """ Abstract class all inference methods should inherit from. """ # maximum value of a seed _MAX_SEED_VAL: int = 2**32 - 1 @abstractmethod def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: """ Returns the proposer(s) corresponding to every non-observed variable in target_rvs. Should be implemented by the specific inference algorithm. """ raise NotImplementedError def _get_default_num_adaptive_samples(self, num_samples: int) -> int: """ Returns a reasonable default number of adaptive samples for the algorithm. """ return 0 def _single_chain_infer( self, queries: List[RVIdentifier], observations: RVDict, num_samples: int, num_adaptive_samples: int, show_progress_bar: bool, initialize_fn: InitializeFn, max_init_retries: int, chain_id: int, seed: Optional[int] = None, ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: """ Run a single chain of inference. Return a list of samples (in the same order as the queries) and a list of log likelihood on observations Args: queries: A list of queries. observations: A dictionary of observations. num_samples: Number of samples. num_adaptive_samples: Number of adaptive samples. show_progress_bar: Whether to display the progress bar. initialize_fn: A callable that takes in a distribution and returns a Tensor. max_init_retries: The number of attempts to make to initialize values for an inference before throwing an error. chain_id: The index of the current chain. seed: If provided, the seed will be used to initialize the state of the random number generators for the current chain """ if seed is not None: set_seed(seed) # A hack to fix the issue where tqdm doesn't render progress bar correctly in # subprocess in Jupyter notebook (https://github.com/tqdm/tqdm/issues/485) if show_progress_bar and issubclass(tqdm, notebook_tqdm): print(" ", end="", flush=True) sampler = self.sampler( queries, observations, num_samples, num_adaptive_samples, initialize_fn, max_init_retries, ) samples = [[] for _ in queries] log_likelihoods = [[] for _ in observations] # Main inference loop for world in tqdm( sampler, total=num_samples + num_adaptive_samples, desc="Samples collected", disable=not show_progress_bar, position=chain_id, ): for idx, obs in enumerate(observations): log_likelihoods[idx].append(world.log_prob([obs])) # Extract samples for idx, query in enumerate(queries): raw_val = world.call(query) if not isinstance(raw_val, torch.Tensor): raise TypeError( "The value returned by a queried function must be a tensor." ) samples[idx].append(raw_val) samples = [torch.stack(val) for val in samples] log_likelihoods = [torch.stack(val) for val in log_likelihoods] return samples, log_likelihoods def infer( self, queries: List[RVIdentifier], observations: RVDict, num_samples: int, num_chains: int = 4, num_adaptive_samples: Optional[int] = None, show_progress_bar: bool = True, initialize_fn: InitializeFn = init_to_uniform, max_init_retries: int = 100, run_in_parallel: bool = False, mp_context: Optional[Literal["fork", "spawn", "forkserver"]] = None, verbose: Optional[VerboseLevel] = None, ) -> MonteCarloSamples: """ Performs inference and returns a ``MonteCarloSamples`` object with samples from the posterior. Args: queries: List of queries observations: Observations as an RVDict keyed by RVIdentifier num_samples: Number of samples. num_chains: Number of chains to run, defaults to 4. num_adaptive_samples: Number of adaptive samples. If not provided, BM will fall back to algorithm-specific default value based on num_samples. show_progress_bar: Whether to display the progress bar, defaults to True. initialize_fn: A callable that takes in a distribution and returns a Tensor. The default behavior is to sample from Uniform(-2, 2) then biject to the support of the distribution. max_init_retries: The number of attempts to make to initialize values for an inference before throwing an error (default to 100). run_in_parallel: Whether to run multiple chains in parallel (with multiple processes). mp_context: The `multiprocessing context <https://docs.python.org/3.8/library/multiprocessing.html#contexts-and-start-methods>`_ to used for parallel inference. verbose: (Deprecated) Whether to display the progress bar. This option is deprecated, please use ``show_progress_bar`` instead. """ if verbose is not None: warnings.warn( "The `verbose` argument and `VerboseLevel` are " "deprecated and will be removed in the next release of Bean " "Machine. Please use `show_progress_bar` instead.", DeprecationWarning, stacklevel=2, # show the caller rather than this line ) show_progress_bar = bool(verbose) _verify_queries_and_observations( queries, observations, observations_must_be_rv=True ) if num_adaptive_samples is None: num_adaptive_samples = self._get_default_num_adaptive_samples(num_samples) single_chain_infer = partial( self._single_chain_infer, queries, observations, num_samples, num_adaptive_samples, show_progress_bar, initialize_fn, max_init_retries, ) if not run_in_parallel: chain_results = map(single_chain_infer, range(num_chains)) else: ctx = mp.get_context(mp_context) # We'd like to explicitly set a different seed for each process to avoid # duplicating the same RNG state for all chains first_seed = torch.randint(self._MAX_SEED_VAL, ()).item() seeds = [ (first_seed + 31 * chain_id) % self._MAX_SEED_VAL for chain_id in range(num_chains) ] # run single chain inference in a new thread in subprocesses to avoid # forking corrupted internal states # (https://github.com/pytorch/pytorch/issues/17199) single_chain_infer = partial(_execute_in_new_thread, single_chain_infer) with ctx.Pool( processes=num_chains, initializer=tqdm.set_lock, initargs=(ctx.Lock(),) ) as p: chain_results = p.starmap(single_chain_infer, enumerate(seeds)) all_samples, all_log_liklihoods = zip(*chain_results) # the hash of RVIdentifier can change when it is being sent to another process, # so we have to rely on the order of the returned list to determine which samples # correspond to which RVIdentifier all_samples = [dict(zip(queries, samples)) for samples in all_samples] # in python the order of keys in a dict is fixed, so we can rely on it all_log_liklihoods = [ dict(zip(observations.keys(), log_likelihoods)) for log_likelihoods in all_log_liklihoods ] return MonteCarloSamples( all_samples, num_adaptive_samples, all_log_liklihoods, observations, ) def sampler( self, queries: List[RVIdentifier], observations: RVDict, num_samples: Optional[int] = None, num_adaptive_samples: Optional[int] = None, initialize_fn: InitializeFn = init_to_uniform, max_init_retries: int = 100, ) -> Sampler: """ Returns a generator that returns a new world (represents a new state of the graph) each time it is iterated. If num_samples is not provided, this method will return an infinite generator. Args: queries: List of queries observations: Observations as an RVDict keyed by RVIdentifier num_samples: Number of samples, defaults to None for an infinite sampler. num_adaptive_samples: Number of adaptive samples. If not provided, BM will fall back to algorithm-specific default value based on num_samples. If num_samples is not provided either, then defaults to 0. initialize_fn: A callable that takes in a distribution and returns a Tensor. The default behavior is to sample from Uniform(-2, 2) then biject to the support of the distribution. max_init_retries: The number of attempts to make to initialize values for an inference before throwing an error (default to 100). """ _verify_queries_and_observations( queries, observations, observations_must_be_rv=True ) if num_adaptive_samples is None: if num_samples is None: num_adaptive_samples = 0 else: num_adaptive_samples = self._get_default_num_adaptive_samples( num_samples ) world = World.initialize_world( queries, observations, initialize_fn, max_init_retries, ) # start inference with a copy of self to ensure that multi-chain or multi # inference runs all start with the same pristine state kernel = copy.deepcopy(self) sampler = Sampler(kernel, world, num_samples, num_adaptive_samples) return sampler
beanmachine-main
src/beanmachine/ppl/inference/base_inference.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import List, Set import torch.distributions as dist from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.nmc import ( SingleSiteHalfSpaceNMCProposer, SingleSiteRealSpaceNMCProposer, SingleSiteSimplexSpaceNMCProposer, ) from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World from beanmachine.ppl.world.utils import BetaDimensionTransform, is_constraint_eq LOGGER = logging.getLogger("beanmachine") class SingleSiteNewtonianMonteCarlo(BaseInference): """ Single site Newtonian Monte Carlo [1]. This algorithm selects a proposer based on the support of the random variable. Valid supports include real, positive real, and simplex. Each site is proposed independently. [1] Arora, Nim, et al. `Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods` Args: real_space_alpha: alpha value for real space as specified in [1], defaults to 10.0 real_space_beta: beta value for real space as specified in [1], defaults to 1.0 """ def __init__( self, real_space_alpha: float = 10.0, real_space_beta: float = 1.0, ): self._proposers = {} self.alpha = real_space_alpha self.beta = real_space_beta def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._proposers: self._proposers[node] = self._init_nmc_proposer(node, world) proposers.append(self._proposers[node]) return proposers def _init_nmc_proposer(self, node: RVIdentifier, world: World) -> BaseProposer: """ A helper function that initialize a NMC proposer for the given node. The type of NMC proposer will be chosen based on a node's support. """ distribution = world.get_variable(node).distribution support = distribution.support if is_constraint_eq(support, dist.constraints.real): return SingleSiteRealSpaceNMCProposer(node, self.alpha, self.beta) elif any( is_constraint_eq( support, (dist.constraints.greater_than, dist.constraints.greater_than_eq), ) ): return SingleSiteHalfSpaceNMCProposer(node) elif is_constraint_eq(support, dist.constraints.simplex) or ( isinstance(support, dist.constraints.independent) and (support.base_constraint == dist.constraints.unit_interval) ): return SingleSiteSimplexSpaceNMCProposer(node) elif isinstance(distribution, dist.Beta): return SingleSiteSimplexSpaceNMCProposer( node, transform=BetaDimensionTransform() ) else: LOGGER.warning( f"Node {node} has unsupported constraints. " + "Proposer falls back to SingleSiteAncestralProposer.\n" ) return SingleSiteAncestralProposer(node)
beanmachine-main
src/beanmachine/ppl/inference/single_site_nmc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.inference.bmg_inference import BMGInference from beanmachine.ppl.inference.compositional_infer import CompositionalInference from beanmachine.ppl.inference.hmc_inference import ( GlobalHamiltonianMonteCarlo, SingleSiteHamiltonianMonteCarlo, ) from beanmachine.ppl.inference.nuts_inference import ( GlobalNoUTurnSampler, SingleSiteNoUTurnSampler, ) from beanmachine.ppl.inference.predictive import empirical, simulate from beanmachine.ppl.inference.single_site_ancestral_mh import ( SingleSiteAncestralMetropolisHastings, ) from beanmachine.ppl.inference.single_site_nmc import SingleSiteNewtonianMonteCarlo from beanmachine.ppl.inference.single_site_random_walk import SingleSiteRandomWalk from beanmachine.ppl.inference.single_site_uniform_mh import ( SingleSiteUniformMetropolisHastings, ) from beanmachine.ppl.inference.utils import seed, VerboseLevel __all__ = [ "BMGInference", "CompositionalInference", "GlobalHamiltonianMonteCarlo", "GlobalNoUTurnSampler", "SingleSiteAncestralMetropolisHastings", "SingleSiteHamiltonianMonteCarlo", "SingleSiteNewtonianMonteCarlo", "SingleSiteNoUTurnSampler", "SingleSiteRandomWalk", "SingleSiteUniformMetropolisHastings", "VerboseLevel", "empirical", "seed", "simulate", ]
beanmachine-main
src/beanmachine/ppl/inference/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Set from beanmachine.ppl.experimental.torch_jit_backend import get_backend from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.hmc_proposer import HMCProposer from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class GlobalHamiltonianMonteCarlo(BaseInference): """ Global (multi-site) Hamiltonian Monte Carlo [1] sampler. This global sampler blocks all of the target random_variables in the World together and proposes them jointly. [1] Neal, Radford. `MCMC Using Hamiltonian Dynamics`. Args: trajectory_length (float): Length of single trajectory. initial_step_size (float): Defaults to 1.0. adapt_step_size (bool): Whether to adapt the step size, Defaults to True, adapt_mass_matrix (bool): Whether to adapt the mass matrix. Defaults to True, target_accept_prob (float): Target accept prob. Increasing this value would lead to smaller step size. Defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. experimental_inductor_compile: If True, TorchInductor will be used to accelerate the inference. """ def __init__( self, trajectory_length: float, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, target_accept_prob: float = 0.8, nnc_compile: bool = False, experimental_inductor_compile: bool = False, ): self.trajectory_length = trajectory_length self.initial_step_size = initial_step_size self.adapt_step_size = adapt_step_size self.adapt_mass_matrix = adapt_mass_matrix self.full_mass_matrix = full_mass_matrix self.target_accept_prob = target_accept_prob self.jit_backend = get_backend(nnc_compile, experimental_inductor_compile) self._proposer = None def _get_default_num_adaptive_samples(self, num_samples: int) -> int: return num_samples // 2 def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: if self._proposer is None: self._proposer = HMCProposer( world, target_rvs, num_adaptive_sample, self.trajectory_length, self.initial_step_size, self.adapt_step_size, self.adapt_mass_matrix, self.full_mass_matrix, self.target_accept_prob, self.jit_backend, ) return [self._proposer] class SingleSiteHamiltonianMonteCarlo(BaseInference): """ Single site Hamiltonian Monte Carlo [1] sampler. During inference, each random variable is proposed through its own leapfrog trajectory while fixing the rest of World as constant. [1] Neal, Radford. `MCMC Using Hamiltonian Dynamics`. Args: trajectory_length (float): Length of single trajectory. initial_step_size (float): Defaults to 1.0. adapt_step_size (bool): Whether to adapt the step size, Defaults to True, adapt_mass_matrix (bool): Whether to adapt the mass matrix. Defaults to True, target_accept_prob (float): Target accept prob. Increasing this value would lead to smaller step size. Defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. experimental_inductor_compile: If True, TorchInductor will be used to accelerate the inference. """ def __init__( self, trajectory_length: float, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, target_accept_prob: float = 0.8, nnc_compile: bool = True, experimental_inductor_compile: bool = False, ): self.trajectory_length = trajectory_length self.initial_step_size = initial_step_size self.adapt_step_size = adapt_step_size self.adapt_mass_matrix = adapt_mass_matrix self.full_mass_matrix = full_mass_matrix self.target_accept_prob = target_accept_prob self.jit_backend = get_backend(nnc_compile, experimental_inductor_compile) self._proposers = {} def _get_default_num_adaptive_samples(self, num_samples: int) -> int: return num_samples // 2 def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._proposers: self._proposers[node] = HMCProposer( world, {node}, num_adaptive_sample, self.trajectory_length, self.initial_step_size, self.adapt_step_size, self.adapt_mass_matrix, self.full_mass_matrix, self.target_accept_prob, self.jit_backend, ) proposers.append(self._proposers[node]) return proposers
beanmachine-main
src/beanmachine/ppl/inference/hmc_inference.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Set, Type from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.base_single_site_mh_proposer import ( BaseSingleSiteMHProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class SingleSiteInference(BaseInference): """ Base class for single site inference algorithms. Args: proposer_class: Class of proposer to initialize with """ def __init__(self, proposer_class: Type[BaseSingleSiteMHProposer], **kwargs): self.proposer_class = proposer_class self.inference_args = kwargs self._proposers = {} def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._proposers: self._proposers[node] = self.proposer_class( # pyre-ignore [45] node, **self.inference_args ) proposers.append(self._proposers[node]) return proposers
beanmachine-main
src/beanmachine/ppl/inference/single_site_inference.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Set from beanmachine.ppl.experimental.torch_jit_backend import get_backend from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.nuts_proposer import NUTSProposer from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class GlobalNoUTurnSampler(BaseInference): """ Global No U-turn sampler [1]. This sampler blocks multiple variables together in the World and samples them jointly. This sampler adaptively sets the hyperparameters of the HMC kernel. [1] Hoffman and Gelman. `The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo`. [2] Betancourt, Michael. `A Conceptual Introduction to Hamiltonian Monte Carlo`. Args: max_tree_depth (int): Maximum tree depth, defaults to 10. max_delta_energy (float): Maximum delta energy (for numerical stability), defaults to 1000. initial_step_size (float): Defaults to 1.0. adapt_step_size (bool): Whether to adapt step size with Dual averaging as suggested in [1], defaults to True. adapt_mass_matrix (bool) Whether to adapt mass matrix using Welford Scheme, defaults to True. multinomial_sampling (bool): Whether to use multinomial sampling as in [2], defaults to True. target_accept_prob (float): Target accept probability. Increasing this would lead to smaller step size. Defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. experimental_inductor_compile: If True, TorchInductor will be used to accelerate the inference. """ def __init__( self, max_tree_depth: int = 10, max_delta_energy: float = 1000.0, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, multinomial_sampling: bool = True, target_accept_prob: float = 0.8, nnc_compile: bool = True, experimental_inductor_compile: bool = False, ): self.max_tree_depth = max_tree_depth self.max_delta_energy = max_delta_energy self.initial_step_size = initial_step_size self.adapt_step_size = adapt_step_size self.adapt_mass_matrix = adapt_mass_matrix self.full_mass_matrix = full_mass_matrix self.multinomial_sampling = multinomial_sampling self.target_accept_prob = target_accept_prob self.jit_backend = get_backend(nnc_compile, experimental_inductor_compile) self._proposer = None def _get_default_num_adaptive_samples(self, num_samples: int) -> int: return num_samples // 2 def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: if self._proposer is None: self._proposer = NUTSProposer( world, target_rvs, num_adaptive_sample, self.max_tree_depth, self.max_delta_energy, self.initial_step_size, self.adapt_step_size, self.adapt_mass_matrix, self.full_mass_matrix, self.multinomial_sampling, self.target_accept_prob, self.jit_backend, ) return [self._proposer] class SingleSiteNoUTurnSampler(BaseInference): """ Single site No U-turn sampler [1]. This sampler proposes value for each random variable in the World one at a time. This sampler adaptively sets the hyperparameters of the HMC kernel. [1] Hoffman and Gelman. `The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo`. [2] Betancourt, Michael. `A Conceptual Introduction to Hamiltonian Monte Carlo`. Args: max_tree_depth (int): Maximum tree depth, defaults to 10. max_delta_energy (float): Maximum delta energy (for numerical stability), defaults to 1000. initial_step_size (float): Defaults to 1.0. adapt_step_size (bool): Whether to adapt step size with Dual averaging as suggested in [1], defaults to True. adapt_mass_matrix (bool) Whether to adapt mass matrix using Welford Scheme, defaults to True. multinomial_sampling (bool): Whether to use multinomial sampling as in [2], defaults to True. target_accept_prob (float): Target accept probability. Increasing this would lead to smaller step size. Defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. experimental_inductor_compile: If True, TorchInductor will be used to accelerate the inference. """ def __init__( self, max_tree_depth: int = 10, max_delta_energy: float = 1000.0, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, multinomial_sampling: bool = True, target_accept_prob: float = 0.8, nnc_compile: bool = False, experimental_inductor_compile: bool = False, ): self.max_tree_depth = max_tree_depth self.max_delta_energy = max_delta_energy self.initial_step_size = initial_step_size self.adapt_step_size = adapt_step_size self.adapt_mass_matrix = adapt_mass_matrix self.full_mass_matrix = full_mass_matrix self.multinomial_sampling = multinomial_sampling self.target_accept_prob = target_accept_prob self.jit_backend = get_backend(nnc_compile, experimental_inductor_compile) self._proposers = {} def _get_default_num_adaptive_samples(self, num_samples: int) -> int: return num_samples // 2 def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._proposers: self._proposers[node] = NUTSProposer( world, {node}, num_adaptive_sample, self.max_tree_depth, self.max_delta_energy, self.initial_step_size, self.adapt_step_size, self.adapt_mass_matrix, self.full_mass_matrix, self.multinomial_sampling, self.target_accept_prob, self.jit_backend, ) proposers.append(self._proposers[node]) return proposers
beanmachine-main
src/beanmachine/ppl/inference/nuts_inference.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, Iterator, List, Mapping, NamedTuple, Optional, Union import arviz as az import torch import xarray as xr from beanmachine.ppl.inference.utils import detach_samples, merge_dicts from beanmachine.ppl.model.rv_identifier import RVIdentifier RVDict = Dict[RVIdentifier, torch.Tensor] class Samples(NamedTuple): samples: RVDict adaptive_samples: RVDict class MonteCarloSamples(Mapping[RVIdentifier, torch.Tensor]): """ Represents a view of the data representing the results of infer If no chain is specified, the data across all chains is accessible If a chain is specified, only the data from the chain will be accessible """ def __init__( self, chain_results: Union[List[RVDict], RVDict], num_adaptive_samples: int = 0, logll_results: Optional[Union[List[RVDict], RVDict]] = None, observations: Optional[RVDict] = None, stack_not_cat: bool = True, default_namespace: str = "posterior", ): self.namespaces = {} self.default_namespace = default_namespace if default_namespace not in self.namespaces: self.namespaces[default_namespace] = {} if isinstance(chain_results, list): self.num_chains = len(chain_results) chain_results = merge_dicts(chain_results, 0, stack_not_cat) else: self.num_chains = next(iter(chain_results.values())).shape[0] self.num_adaptive_samples = num_adaptive_samples self.namespaces[default_namespace] = Samples({}, {}) for rv, val in chain_results.items(): self.adaptive_samples[rv] = val[:, :num_adaptive_samples] self.samples[rv] = val[:, num_adaptive_samples:] if logll_results is not None: if isinstance(logll_results, list): logll = merge_dicts(logll_results, 0, stack_not_cat) else: logll = logll_results self.log_likelihoods = {} self.adaptive_log_likelihoods = {} for rv, val in logll.items(): self.adaptive_log_likelihoods[rv] = val[:, :num_adaptive_samples] self.log_likelihoods[rv] = val[:, num_adaptive_samples:] else: self.log_likelihoods = None self.adaptive_log_likelihoods = None self.observations = observations # single_chain_view is only set when self.get_chain is called self.single_chain_view = False @property def samples(self): return self.namespaces[self.default_namespace].samples @property def adaptive_samples(self): return self.namespaces[self.default_namespace].adaptive_samples def __getitem__(self, rv: RVIdentifier) -> torch.Tensor: """ :param rv: random variable to view values of :results: samples drawn during inference for the specified variable """ return self.get_variable(rv, include_adapt_steps=False) def __iter__(self) -> Iterator[RVIdentifier]: return iter(self.samples) def __len__(self) -> int: return len(self.samples) def __str__(self) -> str: return str(self.samples) def get_chain(self, chain: int = 0) -> "MonteCarloSamples": """ Return a MonteCarloSamples with restricted view to a specified chain :param chain: specific chainto view. :returns: view of the data restricted to specified chain """ if self.single_chain_view: raise ValueError( "The current MonteCarloSamples object has already been" " restricted to a single chain" ) elif chain < 0 or chain >= self.num_chains: raise IndexError("Please specify a valid chain") samples = {rv: self.get_variable(rv, True)[[chain]] for rv in self} if self.log_likelihoods is None: logll = None else: logll = { rv: self.get_log_likelihoods(rv, True)[[chain]] for rv in self.log_likelihoods } new_mcs = MonteCarloSamples( chain_results=samples, num_adaptive_samples=self.num_adaptive_samples, logll_results=logll, observations=self.observations, default_namespace=self.default_namespace, ) new_mcs.single_chain_view = True return new_mcs def get_variable( self, rv: RVIdentifier, include_adapt_steps: bool = False, thinning: int = 1, namespace: Optional[str] = None, ) -> torch.Tensor: """ Let C be the number of chains, S be the number of samples If include_adapt_steps, S' = S. Else, S' = S - num_adaptive_samples. if no chain specified: samples[var] returns a Tensor of (C, S', (shape of Var)) if a chain is specified: samples[var] returns a Tensor of (S', (shape of Var)) :param rv: random variable to see samples :param include_adapt_steps: Indicates whether the beginning of the chain should be included with the healthy samples. :returns: samples drawn during inference for the specified variable """ if not isinstance(rv, RVIdentifier): raise TypeError( "The key is required to be a random variable " + f"but is of type {type(rv).__name__}." ) if namespace is None: namespace = self.default_namespace samples = self.namespaces[namespace].samples[rv] if include_adapt_steps: samples = torch.cat( [self.namespaces[namespace].adaptive_samples[rv], samples], dim=1, ) if thinning > 1: samples = samples[:, ::thinning] if self.single_chain_view: samples = samples.squeeze(0) return samples def get_log_likelihoods( self, rv: RVIdentifier, include_adapt_steps: bool = False, ) -> torch.Tensor: """ :returns: log_likelihoods computed during inference for the specified variable """ if not isinstance(rv, RVIdentifier): raise TypeError( "The key is required to be a random variable " + f"but is of type {type(rv).__name__}." ) logll = self.log_likelihoods[rv] if include_adapt_steps: logll = torch.cat([self.adaptive_log_likelihoods[rv], logll], dim=1) if self.single_chain_view: logll = logll.squeeze(0) return logll def get( self, rv: RVIdentifier, default: Any = None, chain: Optional[int] = None, include_adapt_steps: bool = False, thinning: int = 1, ): """ Return the value of the random variable if rv is in the dictionary, otherwise return the default value. This method is analogous to Python's dict.get(). The chain and include_adapt_steps parameters serve the same purpose as in get_chain and get_variable. """ if rv not in self.samples: return default if chain is None: samples = self else: samples = self.get_chain(chain) return samples.get_variable(rv, include_adapt_steps, thinning) def get_num_samples(self, include_adapt_steps: bool = False) -> int: """ :returns: the number of samples run during inference """ num_samples = next(iter(self.samples.values())).shape[1] if include_adapt_steps: return num_samples + self.num_adaptive_samples return num_samples def to_xarray(self, include_adapt_steps: bool = False) -> xr.Dataset: """ Return an xarray.Dataset from MonteCarloSamples. """ inference_data = self.to_inference_data(include_adapt_steps) if not include_adapt_steps: return inference_data["posterior"] else: return xr.concat( [inference_data["warmup_posterior"], inference_data["posterior"]], dim="draw", ) def add_groups(self, mcs: "MonteCarloSamples"): if self.observations is None: self.observations = mcs.observations if self.log_likelihoods is None: self.log_likelihoods = mcs.log_likelihoods if self.adaptive_log_likelihoods is None: self.adaptive_log_likelihoods = mcs.adaptive_log_likelihoods for n in mcs.namespaces: if n not in self.namespaces: self.namespaces[n] = mcs.namespaces[n] def to_inference_data(self, include_adapt_steps: bool = False) -> az.InferenceData: """ Return an az.InferenceData from MonteCarloSamples. """ if "posterior" in self.namespaces: posterior = detach_samples(self.namespaces["posterior"].samples) if self.num_adaptive_samples > 0: warmup_posterior = detach_samples( self.namespaces["posterior"].adaptive_samples ) else: warmup_posterior = None else: posterior = None warmup_posterior = None if self.num_adaptive_samples > 0: warmup_log_likelihood = self.adaptive_log_likelihoods if warmup_log_likelihood is not None: warmup_log_likelihood = detach_samples(warmup_log_likelihood) else: warmup_log_likelihood = None if "posterior_predictive" in self.namespaces: posterior_predictive = detach_samples( self.namespaces["posterior_predictive"].samples ) if self.num_adaptive_samples > 0: warmup_posterior_predictive = detach_samples( self.namespaces["posterior"].adaptive_samples ) else: warmup_posterior_predictive = None else: posterior_predictive = None warmup_posterior_predictive = None if "prior_predictive" in self.namespaces: prior_predictive = detach_samples( self.namespaces["prior_predictive"].samples ) else: prior_predictive = None if self.log_likelihoods is not None: log_likelihoods = detach_samples(self.log_likelihoods) else: log_likelihoods = None if self.observations is not None: observed_data = detach_samples(self.observations) else: observed_data = None return az.from_dict( posterior=posterior, warmup_posterior=warmup_posterior, posterior_predictive=posterior_predictive, warmup_posterior_predictive=warmup_posterior_predictive, prior_predictive=prior_predictive, save_warmup=include_adapt_steps, warmup_log_likelihood=warmup_log_likelihood, log_likelihood=log_likelihoods, observed_data=observed_data, )
beanmachine-main
src/beanmachine/ppl/inference/monte_carlo_samples.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random from concurrent.futures import ThreadPoolExecutor from enum import Enum from typing import Any, Callable, Dict, List import numpy as np import numpy.random import torch from beanmachine.ppl.model.rv_identifier import RVIdentifier RVDict = Dict[RVIdentifier, torch.Tensor] # Detect and report if a user fails to meet the inference contract. def _verify_queries(queries: List[RVIdentifier]) -> None: if not isinstance(queries, list): t = type(queries).__name__ raise TypeError( f"Parameter 'queries' is required to be a list but is of type {t}." ) for query in queries: if not isinstance(query, RVIdentifier): t = type(query).__name__ raise TypeError( f"A query is required to be a random variable but is of type {t}." ) for arg in query.arguments: if isinstance(arg, RVIdentifier): raise TypeError( "The arguments to a query must not be random variables." ) def _verify_observations( observations: Dict[RVIdentifier, torch.Tensor], must_be_rv: bool ) -> None: if not isinstance(observations, dict): t = type(observations).__name__ raise TypeError( f"Parameter 'observations' is required to be a dictionary but is of type {t}." ) for rv, value in observations.items(): if not isinstance(rv, RVIdentifier): t = type(rv).__name__ raise TypeError( f"An observation is required to be a random variable but is of type {t}." ) if not isinstance(value, torch.Tensor): t = type(value).__name__ raise TypeError( f"An observed value is required to be a tensor but is of type {t}." ) if must_be_rv and rv.is_functional: raise TypeError( "An observation must observe a random_variable, not a functional." ) for arg in rv.arguments: if isinstance(arg, RVIdentifier): raise TypeError( "The arguments to an observation must not be random variables." ) def _verify_queries_and_observations( queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], observations_must_be_rv: bool, ) -> None: _verify_queries(queries) _verify_observations(observations, observations_must_be_rv) class VerboseLevel(Enum): """ Enum class which is used to set how much output is printed during inference. LOAD_BAR enables tqdm for full inference loop. """ OFF = 0 LOAD_BAR = 1 def safe_log_prob_sum(distrib, value: torch.Tensor) -> torch.Tensor: "Computes log_prob, converting out of support exceptions to -Infinity." try: return distrib.log_prob(value).sum() except (RuntimeError, ValueError) as e: if not distrib.support.check(value).all(): return torch.tensor(float("-Inf")).to(value.device) else: raise e def merge_dicts( dicts: List[RVDict], dim: int = 0, stack_not_cat: bool = True ) -> RVDict: """ A helper function that merge multiple dicts of samples into a single dictionary, stacking across a new dimension """ rv_keys = set().union(*(rv_dict.keys() for rv_dict in dicts)) for idx, d in enumerate(dicts): if not rv_keys.issubset(d.keys()): raise ValueError(f"{rv_keys - d.keys()} are missing in dict {idx}") if stack_not_cat: return {rv: torch.stack([d[rv] for d in dicts], dim=dim) for rv in rv_keys} else: return {rv: torch.cat([d[rv] for d in dicts], dim=dim) for rv in rv_keys} def seed(seed: int) -> None: torch.manual_seed(seed) random.seed(seed) numpy.random.seed(seed) def _execute_in_new_thread(f: Callable, *args, **kwargs) -> Any: """A helper function to execute the given function in a new thread. This is used to resolve the deadlock issue with fork-based multiprocessing (see this PyTorch issue for details <https://github.com/pytorch/pytorch/issues/17199#issuecomment-833226969>_)""" with ThreadPoolExecutor() as executor: return executor.submit(f, *args, **kwargs).result() def detach_samples( samples: Dict[RVIdentifier, torch.Tensor], ) -> Dict[RVIdentifier, np.ndarray]: """Detach pytorch tensors. Args: samples (Dict[RVIdentifier, torch.Tensor]): Dictionary of RVIdentifiers with original torch tensors. Returns: Dict[RVIdentifier, np.ndarray]: Dictionary of RVIdentifiers with converted NumPy arrays. """ return {key: value.detach().numpy() for key, value in samples.items()}
beanmachine-main
src/beanmachine/ppl/inference/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import random import warnings from types import TracebackType from typing import Generator, NoReturn, Optional, Type, TYPE_CHECKING import torch if TYPE_CHECKING: from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.world import World class Sampler(Generator[World, Optional[World], None]): """ Samplers are generators of Worlds that generate samples from the joint. It is used to generate Monte Carlo samples during MCMC inference. At each iteration, the proposer(s) proposer a values for the random variables, which are then accepted according to the MH ratio. The next world is then returned. Args: kernel (BaseInference): Inference class to get proposers from. initial_world (World): Optional initial world to initialize from. num_samples (int, Optional): Number of samples. If none is specified, num_samples = inf. num_adaptive_samples (int, Optional): Number of adaptive samples, defaults to 0. """ def __init__( self, kernel: BaseInference, initial_world: World, num_samples: Optional[int] = None, num_adaptive_samples: int = 0, ): self.kernel = kernel self.world = initial_world self._num_samples_remaining = ( float("inf") if num_samples is None else num_samples ) self._num_samples_remaining += num_adaptive_samples self._num_adaptive_sample_remaining = num_adaptive_samples def send(self, world: Optional[World] = None) -> World: """ At each iteration, the following is executed: 1. Shuffle all the proposers in the world. 2. For each proposer, propose a world and accept/reject it based on MH ratio. 3. Run adaptation method if applicable. 4. Update the new current world as `self.world`. Args: world: Optional World to use to propose. If none is provided, `self.world` is used. """ if world is None: world = self.world if self._num_samples_remaining <= 0: raise StopIteration proposers = self.kernel.get_proposers( world, world.latent_nodes, self._num_adaptive_sample_remaining ) random.shuffle(proposers) for proposer in proposers: try: new_world, accept_log_prob = proposer.propose(world) accept_log_prob = accept_log_prob.clamp(max=0.0) accepted = torch.rand_like(accept_log_prob).log() < accept_log_prob if accepted: world = new_world except RuntimeError as e: if "singular U" in str(e) or "input is not positive-definite" in str(e): # since it's normal to run into cholesky error during GP, instead of # throwing an error, we simply skip current proposer (which is # equivalent to a rejection) and will retry in the next iteration warnings.warn(f"Proposal rejected: {e}", RuntimeWarning) accepted = False accept_log_prob = -torch.inf else: raise e if self._num_adaptive_sample_remaining > 0: proposer.do_adaptation( world=world, accept_log_prob=accept_log_prob, is_accepted=accepted ) if self._num_adaptive_sample_remaining == 1: # we just reach the end of adaptation period proposer.finish_adaptation() # update attributes at last, so that exceptions during inference won't leave # self in an invalid state self.world = world if self._num_adaptive_sample_remaining > 0: self._num_adaptive_sample_remaining -= 1 self._num_samples_remaining -= 1 return self.world def throw( self, typ: Type[BaseException], val: Optional[BaseException] = None, tb: Optional[TracebackType] = None, ) -> NoReturn: """Use the default error handling behavior (thorw Exception as-is)""" # pyre-fixme[7]: Function declared non-returnable, but got `None`. super().throw(typ, val, tb)
beanmachine-main
src/beanmachine/ppl/inference/sampler.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """An inference engine which uses Bean Machine Graph to make inferences on Bean Machine models.""" from typing import Dict, List, Optional, Set, Tuple import beanmachine.ppl.compiler.performance_report as pr import beanmachine.ppl.compiler.profiler as prof import graphviz import torch from beanmachine.graph import Graph, InferConfig, InferenceType from beanmachine.ppl.compiler.bm_graph_builder import rv_to_query from beanmachine.ppl.compiler.fix_problems import default_skip_optimizations from beanmachine.ppl.compiler.gen_bm_python import to_bm_python from beanmachine.ppl.compiler.gen_bmg_cpp import to_bmg_cpp from beanmachine.ppl.compiler.gen_bmg_graph import to_bmg_graph from beanmachine.ppl.compiler.gen_bmg_python import to_bmg_python from beanmachine.ppl.compiler.gen_dot import to_dot from beanmachine.ppl.compiler.gen_mini import to_mini from beanmachine.ppl.compiler.performance_report import PerformanceReport from beanmachine.ppl.compiler.runtime import BMGRuntime from beanmachine.ppl.inference.monte_carlo_samples import MonteCarloSamples from beanmachine.ppl.inference.utils import _verify_queries_and_observations from beanmachine.ppl.model.rv_identifier import RVIdentifier # TODO[Walid]: At some point, to facilitate checking the idea that this works pretty # much like any other BM inference, we should probably make this class a subclass of # AbstractMCInference. class BMGInference: """ Interface to Bean Machine Graph (BMG) Inference, an experimental framework for high-performance implementations of inference algorithms. Internally, BMGInference consists of a compiler and C++ runtime implementations of various inference algorithms. Currently, only Newtonian Monte Carlo (NMC) inference is supported, and is the algorithm used by default. Please note that this is a highly experimental implementation under active development, and that the subset of Bean Machine model is limited. Limitations include that the runtime graph should be static (meaning, it does not change during inference), and that the types of primitive distributions supported is currently limited. """ _fix_observe_true: bool = False _pd: Optional[prof.ProfilerData] = None def __init__(self): pass def _begin(self, s: str) -> None: pd = self._pd if pd is not None: pd.begin(s) def _finish(self, s: str) -> None: pd = self._pd if pd is not None: pd.finish(s) def _accumulate_graph( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], ) -> BMGRuntime: _verify_queries_and_observations(queries, observations, True) rt = BMGRuntime() rt._pd = self._pd bmg = rt.accumulate_graph(queries, observations) # TODO: Figure out a better way to pass this flag around bmg._fix_observe_true = self._fix_observe_true return rt def _transpose_samples(self, raw): self._begin(prof.transpose_samples) samples = [] num_samples = len(raw) bmg_query_count = len(raw[0]) # Suppose we have two queries and three samples; # the shape we get from BMG is: # # [ # [s00, s01], # [s10, s11], # [s20, s21] # ] # # That is, each entry in the list has values from both queries. # But what we need in the final dictionary is: # # { # RV0: tensor([[s00, s10, s20]]), # RV1: tensor([[s01, s11, s21]]) # } transposed = [torch.tensor([x]) for x in zip(*raw)] assert len(transposed) == bmg_query_count assert len(transposed[0]) == 1 assert len(transposed[0][0]) == num_samples # We now have # # [ # tensor([[s00, s10, s20]]), # tensor([[s01, s11, s21]]) # ] # # which looks like what we need. But we have an additional problem: # if the the sample is a matrix then it is in columns but we need it in rows. # # If an element of transposed is (1 x num_samples x rows x 1) then we # will just reshape it to (1 x num_samples x rows). # # If it is (1 x num_samples x rows x columns) for columns > 1 then # we transpose it to (1 x num_samples x columns x rows) # # If it is any other shape we leave it alone. for i in range(len(transposed)): t = transposed[i] if len(t.shape) == 4: if t.shape[3] == 1: assert t.shape[0] == 1 assert t.shape[1] == num_samples samples.append(t.reshape(1, num_samples, t.shape[2])) else: samples.append(t.transpose(2, 3)) else: samples.append(t) assert len(samples) == bmg_query_count assert len(samples[0]) == 1 assert len(samples[0][0]) == num_samples self._finish(prof.transpose_samples) return samples def _build_mcsamples( self, rv_to_query, samples, query_to_query_id, num_samples: int, num_chains: int, num_adaptive_samples: int, ) -> MonteCarloSamples: self._begin(prof.build_mcsamples) assert len(samples) == num_chains results = [] for chain_num in range(num_chains): result: Dict[RVIdentifier, torch.Tensor] = {} for (rv, query) in rv_to_query.items(): query_id = query_to_query_id[query] result[rv] = samples[chain_num][query_id] results.append(result) # MonteCarloSamples almost provides just what we need here, # but it requires the input to be of a different type in the # cases of num_chains==1 and !=1 respectively. Furthermore, # we had to tweak it to support the right operator for merging # saumple values when num_chains!=1. if num_chains == 1: mcsamples = MonteCarloSamples( results[0], num_adaptive_samples, stack_not_cat=True ) else: mcsamples = MonteCarloSamples( results, num_adaptive_samples, stack_not_cat=False ) self._finish(prof.build_mcsamples) return mcsamples def _infer( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], num_samples: int, num_chains: int = 1, num_adaptive_samples: int = 0, inference_type: InferenceType = InferenceType.NMC, produce_report: bool = True, skip_optimizations: Set[str] = default_skip_optimizations, ) -> Tuple[MonteCarloSamples, PerformanceReport]: if produce_report: self._pd = prof.ProfilerData() rt = self._accumulate_graph(queries, observations) bmg = rt._bmg report = pr.PerformanceReport() self._begin(prof.infer) generated_graph = to_bmg_graph(bmg, skip_optimizations) g = generated_graph.graph query_to_query_id = generated_graph.query_to_query_id samples = [] # BMG requires that we have at least one query. if len(query_to_query_id) != 0: g.collect_performance_data(produce_report) self._begin(prof.graph_infer) default_config = InferConfig() default_config.num_warmup = num_adaptive_samples num_adaptive_samples = 0 # TODO[Walid]: In the following we were previously silently using the default seed # specified in pybindings.cpp (and not passing the local one in). In the current # code we are explicitly passing in the same default value used in that file (5123401). # We really need a way to defer to the value defined in pybindings.py here. try: raw = g.infer( num_samples, inference_type, 5123401, num_chains, default_config ) except RuntimeError as e: raise RuntimeError( "Error during BMG inference\n" + "Note: the runtime error from BMG may not be interpretable.\n" ) from e self._finish(prof.graph_infer) if produce_report: self._begin(prof.deserialize_perf_report) js = g.performance_report() report = pr.json_to_perf_report(js) self._finish(prof.deserialize_perf_report) assert len(raw) == num_chains assert all([len(r) == num_samples for r in raw]) samples = [self._transpose_samples(r) for r in raw] # TODO: Make _rv_to_query public. Add it to BMGraphBuilder? mcsamples = self._build_mcsamples( rv_to_query(generated_graph.bmg), samples, query_to_query_id, num_samples, num_chains, num_adaptive_samples, ) self._finish(prof.infer) if produce_report: report.profiler_report = self._pd.to_report() # pyre-ignore return mcsamples, report def infer( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], num_samples: int, num_chains: int = 4, num_adaptive_samples: int = 0, inference_type: InferenceType = InferenceType.NMC, skip_optimizations: Set[str] = default_skip_optimizations, ) -> MonteCarloSamples: """ Perform inference by (runtime) compilation of Python source code associated with its parameters, constructing a BMG graph, and then calling the BMG implementation of a particular inference method on this graph. Args: queries: queried random variables observations: observations dict num_samples: number of samples in each chain num_chains: number of chains generated num_adaptive_samples: number of burn in samples to discard inference_type: inference method, currently only NMC is supported skip_optimizations: list of optimization to disable in this call Returns: MonteCarloSamples: The requested samples """ # TODO: Add verbose level # TODO: Add logging samples, _ = self._infer( queries, observations, num_samples, num_chains, num_adaptive_samples, inference_type, False, skip_optimizations, ) return samples def to_dot( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], after_transform: bool = True, label_edges: bool = False, skip_optimizations: Set[str] = default_skip_optimizations, ) -> str: """Produce a string containing a program in the GraphViz DOT language representing the graph deduced from the model.""" node_types = False node_sizes = False edge_requirements = False bmg = self._accumulate_graph(queries, observations)._bmg return to_dot( bmg, node_types, node_sizes, edge_requirements, after_transform, label_edges, skip_optimizations, ) def _to_mini( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], indent=None, ) -> str: """Internal test method for Neal's MiniBMG prototype.""" bmg = self._accumulate_graph(queries, observations)._bmg return to_mini(bmg, indent) def to_graphviz( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], after_transform: bool = True, label_edges: bool = False, skip_optimizations: Set[str] = default_skip_optimizations, ) -> graphviz.Source: """Small wrapper to generate an actual graphviz object""" s = self.to_dot( queries, observations, after_transform, label_edges, skip_optimizations ) return graphviz.Source(s) def to_cpp( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], ) -> str: """Produce a string containing a C++ program fragment which produces the graph deduced from the model.""" bmg = self._accumulate_graph(queries, observations)._bmg return to_bmg_cpp(bmg).code def to_python( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], ) -> str: """Produce a string containing a Python program fragment which produces the graph deduced from the model.""" bmg = self._accumulate_graph(queries, observations)._bmg return to_bmg_python(bmg).code def to_bm_python( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], ) -> str: """Produce a string containing a BM Python program from the graph.""" bmg = self._accumulate_graph(queries, observations)._bmg return to_bm_python(bmg) def to_graph( self, queries: List[RVIdentifier], observations: Dict[RVIdentifier, torch.Tensor], ) -> Tuple[Graph, Dict[RVIdentifier, int]]: """Produce a BMG graph and a map from queried RVIdentifiers to the corresponding indices of the inference results.""" rt = self._accumulate_graph(queries, observations) bmg = rt._bmg generated_graph = to_bmg_graph(bmg) g = generated_graph.graph query_to_query_id = generated_graph.query_to_query_id rv_to_query_map = rv_to_query(generated_graph.bmg) rv_to_query_id = {rv: query_to_query_id[rv_to_query_map[rv]] for rv in queries} return g, rv_to_query_id
beanmachine-main
src/beanmachine/ppl/inference/bmg_inference.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List, Set from beanmachine.ppl.inference.base_inference import BaseInference from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.single_site_random_walk_proposer import ( SingleSiteRandomWalkProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class SingleSiteRandomWalk(BaseInference): """ Single Site random walk Metropolis-Hastings. This single site algorithm uses a Normal distribution proposer. Args: step_size: Step size, defaults to 1.0 """ def __init__(self, step_size: float = 1.0): self.step_size = step_size self._proposers = {} def get_proposers( self, world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, ) -> List[BaseProposer]: proposers = [] for node in target_rvs: if node not in self._proposers: self._proposers[node] = SingleSiteRandomWalkProposer( node, self.step_size ) proposers.append(self._proposers[node]) return proposers
beanmachine-main
src/beanmachine/ppl/inference/single_site_random_walk.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from typing import Iterable import torch from beanmachine import ppl as bm from beanmachine.ppl.distributions.delta import Delta from beanmachine.ppl.inference.vi.variational_infer import VariationalInfer from beanmachine.ppl.inference.vi.variational_world import VariationalWorld from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import RVDict from torch import distributions as dist from torch.distributions.constraint_registry import biject_to, transform_to from torch.nn.functional import softplus class AutoGuideVI(VariationalInfer, metaclass=ABCMeta): """VI with guide distributions automatically generated.""" def __init__( self, queries: Iterable[RVIdentifier], observations: RVDict, **kwargs, ): queries_to_guides = {} # runs all queries to discover their dimensions world = VariationalWorld( observations=observations, params={}, queries_to_guides=queries_to_guides, ) # automatically instantiate `queries_to_guides` for query in queries: world.call(query) if query.is_random_variable: distrib = world.get_variable(query).distribution queries_to_guides[query] = self.get_guide(query, distrib) super().__init__( queries_to_guides=queries_to_guides, observations=observations, **kwargs, ) @staticmethod @abstractmethod def get_guide(query, distrib) -> RVIdentifier: pass class ADVI(AutoGuideVI): """Automatic Differentiation Variational Inference (ADVI). ADVI automates construction of guides by initializing variational distributions as Gaussians and possibly bijecting them so the supports match. See https://arxiv.org/abs/1506.03431. """ @staticmethod def get_guide(query, distrib): @bm.param def param_loc(): return ( torch.rand_like(biject_to(distrib.support).inv(distrib.sample())) * 4.0 - 2.0 ) @bm.param def param_scale(): return ( 0.01 + torch.rand_like(biject_to(distrib.support).inv(distrib.sample())) * 4.0 - 2.0 ) def f(): loc = param_loc() scale = softplus(param_scale()) q = dist.Normal(loc, scale) if distrib.support != dist.constraints.real: if distrib.support == dist.constraints.positive: # override exp transform with softplus q = dist.TransformedDistribution( q, [dist.transforms.SoftplusTransform()] ) else: q = dist.TransformedDistribution(q, [biject_to(distrib.support)]) return q f.__name__ = "guide_" + str(query) return bm.random_variable(f)() class MAP(AutoGuideVI): """Maximum A Posteriori (MAP) Inference. Uses ``Delta`` distributions to perform a point estimate of the posterior mode. """ @staticmethod def get_guide(query, distrib): @bm.param def param_loc(): # TODO: use event shape return ( torch.rand_like(transform_to(distrib.support).inv(distrib.sample())) * 4.0 - 2.0 ) def f(): loc = param_loc() if distrib.support != dist.constraints.real: if distrib.support == dist.constraints.positive: loc = dist.transforms.SoftplusTransform()(loc) else: loc = transform_to(distrib.support)(loc) q = Delta(loc) return q f.__name__ = "guide_" + str(query) return bm.random_variable(f)()
beanmachine-main
src/beanmachine/ppl/inference/vi/autoguide.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .autoguide import ADVI, MAP from .variational_infer import VariationalInfer __all__ = [ "ADVI", "MAP", "VariationalInfer", ]
beanmachine-main
src/beanmachine/ppl/inference/vi/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Mapping, MutableMapping, Optional import torch import torch.distributions as dist from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import init_from_prior, World from beanmachine.ppl.world.initialize_fn import InitializeFn from beanmachine.ppl.world.world import RVDict class VariationalWorld(World): """A World which also contains (variational) parameters.""" def __init__( self, observations: Optional[RVDict] = None, initialize_fn: InitializeFn = init_from_prior, params: Optional[MutableMapping[RVIdentifier, torch.Tensor]] = None, queries_to_guides: Optional[Mapping[RVIdentifier, RVIdentifier]] = None, ) -> None: self._params = params or {} self._queries_to_guides = queries_to_guides or {} super().__init__(observations, initialize_fn) def copy(self): world_copy = VariationalWorld( observations=self.observations.copy(), initialize_fn=self._initialize_fn, params=self._params.copy(), queries_to_guides=self._queries_to_guides.copy(), ) world_copy._variables = self._variables.copy() return world_copy # TODO: distinguish params vs random_variables at the type-level def get_param(self, param: RVIdentifier) -> torch.Tensor: """Gets a parameter or initializes it if not found.""" if param not in self._params: init_value = param.function(*param.arguments) assert isinstance(init_value, torch.Tensor) self._params[param] = init_value self._params[param].requires_grad = True return self._params[param] def set_params(self, params: MutableMapping[RVIdentifier, torch.Tensor]): """Sets the parameters in this World to specified values.""" self._params = params def get_guide_distribution(self, rv: RVIdentifier) -> dist.Distribution: guide_rv = self._queries_to_guides[rv] return self.get_variable(guide_rv).distribution def update_graph(self, node: RVIdentifier) -> torch.Tensor: """ Initialize a new node using its guide if available and the prior otherwise. Args: node (RVIdentifier): RVIdentifier of node to update in the graph. Returns: The value of the node stored in world (in original space). """ if node in self._queries_to_guides: node = self._queries_to_guides[node] return super().update_graph(node)
beanmachine-main
src/beanmachine/ppl/inference/vi/variational_world.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. "Gradient estimators of f-divergences." from typing import Callable, Mapping import torch from beanmachine.ppl.inference.vi.variational_world import VariationalWorld from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import RVDict, World _CPU_DEVICE = torch.device("cpu") DiscrepancyFn = Callable[[torch.Tensor], torch.Tensor] # NOTE: right now it is either all reparameterizable # or all score function gradient estimators. We should # be able to support both depending on the guide used. def monte_carlo_approximate_reparam( observations: RVDict, num_samples: int, discrepancy_fn: DiscrepancyFn, params: Mapping[RVIdentifier, torch.Tensor], queries_to_guides: Mapping[RVIdentifier, RVIdentifier], subsample_factor: float = 1.0, device: torch.device = _CPU_DEVICE, ) -> torch.Tensor: """The pathwise derivative / reparameterization trick (https://arxiv.org/abs/1312.6114) gradient estimator.""" loss = torch.zeros(1).to(device) for _ in range(num_samples): variational_world = VariationalWorld.initialize_world( queries=queries_to_guides.values(), observations=observations, initialize_fn=lambda d: d.rsample(), params=params, queries_to_guides=queries_to_guides, ) world = World.initialize_world( queries=[], observations={ **{ query: variational_world[guide] for query, guide in queries_to_guides.items() }, **observations, }, ) # form log density ratio logu = logp - logq # We want to avoid using world.latent_nodes/world.observations. # The preceding World.initialize_world puts everything into observations, which results in latent_nodes being empty. # That results in everything being scaled by the scaling factor (we don't want that) logu = ( world.log_prob(queries_to_guides.keys()) + (1.0 / subsample_factor) * world.log_prob(observations.keys()) - variational_world.log_prob(queries_to_guides.values()) ) loss += discrepancy_fn(logu) # reparameterized estimator return loss / num_samples def monte_carlo_approximate_sf( observations: RVDict, num_samples: int, discrepancy_fn: DiscrepancyFn, params: Mapping[RVIdentifier, torch.Tensor], queries_to_guides: Mapping[RVIdentifier, RVIdentifier], subsample_factor: float = 1, device: torch.device = _CPU_DEVICE, ) -> torch.Tensor: """The score function / log derivative trick surrogate loss (https://arxiv.org/pdf/1506.05254) gradient estimator.""" loss = torch.zeros(1).to(device) for _ in range(num_samples): variational_world = VariationalWorld.initialize_world( queries=queries_to_guides.values(), observations=observations, initialize_fn=lambda d: d.sample(), params=params, queries_to_guides=queries_to_guides, ) world = World.initialize_world( queries=[], observations={ **{ query: variational_world[guide] for query, guide in queries_to_guides.items() }, **observations, }, ) # form log density ratio logu = logp - logq # We want to avoid using world.latent_nodes/world.observations. # The preceding World.initialize_world puts everything into observations, which results in latent_nodes being empty. # That results in everything being scaled by the scaling factor (we don't want that) logq = variational_world.log_prob(queries_to_guides.values()) logu = ( world.log_prob(queries_to_guides.keys()) + (1.0 / subsample_factor) * world.log_prob(observations.keys()) - logq ) # score function estimator surrogate loss loss += discrepancy_fn(logu).detach().clone() * logq + discrepancy_fn(logu) return loss / num_samples
beanmachine-main
src/beanmachine/ppl/inference/vi/gradient_estimator.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import logging from typing import Callable, Dict, Optional import torch import torch.optim as optim from beanmachine.ppl.inference.vi.discrepancy import kl_reverse from beanmachine.ppl.inference.vi.gradient_estimator import ( monte_carlo_approximate_reparam, ) from beanmachine.ppl.inference.vi.variational_world import VariationalWorld from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world.world import RVDict from tqdm.auto import tqdm _CPU_DEVICE = torch.device("cpu") class VariationalInfer: def __init__( self, queries_to_guides: Dict[RVIdentifier, RVIdentifier], observations: RVDict, optimizer: Callable[ [torch.Tensor], optim.Optimizer ] = lambda params: optim.Adam(params, lr=1e-2), device: torch.device = _CPU_DEVICE, ): """ Performs variational inference using reparameterizable guides. Args: queries_to_guides: Pairing between random variables and their variational guide/surrogate observations: Observations as an RVDict keyed by RVIdentifier optimizer: A function returning a ``torch.Optimizer`` to use for optimizing variational parameters. device: a ``torch.device`` to use for pytorch tensors """ super().__init__() self.observations = observations self.queries_to_guides = queries_to_guides # runs all guides to reify `param`s for `optimizer` # NOTE: assumes `params` is static and same across all worlds, consider MultiOptimizer (see Pyro) # TODO: what happens if not all the params are encountered # in this execution pass, eg an if/else, consider MultiOptimizer world = VariationalWorld( observations=observations, params={}, queries_to_guides=queries_to_guides, ) for guide in queries_to_guides.values(): world.call(guide) self.params = world._params self._optimizer = optimizer(self.params.values()) self._device = device def infer( self, num_steps: int, num_samples: int = 1, discrepancy_fn=kl_reverse, mc_approx=monte_carlo_approximate_reparam, # TODO: support both reparam and SF in same guide step_callback: Optional[ Callable[[int, torch.Tensor, VariationalInfer], None] ] = None, subsample_factor: float = 1, ) -> VariationalWorld: """ Perform variatonal inference. Args: num_steps: number of optimizer steps num_samples: number of samples per Monte-Carlo gradient estimate of E[f(logp - logq)] discrepancy_fn: discrepancy function f, use ``kl_reverse`` to minimize negative ELBO mc_approx: Monte-Carlo gradient estimator to use step_callback: callback function invoked each optimizer step subsample_factor: subsampling factor used for subsampling, helps scale the observations to avoid overshrinking towards the prior Returns: VariationalWorld: A world with variational guide distributions initialized with optimized parameters """ assert subsample_factor > 0 and subsample_factor <= 1 for it in tqdm(range(num_steps)): loss = self.step(num_samples, discrepancy_fn, mc_approx, subsample_factor) if step_callback: step_callback(it, loss, self) return self.initialize_world() def step( self, num_samples: int = 1, discrepancy_fn=kl_reverse, mc_approx=monte_carlo_approximate_reparam, # TODO: support both reparam and SF in same guide subsample_factor: float = 1, ) -> torch.Tensor: """ Perform one step of variatonal inference. Args: num_samples: number of samples per Monte-Carlo gradient estimate of E[f(logp - logq)] discrepancy_fn: discrepancy function f, use ``kl_reverse`` to minimize negative ELBO mc_approx: Monte-Carlo gradient estimator to use subsample_factor: subsampling factor used for subsampling, helps scale the observations to avoid overshrinking towards the prior Returns: torch.Tensor: the loss value (before the step) """ self._optimizer.zero_grad() loss = mc_approx( self.observations, num_samples, discrepancy_fn, self.params, self.queries_to_guides, subsample_factor=subsample_factor, device=self._device, ) if not torch.isnan(loss) and not torch.isinf(loss): loss.backward() self._optimizer.step() else: logging.warn("Encountered NaN/inf loss, skipping step.") return loss def initialize_world(self) -> VariationalWorld: """ Initializes a `VariationalWorld` using samples from guide distributions evaluated at the current parameter values. Returns: VariationalWorld: a `World` where guide samples and distributions have replaced their corresponding queries """ return VariationalWorld.initialize_world( queries=self.queries_to_guides.values(), observations=self.observations, params=self.params, queries_to_guides=self.queries_to_guides, initialize_fn=lambda d: d.sample(), )
beanmachine-main
src/beanmachine/ppl/inference/vi/variational_infer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. "Csiszar f-functions in log-space." import torch def kl_reverse(logu: torch.Tensor) -> torch.Tensor: """ Log-space Csiszar function for reverse KL-divergence D_f(p,q) = KL(q||p). Also known as the exclusive KL-divergence and negative ELBO, minimizing results in zero-forcing / mode-seeking behavior. Args: logu (torch.Tensor): ``p.log_prob``s evaluated at samples from q. """ return -logu def kl_forward(logu: torch.Tensor) -> torch.Tensor: """ Log-space Csiszar function for forward KL-divergence D_f(p,q) = KL(p||q). Also known as the inclusive KL-divergence, minimizing results in zero-avoiding / mass-covering behavior. Args: logu (torch.Tensor): ``p.log_prob``s evaluated at samples from q. """ return torch.exp(logu) * logu
beanmachine-main
src/beanmachine/ppl/inference/vi/discrepancy.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple, Set, Tuple import torch from beanmachine.ppl.experimental.torch_jit_backend import jit_compile, TorchJITBackend from beanmachine.ppl.inference.proposer.hmc_proposer import HMCProposer from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class _TreeNode(NamedTuple): positions: torch.Tensor momentums: torch.Tensor pe_grad: torch.Tensor class _Tree(NamedTuple): left: _TreeNode right: _TreeNode proposal: torch.Tensor pe: torch.Tensor pe_grad: torch.Tensor log_weight: torch.Tensor sum_momentums: torch.Tensor sum_accept_prob: torch.Tensor num_proposals: torch.Tensor turned_or_diverged: torch.Tensor class _TreeArgs(NamedTuple): log_slice: torch.Tensor direction: torch.Tensor step_size: torch.Tensor initial_energy: torch.Tensor mass_inv: torch.Tensor class NUTSProposer(HMCProposer): """ The No-U-Turn Sampler (NUTS) as described in [1]. Unlike vanilla HMC, it does not require users to specify a trajectory length. The current implementation roughly follows Algorithm 6 of [1]. If multinomial_sampling is True, then the next state will be drawn from a multinomial distribution (weighted by acceptance probability, as introduced in Appendix 2 of [2]) instead of drawn uniformly. Reference: [1] Matthew Hoffman and Andrew Gelman. "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo" (2014). https://arxiv.org/abs/1111.4246 [2] Michael Betancourt. "A Conceptual Introduction to Hamiltonian Monte Carlo" (2017). https://arxiv.org/abs/1701.02434 Args: initial_world: Initial world to propose from. target_rvs: Set of RVIdentifiers to indicate which variables to propose. num_adaptive_samples: Number of adaptive samples to run. max_tree_depth: Maximum tree depth, defaults to 10. max_delta_energy: Maximum delta energy (for numerical stability), defaults to 1000. initial_step_size: Defaults to 1.0. adapt_step_size: Whether to adapt step size with Dual averaging as suggested in [1], defaults to True. adapt_mass_matrix: Whether to adapt mass matrix using Welford Scheme, defaults to True. multinomial_sampling: Whether to use multinomial sampling as in [2], defaults to True. target_accept_prob: Target accept probability. Increasing this would lead to smaller step size. Defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. """ def __init__( self, initial_world: World, target_rvs: Set[RVIdentifier], num_adaptive_sample: int, max_tree_depth: int = 10, max_delta_energy: float = 1000.0, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, multinomial_sampling: bool = True, target_accept_prob: float = 0.8, jit_backend: TorchJITBackend = TorchJITBackend.NNC, ): # note that trajectory_length is not used in NUTS super().__init__( initial_world, target_rvs, num_adaptive_sample, trajectory_length=0.0, initial_step_size=initial_step_size, adapt_step_size=adapt_step_size, adapt_mass_matrix=adapt_mass_matrix, full_mass_matrix=full_mass_matrix, target_accept_prob=target_accept_prob, jit_backend=TorchJITBackend.NONE, # we will use NNC at NUTS level, not at HMC level ) self._max_tree_depth = max_tree_depth self._max_delta_energy = max_delta_energy self._multinomial_sampling = multinomial_sampling # pyre-ignore[8] self._build_tree_base_case = jit_compile( self._build_tree_base_case, jit_backend ) def _is_u_turning( self, mass_inv: torch.Tensor, left_momentums: torch.Tensor, right_momentums: torch.Tensor, sum_momentums: torch.Tensor, ) -> torch.Tensor: """The generalized U-turn condition, as described in [2] Appendix 4.2""" rho = self._scale_r(sum_momentums, mass_inv) return (torch.dot(left_momentums, rho) <= 0) or ( torch.dot(right_momentums, rho) <= 0 ) def _build_tree_base_case(self, root: _TreeNode, args: _TreeArgs) -> _Tree: """Base case of the recursive tree building algorithm: take a single leapfrog step in the specified direction and return a subtree.""" positions, momentums, pe, pe_grad = self._leapfrog_step( root.positions, root.momentums, args.step_size * args.direction, args.mass_inv, root.pe_grad, ) new_energy = torch.nan_to_num( self._hamiltonian(positions, momentums, args.mass_inv, pe), float("inf"), ) # initial_energy == -L(\theta^{m-1}) + 1/2 r_0^2 in Algorithm 6 of [1] delta_energy = new_energy - args.initial_energy if self._multinomial_sampling: log_weight = -delta_energy else: # slice sampling as introduced in the original NUTS paper [1] log_weight = (args.log_slice <= -new_energy).log() tree_node = _TreeNode(positions=positions, momentums=momentums, pe_grad=pe_grad) return _Tree( left=tree_node, right=tree_node, proposal=positions, pe=pe, pe_grad=pe_grad, log_weight=log_weight, sum_momentums=momentums, sum_accept_prob=torch.clamp(torch.exp(-delta_energy), max=1.0), num_proposals=torch.tensor(1), turned_or_diverged=args.log_slice >= self._max_delta_energy - new_energy, ) def _build_tree(self, root: _TreeNode, tree_depth: int, args: _TreeArgs) -> _Tree: """Build the binary tree by recursively build the left and right subtrees and combine the two.""" if tree_depth == 0: return self._build_tree_base_case(root, args) # build the first half of the tree sub_tree = self._build_tree(root, tree_depth - 1, args) if sub_tree.turned_or_diverged: return sub_tree # build the other half of the tree other_sub_tree = self._build_tree( root=sub_tree.left if args.direction == -1 else sub_tree.right, tree_depth=tree_depth - 1, args=args, ) return self._combine_tree( sub_tree, other_sub_tree, args.direction, args.mass_inv, biased=False ) def _combine_tree( self, old_tree: _Tree, new_tree: _Tree, direction: torch.Tensor, mass_inv: torch.Tensor, biased: bool, ) -> _Tree: """Combine the old tree and the new tree into a single (large) tree. The new tree will be add to the left of the old tree if direction is -1, otherwise it will be add to the right. If biased is True, then we will prefer choosing from new tree (which is away from the starting location) than old tree when sampling the next state from the trajectory. This function assumes old_tree is not turned or diverged.""" # if old tree hsa turned or diverged, then we shouldn't build the new tree in # the first place assert not old_tree.turned_or_diverged # log of the sum of the weights from both trees log_weight = torch.logaddexp(old_tree.log_weight, new_tree.log_weight) if new_tree.turned_or_diverged: selected_subtree = old_tree else: # progressively sample from the trajectory if biased: # biased progressive sampling (Appendix 3.2 of [2]) log_tree_prob = new_tree.log_weight - old_tree.log_weight else: # uniform progressive sampling (Appendix 3.1 of [2]) log_tree_prob = new_tree.log_weight - log_weight if torch.rand_like(log_tree_prob).log() < log_tree_prob: selected_subtree = new_tree else: selected_subtree = old_tree if direction == -1: left_tree, right_tree = new_tree, old_tree else: left_tree, right_tree = old_tree, new_tree sum_momentums = left_tree.sum_momentums + right_tree.sum_momentums turned_or_diverged = new_tree.turned_or_diverged or self._is_u_turning( mass_inv, left_tree.left.momentums, right_tree.right.momentums, sum_momentums, ) # More robust U-turn condition # https://discourse.mc-stan.org/t/nuts-misses-u-turns-runs-in-circles-until-max-treedepth/9727 if not turned_or_diverged and right_tree.num_proposals > 1: extended_sum_momentums = left_tree.sum_momentums + right_tree.left.momentums turned_or_diverged = self._is_u_turning( mass_inv, left_tree.left.momentums, right_tree.left.momentums, extended_sum_momentums, ) if not turned_or_diverged and left_tree.num_proposals > 1: extended_sum_momentums = ( right_tree.sum_momentums + left_tree.right.momentums ) turned_or_diverged = self._is_u_turning( mass_inv, left_tree.right.momentums, right_tree.right.momentums, extended_sum_momentums, ) return _Tree( left=left_tree.left, right=right_tree.right, proposal=selected_subtree.proposal, pe=selected_subtree.pe, pe_grad=selected_subtree.pe_grad, log_weight=log_weight, sum_momentums=sum_momentums, sum_accept_prob=old_tree.sum_accept_prob + new_tree.sum_accept_prob, num_proposals=old_tree.num_proposals + new_tree.num_proposals, turned_or_diverged=turned_or_diverged, ) def propose(self, world: World) -> Tuple[World, torch.Tensor]: if world is not self.world: # re-compute cached values since world was modified by other sources self.world = world self._positions = self._dict2vec.to_vec( self._to_unconstrained({node: world[node] for node in self._target_rvs}) ) self._pe, self._pe_grad = self._potential_grads(self._positions) momentums = self._initialize_momentums(self._positions) current_energy = self._hamiltonian( self._positions, momentums, self._mass_inv, self._pe ) if self._multinomial_sampling: # log slice is only used to check the divergence log_slice = -current_energy else: # this is a more stable way to sample from log(Uniform(0, exp(-current_energy))) log_slice = torch.log1p(-torch.rand_like(current_energy)) - current_energy tree_node = _TreeNode(self._positions, momentums, self._pe_grad) tree = _Tree( left=tree_node, right=tree_node, proposal=self._positions, pe=self._pe, pe_grad=self._pe_grad, # log accept prob of staying at current state log_weight=torch.zeros_like(log_slice), sum_momentums=momentums, sum_accept_prob=torch.zeros_like(log_slice), num_proposals=torch.tensor(0), turned_or_diverged=torch.tensor(False), ) for j in range(self._max_tree_depth): direction = torch.tensor(1 if torch.rand(()) > 0.5 else -1) tree_args = _TreeArgs( log_slice, direction, self.step_size, current_energy, self._mass_inv, ) if direction == -1: new_tree = self._build_tree(tree.left, j, tree_args) else: new_tree = self._build_tree(tree.right, j, tree_args) tree = self._combine_tree( tree, new_tree, direction, self._mass_inv, biased=True ) if tree.turned_or_diverged: break if tree.proposal is not self._positions: positions_dict = self._dict2vec.to_dict(tree.proposal) self.world = self.world.replace(self._to_unconstrained.inv(positions_dict)) self._positions, self._pe, self._pe_grad = ( tree.proposal, tree.pe, tree.pe_grad, ) self._alpha = tree.sum_accept_prob / tree.num_proposals return self.world, torch.zeros_like(self._alpha)
beanmachine-main
src/beanmachine/ppl/inference/proposer/nuts_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Optional, Tuple, Union import torch import torch.distributions as dist from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.utils import tensorops from beanmachine.ppl.world import World from torch import Tensor, tensor from torch.autograd import grad def is_scalar(val: Union[float, Tensor]) -> bool: """ :returns: whether val is a scalar """ return isinstance(val, float) or (isinstance(val, Tensor) and not val.shape) def is_valid(vec: Tensor) -> bool: """ :returns: whether a tensor is valid or not (not nan and not inf) """ return not (torch.isnan(vec).any() or torch.isinf(vec).any()) def zero_grad(node_val: Tensor) -> None: """ Zeros the gradient. """ if node_val.is_leaf and hasattr(node_val, "grad") and node_val.grad is not None: node_val.grad.zero_() def compute_first_gradient( score: Tensor, node_val: Tensor, create_graph: bool = False, retain_graph: Optional[bool] = None, ) -> Tuple[bool, Tensor]: """ Computes the first gradient. :param score: the score to compute the gradient of :param node_val: the value to compute the gradient against :returns: the first gradient """ if not node_val.requires_grad: raise ValueError("requires_grad_ needs to be set for node values") # pyre expects attributes to be defined in constructors or at class # top levels and doesn't support attributes that get dynamically added. elif node_val.is_leaf and node_val.grad is not None: node_val.grad.zero_() first_gradient = grad( score, node_val, create_graph=create_graph, retain_graph=retain_graph )[0] return is_valid(first_gradient), first_gradient def compute_hessian(first_gradient: Tensor, node_val: Tensor) -> Tuple[bool, Tensor]: """ Computes the hessian :param first_gradient: the first gradient of score with respect to node_val :param node_val: the value to compute the hessian against :returns: computes hessian """ hessian = None size = first_gradient.shape[0] for i in range(size): second_gradient = ( grad( first_gradient.index_select(0, tensor([i])), node_val, create_graph=True, )[0] ).reshape(-1) hessian = ( torch.cat((hessian, (second_gradient).unsqueeze(0)), 0) if hessian is not None else (second_gradient).unsqueeze(0) ) if hessian is None: raise ValueError("Something went wrong with gradient computation") if not is_valid(hessian): return False, tensor(0.0) return True, hessian def soft_abs_inverse(neg_hessian: Tensor, alpha: float = 1e6) -> Tuple[Tensor, Tensor]: """ Compute inverse of a symmetric matrix and returns inverse, eigen values and eigen vectors. :param neg_hessian: the value that we'd like to compute the inverse of :param alpha: the hardness parameter alpha for the SoftAbs map, see (https://arxiv.org/pdf/1212.4693.pdf) :returns: eigen value and eigen vector of the negative hessian inverse """ eig_vals, eig_vecs = torch.linalg.eigh(neg_hessian) # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`. inverse_eig_vals = torch.tanh(alpha * eig_vals) / eig_vals return eig_vecs, inverse_eig_vals def compute_eigvals_eigvecs( score: Tensor, node_val: Tensor ) -> Tuple[bool, Tensor, Tensor, Tensor]: """ Compute hessian and returns eigen values and eigen vectors of the negative hessian inverse. :param score: the score function :param node_val: the value to compute the hessian against :returns: first gradient, eigen values and eigen vectors of the negative hessian inverse """ first_gradient, hessian = tensorops.gradients(score, node_val) is_valid_first_grad_and_hessian = is_valid(first_gradient) or is_valid(hessian) if not is_valid_first_grad_and_hessian: return False, tensor(0.0), tensor(0.0), tensor(0.0) neg_hessian = -1 * hessian.detach() eig_vecs, eig_vals = soft_abs_inverse(neg_hessian) return True, first_gradient, eig_vecs, eig_vals def hessian_of_log_prob( world: World, node: RVIdentifier, transformed_node_val: torch.Tensor, hessian_fn: Callable, transform: dist.Transform = dist.identity_transform, ) -> Tuple[torch.Tensor, torch.Tensor]: y = transformed_node_val.detach().clone() y.requires_grad = True x = transform.inv(y) world_with_grad = world.replace({node: x}) children = world_with_grad.get_variable(node).children score = ( world_with_grad.log_prob(children | {node}) - transform.log_abs_det_jacobian(x, y).sum() ) return hessian_fn(score, y)
beanmachine-main
src/beanmachine/ppl/inference/proposer/newtonian_monte_carlo_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.distributions as dist from beanmachine.ppl.inference.proposer.base_single_site_mh_proposer import ( BaseSingleSiteMHProposer, ) from beanmachine.ppl.world import World class SingleSiteAncestralProposer(BaseSingleSiteMHProposer): def get_proposal_distribution(self, world: World) -> dist.Distribution: """Propose a new value for self.node using the prior distribution.""" return world.get_variable(self.node).distribution
beanmachine-main
src/beanmachine/ppl/inference/proposer/single_site_ancestral_proposer.py
beanmachine-main
src/beanmachine/ppl/inference/proposer/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from abc import abstractmethod import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.utils import safe_log_prob_sum from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class BaseSingleSiteMHProposer(BaseProposer): def __init__(self, target_rv: RVIdentifier): self.node = target_rv def propose(self, world: World): """ Propose a new value for self.node with `Metropolis-Hasting algorithm <https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm#Formal_derivation>`_ Classes that inherit this proposer should override `get_proposal_distribution` to define the algorithm-specific way to sample the next state. Args: world: World to calculate proposal for. """ proposal_dist = forward_dist = self.get_proposal_distribution(world) old_value = world[self.node] proposed_value = proposal_dist.sample() new_world = world.replace({self.node: proposed_value}) backward_dist = self.get_proposal_distribution(new_world) # calculate MH acceptance probability # log P(x, y) old_log_prob = world.log_prob() # log P(x', y) new_log_prob = new_world.log_prob() # log g(x'|x) forward_log_prob = forward_dist.log_prob(proposed_value).sum() # log g(x|x') # because proposed_value is sampled from forward_dist, it is guaranteed to be # within the valid range. However, there's no guarantee that the old value # is in the support of backward_dist backward_log_prob = safe_log_prob_sum(backward_dist, old_value) # log [(P(x', y) * g(x|x')) / (P(x, y) * g(x'|x))] accept_log_prob = ( new_log_prob + backward_log_prob - old_log_prob - forward_log_prob ) # model size adjustment log (n/n') accept_log_prob += math.log(len(world)) - math.log(len(new_world)) if torch.isnan(accept_log_prob): accept_log_prob = torch.tensor( float("-inf"), device=accept_log_prob.device, dtype=accept_log_prob.dtype, ) return new_world, accept_log_prob @abstractmethod def get_proposal_distribution(self, world: World) -> dist.Distribution: """Return a probability distribution of moving self.node to a new value conditioned on its current value in world. """ raise NotImplementedError
beanmachine-main
src/beanmachine/ppl/inference/proposer/base_single_site_mh_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributions as dist class NormalEig(dist.Distribution): """ A multivariate normal distribution where the covariance is specified through its eigen decomposition """ def __init__(self, mean, eig_vals, eig_vecs): """ mean - The mean of the multivariate normal. eig_vals - 1d vector of the eigen values (all positive) of the covar eig_vecs - 2d vector whose columns are the eigen vectors of the covar The covariance matrix of the multivariate normal is given by: eig_vecs @ (torch.eye(len(eig_vals)) * eig_vals) @ eig_vecs.T """ assert mean.dim() == 1 self.n = mean.shape[0] assert eig_vals.shape == (self.n,) assert eig_vecs.shape == (self.n, self.n) self._mean = mean self.eig_vecs = eig_vecs self.sqrt_eig_vals = eig_vals.sqrt().unsqueeze(0) # square root of the covariance matrix self.sqrt_covar = self.sqrt_eig_vals * eig_vecs # log of sqrt of determinant self.log_sqrt_det = eig_vals.log().sum() / 2.0 # a base distribution of independent normals is used to draw # samples that will be stretched along the eigen directions self.base_dist = torch.distributions.normal.Normal( torch.zeros(1, self.n).to(dtype=eig_vals.dtype), torch.ones(1, self.n).to(dtype=eig_vals.dtype), ) self.singular_eig_decompositions = eig_vals, eig_vecs event_shape = self._mean.shape[-1:] batch_shape = torch.broadcast_shapes( self.sqrt_covar.shape[:-2], self._mean.shape[:-1] ) super().__init__(batch_shape, event_shape) def sample(self, sample_shape=torch.Size()): # noqa with torch.no_grad(): z = torch.normal(mean=0.0, std=1.0, size=(self.n, 1)) z = z.to(dtype=self._mean.dtype) return self._mean + (self.sqrt_covar @ z).squeeze(1) def log_prob(self, value): assert value.shape == (self.n,) z = ((value - self._mean).unsqueeze(0) @ self.eig_vecs) / self.sqrt_eig_vals return self.base_dist.log_prob(z).sum() - self.log_sqrt_det
beanmachine-main
src/beanmachine/ppl/inference/proposer/normal_eig.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.base_single_site_mh_proposer import ( BaseSingleSiteMHProposer, ) from beanmachine.ppl.world import World class SingleSiteUniformProposer(BaseSingleSiteMHProposer): def get_proposal_distribution(self, world: World) -> dist.Distribution: """Propose a new value for self.node using the prior distribution.""" node_dist = world.get_variable(self.node).distribution if isinstance(node_dist, dist.Bernoulli): return dist.Bernoulli(torch.ones(node_dist.param_shape) / 2.0) elif isinstance(node_dist, dist.Categorical): return dist.Categorical(torch.ones(node_dist.param_shape)) else: # default to ancestral sampling # TODO: we should sample from a transformed dist # that transforms uniform to the support of the node return node_dist
beanmachine-main
src/beanmachine/ppl/inference/proposer/single_site_uniform_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import warnings from typing import cast, Dict, Set, Union import torch import torch.distributions as dist from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import RVDict, World from beanmachine.ppl.world.utils import get_default_transforms class WindowScheme: """ Spliting adaptation iterations into a series of monotonically increasing windows, which can be used to learn the mass matrices in HMC. Reference: [1] "HMC algorithm parameters" from Stan Reference Manual https://mc-stan.org/docs/2_26/reference-manual/hmc-algorithm-parameters.html#automatic-parameter-tuning """ def __init__(self, num_adaptive_samples: int): # from Stan if num_adaptive_samples < 20: # do not create any window for adapting mass matrix self._start_iter = self._end_iter = num_adaptive_samples self._window_size = 0 elif num_adaptive_samples < 150: self._start_iter = int(0.15 * num_adaptive_samples) self._end_iter = int(0.9 * num_adaptive_samples) self._window_size = self._end_iter - self._start_iter else: self._start_iter = 75 self._end_iter = num_adaptive_samples - 50 self._window_size = 25 self._iteration = 0 @property def is_in_window(self): return self._iteration >= self._start_iter and self._iteration < self._end_iter @property def is_end_window(self): return self._iteration - self._start_iter == self._window_size - 1 def step(self): if self.is_end_window: # prepare for next window self._start_iter = self._iteration + 1 if self._end_iter - self._start_iter < self._window_size * 4: # window sizes should increase monotonically self._window_size = self._end_iter - self._start_iter else: self._window_size *= 2 self._iteration += 1 class DualAverageAdapter: """ The dual averaging mechanism that's introduced in [1] and was applied to HMC and NUTS for adapting step size in [2]. The implementation and notations follows [2]. Reference: [1] Yurii Nesterov. "Primal-dual subgradient methods for convex problems" (2009). https://doi.org/10.1007/s10107-007-0149-x [2] Matthew Hoffman and Andrew Gelman. "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo" (2014). https://arxiv.org/abs/1111.4246 """ def __init__(self, initial_epsilon: torch.Tensor, delta: float = 0.8): self._log_avg_epsilon = torch.zeros_like(initial_epsilon) self._H = torch.zeros_like(initial_epsilon) self._mu = torch.log(10 * initial_epsilon) self._t0 = 10 self._delta = delta # target mean accept prob self._gamma = 0.05 self._kappa = 0.75 self._m = 1.0 # iteration count def step(self, alpha: torch.Tensor) -> torch.Tensor: H_frac = 1.0 / (self._m + self._t0) self._H = ((1 - H_frac) * self._H) + H_frac * ( self._delta - alpha.to(self._log_avg_epsilon) ) log_epsilon = self._mu - (math.sqrt(self._m) / self._gamma) * self._H step_frac = self._m ** (-self._kappa) self._log_avg_epsilon = ( step_frac * log_epsilon + (1 - step_frac) * self._log_avg_epsilon ) self._m += 1 return torch.exp(cast(torch.Tensor, log_epsilon)) def finalize(self) -> torch.Tensor: return torch.exp(self._log_avg_epsilon) class MassMatrixAdapter: """ Adapts the mass matrix. The (inverse) mass matrix is initialized to identity and will be updated during adaptation windows. Args: matrix_size: The size of the mass matrix. This value should be the same as the length of the flattened position tensor. Reference: [1] "HMC algorithm parameters" from Stan Reference Manual https://mc-stan.org/docs/2_26/reference-manual/hmc-algorithm-parameters.html#euclidean-metric """ def __init__(self, initial_positions: torch.Tensor, full_mass_matrix: bool = False): # inverse mass matrices, aka the inverse "metric" self.mass_inv = torch.ones_like(initial_positions) # distribution objects for generating momentums self.momentum_dist: dist.Distribution = dist.Normal(0.0, self.mass_inv) if full_mass_matrix: self.mass_inv = torch.diag(self.mass_inv) self.diagonal = not full_mass_matrix self._adapter = WelfordCovariance(diagonal=self.diagonal) def initialize_momentums(self, positions: torch.Tensor) -> torch.Tensor: """ Randomly draw momentum from MultivariateNormal(0, M). This momentum variable is denoted as p in [1] and r in [2]. Args: positions: the positions of the energy function. """ return self.momentum_dist.sample().to(positions.dtype) def step(self, positions: torch.Tensor): self._adapter.step(positions) def finalize(self) -> None: try: mass_inv = self._adapter.finalize() if self.diagonal: self.momentum_dist = dist.Normal( torch.zeros_like(mass_inv), torch.sqrt(mass_inv).reciprocal() ) else: self.momentum_dist = dist.MultivariateNormal( torch.zeros_like(mass_inv.diag()), precision_matrix=mass_inv ) self.mass_inv = mass_inv except RuntimeError as e: warnings.warn(str(e)) # reset adapters to get ready for the next window self._adapter = WelfordCovariance(diagonal=self.diagonal) class WelfordCovariance: """ An implementation of Welford's online algorithm for estimating the (co)variance of samples. Reference: [1] "Algorithms for calculating variance" on Wikipedia https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm """ def __init__(self, diagonal: bool = True): self._mean: Union[float, torch.Tensor] = 0.0 self._count = 0 self._M2: Union[float, torch.Tensor] = 0.0 self._diagonal = diagonal def step(self, sample: torch.Tensor) -> None: self._count += 1 delta = sample - self._mean self._mean += delta / self._count delta2 = sample - self._mean if self._diagonal: self._M2 += delta * delta2 else: self._M2 += torch.outer(delta, delta2) def finalize(self, regularize: bool = True) -> torch.Tensor: if self._count < 2: raise RuntimeError( "Number of samples is too small to estimate the (co)variance" ) covariance = cast(torch.Tensor, self._M2) / (self._count - 1) if not regularize: return covariance # from Stan: regularize mass matrix for numerical stability covariance *= self._count / (self._count + 5.0) padding = 1e-3 * 5.0 / (self._count + 5.0) # bring covariance closer to a unit diagonal mass matrix if self._diagonal: covariance += padding else: covariance += padding * torch.eye(covariance.shape[0]) return covariance class DictTransform: """ A general class for applying a dictionary of Transforms to a dictionary of Tensors Args: transforms: Dict of torch.distributions.Transform keyed by the RVIdentifier """ def __init__(self, transforms: Dict[RVIdentifier, dist.Transform]): self.transforms = transforms def __call__(self, node_vals: RVDict) -> RVDict: """Apply each Transform to the corresponding Tensor in node_vals""" return {node: self.transforms[node](val) for node, val in node_vals.items()} def inv(self, node_vals: RVDict) -> RVDict: """Apply the inverse of each Transform to the corresponding Tensor in node_vals""" return {node: self.transforms[node].inv(val) for node, val in node_vals.items()} def log_abs_det_jacobian( self, untransformed_vals: RVDict, transformed_vals: RVDict ) -> torch.Tensor: """Computes the sum of log det jacobian `log |dy/dx|` on the pairs of Tensors""" jacobian = torch.tensor(0.0) for node in untransformed_vals: jacobian = jacobian + ( self.transforms[node] .log_abs_det_jacobian(untransformed_vals[node], transformed_vals[node]) .sum() ) return jacobian class RealSpaceTransform(DictTransform): """ Transform a dictionary of Tensor values from a constrained space to the unconstrained (real) space. Args: world: World which contains the random variables of interest. target_rvs: Set of RVIdentifiers corresponding to the random variables of interest. """ def __init__(self, world: World, target_rvs: Set[RVIdentifier]): transforms = {} for node in target_rvs: node_distribution = world.get_variable(node).distribution if node_distribution.support.is_discrete: raise TypeError( f"HMC can perform inference only on continuous latent random variables, but node {node} is discrete." ) transforms[node] = get_default_transforms(node_distribution) super().__init__(transforms)
beanmachine-main
src/beanmachine/ppl/inference/proposer/hmc_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.world import World from beanmachine.ppl.world.utils import is_constraint_eq class SingleSiteRandomWalkProposer(SingleSiteAncestralProposer): def __init__( self, node, step_size: float, ): self.step_size = step_size self.target_acc_rate = {False: torch.tensor(0.44), True: torch.tensor(0.234)} self._iter = 0 super().__init__(node) def do_adaptation(self, world, accept_log_prob, *args, **kwargs) -> None: if torch.isnan(accept_log_prob): return accept_prob = accept_log_prob.exp() val_shape = world[self.node].shape if len(val_shape) == 0 or val_shape[0] == 1: target_acc_rate = self.target_acc_rate[False] c = torch.reciprocal(target_acc_rate) else: target_acc_rate = self.target_acc_rate[True] # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`. c = torch.reciprocal(1.0 - target_acc_rate) new_step_size = self.step_size * torch.exp( (accept_prob - target_acc_rate) * c / (self._iter + 1.0) ) self._iter += 1 self.step_size = new_step_size.item() def get_proposal_distribution(self, world: World) -> dist.Distribution: """Propose a new value for self.node using the prior distribution.""" node = world.get_variable(self.node) node_support = node.distribution.support if is_constraint_eq(node_support, dist.constraints.real): return dist.Normal(node.value, self.step_size) elif any( is_constraint_eq( node_support, (dist.constraints.greater_than, dist.constraints.greater_than_eq), ) ): lower_bound = node_support.lower_bound proposal_distribution = self.gamma_dist_from_moments( node.value - lower_bound, self.step_size**2 ) transform = dist.AffineTransform(loc=lower_bound, scale=1.0) transformed_proposal = dist.TransformedDistribution( proposal_distribution, transform ) return transformed_proposal elif is_constraint_eq(node_support, dist.constraints.interval): lower_bound = node_support.lower_bound width = node_support.upper_bound - lower_bound mu = (node.value - lower_bound) / width sigma = ( torch.ones(node.value.shape, device=node.value.device) * self.step_size / width ) proposal_distribution = self.beta_dist_from_moments(mu, sigma) transform = dist.AffineTransform(loc=lower_bound, scale=width) transformed_proposal = dist.TransformedDistribution( proposal_distribution, transform ) return transformed_proposal elif is_constraint_eq(node_support, dist.constraints.simplex): proposal_distribution = self.dirichlet_dist_from_moments( node.value, self.step_size ) return proposal_distribution else: # default to ancestral return super().get_proposal_distribution(world) def gamma_dist_from_moments(self, expectation, sigma): """ Returns a Gamma distribution. :param expectation: expectation value :param sigma: sigma value :returns: returns the Beta distribution given mu and sigma. """ beta = expectation / (sigma**2) beta = torch.clamp(beta, min=1e-3) alpha = expectation * beta alpha = torch.clamp(alpha, min=1e-3) distribution = dist.Gamma(concentration=alpha, rate=beta) return distribution def beta_dist_from_moments(self, mu, sigma): """ Returns a Beta distribution. :param mu: mu value :param sigma: sigma value :returns: returns the Beta distribution given mu and sigma. """ mu = torch.clamp(mu, 1e-3, 1 - 1e-3) sigma = torch.clamp(sigma, 1e-3, (mu * (1 - mu)).min().item()) """ https://stats.stackexchange.com/questions/12232/calculating-the- parameters-of-a-beta-distribution-using-the-mean-and-variance """ alpha = ((1.0 - mu) / (sigma**2) - (1.0 / mu)) * (mu**2) beta = alpha * (1.0 / mu - 1.0) distribution = dist.Beta(concentration1=alpha, concentration0=beta) return distribution def dirichlet_dist_from_moments(self, mu, sigma): """ Returns a Dirichlet distribution. The variances of a Dirichlet distribution are inversely proportional to the norm of the concentration vector. However, variance is only set as a scalar, not as a vector. So the individual variances of the Dirichlet are not tuned, only the magnitude of the entire vector. :param mu: mu value :param sigma: sigma value :returns: returns the Dirichlet distribution given mu and sigma. """ alpha = mu / (torch.norm(mu) * sigma**2) return dist.Dirichlet(concentration=alpha)
beanmachine-main
src/beanmachine/ppl/inference/proposer/single_site_random_walk_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Generic, TypeVar import torch KeyType = TypeVar("KeyType") class DictToVecConverter(Generic[KeyType]): """ A utility class to convert a dictionary of Tensors into a single flattened Tensor or the other way around. Args: example_dict: A dict that will be used to determine the order of the keys and the size of the flattened Tensor. """ def __init__(self, example_dict: Dict[KeyType, torch.Tensor]) -> None: # determine the order of the keys self._keys = list(example_dict.keys()) # store the size of the values, which will be used when we want to # reshape them back self._val_shapes = [example_dict[key].shape for key in self._keys] # compute the indicies that each of the entry corresponds to. e.g. for # keys[0], its value will correspond to flatten_vec[idxs[0] : idxs[1]] val_sizes = [example_dict[key].numel() for key in self._keys] self._idxs = list(torch.cumsum(torch.tensor([0] + val_sizes), dim=0)) def to_vec(self, dict_in: Dict[KeyType, torch.Tensor]) -> torch.Tensor: """Concatenate the entries of a dictionary to a flattened Tensor""" return torch.cat([dict_in[key].flatten() for key in self._keys]) def to_dict(self, vec_in: torch.Tensor) -> Dict[KeyType, torch.Tensor]: """Reconstruct a dictionary out of a flattened Tensor""" retval = {} for key, shape, idx_begin, idx_end in zip( self._keys, self._val_shapes, self._idxs, self._idxs[1:] ): retval[key] = vec_in[idx_begin:idx_end].reshape(shape) return retval
beanmachine-main
src/beanmachine/ppl/inference/proposer/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import ABCMeta, abstractmethod from typing import Tuple import torch from beanmachine.ppl.world import World class BaseProposer(metaclass=ABCMeta): @abstractmethod def propose(self, world: World) -> Tuple[World, torch.Tensor]: raise NotImplementedError def do_adaptation(self, world, accept_log_prob, *args, **kwargs) -> None: ... def finish_adaptation(self) -> None: ...
beanmachine-main
src/beanmachine/ppl/inference/proposer/base_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import warnings from typing import Callable, Optional, Set, Tuple import torch from beanmachine.ppl.experimental.torch_jit_backend import jit_compile, TorchJITBackend from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.inference.proposer.hmc_utils import ( DualAverageAdapter, MassMatrixAdapter, RealSpaceTransform, WindowScheme, ) from beanmachine.ppl.inference.proposer.utils import DictToVecConverter from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.world import World class HMCProposer(BaseProposer): """ The basic Hamiltonian Monte Carlo (HMC) algorithm as described in [1] plus a dual-averaging mechanism for dynamically adjusting the step size [2]. Reference: [1] Radford Neal. "MCMC Using Hamiltonian Dynamics" (2011). https://arxiv.org/abs/1206.1901 [2] Matthew Hoffman and Andrew Gelman. "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo" (2014). https://arxiv.org/abs/1111.4246 The current implementation does not use nor adapt a mass matrix -- which is equivalent to setting the matrix M to I. Args: initial_world: Initial world to propose from. target_rvs: Set of RVIdentifiers to indicate which variables to propose. num_adaptive_samples: Number of adaptive samples to run. trajectory_length: Length of single trajectory. initial_step_size: Initial step size. adapt_step_size: Flag whether to adapt step size, defaults to True. adapt_mass_matrix: Flat whether to adapt mass matrix, defaults to True. target_accept_prob: Target accept prob, defaults to 0.8. nnc_compile: If True, NNC compiler will be used to accelerate the inference. """ def __init__( self, initial_world: World, target_rvs: Set[RVIdentifier], num_adaptive_samples: int, trajectory_length: float, initial_step_size: float = 1.0, adapt_step_size: bool = True, adapt_mass_matrix: bool = True, full_mass_matrix: bool = False, target_accept_prob: float = 0.8, jit_backend: TorchJITBackend = TorchJITBackend.NNC, ): self.world = initial_world self._target_rvs = target_rvs self._to_unconstrained = RealSpaceTransform(initial_world, target_rvs) # concatenate and flatten the positions into a single tensor positions_dict = self._to_unconstrained( {node: initial_world[node] for node in self._target_rvs} ) self._dict2vec = DictToVecConverter(positions_dict) self._positions = self._dict2vec.to_vec(positions_dict) # cache pe and pe_grad to prevent re-computation self._pe, self._pe_grad = self._potential_grads(self._positions) # initialize parameters self.trajectory_length = trajectory_length # initialize adapters self.adapt_step_size = adapt_step_size self.adapt_mass_matrix = adapt_mass_matrix # we need mass matrix adapter to sample momentums self._mass_matrix_adapter = MassMatrixAdapter(self._positions, full_mass_matrix) if self.adapt_step_size: self.step_size = self._find_reasonable_step_size( torch.as_tensor(initial_step_size), self._positions, self._pe, self._pe_grad, ) self._step_size_adapter = DualAverageAdapter( self.step_size, target_accept_prob ) else: self.step_size = torch.as_tensor(initial_step_size) if self.adapt_mass_matrix: self._window_scheme = WindowScheme(num_adaptive_samples) else: self._window_scheme = None # alpha will store the accept prob and will be used to adapt step size self._alpha = None # pyre-ignore[8] self._leapfrog_step = jit_compile(self._leapfrog_step, jit_backend) @property def _initialize_momentums(self) -> Callable: return self._mass_matrix_adapter.initialize_momentums @property def _mass_inv(self) -> torch.Tensor: return self._mass_matrix_adapter.mass_inv def _scale_r(self, momentums: torch.Tensor, mass_inv: torch.Tensor) -> torch.Tensor: """Return the momentums (r) scaled by M^{-1} @ r""" if self._mass_matrix_adapter.diagonal: return mass_inv * momentums else: return mass_inv @ momentums def _kinetic_energy( self, momentums: torch.Tensor, mass_inv: torch.Tensor ) -> torch.Tensor: """Returns the kinetic energy KE = 1/2 * p^T @ M^{-1} @ p (equation 2.6 in [1])""" r_scale = self._scale_r(momentums, mass_inv) return torch.dot(momentums, r_scale) / 2 def _kinetic_grads( self, momentums: torch.Tensor, mass_inv: torch.Tensor ) -> torch.Tensor: """Returns a dictionary of gradients of kinetic energy function with respect to the momentum at each site, computed as M^{-1} @ p""" return self._scale_r(momentums, mass_inv) def _potential_energy(self, positions: torch.Tensor) -> torch.Tensor: """Returns the potential energy PE = - L(world) (the joint log likelihood of the current values)""" positions_dict = self._dict2vec.to_dict(positions) constrained_vals = self._to_unconstrained.inv(positions_dict) log_joint = self.world.replace(constrained_vals).log_prob() log_joint = log_joint - self._to_unconstrained.log_abs_det_jacobian( constrained_vals, positions_dict ) return -log_joint def _potential_grads( self, positions: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """Returns potential energy as well as a dictionary of its gradient with respect to the value at each site.""" positions.requires_grad = True try: pe = self._potential_energy(positions) grads = torch.autograd.grad(pe, positions)[0] # We return NaN on Cholesky factorization errors which can be gracefully # handled by NUTS/HMC. except RuntimeError as e: err_msg = str(e) if "singular U" in err_msg or "input is not positive-definite" in err_msg: warnings.warn( "Numerical error in potential energy computation." " If automatic recovery does not happen, plese file an issue" " at https://github.com/facebookresearch/beanmachine/issues/." ) grads = torch.full_like(positions, float("nan")) pe = torch.tensor( float("nan"), device=grads[0].device, dtype=grads[0].dtype ) else: raise e positions.requires_grad = False return pe.detach(), grads def _hamiltonian( self, positions: torch.Tensor, momentums: torch.Tensor, mass_inv: torch.Tensor, pe: Optional[torch.Tensor] = None, ) -> torch.Tensor: """Returns the value of Hamiltonian equation (equatino 2.5 in [1]). This function will be more efficient if pe is provided as it only needs to compute the kinetic energy""" ke = self._kinetic_energy(momentums, mass_inv) if pe is None: pe = self._potential_energy(positions) return pe + ke def _leapfrog_step( self, positions: torch.Tensor, momentums: torch.Tensor, step_size: torch.Tensor, mass_inv: torch.Tensor, pe_grad: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Performs a single leapfrog integration (alson known as the velocity Verlet method) as described in equation 2.28-2.30 in [1]. If the values of potential grads of the current world is provided, then we only needs to compute the gradient once per step.""" if pe_grad is None: _, pe_grad = self._potential_grads(positions) new_momentums = momentums - step_size * pe_grad / 2 ke_grad = self._kinetic_grads(new_momentums, mass_inv) new_positions = positions + step_size * ke_grad pe, pe_grad = self._potential_grads(new_positions) new_momentums = new_momentums - step_size * pe_grad / 2 return new_positions, new_momentums, pe, pe_grad def _leapfrog_updates( self, positions: torch.Tensor, momentums: torch.Tensor, trajectory_length: float, step_size: torch.Tensor, mass_inv: torch.Tensor, pe_grad: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """Run multiple iterations of leapfrog integration until the length of the trajectory is greater than the specified trajectory_length.""" # we should run at least 1 step num_steps = max(math.ceil(trajectory_length / step_size.item()), 1) for _ in range(num_steps): positions, momentums, pe, pe_grad = self._leapfrog_step( positions, momentums, step_size, mass_inv, pe_grad ) # pyre-ignore[61]: `pe` may not be initialized here. return positions, momentums, pe, pe_grad def _find_reasonable_step_size( self, initial_step_size: torch.Tensor, positions: torch.Tensor, pe: torch.Tensor, pe_grad: torch.Tensor, ) -> torch.Tensor: """A heuristic of finding a reasonable initial step size (epsilon) as introduced in Algorithm 4 of [2].""" step_size = initial_step_size # the target is log(0.5) in the paper but is log(0.8) on Stan: # https://github.com/stan-dev/stan/pull/356 target = math.log(0.8) momentums = self._initialize_momentums(positions) energy = self._hamiltonian( positions, momentums, self._mass_inv, pe ) # -log p(positions, momentums) new_positions, new_momentums, new_pe, _ = self._leapfrog_step( positions, momentums, step_size, self._mass_inv, pe_grad ) new_energy = self._hamiltonian( new_positions, new_momentums, self._mass_inv, new_pe ) # NaN will evaluate to False and set direction to -1 new_direction = direction = 1 if energy - new_energy > target else -1 step_size_scale = 2**direction while new_direction == direction: step_size *= step_size_scale if step_size == 0: raise ValueError( f"Current step size is {step_size}. No acceptably small step size could be found." "Perhaps the posterior is not continuous?" ) if step_size > 1e7: raise ValueError( f"Current step size is {step_size}. Posterior is improper. Please check your model" ) # not covered in the paper, but both Stan and Pyro re-sample the momentum # after each update momentums = self._initialize_momentums(positions) energy = self._hamiltonian(positions, momentums, self._mass_inv, pe) new_positions, new_momentums, new_pe, _ = self._leapfrog_step( positions, momentums, step_size, self._mass_inv, pe_grad ) new_energy = self._hamiltonian( new_positions, new_momentums, self._mass_inv, new_pe ) new_direction = 1 if energy - new_energy > target else -1 return step_size def propose(self, world: World) -> Tuple[World, torch.Tensor]: if world is not self.world: # re-compute cached values since world was modified by other sources self.world = world self._positions = self._dict2vec.to_vec( self._to_unconstrained({node: world[node] for node in self._target_rvs}) ) self._pe, self._pe_grad = self._potential_grads(self._positions) momentums = self._initialize_momentums(self._positions) current_energy = self._hamiltonian( self._positions, momentums, self._mass_inv, self._pe ) positions, momentums, pe, pe_grad = self._leapfrog_updates( self._positions, momentums, self.trajectory_length, self.step_size, self._mass_inv, self._pe_grad, ) new_energy = torch.nan_to_num( self._hamiltonian(positions, momentums, self._mass_inv, pe), float("inf"), ) delta_energy = new_energy - current_energy self._alpha = torch.clamp(torch.exp(-delta_energy), max=1.0) # accept/reject new world if torch.bernoulli(self._alpha): positions_dict = self._dict2vec.to_dict(positions) self.world = self.world.replace(self._to_unconstrained.inv(positions_dict)) # update cache self._positions, self._pe, self._pe_grad = positions, pe, pe_grad return self.world, torch.zeros_like(self._alpha) def do_adaptation(self, *args, **kwargs) -> None: if self._alpha is None: return if self.adapt_step_size: self.step_size = self._step_size_adapter.step(self._alpha) if self.adapt_mass_matrix: window_scheme = self._window_scheme assert window_scheme is not None if window_scheme.is_in_window: self._mass_matrix_adapter.step(self._positions) if window_scheme.is_end_window: # update mass matrix at the end of a window self._mass_matrix_adapter.finalize() if self.adapt_step_size: self.step_size = self._step_size_adapter.finalize() self.step_size = self._find_reasonable_step_size( self.step_size, self._positions, self._pe, self._pe_grad, ) self._step_size_adapter = DualAverageAdapter(self.step_size) window_scheme.step() self._alpha = None def finish_adaptation(self) -> None: if self.adapt_step_size: self.step_size = self._step_size_adapter.finalize()
beanmachine-main
src/beanmachine/ppl/inference/proposer/hmc_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import cast, List, Tuple import torch from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.world import World class SequentialProposer(BaseProposer): def __init__(self, proposers: List[BaseProposer]): self.proposers = proposers def propose(self, world: World) -> Tuple[World, torch.Tensor]: """ Computes the joint log prob of all the proposers for the world. Args: world: World to compute joint log prob of """ accept_log_prob = 0.0 for proposer in self.proposers: world, log_prob = proposer.propose(world) accept_log_prob += log_prob return world, cast(torch.Tensor, accept_log_prob) def do_adaptation(self, *args, **kwargs) -> None: """ Run `do_adaptation` for all of the proposers """ for proposer in self.proposers: proposer.do_adaptation(*args, **kwargs) def finish_adaptation(self) -> None: for proposer in self.proposers: proposer.finish_adaptation()
beanmachine-main
src/beanmachine/ppl/inference/proposer/sequential_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Callable, Optional, Tuple, TypeVar from typing_extensions import ParamSpec logger = logging.getLogger(__name__) P = ParamSpec("P") R = TypeVar("R") def nnc_jit( f: Callable[P, R], static_argnums: Optional[Tuple[int]] = None ) -> Callable[P, R]: """ A helper function that lazily imports the NNC utils, which initialize the compiler and displaying a experimental warning, then invoke the underlying nnc_jit on the function f. """ try: # The setup code in `nnc.utils` will only be executed once in a Python session from beanmachine.ppl.inference.proposer.nnc.utils import nnc_jit as raw_nnc_jit except Exception as e: logger.warning( f"Fails to initialize NNC due to the following error: {str(e)}\n" "Falling back to default inference engine." ) # return original function without change return f return raw_nnc_jit(f, static_argnums) __all__ = ["nnc_jit"]
beanmachine-main
src/beanmachine/ppl/inference/proposer/nnc/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings import torch import torch.jit from functorch.compile import nnc_jit # the warning will only be shown to user once when this module is imported warnings.warn( "The support of NNC compiler is experimental and the API is subject to" "change in the future releases of Bean Machine. For questions regarding NNC, please" "checkout the functorch project (https://github.com/pytorch/functorch)." ) # allows reductions to be compiled by NNC # pyre-fixme[16]: Module `_C` has no attribute `_jit_set_texpr_reductions_enabled`. torch._C._jit_set_texpr_reductions_enabled(True) __all__ = ["nnc_jit"]
beanmachine-main
src/beanmachine/ppl/inference/proposer/nnc/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Tuple import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.newtonian_monte_carlo_utils import ( hessian_of_log_prob, is_valid, ) from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.utils import tensorops from beanmachine.ppl.world import World LOGGER = logging.getLogger("beanmachine") class SingleSiteSimplexSpaceNMCProposer(SingleSiteAncestralProposer): """ Single-Site Simplex Newtonian Monte Carlo Proposer See sec. 3.2 of [1] [1] Arora, Nim, et al. `Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods` """ def __init__( self, node: RVIdentifier, transform: dist.Transform = dist.identity_transform ): super().__init__(node) self._transform = transform self._proposal_distribution = None def compute_alpha( self, world: World, min_alpha_value: float = 1e-3 ) -> Tuple[bool, torch.Tensor]: """ Computes alpha of the Dirichlet proposal given the node. alpha = 1 - (x^2) (hessian[i, i] - max(hessian[i])) where max(hessian[i]) is maximum of the hessian at ith row excluding the diagonal values. :param node_var: the node Variable we're proposing a new value for :returns: alpha of the Dirichlet distribution as proposal distribution """ node_val = self._transform(world[self.node]) first_gradient, hessian_diag_minus_max = hessian_of_log_prob( world, self.node, node_val, tensorops.simplex_gradients, self._transform ) if not is_valid(first_gradient) or not is_valid(hessian_diag_minus_max): LOGGER.warning( "Gradient or Hessian is invalid at node {n}.\n".format(n=str(self.node)) ) return False, torch.tensor(0.0) node_val_reshaped = node_val.reshape(-1) predicted_alpha = ( 1 - ((node_val_reshaped * node_val_reshaped) * (hessian_diag_minus_max)) ).reshape(node_val.shape) mean = self._transform(world.get_variable(self.node).distribution.mean) predicted_alpha = torch.where( predicted_alpha < -1 * min_alpha_value, mean, predicted_alpha ) predicted_alpha = torch.where( predicted_alpha > 0, predicted_alpha, torch.tensor(min_alpha_value) ) return True, predicted_alpha def get_proposal_distribution(self, world: World) -> dist.Distribution: """ Returns the proposal distribution of the node. Args: world: the world in which we're proposing a new value for node. Returns: The proposal distribution. """ # if the number of variables in the world is 1 and proposal distribution # has already been computed, we can use the old proposal distribution # and skip re-computing the gradient, since there are no other variable # in the world that may change the gradient and the old one is still # correct. if self._proposal_distribution is not None and len(world.latent_nodes) == 1: return self._proposal_distribution is_valid, alpha = self.compute_alpha(world) if not is_valid: LOGGER.warning( "Node {n} has invalid proposal solution. ".format(n=self.node) + "Proposer falls back to SingleSiteAncestralProposer.\n" ) return super().get_proposal_distribution(world) self._proposal_distribution = dist.TransformedDistribution( dist.Dirichlet(alpha), self._transform.inv ) return self._proposal_distribution
beanmachine-main
src/beanmachine/ppl/inference/proposer/nmc/single_site_simplex_space_nmc_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Tuple import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.newtonian_monte_carlo_utils import ( hessian_of_log_prob, is_valid, ) from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.utils import tensorops from beanmachine.ppl.world import World LOGGER = logging.getLogger("beanmachine") class SingleSiteHalfSpaceNMCProposer(SingleSiteAncestralProposer): """ Single-Site Half Space Newtonian Monte Carlo Proposers. See sec. 3.2 of [1] [1] Arora, Nim, et al. `Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods` """ def __init__(self, node: RVIdentifier): super().__init__(node) self._proposal_distribution = None def compute_alpha_beta( self, world: World ) -> Tuple[bool, torch.Tensor, torch.Tensor]: """ Computes alpha and beta of the Gamma proposal given the node. alpha = 1 - hessian_diag * x^2 beta = -1 * x * hessian_diag - first_grad """ node_val = world[self.node] first_gradient, hessian_diag = hessian_of_log_prob( world, self.node, node_val, tensorops.halfspace_gradients ) if not is_valid(first_gradient) or not is_valid(hessian_diag): LOGGER.warning( "Gradient or Hessian is invalid at node {n}.\n".format(n=str(self.node)) ) return False, torch.tensor(0.0), torch.tensor(0.0) node_val_reshaped = node_val.reshape(-1) predicted_alpha = ( 1 - hessian_diag * (node_val_reshaped * node_val_reshaped) ).t() predicted_beta = -1 * node_val_reshaped * hessian_diag - first_gradient condition = (predicted_alpha > 0) & (predicted_beta > 0) predicted_alpha = torch.where( condition, predicted_alpha, torch.tensor(1.0).to(dtype=predicted_beta.dtype) ) node_var = world.get_variable(self.node) try: mean = ( node_var.distribution.mean.reshape(-1) if is_valid(node_var.distribution.mean) else torch.ones_like(predicted_beta) ) except NotImplementedError: # sometimes distribution.mean throws NotImplementedError mean = torch.ones_like(predicted_beta) predicted_beta = torch.where(condition, predicted_beta, mean) predicted_alpha = predicted_alpha.reshape(node_val.shape) predicted_beta = predicted_beta.reshape(node_val.shape) return True, predicted_alpha, predicted_beta def get_proposal_distribution(self, world: World) -> dist.Distribution: """ Returns the proposal distribution of the node. Args: world: the world in which we're proposing a new value for node. Returns: The proposal distribution. """ # if the number of variables in the world is 1 and proposal distribution # has already been computed, we can use the old proposal distribution # and skip re-computing the gradient, since there are no other variable # in the world that may change the gradient and the old one is still # correct. if self._proposal_distribution is not None and len(world.latent_nodes) == 1: return self._proposal_distribution is_valid, alpha, beta = self.compute_alpha_beta(world) if not is_valid: LOGGER.warning( "Node {n} has invalid proposal solution. ".format(n=self.node) + "Proposer falls back to SingleSiteAncestralProposer.\n" ) return super().get_proposal_distribution(world) self._proposal_distribution = dist.Gamma(alpha, beta) return self._proposal_distribution
beanmachine-main
src/beanmachine/ppl/inference/proposer/nmc/single_site_half_space_nmc_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from beanmachine.ppl.inference.proposer.nmc.single_site_half_space_nmc_proposer import ( SingleSiteHalfSpaceNMCProposer, ) from beanmachine.ppl.inference.proposer.nmc.single_site_real_space_nmc_proposer import ( SingleSiteRealSpaceNMCProposer, ) from beanmachine.ppl.inference.proposer.nmc.single_site_simplex_space_nmc_proposer import ( SingleSiteSimplexSpaceNMCProposer, ) __all__ = [ "SingleSiteHalfSpaceNMCProposer", "SingleSiteRealSpaceNMCProposer", "SingleSiteSimplexSpaceNMCProposer", ]
beanmachine-main
src/beanmachine/ppl/inference/proposer/nmc/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import NamedTuple, Optional, Tuple, Union import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.newtonian_monte_carlo_utils import ( hessian_of_log_prob, is_scalar, is_valid, soft_abs_inverse, ) from beanmachine.ppl.inference.proposer.normal_eig import NormalEig from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.model.rv_identifier import RVIdentifier from beanmachine.ppl.utils import tensorops from beanmachine.ppl.world import World LOGGER = logging.getLogger("beanmachine") class _ProposalArgs(NamedTuple): distance: torch.Tensor node_val_reshaped: torch.Tensor scale_tril: Optional[torch.Tensor] = None eig_vals: Optional[torch.Tensor] = None eig_vecs: Optional[torch.Tensor] = None class SingleSiteRealSpaceNMCProposer(SingleSiteAncestralProposer): """ Single-Site Real Space Newtonian Monte Carlo Proposer See sec. 3.1 of [1] [1] Arora, Nim, et al. `Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods` """ def __init__(self, node: RVIdentifier, alpha: float = 10.0, beta: float = 1.0): super().__init__(node) self.alpha_: Union[float, torch.Tensor] = alpha self.beta_: Union[float, torch.Tensor] = beta self.learning_rate_ = None self.running_mean_, self.running_var_ = torch.tensor(0.0), torch.tensor(0.0) self.accepted_samples_ = 0 # cached proposal args self._proposal_args: Optional[_ProposalArgs] = None def _sample_frac_dist(self, world: World) -> torch.Tensor: node_val_flatten = world[self.node].flatten() # If any of alpha or beta are scalar, we have to reshape them # random variable shape to allow for per-index learning rate. if is_scalar(self.alpha_) or is_scalar(self.beta_): self.alpha_ = self.alpha_ * torch.ones_like(node_val_flatten) self.beta_ = self.beta_ * torch.ones_like(node_val_flatten) beta_ = dist.Beta(self.alpha_, self.beta_) return beta_.sample() def _get_proposal_distribution_from_args( self, world: World, frac_dist: torch.Tensor, args: _ProposalArgs ) -> dist.Distribution: node_val = world[self.node] mean = (args.node_val_reshaped + args.distance * frac_dist).squeeze(0) if args.scale_tril is not None: proposal_dist = dist.MultivariateNormal(mean, scale_tril=args.scale_tril) else: assert args.eig_vals is not None and args.eig_vecs is not None proposal_dist = NormalEig( mean, eig_vals=args.eig_vals, eig_vecs=args.eig_vecs ) # reshape to match the original sample shape reshape_transform = dist.ReshapeTransform( node_val.flatten().size(), node_val.size() ) return dist.TransformedDistribution(proposal_dist, reshape_transform) def get_proposal_distribution(self, world: World) -> dist.Distribution: """ Returns the proposal distribution of the node. Args: world: the world in which we're proposing a new value for node required to find a proposal distribution which in this case is the fraction of distance between the current value and NMC mean that we're going to pick as our proposer mean. Returns: The proposal distribution. """ if self.learning_rate_ is None: self.learning_rate_ = self._sample_frac_dist(world) frac_dist = self.learning_rate_ if self._proposal_args is not None and len(world.latent_nodes) == 1: return self._get_proposal_distribution_from_args( world, frac_dist, self._proposal_args ) node_var = world.get_variable(self.node) node_val = node_var.value node_device = node_val.device first_gradient, hessian = hessian_of_log_prob( world, self.node, node_val, tensorops.gradients ) if not is_valid(first_gradient) or not is_valid(hessian): LOGGER.warning( "Gradient or Hessian is invalid at node {nv}.\n".format( nv=str(node_var) ) + "Node {n} has invalid proposal solution. ".format(n=self.node) + "Proposer falls back to SingleSiteAncestralProposer.\n" ) return super().get_proposal_distribution(world) # node value may of any arbitrary shape, so here, we use reshape to convert a # 1D vector of size (N) to (1 x N) matrix. node_val_reshaped = node_val.reshape(1, -1) neg_hessian = -1 * hessian # we will first attempt a covariance-inverse-based proposer # Using chelesky_ex because error propagation is slow in PyTorch (see N1136967) L, info = torch.linalg.cholesky_ex(neg_hessian.flip([0, 1]), check_errors=False) if info == 0: # info > 0 means the matrix isn't positive-definite # See: https://math.stackexchange.com/questions/1434899/is-there-a-decomposition-u-ut # Let, flip(H) = L @ L' (`flip` flips the x, y axes of X: torch.flip(X, (0, 1))) # equiv. to applying W @ X @ W'; where W is the permutation matrix # [[0 ... 1], [0 ... 1 0], ..., [1 ... 0]] # Note: flip(A @ B) = flip(A) @ flip(B) and flip(A^-1) = (flip(A))^-1 # (flip(H))^-1 = (L @ L')^-1 = L'^-1 @ L^-1 # flip(H^-1) = (L^-1)' @ (L^-1) # Note that L^-1 is lower triangular and isn't the cholesky factor for (flip(H))^-1. # flip(flip(H^-1)) = flip((L^-1)') @ flip(L^-1) # H^-1 = flip(L^-1)' @ flip(L^-1) # flip(L^-1)' is the lower triangular cholesky factor for H^-1. L_inv = torch.linalg.solve_triangular( L, torch.eye(L.size(-1)).to(dtype=neg_hessian.dtype, device=node_device), upper=False, ) L_chol = L_inv.flip([0, 1]).T distance = torch.cholesky_solve(first_gradient.unsqueeze(1), L).t() proposal_args = _ProposalArgs( distance=distance, node_val_reshaped=node_val_reshaped, scale_tril=L_chol, ) else: LOGGER.warning( "Error: Cholesky decomposition failed. " + "Falls back to Eigen decomposition." ) eig_vecs, eig_vals = soft_abs_inverse(neg_hessian) distance = ( eig_vecs @ (torch.eye(len(eig_vals)) * eig_vals) @ (eig_vecs.t() @ first_gradient.unsqueeze(1)) ).t() proposal_args = _ProposalArgs( distance=distance, node_val_reshaped=node_val_reshaped, eig_vals=eig_vals, eig_vecs=eig_vecs, ) self._proposal_args = proposal_args return self._get_proposal_distribution_from_args( world, frac_dist, proposal_args ) def compute_beta_priors_from_accepted_lr( self, max_lr_num: int = 5 ) -> Tuple[torch.Tensor, torch.Tensor]: """ Compute Alpha and Beta using Method of Moments. """ # Running mean and variance are computed following the link below: # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance old_mu = self.running_mean_ old_var = self.running_var_ n = self.accepted_samples_ xn = self.learning_rate_ new_mu = old_mu + (xn - old_mu) / n new_var = old_var + ((xn - old_mu) * (xn - new_mu) - old_var) / n self.running_var_ = new_var self.running_mean_ = new_mu if n < max_lr_num: return ( torch.tensor(1.0, dtype=self.learning_rate_.dtype), torch.tensor(1.0, dtype=self.learning_rate_.dtype), ) # alpha and beta are calculated following the link below. # https://stats.stackexchange.com/questions/12232/calculating-the- # parameters-of-a-beta-distribution-using-the-mean-and-variance alpha = ((1.0 - new_mu) / new_var - (1.0 / new_mu)) * (new_mu**2) beta = alpha * (1.0 - new_mu) / new_mu # pyre-fixme[6]: For 1st param expected `Tensor` but got `bool`. # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`. alpha = torch.where(alpha <= 0, torch.ones_like(alpha), alpha) # pyre-fixme[6]: For 1st param expected `Tensor` but got `bool`. # pyre-fixme[6]: For 1st param expected `Tensor` but got `float`. beta = torch.where(beta <= 0, torch.ones_like(beta), beta) return alpha, beta def do_adaptation( self, world: World, accept_log_prob: torch.Tensor, is_accepted: bool = False, *args, **kwargs, ) -> None: """ Do adaption based on the learning rates. Args: world: the world in which we're operating in. accept_log_prob: Current accepted log prob (Not used in this particular proposer). is_accepted: bool representing whether the new value was accepted. """ if not is_accepted: if self.accepted_samples_ == 0: self.alpha_ = 1.0 self.beta_ = 1.0 else: self.accepted_samples_ += 1 self.alpha_, self.beta_ = self.compute_beta_priors_from_accepted_lr()
beanmachine-main
src/beanmachine/ppl/inference/proposer/nmc/single_site_real_space_nmc_proposer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Tensorizing and detensorizing # # See the comment at the top of devectorizer_transformer.py for a high-level description of # what this class is for and how it works with the devectorizer. import typing from enum import Enum from typing import Callable, List import beanmachine.ppl.compiler.bmg_nodes as bn from beanmachine.ppl.compiler.bm_graph_builder import BMGraphBuilder from beanmachine.ppl.compiler.copy_and_replace import ( Cloner, NodeTransformer, TransformAssessment, ) from beanmachine.ppl.compiler.error_report import ErrorReport from beanmachine.ppl.compiler.fix_unsupported import UnsupportedNodeFixer from beanmachine.ppl.compiler.size_assessment import SizeAssessment from beanmachine.ppl.compiler.sizer import is_scalar, Sizer, Unsized # The tensorizing transformation does not need to know the *semantic* type of a node; # that is, whether it is a bool, natural, probability, positive real, and so on. But # we do need information about what the *tensor shape* was in the original PyTorch # model. class ElementType(Enum): # The node represents a multidimensional tensor that cannot be expressed in BMG. TENSOR = 1 # The node represents a single value. SCALAR = 2 # The node represents multiple values that can be expressed in a BMG 2-d matrix. MATRIX = 3 # We were unable to deduce the size in the original Python model. UNKNOWN = 4 def _always(node): return True class Tensorizer(NodeTransformer): # A node transformer exposes two operations to its caller: # * assess_node takes a node and returns an assessement of whether it can be # transformed. # * transform_node takes a node and either returns a copy, or a new node to # replace the given node. # # This transformer determines whether a node in the graph accumulated from the # original Python model should be transformed into a matrix-aware BMG node. def __init__(self, cloner: Cloner, sizer: Sizer): self.cloner = cloner self.sizer = sizer self.size_assessor = SizeAssessment(self.sizer) self.transform_cache = {} self.can_be_transformed_map = { bn.AdditionNode: _always, bn.MultiplicationNode: self.mult_can_be_tensorized, bn.DivisionNode: self.div_can_be_tensorized, bn.ComplementNode: _always, bn.ExpNode: _always, bn.LogNode: _always, bn.Log1mexpNode: _always, bn.NegateNode: self.negate_can_be_tensorized, bn.PhiNode: _always, bn.SumNode: _always, } self.transform_map = { bn.AdditionNode: lambda node, inputs: self._tensorize_addition( node, inputs, self.cloner.bmg.add_matrix_addition ), bn.MultiplicationNode: self._tensorize_multiply, bn.DivisionNode: self._tensorize_div, bn.ComplementNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_complement ), bn.ExpNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_exp ), bn.LogNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_log ), bn.Log1mexpNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_log1mexp ), bn.NegateNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_negate ), bn.PhiNode: lambda node, inputs: self._tensorize_unary_elementwise( node, inputs, self.cloner.bmg.add_matrix_phi ), bn.SumNode: self._tensorize_sum, } def _tensorize_div( self, node: bn.DivisionNode, new_inputs: List[bn.BMGNode] ) -> bn.BMGNode: # If we have DIV(matrix, scalar) then we transform that into # MATRIX_SCALE(matrix, DIV(1, scalar)). assert len(node.inputs.inputs) == 2 tensor_input = new_inputs[0] scalar_input = new_inputs[1] if self._element_type(tensor_input) is not ElementType.MATRIX: raise ValueError("Expected a matrix as first operand") if self._element_type(scalar_input) is not ElementType.SCALAR: raise ValueError("Expected a scalar as second operand") one = self.cloner.bmg.add_pos_real(1.0) new_scalar = self.cloner.bmg.add_division(one, scalar_input) return self.cloner.bmg.add_matrix_scale(new_scalar, tensor_input) def _tensorize_sum( self, node: bn.SumNode, new_inputs: List[bn.BMGNode] ) -> bn.BMGNode: # TODO: Ensure that we correctly insert any necessary broadcasting nodes # in the requirements-fixing pass. assert len(new_inputs) >= 1 if any( self._element_type(operand) == ElementType.MATRIX for operand in node.inputs.inputs ): current = new_inputs[0] for i in range(1, len(new_inputs)): current = self.cloner.bmg.add_matrix_addition(current, new_inputs[i]) return self.cloner.bmg.add_matrix_sum(current) return self.cloner.bmg.add_sum(*new_inputs) def _tensorize_multiply( self, node: bn.MultiplicationNode, new_inputs: List[bn.BMGNode] ) -> bn.BMGNode: # Note that this function handles *elementwise* multiplication of tensors, not # matrix multiplication. There are three cases to consider. if len(new_inputs) != 2: raise ValueError( "Cannot transform a mult into a tensor mult because there are not two operands" ) lhs_sz = self.sizer[new_inputs[0]] rhs_sz = self.sizer[new_inputs[1]] if lhs_sz == Unsized or rhs_sz == Unsized: raise ValueError( f"cannot multiply an unsized quantity. Operands: {new_inputs[0]} and {new_inputs[1]}" ) # Case one: MULT(matrix, matrix) --> ELEMENTWISEMULT(matrix, matrix) # TODO: Ensure that the requirements fixing pass correctly inserts broadcast operators. lhs_is_scalar = is_scalar(lhs_sz) rhs_is_scalar = is_scalar(rhs_sz) if not lhs_is_scalar and not rhs_is_scalar: return self.cloner.bmg.add_elementwise_multiplication( new_inputs[0], new_inputs[1] ) # Case two: MULT(scalar, scalar) stays just that. if lhs_is_scalar and not rhs_is_scalar: scalar_parent_image = new_inputs[0] tensor_parent_image = new_inputs[1] assert not is_scalar(rhs_sz) elif rhs_is_scalar and not lhs_is_scalar: tensor_parent_image = new_inputs[0] scalar_parent_image = new_inputs[1] assert is_scalar(rhs_sz) else: return self.cloner.bmg.add_multiplication(new_inputs[0], new_inputs[1]) # Case three: MULT(matrix, scalar) or MULT(scalar, matrix) --> MATRIX_SCALE(matrix, scalar) return self.cloner.bmg.add_matrix_scale( scalar_parent_image, tensor_parent_image ) def _tensorize_unary_elementwise( self, node: bn.UnaryOperatorNode, new_inputs: List[bn.BMGNode], creator: Callable, ) -> bn.BMGNode: # Unary operators such as exp, log, and so on, are straightforward. If the operand is # a matrix, generate the matrix-aware node. Otherwise leave it alone. assert len(new_inputs) == 1 if self._element_type(new_inputs[0]) == ElementType.MATRIX: return creator(new_inputs[0]) else: return self.cloner.clone(node, new_inputs) def _tensorize_addition( self, node: bn.AdditionNode, new_inputs: List[bn.BMGNode], creator: Callable, ) -> bn.BMGNode: # If we have matrix + matrix, scalar + matrix or matrix + scalar, generate # a matrix add. In the latter cases, the requirements fixing pass will insert a # matrix fill node to convert the scalar to a matrix of the appropriate size. assert len(new_inputs) == 2 if ( self._element_type(new_inputs[0]) == ElementType.MATRIX or self._element_type(new_inputs[1]) == ElementType.MATRIX ): return creator(new_inputs[0], new_inputs[1]) else: return self.cloner.clone(node, new_inputs) def _element_type(self, node: bn.BMGNode) -> ElementType: size = self.sizer[node] if size == Unsized: return ElementType.UNKNOWN length = len(size) if length == 0 or is_scalar(size): return ElementType.SCALAR if length == 1 and size[0] > 1: return ElementType.MATRIX elif length == 2: return ElementType.MATRIX else: return ElementType.TENSOR def div_can_be_tensorized(self, node: bn.DivisionNode) -> bool: if len(node.inputs.inputs) == 2: return ( self._element_type(node.inputs.inputs[0]) == ElementType.MATRIX and self._element_type(node.inputs.inputs[1]) == ElementType.SCALAR ) return False def negate_can_be_tensorized(self, node: bn.NegateNode) -> bool: # We want to fix unsupported nodes first before we tensorize them. # For example, when we have log1p(-Sample(Beta(...))) this gets changed to log(1-Sample(Beta(...))), # which is log(complement(Sample(Beta(...)))). But if we run the tensorizer, it does negate first # and then the log1p fixing. In this case, we get log(1+MatrixNegate(Sample(Beta(...)))). # There is no way to indicate that the computation is always positive real. # Therefore, this leads to the compiler thinking the requirements are violated. # We can avoid this by converting unsupported nodes to supported nodes and then tensorizing them. # TODO: This will also allow us to carry out fixpoint between tensorizer and other fixers. # TODO: We may want to do the same for other operators that can be tensorized. if any( isinstance(i, node_type) for node_type in UnsupportedNodeFixer._unsupported_nodes for i in node.outputs.items ): return False return True def mult_can_be_tensorized(self, node: bn.MultiplicationNode) -> bool: return len(node.inputs.inputs) == 2 # a node can be tensorized if all its parents satisfy the type requirements def can_be_tensorized(self, original_node: bn.BMGNode) -> bool: if self.can_be_transformed_map.__contains__(type(original_node)): return self.can_be_transformed_map[type(original_node)](original_node) else: return False def assess_node( self, node: bn.BMGNode, original: BMGraphBuilder ) -> TransformAssessment: report = ErrorReport() error = self.size_assessor.size_error(node, self.cloner.bmg_original) if error is not None: report.add_error(error) return TransformAssessment(self.can_be_tensorized(node), report) # a node is either replaced 1-1, 1-many, or deleted def transform_node( self, node: bn.BMGNode, new_inputs: List[bn.BMGNode] ) -> typing.Optional[typing.Union[bn.BMGNode, List[bn.BMGNode]]]: if self.transform_map.__contains__(type(node)): return self.transform_map[type(node)](node, new_inputs) else: return self.cloner.clone(node, new_inputs)
beanmachine-main
src/beanmachine/ppl/compiler/tensorizer_transformer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Error reporting for internal compiler errors""" import os from ast import AST from tempfile import NamedTemporaryFile from typing import Optional import beanmachine.ppl.compiler.ast_tools as ast_tools _BEANSTALK_LOG_ERRORS_TO_DISK = "BEANSTALK_LOG_ERRORS_TO_DISK" _BEANSTALK_VERBOSE_EXCEPTIONS = "BEANSTALK_VERBOSE_EXCEPTIONS" _help_log = f"""Set environment variable {_BEANSTALK_LOG_ERRORS_TO_DISK} to 1 to dump extended error information to a temporary file. """ _help_verbose = f"""Set environment variable {_BEANSTALK_VERBOSE_EXCEPTIONS} to 1 for extended error information. """ def _log_to_disk(message: str) -> str: temp = NamedTemporaryFile(prefix="beanstalk_ice_", delete=False, mode="wt") try: temp.write(message) finally: temp.close() return temp.name def _check_environment(variable: str) -> bool: return os.environ.get(variable) == "1" # You can change this to True for debugging purposes. _always_log_errors_to_disk = False def _log_errors_to_disk() -> bool: return _always_log_errors_to_disk or _check_environment( _BEANSTALK_LOG_ERRORS_TO_DISK ) # You can change this to True for debugging purposes. _always_verbose_exceptions = False def _verbose_exceptions() -> bool: return _always_verbose_exceptions or _check_environment( _BEANSTALK_VERBOSE_EXCEPTIONS ) class InternalError(Exception): """An exception class for internal compiler errors""" original_exception: Optional[Exception] def __init__(self, message: str, original_exception: Optional[Exception] = None): self.original_exception = original_exception Exception.__init__(self, message) class LiftedCompilationError(InternalError): """An exception class for internal compiler errors when compiling the lifted code.""" source: str ast: AST def __init__(self, source: str, ast: AST, original_exception: Exception): self.source = source self.ast = ast # TODO: Consider adding a compiler version number, hash # or other identifier to help debug. brief = f"""Compilation of the lifted AST failed. This typically indicates an internal error in the rewrite phase of the compiler. ### Exception thrown ### {original_exception} """ verbose = f"""### Internal compiler error ### {brief} ### Model source ### {source} ### Abstract syntax tree ### from ast import * failed = {ast_tools.print_python(ast)} ### End internal compiler error ### """ log = _log_errors_to_disk() use_verbose = _verbose_exceptions() help_text = "" if log else _help_log help_text += "" if use_verbose else _help_verbose message = verbose if use_verbose else brief message += help_text if log: logname = _log_to_disk(verbose) message += f"\nExtended error information logged to {logname}\n" InternalError.__init__(self, message, original_exception)
beanmachine-main
src/beanmachine/ppl/compiler/internal_error.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # See notes in typer_base.py for how the type computation logic works. # # This typer computes all possible tensor values that a graph node can # possibly have. For example, if we have a random variable: # # @rv def flips(n): # return Bernoulli(0.5) # # @functional def sumflips(): # return flips(0) + flips(1) # # Then the sample nodes each have a two-value support {0, 1} -- # and the addition node has a support {0, 1, 2}. # # Some nodes -- a sample from a normal, for instance -- have infinite # support; we mark those with a special value. Similarly, some nodes # have finite but large support, where "large" is a parameter we can # choose; to keep graphs relatively small we will refuse to compile # a model where there are thousands of samples associated with a # particular call. For example, suppose we have K categories: # # @rv def cat(): # return Categorical(tensor([1, 1, 1, 1, 1, ...])) # # @rv def norm(n): # return Normal(0, 1) # # @functional toobig(): # return whatever(cat()) # # That model generates K normal samples; we want to restrict that # to "small" K. import functools import itertools import operator from math import isnan from typing import Callable, Dict import beanmachine.ppl.compiler.bmg_nodes as bn import torch from beanmachine.ppl.compiler.sizer import Sizer from beanmachine.ppl.compiler.typer_base import TyperBase from beanmachine.ppl.utils.set_of_tensors import SetOfTensors from torch import tensor Infinite = SetOfTensors([]) TooBig = SetOfTensors([]) Unknown = SetOfTensors([]) positive_infinity = float("inf") def _prod(x) -> int: """Compute the product of a sequence of values of arbitrary length""" return functools.reduce(operator.mul, x, 1) _limit = 1000 _always_infinite = { bn.BetaNode, bn.Chi2Node, bn.DirichletNode, bn.FlatNode, bn.GammaNode, bn.HalfCauchyNode, bn.HalfNormalNode, bn.NormalNode, bn.PoissonNode, bn.StudentTNode, bn.UniformNode, } # TODO: We could do better for the comparison operators because we known # that the support is not a function of the inputs; the support is just # {True, False} for each element. Handling this correctly would enable # us to do stochastic control flows of the form some_rv(normal(1) > normal(2)) # even though the normal rvs have infinite supports. # # However, since BMG does not yet implement comparison operators, this is a # moot point; if it ever does so, then revisit this decision. _product_of_inputs = { bn.AdditionNode: torch.Tensor.__add__, bn.BitAndNode: torch.Tensor.__and__, bn.BitOrNode: torch.Tensor.__or__, bn.BitXorNode: torch.Tensor.__xor__, bn.CholeskyNode: torch.Tensor.cholesky, bn.DivisionNode: torch.Tensor.div, bn.EqualNode: torch.Tensor.eq, bn.ExpM1Node: torch.Tensor.expm1, bn.ExpNode: torch.Tensor.exp, bn.Exp2Node: torch.exp2, bn.FloorDivNode: torch.Tensor.__floordiv__, bn.GreaterThanEqualNode: torch.Tensor.ge, bn.GreaterThanNode: torch.Tensor.gt, bn.InvertNode: torch.Tensor.__invert__, bn.ItemNode: lambda x: x, # item() is an identity bn.LessThanEqualNode: torch.Tensor.le, bn.LessThanNode: torch.Tensor.lt, bn.LogisticNode: torch.Tensor.sigmoid, bn.LogNode: torch.Tensor.log, bn.Log10Node: torch.log10, bn.Log1pNode: torch.log1p, bn.Log2Node: torch.log2, bn.LShiftNode: torch.Tensor.__lshift__, bn.MatrixMultiplicationNode: torch.Tensor.mm, bn.ModNode: torch.Tensor.__mod__, bn.MultiplicationNode: torch.Tensor.mul, bn.NegateNode: torch.Tensor.neg, bn.NotEqualNode: torch.Tensor.ne, bn.PhiNode: torch.distributions.Normal(0.0, 1.0).cdf, bn.PowerNode: torch.Tensor.pow, bn.RShiftNode: torch.Tensor.__rshift__, bn.SquareRootNode: torch.sqrt, } # TODO: # # NotNode -- note that "not t" on a tensor is equivalent to "not Tensor.__bool__(t)" # and produces either True or False. It is *not* the same as "Tensor.logical_not(t)" # which executes "not" on each element and returns a tensor of the same size as t. # # LogSumExpTorchNode # Log1mexpNode # IndexNode # Log1mexpNode # # We will need to implement computation of the support # of an arbitrary binomial distribution because samples are # discrete values between 0 and count, which is typically small. # Though implementing support computation if count is non-stochastic # is straightforward, we do not yet have the gear to implement # this for stochastic counts. Consider this contrived case: # # @bm.random_variable def a(): return Binomial(2, 0.5) # @bm.random_variable def b(): return Binomial(a() + 1, 0.4) # @bm.random_variable def c(i): return Normal(0.0, 2.0) # @bm.random_variable def d(): return Normal(c(b()), 3.0) # # The support of a() is 0, 1, 2 -- easy. # # We need to know the support of b() in order to build the # graph for d(). But how do we know the support of b()? # # What we must do is compute that the maximum possible value # for a() + 1 is 3, and so the support of b() is 0, 1, 2, 3, # and therefore there are four samples of c(i) generated. # # There are two basic ways to do this that immediately come to # mind. # # The first is to simply ask the graph for the support of # a() + 1, which we can generate, and then take the maximum # value thus generated. # # If that turns out to be too expensive for some reason then # we can write a bit of code that answers the question # "what is the maximum value of your support?" and have each # node implement that. However, that then introduces new # problems; to compute the maximum value of a negation, for # instance, we then would also need to answer the question # "what is the minimum value you support?" and so on. _nan = float("nan") def _set_approximate_size(s: SetOfTensors) -> float: if s is Infinite: return positive_infinity if s is Unknown: return _nan if s is TooBig: return _limit return len(s) def _set_product_approximate_size(x: float, y: SetOfTensors) -> float: # If either size is unknown (NaN), we return NaN. # Otherwise, if either size is infinite, we return infinite. # Otherwise, return the product. return x * _set_approximate_size(y) class ComputeSupport(TyperBase[SetOfTensors]): _dispatch: Dict[type, Callable] _sizer: Sizer def __init__(self) -> None: TyperBase.__init__(self) self._sizer = Sizer() self._dispatch = { bn.BernoulliLogitNode: self._support_bernoulli, bn.BernoulliNode: self._support_bernoulli, bn.CategoricalLogitNode: self._support_categorical, bn.CategoricalNode: self._support_categorical, bn.SampleNode: self._support_sample, bn.SwitchNode: self._support_switch, bn.TensorNode: self._support_tensor, } def _product(self, f: Callable, *nodes: bn.BMGNode) -> SetOfTensors: # * We have a sequence of nodes n[0], n[1], ... n[k-1]. # # * Each of those nodes has possible values t[x][0], t[x][1] ... # for x from 0 to k-1. # # * We have a function f which takes k tensors and returns a tensor. # # * We wish to compute the set: # # { # f(t[0][0], t[1][0], ... t[k-1][0]), # f(t[0][1], t[1][0], ... t[k-1][0]), # ... # } # # That is, the Cartesian product of all possible combinations of # values of each node, with each element of the product run through # function f. # # However, we have some problems: # # * The support of a node might be infinite. # * The support of a node might be unknown. # * The support of a node might be finite but large. # * The size of the product might be finite but large. # # In those cases we want to return special values Infinite, Unknown # or TooBig rather than wasting time and memory to compute the set. # # #### # # First thing to do is determine the *approximate* size of the # Cartesian product of possible values. # # TODO: This approximation is an over-estimate; for instance, when # multiplying {0 or 1} by { n elements} we assume that the resulting # set has up to 2n elements, when in fact it only has n or n+1 elements. # Would it be simpler and more accurate to instead make a loop, accumulate # the result into a mutable deduplicating set, and if the set ever gets # too big, bail out then? size = functools.reduce( lambda acc, node: _set_product_approximate_size(acc, self[node]), nodes, 1.0 ) if size == positive_infinity: return Infinite if isnan(size): return Unknown if size >= _limit: return TooBig # If we've made it here then every node had a small support # and the product of the approximate sizes was small too. # We can just take the Cartesian product and call f. return SetOfTensors(f(c) for c in itertools.product(*(self[n] for n in nodes))) def _support_bernoulli(self, node: bn.BernoulliBase) -> SetOfTensors: # The support of a Bernoulli only depends on the shape of its input, # not on the content of that input. Suppose we have a Bernoulli # of shape [1, 2, 3]; there are 1x2x3 = 6 values in the output # each of which is either 0 or 1, so that's 64 possibilities. If # we have too big a shape then just bail out rather than handling # thousands or millions of possibilities. s = self._sizer[node] p = _prod(s) if 2.0**p >= _limit: return TooBig return SetOfTensors( tensor(i).reshape(s) for i in itertools.product(*([[0.0, 1.0]] * p)) ) def _support_categorical(self, node: bn.CategoricalNodeBase) -> SetOfTensors: # Suppose we have something like Categorical(tensor([0.25, 0.25, 0.5])), # with size [3]. The support is 0, 1, 2. # If we have a higher dimensional categorical, say size [2, 3] such as # [[0.25, 0.25, 0.5], [0.5, 0.25, 0.25]], then the support is # [0, 0], [0, 1], ... [2, 2], each is of size [2]. # # That is: the range of values is determined by the last element # of the categorical input size, and the size of each member of # the support is the truncation of the last member off the categorical # input size. input_size = self._sizer[node.probability] if len(input_size) == 0: return Unknown max_element = input_size[-1] # 3, in our example above. r = list(range(max_element)) # [0, 1, 2] result_size = input_size[:-1] # [2] in our example above # In our example above we would have 3 ** 2 members of the # support. Compute how many members we're going to get and # bail out if it is too large. # TODO: Move this prod helper function out of bmg_nodes.py num_result_elements = _prod(result_size) if max_element**num_result_elements >= _limit: return TooBig return SetOfTensors( tensor(i).reshape(result_size) for i in itertools.product(*([r] * num_result_elements)) ) def _support_sample(self, node: bn.SampleNode) -> SetOfTensors: return self[node.operand] def _support_switch(self, node: bn.SwitchNode) -> SetOfTensors: for i in range((len(node.inputs) - 1) // 2): if self[node.inputs[2 + i * 2]] == Infinite: return Infinite for i in range((len(node.inputs) - 1) // 2): if self[node.inputs[2 + i * 2]] == TooBig: return TooBig for i in range((len(node.inputs) - 1) // 2): if self[node.inputs[2 + i * 2]] == Unknown: return Unknown s = 0 for i in range((len(node.inputs) - 1) // 2): s += len(self[node.inputs[2 + i * 2]]) if s >= _limit: return TooBig return SetOfTensors( itertools.chain( *( self[node.inputs[2 + i * 2]] for i in range((len(node.inputs) - 1) // 2) ) ) ) def _support_tensor(self, node: bn.TensorNode) -> SetOfTensors: return self._product(tensor, *node.inputs) # This implements the abstract base type method. def _compute_type_inputs_known(self, node: bn.BMGNode) -> SetOfTensors: if isinstance(node, bn.ConstantNode): return SetOfTensors([node.value]) t = type(node) if t in _always_infinite: result = Infinite elif t in _product_of_inputs: result = self._product(lambda x: _product_of_inputs[t](*x), *node.inputs) elif t in self._dispatch: result = self._dispatch[t](node) else: result = Unknown return result
beanmachine-main
src/beanmachine/ppl/compiler/support.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, List import beanmachine.ppl.compiler.bmg_nodes as bn import torch from beanmachine.ppl.compiler.bm_graph_builder import BMGraphBuilder from beanmachine.ppl.compiler.bmg_node_types import ( dist_type, factor_type, operator_type, ) from beanmachine.ppl.compiler.bmg_types import _size_to_rc, SimplexMatrix from beanmachine.ppl.compiler.fix_problems import fix_problems from beanmachine.ppl.compiler.lattice_typer import LatticeTyper def _value_to_cpp_eigen(value: torch.Tensor, variable: str, array_type: str) -> str: # Torch tensors are row major but Eigen matrices are column major; # a torch Dirichlet distribution expects a row of parameters; # BMG expects a column. That's why we swap rows with columns here. r, c = _size_to_rc(value.size()) v = value.reshape(r, c).transpose(0, 1).contiguous() values = ", ".join(str(element) for element in v.reshape(-1).tolist()) return f"{array_type} {variable}({c}, {r});\n{variable} << {values};" def _value_to_cpp_real_eigen(value: torch.Tensor, variable: str) -> str: return _value_to_cpp_eigen(value, variable, "Eigen::MatrixXd") def _value_to_cpp_natural_eigen(value: torch.Tensor, variable: str) -> str: return _value_to_cpp_eigen(value, variable, "Eigen::MatrixXn") def _value_to_cpp_bool_eigen(value: torch.Tensor, variable: str) -> str: return _value_to_cpp_eigen(value, variable, "Eigen::MatrixXb") def _value_to_cpp(value: Any) -> str: return str(value).lower() class GeneratedGraphCPP: code: str _code: List[str] bmg: BMGraphBuilder node_to_graph_id: Dict[bn.BMGNode, int] query_to_query_id: Dict[bn.Query, int] _observation_count: int def __init__(self, bmg: BMGraphBuilder) -> None: self.code = "" self._code = ["graph::Graph g;"] self.bmg = bmg self.node_to_graph_id = {} self.query_to_query_id = {} self._observation_count = 0 def _add_observation(self, node: bn.Observation) -> None: graph_id = self.node_to_graph_id[node.observed] v = node.value if isinstance(v, torch.Tensor): o = f"o{self._observation_count}" self._observation_count += 1 # TODO: What if its not a real-valued observation? # We do not handle this case correctly in fix_observations. # When we do, fix this here too. s = _value_to_cpp_real_eigen(v, o) self._code.append(s) self._code.append(f"g.observe(n{graph_id}, {o});") else: self._code.append(f"g.observe(n{graph_id}, {_value_to_cpp(v)});") def _add_query(self, node: bn.Query) -> None: query_id = len(self.query_to_query_id) self.query_to_query_id[node] = query_id graph_id = self.node_to_graph_id[node.operator] self._code.append(f"uint q{query_id} = g.query(n{graph_id});") def _inputs(self, node: bn.BMGNode) -> str: if isinstance(node, bn.LKJCholeskyNode): # The LKJ dimension parameter has already been folded into the sample type input_seq = [self.node_to_graph_id[node.inputs[1]]] else: input_seq = (self.node_to_graph_id[x] for x in node.inputs) inputs = ", ".join("n" + str(x) for x in input_seq) return "std::vector<uint>({" + inputs + "})" def _add_factor(self, node: bn.FactorNode) -> None: graph_id = len(self.node_to_graph_id) self.node_to_graph_id[node] = graph_id i = self._inputs(node) ft = str(factor_type(node)).replace(".", "::") self._code.append(f"uint n{graph_id} = g.add_factor(") self._code.append(f" graph::{ft},") self._code.append(f" {i});") def _add_distribution(self, node: bn.DistributionNode) -> None: graph_id = len(self.node_to_graph_id) self.node_to_graph_id[node] = graph_id i = self._inputs(node) if isinstance(node, bn.DirichletNode): t = LatticeTyper()[node] assert isinstance(t, SimplexMatrix) self._code.append(f"uint n{graph_id} = g.add_distribution(") self._code.append(" graph::DistributionType::DIRICHLET,") self._code.append(" graph::ValueType(") self._code.append(" graph::VariableType::COL_SIMPLEX_MATRIX,") self._code.append(" graph::AtomicType::PROBABILITY,") self._code.append(f" {t.rows},") self._code.append(f" {t.columns}") self._code.append(" ),") self._code.append(f" {i});") else: distr_type, elt_type = dist_type(node) distr_type = str(distr_type).replace(".", "::") elt_type = str(elt_type).replace(".", "::") self.node_to_graph_id[node] = graph_id self._code.append(f"uint n{graph_id} = g.add_distribution(") self._code.append(f" graph::{distr_type},") self._code.append(f" graph::{elt_type},") self._code.append(f" {i});") def _add_operator(self, node: bn.OperatorNode) -> None: graph_id = len(self.node_to_graph_id) self.node_to_graph_id[node] = graph_id i = self._inputs(node) ot = str(operator_type(node)).replace(".", "::") self._code.append(f"uint n{graph_id} = g.add_operator(") if len(node.inputs) <= 2: self._code.append(f" graph::{ot}, {i});") else: self._code.append(f" graph::{ot},") self._code.append(f" {i});") def _add_constant(self, node: bn.ConstantNode) -> None: # noqa graph_id = len(self.node_to_graph_id) self.node_to_graph_id[node] = graph_id t = type(node) v = node.value m = "" if t is bn.PositiveRealNode: f = f"add_constant_pos_real({_value_to_cpp(float(v))})" elif t is bn.NegativeRealNode: f = f"add_constant_neg_real({_value_to_cpp(float(v))})" elif t is bn.ProbabilityNode: f = f"add_constant_probability({_value_to_cpp(float(v))})" elif t is bn.BooleanNode: f = f"add_constant_bool({_value_to_cpp(bool(v))})" elif t is bn.NaturalNode: f = f"add_constant_natural({_value_to_cpp(int(v))})" elif t is bn.RealNode: f = f"add_constant_real({_value_to_cpp(float(v))})" elif t is bn.ConstantTensorNode: # This only happens in the rare case where we have a functional # which returns a constant tensor and there's a query on it. # We never rewrite that to another kind of node. # TODO: Consider turning that into a constant of some more # specific BMG node type. m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_real_matrix(m{graph_id})" elif t is bn.ConstantPositiveRealMatrixNode: m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_pos_matrix(m{graph_id})" elif t is bn.ConstantRealMatrixNode: m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_real_matrix(m{graph_id})" elif t is bn.ConstantNegativeRealMatrixNode: m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_neg_matrix(m{graph_id})" elif t is bn.ConstantProbabilityMatrixNode: m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_probability_matrix(m{graph_id})" elif t is bn.ConstantSimplexMatrixNode: m = _value_to_cpp_real_eigen(v, f"m{graph_id}") f = f"add_constant_col_simplex_matrix(m{graph_id})" elif t is bn.ConstantNaturalMatrixNode: m = _value_to_cpp_natural_eigen(v, f"m{graph_id}") f = f"add_constant_natural_matrix(m{graph_id})" elif t is bn.ConstantBooleanMatrixNode: m = _value_to_cpp_bool_eigen(v, f"m{graph_id}") f = f"add_constant_bool_matrix(m{graph_id})" else: f = "UNKNOWN" if m != "": self._code.append(m) self._code.append(f"uint n{graph_id} = g.{f};") def _generate_node(self, node: bn.BMGNode) -> None: if isinstance(node, bn.Observation): self._add_observation(node) elif isinstance(node, bn.Query): self._add_query(node) elif isinstance(node, bn.FactorNode): self._add_factor(node) elif isinstance(node, bn.DistributionNode): self._add_distribution(node) elif isinstance(node, bn.OperatorNode): self._add_operator(node) elif isinstance(node, bn.ConstantNode): self._add_constant(node) def _generate_cpp(self) -> None: bmg, error_report = fix_problems(self.bmg) error_report.raise_errors() self.bmg = bmg for node in self.bmg.all_ancestor_nodes(): self._generate_node(node) self.code = "\n".join(self._code) def to_bmg_cpp(bmg: BMGraphBuilder) -> GeneratedGraphCPP: gg = GeneratedGraphCPP(bmg) gg._generate_cpp() return gg
beanmachine-main
src/beanmachine/ppl/compiler/gen_bmg_cpp.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """A pattern matching engine""" from abc import ABC, ABCMeta, abstractmethod from typing import Any, Callable, Dict, List, Optional, Union # Logically, a pattern is just a predicate; it's a function from # any value to bool: True if the value matches the predicate, # false otherwise. # # However it will be convenient for us to be able to represent # patterns like "is equal to zero" as just the integer 0, # "is an instance of type T" as just the type object. # # Similarly, it will be convenient to build complex patterns as # compositions of simpler ones. # # Also, for debugging purposes we will not simply return True # or False; we'll return a MatchResult object that indicates # what value was matched, whether it was successfully matched # or not, and, if the pattern had subpatterns, what the results # of those were. # TODO: Tensor comprehension patterns _empty = {} class MatchResult(ABC): """The result of a pattern match; either success or failure.""" test: Any submatches: Dict[str, "MatchResult"] def __init__( self, test: Any, submatches: Optional[Dict[str, "MatchResult"]] = None ) -> None: self.test = test self.submatches = submatches if submatches is not None else _empty @abstractmethod def is_success(self) -> bool: pass @abstractmethod def is_fail(self) -> bool: pass def __str__(self) -> str: return f"{type(self).__name__}:{self.test}" def __bool__(self) -> bool: return self.is_success() # TODO: Display as a tree and graph also class Fail(MatchResult): """A pattern that always fails.""" # TODO: If we save the patterns that failed as well, then we can build a # TODO: diagnostic engine that describes why a value failed to match against # TODO: a complex pattern. def __init__( self, test: Any = None, submatches: Optional[Dict[str, MatchResult]] = None ) -> None: MatchResult.__init__(self, test, submatches) def is_success(self) -> bool: return False def is_fail(self) -> bool: return True class Success(MatchResult): """A pattern that always succeeds.""" def __init__( self, test: Any = None, submatches: Optional[Dict[str, MatchResult]] = None ) -> None: MatchResult.__init__(self, test, submatches) def is_success(self) -> bool: return True def is_fail(self) -> bool: return False class PatternBase(ABC): @abstractmethod def match(self, test: Any) -> MatchResult: pass @abstractmethod def _to_str(self, test: str) -> str: pass def __str__(self) -> str: return self._to_str("test") def __call__(self, test: Any) -> MatchResult: return self.match(test) Pattern = Union[PatternBase, int, str, float, type, list, None] class PredicatePattern(PatternBase): """A pattern is logically a predicate; this pattern just encapsulates any predicate that returns a match result.""" predicate: Callable[[Any], bool] name: str def __init__(self, predicate: Callable[[Any], bool], name: str = "if") -> None: self.predicate = predicate self.name = name def match(self, test: Any) -> MatchResult: return Success(test) if self.predicate(test) else Fail(test) def _to_str(self, test: str) -> str: return f"{self.name}({test})" AtomicType = Union[bool, int, float, str, None] class AtomicPattern(PatternBase, metaclass=ABCMeta): """An atomic pattern matches against a single specific value, such as a specific integer, Boolean, string, and so on.""" value: AtomicType def __init__(self, value: AtomicType) -> None: self.value = value def match(self, test: Any) -> MatchResult: return Success(test) if test == self.value else Fail(test) def _to_str(self, test: str) -> str: return f"{test}=={str(self.value)}" class BoolPattern(AtomicPattern): """The pattern that matches a specific Boolean value.""" def __init__(self, value: bool) -> None: AtomicPattern.__init__(self, value) truePattern = BoolPattern(True) falsePattern = BoolPattern(False) class IntPattern(AtomicPattern): """The pattern that matches a specific integer value.""" def __init__(self, value: int) -> None: AtomicPattern.__init__(self, value) class FloatPattern(AtomicPattern): """The pattern that matches a specific float value.""" def __init__(self, value: float) -> None: AtomicPattern.__init__(self, value) class StringPattern(AtomicPattern): """The pattern that matches a specific string value.""" def __init__(self, value: str) -> None: AtomicPattern.__init__(self, value) # Note that we do not want to use "None" to mean "the pattern that matches nothing" # because it will be useful to be able to match "None" values in ASTs. Use the # FailPattern if you want a pattern that never matches. class NonePattern(AtomicPattern): """The pattern that matches None.""" def __init__(self) -> None: AtomicPattern.__init__(self, None) def _to_str(self, test: str) -> str: return f"{test} is None" nonePattern = NonePattern() class AnyPattern(PatternBase): """The pattern that matches anything; it always succeeds.""" def __init__(self) -> None: pass def match(self, test: Any) -> MatchResult: return Success(test) def _to_str(self, test: str) -> str: return f"{test} is Any" anyPattern = AnyPattern() def is_any(pattern: Pattern) -> bool: return isinstance(pattern, AnyPattern) class FailPattern(PatternBase): """The pattern that matches nothing; it always fails.""" def __init__(self) -> None: pass def match(self, test: Any) -> MatchResult: return Fail(test) def _to_str(self, test: str) -> str: return "FAIL" failPattern = FailPattern() class TypePattern(PatternBase): """The pattern that matches if the value is an instance of the given type.""" typ: type def __init__(self, typ: type) -> None: self.typ = typ def match(self, test: Any) -> MatchResult: return Success(test) if isinstance(test, self.typ) else Fail(test) def _to_str(self, test: str) -> str: return f"isinstance({test}, {self.typ.__name__})" def _match_list_pattern(patterns: List[Pattern], test: Any) -> MatchResult: if not isinstance(test, list) or len(test) != len(patterns): return Fail(test) submatches = {str(i): match(pattern, test[i]) for i, pattern in enumerate(patterns)} if any(result.is_fail() for result in submatches.values()): return Fail(test, submatches) return Success(test, submatches) def match(pattern: Pattern, test: Any) -> MatchResult: if pattern is None: return Success(test) if test is None else Fail(test) if ( isinstance(pattern, int) or isinstance(pattern, str) or isinstance(pattern, bool) or isinstance(pattern, float) ): return Success(test) if test == pattern else Fail(test) if isinstance(pattern, list): return _match_list_pattern(pattern, test) if isinstance(pattern, type): return Success(test) if isinstance(test, pattern) else Fail(test) if isinstance(pattern, PatternBase): return pattern.match(test) raise TypeError(f"Expected pattern, got {type(pattern).__name__}") def to_pattern(pattern: Pattern) -> PatternBase: """Takes any value that can be used as a pattern, and returns an object that derives from PatternBase that has the same semantics.""" if isinstance(pattern, PatternBase): return pattern if pattern is None: return nonePattern if isinstance(pattern, bool): return BoolPattern(pattern) if isinstance(pattern, int): return IntPattern(pattern) if isinstance(pattern, float): return FloatPattern(pattern) if isinstance(pattern, str): return StringPattern(pattern) if isinstance(pattern, list): if len(pattern) == 0: return EmptyListPattern() return ListPattern(pattern) if isinstance(pattern, type): return TypePattern(pattern) raise TypeError(f"Expected pattern, got {type(pattern).__name__}") class Negate(PatternBase): """Negates a pattern; if the underlying pattern succeeds, this fails, and vice versa.""" pattern: Pattern def __init__(self, pattern: Pattern) -> None: self.pattern = pattern def match(self, test: Any) -> MatchResult: result = match(self.pattern, test) if result.is_success(): return Fail(result.test, result.submatches) return Success(result.test, result.submatches) def _to_str(self, test: str) -> str: return f"not({to_pattern(self.pattern)._to_str(test)})" # This is a *pattern combinator*. It takes a pattern and returns a modification # of the pattern; in this case, it's negation. def negate(pattern: Pattern) -> Pattern: """Produces the negation of a given pattern.""" if isinstance(pattern, Negate): return pattern.pattern return Negate(pattern) class MatchEvery(PatternBase): """The pattern that succeeds if every pattern in the list succeeds. It will stop trying to match patterns after the first failure. If there are no patterns in the list then it succeeds.""" patterns: List[Pattern] def __init__(self, *patterns: Pattern) -> None: self.patterns = list(patterns) def match(self, test: Any) -> MatchResult: submatches = {} for p in self.patterns: result = match(p, test) submatches.update(result.submatches) if result.is_fail(): # We return the submatches here just for diagnostic purposes; since # this pattern intends to match *every* subpattern, it is helpful # when diagnosing a failure to see what all the failed submatches were. return Fail(test, submatches) return Success(test, submatches) def _to_str(self, test: str) -> str: children = " and ".join( to_pattern(pattern)._to_str(test) for pattern in self.patterns ) return f"({children})" # This is also a pattern combinator. def match_every(*patterns: Pattern) -> Pattern: ps: List[Pattern] = list(patterns) while True: # If there is an "any" in the list we can discard it. ps = [p for p in ps if not is_any(p)] if len(ps) == 0: return anyPattern if len(ps) == 1: return ps[0] if any(p is FailPattern for p in ps): return failPattern index = next( (i for (i, pattern) in enumerate(ps) if isinstance(pattern, MatchEvery)), None, ) if index is None: return MatchEvery(*ps) child = ps[index] assert isinstance(child, MatchEvery) ps = ps[:index] + child.patterns + ps[(index + 1) :] class MatchAny(PatternBase): """The pattern that succeeds if any pattern in the list succeeds. It will stop trying to match patterns after the first success. If there are no patterns in the list then it fails.""" patterns: List[Pattern] def __init__(self, *patterns: Pattern) -> None: self.patterns = list(patterns) def match(self, test: Any) -> MatchResult: # Bail out on the first success. submatches = {} for p in self.patterns: result = match(p, test) submatches.update(result.submatches) if result.is_success(): return result return Fail(test, submatches) def _to_str(self, test: str) -> str: children = " or ".join( to_pattern(pattern)._to_str(test) for pattern in self.patterns ) return f"({children})" # Another combinator. def match_any(*patterns: Pattern) -> Pattern: ps: List[Pattern] = list(patterns) while True: # If there is a "Fail" in the list we can discard it. ps = [p for p in ps if not isinstance(p, FailPattern)] if len(ps) == 0: return failPattern if len(ps) == 1: return ps[0] if any(is_any(p) for p in ps): return anyPattern index = next( (i for (i, pattern) in enumerate(ps) if isinstance(pattern, MatchAny)), None ) if index is None: return MatchAny(*ps) child = ps[index] assert isinstance(child, MatchAny) ps = ps[:index] + child.patterns + ps[index + 1 :] class Subpattern(PatternBase): """Sometimes we want to check to see if a given value matches the pattern whereby some projected value matches a pattern. This class represents such patterns. It takes a subpattern and a projection; when match is called, it projects the value and runs the subpattern on the projected value.""" name: str subpattern: Pattern get_subtest: Callable[[Any], Any] def __init__( self, name: str, subpattern: Pattern, get_subtest: Callable[[Any], Any] ) -> None: self.name = name self.subpattern = subpattern self.get_subtest = get_subtest def match(self, test: Any) -> MatchResult: submatch = match(self.subpattern, self.get_subtest(test)) submatches = {self.name: submatch} if submatch.is_success(): return Success(test, submatches) return Fail(test, submatches) def _to_str(self, test: str) -> str: return to_pattern(self.subpattern)._to_str(f"{test}.{self.name}") class AttributeSubpattern(PatternBase): """Sometimes we want to check to see if an attribute of a value matches a pattern. This class represents such patterns. It takes a subpattern and an attribute name. When match is called, it runs the subpattern on the attribute of the given value.""" name: str subpattern: Pattern def __init__(self, name: str, subpattern: Pattern) -> None: self.name = name self.subpattern = subpattern def match(self, test: Any) -> MatchResult: submatch = match(self.subpattern, getattr(test, self.name, None)) submatches = {self.name: submatch} if submatch.is_success(): return Success(test, submatches) return Fail(test, submatches) def _to_str(self, test: str) -> str: return to_pattern(self.subpattern)._to_str(f"{test}.{self.name}") # Another combinator def attribute(name: str, subpattern: Pattern) -> Pattern: if is_any(subpattern): return subpattern return AttributeSubpattern(name, subpattern) class EmptyListPattern(PatternBase): """This pattern matches an empty list.""" name: str def __init__(self, name: str = "empty_list") -> None: self.name = name def match(self, test: Any) -> MatchResult: if isinstance(test, list) and len(test) == 0: return Success(test) return Fail(test) def _to_str(self, test: str) -> str: return f"{test}==[]" emptyList = EmptyListPattern() nonEmptyList = match_every(list, negate(emptyList)) twoPlusList = match_every( list, negate(match_any([], [anyPattern], [anyPattern, anyPattern])) ) class HeadTail(PatternBase): """This combinator takes a pattern to match the head of a list and a pattern to match the tail. If the list is empty, it automatically fails; otherwise both patterns must match. The tail pattern is not attempted if the head pattern fails.""" name: str head: Pattern tail: Pattern def __init__( self, head: Pattern = anyPattern, tail: Pattern = anyPattern, name: str = "head_tail", ) -> None: self.name = name self.head = head self.tail = tail def match(self, test: Any) -> MatchResult: if not isinstance(test, list) or len(test) == 0: return Fail(test) # Python allows this interesting list destructuring: h, *t = test head_result = match(self.head, h) if head_result.is_fail(): return Fail(test, {"head": h}) tail_result = match(self.tail, t) submatches = {"head": head_result, "tail": tail_result} if tail_result.is_fail(): return Fail(test, submatches) return Success(test, submatches) def _to_str(self, test: str) -> str: h = to_pattern(self.head)._to_str(test + "[0]") t = to_pattern(self.tail)._to_str(test + "[1:]") return f"{h} and {t}" class ListPattern(PatternBase): """This pattern matches a list of patterns to a list.""" name: str patterns: List[Pattern] def __init__(self, patterns: List[Pattern], name: str = "list_pattern") -> None: self.patterns = patterns self.name = name def match(self, test: Any) -> MatchResult: return _match_list_pattern(self.patterns, test) def _to_str(self, test: str) -> str: ps = ", ".join( to_pattern(p)._to_str(f"{test}[{i}]") for i, p in enumerate(self.patterns) ) return f"[{ps}]" class ListAny(PatternBase): """Matches a list where one or more elements of the list match the pattern.""" name: str pattern: Pattern def __init__(self, pattern: Pattern, name: str = "list_any") -> None: self.pattern = pattern self.name = name def match(self, test: Any) -> MatchResult: if not isinstance(test, list): return Fail(test) # TODO: We could bail out after the first success. submatches = {str(i): match(self.pattern, t) for i, t in enumerate(test)} if any(result.is_success() for result in submatches.values()): return Success(test, submatches) return Fail(test, submatches) def _to_str(self, test: str) -> str: return f"{test}.any(x:{to_pattern(self.pattern)._to_str('x')})" class ListAll(PatternBase): """Matches a list where all elements of the list match the pattern.""" name: str pattern: Pattern def __init__(self, pattern: Pattern, name: str = "list_all") -> None: self.pattern = pattern self.name = name def match(self, test: Any) -> MatchResult: if not isinstance(test, list): return Fail(test) # TODO: We could bail out after the first failure. submatches = {str(i): match(self.pattern, t) for i, t in enumerate(test)} if any(result.is_fail() for result in submatches.values()): return Fail(test, submatches) return Success(test, submatches) def _to_str(self, test: str) -> str: return f"{test}.all(x:{to_pattern(self.pattern)._to_str('x')})" # This complex combinator takes a type and a list of patterns to match against # attributes of the type, and then returns the resulting pattern that matches # values of that type with attributes that match all the given patterns. def type_and_attributes(typ: type, patterns: Dict[str, Pattern]) -> Pattern: t: List[Pattern] = [typ] tuples: List[Pattern] = [ attribute(name, subpattern) for (name, subpattern) in patterns.items() ] return match_every(*(t + tuples))
beanmachine-main
src/beanmachine/ppl/compiler/patterns.py