python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import transforms from utils import * class MiniImageNet(torch.utils.data.Dataset): def __init__(self, root, train): super(MiniImageNet, self).__init__() if train: self.name='train' else: self.name='test' root = os.path.join(root, 'miniimagenet') with open(os.path.join(root,'{}.pkl'.format(self.name)), 'rb') as f: data_dict = pickle.load(f) self.data = data_dict['images'] self.labels = data_dict['labels'] def __len__(self): return len(self.data) def __getitem__(self, i): img, label = self.data[i], self.labels[i] return img, label class iMiniImageNet(MiniImageNet): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None): super(iMiniImageNet, self).__init__(root=root, train=train) self.transform = transform if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] labels = [] tt = [] # task module labels td = [] # disctiminator labels for i in range(len(self.data)): if self.labels[i] in classes: data.append(self.data[i]) labels.append(self.class_mapping[self.labels[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.labels[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) labels.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = np.array(data) self.labels = labels self.tt = tt self.td = td def __getitem__(self, index): img, target, tt, td = self.data[index], self.labels[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image if not torch.is_tensor(img): img = Image.fromarray(img) img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.use_memory = args.use_memory self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,84,84] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.transformation = transforms.Compose([ transforms.Resize((84,84)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.train_split = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, transform=self.transformation) self.test_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'iMiniImageNet-{}-{}'.format(task_id,self.task_ids[task_id]) self.dataloaders[task_id]['tsne'] = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=len(test_loader.dataset), num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) print ("Task ID: ", task_id) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} for i in range(len(self.task_ids[task_id])): data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # randomly sample some data for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
Adversarial-Continual-Learning-main
ACL-resnet/src/dataloaders/miniimagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os.path import sys import warnings import urllib.request if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from .utils import * # from scipy.imageio import imread import pandas as pd import os import torch from PIL import Image import scipy.io as sio from collections import defaultdict from itertools import chain from collections import OrderedDict class CIFAR10_(datasets.CIFAR10): base_folder = 'cifar-10-batches-py' url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-python.tar.gz" tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] meta = { 'filename': 'batches.meta', 'key': 'label_names', 'md5': '5ff9c542aee3614f3951f8cda6e48888', } num_classes = 10 def __init__(self, root, task_num, num_samples_per_class, train, transform, target_transform, download=True): # root, task_num, train, transform = None, download = False): super(CIFAR10_, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if self.train: downloaded_list = self.train_list else: downloaded_list = self.test_list if not num_samples_per_class: self.data = [] self.targets = [] # now load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.root, self.base_folder, file_name) with open(file_path, 'rb') as f: if sys.version_info[0] == 2: entry = pickle.load(f) else: entry = pickle.load(f, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.targets.extend(entry['labels']) else: self.targets.extend(entry['fine_labels']) else: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.data = np.vstack(self.data).reshape(-1, 3, 32, 32) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] self._load_meta() def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): # if self.train: return len(self.data) # else: # return len(self.test_data) def report_size(self): print("CIFAR10 size at train={} time: {} ".format(self.train,self.__len__())) def _load_meta(self): path = os.path.join(self.root, self.base_folder, self.meta['filename']) if not check_integrity(path, self.meta['md5']): raise RuntimeError('Dataset metadata file not found or corrupted.' + ' You can use download=True to download it') with open(path, 'rb') as infile: if sys.version_info[0] == 2: data = pickle.load(infile) else: data = pickle.load(infile, encoding='latin1') self.classes = data[self.meta['key']] self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)} class CIFAR100_(CIFAR10_): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } num_classes = 100 class SVHN_(torch.utils.data.Dataset): url = "" filename = "" file_md5 = "" split_list = { 'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], 'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], 'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=True): self.root = os.path.expanduser(root) # root, task_num, train, transform = None, download = False): # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if self.train: split="train" else: split="test" self.num_classes = 10 self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat['X'] # loading from the .mat file gives an np array of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.targets = loaded_mat['y'].astype(np.int64).squeeze() self.data = np.transpose(self.data, (3, 2, 0, 1)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes+1): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = np.array(sum(y,[])).astype(np.int64) # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.targets, self.targets == 10, 0) # print ("svhn: ", self.data.shape) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(np.transpose(img, (1, 2, 0))) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) def _check_integrity(self): root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self): md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self): return "Split: {split}".format(**self.__dict__) class MNIST_RGB(datasets.MNIST): def __init__(self, root, task_num, num_samples_per_class, train=True, transform=None, target_transform=None, download=False): super(MNIST_RGB, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.target_transform=target_transform self.transform=transform self.num_classes=10 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file # self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img, mode='L').convert('RGB') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) @property def raw_folder(self): return os.path.join(self.root, self.__class__.__name__, 'raw') @property def processed_folder(self): return os.path.join(self.root, self.__class__.__name__, 'processed') @property def class_to_idx(self): return {_class: i for i, _class in enumerate(self.classes)} def _check_exists(self): return (os.path.exists(os.path.join(self.processed_folder, self.training_file)) and os.path.exists(os.path.join(self.processed_folder, self.test_file))) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" if self._check_exists(): return makedir_exist_ok(self.raw_folder) makedir_exist_ok(self.processed_folder) # download files for url in self.urls: filename = url.rpartition('/')[2] download_and_extract_archive(url, download_root=self.raw_folder, filename=filename) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") class FashionMNIST_(MNIST_RGB): """`Fashion MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class notMNIST_(torch.utils.data.Dataset): def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform=target_transform self.train = train self.url = "https://github.com/facebookresearch/Adversarial-Continual-Learning/raw/master/data/notMNIST.zip" self.filename = 'notMNIST.zip' fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) download_url(self.url, root, filename=self.filename) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close() if self.train: fpath = os.path.join(root, 'notMNIST', 'Train') else: fpath = os.path.join(root, 'notMNIST', 'Test') X, Y = [], [] folders = os.listdir(fpath) for folder in folders: folder_path = os.path.join(fpath, folder) for ims in os.listdir(folder_path): try: img_path = os.path.join(folder_path, ims) X.append(np.array(Image.open(img_path).convert('RGB'))) Y.append(ord(folder) - 65) # Folders are A-J so labels will be 0-9 except: print("File {}/{} is broken".format(folder, ims)) self.data = np.array(X) self.targets = Y self.num_classes = len(set(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.labels = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] img = Image.fromarray(img)#.convert('RGB') img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) def download(self): """Download the notMNIST data if it doesn't exist in processed_folder already.""" import errno root = os.path.expanduser(self.root) fpath = os.path.join(root, self.filename) try: os.makedirs(root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise urllib.request.urlretrieve(self.url, fpath) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close()
Adversarial-Continual-Learning-main
ACL-resnet/src/dataloaders/datasets_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim if args.experiment == 'cifar100': hiddens = [64, 128, 256, 1024, 1024, 512] elif args.experiment == 'miniimagenet': hiddens = [64, 128, 256, 512, 512, 512] # ---------------------------------- elif args.experiment == 'multidatasets': hiddens = [64, 128, 256, 1024, 1024, 512] else: raise NotImplementedError self.conv1=torch.nn.Conv2d(self.ncha,hiddens[0],kernel_size=size//8) s=utils.compute_conv_output_size(size,size//8) s=s//2 self.conv2=torch.nn.Conv2d(hiddens[0],hiddens[1],kernel_size=size//10) s=utils.compute_conv_output_size(s,size//10) s=s//2 self.conv3=torch.nn.Conv2d(hiddens[1],hiddens[2],kernel_size=2) s=utils.compute_conv_output_size(s,2) s=s//2 self.maxpool=torch.nn.MaxPool2d(2) self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(hiddens[2]*s*s,hiddens[3]) self.fc2=torch.nn.Linear(hiddens[3],hiddens[4]) self.fc3=torch.nn.Linear(hiddens[4],hiddens[5]) self.fc4=torch.nn.Linear(hiddens[5], self.latent_dim) def forward(self, x_s): x_s = x_s.view_as(x_s) h = self.maxpool(self.drop1(self.relu(self.conv1(x_s)))) h = self.maxpool(self.drop1(self.relu(self.conv2(h)))) h = self.maxpool(self.drop2(self.relu(self.conv3(h)))) h = h.view(x_s.size(0), -1) h = self.drop2(self.relu(self.fc1(h))) h = self.drop2(self.relu(self.fc2(h))) h = self.drop2(self.relu(self.fc3(h))) h = self.drop2(self.relu(self.fc4(h))) return h class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'cifar100': hiddens=[32,32] flatten=1152 elif args.experiment == 'miniimagenet': # hiddens=[8,8] # flatten=1800 hiddens=[16,16] flatten=3600 elif args.experiment == 'multidatasets': hiddens=[32,32] flatten=1152 else: raise NotImplementedError self.task_out = torch.nn.Sequential() self.task_out.add_module('conv1', torch.nn.Conv2d(self.ncha, hiddens[0], kernel_size=self.size // 8)) self.task_out.add_module('relu1', torch.nn.ReLU(inplace=True)) self.task_out.add_module('drop1', torch.nn.Dropout(0.2)) self.task_out.add_module('maxpool1', torch.nn.MaxPool2d(2)) self.task_out.add_module('conv2', torch.nn.Conv2d(hiddens[0], hiddens[1], kernel_size=self.size // 10)) self.task_out.add_module('relu2', torch.nn.ReLU(inplace=True)) self.task_out.add_module('dropout2', torch.nn.Dropout(0.5)) self.task_out.add_module('maxpool2', torch.nn.MaxPool2d(2)) self.linear = torch.nn.Sequential() self.linear.add_module('linear1', torch.nn.Linear(flatten, self.latent_dim)) self.linear.add_module('relu3', torch.nn.ReLU(inplace=True)) def forward(self, x): x = x.view_as(x) out = self.task_out(x) out = out.view(out.size(0), -1) out = self.linear(out) return out # def forward(self, x, task_id): # x = x.view_as(x) # out = self.task_out[2*task_id].forward(x) # out = out.view(out.size(0),-1) # out = self.task_out[2*task_id+1].forward(out) # return out class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.ntasks = args.ntasks self.samples = args.samples self.image_size = self.ncha*size*size self.args=args self.hidden1 = args.head_units self.hidden2 = args.head_units//2 self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[0][1]) ) def forward(self, x_s, x_p, tt=None): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) # x_s = self.shared(x_s) # x_p = self.private(x_p) # # x = torch.cat([x_p, x_s], dim=1) # if self.args.experiment == 'multidatasets': # # if no memory is used this is faster: # y=[] # for i,_ in self.taskcla: # y.append(self.head[i](x)) # return y[task_id] # else: # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) # if torch.is_tensor(tt): # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) # else: # return self.head(x) output = {} output['shared'] = self.shared(x_s) output['private'] = self.private(x_p) concat_features = torch.cat([output['private'], output['shared']], dim=1) if torch.is_tensor(tt): output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range( concat_features.size(0))]) else: output['out'] = self.head(concat_features) return output # def get_encoded_ftrs(self, x_s, x_p, task_id=None): # return self.shared(x_s), self.private(x_p) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print("Size of the network for one task including (S+P+p)") print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s ' % (self.pretty_print(count_P))) print('Num parameters in p = %s ' % (self.pretty_print(count_H))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P + count_H)) print('--------------------------> Architecture size in total for all tasks: %s parameters (%sB)' % ( self.pretty_print(count_S + self.ntasks*count_P + self.ntasks*count_H), self.pretty_print(4 * (count_S + self.ntasks*count_P + self.ntasks*count_H)))) classes_per_task = self.taskcla[0][1] print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples*classes_per_task, self.pretty_print( self.ntasks * 4 * self.samples * classes_per_task* self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print( 4 * (count_S + self.ntasks *count_P + self.ntasks *count_H) + self.ntasks * 4 * self.samples * classes_per_task * self.image_size)) def pretty_print(self, num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
Adversarial-Continual-Learning-main
ACL-resnet/src/networks/alexnet_acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.taskcla=args.taskcla self.latent_dim = args.latent_dim ncha,size,_ = args.inputsize self.pretrained = False if args.experiment == 'cifar100': hiddens = [64, 128, 256] elif args.experiment == 'miniimagenet': hiddens = [1024, 512, 256] else: raise NotImplementedError # Small resnet resnet = resnet18_small(self.latent_dim, shared=True) self.features = torch.nn.Sequential(*list(resnet.children())[:-2]) if args.experiment == 'miniimagenet': # num_ftrs = 4608 num_ftrs = 2304 # without average pool (-2) elif args.experiment == 'cifar100': # num_ftrs = 25088 # without average pool num_ftrs = 256 else: raise NotImplementedError self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(num_ftrs,hiddens[0]) self.fc2=torch.nn.Linear(hiddens[0],hiddens[1]) self.fc3=torch.nn.Linear(hiddens[1],hiddens[1]) self.fc4=torch.nn.Linear(hiddens[1], self.latent_dim) def forward(self, x): x = x.view_as(x) x = self.features(x) x = torch.flatten(x, 1) x = self.drop2(self.relu(self.fc1(x))) x = self.drop2(self.relu(self.fc2(x))) x = self.drop2(self.relu(self.fc3(x))) x = self.drop2(self.relu(self.fc4(x))) return x class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.image_size = ncha * size * size self.taskcla = args.taskcla self.latent_dim = args.latent_dim self.ntasks = args.ntasks self.samples = args.samples self.image_size = ncha * size * size self.use_memory = args.use_memory self.hidden1 = args.head_units self.hidden2 = args.head_units self.shared = Shared(args) self.private = resnet18_small(self.latent_dim, shared=False) self.head = torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[0][1]) ) def forward(self, x_s, x_p, tt=None): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) # x_s = self.shared(x_s) # x_p = self.private(x_p) # x = torch.cat([x_p, x_s], dim=1) # if self.args.experiment == 'multidatasets': # # if no memory is used this is faster: # y=[] # for i,_ in self.taskcla: # y.append(self.head[i](x)) # return y[task_id] # else: # return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) output = {} output['shared'] = self.shared(x_s) output['private'] = self.private(x_p) concat_features = torch.cat([output['private'], output['shared']], dim=1) if torch.is_tensor(tt): output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range( concat_features.size(0))]) else: output['out'] = self.head(concat_features) return output # output['shared'] = self.shared(x_s) # output['private'] = self.private(x_p) # # concat_features = torch.cat([output['private'], output['shared']], dim=1) # # if torch.is_tensor(tt): # # output['out'] = torch.stack([self.head[tt[i]].forward(concat_features[i]) for i in range(concat_features.size(0))]) # else: # if self.use_memory == 'no': # output['out'] = self.head.forward(concat_features) # # elif self.use_memory == 'yes': # y = [] # for i, _ in self.taskcla: # y.append(self.head[i](concat_features)) # output['out'] = y[task_id] # # return output # def get_encoded_ftrs(self, x_s, x_p, task_id=None): # return self.shared(x_s), self.private(x_p) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print("Size of the network for one task including (S+P+p)") print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s ' % (self.pretty_print(count_P))) print('Num parameters in p = %s ' % (self.pretty_print(count_H))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P + count_H)) print('--------------------------> Architecture size in total for all tasks: %s parameters (%sB)' % ( self.pretty_print(count_S + self.ntasks*count_P + self.ntasks*count_H), self.pretty_print(4 * (count_S + self.ntasks*count_P + self.ntasks*count_H)))) classes_per_task = self.taskcla[0][1] print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples*classes_per_task, self.pretty_print( self.ntasks * 4 * self.samples * classes_per_task* self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print( 4 * (count_S + self.ntasks *count_P + self.ntasks *count_H) + self.ntasks * 4 * self.samples * classes_per_task * self.image_size)) def pretty_print(self, num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) class _CustomDataParallel(torch.nn.DataParallel): def __init__(self, model): super(_CustomDataParallel, self).__init__(model) def __getattr__(self, name): try: return super(_CustomDataParallel, self).__getattr__(name) except AttributeError: return getattr(self.module, name) def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, shared, block, layers, num_classes, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 # small resnet if shared: hiddens = [32, 64, 128, 256] else: hiddens = [16, 32, 32, 64] # original resnet # hiddens = [64, 128, 256, 512] if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, hiddens[0], layers[0]) self.layer2 = self._make_layer(block, hiddens[1], layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, hiddens[2], layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, hiddens[3], layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(hiddens[3] * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) x = self.relu(x) return x def forward(self, x): return self._forward_impl(x) def resnet18_small(latend_dim, shared): # r"""ResNet-18 model from # `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ return ResNet(shared, BasicBlock, [2, 2, 2, 2], num_classes=latend_dim)
Adversarial-Continual-Learning-main
ACL-resnet/src/networks/resnet_acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.nhid = args.units self.device = args.device self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.linear = torch.nn.Sequential() self.linear.add_module('linear', torch.nn.Linear(self.ncha*self.size*self.size, self.latent_dim)) self.linear.add_module('relu', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x_p, task_id): x_p = x_p.view(x_p.size(0), -1) return self.task_out[task_id].forward(x_p) class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.nhid = args.units self.nlayers = args.nlayers self.relu=torch.nn.ReLU() self.drop=torch.nn.Dropout(0.2) self.fc1=torch.nn.Linear(ncha*self.size*self.size, self.nhid) if self.nlayers == 3: self.fc2 = torch.nn.Linear(self.nhid, self.nhid) self.fc3=torch.nn.Linear(self.nhid,self.latent_dim) else: self.fc2 = torch.nn.Linear(self.nhid,self.latent_dim) def forward(self, x_s): h = x_s.view(x_s.size(0), -1) h = self.drop(self.relu(self.fc1(h))) h = self.drop(self.relu(self.fc2(h))) if self.nlayers == 3: h = self.drop(self.relu(self.fc3(h))) return h class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'mnist5': self.hidden1 = 28 self.hidden2 = 14 elif args.experiment == 'pmnist': self.hidden1 = 28 self.hidden2 = 28 self.samples = args.samples self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2 * self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self,x_s, x_p, tt, task_id): h_s = x_s.view(x_s.size(0), -1) h_p = x_s.view(x_p.size(0), -1) x_s = self.shared(h_s) x_p = self.private(h_p, task_id) x = torch.cat([x_p, x_s], dim=1) return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Total architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
Adversarial-Continual-Learning-main
ACL-resnet/src/networks/mlp_acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Discriminator(torch.nn.Module): def __init__(self,args,task_id): super(Discriminator, self).__init__() self.num_tasks=args.ntasks self.units=args.units self.latent_dim=args.latent_dim if args.diff == 'yes': self.dis = torch.nn.Sequential( GradientReversal(args.lam), torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) else: self.dis = torch.nn.Sequential( torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) def forward(self, z): return self.dis(z) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) def get_size(self): count=sum(p.numel() for p in self.dis.parameters() if p.requires_grad) print('Num parameters in D = %s ' % (self.pretty_print(count))) class GradientReversalFunction(torch.autograd.Function): """ From: https://github.com/jvanvugt/pytorch-domain-adaptation/blob/cb65581f20b71ff9883dd2435b2275a1fd4b90df/utils.py#L26 Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversal(torch.nn.Module): def __init__(self, lambda_): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_)
Adversarial-Continual-Learning-main
ACL-resnet/src/networks/discriminator.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import pickle import numpy as np import os np.random.seed(1234) # we want 500 for training, 100 for test for wach class n = 500 def get_total(data): data_x, data_y = [], [] for k, v in data.items(): for i in range(len(v)): data_x.append(v[i]) data_y.append(k) d = {} d['images'] = data_x d['labels'] = data_y return d # loading the pickled data with open(os.path.join('../data/miniimagenet/data.pkl'), 'rb') as f: data_dict = pickle.load(f) data = data_dict['images'] labels = data_dict['labels'] # split data into classes, 600 images per class class_dict = {} for i in range(len(set(labels))): class_dict[i] = [] for i in range(len(data)): class_dict[labels[i]].append(data[i]) # Split data for each class to 500 and 100 x_train, x_test = {}, {} for i in range(len(set(labels))): np.random.shuffle(class_dict[i]) x_test[i] = class_dict[i][n:] x_train[i] = class_dict[i][:n] # mix the data d_train = get_total(x_train) d_test = get_total(x_test) with open(os.path.join('../data/miniimagenet/train.pkl'), 'wb') as f: pickle.dump(d_train, f) with open(os.path.join('../data/miniimagenet/test.pkl'), 'wb') as f: pickle.dump(d_test, f)
Adversarial-Continual-Learning-main
data/split_miniimagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys, time, os import numpy as np import torch import copy import utils from copy import deepcopy from tqdm import tqdm sys.path.append('../') from networks.discriminator import Discriminator class ACL(object): def __init__(self, model, args, network): self.args=args self.nepochs=args.nepochs self.sbatch=args.batch_size # optimizer & adaptive lr self.e_lr=args.e_lr self.d_lr=args.d_lr if not args.experiment == 'multidatasets': self.e_lr=[args.e_lr] * args.ntasks self.d_lr=[args.d_lr] * args.ntasks else: self.e_lr = [self.args.lrs[i][1] for i in range(len(args.lrs))] self.d_lr = [self.args.lrs[i][1]/10. for i in range(len(args.lrs))] print ("d_lrs : ", self.d_lr) self.lr_min=args.lr_min self.lr_factor=args.lr_factor self.lr_patience=args.lr_patience self.samples=args.samples self.device=args.device self.checkpoint=args.checkpoint self.adv_loss_reg=args.adv self.diff_loss_reg=args.orth self.s_steps=args.s_step self.d_steps=args.d_step self.diff=args.diff self.network=network self.inputsize=args.inputsize self.taskcla=args.taskcla self.num_tasks=args.ntasks # Initialize generator and discriminator self.model=model self.discriminator=self.get_discriminator(0) self.discriminator.get_size() self.latent_dim=args.latent_dim self.task_loss=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_d=torch.nn.CrossEntropyLoss().to(self.device) self.adversarial_loss_s=torch.nn.CrossEntropyLoss().to(self.device) self.diff_loss=DiffLoss().to(self.device) self.optimizer_S=self.get_S_optimizer(0) self.optimizer_D=self.get_D_optimizer(0) self.task_encoded={} self.mu=0.0 self.sigma=1.0 print() def get_discriminator(self, task_id): discriminator=Discriminator(self.args, task_id).to(self.args.device) return discriminator def get_S_optimizer(self, task_id, e_lr=None): if e_lr is None: e_lr=self.e_lr[task_id] optimizer_S=torch.optim.SGD(self.model.parameters(), momentum=self.args.mom, weight_decay=self.args.e_wd, lr=e_lr) return optimizer_S def get_D_optimizer(self, task_id, d_lr=None): if d_lr is None: d_lr=self.d_lr[task_id] optimizer_D=torch.optim.SGD(self.discriminator.parameters(), weight_decay=self.args.d_wd, lr=d_lr) return optimizer_D def train(self, task_id, dataset): self.discriminator=self.get_discriminator(task_id) best_loss=np.inf best_model=utils.get_model(self.model) best_loss_d=np.inf best_model_d=utils.get_model(self.discriminator) dis_lr_update=True d_lr=self.d_lr[task_id] patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) e_lr=self.e_lr[task_id] patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) for e in range(self.nepochs): # Train clock0=time.time() self.train_epoch(dataset['train'], task_id) clock1=time.time() train_res=self.eval_(dataset['train'], task_id) utils.report_tr(train_res, e, self.sbatch, clock0, clock1) # lowering the learning rate in the beginning if it predicts random chance for the first 5 epochs if (self.args.experiment == 'cifar100' or self.args.experiment == 'miniimagenet') and e == 4: random_chance=20. threshold=random_chance + 2 if train_res['acc_t'] < threshold: # Restore best validation model d_lr=self.d_lr[task_id] / 10. self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print("Performance on task {} is {} so Dis's lr is decreased to {}".format(task_id, train_res[ 'acc_t'], d_lr), end=" ") e_lr=self.e_lr[task_id] / 10. self.optimizer_S=self.get_S_optimizer(task_id, e_lr) self.discriminator=self.get_discriminator(task_id) if task_id > 0: self.model=self.load_checkpoint(task_id - 1) else: self.model=self.network.Net(self.args).to(self.args.device) # Valid valid_res=self.eval_(dataset['valid'], task_id) utils.report_val(valid_res) # Adapt lr for S and D if valid_res['loss_tot'] < best_loss: best_loss=valid_res['loss_tot'] best_model=utils.get_model(self.model) patience=self.lr_patience print(' *', end='') else: patience-=1 if patience <= 0: e_lr/=self.lr_factor print(' lr={:.1e}'.format(e_lr), end='') if e_lr < self.lr_min: print() break patience=self.lr_patience self.optimizer_S=self.get_S_optimizer(task_id, e_lr) if train_res['loss_a'] < best_loss_d: best_loss_d=train_res['loss_a'] best_model_d=utils.get_model(self.discriminator) patience_d=self.lr_patience else: patience_d-=1 if patience_d <= 0 and dis_lr_update: d_lr/=self.lr_factor print(' Dis lr={:.1e}'.format(d_lr)) if d_lr < self.lr_min: dis_lr_update=False print("Dis lr reached minimum value") print() patience_d=self.lr_patience self.optimizer_D=self.get_D_optimizer(task_id, d_lr) print() # Restore best validation model (early-stopping) self.model.load_state_dict(copy.deepcopy(best_model)) self.discriminator.load_state_dict(copy.deepcopy(best_model_d)) self.save_all_models(task_id) def train_epoch(self, train_loader, task_id): self.model.train() self.discriminator.train() for data, target, tt, td in train_loader: x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) # Detaching samples in the batch which do not belong to the current task before feeding them to P t_current=task_id * torch.ones_like(tt) body_mask=torch.eq(t_current, tt).cpu().numpy() # x_task_module=data.to(device=self.device) x_task_module=data.clone() for index in range(x.size(0)): if body_mask[index] == 0: x_task_module[index]=x_task_module[index].detach() x_task_module=x_task_module.to(device=self.device) # Discriminator's real and fake task labels t_real_D=td.to(self.device) t_fake_D=torch.zeros_like(t_real_D).to(self.device) # ================================================================== # # Train Shared Module # # ================================================================== # # training S for s_steps for s_step in range(self.s_steps): self.optimizer_S.zero_grad() self.model.zero_grad() output=self.model(x, x_task_module, tt, task_id) task_loss=self.task_loss(output, y) shared_encoded, task_encoded=self.model.get_encoded_ftrs(x, x_task_module, task_id) dis_out_gen_training=self.discriminator.forward(shared_encoded, t_real_D, task_id) adv_loss=self.adversarial_loss_s(dis_out_gen_training, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_encoded, task_encoded) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss total_loss.backward(retain_graph=True) self.optimizer_S.step() # ================================================================== # # Train Discriminator # # ================================================================== # # training discriminator for d_steps for d_step in range(self.d_steps): self.optimizer_D.zero_grad() self.discriminator.zero_grad() # training discriminator on real data output=self.model(x, x_task_module, tt, task_id) shared_encoded, task_out=self.model.get_encoded_ftrs(x, x_task_module, task_id) dis_real_out=self.discriminator.forward(shared_encoded.detach(), t_real_D, task_id) dis_real_loss=self.adversarial_loss_d(dis_real_out, t_real_D) if self.args.experiment == 'miniimagenet': dis_real_loss*=self.adv_loss_reg dis_real_loss.backward(retain_graph=True) # training discriminator on fake data z_fake=torch.as_tensor(np.random.normal(self.mu, self.sigma, (x.size(0), self.latent_dim)),dtype=torch.float32, device=self.device) dis_fake_out=self.discriminator.forward(z_fake, t_real_D, task_id) dis_fake_loss=self.adversarial_loss_d(dis_fake_out, t_fake_D) if self.args.experiment == 'miniimagenet': dis_fake_loss*=self.adv_loss_reg dis_fake_loss.backward(retain_graph=True) self.optimizer_D.step() return def eval_(self, data_loader, task_id): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t = 0, 0 num=0 batch=0 self.model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) t_real_D=td.to(self.device) # Forward output=self.model(x, x, tt, task_id) shared_out, task_out=self.model.get_encoded_ftrs(x, x, task_id) _, pred=output.max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator.forward(shared_out, t_real_D, task_id) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() # Loss values task_loss=self.task_loss(output, y) adv_loss=self.adversarial_loss_d(output_d, t_real_D) if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, task_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 total_loss = task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res # def test(self, data_loader, task_id, model): loss_a, loss_t, loss_d, loss_total=0, 0, 0, 0 correct_d, correct_t=0, 0 num=0 batch=0 model.eval() self.discriminator.eval() res={} with torch.no_grad(): for batch, (data, target, tt, td) in enumerate(data_loader): x=data.to(device=self.device) y=target.to(device=self.device, dtype=torch.long) tt=tt.to(device=self.device) t_real_D=td.to(self.device) # Forward output=model.forward(x, x, tt, task_id) shared_out, task_out=model.get_encoded_ftrs(x, x, task_id) _, pred=output.max(1) correct_t+=pred.eq(y.view_as(pred)).sum().item() # Discriminator's performance: output_d=self.discriminator.forward(shared_out, tt, task_id) _, pred_d=output_d.max(1) correct_d+=pred_d.eq(t_real_D.view_as(pred_d)).sum().item() if self.diff == 'yes': diff_loss=self.diff_loss(shared_out, task_out) else: diff_loss=torch.tensor(0).to(device=self.device, dtype=torch.float32) self.diff_loss_reg=0 # Loss values adv_loss=self.adversarial_loss_d(output_d, t_real_D) task_loss=self.task_loss(output, y) total_loss=task_loss + self.adv_loss_reg * adv_loss + self.diff_loss_reg * diff_loss loss_t+=task_loss loss_a+=adv_loss loss_d+=diff_loss loss_total+=total_loss num+=x.size(0) res['loss_t'], res['acc_t']=loss_t.item() / (batch + 1), 100 * correct_t / num res['loss_a'], res['acc_d']=loss_a.item() / (batch + 1), 100 * correct_d / num res['loss_d']=loss_d.item() / (batch + 1) res['loss_tot']=loss_total.item() / (batch + 1) res['size']=self.loader_size(data_loader) return res def save_all_models(self, task_id): print("Saving all models for task {} ...".format(task_id+1)) dis=utils.get_model(self.discriminator) torch.save({'model_state_dict': dis, }, os.path.join(self.checkpoint, 'discriminator_{}.pth.tar'.format(task_id))) model=utils.get_model(self.model) torch.save({'model_state_dict': model, }, os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) def load_model(self, task_id): # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) # # Change the previous shared module with the current one current_shared_module=deepcopy(self.model.shared.state_dict()) net.shared.load_state_dict(current_shared_module) net=net.to(self.args.device) return net def load_checkpoint(self, task_id): print("Loading checkpoint for task {} ...".format(task_id)) # Load a previous model net=self.network.Net(self.args) checkpoint=torch.load(os.path.join(self.checkpoint, 'model_{}.pth.tar'.format(task_id))) net.load_state_dict(checkpoint['model_state_dict']) net=net.to(self.args.device) return net def loader_size(self, data_loader): return data_loader.dataset.__len__() def get_tsne_embeddings_first_ten_tasks(self, dataset, model): from tensorboardX import SummaryWriter model.eval() tag_ = '_diff_{}'.format(self.args.diff) all_images, all_shared, all_private = [], [], [] # Test final model on first 10 tasks: writer = SummaryWriter() for t in range(10): for itr, (data, _, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) print (torch.stack(all_shared).size()) tag = ['Shared10_{}_{}'.format(tag_,i) for i in range(1,11)] writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#, metadata_header=list(range(1,11))) tag = ['Private10_{}_{}'.format(tag_, i) for i in range(1, 11)] writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,11)), tag=tag)#,metadata_header=list(range(1,11))) writer.close() def get_tsne_embeddings_last_three_tasks(self, dataset, model): from tensorboardX import SummaryWriter # Test final model on last 3 tasks: model.eval() tag = '_diff_{}'.format(self.args.diff) for t in [17,18,19]: all_images, all_labels, all_shared, all_private = [], [], [], [] writer = SummaryWriter() for itr, (data, target, tt, td) in enumerate(dataset[t]['tsne']): x = data.to(device=self.device) y = target.to(device=self.device, dtype=torch.long) tt = tt.to(device=self.device) output = model.forward(x, x, tt, t) shared_out, private_out = model.get_encoded_ftrs(x, x, t) # print (shared_out.size()) all_shared.append(shared_out) all_private.append(private_out) all_images.append(x) all_labels.append(y) writer.add_embedding(mat=torch.stack(all_shared,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Shared_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.add_embedding(mat=torch.stack(all_private,dim=1).data, label_img=torch.stack(all_images,dim=1).data, metadata=list(range(1,6)), tag='Private_{}_{}'.format(t, tag)) # ,metadata_header=list(range(1,6))) writer.close() # class DiffLoss(torch.nn.Module): # From: Domain Separation Networks (https://arxiv.org/abs/1608.06019) # Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, Dumitru Erhan def __init__(self): super(DiffLoss, self).__init__() def forward(self, D1, D2): D1=D1.view(D1.size(0), -1) D1_norm=torch.norm(D1, p=2, dim=1, keepdim=True).detach() D1_norm=D1.div(D1_norm.expand_as(D1) + 1e-6) D2=D2.view(D2.size(0), -1) D2_norm=torch.norm(D2, p=2, dim=1, keepdim=True).detach() D2_norm=D2.div(D2_norm.expand_as(D2) + 1e-6) # return torch.mean((D1_norm.mm(D2_norm.t()).pow(2))) return torch.mean((D1_norm.mm(D2_norm.t()).pow(2)))
Adversarial-Continual-Learning-main
src/acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from copy import deepcopy import pickle import time import uuid from subprocess import call ######################################################################################################################## def human_format(num): magnitude=0 while abs(num)>=1000: magnitude+=1 num/=1000.0 return '%.1f%s'%(num,['','K','M','G','T','P'][magnitude]) def report_tr(res, e, sbatch, clock0, clock1): # Training performance print( '| Epoch {:3d}, time={:5.1f}ms/{:5.1f}ms | Train losses={:.3f} | T: loss={:.3f}, acc={:5.2f}% | D: loss={:.3f}, acc={:5.1f}%, ' 'Diff loss:{:.3f} |'.format( e + 1, 1000 * sbatch * (clock1 - clock0) / res['size'], 1000 * sbatch * (time.time() - clock1) / res['size'], res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') def report_val(res): # Validation performance print(' Valid losses={:.3f} | T: loss={:.6f}, acc={:5.2f}%, | D: loss={:.3f}, acc={:5.2f}%, Diff loss={:.3f} |'.format( res['loss_tot'], res['loss_t'], res['acc_t'], res['loss_a'], res['acc_d'], res['loss_d']), end='') ######################################################################################################################## def get_model(model): return deepcopy(model.state_dict()) ######################################################################################################################## def compute_conv_output_size(Lin,kernel_size,stride=1,padding=0,dilation=1): return int(np.floor((Lin+2*padding-dilation*(kernel_size-1)-1)/float(stride)+1)) ######################################################################################################################## def save_print_log(taskcla, acc, lss, output_path): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() print ('ACC: {:5.4f}%'.format((np.mean(acc[acc.shape[0]-1,:])))) print() print ('BWD Transfer = ') print () print ("Diagonal R_ii") for i in range(acc.shape[0]): print('\t',end='') print('{:5.2f}% '.format(np.diag(acc)[i]), end=',') print() print ("Last row") for i in range(acc.shape[0]): print('\t', end=',') print('{:5.2f}% '.format(acc[-1][i]), end=',') print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on our UCB paper (https://openreview.net/pdf?id=HklUCCVKDB) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle with open(os.path.join(output_path, 'logs.p'), 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", os.path.join(output_path, 'logs.p')) def print_log_acc_bwt(taskcla, acc, lss, output_path, run_id): print('*'*100) print('Accuracies =') for i in range(acc.shape[0]): print('\t',end=',') for j in range(acc.shape[1]): print('{:5.4f}% '.format(acc[i,j]),end=',') print() avg_acc = np.mean(acc[acc.shape[0]-1,:]) print ('ACC: {:5.4f}%'.format(avg_acc)) print() print() # BWT calculated based on GEM paper (https://arxiv.org/abs/1706.08840) gem_bwt = sum(acc[-1]-np.diag(acc))/ (len(acc[-1])-1) # BWT calculated based on UCB paper (https://arxiv.org/abs/1906.02425) ucb_bwt = (acc[-1] - np.diag(acc)).mean() print ('BWT: {:5.2f}%'.format(gem_bwt)) # print ('BWT (UCB paper): {:5.2f}%'.format(ucb_bwt)) print('*'*100) print('Done!') logs = {} # save results logs['name'] = output_path logs['taskcla'] = taskcla logs['acc'] = acc logs['loss'] = lss logs['gem_bwt'] = gem_bwt logs['ucb_bwt'] = ucb_bwt logs['rii'] = np.diag(acc) logs['rij'] = acc[-1] # pickle path = os.path.join(output_path, 'logs_run_id_{}.p'.format(run_id)) with open(path, 'wb') as output: pickle.dump(logs, output) print ("Log file saved in ", path) return avg_acc, gem_bwt def print_running_acc_bwt(acc, task_num): print() acc = acc[:task_num+1,:task_num+1] avg_acc = np.mean(acc[acc.shape[0] - 1, :]) gem_bwt = sum(acc[-1] - np.diag(acc)) / (len(acc[-1]) - 1) print('ACC: {:5.4f}% || BWT: {:5.2f}% '.format(avg_acc, gem_bwt)) print() def make_directories(args): uid = uuid.uuid4().hex if args.checkpoint is None: os.mkdir('checkpoints') args.checkpoint = os.path.join('./checkpoints/',uid) os.mkdir(args.checkpoint) else: if not os.path.exists(args.checkpoint): os.mkdir(args.checkpoint) args.checkpoint = os.path.join(args.checkpoint, uid) os.mkdir(args.checkpoint) def some_sanity_checks(args): # Making sure the chosen experiment matches with the number of tasks performed in the paper: datasets_tasks = {} datasets_tasks['mnist5']=[5] datasets_tasks['pmnist']=[10,20,30,40] datasets_tasks['cifar100']=[20] datasets_tasks['miniimagenet']=[20] datasets_tasks['multidatasets']=[5] if not args.ntasks in datasets_tasks[args.experiment]: raise Exception("Chosen number of tasks ({}) does not match with {} experiment".format(args.ntasks,args.experiment)) # Making sure if memory usage is happenning: if args.use_memory == 'yes' and not args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") if args.use_memory == 'no' and args.samples > 0: raise Exception("Flags required to use memory: --use_memory yes --samples n where n>0") def save_code(args): cwd = os.getcwd() des = os.path.join(args.checkpoint, 'code') + '/' if not os.path.exists(des): os.mkdir(des) def get_folder(folder): return os.path.join(cwd,folder) folders = [get_folder(item) for item in ['dataloaders', 'networks', 'configs', 'main.py', 'acl.py', 'utils.py']] for folder in folders: call('cp -rf {} {}'.format(folder, des),shell=True) def print_time(): from datetime import datetime # datetime object containing current date and time now = datetime.now() # dd/mm/YY H:M:S dt_string = now.strftime("%d/%m/%Y %H:%M:%S") print("Job finished at =", dt_string)
Adversarial-Continual-Learning-main
src/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os,argparse,time import numpy as np from omegaconf import OmegaConf import torch import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import utils tstart=time.time() # Arguments parser = argparse.ArgumentParser(description='Adversarial Continual Learning...') # Load the config file parser.add_argument('--config', type=str, default='./configs/config_mnist5.yml') flags = parser.parse_args() args = OmegaConf.load(flags.config) print() ######################################################################################################################## # Args -- Experiment if args.experiment=='pmnist': from dataloaders import pmnist as datagenerator elif args.experiment=='mnist5': from dataloaders import mnist5 as datagenerator elif args.experiment=='cifar100': from dataloaders import cifar100 as datagenerator elif args.experiment=='miniimagenet': from dataloaders import miniimagenet as datagenerator elif args.experiment=='multidatasets': from dataloaders import mulitidatasets as datagenerator else: raise NotImplementedError from acl import ACL as approach # Args -- Network if args.experiment == 'mnist5' or args.experiment == 'pmnist': from networks import mlp_acl as network elif args.experiment == 'cifar100' or args.experiment == 'miniimagenet' or args.experiment == 'multidatasets': from networks import alexnet_acl as network else: raise NotImplementedError ######################################################################################################################## def run(args, run_id): np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(args.seed) # Faster run but not deterministic: # torch.backends.cudnn.benchmark = True # To get deterministic results that match with paper at cost of lower speed: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # Data loader print('Instantiate data generators and model...') dataloader = datagenerator.DatasetGen(args) args.taskcla, args.inputsize = dataloader.taskcla, dataloader.inputsize if args.experiment == 'multidatasets': args.lrs = dataloader.lrs # Model net = network.Net(args) net = net.to(args.device) net.print_model_size() # print (net) # Approach appr=approach(net,args,network=network) # Loop tasks acc=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) lss=np.zeros((len(args.taskcla),len(args.taskcla)),dtype=np.float32) for t,ncla in args.taskcla: print('*'*250) dataset = dataloader.get(t) print(' '*105, 'Dataset {:2d} ({:s})'.format(t+1,dataset[t]['name'])) print('*'*250) # Train appr.train(t,dataset[t]) print('-'*250) print() for u in range(t+1): # Load previous model and replace the shared module with the current one test_model = appr.load_model(u) test_res = appr.test(dataset[u]['test'], u, model=test_model) print('>>> Test on task {:2d} - {:15s}: loss={:.3f}, acc={:5.1f}% <<<'.format(u, dataset[u]['name'], test_res['loss_t'], test_res['acc_t'])) acc[t, u] = test_res['acc_t'] lss[t, u] = test_res['loss_t'] # Save print() print('Saved accuracies at '+os.path.join(args.checkpoint,args.output)) np.savetxt(os.path.join(args.checkpoint,args.output),acc,'%.6f') # Extract embeddings to plot in tensorboard for miniimagenet if args.tsne == 'yes' and args.experiment == 'miniimagenet': appr.get_tsne_embeddings_first_ten_tasks(dataset, model=appr.load_model(t)) appr.get_tsne_embeddings_last_three_tasks(dataset, model=appr.load_model(t)) avg_acc, gem_bwt = utils.print_log_acc_bwt(args.taskcla, acc, lss, output_path=args.checkpoint, run_id=run_id) return avg_acc, gem_bwt ####################################################################################################################### def main(args): utils.make_directories(args) utils.some_sanity_checks(args) utils.save_code(args) print('=' * 100) print('Arguments =') for arg in vars(args): print('\t' + arg + ':', getattr(args, arg)) print('=' * 100) accuracies, forgetting = [], [] for n in range(args.num_runs): args.seed = n args.output = '{}_{}_tasks_seed_{}.txt'.format(args.experiment, args.ntasks, args.seed) print ("args.output: ", args.output) print (" >>>> Run #", n) acc, bwt = run(args, n) accuracies.append(acc) forgetting.append(bwt) print('*' * 100) print ("Average over {} runs: ".format(args.num_runs)) print ('AVG ACC: {:5.4f}% \pm {:5.4f}'.format(np.array(accuracies).mean(), np.array(accuracies).std())) print ('AVG BWT: {:5.2f}% \pm {:5.4f}'.format(np.array(forgetting).mean(), np.array(forgetting).std())) print ("All Done! ") print('[Elapsed time = {:.1f} min]'.format((time.time()-tstart)/(60))) utils.print_time() ####################################################################################################################### if __name__ == '__main__': main(args)
Adversarial-Continual-Learning-main
src/main.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from utils import * class iCIFAR10(datasets.CIFAR10): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None, target_transform=None, download=True): super(iCIFAR10, self).__init__(root, transform=transform, target_transform=target_transform, download=True) self.train = train # training set or test set if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] if self.train: train_data = [] train_labels = [] train_tt = [] # task module labels train_td = [] # disctiminator labels for i in range(len(self.data)): if self.targets[i] in classes: train_data.append(self.data[i]) train_labels.append(self.class_mapping[self.targets[i]]) train_tt.append(task_num) train_td.append(task_num+1) self.class_indices[self.class_mapping[self.targets[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): train_data.append(memory[task_id]['x'][i]) train_labels.append(memory[task_id]['y'][i]) train_tt.append(memory[task_id]['tt'][i]) train_td.append(memory[task_id]['td'][i]) self.train_data = np.array(train_data) self.train_labels = train_labels self.train_tt = train_tt self.train_td = train_td if not self.train: f = self.test_list[0][0] file = os.path.join(self.root, self.base_folder, f) fo = open(file, 'rb') if sys.version_info[0] == 2: entry = pickle.load(fo) else: entry = pickle.load(fo, encoding='latin1') self.test_data = entry['data'] if 'labels' in entry: self.test_labels = entry['labels'] else: self.test_labels = entry['fine_labels'] fo.close() self.test_data = self.test_data.reshape((10000, 3, 32, 32)) self.test_data = self.test_data.transpose((0, 2, 3, 1)) # convert to HWC test_data = [] test_labels = [] test_tt = [] # task module labels test_td = [] # disctiminator labels for i in range(len(self.test_data)): if self.test_labels[i] in classes: test_data.append(self.test_data[i]) test_labels.append(self.class_mapping[self.test_labels[i]]) test_tt.append(task_num) test_td.append(task_num + 1) self.class_indices[self.class_mapping[self.test_labels[i]]].append(i) self.test_data = np.array(test_data) self.test_labels = test_labels self.test_tt = test_tt self.test_td = test_td def __getitem__(self, index): if self.train: img, target, tt, td = self.train_data[index], self.train_labels[index], self.train_tt[index], self.train_td[index] else: img, target, tt, td = self.test_data[index], self.test_labels[index], self.test_tt[index], self.test_td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: target = self.target_transform(target) except: pass return img, target, tt, td def __len__(self): if self.train: return len(self.train_data) else: return len(self.test_data) class iCIFAR100(iCIFAR10): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,32,32] mean=[x/255 for x in [125.3,123.0,113.9]] std=[x/255 for x in [63.0,62.1,66.7]] self.transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.test_set = {} self.train_split = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] self.use_memory = args.use_memory def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, download=True, transform=self.transformation) self.test_set[task_id] = iCIFAR100(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, download=True, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'CIFAR100-{}-{}'.format(task_id,self.task_ids[task_id]) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): # Getting all samples for this class data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
Adversarial-Continual-Learning-main
src/dataloaders/cifar100.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import torch.utils.data from .datasets_utils import * from utils import * from torchvision import transforms mean_datasets = { 'CIFAR10': [x/255 for x in [125.3,123.0,113.9]], 'notMNIST': (0.4254,), 'MNIST': (0.1,) , 'SVHN':[0.4377,0.4438,0.4728] , 'FashionMNIST': (0.2190,), } std_datasets = { 'CIFAR10': [x/255 for x in [63.0,62.1,66.7]], 'notMNIST': (0.4501,), 'MNIST': (0.2752,), 'SVHN': [0.198,0.201,0.197], 'FashionMNIST': (0.3318,) } classes_datasets = { 'CIFAR10': 10, 'notMNIST': 10, 'MNIST': 10, 'SVHN': 10, 'FashionMNIST': 10, } lr_datasets = { 'CIFAR10': 0.001, 'notMNIST': 0.01, 'MNIST': 0.01, 'SVHN': 0.001, 'FashionMNIST': 0.01, } gray_datasets = { 'CIFAR10': False, 'notMNIST': True, 'MNIST': True, 'SVHN': False, 'FashionMNIST': True, } class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_samples = args.samples self.inputsize = [3,32,32] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) self.datasets_idx = list(np.random.permutation(self.num_tasks)) print('Task order =', [list(classes_datasets.keys())[item] for item in self.datasets_idx]) self.datasets_names = [list(classes_datasets.keys())[item] for item in self.datasets_idx] self.taskcla = [] self.lrs = [] for i in range(self.num_tasks): t = self.datasets_idx[i] self.taskcla.append([i, list(classes_datasets.values())[t]]) self.lrs.append([i, list(lr_datasets.values())[t]]) print('Learning Rates =', self.lrs) print('taskcla =', self.taskcla) self.train_set = {} self.train_split = {} self.test_set = {} self.args=args self.dataloaders, self.memory_set = {}, {} self.memoryloaders = {} self.dataloaders, self.memory_set, self.indices = {}, {}, {} self.memoryloaders = {} self.saliency_loaders, self.saliency_set = {}, {} for i in range(self.num_tasks): self.dataloaders[i] = {} self.memory_set[i] = {} self.memoryloaders[i] = {} self.indices[i] = {} # self.saliency_set = {} self.saliency_loaders[i] = {} self.download = True self.train_set = {} self.test_set = {} self.train_split = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] self.use_memory = args.use_memory def get_dataset(self, dataset_idx, task_num, num_samples_per_class=False, normalize=True): dataset_name = list(mean_datasets.keys())[dataset_idx] nspc = num_samples_per_class if normalize: transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean_datasets[dataset_name],std_datasets[dataset_name])]) mnist_transformation = transforms.Compose([ transforms.Pad(padding=2, fill=0), transforms.ToTensor(), transforms.Normalize(mean_datasets[dataset_name], std_datasets[dataset_name])]) else: transformation = transforms.Compose([transforms.ToTensor()]) mnist_transformation = transforms.Compose([ transforms.Pad(padding=2, fill=0), transforms.ToTensor(), ]) # target_transormation = transforms.Compose([transforms.ToTensor()]) target_transormation = None if dataset_idx == 0: trainset = CIFAR10_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=True, download=self.download, target_transform = target_transormation, transform=transformation) testset = CIFAR10_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=False, download=self.download, target_transform = target_transormation, transform=transformation) if dataset_idx == 1: trainset = notMNIST_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=True, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = notMNIST_(root=self.root, task_num=task_num, num_samples_per_class=nspc, train=False, download=self.download, target_transform = target_transormation, transform=mnist_transformation) if dataset_idx == 2: trainset = MNIST_RGB(root=self.root, train=True, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = MNIST_RGB(root=self.root, train=False, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=mnist_transformation) if dataset_idx == 3: trainset = SVHN_(root=self.root, train=True, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=transformation) testset = SVHN_(root=self.root, train=False, num_samples_per_class=nspc, task_num=task_num, download=self.download, target_transform = target_transormation, transform=transformation) if dataset_idx == 4: trainset = FashionMNIST_(root=self.root, num_samples_per_class=nspc, task_num=task_num, train=True, download=self.download, target_transform = target_transormation, transform=mnist_transformation) testset = FashionMNIST_(root=self.root, num_samples_per_class=nspc, task_num=task_num, train=False, download=self.download, target_transform = target_transormation, transform=mnist_transformation) return trainset, testset def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() current_dataset_idx = self.datasets_idx[task_id] dataset_name = list(mean_datasets.keys())[current_dataset_idx] self.train_set[task_id], self.test_set[task_id] = self.get_dataset(current_dataset_idx,task_id) self.num_classes = classes_datasets[dataset_name] split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = '{} - {} classes - {} images'.format(dataset_name, classes_datasets[dataset_name], len(self.train_set[task_id])) self.dataloaders[task_id]['classes'] = self.num_classes print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): # Getting all samples for this class data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x']))) def report_size(self,dataset_name,task_id): print("Dataset {} size: {} ".format(dataset_name, len(self.train_set[task_id])))
Adversarial-Continual-Learning-main
src/dataloaders/mulitidatasets.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # https://github.com/pytorch/vision/blob/8635be94d1216f10fb8302da89233bd86445e449/torchvision/datasets/utils.py import os import os.path import hashlib import gzip import errno import tarfile import zipfile import numpy as np import torch import codecs from torch.utils.model_zoo import tqdm def gen_bar_updater(): pbar = tqdm(total=None) def bar_update(count, block_size, total_size): if pbar.total is None and total_size: pbar.total = total_size progress_bytes = count * block_size pbar.update(progress_bytes - pbar.n) return bar_update def calculate_md5(fpath, chunk_size=1024 * 1024): md5 = hashlib.md5() with open(fpath, 'rb') as f: for chunk in iter(lambda: f.read(chunk_size), b''): md5.update(chunk) return md5.hexdigest() def check_md5(fpath, md5, **kwargs): return md5 == calculate_md5(fpath, **kwargs) def check_integrity(fpath, md5=None): if not os.path.isfile(fpath): return False if md5 is None: return True return check_md5(fpath, md5) def makedir_exist_ok(dirpath): """ Python2 support for os.makedirs(.., exist_ok=True) """ try: os.makedirs(dirpath) except OSError as e: if e.errno == errno.EEXIST: pass else: raise def download_url(url, root, filename=None, md5=None): """Download a file from a url and place it in root. Args: url (str): URL to download file from root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the basename of the URL md5 (str, optional): MD5 checksum of the download. If None, do not check """ from six.moves import urllib root = os.path.expanduser(root) if not filename: filename = os.path.basename(url) fpath = os.path.join(root, filename) makedir_exist_ok(root) # downloads file if check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: try: print('Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) except (urllib.error.URLError, IOError) as e: if url[:5] == 'https': url = url.replace('https:', 'http:') print('Failed download. Trying https -> http instead.' ' Downloading ' + url + ' to ' + fpath) urllib.request.urlretrieve( url, fpath, reporthook=gen_bar_updater() ) else: raise e def list_dir(root, prefix=False): """List all directories at a given root Args: root (str): Path to directory whose folders need to be listed prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the directories found """ root = os.path.expanduser(root) directories = list( filter( lambda p: os.path.isdir(os.path.join(root, p)), os.listdir(root) ) ) if prefix is True: directories = [os.path.join(root, d) for d in directories] return directories def list_files(root, suffix, prefix=False): """List all files ending with a suffix at a given root Args: root (str): Path to directory whose folders need to be listed suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png'). It uses the Python "str.endswith" method and is passed directly prefix (bool, optional): If true, prepends the path to each result, otherwise only returns the name of the files found """ root = os.path.expanduser(root) files = list( filter( lambda p: os.path.isfile(os.path.join(root, p)) and p.endswith(suffix), os.listdir(root) ) ) if prefix is True: files = [os.path.join(root, d) for d in files] return files def download_file_from_google_drive(file_id, root, filename=None, md5=None): """Download a Google Drive file from and place it in root. Args: file_id (str): id of file to be downloaded root (str): Directory to place downloaded file in filename (str, optional): Name to save the file under. If None, use the id of the file. md5 (str, optional): MD5 checksum of the download. If None, do not check """ # Based on https://stackoverflow.com/questions/38511444/python-download-files-from-google-drive-using-url import requests url = "https://docs.google.com/uc?export=download" root = os.path.expanduser(root) if not filename: filename = file_id fpath = os.path.join(root, filename) makedir_exist_ok(root) if os.path.isfile(fpath) and check_integrity(fpath, md5): print('Using downloaded and verified file: ' + fpath) else: session = requests.Session() response = session.get(url, params={'id': file_id}, stream=True) token = _get_confirm_token(response) if token: params = {'id': file_id, 'confirm': token} response = session.get(url, params=params, stream=True) _save_response_content(response, fpath) def _get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def _save_response_content(response, destination, chunk_size=32768): with open(destination, "wb") as f: pbar = tqdm(total=None) progress = 0 for chunk in response.iter_content(chunk_size): if chunk: # filter out keep-alive new chunks f.write(chunk) progress += len(chunk) pbar.update(progress - pbar.n) pbar.close() def _is_tar(filename): return filename.endswith(".tar") def _is_targz(filename): return filename.endswith(".tar.gz") def _is_gzip(filename): return filename.endswith(".gz") and not filename.endswith(".tar.gz") def _is_zip(filename): return filename.endswith(".zip") def extract_archive(from_path, to_path=None, remove_finished=False): if to_path is None: to_path = os.path.dirname(from_path) if _is_tar(from_path): with tarfile.open(from_path, 'r') as tar: tar.extractall(path=to_path) elif _is_targz(from_path): with tarfile.open(from_path, 'r:gz') as tar: tar.extractall(path=to_path) elif _is_gzip(from_path): to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0]) with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f: out_f.write(zip_f.read()) elif _is_zip(from_path): with zipfile.ZipFile(from_path, 'r') as z: z.extractall(to_path) else: raise ValueError("Extraction of {} not supported".format(from_path)) if remove_finished: os.remove(from_path) def download_and_extract_archive(url, download_root, extract_root=None, filename=None, md5=None, remove_finished=False): download_root = os.path.expanduser(download_root) if extract_root is None: extract_root = download_root if not filename: filename = os.path.basename(url) download_url(url, download_root, filename, md5) archive = os.path.join(download_root, filename) print("Extracting {} to {}".format(archive, extract_root)) extract_archive(archive, extract_root, remove_finished) def iterable_to_str(iterable): return "'" + "', '".join([str(item) for item in iterable]) + "'" def verify_str_arg(value, arg=None, valid_values=None, custom_msg=None): if not isinstance(value, torch._six.string_classes): if arg is None: msg = "Expected type str, but got type {type}." else: msg = "Expected type str for argument {arg}, but got type {type}." msg = msg.format(type=type(value), arg=arg) raise ValueError(msg) if valid_values is None: return value if value not in valid_values: if custom_msg is not None: msg = custom_msg else: msg = ("Unknown value '{value}' for argument {arg}. " "Valid values are {{{valid_values}}}.") msg = msg.format(value=value, arg=arg, valid_values=iterable_to_str(valid_values)) raise ValueError(msg) return value def get_int(b): return int(codecs.encode(b, 'hex'), 16) def open_maybe_compressed_file(path): """Return a file object that possibly decompresses 'path' on the fly. Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'. """ if not isinstance(path, torch._six.string_classes): return path if path.endswith('.gz'): import gzip return gzip.open(path, 'rb') if path.endswith('.xz'): import lzma return lzma.open(path, 'rb') return open(path, 'rb') def read_sn3_pascalvincent_tensor(path, strict=True): """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh'). Argument may be a filename, compressed filename, or file object. """ # typemap if not hasattr(read_sn3_pascalvincent_tensor, 'typemap'): read_sn3_pascalvincent_tensor.typemap = { 8: (torch.uint8, np.uint8, np.uint8), 9: (torch.int8, np.int8, np.int8), 11: (torch.int16, np.dtype('>i2'), 'i2'), 12: (torch.int32, np.dtype('>i4'), 'i4'), 13: (torch.float32, np.dtype('>f4'), 'f4'), 14: (torch.float64, np.dtype('>f8'), 'f8')} # read with open_maybe_compressed_file(path) as f: data = f.read() # parse magic = get_int(data[0:4]) nd = magic % 256 ty = magic // 256 assert nd >= 1 and nd <= 3 assert ty >= 8 and ty <= 14 m = read_sn3_pascalvincent_tensor.typemap[ty] s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)] parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1))) assert parsed.shape[0] == np.prod(s) or not strict return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s) def read_label_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 1) return x.long() def read_image_file(path): with open(path, 'rb') as f: x = read_sn3_pascalvincent_tensor(f, strict=False) assert(x.dtype == torch.uint8) assert(x.ndimension() == 3) return x
Adversarial-Continual-Learning-main
src/dataloaders/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import os import os.path import sys if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import transforms from utils import * class MiniImageNet(torch.utils.data.Dataset): def __init__(self, root, train): super(MiniImageNet, self).__init__() if train: self.name='train' else: self.name='test' root = os.path.join(root, 'miniimagenet') with open(os.path.join(root,'{}.pkl'.format(self.name)), 'rb') as f: data_dict = pickle.load(f) self.data = data_dict['images'] self.labels = data_dict['labels'] def __len__(self): return len(self.data) def __getitem__(self, i): img, label = self.data[i], self.labels[i] return img, label class iMiniImageNet(MiniImageNet): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None): super(iMiniImageNet, self).__init__(root=root, train=train) self.transform = transform if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] labels = [] tt = [] # task module labels td = [] # disctiminator labels for i in range(len(self.data)): if self.labels[i] in classes: data.append(self.data[i]) labels.append(self.class_mapping[self.labels[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.labels[i]]].append(i) if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) labels.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = np.array(data) self.labels = labels self.tt = tt self.td = td def __getitem__(self, index): img, target, tt, td = self.data[index], self.labels[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image if not torch.is_tensor(img): img = Image.fromarray(img) img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.use_memory = args.use_memory self.num_tasks = args.ntasks self.num_classes = 100 self.num_samples = args.samples self.inputsize = [3,84,84] mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] self.transformation = transforms.Compose([ transforms.Resize((84,84)), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) task_ids = np.split(np.random.permutation(self.num_classes),self.num_tasks) self.task_ids = [list(arr) for arr in task_ids] self.train_set = {} self.train_split = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, transform=self.transformation) self.test_set[task_id] = iMiniImageNet(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) self.train_split[task_id] = train_split train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid), num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'iMiniImageNet-{}-{}'.format(task_id,self.task_ids[task_id]) self.dataloaders[task_id]['tsne'] = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=len(test_loader.dataset), num_workers=self.num_workers, pin_memory=self.pin_memory, shuffle=True) print ("Task ID: ", task_id) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) if self.use_memory == 'yes' and self.num_samples > 0 : self.update_memory(task_id) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} for i in range(len(self.task_ids[task_id])): data_loader = torch.utils.data.DataLoader(self.train_split[task_id], batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # randomly sample some data for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3]) print ('Memory updated by adding {} images'.format(len(self.task_memory[task_id]['x'])))
Adversarial-Continual-Learning-main
src/dataloaders/miniimagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function from PIL import Image import torch import numpy as np import os.path import sys import torch.utils.data as data from torchvision import datasets, transforms class iMNIST(datasets.MNIST): def __init__(self, root, classes, memory_classes, memory, task_num, train, transform=None, target_transform=None, download=True): super(iMNIST, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.root = root self.target_transform=target_transform self.transform=transform if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) self.train = train # training set or test set if not isinstance(classes, list): classes = [classes] self.class_mapping = {c: i for i, c in enumerate(classes)} self.class_indices = {} for cls in classes: self.class_indices[self.class_mapping[cls]] = [] data = [] targets = [] tt = [] # task module labels td = [] # discriminator labels for i in range(len(self.data)): if self.targets[i] in classes: data.append(self.data[i]) targets.append(self.class_mapping[self.targets[i]]) tt.append(task_num) td.append(task_num+1) self.class_indices[self.class_mapping[self.targets[i]]].append(i) if self.train: if memory_classes: for task_id in range(task_num): for i in range(len(memory[task_id]['x'])): if memory[task_id]['y'][i] in range(len(memory_classes[task_id])): data.append(memory[task_id]['x'][i]) targets.append(memory[task_id]['y'][i]) tt.append(memory[task_id]['tt'][i]) td.append(memory[task_id]['td'][i]) self.data = data.copy() self.targets = targets.copy() self.tt = tt.copy() self.td = td.copy() def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img.numpy(), mode='L') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) class DatasetGen(object): """docstring for DatasetGen""" def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.root = args.data_dir self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.num_classes = 10 self.num_samples = args.samples self.inputsize = [1,28,28] mean = (0.1307,) std = (0.3081,) self.transformation = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) self.taskcla = [[t, int(self.num_classes/self.num_tasks)] for t in range(self.num_tasks)] self.indices = {} self.dataloaders = {} self.idx={} self.num_workers = args.workers self.pin_memory = True np.random.seed(self.seed) self.task_ids = [[0,1], [2,3], [4,5], [6,7], [8,9]] self.train_set = {} self.test_set = {} self.task_memory = {} for i in range(self.num_tasks): self.task_memory[i] = {} self.task_memory[i]['x'] = [] self.task_memory[i]['y'] = [] self.task_memory[i]['tt'] = [] self.task_memory[i]['td'] = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: memory_classes = None memory=None else: memory_classes = self.task_ids memory = self.task_memory self.train_set[task_id] = iMNIST(root=self.root, classes=self.task_ids[task_id], memory_classes=memory_classes, memory=memory, task_num=task_id, train=True, download=True, transform=self.transformation) self.test_set[task_id] = iMNIST(root=self.root, classes=self.task_ids[task_id], memory_classes=None, memory=None, task_num=task_id, train=False, download=True, transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=int(self.batch_size * self.pc_valid),shuffle=True, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory, drop_last=True,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = '5Split-MNIST-{}-{}'.format(task_id,self.task_ids[task_id]) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) return self.dataloaders def update_memory(self, task_id): num_samples_per_class = self.num_samples // len(self.task_ids[task_id]) mem_class_mapping = {i: i for i, c in enumerate(self.task_ids[task_id])} # Looping over each class in the current task for i in range(len(self.task_ids[task_id])): dataset = iMNIST(root=self.root, classes=self.task_ids[task_id][i], memory_classes=None, memory=None, task_num=task_id, train=True, download=True, transform=self.transformation) data_loader = torch.utils.data.DataLoader(dataset, shuffle=True, batch_size=1, num_workers=self.num_workers, pin_memory=self.pin_memory) # Randomly choosing num_samples_per_class for this class randind = torch.randperm(len(data_loader.dataset))[:num_samples_per_class] # Adding the selected samples to memory for ind in randind: self.task_memory[task_id]['x'].append(data_loader.dataset[ind][0]) self.task_memory[task_id]['y'].append(mem_class_mapping[i]) self.task_memory[task_id]['tt'].append(data_loader.dataset[ind][2]) self.task_memory[task_id]['td'].append(data_loader.dataset[ind][3])
Adversarial-Continual-Learning-main
src/dataloaders/mnist5.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import sys, os import numpy as np from PIL import Image import torch.utils.data as data from torchvision import datasets, transforms from sklearn.utils import shuffle from utils import * class PermutedMNIST(datasets.MNIST): def __init__(self, root, task_num, train=True, permute_idx=None, transform=None): super(PermutedMNIST, self).__init__(root, train, download=True) if self.train: data_file = self.training_file else: data_file = self.test_file self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data = torch.stack([img.float().view(-1)[permute_idx] for img in self.data]) self.tl = (task_num) * torch.ones(len(self.data),dtype=torch.long) self.td = (task_num+1) * torch.ones(len(self.data),dtype=torch.long) def __getitem__(self, index): img, target, tl, td = self.data[index], self.targets[index], self.tl[index], self.td[index] if self.transform is not None: img = self.transform(img) if self.target_transform is not None: print ("We are transforming") target = self.target_transform(target) return img, target, tl, td def __len__(self): return self.data.size(0) class DatasetGen(object): def __init__(self, args): super(DatasetGen, self).__init__() self.seed = args.seed self.batch_size=args.batch_size self.pc_valid=args.pc_valid self.num_samples = args.samples self.num_tasks = args.ntasks self.root = args.data_dir self.use_memory = args.use_memory self.inputsize = [1, 28, 28] mean = (0.1307,) std = (0.3081,) self.transformation = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean, std)]) self.taskcla = [[t, 10] for t in range(self.num_tasks)] self.train_set, self.test_set = {}, {} self.indices = {} self.dataloaders = {} self.idx={} self.get_idx() self.pin_memory = True self.num_workers = args.workers self.task_memory = [] def get(self, task_id): self.dataloaders[task_id] = {} sys.stdout.flush() if task_id == 0: self.train_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) if self.use_memory == 'yes' and self.num_samples > 0: indices=torch.randperm(len(self.train_set[task_id]))[:self.num_samples] rand_subset=torch.utils.data.Subset(self.train_set[task_id], indices) self.task_memory.append(rand_subset) else: if self.use_memory == 'yes' and self.num_samples > 0: current_dataset = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) d = [] d.append(current_dataset) for m in self.task_memory: d.append(m) self.train_set[task_id] = torch.utils.data.ConcatDataset(d) indices=torch.randperm(len(current_dataset))[:self.num_samples] rand_subset=torch.utils.data.Subset(current_dataset, indices) self.task_memory.append(rand_subset) else: self.train_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=True, permute_idx=self.idx[task_id], transform=self.transformation) self.test_set[task_id] = PermutedMNIST(root=self.root, task_num=task_id, train=False, permute_idx=self.idx[task_id], transform=self.transformation) split = int(np.floor(self.pc_valid * len(self.train_set[task_id]))) train_split, valid_split = torch.utils.data.random_split(self.train_set[task_id], [len(self.train_set[task_id]) - split, split]) train_loader = torch.utils.data.DataLoader(train_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) valid_loader = torch.utils.data.DataLoader(valid_split, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) test_loader = torch.utils.data.DataLoader(self.test_set[task_id], batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=self.pin_memory,shuffle=True) self.dataloaders[task_id]['train'] = train_loader self.dataloaders[task_id]['valid'] = valid_loader self.dataloaders[task_id]['test'] = test_loader self.dataloaders[task_id]['name'] = 'pmnist-{}'.format(task_id+1) print ("Training set size: {} images of {}x{}".format(len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Validation set size: {} images of {}x{}".format(len(valid_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Train+Val set size: {} images of {}x{}".format(len(valid_loader.dataset)+len(train_loader.dataset),self.inputsize[1],self.inputsize[1])) print ("Test set size: {} images of {}x{}".format(len(test_loader.dataset),self.inputsize[1],self.inputsize[1])) return self.dataloaders def get_idx(self): for i in range(len(self.taskcla)): idx = list(range(self.inputsize[1] * self.inputsize[2])) self.idx[i] = shuffle(idx, random_state=self.seed * 100 + i)
Adversarial-Continual-Learning-main
src/dataloaders/pmnist.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import print_function import os.path import sys import warnings import urllib.request if sys.version_info[0] == 2: import cPickle as pickle else: import pickle import torch.utils.data as data import numpy as np import torch from torchvision import datasets, transforms from .utils import * # from scipy.imageio import imread import pandas as pd import os import torch from PIL import Image import scipy.io as sio from collections import defaultdict from itertools import chain from collections import OrderedDict class CIFAR10_(datasets.CIFAR10): base_folder = 'cifar-10-batches-py' url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" filename = "cifar-10-python.tar.gz" tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] meta = { 'filename': 'batches.meta', 'key': 'label_names', 'md5': '5ff9c542aee3614f3951f8cda6e48888', } num_classes = 10 def __init__(self, root, task_num, num_samples_per_class, train, transform, target_transform, download=True): # root, task_num, train, transform = None, download = False): super(CIFAR10_, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') if self.train: downloaded_list = self.train_list else: downloaded_list = self.test_list if not num_samples_per_class: self.data = [] self.targets = [] # now load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.root, self.base_folder, file_name) with open(file_path, 'rb') as f: if sys.version_info[0] == 2: entry = pickle.load(f) else: entry = pickle.load(f, encoding='latin1') self.data.append(entry['data']) if 'labels' in entry: self.targets.extend(entry['labels']) else: self.targets.extend(entry['fine_labels']) else: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.data = np.vstack(self.data).reshape(-1, 3, 32, 32) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] self._load_meta() def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): # if self.train: return len(self.data) # else: # return len(self.test_data) def report_size(self): print("CIFAR10 size at train={} time: {} ".format(self.train,self.__len__())) def _load_meta(self): path = os.path.join(self.root, self.base_folder, self.meta['filename']) if not check_integrity(path, self.meta['md5']): raise RuntimeError('Dataset metadata file not found or corrupted.' + ' You can use download=True to download it') with open(path, 'rb') as infile: if sys.version_info[0] == 2: data = pickle.load(infile) else: data = pickle.load(infile, encoding='latin1') self.classes = data[self.meta['key']] self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)} class CIFAR100_(CIFAR10_): """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. This is a subclass of the `CIFAR10` Dataset. """ base_folder = 'cifar-100-python' url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz" filename = "cifar-100-python.tar.gz" tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', } num_classes = 100 class SVHN_(torch.utils.data.Dataset): url = "" filename = "" file_md5 = "" split_list = { 'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", "train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], 'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", "test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], 'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", "extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=True): self.root = os.path.expanduser(root) # root, task_num, train, transform = None, download = False): # print(self.train) # self.train = train # training set or test set self.train = train # training set or test set self.transform = transform self.target_transform=target_transform if self.train: split="train" else: split="test" self.num_classes = 10 self.split = verify_str_arg(split, "split", tuple(self.split_list.keys())) self.url = self.split_list[split][0] self.filename = self.split_list[split][1] self.file_md5 = self.split_list[split][2] if download: self.download() if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.' + ' You can use download=True to download it') # import here rather than at top of file because this is # an optional dependency for torchvision import scipy.io as sio # reading(loading) mat file as array loaded_mat = sio.loadmat(os.path.join(self.root, self.filename)) self.data = loaded_mat['X'] # loading from the .mat file gives an np array of type np.uint8 # converting to np.int64, so that we have a LongTensor after # the conversion from the numpy array # the squeeze is needed to obtain a 1D tensor self.targets = loaded_mat['y'].astype(np.int64).squeeze() self.data = np.transpose(self.data, (3, 2, 0, 1)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes+1): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [y_with_label_l[item] for item in shuffled_indices] x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = np.array(sum(y,[])).astype(np.int64) # the svhn dataset assigns the class label "10" to the digit 0 # this makes it inconsistent with several loss functions # which expect the class labels to be in the range [0, C-1] np.place(self.targets, self.targets == 10, 0) # print ("svhn: ", self.data.shape) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(np.transpose(img, (1, 2, 0))) except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) def _check_integrity(self): root = self.root md5 = self.split_list[self.split][2] fpath = os.path.join(root, self.filename) return check_integrity(fpath, md5) def download(self): md5 = self.split_list[self.split][2] download_url(self.url, self.root, self.filename, md5) def extra_repr(self): return "Split: {split}".format(**self.__dict__) class MNIST_RGB(datasets.MNIST): def __init__(self, root, task_num, num_samples_per_class, train=True, transform=None, target_transform=None, download=False): super(MNIST_RGB, self).__init__(root, task_num, transform=transform, target_transform=target_transform, download=download) self.train = train # training set or test set self.target_transform=target_transform self.transform=transform self.num_classes=10 if download: self.download() if not self._check_exists(): raise RuntimeError('Dataset not found.' + ' You can use download=True to download it') if self.train: data_file = self.training_file else: data_file = self.test_file # self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data, self.targets = torch.load(os.path.join(self.processed_folder, data_file)) self.data=np.array(self.data).astype(np.float32) self.targets=list(np.array(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # y_with_label_l = [l]*len(x_with_label_l) # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.targets = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num+1 for _ in range(len(self.data))] def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target, tt, td = self.data[index], int(self.targets[index]), self.tt[index], self.td[index] # doing this so that it is consistent with all other datasets # to return a PIL Image try: img = Image.fromarray(img, mode='L').convert('RGB') except: pass try: if self.transform is not None: img = self.transform(img) except: pass try: if self.target_transform is not None: tt = self.target_transform(tt) if self.target_transform is not None: td = self.target_transform(td) except: pass return img, target, tt, td def __len__(self): return len(self.data) @property def raw_folder(self): return os.path.join(self.root, self.__class__.__name__, 'raw') @property def processed_folder(self): return os.path.join(self.root, self.__class__.__name__, 'processed') @property def class_to_idx(self): return {_class: i for i, _class in enumerate(self.classes)} def _check_exists(self): return (os.path.exists(os.path.join(self.processed_folder, self.training_file)) and os.path.exists(os.path.join(self.processed_folder, self.test_file))) def download(self): """Download the MNIST data if it doesn't exist in processed_folder already.""" if self._check_exists(): return makedir_exist_ok(self.raw_folder) makedir_exist_ok(self.processed_folder) # download files for url in self.urls: filename = url.rpartition('/')[2] download_and_extract_archive(url, download_root=self.raw_folder, filename=filename) # process and save as torch files print('Processing...') training_set = ( read_image_file(os.path.join(self.raw_folder, 'train-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 'train-labels-idx1-ubyte')) ) test_set = ( read_image_file(os.path.join(self.raw_folder, 't10k-images-idx3-ubyte')), read_label_file(os.path.join(self.raw_folder, 't10k-labels-idx1-ubyte')) ) with open(os.path.join(self.processed_folder, self.training_file), 'wb') as f: torch.save(training_set, f) with open(os.path.join(self.processed_folder, self.test_file), 'wb') as f: torch.save(test_set, f) print('Done!') def extra_repr(self): return "Split: {}".format("Train" if self.train is True else "Test") class FashionMNIST_(MNIST_RGB): """`Fashion MNIST <https://github.com/zalandoresearch/fashion-mnist>`_ Dataset. """ urls = [ 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-labels-idx1-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-images-idx3-ubyte.gz', 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz', ] class notMNIST_(torch.utils.data.Dataset): def __init__(self, root, task_num, num_samples_per_class, train,transform=None, target_transform=None, download=False): self.root = os.path.expanduser(root) self.transform = transform self.target_transform=target_transform self.train = train self.url = "https://github.com/facebookresearch/Adversarial-Continual-Learning/raw/master/data/notMNIST.zip" self.filename = 'notMNIST.zip' fpath = os.path.join(root, self.filename) if not os.path.isfile(fpath): if not download: raise RuntimeError('Dataset not found. You can use download=True to download it') else: print('Downloading from '+self.url) download_url(self.url, root, filename=self.filename) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close() if self.train: fpath = os.path.join(root, 'notMNIST', 'Train') else: fpath = os.path.join(root, 'notMNIST', 'Test') X, Y = [], [] folders = os.listdir(fpath) for folder in folders: folder_path = os.path.join(fpath, folder) for ims in os.listdir(folder_path): try: img_path = os.path.join(folder_path, ims) X.append(np.array(Image.open(img_path).convert('RGB'))) Y.append(ord(folder) - 65) # Folders are A-J so labels will be 0-9 except: print("File {}/{} is broken".format(folder, ims)) self.data = np.array(X) self.targets = Y self.num_classes = len(set(self.targets)) if num_samples_per_class: x, y, tt, td = [], [], [], [] for l in range(self.num_classes): indices_with_label_l = np.where(np.array(self.targets)==l) x_with_label_l = [self.data[item] for item in indices_with_label_l[0]] # If we need a subset of the dataset with num_samples_per_class we use this and then concatenate it with a complete dataset shuffled_indices = np.random.permutation(len(x_with_label_l))[:num_samples_per_class] x_with_label_l = [x_with_label_l[item] for item in shuffled_indices] y_with_label_l = [l]*len(shuffled_indices) x.append(x_with_label_l) y.append(y_with_label_l) self.data = np.array(sum(x,[])) self.labels = sum(y,[]) self.tt = [task_num for _ in range(len(self.data))] self.td = [task_num + 1 for _ in range(len(self.data))] def __getitem__(self, index): img, target, tt, td = self.data[index], self.targets[index], self.tt[index], self.td[index] img = Image.fromarray(img)#.convert('RGB') img = self.transform(img) return img, target, tt, td def __len__(self): return len(self.data) def download(self): """Download the notMNIST data if it doesn't exist in processed_folder already.""" import errno root = os.path.expanduser(self.root) fpath = os.path.join(root, self.filename) try: os.makedirs(root) except OSError as e: if e.errno == errno.EEXIST: pass else: raise urllib.request.urlretrieve(self.url, fpath) import zipfile zip_ref = zipfile.ZipFile(fpath, 'r') zip_ref.extractall(root) zip_ref.close()
Adversarial-Continual-Learning-main
src/dataloaders/datasets_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim if args.experiment == 'cifar100': hiddens = [64, 128, 256, 1024, 1024, 512] elif args.experiment == 'miniimagenet': hiddens = [64, 128, 256, 512, 512, 512] # ---------------------------------- elif args.experiment == 'multidatasets': hiddens = [64, 128, 256, 1024, 1024, 512] else: raise NotImplementedError self.conv1=torch.nn.Conv2d(self.ncha,hiddens[0],kernel_size=size//8) s=utils.compute_conv_output_size(size,size//8) s=s//2 self.conv2=torch.nn.Conv2d(hiddens[0],hiddens[1],kernel_size=size//10) s=utils.compute_conv_output_size(s,size//10) s=s//2 self.conv3=torch.nn.Conv2d(hiddens[1],hiddens[2],kernel_size=2) s=utils.compute_conv_output_size(s,2) s=s//2 self.maxpool=torch.nn.MaxPool2d(2) self.relu=torch.nn.ReLU() self.drop1=torch.nn.Dropout(0.2) self.drop2=torch.nn.Dropout(0.5) self.fc1=torch.nn.Linear(hiddens[2]*s*s,hiddens[3]) self.fc2=torch.nn.Linear(hiddens[3],hiddens[4]) self.fc3=torch.nn.Linear(hiddens[4],hiddens[5]) self.fc4=torch.nn.Linear(hiddens[5], self.latent_dim) def forward(self, x_s): x_s = x_s.view_as(x_s) h = self.maxpool(self.drop1(self.relu(self.conv1(x_s)))) h = self.maxpool(self.drop1(self.relu(self.conv2(h)))) h = self.maxpool(self.drop2(self.relu(self.conv3(h)))) h = h.view(x_s.size(0), -1) h = self.drop2(self.relu(self.fc1(h))) h = self.drop2(self.relu(self.fc2(h))) h = self.drop2(self.relu(self.fc3(h))) h = self.drop2(self.relu(self.fc4(h))) return h class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'cifar100': hiddens=[32,32] flatten=1152 elif args.experiment == 'miniimagenet': # hiddens=[8,8] # flatten=1800 hiddens=[16,16] flatten=3600 elif args.experiment == 'multidatasets': hiddens=[32,32] flatten=1152 else: raise NotImplementedError self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.conv = torch.nn.Sequential() self.conv.add_module('conv1',torch.nn.Conv2d(self.ncha, hiddens[0], kernel_size=self.size // 8)) self.conv.add_module('relu1', torch.nn.ReLU(inplace=True)) self.conv.add_module('drop1', torch.nn.Dropout(0.2)) self.conv.add_module('maxpool1', torch.nn.MaxPool2d(2)) self.conv.add_module('conv2', torch.nn.Conv2d(hiddens[0], hiddens[1], kernel_size=self.size // 10)) self.conv.add_module('relu2', torch.nn.ReLU(inplace=True)) self.conv.add_module('dropout2', torch.nn.Dropout(0.5)) self.conv.add_module('maxpool2', torch.nn.MaxPool2d(2)) self.task_out.append(self.conv) self.linear = torch.nn.Sequential() self.linear.add_module('linear1', torch.nn.Linear(flatten,self.latent_dim)) self.linear.add_module('relu3', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x, task_id): x = x.view_as(x) out = self.task_out[2*task_id].forward(x) out = out.view(out.size(0),-1) out = self.task_out[2*task_id+1].forward(out) return out class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() self.ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.samples = args.samples self.image_size = self.ncha*size*size self.args=args self.hidden1 = args.head_units self.hidden2 = args.head_units//2 self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2*self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self, x_s, x_p, tt, task_id): x_s = x_s.view_as(x_s) x_p = x_p.view_as(x_p) x_s = self.shared(x_s) x_p = self.private(x_p, task_id) x = torch.cat([x_p, x_s], dim=1) if self.args.experiment == 'multidatasets': # if no memory is used this is faster: y=[] for i,_ in self.taskcla: y.append(self.head[i](x)) return y[task_id] else: return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) print("--------------------------> Memory size: %s samples per task (%sB)" % (self.samples, self.pretty_print(self.num_tasks*4*self.samples*self.image_size))) print("------------------------------------------------------------------------------") print(" TOTAL: %sB" % self.pretty_print(4*(count_S + count_P + count_H)+self.num_tasks*4*self.samples*self.image_size)) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
Adversarial-Continual-Learning-main
src/networks/alexnet_acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch class Private(torch.nn.Module): def __init__(self, args): super(Private, self).__init__() self.ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.nhid = args.units self.device = args.device self.task_out = torch.nn.ModuleList() for _ in range(self.num_tasks): self.linear = torch.nn.Sequential() self.linear.add_module('linear', torch.nn.Linear(self.ncha*self.size*self.size, self.latent_dim)) self.linear.add_module('relu', torch.nn.ReLU(inplace=True)) self.task_out.append(self.linear) def forward(self, x_p, task_id): x_p = x_p.view(x_p.size(0), -1) return self.task_out[task_id].forward(x_p) class Shared(torch.nn.Module): def __init__(self,args): super(Shared, self).__init__() ncha,self.size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.nhid = args.units self.nlayers = args.nlayers self.relu=torch.nn.ReLU() self.drop=torch.nn.Dropout(0.2) self.fc1=torch.nn.Linear(ncha*self.size*self.size, self.nhid) if self.nlayers == 3: self.fc2 = torch.nn.Linear(self.nhid, self.nhid) self.fc3=torch.nn.Linear(self.nhid,self.latent_dim) else: self.fc2 = torch.nn.Linear(self.nhid,self.latent_dim) def forward(self, x_s): h = x_s.view(x_s.size(0), -1) h = self.drop(self.relu(self.fc1(h))) h = self.drop(self.relu(self.fc2(h))) if self.nlayers == 3: h = self.drop(self.relu(self.fc3(h))) return h class Net(torch.nn.Module): def __init__(self, args): super(Net, self).__init__() ncha,size,_=args.inputsize self.taskcla=args.taskcla self.latent_dim = args.latent_dim self.num_tasks = args.ntasks self.device = args.device if args.experiment == 'mnist5': self.hidden1 = 28 self.hidden2 = 14 elif args.experiment == 'pmnist': self.hidden1 = 28 self.hidden2 = 28 self.samples = args.samples self.shared = Shared(args) self.private = Private(args) self.head = torch.nn.ModuleList() for i in range(self.num_tasks): self.head.append( torch.nn.Sequential( torch.nn.Linear(2 * self.latent_dim, self.hidden1), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear(self.hidden1, self.hidden2), torch.nn.ReLU(inplace=True), torch.nn.Linear(self.hidden2, self.taskcla[i][1]) )) def forward(self,x_s, x_p, tt, task_id): h_s = x_s.view(x_s.size(0), -1) h_p = x_s.view(x_p.size(0), -1) x_s = self.shared(h_s) x_p = self.private(h_p, task_id) x = torch.cat([x_p, x_s], dim=1) return torch.stack([self.head[tt[i]].forward(x[i]) for i in range(x.size(0))]) def get_encoded_ftrs(self, x_s, x_p, task_id): return self.shared(x_s), self.private(x_p, task_id) def print_model_size(self): count_P = sum(p.numel() for p in self.private.parameters() if p.requires_grad) count_S = sum(p.numel() for p in self.shared.parameters() if p.requires_grad) count_H = sum(p.numel() for p in self.head.parameters() if p.requires_grad) print('Num parameters in S = %s ' % (self.pretty_print(count_S))) print('Num parameters in P = %s, per task = %s ' % (self.pretty_print(count_P),self.pretty_print(count_P/self.num_tasks))) print('Num parameters in p = %s, per task = %s ' % (self.pretty_print(count_H),self.pretty_print(count_H/self.num_tasks))) print('Num parameters in P+p = %s ' % self.pretty_print(count_P+count_H)) print('--------------------------> Total architecture size: %s parameters (%sB)' % (self.pretty_print(count_S + count_P + count_H), self.pretty_print(4*(count_S + count_P + count_H)))) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.2f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude])
Adversarial-Continual-Learning-main
src/networks/mlp_acl.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import utils class Discriminator(torch.nn.Module): def __init__(self,args,task_id): super(Discriminator, self).__init__() self.num_tasks=args.ntasks self.units=args.units self.latent_dim=args.latent_dim if args.diff == 'yes': self.dis = torch.nn.Sequential( GradientReversal(args.lam), torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) else: self.dis = torch.nn.Sequential( torch.nn.Linear(self.latent_dim, args.units), torch.nn.LeakyReLU(), torch.nn.Linear(args.units, args.units), torch.nn.Linear(args.units, task_id + 2) ) def forward(self, z, labels, task_id): return self.dis(z) def pretty_print(self, num): magnitude=0 while abs(num) >= 1000: magnitude+=1 num/=1000.0 return '%.1f%s' % (num, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) def get_size(self): count=sum(p.numel() for p in self.dis.parameters() if p.requires_grad) print('Num parameters in D = %s ' % (self.pretty_print(count))) class GradientReversalFunction(torch.autograd.Function): """ From: https://github.com/jvanvugt/pytorch-domain-adaptation/blob/cb65581f20b71ff9883dd2435b2275a1fd4b90df/utils.py#L26 Gradient Reversal Layer from: Unsupervised Domain Adaptation by Backpropagation (Ganin & Lempitsky, 2015) Forward pass is the identity function. In the backward pass, the upstream gradients are multiplied by -lambda (i.e. gradient is reversed) """ @staticmethod def forward(ctx, x, lambda_): ctx.lambda_ = lambda_ return x.clone() @staticmethod def backward(ctx, grads): lambda_ = ctx.lambda_ lambda_ = grads.new_tensor(lambda_) dx = -lambda_ * grads return dx, None class GradientReversal(torch.nn.Module): def __init__(self, lambda_): super(GradientReversal, self).__init__() self.lambda_ = lambda_ def forward(self, x): return GradientReversalFunction.apply(x, self.lambda_)
Adversarial-Continual-Learning-main
src/networks/discriminator.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Wrapper script for launching a job on the fair cluster. Sample usage: python cluster_run.py --name=trial --setup='/path/to/setup.sh' --cmd='job_command' """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pdb from absl import app from absl import flags import os import sys import random import string import datetime import re opts = flags.FLAGS flags.DEFINE_integer('nodes', 1, 'Number of nodes per task') flags.DEFINE_integer('ntp', 1, 'Number of tasks per node') flags.DEFINE_integer('ncpus', 40, 'Number of cpu cores per task') flags.DEFINE_integer('ngpus', 1, 'Number of gpus per task') flags.DEFINE_string('name', '', 'Job name') flags.DEFINE_enum('partition', 'learnfair', ['dev', 'priority','uninterrupted','learnfair'], 'Cluster partition') flags.DEFINE_string('comment', 'for ICML deadline in 2020.', 'Comment') flags.DEFINE_string('time', '72:00:00', 'Time for which the job should run') flags.DEFINE_string('setup', '/private/home/tanmayshankar/Research/Code/Setup.bash', 'Setup script that will be run before the command') # flags.DEFINE_string('workdir', os.getcwd(), 'Job command') flags.DEFINE_string('workdir', '/private/home/tanmayshankar/Research/Code/CausalSkillLearning/Experiments', 'Jod command') # flags.DEFINE_string('workdir', '/private/home/tanmayshankar/Research/Code/SkillsfromDemonstrations/Experiments/BidirectionalInfoModel/', 'Job command') flags.DEFINE_string('cmd', 'echo $PWD', 'Directory to run job from') def mkdir(path): if not os.path.exists(path): os.makedirs(path) def main(_): job_folder = '/checkpoint/tanmayshankar/jobs/' + datetime.date.today().strftime('%y_%m_%d') mkdir(job_folder) if len(opts.name) == 0: # read name from command opts.name = re.search('--name=\w+', opts.cmd).group(0)[7:] print(opts.name) slurm_cmd = '#!/bin/bash\n\n' slurm_cmd += '#SBATCH --job-name={}\n'.format(opts.name) slurm_cmd += '#SBATCH --output={}/{}-%j.out\n'.format(job_folder, opts.name) slurm_cmd += '#SBATCH --error={}/{}-%j.err\n'.format(job_folder, opts.name) # slurm_cmd += '#SBATCH --exclude=learnfair2038' slurm_cmd += '\n' slurm_cmd += '#SBATCH --partition={}\n'.format(opts.partition) if len(opts.comment) > 0: slurm_cmd += '#SBATCH --comment="{}"\n'.format(opts.comment) slurm_cmd += '\n' slurm_cmd += '#SBATCH --nodes={}\n'.format(opts.nodes) slurm_cmd += '#SBATCH --ntasks-per-node={}\n'.format(opts.ntp) if opts.ngpus > 0: slurm_cmd += '#SBATCH --gres=gpu:{}\n'.format(opts.ngpus) slurm_cmd += '#SBATCH --cpus-per-task={}\n'.format(opts.ncpus) slurm_cmd += '#SBATCH --time={}\n'.format(opts.time) slurm_cmd += '\n' slurm_cmd += 'source {}\n'.format(opts.setup) slurm_cmd += 'cd {} \n\n'.format(opts.workdir) slurm_cmd += '{}\n'.format(opts.cmd) job_fname = '{}/{}.sh'.format(job_folder, ''.join(random.choices(string.ascii_letters, k=8))) with open(job_fname, 'w') as f: f.write(slurm_cmd) #print('sbatch {}'.format(job_fname)) os.system('sbatch {}'.format(job_fname)) if __name__ == '__main__': app.run(main)
CausalSkillLearning-main
Experiments/cluster_run.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * # Check if CUDA is available, set device to GPU if it is, otherwise use CPU. use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") class PolicyNetwork_BaseClass(torch.nn.Module): def __init__(self): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(PolicyNetwork_BaseClass, self).__init__() def sample_action(self, action_probabilities): # Categorical distribution sampling. sample_action = torch.distributions.Categorical(probs=action_probabilities).sample().squeeze(0) return sample_action def select_greedy_action(self, action_probabilities): # Select action with max probability for test time. return action_probabilities.argmax() # def select_epsilon_greedy_action(self, action_probabilities): # epsilon = 0.1 # if np.random.random()<epsilon: # return self.sample_action(action_probabilities) # else: # return self.select_greedy_action(action_probabilities) def select_epsilon_greedy_action(self, action_probabilities, epsilon=0.1): epsilon = epsilon whether_greedy = torch.rand(action_probabilities.shape[0]).to(device) sample_actions = torch.where(whether_greedy<epsilon, self.sample_action(action_probabilities), self.select_greedy_action(action_probabilities)) return sample_actions class PolicyNetwork(PolicyNetwork_BaseClass): # REMEMBER, in the Bi-directional model, this is going to be evaluated for log-probabilities alone. # Forward pass set up for evaluating this already. # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, input_size, hidden_size, output_size, number_subpolicies, number_layers=4, batch_size=1, whether_latentb_input=False): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(PolicyNetwork, self).__init__() if whether_latentb_input: self.input_size = input_size+number_subpolicies+1 else: self.input_size = input_size+number_subpolicies self.hidden_size = hidden_size self.output_size = output_size self.num_layers = number_layers self.batch_size = batch_size # Create LSTM Network. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers) # Define output layers for the LSTM, and activations for this output layer. self.output_layer = torch.nn.Linear(self.hidden_size,self.output_size) self.softmax_layer = torch.nn.Softmax(dim=1) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) self.batch_softmax_layer = torch.nn.Softmax(dim=2) def forward(self, input, hidden=None, return_log_probabilities=False): # The argument hidden_input here is the initial hidden state we want to feed to the LSTM. # Assume inputs is the trajectory sequence. # Input Format must be: Sequence_Length x Batch_Size x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) outputs, hidden = self.lstm(format_input) # Takes softmax of last output. if return_log_probabilities: # Computes log probabilities, needed for loss function and log likelihood. preprobability_outputs = self.output_layer(outputs) log_probabilities = self.batch_logsoftmax_layer(preprobability_outputs).squeeze(1) probabilities = self.batch_softmax_layer(preprobability_outputs).squeeze(1) return outputs, hidden, log_probabilities, probabilities else: # Compute action probabilities for sampling. softmax_output = self.softmax_layer(self.output_layer(outputs[-1])) return outputs, hidden, softmax_output class ContinuousPolicyNetwork(PolicyNetwork_BaseClass): # REMEMBER, in the Bi-directional model, this is going to be evaluated for log-probabilities alone. # Forward pass set up for evaluating this already. # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. # def __init__(self, input_size, hidden_size, output_size, number_subpolicies, number_layers=4, batch_size=1): # def __init__(self, input_size, hidden_size, output_size, z_space_size, number_layers=4, batch_size=1, whether_latentb_input=False): def __init__(self, input_size, hidden_size, output_size, args, number_layers=4, whether_latentb_input=False, zero_z_dim=False, small_init=False): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. # super().__init__() super(ContinuousPolicyNetwork, self).__init__() self.hidden_size = hidden_size # The output size here must be mean+variance for each dimension. # This is output_size*2. self.args = args self.output_size = output_size self.num_layers = number_layers self.batch_size = self.args.batch_size if whether_latentb_input: self.input_size = input_size+self.args.z_dimensions+1 else: if zero_z_dim: self.input_size = input_size else: self.input_size = input_size+self.args.z_dimensions # Create LSTM Network. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers) # Define output layers for the LSTM, and activations for this output layer. self.mean_output_layer = torch.nn.Linear(self.hidden_size,self.output_size) self.variances_output_layer = torch.nn.Linear(self.hidden_size, self.output_size) # # Try initializing the network to something, so that we can escape the stupid constant output business. if small_init: for name, param in self.mean_output_layer.named_parameters(): if 'bias' in name: torch.nn.init.constant_(param, 0.0) elif 'weight' in name: torch.nn.init.xavier_normal_(param,gain=0.0001) self.activation_layer = torch.nn.Tanh() self.variance_activation_layer = torch.nn.Softplus() self.variance_activation_bias = 0. self.variance_factor = 0.01 def forward(self, input, action_sequence, epsilon=0.001): # Input is the trajectory sequence of shape: Sequence_Length x 1 x Input_Size. # Here, we also need the continuous actions as input to evaluate their logprobability / probability. # format_input = torch.tensor(input).view(input.shape[0], self.batch_size, self.input_size).float().to(device) format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None format_action_seq = torch.from_numpy(action_sequence).to(device).float().view(action_sequence.shape[0],1,self.output_size) lstm_outputs, hidden = self.lstm(format_input) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(lstm_outputs)) else: mean_outputs = self.mean_output_layer(lstm_outputs) variance_outputs = (self.variance_activation_layer(self.variances_output_layer(lstm_outputs))+self.variance_activation_bias) # variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(lstm_outputs))+self.variance_activation_bias) + epsilon # Remember, because of Pytorch's dynamic construction, this distribution can have it's own batch size. # It doesn't matter if batch sizes changes over different forward passes of the LSTM, because we're only going # to evaluate this distribution (instance)'s log probability with the same sequence length. dist = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) log_probabilities = dist.log_prob(format_action_seq) # log_probabilities = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)).log_prob(format_action_seq) entropy = dist.entropy() if self.args.debug: print("Embedding in the policy network.") embed() return log_probabilities, entropy def get_actions(self, input, greedy=False): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None lstm_outputs, hidden = self.lstm(format_input) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(lstm_outputs)) else: mean_outputs = self.mean_output_layer(lstm_outputs) variance_outputs = (self.variance_activation_layer(self.variances_output_layer(lstm_outputs))+self.variance_activation_bias) if greedy: return mean_outputs else: # Remember, because of Pytorch's dynamic construction, this distribution can have it's own batch size. # It doesn't matter if batch sizes changes over different forward passes of the LSTM, because we're only going # to evaluate this distribution (instance)'s log probability with the same sequence length. dist = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) return dist.sample() def reparameterized_get_actions(self, input, greedy=False, action_epsilon=0.): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None lstm_outputs, hidden = self.lstm(format_input) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(lstm_outputs)) else: mean_outputs = self.mean_output_layer(lstm_outputs) variance_outputs = (self.variance_activation_layer(self.variances_output_layer(lstm_outputs))+self.variance_activation_bias) noise = torch.randn_like(variance_outputs) if greedy: action = mean_outputs else: # Instead of *sampling* the action from a distribution, construct using mu + sig * eps (random noise). action = mean_outputs + variance_outputs * noise return action def incremental_reparam_get_actions(self, input, greedy=False, action_epsilon=0., hidden=None): # Input should be a single timestep input here. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) # Instead of feeding in entire input sequence, we are feeding in current timestep input and previous hidden state. lstm_outputs, hidden = self.lstm(format_input, hidden) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(lstm_outputs)) else: mean_outputs = self.mean_output_layer(lstm_outputs) variance_outputs = (self.variance_activation_layer(self.variances_output_layer(lstm_outputs))+self.variance_activation_bias) noise = torch.randn_like(variance_outputs) if greedy: action = mean_outputs else: # Instead of *sampling* the action from a distribution, construct using mu + sig * eps (random noise). action = mean_outputs + variance_outputs * noise return action, hidden def get_regularization_kl(self, input_z1, input_z2): # Input is the trajectory sequence of shape: Sequence_Length x 1 x Input_Size. # Here, we also need the continuous actions as input to evaluate their logprobability / probability. format_input_z1 = input_z1.view(input_z1.shape[0], self.batch_size, self.input_size) format_input_z2 = input_z2.view(input_z2.shape[0], self.batch_size, self.input_size) hidden = None # format_action_seq = torch.from_numpy(action_sequence).to(device).float().view(action_sequence.shape[0],1,self.output_size) lstm_outputs_z1, _ = self.lstm(format_input_z1) # Reset hidden? lstm_outputs_z2, _ = self.lstm(format_input_z2) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs_z1 = self.activation_layer(self.mean_output_layer(lstm_outputs_z1)) mean_outputs_z2 = self.activation_layer(self.mean_output_layer(lstm_outputs_z2)) else: mean_outputs_z1 = self.mean_output_layer(lstm_outputs_z1) mean_outputs_z2 = self.mean_output_layer(lstm_outputs_z2) variance_outputs_z1 = self.variance_activation_layer(self.variances_output_layer(lstm_outputs_z1))+self.variance_activation_bias variance_outputs_z2 = self.variance_activation_layer(self.variances_output_layer(lstm_outputs_z2))+self.variance_activation_bias dist_z1 = torch.distributions.MultivariateNormal(mean_outputs_z1, torch.diag_embed(variance_outputs_z1)) dist_z2 = torch.distributions.MultivariateNormal(mean_outputs_z2, torch.diag_embed(variance_outputs_z2)) kl_divergence = torch.distributions.kl_divergence(dist_z1, dist_z2) return kl_divergence class LatentPolicyNetwork(PolicyNetwork_BaseClass): # REMEMBER, in the Bi-directional Information model, this is going to be evaluated for log-probabilities alone. # THIS IS STILL A SINGLE DIRECTION LSTM!! # This still needs to be written separately from the normal sub-policy network(s) because it also requires termination probabilities. # Must change forward pass back to using lstm() directly on the entire sequence rather than iterating. # Now we have the whole input sequence beforehand. # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, input_size, hidden_size, number_subpolicies, number_layers=4, b_exploration_bias=0., batch_size=1): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. # super().__init__() super(LatentPolicyNetwork, self).__init__() # Input size is actually input_size + number_subpolicies +1 self.input_size = input_size+number_subpolicies+1 self.offset_for_z = input_size+1 self.hidden_size = hidden_size self.number_subpolicies = number_subpolicies self.output_size = number_subpolicies self.num_layers = number_layers self.b_exploration_bias = b_exploration_bias self.batch_size = batch_size # Define LSTM. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers).to(device) # # Try initializing the network to something, so that we can escape the stupid constant output business. for name, param in self.lstm.named_parameters(): if 'bias' in name: torch.nn.init.constant_(param, 0.0) elif 'weight' in name: torch.nn.init.xavier_normal_(param,gain=5) # Transform to output space - Latent z and Latent b. self.subpolicy_output_layer = torch.nn.Linear(self.hidden_size,self.output_size) self.termination_output_layer = torch.nn.Linear(self.hidden_size,2) # Sigmoid and Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=2) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) def forward(self, input): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) latent_z_preprobabilities = self.subpolicy_output_layer(outputs) latent_b_preprobabilities = self.termination_output_layer(outputs) + self.b_exploration_bias latent_z_probabilities = self.batch_softmax_layer(latent_z_preprobabilities).squeeze(1) latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) latent_z_logprobabilities = self.batch_logsoftmax_layer(latent_z_preprobabilities).squeeze(1) latent_b_logprobabilities = self.batch_logsoftmax_layer(latent_b_preprobabilities).squeeze(1) # Return log probabilities. return latent_z_logprobabilities, latent_b_logprobabilities, latent_b_probabilities, latent_z_probabilities def get_actions(self, input, greedy=False): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) latent_z_preprobabilities = self.subpolicy_output_layer(outputs) latent_b_preprobabilities = self.termination_output_layer(outputs) + self.b_exploration_bias latent_z_probabilities = self.batch_softmax_layer(latent_z_preprobabilities).squeeze(1) latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) if greedy==True: selected_b = self.select_greedy_action(latent_b_probabilities) selected_z = self.select_greedy_action(latent_z_probabilities) else: selected_b = self.sample_action(latent_b_probabilities) selected_z = self.sample_action(latent_z_probabilities) return selected_b, selected_z def select_greedy_action(self, action_probabilities): # Select action with max probability for test time. # NEED TO USE DIMENSION OF ARGMAX. return action_probabilities.argmax(dim=-1) class ContinuousLatentPolicyNetwork(PolicyNetwork_BaseClass): # def __init__(self, input_size, hidden_size, z_dimensions, number_layers=4, b_exploration_bias=0., batch_size=1): def __init__(self, input_size, hidden_size, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. # super().__init__() super(ContinuousLatentPolicyNetwork, self).__init__() self.args = args # Input size is actually input_size + number_subpolicies +1 self.input_size = input_size+self.args.z_dimensions+1 self.offset_for_z = input_size+1 self.hidden_size = hidden_size # self.number_subpolicies = number_subpolicies self.output_size = self.args.z_dimensions self.num_layers = number_layers self.b_exploration_bias = self.args.b_exploration_bias self.batch_size = self.args.batch_size # Define LSTM. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers).to(device) # Transform to output space - Latent z and Latent b. # self.subpolicy_output_layer = torch.nn.Linear(self.hidden_size,self.output_size) self.termination_output_layer = torch.nn.Linear(self.hidden_size,2) # Sigmoid and Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=2) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) # Define output layers for the LSTM, and activations for this output layer. self.mean_output_layer = torch.nn.Linear(self.hidden_size,self.output_size) self.variances_output_layer = torch.nn.Linear(self.hidden_size, self.output_size) self.activation_layer = torch.nn.Tanh() self.variance_activation_layer = torch.nn.Softplus() self.variance_activation_bias = 0. self.variance_factor = 0.01 # # # Try initializing the network to something, so that we can escape the stupid constant output business. for name, param in self.lstm.named_parameters(): if 'bias' in name: torch.nn.init.constant_(param, 0.001) elif 'weight' in name: torch.nn.init.xavier_normal_(param,gain=5) # Also initializing mean_output_layer to something large... for name, param in self.mean_output_layer.named_parameters(): if 'bias' in name: torch.nn.init.constant_(param, 0.) elif 'weight' in name: torch.nn.init.xavier_normal_(param,gain=2) def forward(self, input, epsilon=0.001): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) latent_b_preprobabilities = self.termination_output_layer(outputs) latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) latent_b_logprobabilities = self.batch_logsoftmax_layer(latent_b_preprobabilities).squeeze(1) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) if self.args.debug: print("Embedding in Latent Policy.") embed() # Return log probabilities. return latent_b_logprobabilities, latent_b_probabilities, self.dists def get_actions(self, input, greedy=False, epsilon=0.001): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) latent_b_preprobabilities = self.termination_output_layer(outputs) + self.b_exploration_bias latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # We should be multiply by self.variance_factor. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) if greedy==True: selected_b = self.select_greedy_action(latent_b_probabilities) selected_z = mean_outputs else: # selected_b = self.sample_action(latent_b_probabilities) selected_b = self.select_greedy_action(latent_b_probabilities) selected_z = self.dists.sample() return selected_b, selected_z def incremental_reparam_get_actions(self, input, greedy=False, action_epsilon=0.001, hidden=None, previous_z=None): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) outputs, hidden = self.lstm(format_input, hidden) latent_b_preprobabilities = self.termination_output_layer(outputs) latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) # Greedily select b. selected_b = self.select_greedy_action(latent_b_probabilities) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # We should be multiply by self.variance_factor. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + action_epsilon noise = torch.randn_like(variance_outputs) if greedy: selected_z = mean_outputs else: # Instead of *sampling* the action from a distribution, construct using mu + sig * eps (random noise). selected_z = mean_outputs + variance_outputs * noise # If single input and previous_Z is None, this is the first timestep. So set b to 1, and don't do anything to z. if input.shape[0]==1 and previous_z is None: selected_b[0] = 1 # If previous_Z is not None, this is not the first timestep, so don't do anything to z. If b is 0, use previous. elif input.shape[0]==1 and previous_z is not None: if selected_b==0: selected_z = previous_z elif input.shape[0]>1: # Now modify z's as per New Z Selection. # Set initial b to 1. selected_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if selected_b[t]==0: selected_z[t] = selected_z[t-1] return selected_z, selected_b, hidden def reparam_get_actions(self, input, greedy=False, action_epsilon=0.001, hidden=None): # Wraps incremental # MUST MODIFY INCREMENTAL ONE TO HANDLE NEW_Z_SELECTION (i.e. only choose new one if b is 1....) # Set initial b to 1. sampled_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if sampled_b[t]==0: sampled_z_index[t] = sampled_z_index[t-1] def select_greedy_action(self, action_probabilities): # Select action with max probability for test time. # NEED TO USE DIMENSION OF ARGMAX. return action_probabilities.argmax(dim=-1) class ContinuousLatentPolicyNetwork_ConstrainedBPrior(ContinuousLatentPolicyNetwork): def __init__(self, input_size, hidden_size, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(ContinuousLatentPolicyNetwork_ConstrainedBPrior, self).__init__(input_size, hidden_size, args, number_layers) # We can inherit the forward function from the above class... we just need to modify get actions. self.min_skill_time = 12 self.max_skill_time = 16 def get_prior_value(self, elapsed_t, max_limit=5): skill_time_limit = max_limit-1 if self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': # If allowing variable skill length, set length for this sample. if self.args.var_skill_length: # Choose length of 12-16 with certain probabilities. lens = np.array([12,13,14,15,16]) # probabilities = np.array([0.1,0.2,0.4,0.2,0.1]) prob_biases = np.array([[0.8,0.],[0.4,0.],[0.,0.],[0.,0.4]]) max_limit = 16 skill_time_limit = 12 else: max_limit = 20 skill_time_limit = max_limit-1 prior_value = torch.zeros((1,2)).to(device).float() # If at or over hard limit. if elapsed_t>=max_limit: prior_value[0,1]=1. # If at or more than typical, less than hard limit: elif elapsed_t>=skill_time_limit: if self.args.var_skill_length: prior_value[0] = torch.tensor(prob_biases[elapsed_t-skill_time_limit]).to(device).float() else: # Random prior_value[0,1]=0. # If less than typical. else: # Continue. prior_value[0,0]=1. return prior_value def get_actions(self, input, greedy=False, epsilon=0.001, delta_t=0): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) latent_b_preprobabilities = self.termination_output_layer(outputs) + self.b_exploration_bias # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # We should be multiply by self.variance_factor. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) ############################################ prior_value = self.get_prior_value(delta_t) # Now... add prior value. # Only need to do this to the last timestep... because the last sampled b is going to be copied into a different variable that is stored. latent_b_preprobabilities[-1, :, :] += prior_value latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) # Sample b. selected_b = self.select_greedy_action(latent_b_probabilities) ############################################ # Now implementing hard constrained b selection. if delta_t < self.min_skill_time: # Continue. Set b to 0. selected_b[-1] = 0. elif (self.min_skill_time <= delta_t) and (delta_t < self.max_skill_time): pass else: # Stop and select a new z. Set b to 1. selected_b[-1] = 1. # Also get z... assume higher level funciton handles the new z selection component. if greedy==True: selected_z = mean_outputs else: selected_z = self.dists.sample() return selected_b, selected_z def incremental_reparam_get_actions(self, input, greedy=False, action_epsilon=0.001, hidden=None, previous_z=None, delta_t=0): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) outputs, hidden = self.lstm(format_input, hidden) latent_b_preprobabilities = self.termination_output_layer(outputs) ############################################ # GET PRIOR AND ADD. prior_value = self.get_prior_value(delta_t) latent_b_preprobabilities[-1, :, :] += prior_value ############################################ latent_b_probabilities = self.batch_softmax_layer(latent_b_preprobabilities).squeeze(1) # Greedily select b. selected_b = self.select_greedy_action(latent_b_probabilities) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # We should be multiply by self.variance_factor. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + action_epsilon noise = torch.randn_like(variance_outputs) if greedy: selected_z = mean_outputs else: # Instead of *sampling* the action from a distribution, construct using mu + sig * eps (random noise). selected_z = mean_outputs + variance_outputs * noise # If single input and previous_Z is None, this is the first timestep. So set b to 1, and don't do anything to z. if input.shape[0]==1 and previous_z is None: selected_b[0] = 1 # If previous_Z is not None, this is not the first timestep, so don't do anything to z. If b is 0, use previous. elif input.shape[0]==1 and previous_z is not None: if selected_b==0: selected_z = previous_z elif input.shape[0]>1: # Now modify z's as per New Z Selection. # Set initial b to 1. selected_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if selected_b[t]==0: selected_z[t] = selected_z[t-1] return selected_z, selected_b, hidden class VariationalPolicyNetwork(PolicyNetwork_BaseClass): # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. # def __init__(self, input_size, hidden_size, number_subpolicies, number_layers=4, z_exploration_bias=0., b_exploration_bias=0., batch_size=1): def __init__(self, input_size, hidden_size, number_subpolicies, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. # super().__init__() super(VariationalPolicyNetwork, self).__init__() self.args = args self.input_size = input_size self.hidden_size = hidden_size self.number_subpolicies = number_subpolicies self.output_size = number_subpolicies self.num_layers = number_layers self.z_exploration_bias = self.args.z_exploration_bias self.b_exploration_bias = self.args.b_exploration_bias self.z_probability_factor = self.args.z_probability_factor self.b_probability_factor = self.args.b_probability_factor self.batch_size = self.args.batch_size # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers, bidirectional=True) # Transform to output space - Latent z and Latent b. # THIS OUTPUT LAYER TAKES 2*HIDDEN SIZE as input because it's bidirectional. self.subpolicy_output_layer = torch.nn.Linear(2*self.hidden_size,self.output_size) self.termination_output_layer = torch.nn.Linear(2*self.hidden_size,2) # Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=2) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) def sample_latent_variables(self, subpolicy_outputs, termination_output_layer): # Run sampling layers. sample_z = self.sample_action(subpolicy_outputs) sample_b = self.sample_action(termination_output_layer) return sample_z, sample_b def sample_latent_variables_epsilon_greedy(self, subpolicy_outputs, termination_output_layer, epsilon): sample_z = self.select_epsilon_greedy_action(subpolicy_outputs, epsilon) sample_b = self.select_epsilon_greedy_action(termination_output_layer, epsilon) return sample_z, sample_b def forward(self, input, epsilon, new_z_selection=True): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) # Damping factor for probabilities to prevent washing out of bias. variational_z_preprobabilities = self.subpolicy_output_layer(outputs)*self.z_probability_factor + self.z_exploration_bias # variational_b_preprobabilities = self.termination_output_layer(outputs) + self.b_exploration_bias # Damping factor for probabilities to prevent washing out of bias. variational_b_preprobabilities = self.termination_output_layer(outputs)*self.b_probability_factor # Add b continuation bias to the continuing option at every timestep. variational_b_preprobabilities[:,0,0] += self.b_exploration_bias variational_z_probabilities = self.batch_softmax_layer(variational_z_preprobabilities).squeeze(1) variational_b_probabilities = self.batch_softmax_layer(variational_b_preprobabilities).squeeze(1) variational_z_logprobabilities = self.batch_logsoftmax_layer(variational_z_preprobabilities).squeeze(1) variational_b_logprobabilities = self.batch_logsoftmax_layer(variational_b_preprobabilities).squeeze(1) # sampled_z_index, sampled_b = self.sample_latent_variables(variational_z_probabilities, variational_b_probabilities) sampled_z_index, sampled_b = self.sample_latent_variables_epsilon_greedy(variational_z_probabilities, variational_b_probabilities, epsilon) if new_z_selection: # Set initial b to 1. sampled_b[0] = 1 # # Trying cheeky thing to see if we can learn in this setting. # sampled_b[1:] = 0 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if sampled_b[t]==0: sampled_z_index[t] = sampled_z_index[t-1] return sampled_z_index, sampled_b, variational_b_logprobabilities,\ variational_z_logprobabilities, variational_b_probabilities, variational_z_probabilities, None def sample_action(self, action_probabilities): # Categorical distribution sampling. # Sampling can handle batched action_probabilities. sample_action = torch.distributions.Categorical(probs=action_probabilities).sample() return sample_action def select_greedy_action(self, action_probabilities): # Select action with max probability for test time. # NEED TO USE DIMENSION OF ARGMAX. return action_probabilities.argmax(dim=-1) def select_epsilon_greedy_action(self, action_probabilities, epsilon=0.1): epsilon = epsilon # if np.random.random()<epsilon: # # return(np.random.randint(0,high=len(action_probabilities))) # return self.sample_action(action_probabilities) # else: # return self.select_greedy_action(action_probabilities) # Issue with the current implementation is that it selects either sampling or greedy selection identically across the entire batch. # This is stupid, use a toch.where instead? # Sample an array of binary variables of size = batch size. # For each, use greedy or ... whether_greedy = torch.rand(action_probabilities.shape[0]).to(device) sample_actions = torch.where(whether_greedy<epsilon, self.sample_action(action_probabilities), self.select_greedy_action(action_probabilities)) return sample_actions def sample_termination(self, termination_probability): sample_terminal = torch.distributions.Bernoulli(termination_probability).sample().squeeze(0) return sample_terminal class ContinuousVariationalPolicyNetwork(PolicyNetwork_BaseClass): # def __init__(self, input_size, hidden_size, z_dimensions, number_layers=4, z_exploration_bias=0., b_exploration_bias=0., batch_size=1): def __init__(self, input_size, hidden_size, z_dimensions, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. # super().__init__() super(ContinuousVariationalPolicyNetwork, self).__init__() self.args = args self.input_size = input_size self.hidden_size = hidden_size self.output_size = z_dimensions self.num_layers = number_layers self.z_exploration_bias = self.args.z_exploration_bias self.b_exploration_bias = self.args.b_exploration_bias self.z_probability_factor = self.args.z_probability_factor self.b_probability_factor = self.args.b_probability_factor self.batch_size = self.args.batch_size # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers, bidirectional=True) # Transform to output space - Latent z and Latent b. # THIS OUTPUT LAYER TAKES 2*HIDDEN SIZE as input because it's bidirectional. self.termination_output_layer = torch.nn.Linear(2*self.hidden_size,2) # Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=-1) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=-1) # Define output layers for the LSTM, and activations for this output layer. self.mean_output_layer = torch.nn.Linear(2*self.hidden_size,self.output_size) self.variances_output_layer = torch.nn.Linear(2*self.hidden_size, self.output_size) self.activation_layer = torch.nn.Tanh() self.variance_activation_layer = torch.nn.Softplus() self.variance_activation_bias = 0. self.variance_factor = 0.01 def forward(self, input, epsilon, new_z_selection=True, var_epsilon=0.001): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) # Damping factor for probabilities to prevent washing out of bias. variational_b_preprobabilities = self.termination_output_layer(outputs)*self.b_probability_factor # Add b continuation bias to the continuing option at every timestep. variational_b_preprobabilities[:,0,0] += self.b_exploration_bias variational_b_probabilities = self.batch_softmax_layer(variational_b_preprobabilities).squeeze(1) variational_b_logprobabilities = self.batch_logsoftmax_layer(variational_b_preprobabilities).squeeze(1) # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # Still need a softplus activation for variance because needs to be positive. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + var_epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) sampled_b = self.select_epsilon_greedy_action(variational_b_probabilities, epsilon) if epsilon==0.: sampled_z_index = mean_outputs.squeeze(1) else: # Whether to use reparametrization trick to retrieve the latent_z's. if self.args.reparam: if self.args.train: noise = torch.randn_like(variance_outputs) # Instead of *sampling* the latent z from a distribution, construct using mu + sig * eps (random noise). sampled_z_index = mean_outputs + variance_outputs*noise # Ought to be able to pass gradients through this latent_z now. sampled_z_index = sampled_z_index.squeeze(1) # If evaluating, greedily get action. else: sampled_z_index = mean_outputs.squeeze(1) else: sampled_z_index = self.dists.sample().squeeze(1) if new_z_selection: # Set initial b to 1. sampled_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if sampled_b[t]==0: sampled_z_index[t] = sampled_z_index[t-1] # Also compute logprobabilities of the latent_z's sampled from this net. variational_z_logprobabilities = self.dists.log_prob(sampled_z_index.unsqueeze(1)) variational_z_probabilities = None # Set standard distribution for KL. standard_distribution = torch.distributions.MultivariateNormal(torch.zeros((self.output_size)).to(device),torch.eye((self.output_size)).to(device)) # Compute KL. kl_divergence = torch.distributions.kl_divergence(self.dists, standard_distribution) # Prior loglikelihood prior_loglikelihood = standard_distribution.log_prob(sampled_z_index) # if self.args.debug: # print("#################################") # print("Embedding in Variational Network.") # embed() return sampled_z_index, sampled_b, variational_b_logprobabilities,\ variational_z_logprobabilities, variational_b_probabilities, variational_z_probabilities, kl_divergence, prior_loglikelihood def sample_action(self, action_probabilities): # Categorical distribution sampling. # Sampling can handle batched action_probabilities. sample_action = torch.distributions.Categorical(probs=action_probabilities).sample() return sample_action def select_greedy_action(self, action_probabilities): # Select action with max probability for test time. # NEED TO USE DIMENSION OF ARGMAX. return action_probabilities.argmax(dim=-1) def select_epsilon_greedy_action(self, action_probabilities, epsilon=0.1): epsilon = epsilon # if np.random.random()<epsilon: # # return(np.random.randint(0,high=len(action_probabilities))) # return self.sample_action(action_probabilities) # else: # return self.select_greedy_action(action_probabilities) # Issue with the current implementation is that it selects either sampling or greedy selection identically across the entire batch. # This is stupid, use a toch.where instead? # Sample an array of binary variables of size = batch size. # For each, use greedy or ... whether_greedy = torch.rand(action_probabilities.shape[0]).to(device) sample_actions = torch.where(whether_greedy<epsilon, self.sample_action(action_probabilities), self.select_greedy_action(action_probabilities)) return sample_actions class ContinuousVariationalPolicyNetwork_BPrior(ContinuousVariationalPolicyNetwork): def __init__(self, input_size, hidden_size, z_dimensions, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(ContinuousVariationalPolicyNetwork_BPrior, self).__init__(input_size, hidden_size, z_dimensions, args, number_layers) def get_prior_value(self, elapsed_t, max_limit=5): skill_time_limit = max_limit-1 if self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': # If allowing variable skill length, set length for this sample. if self.args.var_skill_length: # Choose length of 12-16 with certain probabilities. lens = np.array([12,13,14,15,16]) # probabilities = np.array([0.1,0.2,0.4,0.2,0.1]) prob_biases = np.array([[0.8,0.],[0.4,0.],[0.,0.],[0.,0.4]]) max_limit = 16 skill_time_limit = 12 else: max_limit = 20 skill_time_limit = max_limit-1 prior_value = torch.zeros((1,2)).to(device).float() # If at or over hard limit. if elapsed_t>=max_limit: prior_value[0,1]=1. # If at or more than typical, less than hard limit: elif elapsed_t>=skill_time_limit: if self.args.var_skill_length: prior_value[0] = torch.tensor(prob_biases[elapsed_t-skill_time_limit]).to(device).float() else: # Random prior_value[0,1]=0. # If less than typical. else: # Continue. prior_value[0,0]=1. return prior_value def forward(self, input, epsilon, new_z_selection=True): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) # Damping factor for probabilities to prevent washing out of bias. variational_b_preprobabilities = self.termination_output_layer(outputs)*self.b_probability_factor # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # Still need a softplus activation for variance because needs to be positive. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) prev_time = 0 # Create variables for prior and probs. prior_values = torch.zeros_like(variational_b_preprobabilities).to(device).float() variational_b_probabilities = torch.zeros_like(variational_b_preprobabilities).to(device).float() variational_b_logprobabilities = torch.zeros_like(variational_b_preprobabilities).to(device).float() sampled_b = torch.zeros(input.shape[0]).to(device).int() sampled_b[0] = 1 for t in range(1,input.shape[0]): # Compute prior value. delta_t = t-prev_time # if self.args.debug: # print("##########################") # print("Time: ",t, " Prev Time:",prev_time, " Delta T:",delta_t) prior_values[t] = self.get_prior_value(delta_t, max_limit=self.args.skill_length) # Construct probabilities. variational_b_probabilities[t,0,:] = self.batch_softmax_layer(variational_b_preprobabilities[t,0] + prior_values[t,0]) variational_b_logprobabilities[t,0,:] = self.batch_logsoftmax_layer(variational_b_preprobabilities[t,0] + prior_values[t,0]) sampled_b[t] = self.select_epsilon_greedy_action(variational_b_probabilities[t:t+1], epsilon) if sampled_b[t]==1: prev_time = t # if self.args.debug: # print("Sampled b:",sampled_b[t]) if epsilon==0.: sampled_z_index = mean_outputs.squeeze(1) else: # Whether to use reparametrization trick to retrieve the latent_z's. if self.args.reparam: if self.args.train: noise = torch.randn_like(variance_outputs) # Instead of *sampling* the latent z from a distribution, construct using mu + sig * eps (random noise). sampled_z_index = mean_outputs + variance_outputs*noise # Ought to be able to pass gradients through this latent_z now. sampled_z_index = sampled_z_index.squeeze(1) # If evaluating, greedily get action. else: sampled_z_index = mean_outputs.squeeze(1) else: sampled_z_index = self.dists.sample().squeeze(1) if new_z_selection: # Set initial b to 1. sampled_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if sampled_b[t]==0: sampled_z_index[t] = sampled_z_index[t-1] # Also compute logprobabilities of the latent_z's sampled from this net. variational_z_logprobabilities = self.dists.log_prob(sampled_z_index.unsqueeze(1)) variational_z_probabilities = None # Set standard distribution for KL. standard_distribution = torch.distributions.MultivariateNormal(torch.zeros((self.output_size)).to(device),torch.eye((self.output_size)).to(device)) # Compute KL. kl_divergence = torch.distributions.kl_divergence(self.dists, standard_distribution) # Prior loglikelihood prior_loglikelihood = standard_distribution.log_prob(sampled_z_index) if self.args.debug: print("#################################") print("Embedding in Variational Network.") embed() return sampled_z_index, sampled_b, variational_b_logprobabilities.squeeze(1), \ variational_z_logprobabilities, variational_b_probabilities.squeeze(1), variational_z_probabilities, kl_divergence, prior_loglikelihood class ContinuousVariationalPolicyNetwork_ConstrainedBPrior(ContinuousVariationalPolicyNetwork_BPrior): def __init__(self, input_size, hidden_size, z_dimensions, args, number_layers=4): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(ContinuousVariationalPolicyNetwork_ConstrainedBPrior, self).__init__(input_size, hidden_size, z_dimensions, args, number_layers) self.min_skill_time = 12 self.max_skill_time = 16 def forward(self, input, epsilon, new_z_selection=True): # Input Format must be: Sequence_Length x 1 x Input_Size. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None outputs, hidden = self.lstm(format_input) # Damping factor for probabilities to prevent washing out of bias. variational_b_preprobabilities = self.termination_output_layer(outputs)*self.b_probability_factor # Predict Gaussian means and variances. if self.args.mean_nonlinearity: mean_outputs = self.activation_layer(self.mean_output_layer(outputs)) else: mean_outputs = self.mean_output_layer(outputs) # Still need a softplus activation for variance because needs to be positive. variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(outputs))+self.variance_activation_bias) + epsilon # This should be a SET of distributions. self.dists = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) # Create variables for prior and probabilities. prior_values = torch.zeros_like(variational_b_preprobabilities).to(device).float() variational_b_probabilities = torch.zeros_like(variational_b_preprobabilities).to(device).float() variational_b_logprobabilities = torch.zeros_like(variational_b_preprobabilities).to(device).float() ####################################### ################ Set B ################ ####################################### # Set the first b to 1, and the time b was == 1. sampled_b = torch.zeros(input.shape[0]).to(device).int() sampled_b[0] = 1 prev_time = 0 for t in range(1,input.shape[0]): # Compute time since the last b occurred. delta_t = t-prev_time # Compute prior value. prior_values[t] = self.get_prior_value(delta_t, max_limit=self.args.skill_length) # Construct probabilities. variational_b_probabilities[t,0,:] = self.batch_softmax_layer(variational_b_preprobabilities[t,0] + prior_values[t,0]) variational_b_logprobabilities[t,0,:] = self.batch_logsoftmax_layer(variational_b_preprobabilities[t,0] + prior_values[t,0]) # Now Implement Hard Restriction on Selection of B's. if delta_t < self.min_skill_time: # Set B to 0. I.e. Continue. # variational_b_probabilities[t,0,:] = variational_b_probabilities[t,0,:]*0 # variational_b_probabilities[t,0,0] += 1 sampled_b[t] = 0. elif (self.min_skill_time <= delta_t) and (delta_t < self.max_skill_time): # Sample b. sampled_b[t] = self.select_epsilon_greedy_action(variational_b_probabilities[t:t+1], epsilon) elif self.max_skill_time <= delta_t: # Set B to 1. I.e. select new z. sampled_b[t] = 1. # If b is 1, set the previous time to now. if sampled_b[t]==1: prev_time = t ####################################### ################ Set Z ################ ####################################### # Now set the z's. If greedy, just return the means. if epsilon==0.: sampled_z_index = mean_outputs.squeeze(1) # If not greedy, then reparameterize. else: # Whether to use reparametrization trick to retrieve the latent_z's. if self.args.train: noise = torch.randn_like(variance_outputs) # Instead of *sampling* the latent z from a distribution, construct using mu + sig * eps (random noise). sampled_z_index = mean_outputs + variance_outputs*noise # Ought to be able to pass gradients through this latent_z now. sampled_z_index = sampled_z_index.squeeze(1) # If evaluating, greedily get action. else: sampled_z_index = mean_outputs.squeeze(1) # Modify z's based on whether b was 1 or 0. This part should remain the same. if new_z_selection: # Set initial b to 1. sampled_b[0] = 1 # Initial z is already trivially set. for t in range(1,input.shape[0]): # If b_t==0, just use previous z. # If b_t==1, sample new z. Here, we've cloned this from sampled_z's, so there's no need to do anything. if sampled_b[t]==0: sampled_z_index[t] = sampled_z_index[t-1] # Also compute logprobabilities of the latent_z's sampled from this net. variational_z_logprobabilities = self.dists.log_prob(sampled_z_index.unsqueeze(1)) variational_z_probabilities = None # Set standard distribution for KL. standard_distribution = torch.distributions.MultivariateNormal(torch.zeros((self.output_size)).to(device),torch.eye((self.output_size)).to(device)) # Compute KL. kl_divergence = torch.distributions.kl_divergence(self.dists, standard_distribution) # Prior loglikelihood prior_loglikelihood = standard_distribution.log_prob(sampled_z_index) if self.args.debug: print("#################################") print("Embedding in Variational Network.") embed() return sampled_z_index, sampled_b, variational_b_logprobabilities.squeeze(1), \ variational_z_logprobabilities, variational_b_probabilities.squeeze(1), variational_z_probabilities, kl_divergence, prior_loglikelihood class EncoderNetwork(PolicyNetwork_BaseClass): # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, input_size, hidden_size, output_size, number_subpolicies=4, batch_size=1): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(EncoderNetwork, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.number_subpolicies = number_subpolicies self.num_layers = 5 self.batch_size = batch_size # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers, bidirectional=True) # Define output layers for the LSTM, and activations for this output layer. # Because it's bidrectional, once we compute <outputs, hidden = self.lstm(input)>, we must concatenate: # From reverse LSTM: <outputs[0,:,hidden_size:]> and from the forward LSTM: <outputs[-1,:,:hidden_size]>. # (Refer - https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66 ) # Because of this, the output layer must take in size 2*hidden. self.hidden_layer = torch.nn.Linear(2*self.hidden_size, 2*self.hidden_size) self.output_layer = torch.nn.Linear(2*self.hidden_size, self.output_size) # Sigmoid and Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=2) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) def forward(self, input, epsilon): # Input format must be: Sequence_Length x 1 x Input_Size. # Assuming input is a numpy array. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) # Instead of iterating over time and passing each timestep's input to the LSTM, we can now just pass the entire input sequence. outputs, hidden = self.lstm(format_input) concatenated_outputs = torch.cat([outputs[0,:,self.hidden_size:],outputs[-1,:,:self.hidden_size]],dim=-1).view((1,1,-1)) # Calculate preprobs. preprobabilities = self.output_layer(self.hidden_layer(concatenated_outputs)) probabilities = self.batch_softmax_layer(preprobabilities) logprobabilities = self.batch_logsoftmax_layer(preprobabilities) latent_z = self.select_epsilon_greedy_action(probabilities, epsilon=epsilon) # Return latentz_encoding as output layer of last outputs. return latent_z, logprobabilities, None, None class ContinuousEncoderNetwork(PolicyNetwork_BaseClass): # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, input_size, hidden_size, output_size, args, batch_size=1): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(ContinuousEncoderNetwork, self).__init__() self.args = args self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = 5 self.batch_size = batch_size # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers, bidirectional=True) # Define output layers for the LSTM, and activations for this output layer. # # Because it's bidrectional, once we compute <outputs, hidden = self.lstm(input)>, we must concatenate: # # From reverse LSTM: <outputs[0,:,hidden_size:]> and from the forward LSTM: <outputs[-1,:,:hidden_size]>. # # (Refer - https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66 ) # # Because of this, the output layer must take in size 2*hidden. # self.hidden_layer = torch.nn.Linear(2*self.hidden_size, self.hidden_size) # self.output_layer = torch.nn.Linear(2*self.hidden_size, self.output_size) # Sigmoid and Softmax activation functions for Bernoulli termination probability and latent z selection . self.batch_softmax_layer = torch.nn.Softmax(dim=2) self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) # Define output layers for the LSTM, and activations for this output layer. self.mean_output_layer = torch.nn.Linear(2*self.hidden_size,self.output_size) self.variances_output_layer = torch.nn.Linear(2*self.hidden_size, self.output_size) self.activation_layer = torch.nn.Tanh() self.variance_activation_layer = torch.nn.Softplus() self.variance_activation_bias = 0. self.variance_factor = 0.01 def forward(self, input, epsilon=0.001, z_sample_to_evaluate=None): # This epsilon passed as an argument is just so that the signature of this function is the same as what's provided to the discrete encoder network. # Input format must be: Sequence_Length x 1 x Input_Size. # Assuming input is a numpy array. format_input = input.view((input.shape[0], self.batch_size, self.input_size)) # Instead of iterating over time and passing each timestep's input to the LSTM, we can now just pass the entire input sequence. outputs, hidden = self.lstm(format_input) concatenated_outputs = torch.cat([outputs[0,:,self.hidden_size:],outputs[-1,:,:self.hidden_size]],dim=-1).view((1,1,-1)) # Predict Gaussian means and variances. # if self.args.mean_nonlinearity: # mean_outputs = self.activation_layer(self.mean_output_layer(concatenated_outputs)) # else: mean_outputs = self.mean_output_layer(concatenated_outputs) variance_outputs = self.variance_factor*(self.variance_activation_layer(self.variances_output_layer(concatenated_outputs))+self.variance_activation_bias) + epsilon dist = torch.distributions.MultivariateNormal(mean_outputs, torch.diag_embed(variance_outputs)) # Whether to use reparametrization trick to retrieve the if self.args.reparam: noise = torch.randn_like(variance_outputs) # Instead of *sampling* the latent z from a distribution, construct using mu + sig * eps (random noise). latent_z = mean_outputs + variance_outputs * noise # Ought to be able to pass gradients through this latent_z now. else: # Retrieve sample from the distribution as the value of the latent variable. latent_z = dist.sample() # calculate entropy for training. entropy = dist.entropy() # Also retrieve log probability of the same. logprobability = dist.log_prob(latent_z) # Set standard distribution for KL. standard_distribution = torch.distributions.MultivariateNormal(torch.zeros((self.output_size)).to(device),torch.eye((self.output_size)).to(device)) # Compute KL. kl_divergence = torch.distributions.kl_divergence(dist, standard_distribution) if self.args.debug: print("###############################") print("Embedding in Encoder Network.") embed() if z_sample_to_evaluate is None: return latent_z, logprobability, entropy, kl_divergence else: logprobability = dist.log_prob(z_sample_to_evaluate) return logprobability class CriticNetwork(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size, args=None, number_layers=4): super(CriticNetwork, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.number_layers = number_layers self.batch_size = 1 # Create LSTM Network. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.number_layers) self.output_layer = torch.nn.Linear(self.hidden_size,self.output_size) def forward(self, input): format_input = input.view((input.shape[0], self.batch_size, self.input_size)) hidden = None lstm_outputs, hidden = self.lstm(format_input) # Predict critic value for each timestep. critic_value = self.output_layer(lstm_outputs) return critic_value class ContinuousMLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size, args=None, number_layers=4): super(ContinuousMLP, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.input_layer = torch.nn.Linear(self.input_size, self.hidden_size) self.hidden_layer = torch.nn.Linear(self.hidden_size, self.hidden_size) self.output_layer = torch.nn.Linear(self.hidden_size, self.output_size) self.relu_activation = torch.nn.ReLU() self.variance_activation_layer = torch.nn.Softplus() def forward(self, input, greedy=False, action_epsilon=0.0001): # Assumes input is Batch_Size x Input_Size. h1 = self.relu_activation(self.input_layer(input)) h2 = self.relu_activation(self.hidden_layer(h1)) h3 = self.relu_activation(self.hidden_layer(h2)) h4 = self.relu_activation(self.hidden_layer(h3)) mean_outputs = self.output_layer(h4) variance_outputs = self.variance_activation_layer(self.output_layer(h4)) noise = torch.randn_like(variance_outputs) if greedy: action = mean_outputs else: # Instead of *sampling* the action from a distribution, construct using mu + sig * eps (random noise). action = mean_outputs + variance_outputs * noise return action def reparameterized_get_actions(self, input, greedy=False, action_epsilon=0.0001): return self.forward(input, greedy, action_epsilon) class CriticMLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size, args=None, number_layers=4): super(CriticMLP, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.batch_size = 1 self.input_layer = torch.nn.Linear(self.input_size, self.hidden_size) self.hidden_layer = torch.nn.Linear(self.hidden_size, self.hidden_size) self.output_layer = torch.nn.Linear(self.hidden_size, self.output_size) self.relu_activation = torch.nn.ReLU() def forward(self, input): # Assumes input is Batch_Size x Input_Size. h1 = self.relu_activation(self.input_layer(input)) h2 = self.relu_activation(self.hidden_layer(h1)) h3 = self.relu_activation(self.hidden_layer(h2)) h4 = self.relu_activation(self.hidden_layer(h3)) # Predict critic value for each timestep. critic_value = self.output_layer(h4) return critic_value class DiscreteMLP(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size, args=None, number_layers=4): super(DiscreteMLP, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.input_layer = torch.nn.Linear(self.input_size, self.hidden_size) self.hidden_layer = torch.nn.Linear(self.hidden_size, self.hidden_size) self.output_layer = torch.nn.Linear(self.hidden_size, self.output_size) self.relu_activation = torch.nn.ReLU() self.batch_logsoftmax_layer = torch.nn.LogSoftmax(dim=2) self.batch_softmax_layer = torch.nn.Softmax(dim=2 ) def forward(self, input): # Assumes input is Batch_Size x Input_Size. h1 = self.relu_activation(self.input_layer(input)) h2 = self.relu_activation(self.hidden_layer(h1)) h3 = self.relu_activation(self.hidden_layer(h2)) h4 = self.relu_activation(self.hidden_layer(h3)) # Compute preprobability with output layer. preprobability_outputs = self.output_layer(h4) # Compute probabilities and logprobabilities. log_probabilities = self.batch_logsoftmax_layer(preprobability_outputs) probabilities = self.batch_softmax_layer(preprobability_outputs) return log_probabilities, probabilities
CausalSkillLearning-main
Experiments/PolicyNetworks.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import mocap_processing, glob, numpy as np, os from mocap_processing.motion.pfnn import Animation, BVH from mocap_processing.motion.pfnn import Animation, BVH from IPython import embed # Define function that loads global and local posiitons, and the rotations from a datafile. def load_animation_data(bvh_filename): animation, joint_names, time_per_frame = BVH.load(bvh_filename) global_positions = Animation.positions_global(animation) # return global_positions, joint_parents, time_per_frame return global_positions, animation.positions, animation.rotations, animation # Set directory. directory = "/checkpoint/dgopinath/amass/CMU" save_directory = "/checkpoint/tanmayshankar/Mocap" # Get file list. filelist = glob.glob(os.path.join(directory,"*/*.bvh")) demo_list = [] print("Starting to preprocess data.") for i in range(len(filelist)): print("Processing file number: ",i, " of ",len(filelist)) # Get filename. filename = os.path.join(directory, filelist[i]) # Actually load file. global_positions, local_positions, local_rotations, animation = load_animation_data(filename) # Create data element object. data_element = {} data_element['global_positions'] = global_positions data_element['local_positions'] = local_positions # Get quaternion as array. data_element['local_rotations'] = local_rotations.qs data_element['animation'] = animation demo_list.append(data_element) demo_array = np.array(demo_list) np.save(os.path.join(save_directory,"Demo_Array.npy"),demo_array)
CausalSkillLearning-main
Experiments/Processing_MocapData.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * class GridWorldDataset(Dataset): # Class implementing instance of dataset class for gridworld data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.action_map = np.array([[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]) ## UP, DOWN, LEFT, RIGHT, UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. ## def __len__(self): # Find out how many images we've stored. filelist = glob.glob(os.path.join(self.dataset_directory,"*.png")) # FOR NOW: USE ONLY till 3200 images. return 3200 # return len(filelist) def parse_trajectory_actions(self, coordinate_trajectory): # Takes coordinate trajectory, returns action index taken. state_diffs = np.diff(coordinate_trajectory,axis=0) action_sequence = np.zeros((len(state_diffs)),dtype=int) for i in range(len(state_diffs)): for k in range(len(self.action_map)): if (state_diffs[i]==self.action_map[k]).all(): action_sequence[i]=k return action_sequence.astype(float) def __getitem__(self, index): # The getitem function must return a Map-Trajectory pair. # We will handle per-timestep processes within our code. # Assumes index is within range [0,len(filelist)-1] image = cv2.imread(os.path.join(self.dataset_directory,"Image{0}.png".format(index))) coordinate_trajectory = np.load(os.path.join(self.dataset_directory,"Image{0}_Traj1.npy".format(index))).astype(float) action_sequence = self.parse_trajectory_actions(coordinate_trajectory) return image, coordinate_trajectory, action_sequence class SmallMapsDataset(Dataset): # Class implementing instance of dataset class for gridworld data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.action_map = np.array([[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]) ## UP, DOWN, LEFT, RIGHT, UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. ## def __len__(self): # Find out how many images we've stored. filelist = glob.glob(os.path.join(self.dataset_directory,"*.png")) return 4000 # return len(filelist) def parse_trajectory_actions(self, coordinate_trajectory): # Takes coordinate trajectory, returns action index taken. state_diffs = np.diff(coordinate_trajectory,axis=0) action_sequence = np.zeros((len(state_diffs)),dtype=int) for i in range(len(state_diffs)): for k in range(len(self.action_map)): if (state_diffs[i]==self.action_map[k]).all(): action_sequence[i]=k return action_sequence.astype(float) def __getitem__(self, index): # The getitem function must return a Map-Trajectory pair. # We will handle per-timestep processes within our code. # Assumes index is within range [0,len(filelist)-1] image = np.load(os.path.join(self.dataset_directory,"Map{0}.npy".format(index))) time_limit = 20 coordinate_trajectory = np.load(os.path.join(self.dataset_directory,"Map{0}_Traj1.npy".format(index))).astype(float)[:time_limit] action_sequence = self.parse_trajectory_actions(coordinate_trajectory) return image, coordinate_trajectory, action_sequence class ToyDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_array_actions.npy") self.a_path = os.path.join(self.dataset_directory,"A_array_actions.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] class ContinuousToyDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_array_continuous.npy") self.a_path = os.path.join(self.dataset_directory,"A_array_continuous.npy") self.y_path = os.path.join(self.dataset_directory,"Y_array_continuous.npy") self.b_path = os.path.join(self.dataset_directory,"B_array_continuous.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] class ContinuousDirectedToyDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_array_directed_continuous.npy") self.a_path = os.path.join(self.dataset_directory,"A_array_directed_continuous.npy") self.y_path = os.path.join(self.dataset_directory,"Y_array_directed_continuous.npy") self.b_path = os.path.join(self.dataset_directory,"B_array_directed_continuous.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] class ContinuousNonZeroToyDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_array_continuous_nonzero.npy") self.a_path = os.path.join(self.dataset_directory,"A_array_continuous_nonzero.npy") self.y_path = os.path.join(self.dataset_directory,"Y_array_continuous_nonzero.npy") self.b_path = os.path.join(self.dataset_directory,"B_array_continuous_nonzero.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] class ContinuousDirectedNonZeroToyDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_dir_cont_nonzero.npy") self.a_path = os.path.join(self.dataset_directory,"A_dir_cont_nonzero.npy") self.y_path = os.path.join(self.dataset_directory,"Y_dir_cont_nonzero.npy") self.b_path = os.path.join(self.dataset_directory,"B_dir_cont_nonzero.npy") self.g_path = os.path.join(self.dataset_directory,"G_dir_cont_nonzero.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) self.G_array = np.load(self.g_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] class GoalDirectedDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_goal_directed.npy") self.a_path = os.path.join(self.dataset_directory,"A_goal_directed.npy") self.y_path = os.path.join(self.dataset_directory,"Y_goal_directed.npy") self.b_path = os.path.join(self.dataset_directory,"B_goal_directed.npy") self.g_path = os.path.join(self.dataset_directory,"G_goal_directed.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) self.G_array = np.load(self.g_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] def get_goal(self, index): return self.G_array[index] class DeterministicGoalDirectedDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_deter_goal_directed.npy") self.a_path = os.path.join(self.dataset_directory,"A_deter_goal_directed.npy") self.y_path = os.path.join(self.dataset_directory,"Y_deter_goal_directed.npy") self.b_path = os.path.join(self.dataset_directory,"B_deter_goal_directed.npy") self.g_path = os.path.join(self.dataset_directory,"G_deter_goal_directed.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) self.G_array = np.load(self.g_path) self.goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*5 def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] def get_goal(self, index): return self.G_array[index] def get_goal_position(self, index): return self.goal_states[self.G_array[index]] class SeparableDataset(Dataset): # Class implementing instance of dataset class for toy data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.x_path = os.path.join(self.dataset_directory,"X_separable.npy") self.a_path = os.path.join(self.dataset_directory,"A_separable.npy") self.y_path = os.path.join(self.dataset_directory,"Y_separable.npy") self.b_path = os.path.join(self.dataset_directory,"B_separable.npy") self.g_path = os.path.join(self.dataset_directory,"G_separable.npy") self.s_path = os.path.join(self.dataset_directory,"StartConfig_separable.npy") self.X_array = np.load(self.x_path) self.A_array = np.load(self.a_path) self.Y_array = np.load(self.y_path) self.B_array = np.load(self.b_path) self.G_array = np.load(self.g_path) self.S_array = np.load(self.s_path) def __len__(self): return 50000 def __getitem__(self, index): # Return trajectory and action sequence. return self.X_array[index],self.A_array[index] def get_latent_variables(self, index): return self.B_array[index],self.Y_array[index] def get_goal(self, index): return self.G_array[index] def get_startconfig(self, index): return self.S_array[index]
CausalSkillLearning-main
Experiments/DataLoaders.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * from PolicyNetworks import * from Visualizers import BaxterVisualizer, SawyerVisualizer, ToyDataVisualizer #, MocapVisualizer import TFLogger, DMP, RLUtils # Check if CUDA is available, set device to GPU if it is, otherwise use CPU. use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") class PolicyManager_BaseClass(): def __init__(self): super(PolicyManager_BaseClass, self).__init__() def setup(self): # Fixing seeds. np.random.seed(seed=0) torch.manual_seed(0) np.set_printoptions(suppress=True,precision=2) self.create_networks() self.create_training_ops() # self.create_util_ops() # self.initialize_gt_subpolicies() if self.args.setting=='imitation': extent = self.dataset.get_number_task_demos(self.demo_task_index) if (self.args.setting=='transfer' and isinstance(self, PolicyManager_Transfer)) or \ (self.args.setting=='cycle_transfer' and isinstance(self, PolicyManager_CycleConsistencyTransfer)): extent = self.extent else: extent = len(self.dataset)-self.test_set_size self.index_list = np.arange(0,extent) self.initialize_plots() def initialize_plots(self): if self.args.name is not None: logdir = os.path.join(self.args.logdir, self.args.name) if not(os.path.isdir(logdir)): os.mkdir(logdir) logdir = os.path.join(logdir, "logs") if not(os.path.isdir(logdir)): os.mkdir(logdir) # Create TF Logger. self.tf_logger = TFLogger.Logger(logdir) else: self.tf_logger = TFLogger.Logger() if self.args.data=='MIME': self.visualizer = BaxterVisualizer() # self.state_dim = 16 elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': self.visualizer = SawyerVisualizer() # self.state_dim = 8 elif self.args.data=='Mocap': self.visualizer = MocapVisualizer(args=self.args) else: self.visualizer = ToyDataVisualizer() self.rollout_gif_list = [] self.gt_gif_list = [] self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) def write_and_close(self): self.writer.export_scalars_to_json("./all_scalars.json") self.writer.close() def collect_inputs(self, i, get_latents=False): if self.args.data=='DeterGoal': sample_traj, sample_action_seq = self.dataset[i] latent_b_seq, latent_z_seq = self.dataset.get_latent_variables(i) start = 0 if self.args.traj_length>0: sample_action_seq = sample_action_seq[start:self.args.traj_length-1] latent_b_seq = latent_b_seq[start:self.args.traj_length-1] latent_z_seq = latent_z_seq[start:self.args.traj_length-1] sample_traj = sample_traj[start:self.args.traj_length] else: # Traj length is going to be -1 here. # Don't need to modify action sequence because it does have to be one step less than traj_length anyway. sample_action_seq = sample_action_seq[start:] sample_traj = sample_traj[start:] latent_b_seq = latent_b_seq[start:] latent_z_seq = latent_z_seq[start:] # The trajectory is going to be one step longer than the action sequence, because action sequences are constructed from state differences. Instead, truncate trajectory to length of action sequence. # Now manage concatenated trajectory differently - {{s0,_},{s1,a0},{s2,a1},...,{sn,an-1}}. concatenated_traj = self.concat_state_action(sample_traj, sample_action_seq) old_concatenated_traj = self.old_concat_state_action(sample_traj, sample_action_seq) if self.args.data=='DeterGoal': self.conditional_information = np.zeros((self.args.condition_size)) self.conditional_information[self.dataset.get_goal(i)] = 1 self.conditional_information[4:] = self.dataset.get_goal_position[i] else: self.conditional_information = np.zeros((self.args.condition_size)) if get_latents: return sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj, latent_b_seq, latent_z_seq else: return sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj elif self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': # If we're imitating... select demonstrations from the particular task. if self.args.setting=='imitation' and self.args.data=='Roboturk': data_element = self.dataset.get_task_demo(self.demo_task_index, i) else: data_element = self.dataset[i] if not(data_element['is_valid']): return None, None, None, None trajectory = data_element['demo'] # If normalization is set to some value. if self.args.normalization=='meanvar' or self.args.normalization=='minmax': trajectory = (trajectory-self.norm_sub_value)/self.norm_denom_value action_sequence = np.diff(trajectory,axis=0) self.current_traj_len = len(trajectory) if self.args.data=='MIME': self.conditional_information = np.zeros((self.conditional_info_size)) elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': robot_states = data_element['robot-state'] object_states = data_element['object-state'] self.conditional_information = np.zeros((self.conditional_info_size)) # Don't set this if pretraining / baseline. if self.args.setting=='learntsub' or self.args.setting=='imitation': self.conditional_information = np.zeros((len(trajectory),self.conditional_info_size)) self.conditional_information[:,:self.cond_robot_state_size] = robot_states # Doing this instead of self.cond_robot_state_size: because the object_states size varies across demonstrations. self.conditional_information[:,self.cond_robot_state_size:self.cond_robot_state_size+object_states.shape[-1]] = object_states # Setting task ID too. self.conditional_information[:,-self.number_tasks+data_element['task-id']] = 1. # Concatenate concatenated_traj = self.concat_state_action(trajectory, action_sequence) old_concatenated_traj = self.old_concat_state_action(trajectory, action_sequence) if self.args.setting=='imitation': action_sequence = RLUtils.resample(data_element['demonstrated_actions'],len(trajectory)) concatenated_traj = np.concatenate([trajectory, action_sequence],axis=1) return trajectory, action_sequence, concatenated_traj, old_concatenated_traj def train(self, model=None): if model: print("Loading model in training.") self.load_all_models(model) counter = self.args.initial_counter_value # For number of training epochs. for e in range(self.number_epochs): self.current_epoch_running = e print("Starting Epoch: ",e) if e%self.args.save_freq==0: self.save_all_models("epoch{0}".format(e)) np.random.shuffle(self.index_list) if self.args.debug: print("Embedding in Outer Train Function.") embed() # For every item in the epoch: if self.args.setting=='imitation': extent = self.dataset.get_number_task_demos(self.demo_task_index) if self.args.setting=='transfer' or self.args.setting=='cycle_transfer': extent = self.extent else: extent = len(self.dataset)-self.test_set_size for i in range(extent): print("Epoch: ",e," Trajectory:",i, "Datapoint: ", self.index_list[i]) self.run_iteration(counter, self.index_list[i]) counter = counter+1 if e%self.args.eval_freq==0: self.automatic_evaluation(e) self.write_and_close() def automatic_evaluation(self, e): # Writing new automatic evaluation that parses arguments and creates an identical command loading the appropriate model. # Note: If the initial command loads a model, ignore that. command_args = self.args._get_kwargs() base_command = 'python Master.py --train=0 --model={0}'.format("Experiment_Logs/{0}/saved_models/Model_epoch{1}".format(self.args.name, e)) if self.args.data=='Mocap': base_command = './xvfb-run-safe ' + base_command # For every argument in the command arguments, add it to the base command with the value used, unless it's train or model. for ar in command_args: # Skip model and train, because we need to set these manually. if ar[0]=='model' or ar[0]=='train': pass # Add the rest else: base_command = base_command + ' --{0}={1}'.format(ar[0],ar[1]) cluster_command = 'python cluster_run.py --partition=learnfair --name={0}_Eval --cmd=\'{1}\''.format(self.args.name, base_command) subprocess.call([cluster_command],shell=True) def visualize_robot_data(self): self.N = 100 self.rollout_timesteps = self.args.traj_length if self.args.data=='MIME': self.visualizer = BaxterVisualizer() # self.state_dim = 16 elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': self.visualizer = SawyerVisualizer() # self.state_dim = 8 elif self.args.data=='Mocap': self.visualizer = MocapVisualizer(args=self.args) # Because there are just more invalid DP's in Mocap. self.N = 100 else: self.visualizer = ToyDataVisualizer() self.latent_z_set = np.zeros((self.N,self.latent_z_dimensionality)) # These are lists because they're variable length individually. self.indices = [] self.trajectory_set = [] self.trajectory_rollout_set = [] model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) self.rollout_gif_list = [] self.gt_gif_list = [] # Create save directory: upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) self.max_len = 0 for i in range(self.N): print("#########################################") print("Getting visuals for trajectory: ",i) latent_z, sample_traj, sample_action_seq = self.run_iteration(0, i, return_z=True) if latent_z is not None: self.indices.append(i) if len(sample_traj)>self.max_len: self.max_len = len(sample_traj) self.latent_z_set[i] = copy.deepcopy(latent_z.detach().cpu().numpy()) trajectory_rollout = self.get_robot_visuals(i, latent_z, sample_traj) # self.trajectory_set[i] = copy.deepcopy(sample_traj) # self.trajectory_rollout_set[i] = copy.deepcopy(trajectory_rollout) self.trajectory_set.append(copy.deepcopy(sample_traj)) self.trajectory_rollout_set.append(copy.deepcopy(trajectory_rollout)) # Get MIME embedding for rollout and GT trajectories, with same Z embedding. embedded_z = self.get_robot_embedding() gt_animation_object = self.visualize_robot_embedding(embedded_z, gt=True) rollout_animation_object = self.visualize_robot_embedding(embedded_z, gt=False) self.write_embedding_HTML(gt_animation_object,prefix="GT") self.write_embedding_HTML(rollout_animation_object,prefix="Rollout") # Save webpage. self.write_results_HTML() def rollout_robot_trajectory(self, trajectory_start, latent_z, rollout_length=None): subpolicy_inputs = torch.zeros((1,2*self.state_dim+self.latent_z_dimensionality)).to(device).float() subpolicy_inputs[0,:self.state_dim] = torch.tensor(trajectory_start).to(device).float() subpolicy_inputs[:,2*self.state_dim:] = torch.tensor(latent_z).to(device).float() if rollout_length is not None: length = rollout_length-1 else: length = self.rollout_timesteps-1 for t in range(length): actions = self.policy_network.get_actions(subpolicy_inputs, greedy=True) # Select last action to execute. action_to_execute = actions[-1].squeeze(1) # Downscale the actions by action_scale_factor. action_to_execute = action_to_execute/self.args.action_scale_factor # Compute next state. new_state = subpolicy_inputs[t,:self.state_dim]+action_to_execute # New input row. input_row = torch.zeros((1,2*self.state_dim+self.latent_z_dimensionality)).to(device).float() input_row[0,:self.state_dim] = new_state # Feed in the ORIGINAL prediction from the network as input. Not the downscaled thing. input_row[0,self.state_dim:2*self.state_dim] = actions[-1].squeeze(1) input_row[0,2*self.state_dim:] = latent_z subpolicy_inputs = torch.cat([subpolicy_inputs,input_row],dim=0) trajectory = subpolicy_inputs[:,:self.state_dim].detach().cpu().numpy() return trajectory def get_robot_visuals(self, i, latent_z, trajectory, return_image=False): # 1) Feed Z into policy, rollout trajectory. trajectory_rollout = self.rollout_robot_trajectory(trajectory[0], latent_z, rollout_length=trajectory.shape[0]) # 2) Unnormalize data. if self.args.normalization=='meanvar' or self.args.normalization=='minmax': unnorm_gt_trajectory = (trajectory*self.norm_denom_value)+self.norm_sub_value unnorm_pred_trajectory = (trajectory_rollout*self.norm_denom_value) + self.norm_sub_value else: unnorm_gt_trajectory = trajectory unnorm_pred_trajectory = trajectory_rollout if self.args.data=='Mocap': # Get animation object from dataset. animation_object = self.dataset[i]['animation'] # 3) Run unnormalized ground truth trajectory in visualizer. ground_truth_gif = self.visualizer.visualize_joint_trajectory(unnorm_gt_trajectory, gif_path=self.dir_name, gif_name="Traj_{0}_GT.gif".format(i), return_and_save=True) # 4) Run unnormalized rollout trajectory in visualizer. rollout_gif = self.visualizer.visualize_joint_trajectory(unnorm_pred_trajectory, gif_path=self.dir_name, gif_name="Traj_{0}_Rollout.gif".format(i), return_and_save=True) self.gt_gif_list.append(copy.deepcopy(ground_truth_gif)) self.rollout_gif_list.append(copy.deepcopy(rollout_gif)) if self.args.normalization=='meanvar' or self.args.normalization=='minmax': if return_image: return unnorm_pred_trajectory, ground_truth_gif, rollout_gif else: return unnorm_pred_trajectory else: if return_image: return trajectory_rollout, ground_truth_gif, rollout_gif else: return trajectory_rollout def write_results_HTML(self): # Retrieve, append, and print images from datapoints across different models. print("Writing HTML File.") # Open Results HTML file. with open(os.path.join(self.dir_name,'Results_{}.html'.format(self.args.name)),'w') as html_file: # Start HTML doc. html_file.write('<html>') html_file.write('<body>') html_file.write('<p> Model: {0}</p>'.format(self.args.name)) html_file.write('<p> Average Trajectory Distance: {0}</p>'.format(self.mean_distance)) for i in range(self.N): if i%100==0: print("Datapoint:",i) html_file.write('<p> <b> Trajectory {} </b></p>'.format(i)) file_prefix = self.dir_name # Create gif_list by prefixing base_gif_list with file prefix. html_file.write('<div style="display: flex; justify-content: row;"> <img src="Traj_{0}_GT.gif"/> <img src="Traj_{0}_Rollout.gif"/> </div>'.format(i)) # Add gap space. html_file.write('<p> </p>') html_file.write('</body>') html_file.write('</html>') def write_embedding_HTML(self, animation_object, prefix=""): print("Writing Embedding File.") t1 = time.time() # Open Results HTML file. with open(os.path.join(self.dir_name,'Embedding_{0}_{1}.html'.format(prefix,self.args.name)),'w') as html_file: # Start HTML doc. html_file.write('<html>') html_file.write('<body>') html_file.write('<p> Model: {0}</p>'.format(self.args.name)) html_file.write(animation_object.to_html5_video()) # print(animation_object.to_html5_video(), file=html_file) html_file.write('</body>') html_file.write('</html>') animation_object.save(os.path.join(self.dir_name,'{0}_Embedding_Video.mp4'.format(self.args.name))) # animation_object.save(os.path.join(self.dir_name,'{0}_Embedding_Video.mp4'.format(self.args.name)), writer='imagemagick') t2 = time.time() print("Time taken to write this embedding: ",t2-t1) def get_robot_embedding(self, return_tsne_object=False): # Mean and variance normalize z. mean = self.latent_z_set.mean(axis=0) std = self.latent_z_set.std(axis=0) normed_z = (self.latent_z_set-mean)/std tsne = skl_manifold.TSNE(n_components=2,random_state=0,perplexity=self.args.perplexity) embedded_zs = tsne.fit_transform(normed_z) scale_factor = 1 scaled_embedded_zs = scale_factor*embedded_zs if return_tsne_object: return scaled_embedded_zs, tsne else: return scaled_embedded_zs def visualize_robot_embedding(self, scaled_embedded_zs, gt=False): # Create figure and axis objects. matplotlib.rcParams['figure.figsize'] = [50, 50] fig, ax = plt.subplots() # number_samples = 400 number_samples = self.N # Create a scatter plot of the embedding itself. The plot does not seem to work without this. ax.scatter(scaled_embedded_zs[:number_samples,0],scaled_embedded_zs[:number_samples,1]) ax.axis('off') ax.set_title("Embedding of Latent Representation of our Model",fontdict={'fontsize':40}) artists = [] # For number of samples in TSNE / Embedding, create a Image object for each of them. for i in range(len(self.indices)): if i%10==0: print(i) # Create offset image (so that we can place it where we choose), with specific zoom. if gt: imagebox = OffsetImage(self.gt_gif_list[i][0],zoom=0.4) else: imagebox = OffsetImage(self.rollout_gif_list[i][0],zoom=0.4) # Create an annotation box to put the offset image into. specify offset image, position, and disable bounding frame. ab = AnnotationBbox(imagebox, (scaled_embedded_zs[self.indices[i],0], scaled_embedded_zs[self.indices[i],1]), frameon=False) # Add the annotation box artist to the list artists. artists.append(ax.add_artist(ab)) def update(t): # for i in range(number_samples): for i in range(len(self.indices)): if gt: imagebox = OffsetImage(self.gt_gif_list[i][min(t, len(self.gt_gif_list[i])-1)],zoom=0.4) else: imagebox = OffsetImage(self.rollout_gif_list[i][min(t, len(self.rollout_gif_list[i])-1)],zoom=0.4) ab = AnnotationBbox(imagebox, (scaled_embedded_zs[self.indices[i],0], scaled_embedded_zs[self.indices[i],1]), frameon=False) artists.append(ax.add_artist(ab)) # update_len = 20 anim = FuncAnimation(fig, update, frames=np.arange(0, self.max_len), interval=200) return anim class PolicyManager_Pretrain(PolicyManager_BaseClass): def __init__(self, number_policies=4, dataset=None, args=None): if args.setting=='imitation': super(PolicyManager_Pretrain, self).__init__(number_policies=number_policies, dataset=dataset, args=args) else: super(PolicyManager_Pretrain, self).__init__() self.args = args self.data = self.args.data # Not used if discrete_z is false. self.number_policies = number_policies self.dataset = dataset # Global input size: trajectory at every step - x,y,action # Inputs is now states and actions. # Model size parameters # if self.args.data=='Continuous' or self.args.data=='ContinuousDir' or self.args.data=='ContinuousNonZero' or self.args.data=='ContinuousDirNZ' or self.args.data=='GoalDirected' or self.args.data=='Separable': self.state_size = 2 self.state_dim = 2 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size # Number of actions self.output_size = 2 self.latent_z_dimensionality = self.args.z_dimensions self.number_layers = self.args.number_layers self.traj_length = 5 self.number_epochs = self.args.epochs self.test_set_size = 500 if self.args.data=='MIME': self.state_size = 16 self.state_dim = 16 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size self.output_size = self.state_size self.latent_z_dimensionality = self.args.z_dimensions self.number_layers = self.args.number_layers self.traj_length = self.args.traj_length self.number_epochs = self.args.epochs if self.args.normalization=='meanvar': self.norm_sub_value = np.load("Statistics/MIME_Means.npy") self.norm_denom_value = np.load("Statistics/MIME_Var.npy") elif self.args.normalization=='minmax': self.norm_sub_value = np.load("Statistics/MIME_Min.npy") self.norm_denom_value = np.load("Statistics/MIME_Max.npy") - self.norm_sub_value # Max of robot_state + object_state sizes across all Baxter environments. self.cond_robot_state_size = 60 self.cond_object_state_size = 25 self.conditional_info_size = self.cond_robot_state_size+self.cond_object_state_size elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': if self.args.gripper: self.state_size = 8 self.state_dim = 8 else: self.state_size = 7 self.state_dim = 7 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size self.output_size = self.state_size self.number_layers = self.args.number_layers self.traj_length = self.args.traj_length if self.args.normalization=='meanvar': self.norm_sub_value = np.load("Statistics/Roboturk_Mean.npy") self.norm_denom_value = np.load("Statistics/Roboturk_Var.npy") elif self.args.normalization=='minmax': self.norm_sub_value = np.load("Statistics/Roboturk_Min.npy") self.norm_denom_value = np.load("Statistics/Roboturk_Max.npy") - self.norm_sub_value # Max of robot_state + object_state sizes across all sawyer environments. # Robot size always 30. Max object state size is... 23. self.cond_robot_state_size = 30 self.cond_object_state_size = 23 self.conditional_info_size = self.cond_robot_state_size+self.cond_object_state_size elif self.args.data=='Mocap': self.state_size = 22*3 self.state_dim = 22*3 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size self.output_size = self.state_size self.traj_length = self.args.traj_length self.conditional_info_size = 0 # Training parameters. self.baseline_value = 0. self.beta_decay = 0.9 self. learning_rate = self.args.learning_rate self.initial_epsilon = self.args.epsilon_from self.final_epsilon = self.args.epsilon_to self.decay_epochs = self.args.epsilon_over self.decay_counter = self.decay_epochs*len(self.dataset) # Log-likelihood penalty. self.lambda_likelihood_penalty = self.args.likelihood_penalty self.baseline = None # Per step decay. self.decay_rate = (self.initial_epsilon-self.final_epsilon)/(self.decay_counter) def create_networks(self): # Create K Policy Networks. # This policy network automatically manages input size. if self.args.discrete_z: self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.number_policies, self.number_layers).to(device) else: # self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.latent_z_dimensionality, self.number_layers).to(device) self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.args, self.number_layers).to(device) # Create encoder. if self.args.discrete_z: # The latent space is just one of 4 z's. So make output of encoder a one hot vector. self.encoder_network = EncoderNetwork(self.input_size, self.hidden_size, self.number_policies).to(device) else: # self.encoder_network = ContinuousEncoderNetwork(self.input_size, self.hidden_size, self.latent_z_dimensionality).to(device) # if self.args.transformer: # self.encoder_network = TransformerEncoder(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.args).to(device) # else: self.encoder_network = ContinuousEncoderNetwork(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.args).to(device) def create_training_ops(self): # self.negative_log_likelihood_loss_function = torch.nn.NLLLoss() self.negative_log_likelihood_loss_function = torch.nn.NLLLoss(reduction='none') self.KLDivergence_loss_function = torch.nn.KLDivLoss(reduction='none') # Only need one object of the NLL loss function for the latent net. # These are loss functions. You still instantiate the loss function every time you evaluate it on some particular data. # When you instantiate it, you call backward on that instantiation. That's why you know what loss to optimize when computing gradients. if self.args.train_only_policy: self.parameter_list = self.policy_network.parameters() else: self.parameter_list = list(self.policy_network.parameters()) + list(self.encoder_network.parameters()) self.optimizer = torch.optim.Adam(self.parameter_list,lr=self.learning_rate) def save_all_models(self, suffix): logdir = os.path.join(self.args.logdir, self.args.name) savedir = os.path.join(logdir,"saved_models") if not(os.path.isdir(savedir)): os.mkdir(savedir) save_object = {} save_object['Policy_Network'] = self.policy_network.state_dict() save_object['Encoder_Network'] = self.encoder_network.state_dict() torch.save(save_object,os.path.join(savedir,"Model_"+suffix)) def load_all_models(self, path, only_policy=False, just_subpolicy=False): load_object = torch.load(path) if self.args.train_only_policy and self.args.train: self.encoder_network.load_state_dict(load_object['Encoder_Network']) else: self.policy_network.load_state_dict(load_object['Policy_Network']) if not(only_policy): self.encoder_network.load_state_dict(load_object['Encoder_Network']) def set_epoch(self, counter): if self.args.train: if counter<self.decay_counter: self.epsilon = self.initial_epsilon-self.decay_rate*counter else: self.epsilon = self.final_epsilon else: self.epsilon = self.final_epsilon def visualize_trajectory(self, traj, no_axes=False): fig = plt.figure() ax = fig.gca() ax.scatter(traj[:,0],traj[:,1],c=range(len(traj)),cmap='jet') plt.xlim(-10,10) plt.ylim(-10,10) if no_axes: plt.axis('off') fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(int(height), int(width), 3) image = np.transpose(image, axes=[2,0,1]) return image def update_plots(self, counter, loglikelihood, sample_traj): self.tf_logger.scalar_summary('Subpolicy Likelihood', loglikelihood.mean(), counter) self.tf_logger.scalar_summary('Total Loss', self.total_loss.mean(), counter) self.tf_logger.scalar_summary('Encoder KL', self.encoder_KL.mean(), counter) if not(self.args.reparam): self.tf_logger.scalar_summary('Baseline', self.baseline.sum(), counter) self.tf_logger.scalar_summary('Encoder Loss', self.encoder_loss.sum(), counter) self.tf_logger.scalar_summary('Reinforce Encoder Loss', self.reinforce_encoder_loss.sum(), counter) self.tf_logger.scalar_summary('Total Encoder Loss', self.total_encoder_loss.sum() ,counter) if self.args.entropy: self.tf_logger.scalar_summary('SubPolicy Entropy', torch.mean(subpolicy_entropy), counter) if counter%self.args.display_freq==0: self.tf_logger.image_summary("GT Trajectory",self.visualize_trajectory(sample_traj), counter) def assemble_inputs(self, input_trajectory, latent_z_indices, latent_b, sample_action_seq): if self.args.discrete_z: # Append latent z indices to sample_traj data to feed as input to BOTH the latent policy network and the subpolicy network. assembled_inputs = torch.zeros((len(input_trajectory),self.input_size+self.number_policies+1)).to(device) assembled_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() assembled_inputs[range(1,len(input_trajectory)),self.input_size+latent_z_indices[:-1].long()] = 1. assembled_inputs[range(1,len(input_trajectory)),-1] = latent_b[:-1].float() # Now assemble inputs for subpolicy. subpolicy_inputs = torch.zeros((len(input_trajectory),self.input_size+self.number_policies)).to(device) subpolicy_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() subpolicy_inputs[range(len(input_trajectory)),self.input_size+latent_z_indices.long()] = 1. # subpolicy_inputs[range(len(input_trajectory)),-1] = latent_b.float() # # Concatenated action sqeuence for policy network. padded_action_seq = np.concatenate([sample_action_seq,np.zeros((1,self.output_size))],axis=0) return assembled_inputs, subpolicy_inputs, padded_action_seq else: # Append latent z indices to sample_traj data to feed as input to BOTH the latent policy network and the subpolicy network. assembled_inputs = torch.zeros((len(input_trajectory),self.input_size+self.latent_z_dimensionality+1)).to(device) assembled_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() assembled_inputs[range(1,len(input_trajectory)),self.input_size:-1] = latent_z_indices[:-1] assembled_inputs[range(1,len(input_trajectory)),-1] = latent_b[:-1].float() # Now assemble inputs for subpolicy. subpolicy_inputs = torch.zeros((len(input_trajectory),self.input_size+self.latent_z_dimensionality)).to(device) subpolicy_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() subpolicy_inputs[range(len(input_trajectory)),self.input_size:] = latent_z_indices # subpolicy_inputs[range(len(input_trajectory)),-1] = latent_b.float() # # Concatenated action sequence for policy network's forward / logprobabilities function. # padded_action_seq = np.concatenate([np.zeros((1,self.output_size)),sample_action_seq],axis=0) padded_action_seq = np.concatenate([sample_action_seq,np.zeros((1,self.output_size))],axis=0) return assembled_inputs, subpolicy_inputs, padded_action_seq def concat_state_action(self, sample_traj, sample_action_seq): # Add blank to start of action sequence and then concatenate. sample_action_seq = np.concatenate([np.zeros((1,self.output_size)),sample_action_seq],axis=0) # Currently returns: # s0, s1, s2, s3, ..., sn-1, sn # _, a0, a1, a2, ..., an_1, an return np.concatenate([sample_traj, sample_action_seq],axis=-1) def old_concat_state_action(self, sample_traj, sample_action_seq): sample_action_seq = np.concatenate([sample_action_seq, np.zeros((1,self.output_size))],axis=0) return np.concatenate([sample_traj, sample_action_seq],axis=-1) def get_trajectory_segment(self, i): if self.args.data=='Continuous' or self.args.data=='ContinuousDir' or self.args.data=='ContinuousNonZero' or self.args.data=='ContinuousDirNZ' or self.args.data=='GoalDirected' or self.args.data=='Separable': # Sample trajectory segment from dataset. sample_traj, sample_action_seq = self.dataset[i] # Subsample trajectory segment. start_timepoint = np.random.randint(0,self.args.traj_length-self.traj_length) end_timepoint = start_timepoint + self.traj_length # The trajectory is going to be one step longer than the action sequence, because action sequences are constructed from state differences. Instead, truncate trajectory to length of action sequence. sample_traj = sample_traj[start_timepoint:end_timepoint] sample_action_seq = sample_action_seq[start_timepoint:end_timepoint-1] self.current_traj_len = self.traj_length # Now manage concatenated trajectory differently - {{s0,_},{s1,a0},{s2,a1},...,{sn,an-1}}. concatenated_traj = self.concat_state_action(sample_traj, sample_action_seq) return concatenated_traj, sample_action_seq, sample_traj elif self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': data_element = self.dataset[i] # If Invalid. if not(data_element['is_valid']): return None, None, None # if self.args.data=='MIME': # # Sample a trajectory length that's valid. # trajectory = np.concatenate([data_element['la_trajectory'],data_element['ra_trajectory'],data_element['left_gripper'].reshape((-1,1)),data_element['right_gripper'].reshape((-1,1))],axis=-1) # elif self.args.data=='Roboturk': # trajectory = data_element['demo'] if self.args.gripper: trajectory = data_element['demo'] else: trajectory = data_element['demo'][:,:-1] # If allowing variable skill length, set length for this sample. if self.args.var_skill_length: # Choose length of 12-16 with certain probabilities. self.current_traj_len = np.random.choice([12,13,14,15,16],p=[0.1,0.2,0.4,0.2,0.1]) else: self.current_traj_len = self.traj_length # Sample random start point. if trajectory.shape[0]>self.current_traj_len: bias_length = int(self.args.pretrain_bias_sampling*trajectory.shape[0]) # Probability with which to sample biased segment: sample_biased_segment = np.random.binomial(1,p=self.args.pretrain_bias_sampling_prob) # If we want to bias sampling of trajectory segments towards the middle of the trajectory, to increase proportion of trajectory segments # that are performing motions apart from reaching and returning. # Sample a biased segment if trajectory length is sufficient, and based on probability of sampling. if ((trajectory.shape[0]-2*bias_length)>self.current_traj_len) and sample_biased_segment: start_timepoint = np.random.randint(bias_length, trajectory.shape[0] - self.current_traj_len - bias_length) else: start_timepoint = np.random.randint(0,trajectory.shape[0]-self.current_traj_len) end_timepoint = start_timepoint + self.current_traj_len # Get trajectory segment and actions. trajectory = trajectory[start_timepoint:end_timepoint] # If normalization is set to some value. if self.args.normalization=='meanvar' or self.args.normalization=='minmax': trajectory = (trajectory-self.norm_sub_value)/self.norm_denom_value # CONDITIONAL INFORMATION for the encoder... if self.args.data=='MIME' or self.args.data=='Mocap': pass elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': # robot_states = data_element['robot-state'][start_timepoint:end_timepoint] # object_states = data_element['object-state'][start_timepoint:end_timepoint] pass # self.conditional_information = np.zeros((len(trajectory),self.conditional_info_size)) # self.conditional_information[:,:self.cond_robot_state_size] = robot_states # self.conditional_information[:,self.cond_robot_state_size:object_states.shape[-1]] = object_states # conditional_info = np.concatenate([robot_states,object_states],axis=1) else: return None, None, None action_sequence = np.diff(trajectory,axis=0) # Concatenate concatenated_traj = self.concat_state_action(trajectory, action_sequence) # NOW SCALE THIS ACTION SEQUENCE BY SOME FACTOR: scaled_action_sequence = self.args.action_scale_factor*action_sequence return concatenated_traj, scaled_action_sequence, trajectory def construct_dummy_latents(self, latent_z): if self.args.discrete_z: latent_z_indices = latent_z.float()*torch.ones((self.traj_length)).to(device).float() else: # This construction should work irrespective of reparam or not. latent_z_indices = torch.cat([latent_z.squeeze(0) for i in range(self.current_traj_len)],dim=0) # Setting latent_b's to 00001. # This is just a dummy value. # latent_b = torch.ones((5)).to(device).float() latent_b = torch.zeros((self.current_traj_len)).to(device).float() # latent_b[-1] = 1. return latent_z_indices, latent_b # return latent_z_indices def update_policies_reparam(self, loglikelihood, latent_z, encoder_KL): self.optimizer.zero_grad() # Losses computed as sums. # self.likelihood_loss = -loglikelihood.sum() # self.encoder_KL = encoder_KL.sum() # Instead of summing losses, we should try taking the mean of the losses, so we can avoid running into issues of variable timesteps and stuff like that. # We should also consider training with randomly sampled number of timesteps. self.likelihood_loss = -loglikelihood.mean() self.encoder_KL = encoder_KL.mean() self.total_loss = (self.likelihood_loss + self.args.kl_weight*self.encoder_KL) if self.args.debug: print("Embedding in Update subpolicies.") embed() self.total_loss.backward() self.optimizer.step() def rollout_visuals(self, i, latent_z=None, return_traj=False): # Initialize states and latent_z, etc. # For t in range(number timesteps): # # Retrieve action by feeding input to policy. # # Step in environment with action. # # Update inputs with new state and previously executed action. self.state_dim = 2 self.rollout_timesteps = 5 start_state = torch.zeros((self.state_dim)) if self.args.discrete_z: # Assuming 4 discrete subpolicies, just set subpolicy input to 1 at the latent_z index == i. subpolicy_inputs = torch.zeros((1,self.input_size+self.number_policies)).to(device).float() subpolicy_inputs[0,self.input_size+i] = 1. else: subpolicy_inputs = torch.zeros((1,self.input_size+self.latent_z_dimensionality)).to(device) subpolicy_inputs[0,self.input_size:] = latent_z subpolicy_inputs[0,:self.state_dim] = start_state # subpolicy_inputs[0,-1] = 1. for t in range(self.rollout_timesteps-1): actions = self.policy_network.get_actions(subpolicy_inputs,greedy=True) # Select last action to execute. action_to_execute = actions[-1].squeeze(1) # Downscale the actions by action_scale_factor. action_to_execute = action_to_execute/self.args.action_scale_factor # Compute next state. new_state = subpolicy_inputs[t,:self.state_dim]+action_to_execute # New input row: if self.args.discrete_z: input_row = torch.zeros((1,self.input_size+self.number_policies)).to(device).float() input_row[0,self.input_size+i] = 1. else: input_row = torch.zeros((1,self.input_size+self.latent_z_dimensionality)).to(device).float() input_row[0,self.input_size:] = latent_z input_row[0,:self.state_dim] = new_state input_row[0,self.state_dim:2*self.state_dim] = action_to_execute # input_row[0,-1] = 1. subpolicy_inputs = torch.cat([subpolicy_inputs,input_row],dim=0) # print("latent_z:",latent_z) trajectory_rollout = subpolicy_inputs[:,:self.state_dim].detach().cpu().numpy() # print("Trajectory:",trajectory_rollout) if return_traj: return trajectory_rollout def run_iteration(self, counter, i, return_z=False, and_train=True): # Basic Training Algorithm: # For E epochs: # # For all trajectories: # # Sample trajectory segment from dataset. # # Encode trajectory segment into latent z. # # Feed latent z and trajectory segment into policy network and evaluate likelihood. # # Update parameters. self.set_epoch(counter) ############# (0) ############# # Sample trajectory segment from dataset. if self.args.traj_segments: trajectory_segment, sample_action_seq, sample_traj = self.get_trajectory_segment(i) else: sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) # Calling it trajectory segment, but it's not actually a trajectory segment here. trajectory_segment = concatenated_traj if trajectory_segment is not None: ############# (1) ############# torch_traj_seg = torch.tensor(trajectory_segment).to(device).float() # Encode trajectory segment into latent z. latent_z, encoder_loglikelihood, encoder_entropy, kl_divergence = self.encoder_network.forward(torch_traj_seg, self.epsilon) ########## (2) & (3) ########## # Feed latent z and trajectory segment into policy network and evaluate likelihood. latent_z_seq, latent_b = self.construct_dummy_latents(latent_z) _, subpolicy_inputs, sample_action_seq = self.assemble_inputs(trajectory_segment, latent_z_seq, latent_b, sample_action_seq) # Policy net doesn't use the decay epislon. (Because we never sample from it in training, only rollouts.) loglikelihoods, _ = self.policy_network.forward(subpolicy_inputs, sample_action_seq) loglikelihood = loglikelihoods[:-1].mean() if self.args.debug: print("Embedding in Train.") embed() ############# (3) ############# # Update parameters. if self.args.train and and_train: # If we are regularizing: # (1) Sample another z. # (2) Construct inputs and such. # (3) Compute distances, and feed to update_policies. regularization_kl = None z_distance = None self.update_policies_reparam(loglikelihood, subpolicy_inputs, kl_divergence) # Update Plots. self.update_plots(counter, loglikelihood, trajectory_segment) if return_z: return latent_z, sample_traj, sample_action_seq else: if return_z: return latent_z, sample_traj, sample_action_seq else: np.set_printoptions(suppress=True,precision=2) print("###################", i) print("Policy loglikelihood:", loglikelihood) print("#########################################") else: return None, None, None def evaluate_metrics(self): self.distances = -np.ones((self.test_set_size)) # Get test set elements as last (self.test_set_size) number of elements of dataset. for i in range(self.test_set_size): index = i + len(self.dataset)-self.test_set_size print("Evaluating ", i, " in test set, or ", index, " in dataset.") # Get latent z. latent_z, sample_traj, sample_action_seq = self.run_iteration(0, index, return_z=True) if sample_traj is not None: # Feed latent z to the rollout. # rollout_trajectory = self.rollout_visuals(index, latent_z=latent_z, return_traj=True) rollout_trajectory = self.rollout_robot_trajectory(sample_traj[0], latent_z, rollout_length=len(sample_traj)) self.distances[i] = ((sample_traj-rollout_trajectory)**2).mean() self.mean_distance = self.distances[self.distances>0].mean() def evaluate(self, model=None, suffix=None): if model: self.load_all_models(model) np.set_printoptions(suppress=True,precision=2) if self.args.data=='ContinuousNonZero': self.visualize_embedding_space(suffix=suffix) if self.args.data=="MIME" or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': print("Running Evaluation of State Distances on small test set.") # self.evaluate_metrics() # Only running viz if we're actually pretraining. if self.args.traj_segments: print("Running Visualization on Robot Data.") self.visualize_robot_data() else: # Create save directory: upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) # np.save(os.path.join(self.dir_name,"Trajectory_Distances_{0}.npy".format(self.args.name)),self.distances) # np.save(os.path.join(self.dir_name,"Mean_Trajectory_Distance_{0}.npy".format(self.args.name)),self.mean_distance) # @profile def get_trajectory_and_latent_sets(self): # For N number of random trajectories from MIME: # # Encode trajectory using encoder into latent_z. # # Feed latent_z into subpolicy. # # Rollout subpolicy for t timesteps. # # Plot rollout. # Embed plots. # Set N: self.N = 100 self.rollout_timesteps = 5 self.state_dim = 2 self.latent_z_set = np.zeros((self.N,self.latent_z_dimensionality)) self.trajectory_set = np.zeros((self.N, self.rollout_timesteps, self.state_dim)) # Use the dataset to get reasonable trajectories (because without the information bottleneck / KL between N(0,1), cannot just randomly sample.) for i in range(self.N): # (1) Encoder trajectory. latent_z, _, _ = self.run_iteration(0, i, return_z=True, and_train=False) # Copy z. self.latent_z_set[i] = copy.deepcopy(latent_z.detach().cpu().numpy()) # (2) Now rollout policy. self.trajectory_set[i] = self.rollout_visuals(i, latent_z=latent_z, return_traj=True) # # (3) Plot trajectory. # traj_image = self.visualize_trajectory(rollout_traj) def visualize_embedding_space(self, suffix=None): self.get_trajectory_and_latent_sets() # TSNE on latentz's. tsne = skl_manifold.TSNE(n_components=2,random_state=0) embedded_zs = tsne.fit_transform(self.latent_z_set) ratio = 0.3 for i in range(self.N): plt.scatter(embedded_zs[i,0]+ratio*self.trajectory_set[i,:,0],embedded_zs[i,1]+ratio*self.trajectory_set[i,:,1],c=range(self.rollout_timesteps),cmap='jet') model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) if suffix is not None: self.dir_name = os.path.join(self.dir_name, suffix) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) # Format with name. plt.savefig("{0}/Embedding_Joint_{1}.png".format(self.dir_name,self.args.name)) plt.close() class PolicyManager_Joint(PolicyManager_BaseClass): # Basic Training Algorithm: # For E epochs: # # For all trajectories: # # Sample latent variables from conditional. # # (Concatenate Latent Variables into Input.) # # Evaluate log likelihoods of actions and options. # # Update parameters. def __init__(self, number_policies=4, dataset=None, args=None): super(PolicyManager_Joint, self).__init__() self.args = args self.data = self.args.data self.number_policies = number_policies self.latent_z_dimensionality = self.args.z_dimensions self.dataset = dataset # Global input size: trajectory at every step - x,y,action # Inputs is now states and actions. # Model size parameters self.state_size = 2 self.state_dim = 2 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size # Number of actions self.output_size = 2 self.number_layers = self.args.number_layers self.traj_length = 5 self.conditional_info_size = 6 if self.args.data=='MIME': self.state_size = 16 self.state_dim = 16 self.input_size = 2*self.state_size self.output_size = self.state_size self.traj_length = self.args.traj_length # Create Baxter visualizer for MIME data # self.visualizer = BaxterVisualizer.MujocoVisualizer() self.visualizer = BaxterVisualizer() if self.args.normalization=='meanvar': self.norm_sub_value = np.load("Statistics/MIME_Means.npy") self.norm_denom_value = np.load("Statistics/MIME_Var.npy") elif self.args.normalization=='minmax': self.norm_sub_value = np.load("Statistics/MIME_Min.npy") self.norm_denom_value = np.load("Statistics/MIME_Max.npy") - np.load("Statistics/MIME_Min.npy") # Max of robot_state + object_state sizes across all Baxter environments. self.cond_robot_state_size = 60 self.cond_object_state_size = 25 self.conditional_info_size = self.cond_robot_state_size+self.cond_object_state_size self.conditional_viz_env = False elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': self.state_size = 8 self.state_dim = 8 self.input_size = 2*self.state_size self.output_size = self.state_size self.traj_length = self.args.traj_length self.visualizer = SawyerVisualizer() # Max of robot_state + object_state sizes across all sawyer environments. # Robot size always 30. Max object state size is... 23. self.cond_robot_state_size = 30 self.cond_object_state_size = 23 self.number_tasks = 8 self.conditional_info_size = self.cond_robot_state_size+self.cond_object_state_size+self.number_tasks self.conditional_viz_env = True elif self.args.data=='Mocap': self.state_size = 22*3 self.state_dim = 22*3 self.input_size = 2*self.state_size self.hidden_size = self.args.hidden_size self.output_size = self.state_size self.traj_length = self.args.traj_length self.conditional_info_size = 0 self.conditional_information = None self.conditional_viz_env = False # Create visualizer object self.visualizer = MocapVisualizer(args=self.args) self.training_phase_size = self.args.training_phase_size self.number_epochs = self.args.epochs self.test_set_size = 500 self.baseline_value = 0. self.beta_decay = 0.9 self. learning_rate = self.args.learning_rate self.latent_b_loss_weight = self.args.lat_b_wt self.latent_z_loss_weight = self.args.lat_z_wt self.initial_epsilon = self.args.epsilon_from self.final_epsilon = self.args.epsilon_to self.decay_epochs = self.args.epsilon_over self.decay_counter = self.decay_epochs*len(self.dataset) # Log-likelihood penalty. self.lambda_likelihood_penalty = self.args.likelihood_penalty self.baseline = None # Per step decay. self.decay_rate = (self.initial_epsilon-self.final_epsilon)/(self.decay_counter) def create_networks(self): if self.args.discrete_z: # Create K Policy Networks. # This policy network automatically manages input size. # self.policy_network = ContinuousPolicyNetwork(self.input_size,self.hidden_size,self.output_size,self.number_policies, self.number_layers).to(device) self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.args, self.number_layers).to(device) # Create latent policy, whose action space = self.number_policies. # This policy network automatically manages input size. # Also add conditional_info_size to this. self.latent_policy = LatentPolicyNetwork(self.input_size, self.hidden_size, self.number_policies, self.number_layers, self.args.b_exploration_bias).to(device) # Create variational network. # self.variational_policy = VariationalPolicyNetwork(self.input_size, self.hidden_size, self.number_policies, number_layers=self.number_layers, z_exploration_bias=self.args.z_exploration_bias, b_exploration_bias=self.args.b_exploration_bias).to(device) self.variational_policy = VariationalPolicyNetwork(self.input_size, self.hidden_size, self.number_policies, self.args, number_layers=self.number_layers).to(device) else: # self.policy_network = ContinuousPolicyNetwork(self.input_size,self.hidden_size,self.output_size,self.latent_z_dimensionality, self.number_layers).to(device) self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.args, self.number_layers).to(device) if self.args.constrained_b_prior: self.latent_policy = ContinuousLatentPolicyNetwork_ConstrainedBPrior(self.input_size+self.conditional_info_size, self.hidden_size, self.args, self.number_layers).to(device) self.variational_policy = ContinuousVariationalPolicyNetwork_ConstrainedBPrior(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.args, number_layers=self.number_layers).to(device) else: # self.latent_policy = ContinuousLatentPolicyNetwork(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.number_layers, self.args.b_exploration_bias).to(device) self.latent_policy = ContinuousLatentPolicyNetwork(self.input_size+self.conditional_info_size, self.hidden_size, self.args, self.number_layers).to(device) self.variational_policy = ContinuousVariationalPolicyNetwork_BPrior(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.args, number_layers=self.number_layers).to(device) def create_training_ops(self): self.negative_log_likelihood_loss_function = torch.nn.NLLLoss(reduction='none') # If we are using reparameterization, use a global optimizer, and a global loss function. # This means gradients are being handled properly. parameter_list = list(self.latent_policy.parameters()) + list(self.variational_policy.parameters()) if not(self.args.fix_subpolicy): parameter_list = parameter_list + list(self.policy_network.parameters()) self.optimizer = torch.optim.Adam(parameter_list, lr=self.learning_rate) def save_all_models(self, suffix): logdir = os.path.join(self.args.logdir, self.args.name) savedir = os.path.join(logdir,"saved_models") if not(os.path.isdir(savedir)): os.mkdir(savedir) save_object = {} save_object['Latent_Policy'] = self.latent_policy.state_dict() save_object['Policy_Network'] = self.policy_network.state_dict() save_object['Variational_Policy'] = self.variational_policy.state_dict() torch.save(save_object,os.path.join(savedir,"Model_"+suffix)) def load_all_models(self, path, just_subpolicy=False): load_object = torch.load(path) self.policy_network.load_state_dict(load_object['Policy_Network']) if not(just_subpolicy): if self.args.load_latent: self.latent_policy.load_state_dict(load_object['Latent_Policy']) self.variational_policy.load_state_dict(load_object['Variational_Policy']) def set_epoch(self, counter): if self.args.train: if counter<self.decay_counter: self.epsilon = self.initial_epsilon-self.decay_rate*counter else: self.epsilon = self.final_epsilon if counter<self.training_phase_size: self.training_phase=1 elif self.training_phase_size<=counter and counter<2*self.training_phase_size: self.training_phase=2 print("In Phase 2.") else: self.training_phase=3 self.latent_z_loss_weight = 0.01*self.args.lat_b_wt # For training phase = 3, set latent_b_loss weight to 1 and latent_z_loss weight to something like 0.1 or 0.01. # After another double training_phase... (i.e. counter>3*self.training_phase_size), # This should be run when counter > 2*self.training_phase_size, and less than 3*self.training_phase_size. if counter>3*self.training_phase_size: # Set equal after 3. print("In Phase 4.") self.latent_z_loss_weight = 0.1*self.args.lat_b_wt else: print("In Phase 3.") else: self.epsilon = 0. self.training_phase=1 def visualize_trajectory(self, trajectory, segmentations=None, i=0, suffix='_Img'): if self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': if self.args.normalization=='meanvar' or self.args.normalization=='minmax': unnorm_trajectory = (trajectory*self.norm_denom_value)+self.norm_sub_value else: unnorm_trajectory = trajectory if self.args.data=='Mocap': # Create save directory: upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) if self.args.model is not None: model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) else: model_epoch = self.current_epoch_running self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) animation_object = self.dataset[i]['animation'] return self.visualizer.visualize_joint_trajectory(unnorm_trajectory, gif_path=self.dir_name, gif_name="Traj_{0}_{1}.gif".format(i,suffix), return_and_save=True, additional_info=animation_object) else: return self.visualizer.visualize_joint_trajectory(unnorm_trajectory, return_gif=True, segmentations=segmentations) else: return self.visualize_2D_trajectory(trajectory) def visualize_2D_trajectory(self, traj): fig = plt.figure() ax = fig.gca() ax.scatter(traj[:,0],traj[:,1],c=range(len(traj)),cmap='jet') scale = 30 plt.xlim(-scale,scale) plt.ylim(-scale,scale) fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(int(height), int(width), 3) # Already got image data. Now close plot so it doesn't cry. # fig.gcf() plt.close() image = np.transpose(image, axes=[2,0,1]) return image def compute_evaluation_metrics(self, sample_traj, counter, i): # # Generate trajectory rollouts so we can calculate distance metric. # self.rollout_visuals(counter, i, get_image=False) # Compute trajectory distance between: var_rollout_distance = ((self.variational_trajectory_rollout-sample_traj)**2).mean() latent_rollout_distance = ((self.latent_trajectory_rollout-sample_traj)**2).mean() return var_rollout_distance, latent_rollout_distance def update_plots(self, counter, i, subpolicy_loglikelihood, latent_loglikelihood, subpolicy_entropy, sample_traj, latent_z_logprobability, latent_b_logprobability, kl_divergence, prior_loglikelihood): self.tf_logger.scalar_summary('Latent Policy Loss', torch.mean(self.total_latent_loss), counter) self.tf_logger.scalar_summary('SubPolicy Log Likelihood', subpolicy_loglikelihood.mean(), counter) self.tf_logger.scalar_summary('Latent Log Likelihood', latent_loglikelihood.mean(), counter) self.tf_logger.scalar_summary('Variational Policy Loss', torch.mean(self.variational_loss), counter) self.tf_logger.scalar_summary('Variational Reinforce Loss', torch.mean(self.reinforce_variational_loss), counter) self.tf_logger.scalar_summary('Total Variational Policy Loss', torch.mean(self.total_variational_loss), counter) self.tf_logger.scalar_summary('Baseline', self.baseline.mean(), counter) self.tf_logger.scalar_summary('Total Likelihood', subpolicy_loglikelihood+latent_loglikelihood, counter) self.tf_logger.scalar_summary('Epsilon', self.epsilon, counter) self.tf_logger.scalar_summary('Latent Z LogProbability', latent_z_logprobability, counter) self.tf_logger.scalar_summary('Latent B LogProbability', latent_b_logprobability, counter) self.tf_logger.scalar_summary('KL Divergence', torch.mean(kl_divergence), counter) self.tf_logger.scalar_summary('Prior LogLikelihood', torch.mean(prior_loglikelihood), counter) if counter%self.args.display_freq==0: # Now adding visuals for MIME, so it doesn't depend what data we use. variational_rollout_image, latent_rollout_image = self.rollout_visuals(counter, i) # Compute distance metrics. var_dist, latent_dist = self.compute_evaluation_metrics(sample_traj, counter, i) self.tf_logger.scalar_summary('Variational Trajectory Distance', var_dist, counter) self.tf_logger.scalar_summary('Latent Trajectory Distance', latent_dist, counter) gt_trajectory_image = np.array(self.visualize_trajectory(sample_traj, i=i, suffix='GT')) variational_rollout_image = np.array(variational_rollout_image) latent_rollout_image = np.array(latent_rollout_image) if self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': # Feeding as list of image because gif_summary. self.tf_logger.gif_summary("GT Trajectory",[gt_trajectory_image],counter) self.tf_logger.gif_summary("Variational Rollout",[variational_rollout_image],counter) self.tf_logger.gif_summary("Latent Rollout",[latent_rollout_image],counter) else: # Feeding as list of image because gif_summary. self.tf_logger.image_summary("GT Trajectory",[gt_trajectory_image],counter) self.tf_logger.image_summary("Variational Rollout",[variational_rollout_image],counter) self.tf_logger.image_summary("Latent Rollout",[latent_rollout_image],counter) def assemble_inputs(self, input_trajectory, latent_z_indices, latent_b, sample_action_seq, conditional_information=None): if self.args.discrete_z: # Append latent z indices to sample_traj data to feed as input to BOTH the latent policy network and the subpolicy network. assembled_inputs = torch.zeros((len(input_trajectory),self.input_size+self.number_policies+1)).to(device) assembled_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() assembled_inputs[range(1,len(input_trajectory)),self.input_size+latent_z_indices[:-1].long()] = 1. assembled_inputs[range(1,len(input_trajectory)),-1] = latent_b[:-1].float() # Now assemble inputs for subpolicy. subpolicy_inputs = torch.zeros((len(input_trajectory),self.input_size+self.number_policies)).to(device) subpolicy_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() subpolicy_inputs[range(len(input_trajectory)),self.input_size+latent_z_indices.long()] = 1. # subpolicy_inputs[range(len(input_trajectory)),-1] = latent_b.float() # # This method of concatenation is wrong, because it evaluates likelihood of action [0,0] as well. # # Concatenated action sqeuence for policy network. # padded_action_seq = np.concatenate([np.zeros((1,self.output_size)),sample_action_seq],axis=0) # This is the right method of concatenation, because it evaluates likelihood padded_action_seq = np.concatenate([sample_action_seq, np.zeros((1,self.output_size))],axis=0) return assembled_inputs, subpolicy_inputs, padded_action_seq else: if self.training_phase>1: # Prevents gradients being propagated through this.. latent_z_copy = torch.tensor(latent_z_indices).to(device) else: latent_z_copy = latent_z_indices if conditional_information is None: conditional_information = torch.zeros((self.conditional_info_size)).to(device).float() # Append latent z indices to sample_traj data to feed as input to BOTH the latent policy network and the subpolicy network. assembled_inputs = torch.zeros((len(input_trajectory),self.input_size+self.latent_z_dimensionality+1+self.conditional_info_size)).to(device) assembled_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() assembled_inputs[range(1,len(input_trajectory)),self.input_size:self.input_size+self.latent_z_dimensionality] = latent_z_copy[:-1] # We were writing the wrong dimension... should we be running again? :/ assembled_inputs[range(1,len(input_trajectory)),self.input_size+self.latent_z_dimensionality] = latent_b[:-1].float() # assembled_inputs[range(1,len(input_trajectory)),-self.conditional_info_size:] = torch.tensor(conditional_information).to(device).float() # Instead of feeding conditional infromation only from 1'st timestep onwards, we are going to st it from the first timestep. if self.conditional_info_size>0: assembled_inputs[:,-self.conditional_info_size:] = torch.tensor(conditional_information).to(device).float() # Now assemble inputs for subpolicy. subpolicy_inputs = torch.zeros((len(input_trajectory),self.input_size+self.latent_z_dimensionality)).to(device) subpolicy_inputs[:,:self.input_size] = torch.tensor(input_trajectory).view(len(input_trajectory),self.input_size).to(device).float() subpolicy_inputs[range(len(input_trajectory)),self.input_size:] = latent_z_indices # # This method of concatenation is wrong, because it evaluates likelihood of action [0,0] as well. # # Concatenated action sqeuence for policy network. # padded_action_seq = np.concatenate([np.zeros((1,self.output_size)),sample_action_seq],axis=0) # This is the right method of concatenation, because it evaluates likelihood padded_action_seq = np.concatenate([sample_action_seq, np.zeros((1,self.output_size))],axis=0) return assembled_inputs, subpolicy_inputs, padded_action_seq def concat_state_action(self, sample_traj, sample_action_seq): # Add blank to start of action sequence and then concatenate. sample_action_seq = np.concatenate([np.zeros((1,self.output_size)),sample_action_seq],axis=0) # Currently returns: # s0, s1, s2, s3, ..., sn-1, sn # _, a0, a1, a2, ..., an_1, an return np.concatenate([sample_traj, sample_action_seq],axis=-1) def old_concat_state_action(self, sample_traj, sample_action_seq): # Add blank to the END of action sequence and then concatenate. sample_action_seq = np.concatenate([sample_action_seq, np.zeros((1,self.output_size))],axis=0) return np.concatenate([sample_traj, sample_action_seq],axis=-1) def setup_eval_against_encoder(self): # Creates a network, loads the network from pretraining model file. self.encoder_network = ContinuousEncoderNetwork(self.input_size, self.hidden_size, self.latent_z_dimensionality, self.args).to(device) load_object = torch.load(self.args.subpolicy_model) self.encoder_network.load_state_dict(load_object['Encoder_Network']) # Force encoder to use original variance for eval. self.encoder_network.variance_factor = 1. def evaluate_loglikelihoods(self, sample_traj, sample_action_seq, concatenated_traj, latent_z_indices, latent_b): # Initialize both loglikelihoods to 0. subpolicy_loglikelihood = 0. latent_loglikelihood = 0. # Need to assemble inputs first - returns a Torch CUDA Tensor. # This doesn't need to take in actions, because we can evaluate for all actions then select. assembled_inputs, subpolicy_inputs, padded_action_seq = self.assemble_inputs(concatenated_traj, latent_z_indices, latent_b, sample_action_seq, self.conditional_information) ########################### # Compute learnt subpolicy loglikelihood. ########################### learnt_subpolicy_loglikelihoods, entropy = self.policy_network.forward(subpolicy_inputs, padded_action_seq) # Clip values. # Comment this out to remove clipping. learnt_subpolicy_loglikelihoods = torch.clamp(learnt_subpolicy_loglikelihoods,min=self.args.subpolicy_clamp_value) # Multiplying the likelihoods with the subpolicy ratio before summing. learnt_subpolicy_loglikelihoods = self.args.subpolicy_ratio*learnt_subpolicy_loglikelihoods # Summing until penultimate timestep. # learnt_subpolicy_loglikelihood = learnt_subpolicy_loglikelihoods[:-1].sum() # TAKING AVERAGE HERE AS WELL. learnt_subpolicy_loglikelihood = learnt_subpolicy_loglikelihoods[:-1].mean() ########################### # Compute Latent policy loglikelihood values. ########################### # Whether to clone assembled_inputs based on the phase of training. # In phase one it doesn't matter if we use the clone or not, because we never use latent policy loss. # So just clone anyway. # For now, ignore phase 3. This prevents gradients from going into the variational policy from the latent policy. assembled_inputs_copy = assembled_inputs.clone().detach() latent_z_copy = latent_z_indices.clone().detach() # Consideration for later: # if self.training_phase==3: # Don't clone. if self.args.discrete_z: # Return discrete probabilities from latent policy network. latent_z_logprobabilities, latent_b_logprobabilities, latent_b_probabilities, latent_z_probabilities = self.latent_policy.forward(assembled_inputs_copy) # # Selects first option for variable = 1, second option for variable = 0. # Use this to check if latent_z elements are equal: diff_val = (1-(latent_z_indices==latent_z_indices.roll(1,0))[1:]).to(device).float() # We rolled latent_z, we didn't roll diff. This works because latent_b is always guaranteed to be 1 in the first timestep, so it doesn't matter what's in diff_val[0]. diff_val = diff_val.roll(1,0) # Selects first option for variable = 1, second option for variable = 0. latent_z_temporal_logprobabilities = torch.where(latent_b[:-1].byte(), latent_z_logprobabilities[range(len(sample_traj)-1),latent_z_indices[:-1].long()], -self.lambda_likelihood_penalty*diff_val) latent_z_logprobability = latent_z_temporal_logprobabilities.mean() else: # If not, we need to evaluate the latent probabilties of latent_z_indices under latent_policy. latent_b_logprobabilities, latent_b_probabilities, latent_distributions = self.latent_policy.forward(assembled_inputs_copy, self.epsilon) # Evalute loglikelihood of latent z vectors under the latent policy's distributions. latent_z_logprobabilities = latent_distributions.log_prob(latent_z_copy.unsqueeze(1)) # Multiply logprobabilities by the latent policy ratio. latent_z_temporal_logprobabilities = latent_z_logprobabilities[:-1]*self.args.latentpolicy_ratio latent_z_logprobability = latent_z_temporal_logprobabilities.mean() latent_z_probabilities = None # LATENT LOGLIKELIHOOD is defined as: # = \sum_{t=1}^T \log p(\zeta_t | \tau_{1:t}, \zeta_{1:t-1}) # = \sum_{t=1}^T \log { \phi_t(b_t)} + \log { 1[b_t==1] \eta_t(h_t|s_{1:t}) + 1[b_t==0] 1[z_t==z_{t-1}] } # Adding log probabilities of termination (of whether it terminated or not), till penultimate step. latent_b_temporal_logprobabilities = latent_b_logprobabilities[range(len(sample_traj)-1),latent_b[:-1].long()] latent_b_logprobability = latent_b_temporal_logprobabilities.mean() latent_loglikelihood += latent_b_logprobability latent_loglikelihood += latent_z_logprobability # DON'T CLAMP, JUST MULTIPLY BY SUITABLE RATIO! Probably use the same lat_z_wt and lat_b_wt ratios from the losses. latent_temporal_loglikelihoods = self.args.lat_b_wt*latent_b_temporal_logprobabilities + self.args.lat_z_wt*latent_z_temporal_logprobabilities.squeeze(1) ################################################## #### Manage merging likelihoods for REINFORCE #### ################################################## if self.training_phase==1: temporal_loglikelihoods = learnt_subpolicy_loglikelihoods[:-1].squeeze(1) elif self.training_phase==2 or self.training_phase==3: # temporal_loglikelihoods = learnt_subpolicy_loglikelihoods[:-1].squeeze(1) + self.args.temporal_latentpolicy_ratio*latent_temporal_loglikelihoods temporal_loglikelihoods = learnt_subpolicy_loglikelihoods[:-1].squeeze(1) if self.args.debug: if self.iter%self.args.debug==0: print("Embedding in the Evaluate Likelihoods Function.") embed() return None, None, None, latent_loglikelihood, \ latent_b_logprobabilities, latent_z_logprobabilities, latent_b_probabilities, latent_z_probabilities, \ latent_z_logprobability, latent_b_logprobability, learnt_subpolicy_loglikelihood, learnt_subpolicy_loglikelihoods, temporal_loglikelihoods def new_update_policies(self, i, sample_action_seq, subpolicy_loglikelihoods, subpolicy_entropy, latent_b, latent_z_indices,\ variational_z_logprobabilities, variational_b_logprobabilities, variational_z_probabilities, variational_b_probabilities, kl_divergence, \ latent_z_logprobabilities, latent_b_logprobabilities, latent_z_probabilities, latent_b_probabilities, \ learnt_subpolicy_loglikelihood, learnt_subpolicy_loglikelihoods, loglikelihood, prior_loglikelihood, latent_loglikelihood, temporal_loglikelihoods): # Set optimizer gradients to zero. self.optimizer.zero_grad() # Assemble prior and KL divergence losses. # Since these are output by the variational network, and we don't really need the last z predicted by it. prior_loglikelihood = prior_loglikelihood[:-1] kl_divergence = kl_divergence[:-1] ###################################################### ############## Update latent policy. ################# ###################################################### # Remember, an NLL loss function takes <Probabilities, Sampled Value> as arguments. self.latent_b_loss = self.negative_log_likelihood_loss_function(latent_b_logprobabilities, latent_b.long()) if self.args.discrete_z: self.latent_z_loss = self.negative_log_likelihood_loss_function(latent_z_logprobabilities, latent_z_indices.long()) # If continuous latent_z, just calculate loss as negative log likelihood of the latent_z's selected by variational network. else: self.latent_z_loss = -latent_z_logprobabilities.squeeze(1) # Compute total latent loss as weighted sum of latent_b_loss and latent_z_loss. self.total_latent_loss = (self.latent_b_loss_weight*self.latent_b_loss+self.latent_z_loss_weight*self.latent_z_loss)[:-1] ####################################################### ############# Compute Variational Losses ############## ####################################################### # MUST ALWAYS COMPUTE: # Compute cross entropies. self.variational_b_loss = self.negative_log_likelihood_loss_function(variational_b_logprobabilities[:-1], latent_b[:-1].long()) # In case of reparameterization, the variational loss that goes to REINFORCE should just be variational_b_loss. self.variational_loss = self.args.var_loss_weight*self.variational_b_loss ####################################################### ########## Compute Variational Reinforce Loss ######### ####################################################### # Compute reinforce target based on how we express the objective: # The original implementation, i.e. the entropic implementation, uses: # (1) \mathbb{E}_{x, z \sim q(z|x)} \Big[ \nabla_{\omega} \log q(z|x,\omega) \{ \log p(x||z) + \log p(z||x) - \log q(z|x) - 1 \} \Big] # The KL divergence implementation uses: # (2) \mathbb{E}_{x, z \sim q(z|x)} \Big[ \nabla_{\omega} \log q(z|x,\omega) \{ \log p(x||z) + \log p(z||x) - \log p(z) \} \Big] - \nabla_{\omega} D_{KL} \Big[ q(z|x) || p(z) \Big] # Compute baseline target according to NEW GRADIENT, and Equation (2) above. baseline_target = (temporal_loglikelihoods - self.args.prior_weight*prior_loglikelihood).clone().detach() if self.baseline is None: self.baseline = torch.zeros_like(baseline_target.mean()).to(device).float() else: self.baseline = (self.beta_decay*self.baseline)+(1.-self.beta_decay)*baseline_target.mean() self.reinforce_variational_loss = self.variational_loss*(baseline_target-self.baseline) # If reparam, the variational loss is a combination of three things. # Losses from latent policy and subpolicy into variational network for the latent_z's, the reinforce loss on the latent_b's, and the KL divergence. # But since we don't need to additionall compute the gradients from latent and subpolicy into variational network, just set the variational loss to reinforce + KL. # self.total_variational_loss = (self.reinforce_variational_loss.sum() + self.args.kl_weight*kl_divergence.squeeze(1).sum()).sum() self.total_variational_loss = (self.reinforce_variational_loss + self.args.kl_weight*kl_divergence.squeeze(1)).mean() ###################################################### # Set other losses, subpolicy, latent, and prior. ###################################################### # Get subpolicy losses. self.subpolicy_loss = (-learnt_subpolicy_loglikelihood).mean() # Get prior losses. self.prior_loss = (-self.args.prior_weight*prior_loglikelihood).mean() # Reweight latent loss. self.total_weighted_latent_loss = (self.args.latent_loss_weight*self.total_latent_loss).mean() ################################################ # Setting total loss based on phase of training. ################################################ # IF PHASE ONE: if self.training_phase==1: self.total_loss = self.subpolicy_loss + self.total_variational_loss + self.prior_loss # IF DONE WITH PHASE ONE: elif self.training_phase==2 or self.training_phase==3: self.total_loss = self.subpolicy_loss + self.total_weighted_latent_loss + self.total_variational_loss + self.prior_loss ################################################ if self.args.debug: if self.iter%self.args.debug==0: print("Embedding in Update Policies") embed() ################################################ self.total_loss.sum().backward() self.optimizer.step() def set_env_conditional_info(self): obs = self.environment._get_observation() self.conditional_information = np.zeros((self.conditional_info_size)) cond_state = np.concatenate([obs['robot-state'],obs['object-state']]) self.conditional_information[:cond_state.shape[-1]] = cond_state # Also setting particular index in conditional information to 1 for task ID. self.conditional_information[-self.number_tasks+self.task_id_for_cond_info] = 1 def take_rollout_step(self, subpolicy_input, t, use_env=False): # Feed subpolicy input into the policy. actions = self.policy_network.get_actions(subpolicy_input,greedy=True) # Select last action to execute. action_to_execute = actions[-1].squeeze(1) if use_env==True: # Take a step in the environment. step_res = self.environment.step(action_to_execute.squeeze(0).detach().cpu().numpy()) # Get state. observation = step_res[0] # Now update conditional information... # self.conditional_information = np.concatenate([new_state['robot-state'],new_state['object-state']]) gripper_open = np.array([0.0115, -0.0115]) gripper_closed = np.array([-0.020833, 0.020833]) # The state that we want is ... joint state? gripper_finger_values = step_res[0]['gripper_qpos'] gripper_values = (gripper_finger_values - gripper_open)/(gripper_closed - gripper_open) finger_diff = gripper_values[1]-gripper_values[0] gripper_value = 2*finger_diff-1 # Concatenate joint and gripper state. new_state_numpy = np.concatenate([observation['joint_pos'], np.array(gripper_value).reshape((1,))]) new_state = torch.tensor(new_state_numpy).to(device).float().view((1,-1)) # This should be true by default... # if self.conditional_viz_env: # self.set_env_conditional_info() self.set_env_conditional_info() else: # Compute next state by adding action to state. new_state = subpolicy_input[t,:self.state_dim]+action_to_execute # return new_subpolicy_input return action_to_execute, new_state def create_RL_environment_for_rollout(self, environment_name, state=None, task_id=None): self.environment = robosuite.make(environment_name) self.task_id_for_cond_info = task_id if state is not None: self.environment.sim.set_state_from_flattened(state) def rollout_variational_network(self, counter, i): ########################################################### ########################################################### ############# (0) ############# # Get sample we're going to train on. Single sample as of now. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) if self.args.traj_length>0: self.rollout_timesteps = self.args.traj_length else: self.rollout_timesteps = len(sample_traj) ############# (1) ############# # Sample latent variables from p(\zeta | \tau). latent_z_indices, latent_b, variational_b_logprobabilities, variational_z_logprobabilities,\ variational_b_probabilities, variational_z_probabilities, kl_divergence, prior_loglikelihood = self.variational_policy.forward(torch.tensor(old_concatenated_traj).to(device).float(), self.epsilon) ############# (1.5) ########### # Doesn't really matter what the conditional information is here... because latent policy isn't being rolled out. # We still call it becasue these assembled inputs are passed to the latnet policy rollout later. if self.conditional_viz_env: self.set_env_conditional_info() # Get assembled inputs and subpolicy inputs for variational rollout. orig_assembled_inputs, orig_subpolicy_inputs, padded_action_seq = self.assemble_inputs(concatenated_traj, latent_z_indices, latent_b, sample_action_seq, self.conditional_information) ########################################################### ############# (A) VARIATIONAL POLICY ROLLOUT. ############# ########################################################### subpolicy_inputs = orig_subpolicy_inputs.clone().detach() # For number of rollout timesteps: for t in range(self.rollout_timesteps-1): # Take a rollout step. Feed into policy, get action, step, return new input. action_to_execute, new_state = self.take_rollout_step(subpolicy_inputs[:(t+1)].view((t+1,-1)), t) state_action_tuple = torch.cat([new_state, action_to_execute],dim=1) # Overwrite the subpolicy inputs with the new state action tuple. subpolicy_inputs[t+1,:self.input_size] = state_action_tuple # Get trajectory from this. self.variational_trajectory_rollout = copy.deepcopy(subpolicy_inputs[:,:self.state_dim].detach().cpu().numpy()) return orig_assembled_inputs, orig_subpolicy_inputs, latent_b def alternate_rollout_latent_policy(self, counter, i, orig_assembled_inputs, orig_subpolicy_inputs): assembled_inputs = orig_assembled_inputs.clone().detach() subpolicy_inputs = orig_subpolicy_inputs.clone().detach() # This version of rollout uses the incremental reparam get actions function. hidden = None ############# (0) ############# # Get sample we're going to train on. Single sample as of now. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) # Set rollout length. if self.args.traj_length>0: self.rollout_timesteps = self.args.traj_length else: self.rollout_timesteps = len(sample_traj) # For appropriate number of timesteps. for t in range(self.rollout_timesteps-1): # First get input row for latent policy. # Feed into latent policy and get z. # Feed z and b into subpolicy. pass def rollout_latent_policy(self, orig_assembled_inputs, orig_subpolicy_inputs): assembled_inputs = orig_assembled_inputs.clone().detach() subpolicy_inputs = orig_subpolicy_inputs.clone().detach() # Set the previous b time to 0. delta_t = 0 # For number of rollout timesteps: for t in range(self.rollout_timesteps-1): ########################################## #### CODE FOR NEW Z SELECTION ROLLOUT #### ########################################## # Pick latent_z and latent_b. selected_b, new_selected_z = self.latent_policy.get_actions(assembled_inputs[:(t+1)].view((t+1,-1)), greedy=True, delta_t=delta_t) if t==0: selected_b = torch.ones_like(selected_b).to(device).float() if selected_b[-1]==1: # Copy over ALL z's. This is okay to do because we're greedily selecting, and hte latent policy is hence deterministic. selected_z = torch.tensor(new_selected_z).to(device).float() # If b was == 1, then... reset b to 0. delta_t = 0 else: # Increment counter since last time b was 1. delta_t += 1 # Set z's to 0. assembled_inputs[t+1, self.input_size:self.input_size+self.number_policies] = 0. # Set z and b in assembled input for the future latent policy passes. if self.args.discrete_z: assembled_inputs[t+1, self.input_size+selected_z[-1]] = 1. else: assembled_inputs[t+1, self.input_size:self.input_size+self.latent_z_dimensionality] = selected_z[-1] # This was also using wrong dimensions... oops :P assembled_inputs[t+1, self.input_size+self.latent_z_dimensionality] = selected_b[-1] # Before copying over, set conditional_info from the environment at the current timestep. if self.conditional_viz_env: self.set_env_conditional_info() if self.conditional_info_size>0: assembled_inputs[t+1, -self.conditional_info_size:] = torch.tensor(self.conditional_information).to(device).float() # Set z's to 0. subpolicy_inputs[t, self.input_size:self.input_size+self.number_policies] = 0. # Set z and b in subpolicy input for the future subpolicy passes. if self.args.discrete_z: subpolicy_inputs[t, self.input_size+selected_z[-1]] = 1. else: subpolicy_inputs[t, self.input_size:] = selected_z[-1] # Now pass subpolicy net forward and get action and next state. action_to_execute, new_state = self.take_rollout_step(subpolicy_inputs[:(t+1)].view((t+1,-1)), t, use_env=self.conditional_viz_env) state_action_tuple = torch.cat([new_state, action_to_execute],dim=1) # Now update assembled input. assembled_inputs[t+1, :self.input_size] = state_action_tuple subpolicy_inputs[t+1, :self.input_size] = state_action_tuple self.latent_trajectory_rollout = copy.deepcopy(subpolicy_inputs[:,:self.state_dim].detach().cpu().numpy()) concatenated_selected_b = np.concatenate([selected_b.detach().cpu().numpy(),np.zeros((1))],axis=-1) if self.args.debug: print("Embedding in Latent Policy Rollout.") embed() # Clear these variables from memory. del subpolicy_inputs, assembled_inputs return concatenated_selected_b def rollout_visuals(self, counter, i, get_image=True): # if self.args.data=='Roboturk': if self.conditional_viz_env: self.create_RL_environment_for_rollout(self.dataset[i]['environment-name'], self.dataset[i]['flat-state'][0], self.dataset[i]['task-id'],) # Rollout policy with # a) Latent variable samples from variational policy operating on dataset trajectories - Tests variational network and subpolicies. # b) Latent variable samples from latent policy in a rolling fashion, initialized with states from the trajectory - Tests latent and subpolicies. # c) Latent variables from the ground truth set (only valid for the toy dataset) - Just tests subpolicies. ########################################################### ############# (A) VARIATIONAL POLICY ROLLOUT. ############# ########################################################### orig_assembled_inputs, orig_subpolicy_inputs, variational_segmentation = self.rollout_variational_network(counter, i) ########################################################### ################ (B) LATENT POLICY ROLLOUT. ############### ########################################################### latent_segmentation = self.rollout_latent_policy(orig_assembled_inputs, orig_subpolicy_inputs) if get_image==True: latent_rollout_image = self.visualize_trajectory(self.latent_trajectory_rollout, segmentations=latent_segmentation, i=i, suffix='Latent') variational_rollout_image = self.visualize_trajectory(self.variational_trajectory_rollout, segmentations=variational_segmentation.detach().cpu().numpy(), i=i, suffix='Variational') return variational_rollout_image, latent_rollout_image else: return None, None def run_iteration(self, counter, i): # With learnt discrete subpolicy: # For all epochs: # # For all trajectories: # # Sample z from variational network. # # Evalute likelihood of latent policy, and subpolicy. # # Update policies using likelihoods. self.set_epoch(counter) self.iter = counter ############# (0) ############# # Get sample we're going to train on. Single sample as of now. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) if sample_traj is not None: ############# (1) ############# # Sample latent variables from p(\zeta | \tau). latent_z_indices, latent_b, variational_b_logprobabilities, variational_z_logprobabilities,\ variational_b_probabilities, variational_z_probabilities, kl_divergence, prior_loglikelihood = self.variational_policy.forward(torch.tensor(old_concatenated_traj).to(device).float(), self.epsilon) ########## (2) & (3) ########## # Evaluate Log Likelihoods of actions and options as "Return" for Variational policy. subpolicy_loglikelihoods, subpolicy_loglikelihood, subpolicy_entropy,\ latent_loglikelihood, latent_b_logprobabilities, latent_z_logprobabilities,\ latent_b_probabilities, latent_z_probabilities, latent_z_logprobability, latent_b_logprobability, \ learnt_subpolicy_loglikelihood, learnt_subpolicy_loglikelihoods, temporal_loglikelihoods = self.evaluate_loglikelihoods(sample_traj, sample_action_seq, concatenated_traj, latent_z_indices, latent_b) if self.args.train: if self.args.debug: if self.iter%self.args.debug==0: print("Embedding in Train Function.") embed() ############# (3) ############# # Update latent policy Pi_z with Reinforce like update using LL as return. self.new_update_policies(i, sample_action_seq, subpolicy_loglikelihoods, subpolicy_entropy, latent_b, latent_z_indices,\ variational_z_logprobabilities, variational_b_logprobabilities, variational_z_probabilities, variational_b_probabilities, kl_divergence, \ latent_z_logprobabilities, latent_b_logprobabilities, latent_z_probabilities, latent_b_probabilities, \ learnt_subpolicy_loglikelihood, learnt_subpolicy_loglikelihoods, learnt_subpolicy_loglikelihood+latent_loglikelihood, \ prior_loglikelihood, latent_loglikelihood, temporal_loglikelihoods) # Update Plots. # self.update_plots(counter, sample_map, loglikelihood) self.update_plots(counter, i, learnt_subpolicy_loglikelihood, latent_loglikelihood, subpolicy_entropy, sample_traj, latent_z_logprobability, latent_b_logprobability, kl_divergence, prior_loglikelihood) # print("Latent LogLikelihood: ", latent_loglikelihood) # print("Subpolicy LogLikelihood: ", learnt_subpolicy_loglikelihood) print("#########################################") else: if self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap': pass else: print("#############################################") print("Trajectory",i) print("Predicted Z: \n", latent_z_indices.detach().cpu().numpy()) print("True Z : \n", np.array(self.dataset.Y_array[i][:self.args.traj_length])) print("Latent B : \n", latent_b.detach().cpu().numpy()) # print("Variational Probs: \n", variational_z_probabilities.detach().cpu().numpy()) # print("Latent Probs : \n", latent_z_probabilities.detach().cpu().numpy()) print("Latent B Probs : \n", latent_b_probabilities.detach().cpu().numpy()) if self.args.subpolicy_model: eval_encoded_logprobs = torch.zeros((latent_z_indices.shape[0])) eval_orig_encoder_logprobs = torch.zeros((latent_z_indices.shape[0])) torch_concat_traj = torch.tensor(concatenated_traj).to(device).float() # For each timestep z in latent_z_indices, evaluate likelihood under pretrained encoder model. for t in range(latent_z_indices.shape[0]): eval_encoded_logprobs[t] = self.encoder_network.forward(torch_concat_traj, z_sample_to_evaluate=latent_z_indices[t]) _, eval_orig_encoder_logprobs[t], _, _ = self.encoder_network.forward(torch_concat_traj) print("Encoder Loglikelihood:", eval_encoded_logprobs.detach().cpu().numpy()) print("Orig Encoder Loglikelihood:", eval_orig_encoder_logprobs.detach().cpu().numpy()) if self.args.debug: embed() def evaluate_metrics(self): self.distances = -np.ones((self.test_set_size)) # Get test set elements as last (self.test_set_size) number of elements of dataset. for i in range(self.test_set_size): index = i + len(self.dataset)-self.test_set_size print("Evaluating ", i, " in test set, or ", index, " in dataset.") # Collect inputs. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) # If valid if sample_traj is not None: # Create environment to get conditional info. if self.conditional_viz_env: self.create_RL_environment_for_rollout(self.dataset[i]['environment-name'], self.dataset[i]['flat-state'][0]) # Rollout variational. _, _, _ = self.rollout_variational_network(0, i) self.distances[i] = ((sample_traj-self.variational_trajectory_rollout)**2).mean() self.mean_distance = self.distances[self.distances>0].mean() # Create save directory: upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) np.save(os.path.join(self.dir_name,"Trajectory_Distances_{0}.npy".format(self.args.name)),self.distances) np.save(os.path.join(self.dir_name,"Mean_Trajectory_Distance_{0}.npy".format(self.args.name)),self.mean_distance) def evaluate(self, model): self.set_epoch(0) if model: self.load_all_models(model) np.set_printoptions(suppress=True,precision=2) print("Running Evaluation of State Distances on small test set.") self.evaluate_metrics() # Visualize space if the subpolicy has been trained... if (self.args.data=='MIME' or self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk' or self.args.data=='Mocap') and (self.args.fix_subpolicy==0): print("Running Visualization on Robot Data.") self.pretrain_policy_manager = PolicyManager_Pretrain(self.args.number_policies, self.dataset, self.args) self.pretrain_policy_manager.setup() self.pretrain_policy_manager.load_all_models(model, only_policy=True) self.pretrain_policy_manager.visualize_robot_data() if self.args.subpolicy_model: print("Loading encoder.") self.setup_eval_against_encoder() # Evaluate NLL and (potentially Expected Value Difference) on Validation / Test Datasets. self.epsilon = 0. # np.set_printoptions(suppress=True,precision=2) # for i in range(60): # self.run_iteration(0, i) if self.args.debug: embed() class PolicyManager_BaselineRL(PolicyManager_BaseClass): def __init__(self, number_policies=4, dataset=None, args=None): # super(PolicyManager_BaselineRL, self).__init__(number_policies=number_policies, dataset=dataset, args=args) super(PolicyManager_BaselineRL, self).__init__() # Create environment, setup things, etc. self.args = args self.initial_epsilon = self.args.epsilon_from self.final_epsilon = self.args.epsilon_to self.decay_episodes = self.args.epsilon_over self.baseline = None self. learning_rate = self.args.learning_rate self.max_timesteps = 100 self.gamma = 0.99 self.batch_size = 10 self.number_test_episodes = 100 # Per step decay. self.decay_rate = (self.initial_epsilon-self.final_epsilon)/(self.decay_episodes) self.number_episodes = 5000000 # Orhnstein Ullenhbeck noise process parameters. self.theta = 0.15 self.sigma = 0.2 self.gripper_open = np.array([0.0115, -0.0115]) self.gripper_closed = np.array([-0.020833, 0.020833]) self.reset_statistics() def create_networks(self): if self.args.MLP_policy: self.policy_network = ContinuousMLP(self.input_size, self.args.hidden_size, self.output_size, self.args).to(device) self.critic_network = CriticMLP(self.input_size, self.args.hidden_size, 1, self.args).to(device) else: # Create policy and critic. self.policy_network = ContinuousPolicyNetwork(self.input_size, self.args.hidden_size, self.output_size, self.args, self.args.number_layers, small_init=True).to(device) self.critic_network = CriticNetwork(self.input_size, self.args.hidden_size, 1, self.args, self.args.number_layers).to(device) def create_training_ops(self): self.NLL_Loss = torch.nn.NLLLoss(reduction='none') self.MSE_Loss = torch.nn.MSELoss(reduction='none') # parameter_list = list(self.policy_network.parameters()) + list(self.critic_network.parameters()) self.policy_optimizer = torch.optim.Adam(self.policy_network.parameters(), lr=self.learning_rate) self.critic_optimizer = torch.optim.Adam(self.critic_network.parameters(), lr=self.learning_rate) def save_all_models(self, suffix): logdir = os.path.join(self.args.logdir, self.args.name) savedir = os.path.join(logdir,"saved_models") if not(os.path.isdir(savedir)): os.mkdir(savedir) save_object = {} save_object['Policy_Network'] = self.policy_network.state_dict() save_object['Critic_Network'] = self.critic_network.state_dict() torch.save(save_object,os.path.join(savedir,"Model_"+suffix)) def load_all_models(self, path, critic=False): load_object = torch.load(path) self.policy_network.load_state_dict(load_object['Policy_Network']) if critic: self.critic_network.load_state_dict(load_object['Critic_Network']) def setup(self): # Calling a special RL setup function. This is because downstream classes inherit (and may override setup), but will still inherit RL_setup intact. self.RL_setup() def RL_setup(self): # Create Mujoco environment. self.environment = robosuite.make(self.args.environment, has_renderer=False, use_camera_obs=False, reward_shaping=self.args.shaped_reward) # Get input and output sizes from these environments, etc. self.obs = self.environment.reset() self.output_size = self.environment.action_spec[0].shape[0] self.state_size = self.obs['robot-state'].shape[0] + self.obs['object-state'].shape[0] # self.input_size = self.state_size + self.output_size self.input_size = self.state_size + self.output_size*2 # Create networks. self.create_networks() self.create_training_ops() self.initialize_plots() # Create Noise process. self.NoiseProcess = RLUtils.OUNoise(self.output_size, min_sigma=self.args.OU_min_sigma, max_sigma=self.args.OU_max_sigma) def set_parameters(self, episode_counter, evaluate=False): if self.args.train and not(evaluate): if episode_counter<self.decay_episodes: self.epsilon = self.initial_epsilon-self.decay_rate*episode_counter else: self.epsilon = self.final_epsilon else: self.epsilon = 0. def reset_lists(self): self.reward_trajectory = [] self.state_trajectory = [] self.action_trajectory = [] self.image_trajectory = [] self.terminal_trajectory = [] self.cummulative_rewards = None self.episode = None def get_action(self, hidden=None, random=True, counter=0, evaluate=False): # Change this to epsilon greedy... whether_greedy = np.random.binomial(n=1,p=0.8) if random or not(whether_greedy): action = 2*np.random.random((self.output_size))-1 return action, hidden # The rest of this will only be evaluated or run when random is false and when whether_greedy is true. # Assemble states of current input row. current_input_row = self.get_current_input_row() # Using the incremental get actions. Still get action greedily, then add noise. predicted_action, hidden = self.policy_network.incremental_reparam_get_actions(torch.tensor(current_input_row).to(device).float(), greedy=True, hidden=hidden) if evaluate: noise = torch.zeros_like(predicted_action).to(device).float() else: # Get noise from noise process. noise = torch.randn_like(predicted_action).to(device).float()*self.epsilon # Perturb action with noise. perturbed_action = predicted_action + noise if self.args.MLP_policy: action = perturbed_action[-1].detach().cpu().numpy() else: action = perturbed_action[-1].squeeze(0).detach().cpu().numpy() return action, hidden def get_OU_action(self, hidden=None, random=False, counter=0, evaluate=False): if random==True: action = 2*np.random.random((self.output_size))-1 return action, hidden # Assemble states of current input row. current_input_row = self.get_current_input_row() # Using the incremental get actions. Still get action greedily, then add noise. predicted_action, hidden = self.policy_network.incremental_reparam_get_actions(torch.tensor(current_input_row).to(device).float(), greedy=True, hidden=hidden) # Numpy action if self.args.MLP_policy: action = predicted_action[-1].detach().cpu().numpy() else: action = predicted_action[-1].squeeze(0).detach().cpu().numpy() if evaluate: perturbed_action = action else: # Perturb action with noise. perturbed_action = self.NoiseProcess.get_action(action, counter) return perturbed_action, hidden def rollout(self, random=False, test=False, visualize=False): counter = 0 eps_reward = 0. state = self.environment.reset() terminal = False self.reset_lists() # Reset the noise process! We forgot to do this! :( self.NoiseProcess.reset() if visualize: image = self.environment.sim.render(600,600, camera_name='frontview') self.image_trajectory.append(np.flipud(image)) self.state_trajectory.append(state) # self.terminal_trajectory.append(terminal) # self.reward_trajectory.append(0.) hidden = None while not(terminal) and counter<self.max_timesteps: if self.args.OU: action, hidden = self.get_OU_action(hidden=hidden,random=random,counter=counter, evaluate=test) else: action, hidden = self.get_action(hidden=hidden,random=random,counter=counter, evaluate=test) # Take a step in the environment. next_state, onestep_reward, terminal, success = self.environment.step(action) self.state_trajectory.append(next_state) self.action_trajectory.append(action) self.reward_trajectory.append(onestep_reward) self.terminal_trajectory.append(terminal) # Copy next state into state. state = copy.deepcopy(next_state) # Counter counter += 1 # Append image. if visualize: image = self.environment.sim.render(600,600, camera_name='frontview') self.image_trajectory.append(np.flipud(image)) print("Rolled out an episode for ",counter," timesteps.") # Now that the episode is done, compute cummulative rewards... self.cummulative_rewards = copy.deepcopy(np.cumsum(np.array(self.reward_trajectory)[::-1])[::-1]) self.episode_reward_statistics = copy.deepcopy(self.cummulative_rewards[0]) print("Achieved reward: ", self.episode_reward_statistics) # print("########################################################") # NOW construct an episode out of this.. self.episode = RLUtils.Episode(self.state_trajectory, self.action_trajectory, self.reward_trajectory, self.terminal_trajectory) # Since we're doing TD updates, we DON'T want to use the cummulative reward, but rather the reward trajectory itself. def get_transformed_gripper_value(self, gripper_finger_values): gripper_values = (gripper_finger_values - self.gripper_open)/(self.gripper_closed - self.gripper_open) finger_diff = gripper_values[1]-gripper_values[0] gripper_value = np.array(2*finger_diff-1).reshape((1,-1)) return gripper_value def get_current_input_row(self): # Addiong joint states, gripper, actions, and conditional info in addition to just conditional and actions. gripper_finger_values = self.state_trajectory[-1]['gripper_qpos'] conditional = np.concatenate([self.state_trajectory[-1]['robot-state'].reshape((1,-1)),self.state_trajectory[-1]['object-state'].reshape((1,-1))],axis=1) if len(self.action_trajectory)>0: state_action = np.concatenate([self.state_trajectory[-1]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), self.action_trajectory[-1].reshape((1,-1))],axis=1) else: # state_action = np.concatenate([self.state_trajectory[-1]['robot-state'].reshape((1,-1)),self.state_trajectory[-1]['object-state'].reshape((1,-1)),np.zeros((1,self.output_size))],axis=1) state_action = np.concatenate([self.state_trajectory[-1]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), np.zeros((1,self.output_size))],axis=1) return np.concatenate([state_action, conditional],axis=1) def assemble_inputs(self): conditional_sequence = np.concatenate([np.concatenate([self.state_trajectory[t]['robot-state'].reshape((1,-1)),self.state_trajectory[t]['object-state'].reshape((1,-1))],axis=1) for t in range(len(self.state_trajectory))],axis=0) state_action_sequence = np.concatenate([np.concatenate([self.state_trajectory[t]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(self.state_trajectory[t]['gripper_qpos']), self.action_trajectory[t-1].reshape((1,-1))],axis=1) for t in range(1,len(self.state_trajectory))],axis=0) initial_state_action = np.concatenate([self.state_trajectory[0]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(self.state_trajectory[0]['gripper_qpos']), np.zeros((1, self.output_size))],axis=1) # Copy initial state to front of state_action seq. state_action_sequence = np.concatenate([state_action_sequence, initial_state_action],axis=0) inputs = np.concatenate([state_action_sequence, conditional_sequence],axis=1) return inputs def process_episode(self, episode): # Assemble states, actions, targets. # First reset all the lists from the rollout now that they've been written to memory. self.reset_lists() # Now set the lists. self.state_trajectory = episode.state_list self.action_trajectory = episode.action_list self.reward_trajectory = episode.reward_list self.terminal_trajectory = episode.terminal_list assembled_inputs = self.assemble_inputs() # Input to the policy should be states and actions. self.state_action_inputs = torch.tensor(assembled_inputs).to(device).float() # Get summed reward for statistics. self.batch_reward_statistics += sum(self.reward_trajectory) def set_differentiable_critic_inputs(self): # Get policy's predicted actions by getting action greedily, then add noise. predicted_action = self.policy_network.reparameterized_get_actions(self.state_action_inputs, greedy=True).squeeze(1) noise = torch.zeros_like(predicted_action).to(device).float() # Get noise from noise process. noise = torch.randn_like(predicted_action).to(device).float()*self.epsilon # Concatenate the states from policy inputs and the predicted actions. self.critic_inputs = torch.cat([self.state_action_inputs[:,:self.output_size], predicted_action, self.state_action_inputs[:,2*self.output_size:]],axis=1).to(device).float() def update_policies(self): ###################################### # Compute losses for actor. self.set_differentiable_critic_inputs() self.policy_optimizer.zero_grad() self.policy_loss = - self.critic_network.forward(self.critic_inputs[:-1]).mean() self.policy_loss_statistics += self.policy_loss.clone().detach().cpu().numpy().mean() self.policy_loss.backward() self.policy_optimizer.step() def set_targets(self): if self.args.TD: # Construct TD Targets. self.TD_targets = self.critic_predictions.clone().detach().cpu().numpy() # Select till last time step, because we don't care what critic says after last timestep. self.TD_targets = np.roll(self.TD_targets,-1,axis=0)[:-1] # Mask with terminal. self.TD_targets = self.gamma*np.array(self.terminal_trajectory)*self.TD_targets self.TD_targets += np.array(self.reward_trajectory) self.critic_targets = torch.tensor(self.TD_targets).to(device).float() else: self.cummulative_rewards = copy.deepcopy(np.cumsum(np.array(self.reward_trajectory)[::-1])[::-1]) self.critic_targets = torch.tensor(self.cummulative_rewards).to(device).float() def update_critic(self): ###################################### # Zero gradients, then backprop into critic. self.critic_optimizer.zero_grad() # Get critic predictions first. if self.args.MLP_policy: self.critic_predictions = self.critic_network.forward(self.state_action_inputs).squeeze(1) else: self.critic_predictions = self.critic_network.forward(self.state_action_inputs).squeeze(1).squeeze(1) # Before we actually compute loss, compute targets. self.set_targets() # We predicted critic values from states S_1 to S_{T+1} because we needed all for bootstrapping. # For loss, we don't actually need S_{T+1}, so throw it out. self.critic_loss = self.MSE_Loss(self.critic_predictions[:-1], self.critic_targets).mean() self.critic_loss_statistics += self.critic_loss.clone().detach().cpu().numpy().mean() self.critic_loss.backward() self.critic_optimizer.step() ###################################### def update_networks(self): # Update policy network. self.update_policies() # Now update critic network. self.update_critic() def reset_statistics(self): # Can also reset the policy and critic loss statistcs here. self.policy_loss_statistics = 0. self.critic_loss_statistics = 0. self.batch_reward_statistics = 0. self.episode_reward_statistics = 0. def update_batch(self): # Get set of indices of episodes in the memory. batch_indices = self.memory.sample_batch(self.batch_size) for ind in batch_indices: # Retrieve appropriate episode from memory. episode = self.memory.memory[ind] # Set quantities from episode. self.process_episode(episode) # Now compute gradients to both networks from batch. self.update_networks() def update_plots(self, counter): self.tf_logger.scalar_summary('Total Episode Reward', copy.deepcopy(self.episode_reward_statistics), counter) self.tf_logger.scalar_summary('Batch Rewards', self.batch_reward_statistics/self.batch_size, counter) self.tf_logger.scalar_summary('Policy Loss', self.policy_loss_statistics/self.batch_size, counter) self.tf_logger.scalar_summary('Critic Loss', self.critic_loss_statistics/self.batch_size, counter) if counter%self.args.display_freq==0: # print("Embedding in Update Plots.") # Rollout policy. self.rollout(random=False, test=True, visualize=True) self.tf_logger.gif_summary("Rollout Trajectory", [np.array(self.image_trajectory)], counter) # Now that we've updated these into TB, reset stats. self.reset_statistics() def run_iteration(self, counter, evaluate=False): # This is really a run episode function. Ignore the index, just use the counter. # 1) Rollout trajectory. # 2) Collect stats / append to memory and stuff. # 3) Update policies. self.set_parameters(counter, evaluate=evaluate) # Maintain counter to keep track of updating the policy regularly. # cProfile.runctx('self.rollout()',globals(), locals(),sort='cumtime') self.rollout(random=False, test=evaluate) if self.args.train and not(evaluate): # If training, append to memory. self.memory.append_to_memory(self.episode) # Update on batch. self.update_batch() # Update plots. self.update_plots(counter) def initialize_memory(self): # Create memory object. self.memory = RLUtils.ReplayMemory(memory_size=self.args.memory_size) # Number of initial episodes needs to be less than memory size. self.initial_episodes = self.args.burn_in_eps # While number of transitions is less than initial_transitions. episode_counter = 0 while episode_counter<self.initial_episodes: # Reset the noise process! We forgot to do this! :( self.NoiseProcess.reset() print("Initializing Memory Episode: ", episode_counter) # Rollout an episode. self.rollout(random=self.args.random_memory_burn_in) # Add episode to memory. self.memory.append_to_memory(self.episode) episode_counter += 1 def evaluate(self, epoch=None, model=None): if model is not None: print("Loading model in training.") self.load_all_models(model) model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) else: model_epoch = epoch self.total_rewards = np.zeros((self.number_test_episodes)) # For number of test episodes. for eps in range(self.number_test_episodes): # Run an iteration (and rollout)... self.run_iteration(eps, evaluate=True) self.total_rewards[eps] = np.array(self.reward_trajectory).sum() # Create save directory to save these results. upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) np.save(os.path.join(self.dir_name,"Total_Rewards_{0}.npy".format(self.args.name)),self.total_rewards) np.save(os.path.join(self.dir_name,"Mean_Reward_{0}.npy".format(self.args.name)),self.total_rewards.mean()) def train(self, model=None): # 1) Initialize memory maybe. # 2) For number of iterations, RUN ITERATION: # 3) Rollout trajectory. # 4) Collect stats. # 5) Update policies. if model: print("Loading model in training.") self.load_all_models(model) print("Starting Main Training Procedure.") self.set_parameters(0) np.set_printoptions(suppress=True,precision=2) # Fixing seeds. np.random.seed(seed=0) torch.manual_seed(0) print("Initializing Memory.") self.initialize_memory() for e in range(self.number_episodes): # Reset the noise process! We forgot to do this! :( self.NoiseProcess.reset() if e%self.args.save_freq==0: self.save_all_models("epoch{0}".format(e)) self.run_iteration(e) print("#############################") print("Running Episode: ",e) if e%self.args.eval_freq==0: self.evaluate(epoch=e, model=None) class PolicyManager_DownstreamRL(PolicyManager_BaselineRL): def __init__(self, number_policies=4, dataset=None, args=None): super(PolicyManager_DownstreamRL, self).__init__(number_policies=4, dataset=dataset, args=args) def setup(self): # Create Mujoco environment. self.environment = robosuite.make(self.args.environment, has_renderer=False, use_camera_obs=False, reward_shaping=self.args.shaped_reward) # Get input and output sizes from these environments, etc. self.obs = self.environment.reset() self.output_size = self.environment.action_spec[0].shape[0] self.state_size = self.environment.action_spec[0].shape[0] self.conditional_info_size = self.obs['robot-state'].shape[0] + self.obs['object-state'].shape[0] # If we are loading policies.... if self.args.model: # Padded conditional info. self.conditional_info_size = 53 self.input_size = 2*self.state_size # Create networks. self.create_networks() self.create_training_ops() self.initialize_plots() self.gripper_open = np.array([0.0115, -0.0115]) self.gripper_closed = np.array([-0.020833, 0.020833]) # Create Noise process. self.NoiseProcess = RLUtils.OUNoise(self.output_size) def create_networks(self): # Copying over the create networks from Joint Policy training. # Not sure if there's a better way to inherit - unless we inherit from both classes. self.policy_network = ContinuousPolicyNetwork(self.input_size, self.args.hidden_size, self.output_size, self.args, self.args.number_layers).to(device) self.critic_network = CriticNetwork(self.input_size+self.conditional_info_size, self.args.hidden_size, 1, self.args, self.args.number_layers).to(device) if self.args.constrained_b_prior: self.latent_policy = ContinuousLatentPolicyNetwork_ConstrainedBPrior(self.input_size+self.conditional_info_size, self.args.hidden_size, self.args, self.args.number_layers).to(device) else: self.latent_policy = ContinuousLatentPolicyNetwork(self.input_size+self.conditional_info_size, self.args.hidden_size, self.args, self.args.number_layers).to(device) def create_training_ops(self): self.NLL_Loss = torch.nn.NLLLoss(reduction='none') self.MSE_Loss = torch.nn.MSELoss(reduction='none') # If we are using reparameterization, use a global optimizer for both policies, and a global loss function. parameter_list = list(self.latent_policy.parameters()) if not(self.args.fix_subpolicy): parameter_list = parameter_list + list(self.policy_network.parameters()) # The policy optimizer handles both the low and high level policies, as long as the z's being passed from the latent to sub policy are differentiable. self.policy_optimizer = torch.optim.Adam(parameter_list, lr=self.learning_rate) self.critic_optimizer = torch.optim.Adam(self.critic_network.parameters(), lr=self.learning_rate) def save_all_models(self, suffix): logdir = os.path.join(self.args.logdir, self.args.name) savedir = os.path.join(logdir,"saved_models") if not(os.path.isdir(savedir)): os.mkdir(savedir) save_object = {} save_object['Policy_Network'] = self.policy_network.state_dict() save_object['Latent_Policy'] = self.latent_policy.state_dict() save_object['Critic_Network'] = self.critic_network.state_dict() torch.save(save_object,os.path.join(savedir,"Model_"+suffix)) def load_all_models(self, path, critic=False): load_object = torch.load(path) self.policy_network.load_state_dict(load_object['Policy_Network']) if self.args.load_latent: self.latent_policy.load_state_dict(load_object['Latent_Policy']) if critic: self.critic_network.load_state_dict(load_object['Critic_Network']) def reset_lists(self): self.reward_trajectory = [] self.state_trajectory = [] self.action_trajectory = [] self.image_trajectory = [] self.terminal_trajectory = [] self.latent_z_trajectory = [] self.latent_b_trajectory = [] self.cummulative_rewards = None self.episode = None def get_conditional_information_row(self, t=-1): # Get robot and object state. conditional_info_row = np.zeros((1,self.conditional_info_size)) info_value = np.concatenate([self.state_trajectory[t]['robot-state'].reshape((1,-1)),self.state_trajectory[t]['object-state'].reshape((1,-1))],axis=1) conditional_info_row[0,:info_value.shape[1]] = info_value return conditional_info_row def get_transformed_gripper_value(self, gripper_finger_values): gripper_values = (gripper_finger_values - self.gripper_open)/(self.gripper_closed - self.gripper_open) finger_diff = gripper_values[1]-gripper_values[0] gripper_value = np.array(2*finger_diff-1).reshape((1,-1)) return gripper_value def get_current_input_row(self, t=-1): # The state that we want is ... joint state? gripper_finger_values = self.state_trajectory[t]['gripper_qpos'] if len(self.action_trajectory)==0 or t==0: return np.concatenate([self.state_trajectory[0]['joint_pos'].reshape((1,-1)), np.zeros((1,1)), np.zeros((1,self.output_size))],axis=1) elif t==-1: return np.concatenate([self.state_trajectory[t]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), self.action_trajectory[t].reshape((1,-1))],axis=1) else: return np.concatenate([self.state_trajectory[t]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), self.action_trajectory[t-1].reshape((1,-1))],axis=1) def get_latent_input_row(self, t=-1): # If first timestep, z's are 0 and b is 1. if len(self.latent_z_trajectory)==0 or t==0: return np.concatenate([np.zeros((1, self.args.z_dimensions)),np.ones((1,1))],axis=1) if t==-1: return np.concatenate([self.latent_z_trajectory[t].reshape((1,-1)),self.latent_b_trajectory[t].reshape((1,1))],axis=1) elif t>0: t-=1 return np.concatenate([self.latent_z_trajectory[t].reshape((1,-1)),self.latent_b_trajectory[t].reshape((1,1))],axis=1) def assemble_latent_input_row(self, t=-1): # Function to assemble ONE ROW of latent policy input. # Remember, the latent policy takes.. JOINT_states, actions, z's, b's, and then conditional information of robot-state and object-state. # Assemble these three pieces: return np.concatenate([self.get_current_input_row(t), self.get_latent_input_row(t), self.get_conditional_information_row(t)],axis=1) def assemble_latent_inputs(self): # Assemble latent policy inputs over time. return np.concatenate([self.assemble_latent_input_row(t) for t in range(len(self.state_trajectory))],axis=0) def assemble_subpolicy_input_row(self, latent_z=None, t=-1): # Remember, the subpolicy takes.. JOINT_states, actions, z's. # Assemble (remember, without b, and without conditional info). if latent_z is not None: # return np.concatenate([self.get_current_input_row(t), latent_z.reshape((1,-1))],axis=1) # Instead of numpy, use torch. return torch.cat([torch.tensor(self.get_current_input_row(t)).to(device).float(), latent_z.reshape((1,-1))],dim=1) else: # Remember, get_latent_input_row isn't operating on something that needs to be differentiable, so just use numpy and then wrap with torch tensor. # return torch.tensor(np.concatenate([self.get_current_input_row(t), self.get_latent_input_row(t)[:,:-1]],axis=1)).to(device).float() return torch.tensor(np.concatenate([self.get_current_input_row(t), self.latent_z_trajectory[t].reshape((1,-1))],axis=1)).to(device).float() def assemble_subpolicy_inputs(self, latent_z_list=None): # Assemble sub policy inputs over time. if latent_z_list is None: # return np.concatenate([self.assemble_subpolicy_input_row(t) for t in range(len(self.state_trajectory))],axis=0) # Instead of numpy, use torch... return torch.cat([self.assemble_subpolicy_input_row(t=t) for t in range(len(self.state_trajectory))],dim=0) else: # return np.concatenate([self.assemble_subpolicy_input_row(t, latent_z=latent_z_list[t]) for t in range(len(self.state_trajectory))],axis=0) # Instead of numpy, use torch... return torch.cat([self.assemble_subpolicy_input_row(t=t, latent_z=latent_z_list[t]) for t in range(len(self.state_trajectory))],dim=0) def assemble_state_action_row(self, action=None, t=-1): # Get state action input row for critic. if action is not None: gripper_finger_values = self.state_trajectory[t]['gripper_qpos'] gripper_values = (gripper_finger_values - self.gripper_open)/(self.gripper_closed - self.gripper_open) finger_diff = gripper_values[1]-gripper_values[0] gripper_value = np.array(2*finger_diff-1).reshape((1,-1)) # Don't create a torch tensor out of actions. return torch.cat([torch.tensor(self.state_trajectory[t]['joint_pos']).to(device).float().reshape((1,-1)), torch.tensor(gripper_value).to(device).float(), action.reshape((1,-1)), torch.tensor(self.get_conditional_information_row(t)).to(device).float()],dim=1) else: # Just use actions that were used in the trajectory. This doesn't need to be differentiable, because it's going to be used for the critic targets, so just make a torch tensor from numpy. return torch.tensor(np.concatenate([self.get_current_input_row(t), self.get_conditional_information_row(t)],axis=1)).to(device).float() def assemble_state_action_inputs(self, action_list=None): # return np.concatenate([self.assemble_state_action_row(t) for t in range(len(self.state_trajectory))],axis=0) # Instead of numpy use torch. if action_list is not None: return torch.cat([self.assemble_state_action_row(t=t, action=action_list[t]) for t in range(len(self.state_trajectory))],dim=0) else: return torch.cat([self.assemble_state_action_row(t=t) for t in range(len(self.state_trajectory))],dim=0) def get_OU_action_latents(self, policy_hidden=None, latent_hidden=None, random=False, counter=0, previous_z=None, test=False, delta_t=0): # if random==True: # action = 2*np.random.random((self.output_size))-1 # return action, # Get latent policy inputs. latent_policy_inputs = self.assemble_latent_input_row() # Feed in latent policy inputs and get the latent policy outputs (z, b, and hidden) latent_z, latent_b, latent_hidden = self.latent_policy.incremental_reparam_get_actions(torch.tensor(latent_policy_inputs).to(device).float(), greedy=True, hidden=latent_hidden, previous_z=previous_z, delta_t=delta_t) # Perturb latent_z with some noise. z_noise = self.epsilon*torch.randn_like(latent_z) # Add noise to z. latent_z = latent_z + z_noise if latent_b[-1]==1: delta_t = 0 else: delta_t += 1 # Now get subpolicy inputs. # subpolicy_inputs = self.assemble_subpolicy_input_row(latent_z.detach().cpu().numpy()) subpolicy_inputs = self.assemble_subpolicy_input_row(latent_z=latent_z) # Feed in subpolicy inputs and get the subpolicy outputs (a, hidden) predicted_action, hidden = self.policy_network.incremental_reparam_get_actions(torch.tensor(subpolicy_inputs).to(device).float(), greedy=True, hidden=policy_hidden) # Numpy action action = predicted_action[-1].squeeze(0).detach().cpu().numpy() if test: perturbed_action = action else: # Perturb action with noise. if self.args.OU: perturbed_action = self.NoiseProcess.get_action(action, counter) else: # Just regular epsilon perturbed_action = action + self.epsilon*np.random.randn(action.shape[-1]) return perturbed_action, latent_z, latent_b, policy_hidden, latent_hidden, delta_t def rollout(self, random=False, test=False, visualize=False): # Reset the noise process! We forgot to do this! :( self.NoiseProcess.reset() # Reset some data for the rollout. counter = 0 eps_reward = 0. terminal = False self.reset_lists() # Reset environment and add state to the list. state = self.environment.reset() self.state_trajectory.append(state) # If we are going to visualize, get an initial image. if visualize: image = self.environment.sim.render(600,600, camera_name='frontview') self.image_trajectory.append(np.flipud(image)) # Instead of maintaining just one LSTM hidden state... now have one for each policy level. policy_hidden = None latent_hidden = None latent_z = None delta_t = 0 # For number of steps / while we don't terminate: while not(terminal) and counter<self.max_timesteps: # Get the action to execute, b, z, and hidden states. action, latent_z, latent_b, policy_hidden, latent_hidden, delta_t = self.get_OU_action_latents(policy_hidden=policy_hidden, latent_hidden=latent_hidden, random=random, counter=counter, previous_z=latent_z, test=test, delta_t=delta_t) if self.args.debug: print("Embed in Trajectory Rollout.") embed() # Take a step in the environment. next_state, onestep_reward, terminal, success = self.environment.step(action) # Append everything to lists. self.state_trajectory.append(next_state) self.action_trajectory.append(action) self.reward_trajectory.append(onestep_reward) self.terminal_trajectory.append(terminal) self.latent_z_trajectory.append(latent_z.detach().cpu().numpy()) self.latent_b_trajectory.append(latent_b.detach().cpu().numpy()) # Copy next state into state. state = copy.deepcopy(next_state) # Counter counter += 1 # Append image to image list if we are visualizing. if visualize: image = self.environment.sim.render(600,600, camera_name='frontview') self.image_trajectory.append(np.flipud(image)) # Now that the episode is done, compute cummulative rewards... self.cummulative_rewards = copy.deepcopy(np.cumsum(np.array(self.reward_trajectory)[::-1])[::-1]) self.episode_reward_statistics = copy.deepcopy(self.cummulative_rewards[0]) print("Rolled out an episode for ",counter," timesteps.") print("Achieved reward: ", self.episode_reward_statistics) # NOW construct an episode out of this.. self.episode = RLUtils.HierarchicalEpisode(self.state_trajectory, self.action_trajectory, self.reward_trajectory, self.terminal_trajectory, self.latent_z_trajectory, self.latent_b_trajectory) def process_episode(self, episode): # Assemble states, actions, targets. # First reset all the lists from the rollout now that they've been written to memory. self.reset_lists() # Now set the lists. self.state_trajectory = episode.state_list self.action_trajectory = episode.action_list self.reward_trajectory = episode.reward_list self.terminal_trajectory = episode.terminal_list self.latent_z_trajectory = episode.latent_z_list self.latent_b_trajectory = episode.latent_b_list # Get summed reward for statistics. self.batch_reward_statistics += sum(self.reward_trajectory) # Assembling state_action inputs to feed to the Critic network for TARGETS. (These don't need to, and in fact shouldn't, be differentiable). self.state_action_inputs = torch.tensor(self.assemble_state_action_inputs()).to(device).float() def update_policies(self): # There are a few steps that need to be taken. # 1) Assemble latent policy inputs. # 2) Get differentiable latent z's from latent policy. # 3) Assemble subpolicy inputs with these differentiable latent z's. # 4) Get differentiable actions from subpolicy. # 5) Assemble critic inputs with these differentiable actions. # 6) Now compute critic predictions that are differentiable w.r.t. sub and latent policies. # 7) Backprop. # 1) Assemble latent policy inputs. # Remember, these are the only things that don't need to be differentiable. self.latent_policy_inputs = torch.tensor(self.assemble_latent_inputs()).to(device).float() # 2) Feed this into latent policy. latent_z, latent_b, _ = self.latent_policy.incremental_reparam_get_actions(torch.tensor(self.latent_policy_inputs).to(device).float(), greedy=True) # 3) Assemble subpolicy inputs with diff latent z's. Remember, this needs to be differentiable. Modify the assembling to torch, WITHOUT creating new torch tensors of z. self.subpolicy_inputs = self.assemble_subpolicy_inputs(latent_z_list=latent_z) # 4) Feed into subpolicy. diff_actions, _ = self.policy_network.incremental_reparam_get_actions(self.subpolicy_inputs, greedy=True) # 5) Now assemble critic inputs. self.differentiable_critic_inputs = self.assemble_state_action_inputs(action_list=diff_actions) # 6) Compute critic predictions. self.policy_loss = - self.critic_network.forward(self.differentiable_critic_inputs[:-1]).mean() # Also log statistics. self.policy_loss_statistics += self.policy_loss.clone().detach().cpu().numpy().mean() # 7) Now backprop into policy. self.policy_optimizer.zero_grad() self.policy_loss.backward() self.policy_optimizer.step() class PolicyManager_DMPBaselines(PolicyManager_Joint): # Make it inherit joint policy manager init. def __init__(self, number_policies=4, dataset=None, args=None): super(PolicyManager_DMPBaselines, self).__init__(number_policies, dataset, args) def setup_DMP_parameters(self): self.output_size self.number_kernels = 15 self.window = 15 self.kernel_bandwidth = 1.5 self.number_kernels = self.args.baseline_kernels self.window = self.args.baseline_window self.kernel_bandwidth = self.args.baseline_kernel_bandwidth def get_MSE(self, sample_traj, trajectory_rollout): # Evaluate MSE between reconstruction and sample trajectory. return ((sample_traj-trajectory_rollout)**2).mean() def get_FlatDMP_rollout(self, sample_traj, velocities=None): # Reinitialize DMP Class. self.dmp = DMP.DMP(time_steps=len(sample_traj), num_ker=self.number_kernels, dimensions=self.state_size, kernel_bandwidth=self.kernel_bandwidth, alphaz=5., time_basis=True) # Learn DMP for particular trajectory. self.dmp.learn_DMP(sample_traj) # Get rollout. if velocities is not None: trajectory_rollout = self.dmp.rollout(sample_traj[0],sample_traj[-1],velocities) else: trajectory_rollout = self.dmp.rollout(sample_traj[0],sample_traj[-1],np.zeros((self.state_size))) return trajectory_rollout def evaluate_FlatDMPBaseline_iteration(self, index, sample_traj): trajectory_rollout = self.get_FlatDMP_rollout(sample_traj) self.FlatDMP_distances[index] = self.get_MSE(sample_traj, trajectory_rollout) def get_AccelerationChangepoint_rollout(self, sample_traj): # Get magnitudes of acceleration across time. acceleration_norm = np.linalg.norm(np.diff(sample_traj,n=2,axis=0),axis=1) # Get velocities. velocities = np.diff(sample_traj,n=1,axis=0,prepend=sample_traj[0].reshape((1,-1))) # Find peaks with minimum length = 8. window = self.window segmentation = find_peaks(acceleration_norm, distance=window)[0] if len(segmentation)==0: segmentation = np.array([0,len(sample_traj)]) else: # Add start and end to peaks. if segmentation[0]<window: segmentation[0] = 0 else: segmentation = np.insert(segmentation, 0, 0) # If end segmentation is within WINDOW of end, change segment to end. if (len(sample_traj) - segmentation[-1])<window: segmentation[-1] = len(sample_traj) else: segmentation = np.insert(segmentation, len(segmentation), sample_traj.shape[0]) trajectory_rollout = np.zeros_like(sample_traj) # For every segment. for i in range(len(segmentation)-1): # Get trajectory segment. trajectory_segment = sample_traj[segmentation[i]:segmentation[i+1]] # Get rollout. # Feed velocities into rollout. # First velocity is 0. segment_rollout = self.get_FlatDMP_rollout(trajectory_segment, velocities[segmentation[i]]) # Copy segment rollout into full rollout. trajectory_rollout[segmentation[i]:segmentation[i+1]] = segment_rollout return trajectory_rollout def evaluate_AccelerationChangepoint_iteration(self, index, sample_traj): trajectory_rollout = self.get_AccelerationChangepoint_rollout(sample_traj) self.AccChangepointDMP_distances[index] = self.get_MSE(sample_traj, trajectory_rollout) def evaluate_MeanRegression_iteration(self, index, sample_traj): mean = sample_traj.mean(axis=0) self.MeanRegression_distances[index] = ((sample_traj-mean)**2).mean() def get_GreedyDMP_rollout(self, sample_traj): pass def evaluate_across_testset(self): self.setup_DMP_parameters() # Create array for distances. self.FlatDMP_distances = -np.ones((self.test_set_size)) self.AccChangepointDMP_distances = -np.ones((self.test_set_size)) self.MeanRegression_distances = -np.ones((self.test_set_size)) self.lengths = -np.ones((self.test_set_size)) for i in range(self.test_set_size): # Set actual index. index = i + len(self.dataset) - self.test_set_size if i%100==0: print("Evaluating Datapoint ", i) # Get trajectory. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) if sample_traj is not None: # Set sample trajectory to ignore gripper. if self.args.data=='MIME': sample_traj = sample_traj[:,:-2] self.state_size = 14 elif self.args.data=='Roboturk' or self.args.data=='OrigRoboturk' or self.args.data=='FullRoboturk': sample_traj = sample_traj[:,:-1] self.state_size = 7 # sample_traj = gaussian_filter1d(sample_traj,3.5,axis=0,mode='nearest') # elif self.args.data=='Mocap': # sample_traj = sample_traj self.lengths[i] = len(sample_traj) # Eval Flat DMP. self.evaluate_FlatDMPBaseline_iteration(i, sample_traj) # Eval AccChange DMP Baseline. self.evaluate_AccelerationChangepoint_iteration(i, sample_traj) # Evaluate Mean regression Basleine. self.evaluate_MeanRegression_iteration(i, sample_traj) # self.mean_distance = self.distances[self.distances>0].mean() print("Average Distance of Flat DMP Baseline: ", self.FlatDMP_distances[self.FlatDMP_distances>0].mean()) print("Average Distance of Acceleration Changepoint Baseline: ", self.AccChangepointDMP_distances[self.AccChangepointDMP_distances>0].mean()) print("Average Distance of Mean Regression Baseline: ", self.MeanRegression_distances[self.MeanRegression_distances>0].mean()) embed() class PolicyManager_Imitation(PolicyManager_Pretrain, PolicyManager_BaselineRL): def __init__(self, number_policies=4, dataset=None, args=None): super(PolicyManager_Imitation, self).__init__(number_policies=number_policies, dataset=dataset, args=args) # Explicitly run inits to make sure inheritance is good. # PolicyManager_Pretrain.__init__(self, number_policies, dataset, args) # PolicyManager_BaselineRL.__init__(self, args) # Set train only policy to true. self.args.train_only_policy = 1 # Get task index from task name. self.demo_task_index = np.where(np.array(self.dataset.environment_names)==self.args.environment)[0][0] def setup(self): # Fixing seeds. np.random.seed(seed=0) torch.manual_seed(0) np.set_printoptions(suppress=True,precision=2) # Create index list. extent = self.dataset.get_number_task_demos(self.demo_task_index) self.index_list = np.arange(0,extent) # Create Mujoco environment. self.environment = robosuite.make(self.args.environment, has_renderer=False, use_camera_obs=False, reward_shaping=self.args.shaped_reward) self.gripper_open = np.array([0.0115, -0.0115]) self.gripper_closed = np.array([-0.020833, 0.020833]) # Get input and output sizes from these environments, etc. self.obs = self.environment.reset() self.output_size = self.environment.action_spec[0].shape[0] self.state_size = self.obs['robot-state'].shape[0] + self.obs['object-state'].shape[0] self.conditional_info_size = self.state_size # Input size.. state, action, conditional self.input_size = self.state_size + self.output_size*2 # Create networks. self.create_networks() self.create_training_ops() self.initialize_plots() self.total_rewards = 0. # Create Noise process. self.NoiseProcess = RLUtils.OUNoise(self.output_size) def create_networks(self): # We don't need a decoder. # Policy Network is the only thing we need. self.policy_network = ContinuousPolicyNetwork(self.input_size, self.hidden_size, self.output_size, self.args, self.number_layers).to(device) def save_all_models(self, suffix): logdir = os.path.join(self.args.logdir, self.args.name) savedir = os.path.join(logdir,"saved_models") if not(os.path.isdir(savedir)): os.mkdir(savedir) save_object = {} save_object['Policy_Network'] = self.policy_network.state_dict() torch.save(save_object,os.path.join(savedir,"Model_"+suffix)) def load_all_models(self, path, only_policy=False): load_object = torch.load(path) self.policy_network.load_state_dict(load_object['Policy_Network']) def update_policies(self, logprobabilities): # Set gradients to 0. self.optimizer.zero_grad() # Set policy loss. self.policy_loss = -logprobabilities[:-1].mean() # Backward. self.policy_loss.backward() # Take a step. self.optimizer.step() def update_plots(self, counter, logprobabilities): self.tf_logger.scalar_summary('Policy LogLikelihood', torch.mean(logprobabilities), counter) if counter%self.args.display_freq==0: # print("Embedding in Update Plots.") # Rollout policy. self.rollout(random=False, test=True, visualize=True) self.tf_logger.gif_summary("Rollout Trajectory", [np.array(self.image_trajectory)], counter) def run_iteration(self, counter, i): self.set_epoch(counter) self.iter = counter ############# (0) ############# # Get sample we're going to train on. sample_traj, sample_action_seq, concatenated_traj, old_concatenated_traj = self.collect_inputs(i) if sample_traj is not None: # Now concatenate info with... conditional_information policy_inputs = np.concatenate([concatenated_traj, self.conditional_information], axis=1) # Add zeros to the last action, so that we evaluate likelihood correctly. Since we're using demo actions, no need. # padded_action_seq = np.concatenate([sample_action_seq, np.zeros((1,self.output_size))],axis=0) # Feed concatenated trajectory into the policy. logprobabilities, _ = self.policy_network.forward(torch.tensor(policy_inputs).to(device).float(), sample_action_seq) if self.args.train: if self.args.debug: if self.iter%self.args.debug==0: print("Embedding in Train Function.") embed() # Update policy. self.update_policies(logprobabilities) # Update plots. self.update_plots(counter, logprobabilities) def get_transformed_gripper_value(self, gripper_finger_values): gripper_values = (gripper_finger_values - self.gripper_open)/(self.gripper_closed - self.gripper_open) finger_diff = gripper_values[1]-gripper_values[0] gripper_value = np.array(2*finger_diff-1).reshape((1,-1)) return gripper_value def get_state_action_row(self, t=-1): # The state that we want is ... joint state? gripper_finger_values = self.state_trajectory[t]['gripper_qpos'] if len(self.action_trajectory)==0 or t==0: return np.concatenate([self.state_trajectory[0]['joint_pos'].reshape((1,-1)), np.zeros((1,1)), np.zeros((1,self.output_size))],axis=1) elif t==-1: return np.concatenate([self.state_trajectory[t]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), self.action_trajectory[t].reshape((1,-1))],axis=1) else: return np.concatenate([self.state_trajectory[t]['joint_pos'].reshape((1,-1)), self.get_transformed_gripper_value(gripper_finger_values), self.action_trajectory[t-1].reshape((1,-1))],axis=1) def get_current_input_row(self, t=-1): # Rewrite this funciton so that the baselineRL Rollout class can still use it here... # First get conditional information. # Get robot and object state. conditional_info = np.concatenate([self.state_trajectory[t]['robot-state'].reshape((1,-1)),self.state_trajectory[t]['object-state'].reshape((1,-1))],axis=1) # Get state actions.. state_action = self.get_state_action_row() # Concatenate. input_row = np.concatenate([state_action, conditional_info],axis=1) return input_row def evaluate(self, epoch=None, model=None): if model is not None: self.load_all_models(model) model_epoch = int(os.path.split(self.args.model)[1].lstrip("Model_epoch")) else: model_epoch = epoch self.total_rewards = np.zeros((self.number_test_episodes)) # Set parameters like epsilon. self.set_parameters(0, evaluate=True) # For number of test episodes. for eps in range(self.number_test_episodes): # Now run a rollout. self.rollout(random=False, test=True) self.total_rewards[eps] = np.array(self.reward_trajectory).sum() # Create save directory to save these results. upper_dir_name = os.path.join(self.args.logdir,self.args.name,"MEval") if not(os.path.isdir(upper_dir_name)): os.mkdir(upper_dir_name) self.dir_name = os.path.join(self.args.logdir,self.args.name,"MEval","m{0}".format(model_epoch)) if not(os.path.isdir(self.dir_name)): os.mkdir(self.dir_name) np.save(os.path.join(self.dir_name,"Total_Rewards_{0}.npy".format(self.args.name)),self.total_rewards) np.save(os.path.join(self.dir_name,"Mean_Reward_{0}.npy".format(self.args.name)),self.total_rewards.mean()) # Add average reward to tensorboard. self.tf_logger.scalar_summary('Average Reward', self.total_rewards.mean(), model_epoch) def train(self, model=None): if model: print("Loading model in training.") self.load_all_models(model) counter = 0 # For number of training epochs. for e in range(self.number_epochs): print("Starting Epoch: ",e) if e%self.args.save_freq==0: self.save_all_models("epoch{0}".format(e)) # self.automatic_evaluation(e) np.random.shuffle(self.index_list) if self.args.debug: print("Embedding in Outer Train Function.") embed() # For every item in the epoch: if self.args.setting=='imitation': extent = self.dataset.get_number_task_demos(self.demo_task_index) else: extent = len(self.dataset)-self.test_set_size for i in range(extent): print("Epoch: ",e," Trajectory:",i, "Datapoint: ", self.index_list[i]) self.run_iteration(counter, self.index_list[i]) counter = counter+1 if e%self.args.eval_freq==0: self.evaluate(e) self.write_and_close() class PolicyManager_Transfer(PolicyManager_BaseClass): def __init__(self, args=None, source_dataset=None, target_dataset=None): super(PolicyManager_Transfer, self).__init__() # The inherited functions refer to self.args. Also making this to make inheritance go smooth. self.args = args # Before instantiating policy managers of source or target domains; create copies of args with data attribute changed. self.source_args = copy.deepcopy(args) self.source_args.data = self.source_args.source_domain self.source_dataset = source_dataset self.target_args = copy.deepcopy(args) self.target_args.data = self.target_args.target_domain self.target_dataset = target_dataset # Now create two instances of policy managers for each domain. Call them source and target domain policy managers. self.source_manager = PolicyManager_Pretrain(dataset=self.source_dataset, args=self.source_args) self.target_manager = PolicyManager_Pretrain(dataset=self.target_dataset, args=self.target_args) self.source_dataset_size = len(self.source_manager.dataset) - self.source_manager.test_set_size self.target_dataset_size = len(self.target_manager.dataset) - self.target_manager.test_set_size # Now create variables that we need. self.number_epochs = 200 self.extent = max(self.source_dataset_size, self.target_dataset_size) # Now setup networks for these PolicyManagers. self.source_manager.setup() self.target_manager.setup() # Now define other parameters that will be required for the discriminator, etc. self.input_size = self.args.z_dimensions self.hidden_size = self.args.hidden_size self.output_size = 2 self.learning_rate = self.args.learning_rate def set_iteration(self, counter): # Based on what phase of training we are in, set discriminability loss weight, etc. # Phase 1 of training: Don't train discriminator at all, set discriminability loss weight to 0. if counter<self.args.training_phase_size: self.discriminability_loss_weight = 0. self.vae_loss_weight = 1. self.training_phase = 1 self.skip_vae = False self.skip_discriminator = True # Phase 2 of training: Train the discriminator, and set discriminability loss weight to original. else: self.discriminability_loss_weight = self.args.discriminability_weight self.vae_loss_weight = self.args.vae_loss_weight # Now make discriminator and vae train in alternating fashion. # Set number of iterations of alteration. # self.alternating_phase_size = self.args.alternating_phase_size*self.extent # # If odd epoch, train discriminator. (Just so that we start training discriminator first). # if (counter/self.alternating_phase_size)%2==1: # self.skip_discriminator = False # self.skip_vae = True # # Otherwise train VAE. # else: # self.skip_discriminator = True # self.skip_vae = False # Train discriminator for k times as many steps as VAE. Set args.alternating_phase_size as 1 for this. if (counter/self.args.alternating_phase_size)%(self.args.discriminator_phase_size+1)>=1: print("Training Discriminator.") self.skip_discriminator = False self.skip_vae = True # Otherwise train VAE. else: print("Training VAE.") self.skip_discriminator = True self.skip_vae = False self.training_phase = 2 self.source_manager.set_epoch(counter) self.target_manager.set_epoch(counter) def create_networks(self): # Call create networks from each of the policy managers. self.source_manager.create_networks() self.target_manager.create_networks() # Now must also create discriminator. self.discriminator_network = DiscreteMLP(self.input_size, self.hidden_size, self.output_size).to(device) def create_training_ops(self): # # Call create training ops from each of the policy managers. Need these optimizers, because the encoder-decoders get a different loss than the discriminator. self.source_manager.create_training_ops() self.target_manager.create_training_ops() # Create BCE loss object. # self.BCE_loss = torch.nn.BCELoss(reduction='None') self.negative_log_likelihood_loss_function = torch.nn.NLLLoss(reduction='none') # Create common optimizer for source, target, and discriminator networks. self.discriminator_optimizer = torch.optim.Adam(self.discriminator_network.parameters(),lr=self.learning_rate) def save_all_models(self, suffix): self.logdir = os.path.join(self.args.logdir, self.args.name) self.savedir = os.path.join(self.logdir,"saved_models") if not(os.path.isdir(self.savedir)): os.mkdir(self.savedir) self.save_object = {} # Source self.save_object['Source_Policy_Network'] = self.source_manager.policy_network.state_dict() self.save_object['Source_Encoder_Network'] = self.source_manager.encoder_network.state_dict() # Target self.save_object['Target_Policy_Network'] = self.target_manager.policy_network.state_dict() self.save_object['Target_Encoder_Network'] = self.target_manager.encoder_network.state_dict() # Discriminator self.save_object['Discriminator_Network'] = self.discriminator_network.state_dict() torch.save(self.save_object,os.path.join(self.savedir,"Model_"+suffix)) def load_all_models(self, path): self.load_object = torch.load(path) # Source self.source_manager.policy_network.load_state_dict(self.load_object['Source_Policy_Network']) self.source_manager.encoder_network.load_state_dict(self.load_object['Source_Encoder_Network']) # Target self.target_manager.policy_network.load_state_dict(self.load_object['Target_Policy_Network']) self.target_manager.encoder_network.load_state_dict(self.load_object['Target_Encoder_Network']) # Discriminator self.discriminator_network.load_state_dict(self.load_object['Discriminator_Network']) def get_domain_manager(self, domain): # Create a list, and just index into this list. domain_manager_list = [self.source_manager, self.target_manager] return domain_manager_list[domain] def get_trajectory_segment_tuple(self, source_manager, target_manager): # Sample indices. source_index = np.random.randint(0, high=self.source_dataset_size) target_index = np.random.randint(0, high=self.target_dataset_size) # Get trajectory segments. source_trajectory_segment, source_action_seq, _ = source_manager.get_trajectory_segment(source_manager.index_list[source_index]) target_trajectory_segment, target_action_seq, _ = target_manager.get_trajectory_segment(target_manager.index_list[target_index]) return source_trajectory_segment, source_action_seq, target_trajectory_segment, target_action_seq def encode_decode_trajectory(self, policy_manager, i, return_trajectory=False, trajectory_input=None): # This should basically replicate the encode-decode steps in run_iteration of the Pretrain_PolicyManager. ############# (0) ############# # Sample trajectory segment from dataset. # Check if the index is too big. If yes, just sample randomly. if i >= len(policy_manager.dataset): i = np.random.randint(0, len(policy_manager.dataset)) if trajectory_input is not None: # Grab trajectory segment from tuple. torch_traj_seg = trajectory_input['target_trajectory_rollout'] else: trajectory_segment, sample_action_seq, sample_traj = policy_manager.get_trajectory_segment(i) # Torchify trajectory segment. torch_traj_seg = torch.tensor(trajectory_segment).to(device).float() if trajectory_segment is not None: ############# (1) ############# # Encode trajectory segment into latent z. latent_z, encoder_loglikelihood, encoder_entropy, kl_divergence = policy_manager.encoder_network.forward(torch_traj_seg, policy_manager.epsilon) ########## (2) & (3) ########## # Feed latent z and trajectory segment into policy network and evaluate likelihood. latent_z_seq, latent_b = policy_manager.construct_dummy_latents(latent_z) # If we are using the pre-computed trajectory input, (in second encode_decode call, from target trajectory to target latent z.) # Don't assemble trajectory in numpy, just take the previous subpolicy_inputs, and then clone it and replace the latent z in it. if trajectory_input is not None: # Now assigned trajectory_input['target_subpolicy_inputs'].clone() to SubPolicy_inputs, and then replace the latent z's. subpolicy_inputs = trajectory_input['target_subpolicy_inputs'].clone() subpolicy_inputs[:,2*self.state_dim:-1] = latent_z_seq # Now get "sample_action_seq" for forward function. sample_action_seq = subpolicy_inputs[:,self.state_dim:2*self.state_dim].clone() else: _, subpolicy_inputs, sample_action_seq = policy_manager.assemble_inputs(trajectory_segment, latent_z_seq, latent_b, sample_action_seq) # Policy net doesn't use the decay epislon. (Because we never sample from it in training, only rollouts.) loglikelihoods, _ = policy_manager.policy_network.forward(subpolicy_inputs, sample_action_seq) loglikelihood = loglikelihoods[:-1].mean() if return_trajectory: return sample_traj, latent_z else: return subpolicy_inputs, latent_z, loglikelihood, kl_divergence if return_trajectory: return None, None else: return None, None, None, None def update_plots(self, counter, viz_dict): # VAE Losses. self.tf_logger.scalar_summary('Policy LogLikelihood', self.likelihood_loss, counter) self.tf_logger.scalar_summary('Discriminability Loss', self.discriminability_loss, counter) self.tf_logger.scalar_summary('Encoder KL', self.encoder_KL, counter) self.tf_logger.scalar_summary('VAE Loss', self.VAE_loss, counter) self.tf_logger.scalar_summary('Total VAE Loss', self.total_VAE_loss, counter) self.tf_logger.scalar_summary('Domain', viz_dict['domain'], counter) # Plot discriminator values after we've started training it. if self.training_phase>1: # Discriminator Loss. self.tf_logger.scalar_summary('Discriminator Loss', self.discriminator_loss, counter) # Compute discriminator prob of right action for logging. self.tf_logger.scalar_summary('Discriminator Probability', viz_dict['discriminator_probs'], counter) # If we are displaying things: if counter%self.args.display_freq==0: self.gt_gif_list = [] self.rollout_gif_list = [] # Now using both TSNE and PCA. # Plot source, target, and shared embeddings via TSNE. tsne_source_embedding, tsne_target_embedding, tsne_combined_embeddings, tsne_combined_traj_embeddings = self.get_embeddings(projection='tsne') # Now actually plot the images. self.tf_logger.image_summary("TSNE Source Embedding", [tsne_source_embedding], counter) self.tf_logger.image_summary("TSNE Target Embedding", [tsne_target_embedding], counter) self.tf_logger.image_summary("TSNE Combined Embeddings", [tsne_combined_embeddings], counter) # Plot source, target, and shared embeddings via PCA. pca_source_embedding, pca_target_embedding, pca_combined_embeddings, pca_combined_traj_embeddings = self.get_embeddings(projection='pca') # Now actually plot the images. self.tf_logger.image_summary("PCA Source Embedding", [pca_source_embedding], counter) self.tf_logger.image_summary("PCA Target Embedding", [pca_target_embedding], counter) self.tf_logger.image_summary("PCA Combined Embeddings", [pca_combined_embeddings], counter) if self.args.source_domain=='ContinuousNonZero' and self.args.target_domain=='ContinuousNonZero': self.tf_logger.image_summary("PCA Combined Trajectory Embeddings", [pca_combined_traj_embeddings], counter) self.tf_logger.image_summary("TSNE Combined Trajectory Embeddings", [tsne_combined_traj_embeddings], counter) # We are also going to log Ground Truth trajectories and their reconstructions in each of the domains, to make sure our networks are learning. # Should be able to use the policy manager's functions to do this. source_trajectory, source_reconstruction, target_trajectory, target_reconstruction = self.get_trajectory_visuals() if source_trajectory is not None: # Now actually plot the images. if self.args.source_domain=='ContinuousNonZero': self.tf_logger.image_summary("Source Trajectory", [source_trajectory], counter) self.tf_logger.image_summary("Source Reconstruction", [source_reconstruction], counter) else: self.tf_logger.gif_summary("Source Trajectory", [source_trajectory], counter) self.tf_logger.gif_summary("Source Reconstruction", [source_reconstruction], counter) if self.args.target_domain=='ContinuousNonZero': self.tf_logger.image_summary("Target Trajectory", [target_trajectory], counter) self.tf_logger.image_summary("Target Reconstruction", [target_reconstruction], counter) else: self.tf_logger.gif_summary("Target Trajectory", [target_trajectory], counter) self.tf_logger.gif_summary("Target Reconstruction", [target_reconstruction], counter) if self.args.source_domain=='ContinuousNonZero' and self.args.target_domain=='ContinuousNonZero': # Evaluate metrics and plot them. # self.evaluate_correspondence_metrics(computed_sets=False) # Actually, we've probably computed trajectory and latent sets. self.evaluate_correspondence_metrics() self.tf_logger.scalar_summary('Source To Target Trajectory Distance', self.source_target_trajectory_distance, counter) self.tf_logger.scalar_summary('Target To Source Trajectory Distance', self.target_source_trajectory_distance, counter) def get_transform(self, latent_z_set, projection='tsne', shared=False): if shared: # If this set of z's contains z's from both source and target domains, mean-std normalize them independently. normed_z = np.zeros_like(latent_z_set) # Normalize source. source_mean = latent_z_set[:self.N].mean(axis=0) source_std = latent_z_set[:self.N].std(axis=0) normed_z[:self.N] = (latent_z_set[:self.N]-source_mean)/source_std # Normalize target. target_mean = latent_z_set[self.N:].mean(axis=0) target_std = latent_z_set[self.N:].std(axis=0) normed_z[self.N:] = (latent_z_set[self.N:]-target_mean)/target_std else: # Just normalize z's. mean = latent_z_set.mean(axis=0) std = latent_z_set.std(axis=0) normed_z = (latent_z_set-mean)/std if projection=='tsne': # Use TSNE to project the data: tsne = skl_manifold.TSNE(n_components=2,random_state=0) embedded_zs = tsne.fit_transform(normed_z) scale_factor = 1 scaled_embedded_zs = scale_factor*embedded_zs return scaled_embedded_zs, tsne elif projection=='pca': # Use PCA to project the data: pca_object = PCA(n_components=2) embedded_zs = pca_object.fit_transform(normed_z) return embedded_zs, pca_object def transform_zs(self, latent_z_set, transforming_object): # Simply just transform according to a fit transforming_object. return transforming_object.transform(latent_z_set) # @profile def get_embeddings(self, projection='tsne'): # Function to visualize source, target, and combined embeddings: self.N = 100 self.source_latent_zs = np.zeros((self.N,self.args.z_dimensions)) self.target_latent_zs = np.zeros((self.N,self.args.z_dimensions)) self.shared_latent_zs = np.zeros((2*self.N,self.args.z_dimensions)) # For N data points: for i in range(self.N): # Get corresponding latent z's of source and target domains. _, source_z, _, _ = self.encode_decode_trajectory(self.source_manager, i) _, target_z, _, _ = self.encode_decode_trajectory(self.target_manager, i) if source_z is not None: self.source_latent_zs[i] = source_z.detach().cpu().numpy() self.shared_latent_zs[i] = source_z.detach().cpu().numpy() if target_z is not None: self.target_latent_zs[i] = target_z.detach().cpu().numpy() self.shared_latent_zs[self.N+i] = target_z.detach().cpu().numpy() if projection=='tsne': # Use TSNE to transform data. source_embedded_zs, _ = self.get_transform(self.source_latent_zs, projection) target_embedded_zs, _ = self.get_transform(self.target_latent_zs, projection) shared_embedded_zs, _ = self.get_transform(self.shared_latent_zs, projection, shared=True) elif projection=='pca': # Now fit PCA to source. source_embedded_zs, pca = self.get_transform(self.source_latent_zs, projection) target_embedded_zs = self.transform_zs(self.target_latent_zs, pca) shared_embedded_zs = np.concatenate([source_embedded_zs, target_embedded_zs],axis=0) source_image = self.plot_embedding(source_embedded_zs, "Source_Embedding") target_image = self.plot_embedding(target_embedded_zs, "Target_Embedding") shared_image = self.plot_embedding(shared_embedded_zs, "Shared_Embedding", shared=True) toy_shared_embedding_image = None if self.args.source_domain=='ContinuousNonZero' and self.args.target_domain=='ContinuousNonZero': toy_shared_embedding_image = self.plot_embedding(shared_embedded_zs, "Toy_Shared_Traj_Embedding", shared=True, trajectory=True) return source_image, target_image, shared_image, toy_shared_embedding_image # @profile def plot_embedding(self, embedded_zs, title, shared=False, trajectory=False): fig = plt.figure() ax = fig.gca() if shared: colors = 0.2*np.ones((2*self.N)) colors[self.N:] = 0.8 else: colors = 0.2*np.ones((self.N)) if trajectory: # Create a scatter plot of the embedding. self.source_manager.get_trajectory_and_latent_sets() self.target_manager.get_trajectory_and_latent_sets() ratio = 0.4 color_scaling = 15 # Assemble shared trajectory set. traj_length = len(self.source_manager.trajectory_set[0,:,0]) self.shared_trajectory_set = np.zeros((2*self.N, traj_length, 2)) self.shared_trajectory_set[:self.N] = self.source_manager.trajectory_set self.shared_trajectory_set[self.N:] = self.target_manager.trajectory_set color_range_min = 0.2*color_scaling color_range_max = 0.8*color_scaling+traj_length-1 for i in range(2*self.N): ax.scatter(embedded_zs[i,0]+ratio*self.shared_trajectory_set[i,:,0],embedded_zs[i,1]+ratio*self.shared_trajectory_set[i,:,1],c=colors[i]*color_scaling+range(traj_length),cmap='jet',vmin=color_range_min,vmax=color_range_max) else: # Create a scatter plot of the embedding. ax.scatter(embedded_zs[:,0],embedded_zs[:,1],c=colors,vmin=0,vmax=1,cmap='jet') # Title. ax.set_title("{0}".format(title),fontdict={'fontsize':40}) fig.canvas.draw() # Grab image. width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(int(height), int(width), 3) image = np.transpose(image, axes=[2,0,1]) return image def get_trajectory_visuals(self): i = np.random.randint(0,high=self.extent) # First get a trajectory, starting point, and latent z. source_trajectory, source_latent_z = self.encode_decode_trajectory(self.source_manager, i, return_trajectory=True) if source_trajectory is not None: # Reconstruct using the source domain manager. _, source_trajectory_image, source_reconstruction_image = self.source_manager.get_robot_visuals(0, source_latent_z, source_trajectory, return_image=True) # Now repeat the same for target domain - First get a trajectory, starting point, and latent z. target_trajectory, target_latent_z = self.encode_decode_trajectory(self.target_manager, i, return_trajectory=True) # Reconstruct using the target domain manager. _, target_trajectory_image, target_reconstruction_image = self.target_manager.get_robot_visuals(0, target_latent_z, target_trajectory, return_image=True) return np.array(source_trajectory_image), np.array(source_reconstruction_image), np.array(target_trajectory_image), np.array(target_reconstruction_image) else: return None, None, None, None def update_networks(self, domain, policy_manager, policy_loglikelihood, encoder_KL, discriminator_loglikelihood, latent_z): ####################### # Update VAE portion. ####################### # Zero out gradients of encoder and decoder (policy). policy_manager.optimizer.zero_grad() # Compute VAE loss on the current domain as likelihood plus weighted KL. self.likelihood_loss = -policy_loglikelihood.mean() self.encoder_KL = encoder_KL.mean() self.VAE_loss = self.likelihood_loss + self.args.kl_weight*self.encoder_KL # Compute discriminability loss for encoder (implicitly ignores decoder). # Pretend the label was the opposite of what it is, and train the encoder to make the discriminator think this was what was true. # I.e. train encoder to make discriminator maximize likelihood of wrong label. self.discriminability_loss = self.negative_log_likelihood_loss_function(discriminator_loglikelihood.squeeze(1), torch.tensor(1-domain).to(device).long().view(1,)) # Total encoder loss: self.total_VAE_loss = self.vae_loss_weight*self.VAE_loss + self.discriminability_loss_weight*self.discriminability_loss if not(self.skip_vae): # Go backward through the generator (encoder / decoder), and take a step. self.total_VAE_loss.backward() policy_manager.optimizer.step() ####################### # Update Discriminator. ####################### # Zero gradients of discriminator. self.discriminator_optimizer.zero_grad() # If we tried to zero grad the discriminator and then use NLL loss on it again, Pytorch would cry about going backward through a part of the graph that we already \ # went backward through. Instead, just pass things through the discriminator again, but this time detaching latent_z. discriminator_logprob, discriminator_prob = self.discriminator_network(latent_z.detach()) # Compute discriminator loss for discriminator. self.discriminator_loss = self.negative_log_likelihood_loss_function(discriminator_logprob.squeeze(1), torch.tensor(domain).to(device).long().view(1,)) if not(self.skip_discriminator): # Now go backward and take a step. self.discriminator_loss.backward() self.discriminator_optimizer.step() # @profile def run_iteration(self, counter, i): # Phases: # Phase 1: Train encoder-decoder for both domains initially, so that discriminator is not fed garbage. # Phase 2: Train encoder, decoder for each domain, and discriminator concurrently. # Algorithm: # For every epoch: # # For every datapoint: # # 1) Select which domain to use (source or target, i.e. with 50% chance, select either domain). # # 2) Get trajectory segments from desired domain. # # 3) Encode trajectory segments into latent z's and compute likelihood of trajectory actions under the decoder. # # 4) Feed into discriminator, get likelihood of each domain. # # 5) Compute and apply gradient updates. # Remember to make domain agnostic function calls to encode, feed into discriminator, get likelihoods, etc. # (0) Setup things like training phases, epislon values, etc. self.set_iteration(counter) # (1) Select which domain to run on. This is supervision of discriminator. domain = np.random.binomial(1,0.5) # (1.5) Get domain policy manager. policy_manager = self.get_domain_manager(domain) # (2) & (3) Get trajectory segment and encode and decode. subpolicy_inputs, latent_z, loglikelihood, kl_divergence = self.encode_decode_trajectory(policy_manager, i) if latent_z is not None: # (4) Feed latent z's to discriminator, and get discriminator likelihoods. discriminator_logprob, discriminator_prob = self.discriminator_network(latent_z) # (5) Compute and apply gradient updates. self.update_networks(domain, policy_manager, loglikelihood, kl_divergence, discriminator_logprob, latent_z) # Now update Plots. viz_dict = {'domain': domain, 'discriminator_probs': discriminator_prob.squeeze(0).squeeze(0)[domain].detach().cpu().numpy()} self.update_plots(counter, viz_dict) # Run memory profiling. # @profile def set_neighbor_objects(self, computed_sets=False): if not(computed_sets): self.source_manager.get_trajectory_and_latent_sets() self.target_manager.get_trajectory_and_latent_sets() # Compute nearest neighbors for each set. First build KD-Trees / Ball-Trees. self.source_neighbors_object = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(self.source_manager.latent_z_set) self.target_neighbors_object = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(self.target_manager.latent_z_set) self.neighbor_obj_set = True def evaluate_correspondence_metrics(self, computed_sets=True): print("Evaluating correspondence metrics.") # Evaluate the correspondence and alignment metrics. # Whether latent_z_sets and trajectory_sets are already computed for each manager. self.set_neighbor_objects(computed_sets) # if not(computed_sets): # self.source_manager.get_trajectory_and_latent_sets() # self.target_manager.get_trajectory_and_latent_sets() # # Compute nearest neighbors for each set. First build KD-Trees / Ball-Trees. # self.source_neighbors_object = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(self.source_manager.latent_z_set) # self.target_neighbors_object = NearestNeighbors(n_neighbors=1, algorithm='auto').fit(self.target_manager.latent_z_set) # Compute neighbors. _, source_target_neighbors = self.source_neighbors_object.kneighbors(self.target_manager.latent_z_set) _, target_source_neighbors = self.target_neighbors_object.kneighbors(self.source_manager.latent_z_set) # # Now compute trajectory distances for neighbors. # source_target_trajectory_diffs = (self.source_manager.trajectory_set - self.target_manager.trajectory_set[source_target_neighbors.squeeze(1)]) # self.source_target_trajectory_distance = copy.deepcopy(np.linalg.norm(source_target_trajectory_diffs,axis=(1,2)).mean()) # target_source_trajectory_diffs = (self.target_manager.trajectory_set - self.source_manager.trajectory_set[target_source_neighbors.squeeze(1)]) # self.target_source_trajectory_distance = copy.deepcopy(np.linalg.norm(target_source_trajectory_diffs,axis=(1,2)).mean()) # Remember, absolute trajectory differences is meaningless, since the data is randomly initialized across the state space. # Instead, compare actions. I.e. first compute differences along the time dimension. source_traj_actions = np.diff(self.source_manager.trajectory_set,axis=1) target_traj_actions = np.diff(self.target_manager.trajectory_set,axis=1) source_target_trajectory_diffs = (source_traj_actions - target_traj_actions[source_target_neighbors.squeeze(1)]) self.source_target_trajectory_distance = copy.deepcopy(np.linalg.norm(source_target_trajectory_diffs,axis=(1,2)).mean()) target_source_trajectory_diffs = (target_traj_actions - source_traj_actions[target_source_neighbors.squeeze(1)]) self.target_source_trajectory_distance = copy.deepcopy(np.linalg.norm(target_source_trajectory_diffs,axis=(1,2)).mean()) # Reset variables to prevent memory leaks. # source_neighbors_object = None # target_neighbors_object = None del self.source_neighbors_object del self.target_neighbors_object def evaluate(self, model=None): # Evaluating Transfer - we just want embeddings of both source and target; so run evaluate of both source and target policy managers. # Instead of parsing and passing model to individual source and target policy managers, just load using the transfer policy manager, and then run eval. if model is not None: self.load_all_models(model) # Run source policy manager evaluate. self.source_manager.evaluate(suffix="Source") # Run target policy manager evaluate. self.target_manager.evaluate(suffix="Target") # Evaluate metrics. self.evaluate_correspondence_metrics() def automatic_evaluation(self, e): pass # Writing a cycle consistency transfer PM class. class PolicyManager_CycleConsistencyTransfer(PolicyManager_Transfer): # Inherit from transfer. def __init__(self, args=None, source_dataset=None, target_dataset=None): super(PolicyManager_CycleConsistencyTransfer, self).__init__(args, source_dataset, target_dataset) self.neighbor_obj_set = False # Don't actually need to define these functions since they perform same steps as super functions. # def create_networks(self): # super().create_networks() # # Must also create two discriminator networks; one for source --> target --> source, one for target --> source --> target. # # Remember, since these discriminator networks are operating on the trajectory space, we have to # # make them LSTM networks, rather than MLPs. # # # We have the encoder network class that's perfect for this. Output size is 2. # # self.source_discriminator = EncoderNetwork(self.source_manager.input_size, self.hidden_size, self.output_size).to(device) # # self.target_discriminator = EncoderNetwork(self.source_manager.input_size, self.hidden_size, self.output_size).to(device) def create_training_ops(self): # Call super training ops. super().create_training_ops() # # Now create discriminator optimizers. # self.source_discriminator_optimizer = torch.optim.Adam(self.source_discriminator_network.parameters(),lr=self.learning_rate) # self.target_discriminator_optimizer = torch.optim.Adam(self.target_discriminator_network.parameters(),lr=self.learning_rate) # Instead of using the individuals policy manager optimizers, use one single optimizer. self.parameter_list = self.source_manager.parameter_list + self.target_manager.parameter_list self.optimizer = torch.optim.Adam(self.parameter_list, lr=self.learning_rate) # def save_all_models(self, suffix): # # Call super save model. # super().save_all_models(suffix) # # Now save the individual source / target discriminators. # self.save_object['Source_Discriminator_Network'] = self.source_discriminator_network.state_dict() # self.save_object['Target_Discriminator_Network'] = self.target_discriminator_network.state_dict() # # Overwrite the save from super. # torch.save(self.save_object,os.path.join(self.savedir,"Model_"+suffix)) # def load_all_models(self, path): # # Call super load. # super().load_all_models(path) # # Now load the individual source and target discriminators. # self.source_discriminator.load_state_dict(self.load_object['Source_Discriminator_Network']) # self.target_discriminator.load_state_dict(self.load_object['Target_Discriminator_Network']) # A bunch of functions should just be directly usable: # get_domain_manager, get_trajectory_segment_tuple, encode_decode_trajectory, update_plots, get_transform, # transform_zs, get_embeddings, plot_embeddings, get_trajectory_visuals, evaluate_correspondence_metrics, # evaluate, automatic_evaluation def get_start_state(self, domain, source_latent_z): # Function to retrieve the start state for differentiable decoding from target domain. # How we do this is first to retrieve the target domain latent z closest to the source_latent_z. # We then select the trajectory corresponding to this target_domain latent_z. # We then copy the start state of this trajectory. if not(self.neighbor_obj_set): self.set_neighbor_objects() # First get neighbor object and trajectory sets. neighbor_object_list = [self.source_neighbors_object, self.target_neighbors_object] trajectory_set_list = [self.source_manager.trajectory_set, self.target_manager.trajectory_set] # Remember, we need _target_ domain. So use 1-domain instead of domain. neighbor_object = neighbor_object_list[1-domain] trajectory_set = trajectory_set_list[1-domain] # Next get closest target z. _ , target_latent_z_index = neighbor_object.kneighbors(source_latent_z.squeeze(0).detach().cpu().numpy()) # Don't actually need the target_latent_z, unless we're doing differentiable nearest neighbor transfer. # Now get the corresponding trajectory. trajectory = trajectory_set[target_latent_z_index] # Finally, pick up first state. start_state = trajectory[0] return start_state def differentiable_rollout(self, policy_manager, trajectory_start, latent_z, rollout_length=None): # Now implementing a differentiable_rollout function that takes in a policy manager. # Copying over from rollout_robot_trajectory. This function should provide rollout template, but may need modifications for differentiability. # Remember, the differentiable rollout is required because the backtranslation / cycle-consistency loss needs to be propagated through multiple sets of translations. # Therefore it must pass through the decoder network(s), and through the latent_z's. (It doesn't actually pass through the states / actions?). subpolicy_inputs = torch.zeros((1,2*policy_manager.state_dim+policy_manager.latent_z_dimensionality)).to(device).float() subpolicy_inputs[0,:policy_manager.state_dim] = torch.tensor(trajectory_start).to(device).float() subpolicy_inputs[:,2*policy_manager.state_dim:] = torch.tensor(latent_z).to(device).float() if rollout_length is not None: length = rollout_length-1 else: length = policy_manager.rollout_timesteps-1 for t in range(length): # Get actions from the policy. actions = policy_manager.policy_network.reparameterized_get_actions(subpolicy_inputs, greedy=True) # Select last action to execute. action_to_execute = actions[-1].squeeze(1) # Downscale the actions by action_scale_factor. action_to_execute = action_to_execute/self.args.action_scale_factor # Compute next state. new_state = subpolicy_inputs[t,:policy_manager.state_dim]+action_to_execute # New input row. input_row = torch.zeros((1,2*policy_manager.state_dim+policy_manager.latent_z_dimensionality)).to(device).float() input_row[0,:policy_manager.state_dim] = new_state # Feed in the ORIGINAL prediction from the network as input. Not the downscaled thing. input_row[0,policy_manager.state_dim:2*policy_manager.state_dim] = actions[-1].squeeze(1) input_row[0,2*policy_manager.state_dim:] = latent_z # Now that we have assembled the new input row, concatenate it along temporal dimension with previous inputs. subpolicy_inputs = torch.cat([subpolicy_inputs,input_row],dim=0) trajectory = subpolicy_inputs[:,:policy_manager.state_dim].detach().cpu().numpy() differentiable_trajectory = subpolicy_inputs[:,:policy_manager.state_dim] differentiable_action_seq = subpolicy_inputs[:,policy_manager.state_dim:2*policy_manager.state_dim] differentiable_state_action_seq = subpolicy_inputs[:,:2*policy_manager.state_dim] # For differentiabiity, return tuple of trajectory, actions, state actions, and subpolicy_inputs. return [differentiable_trajectory, differentiable_action_seq, differentiable_state_action_seq, subpolicy_inputs] def get_source_target_domain_managers(self): domain = np.random.binomial(1,0.5) # Also Get domain policy manager. source_policy_manager = self.get_domain_manager(domain) target_policy_manager = self.get_domain_manager(1-domain) return domain, source_policy_manager, target_policy_manager def cross_domain_decoding(self, domain, domain_manager, latent_z, start_state=None): # If start state is none, first get start state, else use the argument. if start_state is None: start_state = self.get_start_state(domain, latent_z) # Now rollout in target domain. differentiable_trajectory, differentiable_action_seq, differentiable_state_action_seq, subpolicy_inputs = self.differentiable_rollout(domain_manager, start_state, latent_z) return differentiable_trajectory, subpolicy_inputs def update_networks(self, dictionary, source_policy_manager): # Here are the objectives we have to be considering. # 1) Reconstruction of inputs under single domain encoding / decoding. # In this implementation, we just have to use the source_loglikelihood for this. # 2) Discriminability of Z space. This is taken care of from the compute_discriminator_losses function. # 3) Cycle-consistency. This may be implemented as regression (L2), loglikelihood of cycle-reconstructed traj, or discriminability of trajectories. # In this implementation, we just have to use the cross domain decoded loglikelihood. #################################### # First update encoder decoder networks. Don't train discriminator. #################################### # Zero gradients. self.optimizer.zero_grad() #################################### # (1) Compute single-domain reconstruction loss. #################################### # Compute VAE loss on the current domain as negative log likelihood likelihood plus weighted KL. self.source_likelihood_loss = -dictionary['source_loglikelihood'].mean() self.source_encoder_KL = dictionary['source_kl_divergence'].mean() self.source_reconstruction_loss = self.source_likelihood_loss + self.args.kl_weight*self.source_encoder_KL #################################### # (2) Compute discriminability losses. #################################### # This block first computes discriminability losses: # # a) First, feeds the latent_z into the z_discriminator, that is being trained to discriminate between z's of source and target domains. # # Gets and returns the loglikelihood of the discriminator predicting the true domain. # # Also returns discriminability loss, that is used to train the _encoders_ of both domains. # # # # b) ####### DON'T NEED TO DO THIS YET: ####### Also feeds either the cycle reconstructed trajectory, or the original trajectory from the source domain, into a separate discriminator. # # This second discriminator is specific to the domain we are operating in. This discriminator is discriminating between the reconstructed and original trajectories. # # Basically standard GAN adversarial training, except the generative model here is the entire cycle-consistency translation model. # # In addition to this, must also compute discriminator losses to train discriminators themselves. # # a) For the z discriminator (and if we're using trajectory discriminators, those too), clone and detach the inputs of the discriminator and compute a discriminator loss with the right domain used in targets / supervision. # # This discriminator loss is what is used to actually train the discriminators. # Get z discriminator logprobabilities. z_discriminator_logprob, z_discriminator_prob = self.discriminator_network(dictionary['source_latent_z']) # Compute discriminability loss. Remember, this is not used for training the discriminator, but rather the encoders. self.z_discriminability_loss = self.negative_log_likelihood_loss_function(z_discriminator_logprob.squeeze(1), torch.tensor(1-domain).to(device).long().view(1,)) ###### Block that computes discriminability losses assuming we are using trjaectory discriminators. ###### # # Get the right trajectory discriminator network. # discriminator_list = [self.source_discriminator, self.target_discriminator] # source_discriminator = discriminator_list[domain] # # Now feed trajectory to the trajectory discriminator, based on whether it is the source of target discriminator. # traj_discriminator_logprob, traj_discriminator_prob = source_discriminator(trajectory) # # Compute trajectory discriminability loss, based on whether the trajectory was original or reconstructed. # self.traj_discriminability_loss = self.negative_log_likelihood_loss_function(traj_discriminator_logprob.squeeze(1), torch.tensor(1-original_or_reconstructed).to(device).long().view(1,)) #################################### # (3) Compute cycle-consistency losses. #################################### # Must compute likelihoods of original actions under the cycle reconstructed trajectory states. # I.e. evaluate likelihood of original actions under source_decoder (i.e. source subpolicy), with the subpolicy inputs constructed from cycle-reconstruction. # Get the original action sequence. original_action_sequence = dictionary['source_subpolicy_inputs_original'][:,self.state_dim:2*self.state_dim] # Now evaluate likelihood of actions under the source decoder. cycle_reconstructed_loglikelihood, _ = source_policy_manager.forward(dictionary['source_subpolicy_inputs_crossdomain'], original_action_sequence) # Reweight the cycle reconstructed likelihood to construct the loss. self.cycle_reconstruction_loss = -self.args.cycle_reconstruction_loss_weight*cycle_reconstruction_loss.mean() #################################### # Now that individual losses are computed, compute total loss, compute gradients, and then step. #################################### # First combine losses. self.total_VAE_loss = self.source_reconstruction_loss + self.z_discriminability_loss + self.cycle_reconstruction_loss # If we are in a encoder / decoder training phase, compute gradients and step. if not(self.skip_vae): self.total_VAE_loss.backward() self.optimizer.step() #################################### # Now compute discriminator losses and update discriminator network(s). #################################### # First zero out the discriminator gradients. self.discriminator_optimizer.zero_grad() # Detach the latent z that is fed to the discriminator, and then compute discriminator loss. # If we tried to zero grad the discriminator and then use NLL loss on it again, Pytorch would cry about going backward through a part of the graph that we already \ # went backward through. Instead, just pass things through the discriminator again, but this time detaching latent_z. z_discriminator_detach_logprob, z_discriminator_detach_prob = self.discriminator_network(dictionary['source_latent_z'].detach()) # Compute discriminator loss for discriminator. self.z_discriminator_loss = self.negative_log_likelihood_loss_function(z_discriminator_detach_logprob.squeeze(1), torch.tensor(domain).to(device).long().view(1,)) if not(self.skip_discriminator): # Now go backward and take a step. self.z_discriminator_loss.backward() self.discriminator_optimizer.step() def run_iteration(self, counter, i): # Phases: # Phase 1: Train encoder-decoder for both domains initially, so that discriminator is not fed garbage. # Phase 2: Train encoder, decoder for each domain, and Z discriminator concurrently. # Phase 3: Train encoder, decoder for each domain, and the individual source and target discriminators, concurrently. # Algorithm (joint training): # For every epoch: # # For every datapoint: # # 1) Select which domain to use as source (i.e. with 50% chance, select either domain). # # 2) Get trajectory segments from desired domain. # # 3) Transfer Steps: # # a) Encode trajectory as latent z (domain 1). # # b) Use domain 2 decoder to decode latent z into trajectory (domain 2). # # c) Use domain 2 encoder to encode trajectory into latent z (domain 2). # # d) Use domain 1 decoder to decode latent z (domain 2) into trajectory (domain 1). # # 4) Feed cycle-reconstructed trajectory and original trajectory (both domain 1) into discriminator. # # 5) Train discriminators to predict whether original or cycle reconstructed trajectory. # # Alternate: Remember, don't actually need to use trajectory level discriminator networks, can just use loglikelihood cycle-reconstruction loss. Try this first. # # Train z discriminator to predict which domain the latentz sample came from. # # Train encoder / decoder architectures with mix of reconstruction loss and discriminator confusing objective. # # Compute and apply gradient updates. # Remember to make domain agnostic function calls to encode, feed into discriminator, get likelihoods, etc. #################################### # (0) Setup things like training phases, epislon values, etc. #################################### self.set_iteration(counter) dictionary = {} target_dict = {} #################################### # (1) Select which domain to use as source domain (also supervision of z discriminator for this iteration). #################################### domain, source_policy_manager, target_policy_manager = self.get_source_target_domain_managers() #################################### # (2) & (3 a) Get source trajectory (segment) and encode into latent z. Decode using source decoder, to get loglikelihood for reconstruction objectve. #################################### dictionary['source_subpolicy_inputs_original'], dictionary['source_latent_z'], dictionary['source_loglikelihood'], dictionary['source_kl_divergence'] = self.encode_decode_trajectory(source_policy_manager, i) #################################### # (3 b) Cross domain decoding. #################################### target_dict['target_trajectory_rollout'], target_dict['target_subpolicy_inputs'] = self.cross_domain_decoding(domain, target_policy_manager, dictionary['source_latent_z']) #################################### # (3 c) Cross domain encoding of target_trajectory_rollout into target latent_z. #################################### dictionary['target_subpolicy_inputs'], dictionary['target_latent_z'], dictionary['target_loglikelihood'], dictionary['target_kl_divergence'] = self.encode_decode_trajectory(target_policy_manager, i, trajectory_input=target_dict) #################################### # (3 d) Cross domain decoding of target_latent_z into source trajectory. # Can use the original start state, or also use the reverse trick for start state. Try both maybe. #################################### source_trajectory_rollout, dictionary['source_subpolicy_inputs_crossdomain'] = self.cross_domain_decoding(domain, source_policy_manager, dictionary['target_latent_z'], start_state=dictionary['source_subpolicy_inputs'][0,:self.state_dim].detach().cpu().numpy()) #################################### # (4) Feed source and target latent z's to z_discriminator. #################################### self.compute_discriminator_losses(domain, dictionary['source_latent_z']) #################################### # (5) Compute all losses, reweight, and take gradient steps. #################################### self.update_networks(dictionary, source_policy_manager) # viz_dict = {'domain': domain, 'discriminator_probs': discriminator_prob.squeeze(0).squeeze(0)[domain].detach().cpu().numpy()} # self.update_plots(counter, viz_dict) # Encode decode function: First encodes, takes trajectory segment, and outputs latent z. The latent z is then provided to decoder (along with initial state), and then we get SOURCE domain subpolicy inputs. # Cross domain decoding function: Takes encoded latent z (and start state), and then rolls out with target decoder. Function returns, target trajectory, action sequence, and TARGET domain subpolicy inputs.
CausalSkillLearning-main
Experiments/PolicyManagers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class Transition(): def __init__(self, state, action, next_state, onestep_reward, terminal, success): # Now that we're doing 1step TD, and AC architectures rather than MC, # Don't need an explicit value of return. self.state = state self.action = action self.next_state = next_state self.onestep_reward = onestep_reward self.terminal = terminal self.success = success class Episode_TransitionList(): def __init__(self, transition_list): self.episode = transition_list def length(self): return len(self.episode) # Alternate way of implementing an episode... # Make it a class that has state_list, action_list, etc. over the episode.. class Episode(): def __init__(self, state_list=None, action_list=None, reward_list=None, terminal_list=None): self.state_list = state_list self.action_list = action_list self.reward_list = reward_list self.terminal_list = terminal_list self.episode_lenth = len(self.state_list) def length(self): return self.episode_lenth class HierarchicalEpisode(Episode): def __init__(self, state_list=None, action_list=None, reward_list=None, terminal_list=None, latent_z_list=None, latent_b_list=None): super(HierarchicalEpisode, self).__init__(state_list, action_list, reward_list, terminal_list) self.latent_z_list = latent_z_list self.latent_b_list = latent_b_list class ReplayMemory(): def __init__(self, memory_size=10000): # Implementing the memory as a list of EPISODES. # This acts as a queue. self.memory = [] # Accessing the memory with indices should be constant time, so it's okay to use a list. # Not using a priority either. self.memory_len = 0 self.memory_size = memory_size print("Setup Memory.") def append_to_memory(self, episode): if self.check_full(): # Remove first episode in the memory (queue). self.memory.pop(0) # Now push the episode to the end of hte queue. self.memory.append(episode) else: self.memory.append(episode) self.memory_len+=1 def sample_batch(self, batch_size=25): self.memory_len = len(self.memory) indices = np.random.randint(0,high=self.memory_len,size=(batch_size)) return indices def retrieve_batch(self, batch_size=25): # self.memory_len = len(self.memory) return np.arange(0,batch_size) def check_full(self): self.memory_len = len(self.memory) if self.memory_len<self.memory_size: return 0 else: return 1 # Refer: https://towardsdatascience.com/deep-deterministic-policy-gradients-explained-2d94655a9b7b """ Taken from https://github.com/vitchyr/rlkit/blob/master/rlkit/exploration_strategies/ou_strategy.py """ class OUNoise(object): def __init__(self, action_space_size, mu=0.0, theta=0.15, max_sigma=0.2, min_sigma=0.2, decay_period=100000): self.mu = mu self.theta = theta self.sigma = max_sigma self.max_sigma = max_sigma self.min_sigma = min_sigma self.decay_period = decay_period self.action_dim = action_space_size self.low = -np.ones((self.action_dim)) self.high = np.ones((self.action_dim)) self.reset() def reset(self): self.state = np.ones(self.action_dim) * self.mu def evolve_state(self): x = self.state dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim) self.state = x + dx return self.state def get_action(self, action, t=0): ou_state = self.evolve_state() self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period) return np.clip(action + ou_state, self.low, self.high)
CausalSkillLearning-main
Experiments/RLUtils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Code referenced from https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 import tensorflow as tf import numpy as np import scipy.misc try: from StringIO import StringIO # Python 2.7 except ImportError: from io import BytesIO # Python 3.x import tempfile import moviepy.editor as mpy import os import os.path as osp import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.ops import summary_op_util def py_encode_gif(im_thwc, tag, fps=4): """ Given a 4D numpy tensor of images, encodes as a gif. """ with tempfile.NamedTemporaryFile() as f: fname = f.name + '.gif' clip = mpy.ImageSequenceClip(list(im_thwc), fps=fps) clip.write_gif(fname, verbose=False, logger=None) with open(fname, 'rb') as f: enc_gif = f.read() os.remove(fname) # create a tensorflow image summary protobuf: thwc = im_thwc.shape im_summ = tf.Summary.Image() im_summ.height = thwc[1] im_summ.width = thwc[2] im_summ.colorspace = 3 # fix to 3 == RGB im_summ.encoded_image_string = enc_gif return im_summ # create a summary obj: #summ = tf.Summary() #summ.value.add(tag=tag, image=im_summ) #summ_str = summ.SerializeToString() #return summ_str class Logger(object): def __init__(self, log_dir): """Create a summary writer logging to log_dir.""" # Switching to TF 2.2 implementation. self.writer = tf.summary.create_file_writer(log_dir) # self.writer = tf.summary.FileWriter(log_dir) def scalar_summary(self, tag, value, step): """Log a scalar variable.""" summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) self.writer.add_summary(summary, step) def gif_summary(self, tag, images, step): """Log a list of TXHXWX3 images.""" # from https://github.com/tensorflow/tensorboard/issues/39 img_summaries = [] for i, img in enumerate(images): # Create a Summary value img_sum = py_encode_gif(img, '%s/%d' % (tag, i), fps=4) img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) # Create and write Summary summary = tf.Summary(value=img_summaries) self.writer.add_summary(summary, step) def image_summary(self, tag, images, step): """Log a list of images.""" img_summaries = [] for i, img in enumerate(images): # Write the image to a string try: s = StringIO() except: s = BytesIO() scipy.misc.toimage(img).save(s, format="png") # Create an Image object img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(), height=img.shape[0], width=img.shape[1]) # Create a Summary value img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum)) # Create and write Summary summary = tf.Summary(value=img_summaries) self.writer.add_summary(summary, step) def histo_summary(self, tag, values, step, bins=1000): """Log a histogram of the tensor of values.""" # Create a histogram using numpy counts, bin_edges = np.histogram(values, bins=bins) # Fill the fields of the histogram proto hist = tf.HistogramProto() hist.min = float(np.min(values)) hist.max = float(np.max(values)) hist.num = int(np.prod(values.shape)) hist.sum = float(np.sum(values)) hist.sum_squares = float(np.sum(values**2)) # Drop the start of the first bin bin_edges = bin_edges[1:] # Add bin edges and counts for edge in bin_edges: hist.bucket_limit.append(edge) for c in counts: hist.bucket.append(c) # Create and write Summary summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)]) self.writer.add_summary(summary, step) self.writer.flush()
CausalSkillLearning-main
Experiments/TFLogger.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * class TestLoaderWithKwargs(unittest.TestLoader): """A test loader which allows to parse keyword arguments to the test case class.""" # def loadTestsFromTestCase(self, testCaseClass, **kwargs): def loadTestsFromTestCase(self, testCaseClass, policy_manager): """Return a suite of all tests cases contained in testCaseClass.""" if issubclass(testCaseClass, unittest.suite.TestSuite): raise TypeError("Test cases should not be derived from "\ "TestSuite. Maybe you meant to derive from"\ " TestCase?") testCaseNames = self.getTestCaseNames(testCaseClass) if not testCaseNames and hasattr(testCaseClass, 'runTest'): testCaseNames = ['runTest'] # Modification here: parse keyword arguments to testCaseClass. test_cases = [] # embed() for test_case_name in testCaseNames: # test_cases.append(testCaseClass(policy_manager)) test_cases.append(testCaseClass(test_case_name, policy_manager)) loaded_suite = self.suiteClass(test_cases) return loaded_suite class MetaTestClass(unittest.TestCase): def __init__(self, test_name, policy_manager): super(MetaTestClass, self).__init__(test_name) self.policy_manager = policy_manager self.args = self.policy_manager.args self.dataset = self.policy_manager.dataset def test_dataloader(self): if self.args.data=='Roboturk': self.check_Roboturkdataloader() if self.args.data=='MIME': self.check_MIMEdataloader() def check_MIMEdataloader(self): # Check the first index of the dataset. data_element = self.dataset[0] validity = data_element['is_valid']==1 check_demo_data = (data_element['demo']==np.load("Test_Data/MIME_Dataloader_DE.npy")).all() self.assertTrue(validity and check_demo_data) def check_Roboturkdataloader(self): # Check the first index of the dataset. data_element = self.dataset[0] validity = data_element['is_valid'] check_demo_data = (data_element['demo']==np.load("Test_Data/Roboturk_Dataloader_DE.npy")).all() self.assertTrue(validity and check_demo_data) def test_variational_policy(self): if self.args.setting=='learntsub': # Assume the variational policy is an instance of ContinuousVariationalPolicyNetwork_BPrior class. inputs = torch.ones((40,self.policy_manager.variational_policy.input_size)).cuda().float() expected_outputs = np.load("Test_Data/{0}_Varpolicy_Res.npy".format(self.args.data),allow_pickle=True) pred_outputs = self.policy_manager.variational_policy.forward(inputs, epsilon=0.) error = (((expected_outputs[0]-pred_outputs[0])**2).mean()).detach().cpu().numpy() threshold = 0.01 self.assertTrue(error < threshold) else: pass def test_subpolicy(self): # Assume the subpolicy is an instance of ContinuousPolicyNetwork class. inputs = torch.ones((15,self.policy_manager.policy_network.input_size)).cuda().float() actions = np.ones((15,self.policy_manager.policy_network.output_size)) expected_outputs = np.load("Test_Data/{0}_Subpolicy_Res.npy".format(self.args.data),allow_pickle=True) pred_outputs = self.policy_manager.policy_network.forward(inputs, actions) error = (((expected_outputs[0]-pred_outputs[0])**2).mean()).detach().cpu().numpy() threshold = 0.01 self.assertTrue(error < threshold) def test_latent_policy(self): # Assume the latent policy is a ContinuousLatentPolicyNetwork class. pass def test_encoder_policy(self): # Assume is instance of ContinuousEncoderNetwork class. pass
CausalSkillLearning-main
Experiments/TestClass.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from headers import * import os.path as osp def select_baxter_angles(trajectory, joint_names, arm='right'): # joint names in order as used via mujoco visualizer baxter_joint_names = ['right_s0', 'right_s1', 'right_e0', 'right_e1', 'right_w0', 'right_w1', 'right_w2', 'left_s0', 'left_s1', 'left_e0', 'left_e1', 'left_w0', 'left_w1', 'left_w2'] if arm == 'right': select_joints = baxter_joint_names[:7] elif arm == 'left': select_joints = baxter_joint_names[7:] elif arm == 'both': select_joints = baxter_joint_names inds = [joint_names.index(j) for j in select_joints] return trajectory[:, inds] def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class MIME_Dataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, split='all'): self.dataset_directory = '/checkpoint/tanmayshankar/MIME/' self.ds_freq = 20 # Default: /checkpoint/tanmayshankar/MIME/ self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/joint_angles.txt') self.filelist = glob.glob(self.fulltext) with open(self.filelist[0], 'r') as file: lines = file.readlines() self.joint_names = sorted(eval(lines[0].rstrip('\n')).keys()) if split == 'all': self.filelist = self.filelist else: self.task_lists = np.load(os.path.join( self.dataset_directory, 'MIME_jointangles/{}_Lists.npy'.format(split.capitalize()))) self.filelist = [] for i in range(20): self.filelist.extend(self.task_lists[i]) self.filelist = [f.replace('/checkpoint/tanmayshankar/MIME/', self.dataset_directory) for f in self.filelist] # print(len(self.filelist)) def __len__(self): # Return length of file list. return len(self.filelist) def __getitem__(self, index): ''' # Returns Joint Angles as: # List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles. # Assumes index is within range [0,len(filelist)-1] ''' file = self.filelist[index] left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt')) right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt')) orig_left_traj = np.load(osp.join(osp.split(file)[0], 'Left_EE.npy')) orig_right_traj = np.load(osp.join(osp.split(file)[0], 'Right_EE.npy')) joint_angle_trajectory = [] # Open file. with open(file, 'r') as file: lines = file.readlines() for line in lines: dict_element = eval(line.rstrip('\n')) if len(dict_element.keys()) == len(self.joint_names): # some files have extra lines with gripper keys e.g. MIME_jointangles/4/12405Nov19/joint_angles.txt array_element = np.array([dict_element[joint] for joint in self.joint_names]) joint_angle_trajectory.append(array_element) joint_angle_trajectory = np.array(joint_angle_trajectory) n_samples = len(orig_left_traj) // self.ds_freq elem = {} elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples) elem['left_trajectory'] = resample(orig_left_traj, n_samples) elem['right_trajectory'] = resample(orig_right_traj, n_samples) elem['left_gripper'] = resample(left_gripper, n_samples)/100 elem['right_gripper'] = resample(right_gripper, n_samples)/100 elem['path_prefix'] = os.path.split(self.filelist[index])[0] elem['ra_trajectory'] = select_baxter_angles(elem['joint_angle_trajectory'], self.joint_names, arm='right') elem['la_trajectory'] = select_baxter_angles(elem['joint_angle_trajectory'], self.joint_names, arm='left') # If max norm of differences is <1.0, valid. # if elem['joint_angle_trajectory'].shape[0]>1: elem['is_valid'] = int(np.linalg.norm(np.diff(elem['joint_angle_trajectory'],axis=0),axis=1).max() < 1.0) return elem def recreate_dictionary(self, arm, joint_angles): if arm=="left": offset = 2 width = 7 elif arm=="right": offset = 9 width = 7 elif arm=="full": offset = 0 width = len(self.joint_names) return dict((self.joint_names[i],joint_angles[i-offset]) for i in range(offset,offset+width)) class MIME_NewDataset(Dataset): def __init__(self, split='all'): self.dataset_directory = '/checkpoint/tanmayshankar/MIME/' # Load the entire set of trajectories. self.data_list = np.load(os.path.join(self.dataset_directory, "Data_List.npy"),allow_pickle=True) self.dataset_length = len(self.data_list) def __len__(self): # Return length of file list. return self.dataset_length def __getitem__(self, index): # Return n'th item of dataset. # This has already processed everything. return self.data_list[index] def compute_statistics(self): self.state_size = 16 self.total_length = self.__len__() mean = np.zeros((self.state_size)) variance = np.zeros((self.state_size)) mins = np.zeros((self.total_length, self.state_size)) maxs = np.zeros((self.total_length, self.state_size)) lens = np.zeros((self.total_length)) # And velocity statistics. vel_mean = np.zeros((self.state_size)) vel_variance = np.zeros((self.state_size)) vel_mins = np.zeros((self.total_length, self.state_size)) vel_maxs = np.zeros((self.total_length, self.state_size)) for i in range(self.total_length): print("Phase 1: DP: ",i) data_element = self.__getitem__(i) if data_element['is_valid']: demo = data_element['demo'] vel = np.diff(demo,axis=0) mins[i] = demo.min(axis=0) maxs[i] = demo.max(axis=0) mean += demo.sum(axis=0) lens[i] = demo.shape[0] vel_mins[i] = abs(vel).min(axis=0) vel_maxs[i] = abs(vel).max(axis=0) vel_mean += vel.sum(axis=0) mean /= lens.sum() vel_mean /= lens.sum() for i in range(self.total_length): print("Phase 2: DP: ",i) data_element = self.__getitem__(i) # Just need to normalize the demonstration. Not the rest. if data_element['is_valid']: demo = data_element['demo'] vel = np.diff(demo,axis=0) variance += ((demo-mean)**2).sum(axis=0) vel_variance += ((vel-vel_mean)**2).sum(axis=0) variance /= lens.sum() variance = np.sqrt(variance) vel_variance /= lens.sum() vel_variance = np.sqrt(vel_variance) max_value = maxs.max(axis=0) min_value = mins.min(axis=0) vel_max_value = vel_maxs.max(axis=0) vel_min_value = vel_mins.min(axis=0) np.save("MIME_Orig_Mean.npy", mean) np.save("MIME_Orig_Var.npy", variance) np.save("MIME_Orig_Min.npy", min_value) np.save("MIME_Orig_Max.npy", max_value) np.save("MIME_Orig_Vel_Mean.npy", vel_mean) np.save("MIME_Orig_Vel_Var.npy", vel_variance) np.save("MIME_Orig_Vel_Min.npy", vel_min_value) np.save("MIME_Orig_Vel_Max.npy", vel_max_value) class MIME_Dataloader_Tester(unittest.TestCase): def test_MIMEdataloader(self): self.dataset = MIME_NewDataset() # Check the first index of the dataset. data_element = self.dataset[0] validity = data_element['is_valid']==1 check_demo_data = (data_element['demo']==np.load("Test_Data/MIME_Dataloader_DE.npy")).all() self.assertTrue(validity and check_demo_data) if __name__ == '__main__': # Run all tests defined for the dataloader. unittest.main()
CausalSkillLearning-main
Experiments/MIME_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags, app import copy, os, imageio, scipy.misc, pdb, math, time, numpy as np import robosuite, threading from robosuite.wrappers import IKWrapper import matplotlib.pyplot as plt from IPython import embed # # Mocap viz. # import MocapVisualizationUtils # from mocap_processing.motion.pfnn import Animation, BVH class SawyerVisualizer(): def __init__(self, has_display=False): # Create environment. print("Do I have a display?", has_display) # self.base_env = robosuite.make('BaxterLift', has_renderer=has_display) self.base_env = robosuite.make("SawyerViz",has_renderer=has_display) # Create kinematics object. self.sawyer_IK_object = IKWrapper(self.base_env) self.environment = self.sawyer_IK_object.env def update_state(self): # Updates all joint states self.full_state = self.environment._get_observation() def set_joint_pose_return_image(self, joint_angles, arm='both', gripper=False): # In the roboturk dataset, we've the following joint angles: # ('time','right_j0', 'head_pan', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint') # Set usual joint angles through set joint positions API. self.environment.reset() self.environment.set_robot_joint_positions(joint_angles[:7]) # For gripper, use "step". # Mujoco requires actions that are -1 for Open and 1 for Close. # [l,r] # gripper_open = [0.0115, -0.0115] # gripper_closed = [-0.020833, 0.020833] # In mujoco, -1 is open, and 1 is closed. actions = np.zeros((8)) actions[-1] = joint_angles[-1] # Move gripper positions. self.environment.step(actions) image = np.flipud(self.environment.sim.render(600, 600, camera_name='vizview1')) return image def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None): image_list = [] for t in range(trajectory.shape[0]): new_image = self.set_joint_pose_return_image(trajectory[t]) image_list.append(new_image) # Insert white if segmentations is not None: if t>0 and segmentations[t]==1: image_list.append(255*np.ones_like(new_image)+new_image) if return_and_save: imageio.mimsave(os.path.join(gif_path,gif_name), image_list) return image_list elif return_gif: return image_list else: imageio.mimsave(os.path.join(gif_path,gif_name), image_list) class BaxterVisualizer(): def __init__(self, has_display=False): # Create environment. print("Do I have a display?", has_display) # self.base_env = robosuite.make('BaxterLift', has_renderer=has_display) self.base_env = robosuite.make("BaxterViz",has_renderer=has_display) # Create kinematics object. self.baxter_IK_object = IKWrapper(self.base_env) self.environment = self.baxter_IK_object.env def update_state(self): # Updates all joint states self.full_state = self.environment._get_observation() def set_ee_pose_return_image(self, ee_pose, arm='right', seed=None): # Assumes EE pose is Position in the first three elements, and quaternion in last 4 elements. self.update_state() if seed is None: # Set seed to current state. seed = self.full_state['joint_pos'] if arm == 'right': joint_positions = self.baxter_IK_object.controller.inverse_kinematics( target_position_right=ee_pose[:3], target_orientation_right=ee_pose[3:], target_position_left=self.full_state['left_eef_pos'], target_orientation_left=self.full_state['left_eef_quat'], rest_poses=seed ) elif arm == 'left': joint_positions = self.baxter_IK_object.controller.inverse_kinematics( target_position_right=self.full_state['right_eef_pos'], target_orientation_right=self.full_state['right_eef_quat'], target_position_left=ee_pose[:3], target_orientation_left=ee_pose[3:], rest_poses=seed ) elif arm == 'both': joint_positions = self.baxter_IK_object.controller.inverse_kinematics( target_position_right=ee_pose[:3], target_orientation_right=ee_pose[3:7], target_position_left=ee_pose[7:10], target_orientation_left=ee_pose[10:], rest_poses=seed ) image = self.set_joint_pose_return_image(joint_positions, arm=arm, gripper=False) return image def set_joint_pose_return_image(self, joint_pose, arm='both', gripper=False): # FOR FULL 16 DOF STATE: ASSUMES JOINT_POSE IS <LEFT_JA, RIGHT_JA, LEFT_GRIPPER, RIGHT_GRIPPER>. self.update_state() self.state = copy.deepcopy(self.full_state['joint_pos']) # THE FIRST 7 JOINT ANGLES IN MUJOCO ARE THE RIGHT HAND. # THE LAST 7 JOINT ANGLES IN MUJOCO ARE THE LEFT HAND. if arm=='right': # Assume joint_pose is 8 DoF - 7 for the arm, and 1 for the gripper. self.state[:7] = copy.deepcopy(joint_pose[:7]) elif arm=='left': # Assume joint_pose is 8 DoF - 7 for the arm, and 1 for the gripper. self.state[7:] = copy.deepcopy(joint_pose[:7]) elif arm=='both': # The Plans were generated as: Left arm, Right arm, left gripper, right gripper. # Assume joint_pose is 16 DoF. 7 DoF for left arm, 7 DoF for right arm. (These need to be flipped)., 1 for left gripper. 1 for right gripper. # First right hand. self.state[:7] = joint_pose[7:14] # Now left hand. self.state[7:] = joint_pose[:7] # Set the joint angles magically. self.environment.set_robot_joint_positions(self.state) action = np.zeros((16)) if gripper: # Left gripper is 15. Right gripper is 14. # MIME Gripper values are from 0 to 100 (Close to Open), but we treat the inputs to this function as 0 to 1 (Close to Open), and then rescale to (-1 Open to 1 Close) for Mujoco. if arm=='right': action[14] = -joint_pose[-1]*2+1 elif arm=='left': action[15] = -joint_pose[-1]*2+1 elif arm=='both': action[14] = -joint_pose[15]*2+1 action[15] = -joint_pose[14]*2+1 # Move gripper positions. self.environment.step(action) image = np.flipud(self.environment.sim.render(600, 600, camera_name='vizview1')) return image def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None): image_list = [] for t in range(trajectory.shape[0]): new_image = self.set_joint_pose_return_image(trajectory[t]) image_list.append(new_image) # Insert white if segmentations is not None: if t>0 and segmentations[t]==1: image_list.append(255*np.ones_like(new_image)+new_image) if return_and_save: imageio.mimsave(os.path.join(gif_path,gif_name), image_list) return image_list elif return_gif: return image_list else: imageio.mimsave(os.path.join(gif_path,gif_name), image_list) # class MocapVisualizer(): # def __init__(self, has_display=False, args=None): # # Load some things from the MocapVisualizationUtils and set things up so that they're ready to go. # # self.cam_cur = MocapVisualizationUtils.camera.Camera(pos=np.array([6.0, 0.0, 2.0]), # # origin=np.array([0.0, 0.0, 0.0]), # # vup=np.array([0.0, 0.0, 1.0]), # # fov=45.0) # self.args = args # # Default is local data. # self.global_data = False # self.cam_cur = MocapVisualizationUtils.camera.Camera(pos=np.array([4.5, 0.0, 2.0]), # origin=np.array([0.0, 0.0, 0.0]), # vup=np.array([0.0, 0.0, 1.0]), # fov=45.0) # # Path to dummy file that is going to populate joint_parents, initial global positions, etc. # bvh_filename = "/private/home/tanmayshankar/Research/Code/CausalSkillLearning/Experiments/01_01_poses.bvh" # # Run init before loading animation. # MocapVisualizationUtils.init() # MocapVisualizationUtils.global_positions, MocapVisualizationUtils.joint_parents, MocapVisualizationUtils.time_per_frame = MocapVisualizationUtils.load_animation(bvh_filename) # # State sizes. # self.number_joints = 22 # self.number_dimensions = 3 # self.total_dimensions = self.number_joints*self.number_dimensions # # Run thread of viewer, so that callbacks start running. # thread = threading.Thread(target=self.run_thread) # thread.start() # # Also create dummy animation object. # self.animation_object, _, _ = BVH.load(bvh_filename) # def run_thread(self): # MocapVisualizationUtils.viewer.run( # title='BVH viewer', # cam=self.cam_cur, # size=(1280, 720), # keyboard_callback=None, # render_callback=MocapVisualizationUtils.render_callback_time_independent, # idle_callback=MocapVisualizationUtils.idle_callback_return, # ) # def get_global_positions(self, positions, animation_object=None): # # Function to get global positions corresponding to predicted or actual local positions. # traj_len = positions.shape[0] # def resample(original_trajectory, desired_number_timepoints): # original_traj_len = len(original_trajectory) # new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) # return original_trajectory[new_timepoints] # if animation_object is not None: # # Now copy over from animation_object instead of just dummy animation object. # new_animation_object = Animation.Animation(resample(animation_object.rotations, traj_len), positions, animation_object.orients, animation_object.offsets, animation_object.parents) # else: # # Create a dummy animation object. # new_animation_object = Animation.Animation(self.animation_object.rotations[:traj_len], positions, self.animation_object.orients, self.animation_object.offsets, self.animation_object.parents) # # Then transform them. # transformed_global_positions = Animation.positions_global(new_animation_object) # # Now return coordinates. # return transformed_global_positions # def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None): # image_list = [] # if self.global_data: # # If we predicted in the global setting, just reshape. # predicted_global_positions = np.reshape(trajectory, (-1,self.number_joints,self.number_dimensions)) # else: # # If it's local data, then transform to global. # # Assume trajectory is number of timesteps x number_dimensions. # # Convert to number_of_timesteps x number_of_joints x 3. # predicted_local_positions = np.reshape(trajectory, (-1,self.number_joints,self.number_dimensions)) # # Assume trajectory was predicted in local coordinates. Transform to global for visualization. # predicted_global_positions = self.get_global_positions(predicted_local_positions, animation_object=additional_info) # # Copy into the global variable. # MocapVisualizationUtils.global_positions = predicted_global_positions # # Reset Image List. # MocapVisualizationUtils.image_list = [] # # Set save_path and prefix. # MocapVisualizationUtils.save_path = gif_path # MocapVisualizationUtils.name_prefix = gif_name.rstrip('.gif') # # Now set the whether_to_render as true. # MocapVisualizationUtils.whether_to_render = True # # Wait till rendering is complete. # x_count = 0 # while MocapVisualizationUtils.done_with_render==False and MocapVisualizationUtils.whether_to_render==True: # x_count += 1 # time.sleep(1) # # Now that rendering is complete, load images. # image_list = MocapVisualizationUtils.image_list # # Now actually save the GIF or return. # if return_and_save: # imageio.mimsave(os.path.join(gif_path,gif_name), image_list) # return image_list # elif return_gif: # return image_list # else: # imageio.mimsave(os.path.join(gif_path,gif_name), image_list) class ToyDataVisualizer(): def __init__(self): pass def visualize_joint_trajectory(self, trajectory, return_gif=False, gif_path=None, gif_name="Traj.gif", segmentations=None, return_and_save=False, additional_info=None): fig = plt.figure() ax = fig.gca() ax.scatter(trajectory[:,0],trajectory[:,1],c=range(len(trajectory)),cmap='jet') plt.xlim(-10,10) plt.ylim(-10,10) fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(int(height), int(width), 3) image = np.transpose(image, axes=[2,0,1]) return image if __name__ == '__main__': # end_eff_pose = [0.3, -0.3, 0.09798524029948213, 0.38044099037703677, 0.9228975092885654, -0.021717379118030174, 0.05525572942370394] # end_eff_pose = [0.53303758, -0.59997265, 0.09359371, 0.77337391, 0.34998901, 0.46797516, -0.24576358] # end_eff_pose = np.array([0.64, -0.83, 0.09798524029948213, 0.38044099037703677, 0.9228975092885654, -0.021717379118030174, 0.05525572942370394]) visualizer = MujocoVisualizer() # img = visualizer.set_ee_pose_return_image(end_eff_pose, arm='right') # scipy.misc.imsave('mj_vis.png', img)
CausalSkillLearning-main
Experiments/Visualizers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from headers import * def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class Roboturk_Dataset(Dataset): # LINK TO DATASET and INFO: http://roboturk.stanford.edu/dataset.html # Class implementing instance of Roboturk dataset. def __init__(self, args): self.dataset_directory = '/checkpoint/tanmayshankar/Roboturk/RoboTurkPilot' self.args = args # Require a task list. # The task name is needed for setting the environment, rendering. # We shouldn't need the environment for .. training though, should we? self.task_list = ["bins-Bread", "bins-Can", "bins-Cereal", "bins-full", "bins-Milk", "pegs-full", "pegs-RoundNut", "pegs-SquareNut"] self.num_demos = np.array([1069, 1069, 1069, 1069, 1069, 1145, 1144, 1145]) self.cummulative_num_demos = self.num_demos.cumsum() self.cummulative_num_demos = np.insert(self.cummulative_num_demos,0,0) # Append -1 to the start of cummulative_num_demos. This has two purposes. # The first is that when we are at index 0 of the dataset, if we appended 0, np.searchsorted returns 0, rather than 1. # For index 1, it returns 1. This was becoming inconsistent behavior for demonstrations in the same task. # Now with -1 added to cumm_num_demos, when we are at task index 0, it would add -1 to the demo index. This is necessary for ALL tasks, not just the first... # So that foils our really clever idea. # Well, if the searchsorted returns the index of the equalling element, it probably consistently does this irrespective of vlaue. # This means we can use this... # No need for a clever solution, searchsorted has a "side" option that takes care of this. self.total_length = self.num_demos.sum() # Seems to follow joint angles order: # ('time','right_j0', 'head_pan', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint', 'Milk0', 'Bread0', 'Cereal0', 'Can0'). # Extract these into... self.joint_angle_indices = [1,3,4,5,6,7,8] self.gripper_indices = [9,10] self.ds_freq = 20 # self.r_gripper_r_finger_joint = np.array([-0.0116, 0.020833]) # self.r_gripper_l_finger_joint = np.array([-0.020833, 0.0135]) # [l,r] # gripper_open = [0.0115, -0.0115] # gripper_closed = [-0.020833, 0.020833] # Set files. self.setup() def setup(self): # Load data from all tasks. self.files = [] for i in range(len(self.task_list)): self.files.append(h5py.File("{0}/{1}/demo.hdf5".format(self.dataset_directory,self.task_list[i]),'r')) def __len__(self): return self.total_length def __getitem__(self, index): if index>=self.total_length: print("Out of bounds of dataset.") return None # Get bucket that index falls into based on num_demos array. task_index = np.searchsorted(self.cummulative_num_demos, index, side='right')-1 if index==self.total_length-1: task_index-=1 # Decide task ID, and new index modulo num_demos. # Subtract number of demonstrations in cumsum until then, and then new_index = index-self.cummulative_num_demos[max(task_index,0)]+1 try: # Get raw state sequence. state_sequence = self.files[task_index]['data/demo_{0}/states'.format(new_index)].value except: # If this failed, return invalid. data_element = {} data_element['is_valid'] = False return data_element # Performing another check that makes sure data element actually has states. if state_sequence.shape[0]==0: data_element = {} data_element['is_valid'] = False return data_element # If we are here, the data element is presumably valid till now. # Get joint angles from this state sequence. joint_values = state_sequence[:,self.joint_angle_indices] # Get gripper values from state sequence. gripper_finger_values = state_sequence[:,self.gripper_indices] # Normalize gripper values. # 1 is right finger. 0 is left finger. # 1-0 is right-left. gripper_values = gripper_finger_values[:,1]-gripper_finger_values[:,0] gripper_values = (gripper_values-gripper_values.min()) / (gripper_values.max()-gripper_values.min()) gripper_values = 2*gripper_values-1 concatenated_demonstration = np.concatenate([joint_values,gripper_values.reshape((-1,1))],axis=1) downsampled_demonstration = resample(concatenated_demonstration, concatenated_demonstration.shape[0]//self.ds_freq) # Performing another check that makes sure data element actually has states. if downsampled_demonstration.shape[0]==0: data_element = {} data_element['is_valid'] = False return data_element data_element = {} if self.args.smoothen: data_element['demo'] = gaussian_filter1d(downsampled_demonstration,self.args.smoothing_kernel_bandwidth,axis=0,mode='nearest') else: data_element['demo'] = downsampled_demonstration # Trivially setting is valid to true until we come up wiuth a better strategy. data_element['is_valid'] = True return data_element def close(self): for file in self.files: file.close() def preprocess_dataset(self): # for task_index in range(len(self.task_list)): # for task_index in [3,5]: for task_index in [0,1,2,4,6,7]: print("#######################################") print("Preprocessing task index: ", task_index) print("#######################################") # Get the name of environment. environment_name = self.files[task_index]['data'].attrs['env'] # Create an actual robo-suite environment. self.env = robosuite.make(environment_name) # Get sizes. obs = self.env._get_observation() robot_state_size = obs['robot-state'].shape[0] object_state_size = obs['object-state'].shape[0] # Create list of files for this task. task_demo_list = [] # For every element in the filelist of the element, for i in range(1,self.num_demos[task_index]+1): print("Preprocessing task index: ", task_index, " Demo Index: ", i, " of: ", self.num_demos[task_index]) # Create list of datapoints for this demonstrations. datapoint = {} # Get SEQUENCE of flattened states. try: flattened_state_sequence = self.files[task_index]['data/demo_{0}/states'.format(i)].value joint_action_sequence = self.files[task_index]['data/demo_{0}/joint_velocities'.format(i)].value gripper_action_sequence = self.files[task_index]['data/demo_{0}/gripper_actuations'.format(i)].value flattened_state_sequence = resample(flattened_state_sequence, flattened_state_sequence.shape[0]//self.ds_freq) number_timesteps = flattened_state_sequence.shape[0] robot_state_array = np.zeros((number_timesteps, robot_state_size)) object_state_array = np.zeros((number_timesteps, object_state_size)) # Get joint angle values from joint_values = flattened_state_sequence[:,self.joint_angle_indices] # Get gripper values from state sequence. gripper_finger_values = flattened_state_sequence[:,self.gripper_indices] # Normalize gripper values. # 1 is right finger. 0 is left finger. # 1-0 is right-left. gripper_values = gripper_finger_values[:,1]-gripper_finger_values[:,0] gripper_values = (gripper_values-gripper_values.min()) / (gripper_values.max()-gripper_values.min()) gripper_values = 2*gripper_values-1 concatenated_demonstration = np.concatenate([joint_values,gripper_values.reshape((-1,1))],axis=1) concatenated_actions = np.concatenate([joint_action_sequence,gripper_action_sequence.reshape((-1,1))],axis=1) # For every element in sequence, set environment state. for t in range(flattened_state_sequence.shape[0]): self.env.sim.set_state_from_flattened(flattened_state_sequence[t]) # Now get observation. observation = self.env._get_observation() # Robot and Object state appended to datapoint dictionary. robot_state_array[t] = observation['robot-state'] object_state_array[t] = observation['object-state'] except: datapoint['robot_state_array'] = np.zeros((1, robot_state_size)) datapoint['object_state_array'] = np.zeros((1, object_state_size)) # Put both lists in a dictionary. datapoint['flat-state'] = flattened_state_sequence datapoint['robot-state'] = robot_state_array datapoint['object-state'] = object_state_array datapoint['demo'] = concatenated_demonstration datapoint['demonstrated_actions'] = concatenated_actions # Add this dictionary to the file_demo_list. task_demo_list.append(datapoint) # Create array. task_demo_array = np.array(task_demo_list) # Now save this file_demo_list. np.save(os.path.join(self.dataset_directory,self.task_list[task_index],"New_Task_Demo_Array.npy"),task_demo_array) class Roboturk_FullDataset(Roboturk_Dataset): def __init__(self, args): super(Roboturk_FullDataset, self).__init__(args) self.environment_names = ["SawyerPickPlaceBread","SawyerPickPlaceCan","SawyerPickPlaceCereal","SawyerPickPlace","SawyerPickPlaceMilk","SawyerNutAssembly", "SawyerNutAssemblyRound","SawyerNutAssemblySquare"] def setup(self): self.files = [] for i in range(len(self.task_list)): if i==3 or i==5: self.files.append(np.load("{0}/{1}/FullDataset_Task_Demo_Array.npy".format(self.dataset_directory, self.task_list[i]), allow_pickle=True)) else: self.files.append(np.load("{0}/{1}/New_Task_Demo_Array.npy".format(self.dataset_directory, self.task_list[i]), allow_pickle=True)) def __getitem__(self, index): if index>=self.total_length: print("Out of bounds of dataset.") return None # Get bucket that index falls into based on num_demos array. task_index = np.searchsorted(self.cummulative_num_demos, index, side='right')-1 # Decide task ID, and new index modulo num_demos. # Subtract number of demonstrations in cumsum until then, and then new_index = index-self.cummulative_num_demos[max(task_index,0)] data_element = self.files[task_index][new_index] resample_length = len(data_element['demo'])//self.args.ds_freq # print("Orig:", len(data_element['demo']),"New length:",resample_length) self.kernel_bandwidth = self.args.smoothing_kernel_bandwidth if resample_length<=1 or data_element['robot-state'].shape[0]<=1: data_element['is_valid'] = False else: data_element['is_valid'] = True if self.args.smoothen: data_element['demo'] = gaussian_filter1d(data_element['demo'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['robot-state'] = gaussian_filter1d(data_element['robot-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['object-state'] = gaussian_filter1d(data_element['object-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['flat-state'] = gaussian_filter1d(data_element['flat-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['environment-name'] = self.environment_names[task_index] if self.args.ds_freq>1: data_element['demo'] = resample(data_element['demo'], resample_length) data_element['robot-state'] = resample(data_element['robot-state'], resample_length) data_element['object-state'] = resample(data_element['object-state'], resample_length) data_element['flat-state'] = resample(data_element['flat-state'], resample_length) return data_element class Roboturk_SegmentedDataset(Roboturk_Dataset): def __init__(self): super(Roboturk_SegmentedDataset, self).__init__() self.dataset_directory = '/checkpoint/tanmayshankar/Roboturk/RoboTurkPilot' # Require a task list. # The task name is needed for setting the environment, rendering. # We shouldn't need the environment for .. training though, should we? self.task_list = ["bins-Bread", "bins-Can", "bins-Cereal", "bins-Milk", "pegs-RoundNut", "pegs-SquareNut"] self.num_demos = np.array([1069, 1069, 1069, 1069, 1144, 1145]) self.cummulative_num_demos = self.num_demos.cumsum() self.cummulative_num_demos = np.insert(self.cummulative_num_demos,0,0) # Append -1 to the start of cummulative_num_demos. This has two purposes. # The first is that when we are at index 0 of the dataset, if we appended 0, np.searchsorted returns 0, rather than 1. # For index 1, it returns 1. This was becoming inconsistent behavior for demonstrations in the same task. # Now with -1 added to cumm_num_demos, when we are at task index 0, it would add -1 to the demo index. This is necessary for ALL tasks, not just the first... # So that foils our really clever idea. # Well, if the searchsorted returns the index of the equalling element, it probably consistently does this irrespective of vlaue. # This means we can use this... # No need for a clever solution, searchsorted has a "side" option that takes care of this. self.total_length = self.num_demos.sum() # Load data from all tasks. self.files = [] for i in range(len(self.task_list)): self.files.append(h5py.File("{0}/{1}/demo.hdf5".format(self.dataset_directory,self.task_list[i]),'r')) # Seems to follow joint angles order: # ('time','right_j0', 'head_pan', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint', 'Milk0', 'Bread0', 'Cereal0', 'Can0'). # Extract these into... self.joint_angle_indices = [1,3,4,5,6,7,8] self.gripper_indices = [9,10] self.ds_freq = 20 # self.r_gripper_r_finger_joint = np.array([-0.0116, 0.020833]) # self.r_gripper_l_finger_joint = np.array([-0.020833, 0.0135]) # [l,r] # gripper_open = [0.0115, -0.0115] # gripper_closed = [-0.020833, 0.020833] class Roboturk_NewSegmentedDataset(Dataset): def __init__(self, args): super(Roboturk_NewSegmentedDataset, self).__init__() self.dataset_directory = '/checkpoint/tanmayshankar/Roboturk/RoboTurkPilot' self.args = args # Require a task list. # The task name is needed for setting the environment, rendering. # We shouldn't need the environment for .. training though, should we? self.task_list = ["bins-Bread", "bins-Can", "bins-Cereal", "bins-Milk", "pegs-RoundNut", "pegs-SquareNut"] self.environment_names = ["SawyerPickPlaceBread","SawyerPickPlaceCan","SawyerPickPlaceCereal","SawyerPickPlaceMilk","SawyerNutAssemblyRound","SawyerNutAssemblySquare"] self.num_demos = np.array([1069, 1069, 1069, 1069, 1144, 1145]) self.cummulative_num_demos = self.num_demos.cumsum() self.cummulative_num_demos = np.insert(self.cummulative_num_demos,0,0) # Append -1 to the start of cummulative_num_demos. This has two purposes. # The first is that when we are at index 0 of the dataset, if we appended 0, np.searchsorted returns 0, rather than 1. # For index 1, it returns 1. This was becoming inconsistent behavior for demonstrations in the same task. # Now with -1 added to cumm_num_demos, when we are at task index 0, it would add -1 to the demo index. This is necessary for ALL tasks, not just the first... # So that foils our really clever idea. # Well, if the searchsorted returns the index of the equalling element, it probably consistently does this irrespective of vlaue. # This means we can use this... # No need for a clever solution, searchsorted has a "side" option that takes care of this. self.total_length = self.num_demos.sum() # Load data from all tasks. self.files = [] # for i in range(len(self.task_list)): for i in range(len(self.task_list)): self.files.append( np.load("{0}/{1}/New_Task_Demo_Array.npy".format(self.dataset_directory, self.task_list[i]), allow_pickle=True)) # # Seems to follow joint angles order: # # ('time','right_j0', 'head_pan', 'right_j1', 'right_j2', 'right_j3', 'right_j4', 'right_j5', 'right_j6', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint', 'Milk0', 'Bread0', 'Cereal0', 'Can0'). # # Extract these into... # self.joint_angle_indices = [1,3,4,5,6,7,8] # self.gripper_indices = [9,10] # self.ds_freq = 20 # # self.r_gripper_r_finger_joint = np.array([-0.0116, 0.020833]) # # self.r_gripper_l_finger_joint = np.array([-0.020833, 0.0135]) # # [l,r] # # gripper_open = [0.0115, -0.0115] # # gripper_closed = [-0.020833, 0.020833] def __len__(self): return self.total_length def __getitem__(self, index): if index>=self.total_length: print("Out of bounds of dataset.") return None # Get bucket that index falls into based on num_demos array. task_index = np.searchsorted(self.cummulative_num_demos, index, side='right')-1 # Decide task ID, and new index modulo num_demos. # Subtract number of demonstrations in cumsum until then, and then new_index = index-self.cummulative_num_demos[max(task_index,0)] data_element = self.files[task_index][new_index] resample_length = len(data_element['demo'])//self.args.ds_freq # print("Orig:", len(data_element['demo']),"New length:",resample_length) self.kernel_bandwidth = self.args.smoothing_kernel_bandwidth if resample_length<=1 or index==4900 or index==537: data_element['is_valid'] = False else: data_element['is_valid'] = True if self.args.smoothen: data_element['demo'] = gaussian_filter1d(data_element['demo'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['robot-state'] = gaussian_filter1d(data_element['robot-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['object-state'] = gaussian_filter1d(data_element['object-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['flat-state'] = gaussian_filter1d(data_element['flat-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['environment-name'] = self.environment_names[task_index] data_element['task-id'] = task_index if self.args.ds_freq>1: data_element['demo'] = resample(data_element['demo'], resample_length) data_element['robot-state'] = resample(data_element['robot-state'], resample_length) data_element['object-state'] = resample(data_element['object-state'], resample_length) data_element['flat-state'] = resample(data_element['flat-state'], resample_length) return data_element def get_number_task_demos(self, task_index): return self.num_demos[task_index] def get_task_demo(self, task_index, index): if index>=self.num_demos[task_index]: print("Out of bounds of dataset.") return None data_element = self.files[task_index][index] resample_length = len(data_element['demo'])//self.args.ds_freq # print("Orig:", len(data_element['demo']),"New length:",resample_length) self.kernel_bandwidth = self.args.smoothing_kernel_bandwidth if resample_length<=1 or data_element['robot-state'].shape[0]==0: data_element['is_valid'] = False else: data_element['is_valid'] = True if self.args.smoothen: data_element['demo'] = gaussian_filter1d(data_element['demo'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['robot-state'] = gaussian_filter1d(data_element['robot-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['object-state'] = gaussian_filter1d(data_element['object-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['flat-state'] = gaussian_filter1d(data_element['flat-state'],self.kernel_bandwidth,axis=0,mode='nearest') data_element['environment-name'] = self.environment_names[task_index] if self.args.ds_freq>1: data_element['demo'] = resample(data_element['demo'], resample_length) data_element['robot-state'] = resample(data_element['robot-state'], resample_length) data_element['object-state'] = resample(data_element['object-state'], resample_length) data_element['flat-state'] = resample(data_element['flat-state'], resample_length) return data_element class Roboturk_Dataloader_Tester(unittest.TestCase): def test_Roboturkdataloader(self): self.dataset = Roboturk_Dataset() # Check the first index of the dataset. data_element = self.dataset[0] validity = data_element['is_valid'] check_demo_data = (data_element['demo']==np.load("Test_Data/Roboturk_Dataloader_DE.npy")).all() self.assertTrue(validity and check_demo_data) if __name__ == '__main__': # Run all tests defined for the dataloader. unittest.main()
CausalSkillLearning-main
Experiments/Roboturk_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * import DataLoaders, MIME_DataLoader, Roboturk_DataLoader, Mocap_DataLoader from PolicyManagers import * import TestClass def return_dataset(args, data=None): # The data parameter overrides the data in args.data. # This is so that we can call return_dataset with source and target data for transfer setting. if data is not None: args.data = data # Define Data Loader. if args.data=='Continuous': dataset = DataLoaders.ContinuousToyDataset(args.datadir) elif args.data=='ContinuousNonZero': dataset = DataLoaders.ContinuousNonZeroToyDataset(args.datadir) elif args.data=='DeterGoal': dataset = DataLoaders.DeterministicGoalDirectedDataset(args.datadir) elif args.data=='MIME': dataset = MIME_DataLoader.MIME_NewDataset() elif args.data=='Roboturk': dataset = Roboturk_DataLoader.Roboturk_NewSegmentedDataset(args) elif args.data=='OrigRoboturk': dataset = Roboturk_DataLoader.Roboturk_Dataset(args) elif args.data=='FullRoboturk': dataset = Roboturk_DataLoader.Roboturk_FullDataset(args) elif args.data=='Mocap': dataset = Mocap_DataLoader.Mocap_Dataset(args) return dataset class Master(): def __init__(self, arguments): self.args = arguments self.dataset = return_dataset(self.args) # Now define policy manager. if self.args.setting=='learntsub': self.policy_manager = PolicyManager_Joint(self.args.number_policies, self.dataset, self.args) elif self.args.setting=='pretrain_sub': self.policy_manager = PolicyManager_Pretrain(self.args.number_policies, self.dataset, self.args) elif self.args.setting=='baselineRL': self.policy_manager = PolicyManager_BaselineRL(args=self.args) elif self.args.setting=='downstreamRL': self.policy_manager = PolicyManager_DownstreamRL(args=self.args) elif self.args.setting=='DMP': self.policy_manager = PolicyManager_DMPBaselines(self.args.number_policies, self.dataset, self.args) elif self.args.setting=='imitation': self.policy_manager = PolicyManager_Imitation(self.args.number_policies, self.dataset, self.args) elif self.args.setting=='transfer' or self.args.setting=='cycle_transfer': source_dataset = return_dataset(self.args, data=self.args.source_domain) target_dataset = return_dataset(self.args, data=self.args.target_domain) if self.args.setting=='transfer': self.policy_manager = PolicyManager_Transfer(args=self.args, source_dataset=source_dataset, target_dataset=target_dataset) elif self.args.setting=='cycle_transfer': self.policy_manager = PolicyManager_CycleConsistencyTransfer(args=self.args, source_dataset=source_dataset, target_dataset=target_dataset) if self.args.debug: embed() # Create networks and training operations. self.policy_manager.setup() def run(self): if self.args.setting=='pretrain_sub' or self.args.setting=='pretrain_prior' or \ self.args.setting=='imitation' or self.args.setting=='baselineRL' or self.args.setting=='downstreamRL' or \ self.args.setting=='transfer' or self.args.setting=='cycle_transfer': if self.args.train: if self.args.model: self.policy_manager.train(self.args.model) else: self.policy_manager.train() else: if self.args.setting=='pretrain_prior': self.policy_manager.train(self.args.model) else: self.policy_manager.evaluate(model=self.args.model) elif self.args.setting=='learntsub': if self.args.train: if self.args.model: self.policy_manager.train(self.args.model) else: if self.args.subpolicy_model: print("Just loading subpolicies.") self.policy_manager.load_all_models(self.args.subpolicy_model, just_subpolicy=True) self.policy_manager.train() else: # self.policy_manager.train(self.args.model) self.policy_manager.evaluate(self.args.model) # elif self.args.setting=='baselineRL' or self.args.setting=='downstreamRL': # if self.args.train: # if self.args.model: # self.policy_manager.train(self.args.model) # else: # self.policy_manager.train() elif self.args.setting=='DMP': self.policy_manager.evaluate_across_testset() def test(self): if self.args.test_code: loader = TestClass.TestLoaderWithKwargs() suite = loader.loadTestsFromTestCase(TestClass.MetaTestClass, policy_manager=self.policy_manager) unittest.TextTestRunner().run(suite) def parse_arguments(): parser = argparse.ArgumentParser(description='Learning Skills from Demonstrations') # Setup training. parser.add_argument('--datadir', dest='datadir',type=str,default='../Data/ContData/') parser.add_argument('--train',dest='train',type=int,default=0) parser.add_argument('--debug',dest='debug',type=int,default=0) parser.add_argument('--notes',dest='notes',type=str) parser.add_argument('--name',dest='name',type=str,default=None) parser.add_argument('--fake_batch_size',dest='fake_batch_size',type=int,default=1) parser.add_argument('--batch_size',dest='batch_size',type=int,default=1) parser.add_argument('--training_phase_size',dest='training_phase_size',type=int,default=500000) parser.add_argument('--initial_counter_value',dest='initial_counter_value',type=int,default=0) parser.add_argument('--data',dest='data',type=str,default='Continuous') parser.add_argument('--setting',dest='setting',type=str,default='gtsub') parser.add_argument('--test_code',dest='test_code',type=int,default=0) parser.add_argument('--model',dest='model',type=str) parser.add_argument('--logdir',dest='logdir',type=str,default='Experiment_Logs/') parser.add_argument('--epochs',dest='epochs',type=int,default=500) # Number of epochs to train for. Reduce for Mocap. # Training setting. parser.add_argument('--discrete_z',dest='discrete_z',type=int,default=0) # parser.add_argument('--transformer',dest='transformer',type=int,default=0) parser.add_argument('--z_dimensions',dest='z_dimensions',type=int,default=64) parser.add_argument('--number_layers',dest='number_layers',type=int,default=5) parser.add_argument('--hidden_size',dest='hidden_size',type=int,default=64) parser.add_argument('--environment',dest='environment',type=str,default='SawyerLift') # Defines robosuite environment for RL. # Data parameters. parser.add_argument('--traj_segments',dest='traj_segments',type=int,default=1) # Defines whether to use trajectory segments for pretraining or entire trajectories. Useful for baseline implementation. parser.add_argument('--gripper',dest='gripper',type=int,default=1) # Whether to use gripper training in roboturk. parser.add_argument('--ds_freq',dest='ds_freq',type=int,default=1) # Additional downsample frequency. parser.add_argument('--condition_size',dest='condition_size',type=int,default=4) parser.add_argument('--smoothen', dest='smoothen',type=int,default=0) # Whether to smoothen the original dataset. parser.add_argument('--smoothing_kernel_bandwidth', dest='smoothing_kernel_bandwidth',type=float,default=3.5) # The smoothing bandwidth that is applied to data loader trajectories. parser.add_argument('--new_gradient',dest='new_gradient',type=int,default=1) parser.add_argument('--b_prior',dest='b_prior',type=int,default=1) parser.add_argument('--constrained_b_prior',dest='constrained_b_prior',type=int,default=1) # Whether to use constrained b prior var network or just normal b prior one. parser.add_argument('--reparam',dest='reparam',type=int,default=1) parser.add_argument('--number_policies',dest='number_policies',type=int,default=4) parser.add_argument('--fix_subpolicy',dest='fix_subpolicy',type=int,default=1) parser.add_argument('--train_only_policy',dest='train_only_policy',type=int,default=0) # Train only the policy network and use a pretrained encoder. This is weird but whatever. parser.add_argument('--load_latent',dest='load_latent',type=int,default=1) # Whether to load latent policy from model or not. parser.add_argument('--subpolicy_model',dest='subpolicy_model',type=str) parser.add_argument('--traj_length',dest='traj_length',type=int,default=10) parser.add_argument('--skill_length',dest='skill_length',type=int,default=5) parser.add_argument('--var_skill_length',dest='var_skill_length',type=int,default=0) parser.add_argument('--display_freq',dest='display_freq',type=int,default=10000) parser.add_argument('--save_freq',dest='save_freq',type=int,default=1) parser.add_argument('--eval_freq',dest='eval_freq',type=int,default=20) parser.add_argument('--perplexity',dest='perplexity',type=float,default=30,help='Value of perplexity fed to TSNE.') parser.add_argument('--entropy',dest='entropy',type=int,default=0) parser.add_argument('--var_entropy',dest='var_entropy',type=int,default=0) parser.add_argument('--ent_weight',dest='ent_weight',type=float,default=0.) parser.add_argument('--var_ent_weight',dest='var_ent_weight',type=float,default=2.) parser.add_argument('--pretrain_bias_sampling',type=float,default=0.) # Defines percentage of trajectory within which to sample trajectory segments for pretraining. parser.add_argument('--pretrain_bias_sampling_prob',type=float,default=0.) parser.add_argument('--action_scale_factor',type=float,default=1) parser.add_argument('--z_exploration_bias',dest='z_exploration_bias',type=float,default=0.) parser.add_argument('--b_exploration_bias',dest='b_exploration_bias',type=float,default=0.) parser.add_argument('--lat_z_wt',dest='lat_z_wt',type=float,default=0.1) parser.add_argument('--lat_b_wt',dest='lat_b_wt',type=float,default=1.) parser.add_argument('--z_probability_factor',dest='z_probability_factor',type=float,default=0.1) parser.add_argument('--b_probability_factor',dest='b_probability_factor',type=float,default=0.1) parser.add_argument('--subpolicy_clamp_value',dest='subpolicy_clamp_value',type=float,default=-5) parser.add_argument('--latent_clamp_value',dest='latent_clamp_value',type=float,default=-5) parser.add_argument('--min_variance_bias',dest='min_variance_bias',type=float,default=0.01) parser.add_argument('--normalization',dest='normalization',type=str,default='None') parser.add_argument('--likelihood_penalty',dest='likelihood_penalty',type=int,default=10) parser.add_argument('--subpolicy_ratio',dest='subpolicy_ratio',type=float,default=0.01) parser.add_argument('--latentpolicy_ratio',dest='latentpolicy_ratio',type=float,default=0.1) parser.add_argument('--temporal_latentpolicy_ratio',dest='temporal_latentpolicy_ratio',type=float,default=0.) parser.add_argument('--latent_loss_weight',dest='latent_loss_weight',type=float,default=0.1) parser.add_argument('--kl_weight',dest='kl_weight',type=float,default=0.01) parser.add_argument('--var_loss_weight',dest='var_loss_weight',type=float,default=1.) parser.add_argument('--prior_weight',dest='prior_weight',type=float,default=0.00001) # Cross Domain Skill Transfer parameters. parser.add_argument('--discriminability_weight',dest='discriminability_weight',type=float,default=1.,help='Weight of discriminability loss in cross domain skill transfer.') parser.add_argument('--vae_loss_weight',dest='vae_loss_weight',type=float,default=1.,help='Weight of VAE loss in cross domain skill transfer.') parser.add_argument('--alternating_phase_size',dest='alternating_phase_size',type=int,default=2000, help='Size of alternating training phases.') parser.add_argument('--discriminator_phase_size',dest='discriminator_phase_size',type=int,default=2,help='Factor by which to train discriminator more than generator.') parser.add_argument('--cycle_reconstruction_loss_weight',dest='cycle_reconstruction_loss_weight',type=float,default=1.,help='Weight of the cycle-consistency reconstruction loss term.') # Exploration and learning rate parameters. parser.add_argument('--epsilon_from',dest='epsilon_from',type=float,default=0.3) parser.add_argument('--epsilon_to',dest='epsilon_to',type=float,default=0.05) parser.add_argument('--epsilon_over',dest='epsilon_over',type=int,default=30) parser.add_argument('--learning_rate',dest='learning_rate',type=float,default=1e-4) # Baseline parameters. parser.add_argument('--baseline_kernels',dest='baseline_kernels',type=int,default=15) parser.add_argument('--baseline_window',dest='baseline_window',type=int,default=15) parser.add_argument('--baseline_kernel_bandwidth',dest='baseline_kernel_bandwidth',type=float,default=3.5) # Reinforcement Learning parameters. parser.add_argument('--TD',dest='TD',type=int,default=0) # Whether or not to use Temporal difference while training the critic network. parser.add_argument('--OU',dest='OU',type=int,default=1) # Whether or not to use the Ornstein Uhlenbeck noise process while training. parser.add_argument('--OU_max_sigma',dest='OU_max_sigma',type=float,default=0.2) # Max Sigma value of the Ornstein Uhlenbeck noise process. parser.add_argument('--OU_min_sigma',dest='OU_min_sigma',type=float,default=0.2) # Min Sigma value of the Ornstein Uhlenbeck noise process. parser.add_argument('--MLP_policy',dest='MLP_policy',type=int,default=0) # Whether or not to use MLP policy. parser.add_argument('--mean_nonlinearity',dest='mean_nonlinearity',type=int,default=0) # Whether or not to use Tanh activation. parser.add_argument('--burn_in_eps',dest='burn_in_eps',type=int,default=500) # How many epsiodes to burn in. parser.add_argument('--random_memory_burn_in',dest='random_memory_burn_in',type=int,default=1) # Whether to burn in episodes into memory randomly or not. parser.add_argument('--shaped_reward',dest='shaped_reward',type=int,default=0) # Whether or not to use shaped rewards. parser.add_argument('--memory_size',dest='memory_size',type=int,default=2000) # Size of replay memory. 2000 is okay, but is still kind of short sighted. # Transfer learning domains, etc. parser.add_argument('--source_domain',dest='source_domain',type=str,help='What the source domain is in transfer.') parser.add_argument('--target_domain',dest='target_domain',type=str,help='What the target domain is in transfer.') return parser.parse_args() def main(args): args = parse_arguments() master = Master(args) if args.test_code: master.test() else: master.run() if __name__=='__main__': main(sys.argv)
CausalSkillLearning-main
Experiments/Master.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from headers import * def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class Mocap_Dataset(Dataset): def __init__(self, args, split='all'): self.dataset_directory = '/checkpoint/tanmayshankar/Mocap/' self.args = args # Load the entire set of trajectories. self.data_list = np.load(os.path.join(self.dataset_directory, "Demo_Array.npy"),allow_pickle=True) self.dataset_length = len(self.data_list) self.ds_freq = self.args.ds_freq def __len__(self): # Return length of file list. return self.dataset_length def process_item(self, item): resample_length = len(item['global_positions']) // self.ds_freq if resample_length<5: item['is_valid'] = False else: item['is_valid'] = True item['global_positions'] = resample(item['global_positions'], resample_length) demo = resample(item['local_positions'], resample_length) item['local_positions'] = demo item['local_rotations'] = resample(item['local_rotations'], resample_length) item['animation'] = resample(item['animation'], resample_length) # Replicate as demo for downstream dataloading. # Reshape to TxNumber of dimensions. item['demo'] = demo.reshape((demo.shape[0],-1)) return item def __getitem__(self, index): # Return n'th item of dataset. # This has already processed everything. # Remember, the global and local posiitons are all stored as Number_Frames x Number_Joints x 3 array. # Change this to # Number_Frames x Number_Dimensions...? But the dimensions are not independent.. so what do we do? return self.process_item(copy.deepcopy(self.data_list[index])) def compute_statistics(self): embed()
CausalSkillLearning-main
Experiments/Mocap_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * class DMP(): # def __init__(self, time_steps=100, num_ker=25, dimensions=3, kernel_bandwidth=None, alphaz=None, time_basis=False): def __init__(self, time_steps=40, num_ker=15, dimensions=7, kernel_bandwidth=3.5, alphaz=5., time_basis=True): # DMP(dimensions=7,time_steps=40,num_ker=15,kernel_bandwidth=3.5,alphaz=5.,time_basis=True) # self.alphaz = 25.0 if alphaz is not None: self.alphaz = alphaz else: self.alphaz = 10. self.betaz = self.alphaz/4 self.alpha = self.alphaz/3 self.time_steps = time_steps self.tau = self.time_steps # self.tau = 1. self.use_time_basis = time_basis self.dimensions = dimensions # self.number_kernels = max(500,self.time_steps) self.number_kernels = num_ker if kernel_bandwidth is not None: self.kernel_bandwidth = kernel_bandwidth else: self.kernel_bandwidth = self.calculate_good_sigma(self.time_steps, self.number_kernels) self.epsilon = 0.001 self.setup() def setup(self): self.gaussian_kernels = np.zeros((self.number_kernels,2)) self.weights = np.zeros((self.number_kernels, self.dimensions)) self.demo_pos = np.zeros((self.time_steps, self.dimensions)) self.demo_vel = np.zeros((self.time_steps, self.dimensions)) self.demo_acc = np.zeros((self.time_steps, self.dimensions)) self.target_forces = np.zeros((self.time_steps, self.dimensions)) self.phi = np.zeros((self.number_kernels, self.time_steps, self.time_steps)) self.eta = np.zeros((self.time_steps, self.dimensions)) self.vector_phase = np.zeros(self.time_steps) # Defining Rollout variables. self.rollout_time = self.time_steps self.dt = 1./self.rollout_time self.pos_roll = np.zeros((self.rollout_time,self.dimensions)) self.vel_roll = np.zeros((self.rollout_time,self.dimensions)) self.acc_roll = np.zeros((self.rollout_time,self.dimensions)) self.force_roll = np.zeros((self.rollout_time,self.dimensions)) self.goal = np.zeros(self.dimensions) self.start = np.zeros(self.dimensions) def calculate_good_sigma(self, time, number_kernels, threshold=0.15): return time/(2*(number_kernels-1)*(np.sqrt(-np.log(threshold)))) def load_trajectory(self,pos,vel=None,acc=None): self.demo_pos = np.zeros((self.time_steps, self.dimensions)) self.demo_vel = np.zeros((self.time_steps, self.dimensions)) self.demo_acc = np.zeros((self.time_steps, self.dimensions)) if vel is not None and acc is not None: self.demo_pos = copy.deepcopy(pos) self.demo_vel = copy.deepcopy(vel) self.demo_acc = copy.deepcopy(acc) else: self.smooth_interpolate(pos) def smooth_interpolate(self, pos): # Filter the posiiton input by Gaussian smoothing. smooth_pos = gaussian_filter1d(pos,3.5,axis=0,mode='nearest') time_range = np.linspace(0, pos.shape[0]-1, pos.shape[0]) new_time_range = np.linspace(0,pos.shape[0]-1,self.time_steps+2) self.interpolated_pos = np.zeros((self.time_steps+2,self.dimensions)) interpolating_objects = [] for i in range(self.dimensions): interpolating_objects.append(interp1d(time_range,pos[:,i],kind='linear')) self.interpolated_pos[:,i] = interpolating_objects[i](new_time_range) self.demo_vel = np.diff(self.interpolated_pos,axis=0)[:self.time_steps] self.demo_acc = np.diff(self.interpolated_pos,axis=0,n=2)[:self.time_steps] self.demo_pos = self.interpolated_pos[:self.time_steps] def initialize_variables(self): self.weights = np.zeros((self.number_kernels, self.dimensions)) self.target_forces = np.zeros((self.time_steps, self.dimensions)) self.phi = np.zeros((self.number_kernels, self.time_steps, self.time_steps)) self.eta = np.zeros((self.time_steps, self.dimensions)) self.kernel_centers = np.linspace(0,self.time_steps,self.number_kernels) self.vector_phase = self.calc_vector_phase(self.kernel_centers) self.gaussian_kernels[:,0] = self.vector_phase # Different kernel parameters that have worked before, giving different behavior. # # dummy = (np.diff(self.gaussian_kernels[:,0]*0.55))**2 # # dummy = (np.diff(self.gaussian_kernels[:,0]*2))**2 # # dummy = (np.diff(self.gaussian_kernels[:,0]))**2 dummy = (np.diff(self.gaussian_kernels[:,0]*self.kernel_bandwidth))**2 self.gaussian_kernels[:,1] = 1. / np.append(dummy,dummy[-1]) # self.gaussian_kernels[:,1] = self.number_kernels/self.gaussian_kernels[:,0] def calc_phase(self,time): return np.exp(-self.alpha*float(time)/self.tau) def calc_vector_phase(self,time): return np.exp(-self.alpha*time.astype(float)/self.tau) def basis(self,index,time): return np.exp(-(self.gaussian_kernels[index,1])*((self.calc_phase(time)-self.gaussian_kernels[index,0])**2)) def time_basis(self, index, time): # return np.exp(-(self.gaussian_kernels[index,1])*((time-self.kernel_centers[index])**2)) # return np.exp(-(time-self.kernel_centers[index])**2) return np.exp(-((time-self.kernel_centers[index])**2)/(self.kernel_bandwidth)) def vector_basis(self, index, time_range): return np.exp(-(self.gaussian_kernels[index,1])*((self.calc_vector_phase(time_range)-self.gaussian_kernels[index,0])**2)) def update_target_force_itau(self): self.target_forces = (self.tau**2)*self.demo_acc - self.alphaz*(self.betaz*(self.demo_pos[self.time_steps-1]-self.demo_pos)-self.tau*self.demo_vel) def update_target_force_dtau(self): self.target_forces = self.demo_acc/(self.tau**2) - self.alphaz*(self.betaz*(self.demo_pos[self.time_steps-1]-self.demo_pos)-self.demo_vel/self.tau) def update_target_force(self): self.target_forces = self.demo_acc - self.alphaz*(self.betaz*(self.demo_pos[self.time_steps-1]-self.demo_pos)-self.demo_vel) def update_phi(self): for i in range(self.number_kernels): for t in range(self.time_steps): if self.use_time_basis: self.phi[i,t,t] = self.time_basis(i,t) else: self.phi[i,t,t] = self.basis(i,t) def update_eta(self): t_range = np.linspace(0,self.time_steps,self.time_steps) vector_phase = self.calc_vector_phase(t_range) for k in range(self.dimensions): self.eta[:,k] = vector_phase*(self.demo_pos[self.time_steps-1,k]-self.demo_pos[0,k]) def learn_DMP(self, pos, forces="i"): self.setup() self.load_trajectory(pos) self.initialize_variables() self.learn_weights(forces=forces) def learn_weights(self, forces="i"): if forces=="i": self.update_target_force_itau() elif forces=="d": self.update_target_force_dtau() elif forces=="n": self.update_target_force() self.update_phi() self.update_eta() for j in range(self.dimensions): for i in range(self.number_kernels): self.weights[i,j] = np.dot(self.eta[:,j],np.dot(self.phi[i],self.target_forces[:,j])) self.weights[i,j] /= np.dot(self.eta[:,j],np.dot(self.phi[i],self.eta[:,j])) + self.epsilon def initialize_rollout(self,start,goal,init_vel): self.pos_roll = np.zeros((self.rollout_time,self.dimensions)) self.vel_roll = np.zeros((self.rollout_time,self.dimensions)) self.acc_roll = np.zeros((self.rollout_time,self.dimensions)) self.tau = self.rollout_time self.pos_roll[0] = copy.deepcopy(start) self.vel_roll[0] = copy.deepcopy(init_vel) self.goal = goal self.start = start self.dt = self.tau/self.rollout_time # print(self.dt,self.tau,self.rollout_time) def calc_rollout_force(self, roll_time): den = 0 time = copy.deepcopy(roll_time) for i in range(self.number_kernels): if self.use_time_basis: self.force_roll[roll_time] += self.time_basis(i,time)*self.weights[i] den += self.time_basis(i,time) else: self.force_roll[roll_time] += self.basis(i,time)*self.weights[i] den += self.basis(i,time) self.force_roll[roll_time] *= (self.goal-self.start)*self.calc_phase(time)/den def calc_rollout_acceleration(self,time): self.acc_roll[time] = (1./self.tau**2)*(self.alphaz * (self.betaz * (self.goal - self.pos_roll[time]) - self.tau*self.vel_roll[time]) + self.force_roll[time]) def calc_rollout_vel(self,time): self.vel_roll[time] = self.vel_roll[time-1] + self.acc_roll[time-1]*self.dt def calc_rollout_pos(self,time): self.pos_roll[time] = self.pos_roll[time-1] + self.vel_roll[time-1]*self.dt def rollout(self,start,goal,init_vel): self.initialize_rollout(start,goal,init_vel) self.calc_rollout_force(0) self.calc_rollout_acceleration(0) for i in range(1,self.rollout_time): self.calc_rollout_force(i) self.calc_rollout_vel(i) self.calc_rollout_pos(i) self.calc_rollout_acceleration(i) return self.pos_roll def load_weights(self, weight): self.weights = copy.deepcopy(weight) def main(args): pos = np.load(str(sys.argv[1]))[:,:3] vel = np.load(str(sys.argv[2]))[:,:3] acc = np.load(str(sys.argv[3]))[:,:3] rolltime = 500 dmp = DMP(rolltime) dmp.load_trajectory(pos) dmp.initialize_variables() dmp.learn_DMP() start = np.zeros(dmp.dimensions) goal = np.ones(dmp.dimensions) norm_vector = pos[-1]-pos[0] init_vel = np.divide(vel[0],norm_vector) dmp.rollout(start, goal, init_vel) dmp.save_rollout()
CausalSkillLearning-main
Experiments/DMP.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import glob, os, sys, argparse import torch, copy from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from IPython import embed import matplotlib matplotlib.use('Agg') # matplotlib.rcParams['animation.ffmpeg_args'] = '-report' matplotlib.rcParams['animation.bitrate'] = 2000 import matplotlib.pyplot as plt import tensorboardX from scipy import stats from absl import flags from memory_profiler import profile from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from IPython import embed import pdb import sklearn.manifold as skl_manifold from sklearn.decomposition import PCA from matplotlib.offsetbox import (TextArea, DrawingArea, OffsetImage, AnnotationBbox) from matplotlib.animation import FuncAnimation import tensorflow as tf import tempfile import moviepy.editor as mpy import subprocess import h5py import time import robosuite import unittest import cProfile from scipy import stats, signal from scipy.interpolate import interp1d from scipy.ndimage.filters import gaussian_filter1d from scipy.signal import find_peaks, argrelextrema from sklearn.neighbors import NearestNeighbors
CausalSkillLearning-main
Experiments/headers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np, glob, os from IPython import embed # Env list. environment_names = ["SawyerPickPlaceBread","SawyerPickPlaceCan","SawyerPickPlaceCereal","SawyerPickPlaceMilk","SawyerNutAssemblyRound","SawyerNutAssemblySquare"] # Evaluate baselineRL methods. a = 86 b = 86 a = 130 b = 137 prefix = 'RL' increment = 100 reward_list = [] for i in range(a,b+1): model_template = "RL{0}/saved_models/Model_epoch*".format(i) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] max_model = int(models[-1].lstrip("RL{0}/saved_models/Model_epoch".format(i))) model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)): rewards[j] = np.load("RL{0}/MEval/m{1}/Mean_Reward_RL{0}.npy".format(i,model_range[j])) reward_list.append(rewards) embed() # x = np.arange(0,260,20) # dists = np.zeros((6,len(x),100)) # a = 6 # b = 12 # for i in range(a,b): # for j in range(len(x)): # dists[i-a,j] = np.load("IL0{0}/MEval/m{1}/Total_Rewards_IL0{0}.npy".format(str(i).zfill(2),x[j])) # IL a = 18 b = 23 prefix = 'IL0' increment = 20 reward_list = [] for i in range(a,b+1): model_template = "{0}{1}/saved_models/Model_epoch*".format(prefix,i) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] max_model = int(models[-1].lstrip("{0}{1}/saved_models/Model_epoch".format(prefix,i))) model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)): rewards[j] = np.load("{2}{0}/MEval/m{1}/Mean_Reward_{2}{0}.npy".format(i,model_range[j],prefix)) reward_list.append(rewards) # Get distances a = 30 b = 37 prefix = 'RJ' increment = 20 distance_list = [] for i in range(a,b+1): model_template = "{0}{1}/saved_models/Model_epoch*".format(prefix,i) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] max_model = int(models[-1].lstrip("{0}{1}/saved_models/Model_epoch".format(prefix,i))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) distances = np.zeros((len(model_range))) for j in range(len(model_range)): distances[j] = np.load("{2}{0}/MEval/m{1}/Mean_Trajectory_Distance_{2}{0}.npy".format(i,model_range[j],prefix)) distance_list.append(distances) ################################################ # Env list. environment_names = ["SawyerPickPlaceBread","SawyerPickPlaceCan","SawyerPickPlaceCereal","SawyerPickPlaceMilk","SawyerNutAssemblyRound","SawyerNutAssemblySquare"] # Evaluate baselineRL methods. a = 5 b = 12 prefix = 'downRL' increment = 20 reward_list = [] for i in range(a,b+1): padded_index = str(i).zfill(3) model_template = "{1}{0}/saved_models/Model_epoch*".format(padded_index,prefix) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] max_model = int(models[-1].lstrip("{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)): rewards[j] = np.load("{2}{0}/MEval/m{1}/Mean_Reward_{2}{0}.npy".format(padded_index,model_range[j],prefix)) # rewards[j] = np.load("{0}{1}/MEval/m{2}/Mean_Reward_{0}{1}.npy".format(prefix,padded_indexi,model_range[j],prefix)) reward_list.append(rewards) ############################################## # MOcap distances # Get distances a = 1 b = 2 prefix = 'Mocap00' increment = 20 distance_list = [] for i in range(a,b+1): model_template = "{0}{1}/saved_models/Model_epoch*".format(prefix,i) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] max_model = int(models[-1].lstrip("{0}{1}/saved_models/Model_epoch".format(prefix,i))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) distances = np.zeros((len(model_range))) for j in range(len(model_range)): distances[j] = np.load("{2}{0}/MEval/m{1}/Mean_Trajectory_Distance_{2}{0}.npy".format(i,model_range[j],prefix)) distance_list.append(distances) ############################################## ################################################ # Env list. environment_names = ["SawyerPickPlaceBread","SawyerPickPlaceCan","SawyerPickPlaceCereal","SawyerPickPlaceMilk","SawyerNutAssemblyRound","SawyerNutAssemblySquare"] def remove_start(inputstring, word_to_remove): return inputstring[len(word_to_remove):] if inputstring.startswith(word_to_remove) else inputstring # Evaluate baselineRL methods. a = 23 b = 28 prefix = 'downRL_pi' increment = 20 reward_list = [] for i in range(a,b+1): padded_index = str(i).zfill(3) model_template = "{1}{0}/saved_models/Model_epoch*".format(padded_index,prefix) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] # max_model = int(models[-1].lstrip("{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = int(remove_start(models[-1],"{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)-1): rewards[j] = np.load("{2}{0}/MEval/m{1}/Mean_Reward_{2}{0}.npy".format(padded_index,model_range[j],prefix)) # rewards[j] = np.load("{0}{1}/MEval/m{2}/Mean_Reward_{0}{1}.npy".format(prefix,padded_indexi,model_range[j],prefix)) reward_list.append(rewards) for i in range(a,b+1): print("For environment: ", environment_names[i-a]) print("Average reward:", np.array(reward_list[i-a]).max()) def evalrl(a,b): prefix = 'downRL_pi' increment = 20 reward_list = [] for i in range(a,b+1): padded_index = str(i).zfill(3) model_template = "{1}{0}/saved_models/Model_epoch*".format(padded_index,prefix) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] # max_model = int(models[-1].lstrip("{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = int(remove_start(models[-1],"{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)-1): rewards[j] = np.load("{2}{0}/MEval/m{1}/Mean_Reward_{2}{0}.npy".format(padded_index,model_range[j],prefix)) # rewards[j] = np.load("{0}{1}/MEval/m{2}/Mean_Reward_{0}{1}.npy".format(prefix,padded_indexi,model_range[j],prefix)) reward_list.append(rewards) for i in range(a,b+1): print("For environment: ", environment_names[i-a]) print("Average reward:", np.array(reward_list[i-a]).max()) def evalrl(a,b): prefix = 'RL' increment = 20 reward_list = [] for i in range(a,b+1): padded_index = str(i).zfill(2) model_template = "{1}{0}/saved_models/Model_epoch*".format(padded_index,prefix) models = glob.glob(model_template) # number_models = [int((model.lstrip("RL{0}/saved_models/Model_epoch".format(i))).zfill(4)) for model in models] # max_model = int(models[-1].lstrip("{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = int(remove_start(models[-1],"{1}{0}/saved_models/Model_epoch".format(padded_index,prefix))) max_model = max_model-max_model%increment model_range = np.arange(0,max_model+increment,increment) rewards = np.zeros((len(model_range))) for j in range(len(model_range)-1): rewards[j] = np.load("{2}{0}/MEval/m{1}/Mean_Reward_{2}{0}.npy".format(padded_index,model_range[j],prefix)) # rewards[j] = np.load("{0}{1}/MEval/m{2}/Mean_Reward_{0}{1}.npy".format(prefix,padded_indexi,model_range[j],prefix)) reward_list.append(rewards) for i in range(a,b+1): print("For environment: ", environment_names[i-a]) print("Average reward:", np.array(reward_list[i-a]).max())
CausalSkillLearning-main
Experiments/Eval_RLRewards.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from mocap_processing.motion.pfnn import Animation, BVH from basecode.render import glut_viewer as viewer from basecode.render import gl_render, camera from basecode.utils import basics from basecode.math import mmMath import numpy as np, imageio from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import time, threading from IPython import embed global whether_to_render whether_to_render = False def init(): global whether_to_render, global_positions, counter, joint_parents, done_with_render, save_path, name_prefix, image_list whether_to_render = False done_with_render = False global_positions = None joint_parents = None save_path = "/private/home/tanmayshankar/Research/Code/" name_prefix = "Viz_Image" image_list = [] counter = 0 # Define function to load animation file. def load_animation(bvh_filename): animation, joint_names, time_per_frame = BVH.load(bvh_filename) joint_parents = animation.parents global_positions = Animation.positions_global(animation) return global_positions, joint_parents, time_per_frame # Function that draws body of animated character from the global positions. def render_pose_by_capsule(global_positions, frame_num, joint_parents, scale=1.0, color=[0.5, 0.5, 0.5, 1], radius=0.05): glPushMatrix() glScalef(scale, scale, scale) for i in range(len(joint_parents)): pos = global_positions[frame_num][i] # gl_render.render_point(pos, radius=radius, color=color) j = joint_parents[i] if j!=-1: pos_parent = global_positions[frame_num][j] p = 0.5 * (pos_parent + pos) l = np.linalg.norm(pos_parent-pos) R = mmMath.getSO3FromVectors(np.array([0, 0, 1]), pos_parent-pos) gl_render.render_capsule(mmMath.Rp2T(R,p), l, radius, color=color, slice=16) glPopMatrix() # Callback that renders one pose. def render_callback_time_independent(): global global_positions, joint_parents, counter if counter<global_positions.shape[0]: gl_render.render_ground(size=[100, 100], color=[0.8, 0.8, 0.8], axis='z', origin=True, use_arrow=True) # Render Shadow of Character glEnable(GL_DEPTH_TEST) glDisable(GL_LIGHTING) glPushMatrix() glTranslatef(0, 0, 0.001) glScalef(1, 1, 0) render_pose_by_capsule(global_positions, counter, joint_parents, color=[0.5,0.5,0.5,1.0]) glPopMatrix() # Render Character glEnable(GL_LIGHTING) render_pose_by_capsule(global_positions, counter, joint_parents, color=np.array([85, 160, 173, 255])/255.0) # Callback that runs rendering when the global variable is set to true. def idle_callback(): # # Increment counter # # Set frame number of trajectory to be rendered # # Using the time independent rendering. # # Call drawGL and savescreen. # # Since this is an idle callback, drawGL won't call itself (only calls render callback). global whether_to_render, counter, global_positions, done_with_render, save_path, name_prefix done_with_render = False # if whether_to_render and counter<global_positions.shape[0]: if whether_to_render and counter<10: # print("Whether to render is actually true, with counter:",counter) # render_callback_time_independent() viewer.drawGL() viewer.save_screen(save_path, "Image_{}_{}".format(name_prefix, counter)) # viewer.save_screen("/home/tanmayshankar/Research/Code/","Visualize_Image_{}".format(counter)) counter += 1 # Set whether to render to false if counter exceeded. # if counter>=global_positions.shape[0]: if counter>=10: whether_to_render = False done_with_render = True # If whether to render is false, reset the counter. else: counter = 0 def idle_callback_return(): # # Increment counter # # Set frame number of trajectory to be rendered # # Using the time independent rendering. # # Call drawGL and savescreen. # # Since this is an idle callback, drawGL won't call itself (only calls render callback). global whether_to_render, counter, global_positions, done_with_render, save_path, name_prefix, image_list done_with_render = False if whether_to_render and counter<global_positions.shape[0]: # if whether_to_render and counter<10: # print("Whether to render is actually true, with counter:",counter) # render_callback_time_independent() viewer.drawGL() name = "Image_{}_{}".format(name_prefix, counter) viewer.save_screen(save_path, name) img = imageio.imread(os.path.join(save_path, name+".png")) image_list.append(img) counter += 1 # Set whether to render to false if counter exceeded. if counter>=global_positions.shape[0]: # if counter>=10: whether_to_render = False done_with_render = True # If whether to render is false, reset the counter. else: counter = 0
CausalSkillLearning-main
Experiments/MocapVisualizationUtils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import MocapVisualizationUtils import threading, time, numpy as np # bvh_filename = "/home/tanmayshankar/Research/Code/CausalSkillLearning/Experiments/01_01_poses.bvh" bvh_filename = "/private/home/tanmayshankar/Research/Code/CausalSkillLearning/Experiments/01_01_poses.bvh" filenames = [bvh_filename] file_num = 0 print("About to run viewer.") cam_cur = MocapVisualizationUtils.camera.Camera(pos=np.array([6.0, 0.0, 2.0]), origin=np.array([0.0, 0.0, 0.0]), vup=np.array([0.0, 0.0, 1.0]), fov=45.0) def run_thread(): MocapVisualizationUtils.viewer.run( title='BVH viewer', cam=cam_cur, size=(1280, 720), keyboard_callback=None, render_callback=MocapVisualizationUtils.render_callback_time_independent, idle_callback=MocapVisualizationUtils.idle_callback, ) def run_thread(): MocapVisualizationUtils.viewer.run( title='BVH viewer', cam=cam_cur, size=(1280, 720), keyboard_callback=None, render_callback=MocapVisualizationUtils.render_callback_time_independent, idle_callback=MocapVisualizationUtils.idle_callback_return, ) # Run init before loading animation. MocapVisualizationUtils.init() MocapVisualizationUtils.global_positions, MocapVisualizationUtils.joint_parents, MocapVisualizationUtils.time_per_frame = MocapVisualizationUtils.load_animation(filenames[file_num]) thread = threading.Thread(target=run_thread) thread.start() print("Going to actually call callback now.") MocapVisualizationUtils.whether_to_render = True x_count = 0 while MocapVisualizationUtils.done_with_render==False and MocapVisualizationUtils.whether_to_render==True: x_count += 1 time.sleep(1) print("x_count is now: ",x_count) print("We finished with the visualization!")
CausalSkillLearning-main
Experiments/MocapVisualizationExample.py
# Copyright (c) Facebook, Inc. and its affiliates. # Debugging cycle consistency transfer. python Master.py --name=CTdebug --train=1 --setting=cycle_transfer --source_domain=ContinuousNonZero --target_domain=ContinuousNonZero --z_dimensions=64 --number_layers=5 --hidden_size=64 --data=ContinuousNonZero --training_phase_size=10000 --display_freq=1000 --eval_freq=4 --alternating_phase_size=200 --discriminator_phase_size=2 --vae_loss_weight=1. --discriminability_weight=2.0 --kl_weight=0.001
CausalSkillLearning-main
Experiments/Code_Runs/CycleTransfer_Runs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * class GridWorldDataset(Dataset): # Class implementing instance of dataset class for gridworld data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.action_map = np.array([[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]) ## UP, DOWN, LEFT, RIGHT, UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. ## def __len__(self): # Find out how many images we've stored. filelist = glob.glob(os.path.join(self.dataset_directory,"*.png")) # FOR NOW: USE ONLY till 3200 images. return 3200 # return len(filelist) def parse_trajectory_actions(self, coordinate_trajectory): # Takes coordinate trajectory, returns action index taken. state_diffs = np.diff(coordinate_trajectory,axis=0) action_sequence = np.zeros((len(state_diffs)),dtype=int) for i in range(len(state_diffs)): for k in range(len(self.action_map)): if (state_diffs[i]==self.action_map[k]).all(): action_sequence[i]=k return action_sequence.astype(float) def __getitem__(self, index): # The getitem function must return a Map-Trajectory pair. # We will handle per-timestep processes within our code. # Assumes index is within range [0,len(filelist)-1] image = cv2.imread(os.path.join(self.dataset_directory,"Image{0}.png".format(index))) coordinate_trajectory = np.load(os.path.join(self.dataset_directory,"Image{0}_Traj1.npy".format(index))).astype(float) action_sequence = self.parse_trajectory_actions(coordinate_trajectory) return image, coordinate_trajectory, action_sequence
CausalSkillLearning-main
DataLoaders/GridWorld_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .headers import * import os.path as osp import pdb import scipy.misc flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') flags.DEFINE_string('MIME_dir', '/checkpoint/tanmayshankar/MIME/', 'Data Directory') flags.DEFINE_string('MIME_imgs_dir', '/checkpoint/shubhtuls/data/MIME/', 'Data Directory') flags.DEFINE_integer('img_h', 64, 'Height') flags.DEFINE_integer('img_w', 128, 'Width') flags.DEFINE_integer('ds_freq', 20, 'Downsample joint trajectories by this fraction. Original recroding rate = 100Hz') def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class MIME_Img_Dataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, opts, split='all'): self.dataset_directory = opts.MIME_dir self.imgs_dataset_directory = opts.MIME_imgs_dir self.img_h = opts.img_h self.img_w = opts.img_w # Default: /checkpoint/tanmayshankar/MIME/ self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/joint_angles.txt') self.filelist = glob.glob(self.fulltext) self.ds_freq = opts.ds_freq with open(self.filelist[0], 'r') as file: lines = file.readlines() self.joint_names = sorted(eval(lines[0].rstrip('\n')).keys()) if split == 'all': self.filelist = self.filelist else: self.task_lists = np.load(os.path.join( self.dataset_directory, 'MIME_jointangles/{}_Lists.npy'.format(split.capitalize()))) self.filelist = [] for i in range(20): self.filelist.extend(self.task_lists[i]) self.filelist = [f.replace('/checkpoint/tanmayshankar/MIME/', opts.MIME_dir) for f in self.filelist] def __len__(self): # Return length of file list. return len(self.filelist) def __getitem__(self, index): ''' # Returns Joint Angles as: # List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles. # Assumes index is within range [0,len(filelist)-1] ''' file = self.filelist[index] file_split = file.split('/') frames_folder = osp.join(self.imgs_dataset_directory, file_split[-3], file_split[-2], 'frames') n_frames = len(os.listdir(frames_folder)) imgs = [] frame_inds = [0, n_frames//2, n_frames-1] for fi in frame_inds: img = scipy.misc.imread(osp.join(frames_folder, 'im_{}.png'.format(fi+1))) imgs.append(scipy.misc.imresize(img, (self.img_h, self.img_w))) imgs = np.stack(imgs) left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt')) right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt')) joint_angle_trajectory = [] # Open file. with open(file, 'r') as file: lines = file.readlines() for line in lines: dict_element = eval(line.rstrip('\n')) if len(dict_element.keys()) == len(self.joint_names): array_element = np.array([dict_element[joint] for joint in self.joint_names]) joint_angle_trajectory.append(array_element) joint_angle_trajectory = np.array(joint_angle_trajectory) n_samples = len(joint_angle_trajectory) // self.ds_freq elem = {} elem['imgs'] = imgs elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples) elem['left_gripper'] = resample(left_gripper, n_samples)/100 elem['right_gripper'] = resample(right_gripper, n_samples)/100 elem['is_valid'] = int(np.linalg.norm(np.diff(elem['joint_angle_trajectory'],axis=0),axis=1).max() < 1.0) return elem def recreate_dictionary(self, arm, joint_angles): if arm=="left": offset = 2 width = 7 elif arm=="right": offset = 9 width = 7 elif arm=="full": offset = 0 width = len(self.joint_names) return dict((self.joint_names[i],joint_angles[i-offset]) for i in range(offset,offset+width)) # ------------ Data Loader ----------- # # ------------------------------------ # def data_loader(opts, split='all', shuffle=True): dset = MIME_Img_Dataset(opts, split=split) return DataLoader( dset, batch_size=opts.batch_size, shuffle=shuffle, num_workers=opts.n_data_workers, drop_last=True)
CausalSkillLearning-main
DataLoaders/MIME_Img_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .headers import * from . import MIME_DataLoader opts = flags.FLAGS def main(_): dataset = MIME_DataLoader.MIME_Dataset(opts) print("Created DataLoader.") embed() if __name__ == '__main__': app.run(main)
CausalSkillLearning-main
DataLoaders/InteractiveDataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .headers import * import os.path as osp import pdb # flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') # flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') # flags.DEFINE_string('MIME_dir', '/checkpoint/tanmayshankar/MIME/', 'Data Directory') flags.DEFINE_enum('arm', 'both', ['left', 'right', 'both'], 'Which arms data to load') class Plan_Dataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, opts, split='all'): self.opts = opts self.split = split self.dataset_directory = self.opts.MIME_dir # # Must consider permutations of arm and split. # Right Arm: New_Plans / Run*_EE_Plan # / Run*_Joint_Plan # / Run*_RG_Traj # Left Arm: New_Plans_Left / Run*_EE_Plan # / Run*_Joint_Plan # / Run*_LG_traj # Both Arms: Ambidextrous_Plans / Run*_EE_Plan # / Run*_Joint_Plan # / Run*_Grip_Traj # Set these parameters to replace. if self.opts.arm=='left': folder = 'New_Plans' gripper_suffix = "_LG_Traj" elif self.opts.arm=='right': folder = 'New_Plans_Left' gripper_suffix = "_RG_Traj" elif self.opts.arm=='both': folder = 'Ambidextrous_Plans' gripper_suffix = "_Grip_Traj" # Default: /checkpoint/tanmayshankar/MIME/ if self.split=='all': # Collect list of all EE Plans, we will select all Joint Angle Plans correspondingly. self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/New_Plans/Run*_EE_Plan.npy') # Joint angle plans filelist is in same order thanks to glob. self.jatext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/New_Plans/Run*_Joint_Plan.npy') # Gripper plans filelist is in same order thanks to glob. # self.rgtext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/New_Plans/Run*_RG_Traj.npy') self.filelist = sorted(glob.glob(self.fulltext)) self.joint_filelist = sorted(glob.glob(self.jatext)) # self.gripper_filelist = sorted(glob.glob(self.rgtext)) elif self.split=='train': self.filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanTrainList.npy")) self.joint_filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanJointTrainList.npy")) elif self.split=='val': self.filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanValList.npy")) self.joint_filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanJointValList.npy")) elif self.split=='test': self.filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanTestList.npy")) self.joint_filelist = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Plan_Lists/PlanJointTestList.npy")) # the loaded np arrays give byte strings, and not strings, which breaks later code if not isinstance(self.filelist[0], str): self.filelist = [f.decode() for f in self.filelist] self.joint_filelist = [f.decode() for f in self.joint_filelist] # Now replace terms in filelists based on what arm it is. # The EE file list only needs folder replaced. self.filelist = [f.replace("New_Plans",folder).replace('/checkpoint/tanmayshankar/MIME',self.opts.MIME_dir) for f in self.filelist] # The Joint file list also only needs folder replaced. self.joint_filelist = [f.replace("New_Plans",folder).replace('/checkpoint/tanmayshankar/MIME',self.opts.MIME_dir) for f in self.joint_filelist] # Since we didn't create split lists for Gripper, use the filelist and replace to Gripper. self.gripper_filelist = [f.replace("New_Plans",folder).replace("_EE_Plan",gripper_suffix).replace('/checkpoint/tanmayshankar/MIME',self.opts.MIME_dir) for f in self.filelist] # Set joint names. self.left_joint_names = ['left_s0','left_s1','left_e0','left_e1','left_w0','left_w1','left_w2'] self.right_joint_names = ['right_s0','right_s1','right_e0','right_e1','right_w0','right_w1','right_w2'] self.both_joint_names = self.left_joint_names+self.right_joint_names def __len__(self): # Return length of file list. return len(self.filelist) def __getitem__(self, index): file = self.filelist[index] joint_file = self.joint_filelist[index] gripper_file = self.gripper_filelist[index] # Load items. elem = {} elem['EE_Plan'] = np.load(file) elem['JA_Plan'] = np.load(joint_file) elem['Grip_Plan'] = np.load(gripper_file)/100 return elem # ------------ Data Loader ----------- # # ------------------------------------ # def data_loader(opts, split='all', shuffle=True): dset = Plan_Dataset(opts, split=split) return DataLoader( dset, batch_size=opts.batch_size, shuffle=shuffle, num_workers=opts.n_data_workers, drop_last=True)
CausalSkillLearning-main
DataLoaders/Plan_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from headers import * class GridWorldDataset(Dataset): # Class implementing instance of dataset class for gridworld data. def __init__(self, dataset_directory): self.dataset_directory = dataset_directory # For us, this is Research/Code/GraphPlanningNetworks/scripts/DatasetPlanning/CreateDemos/Demos2 self.action_map = np.array([[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]) ## UP, DOWN, LEFT, RIGHT, UPLEFT, UPRIGHT, DOWNLEFT, DOWNRIGHT. ## def __len__(self): # Find out how many images we've stored. filelist = glob.glob(os.path.join(self.dataset_directory,"*.png")) return 4000 # return len(filelist) def parse_trajectory_actions(self, coordinate_trajectory): # Takes coordinate trajectory, returns action index taken. state_diffs = np.diff(coordinate_trajectory,axis=0) action_sequence = np.zeros((len(state_diffs)),dtype=int) for i in range(len(state_diffs)): for k in range(len(self.action_map)): if (state_diffs[i]==self.action_map[k]).all(): action_sequence[i]=k return action_sequence.astype(float) def __getitem__(self, index): # The getitem function must return a Map-Trajectory pair. # We will handle per-timestep processes within our code. # Assumes index is within range [0,len(filelist)-1] image = np.load(os.path.join(self.dataset_directory,"Map{0}.npy".format(index))) time_limit = 20 coordinate_trajectory = np.load(os.path.join(self.dataset_directory,"Map{0}_Traj1.npy".format(index))).astype(float)[:time_limit] action_sequence = self.parse_trajectory_actions(coordinate_trajectory) return image, coordinate_trajectory, action_sequence
CausalSkillLearning-main
DataLoaders/SmallMaps_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import random as stdlib_random, string import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from absl import flags, app import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader from torch.utils.data.dataloader import default_collate from ..utils import plotting as plot_util flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') flags.DEFINE_integer('n_segments_min', 4, 'Min Number of gt segments per trajectory') flags.DEFINE_integer('n_segments_max', 4, 'Max number of gt segments per trajectory') dirs_2d = np.array([ [1,0], [0,1], [-1,0], [0,-1] ]) def vis_walk(walk): ''' Args: walk: (nT+1) X 2 array Returns: im: 200 X 200 X 4 numpy array ''' t = walk.shape[0] xs = walk[:,0] ys = walk[:,1] color_inds = np.linspace(0, 255, t).astype(np.int).tolist() cs = plot_util.colormap[color_inds, :] fig = plt.figure(figsize=(4, 4), dpi=50) ax = fig.subplots() ax.scatter(xs, ys, c=cs) ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) ax.set_aspect('equal', 'box') ax.tick_params( axis='x', which='both', bottom=False, top=False, labelbottom=False) ax.tick_params( axis='y', which='both', left=False, right=False, labelleft=False) fig.tight_layout() fname = '/tmp/' + ''.join(stdlib_random.choices(string.ascii_letters, k=8)) + '.png' fig.savefig(fname) plt.close(fig) im = plt.imread(fname) os.remove(fname) return im def walk_segment(origin, direction, n_steps=10, step_size=0.1, noise=0.02, rng=None): ''' Args: origin: nd numpy array direction: nd numpy array with unit norm n_steps: length of time seq step_size: size of each step noise: magintude of max actuation noise Returns: segment: n_steps X nd array note that the first position in segment is different from origin ''' if rng is None: rng = np.random nd = origin.shape[0] segment = np.zeros((n_steps, nd)) + origin segment += np.arange(1, n_steps+1).reshape((-1,1))*direction*step_size segment += rng.uniform(low=-1, high=1, size=(n_steps, nd)) * noise/nd return segment def random_walk2d(origin, num_segments=4, rng=None): ''' Args: origin: 2d numpy array num_segments: length of time seq Returns: walk: (nT+1) X 2 array ''' if rng is None: rng = np.random dir_ind = rng.randint(4) walk = origin.reshape(1,2) seg_lengths = [] for s in range(num_segments): seg_length = rng.randint(6,10) seg_lengths.append(seg_length) step_size = 0.1 + (rng.uniform() - 0.5)*0.05 segment = walk_segment(origin, dirs_2d[dir_ind], n_steps=seg_length, step_size=step_size, rng=rng) origin = segment[-1] walk = np.concatenate((walk, segment), axis=0) dir_ind += 2 * rng.randint(2) -1 dir_ind = dir_ind % 4 return walk, seg_lengths class RandomWalksDataset(Dataset): def __init__(self, opts): self.opts = opts self.n_segments_min = self.opts.n_segments_min self.n_segments_max = self.opts.n_segments_max def __len__(self): return int(1e6) def __getitem__(self, ix): rng = np.random.RandomState(ix) ns = rng.randint(self.n_segments_min, self.n_segments_max+1) trajectory, self.seg_lengths_ix = random_walk2d(np.zeros(2), num_segments=ns, rng=rng) return trajectory # ------------ Data Loader ----------- # # ------------------------------------ # def data_loader(opts, shuffle=True): dset = RandomWalksDataset(opts) return DataLoader( dset, batch_size=opts.batch_size, shuffle=shuffle, num_workers=opts.n_data_workers, drop_last=True) if __name__ == '__main__': walk = random_walk2d(np.zeros(2), num_segments=4) print(walk)
CausalSkillLearning-main
DataLoaders/RandomWalks.py
CausalSkillLearning-main
DataLoaders/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .headers import * import os.path as osp flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') flags.DEFINE_string('MIME_dir', '/checkpoint/tanmayshankar/MIME/', 'Data Directory') # flags.DEFINE_boolean('downsampling', True, 'Whether to downsample trajectories. ') flags.DEFINE_integer('ds_freq', 20, 'Downsample joint trajectories by this fraction. Original recroding rate = 100Hz') flags.DEFINE_boolean('remote', False, 'Whether operating from a remote server or not.') # opts = flags.FLAGS def select_baxter_angles(trajectory, joint_names, arm='right'): # joint names in order as used via mujoco visualizer baxter_joint_names = ['right_s0', 'right_s1', 'right_e0', 'right_e1', 'right_w0', 'right_w1', 'right_w2', 'left_s0', 'left_s1', 'left_e0', 'left_e1', 'left_w0', 'left_w1', 'left_w2'] if arm == 'right': select_joints = baxter_joint_names[:7] elif arm == 'left': select_joints = baxter_joint_names[7:] elif arm == 'both': select_joints = baxter_joint_names inds = [joint_names.index(j) for j in select_joints] return trajectory[:, inds] def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class MIME_Dataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, opts, split='all'): self.dataset_directory = opts.MIME_dir # Default: /checkpoint/tanmayshankar/MIME/ self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/joint_angles.txt') if opts.remote: self.suff_filelist = np.load(osp.join(self.dataset_directory,"Suffix_Filelist.npy")) self.filelist = [] for j in range(len(self.suff_filelist)): self.filelist.append(osp.join(self.dataset_directory,self.suff_filelist[j])) else: self.filelist = glob.glob(self.fulltext) self.ds_freq = opts.ds_freq with open(self.filelist[0], 'r') as file: lines = file.readlines() self.joint_names = sorted(eval(lines[0].rstrip('\n')).keys()) if split == 'all': self.filelist = self.filelist else: self.task_lists = np.load(os.path.join( self.dataset_directory, 'MIME_jointangles/{}_Lists.npy'.format(split.capitalize()))) self.filelist = [] for i in range(20): self.filelist.extend(self.task_lists[i]) self.filelist = [f.replace('/checkpoint/tanmayshankar/MIME/', opts.MIME_dir) for f in self.filelist] # print(len(self.filelist)) def __len__(self): # Return length of file list. return len(self.filelist) def __getitem__(self, index): ''' # Returns Joint Angles as: # List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles. # Assumes index is within range [0,len(filelist)-1] ''' file = self.filelist[index] left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt')) right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt')) orig_left_traj = np.load(osp.join(osp.split(file)[0], 'Left_EE.npy')) orig_right_traj = np.load(osp.join(osp.split(file)[0], 'Right_EE.npy')) joint_angle_trajectory = [] # Open file. with open(file, 'r') as file: lines = file.readlines() for line in lines: dict_element = eval(line.rstrip('\n')) if len(dict_element.keys()) == len(self.joint_names): # some files have extra lines with gripper keys e.g. MIME_jointangles/4/12405Nov19/joint_angles.txt array_element = np.array([dict_element[joint] for joint in self.joint_names]) joint_angle_trajectory.append(array_element) joint_angle_trajectory = np.array(joint_angle_trajectory) n_samples = len(orig_left_traj) // self.ds_freq elem = {} elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples) elem['left_trajectory'] = resample(orig_left_traj, n_samples) elem['right_trajectory'] = resample(orig_right_traj, n_samples) elem['left_gripper'] = resample(left_gripper, n_samples)/100 elem['right_gripper'] = resample(right_gripper, n_samples)/100 elem['path_prefix'] = os.path.split(self.filelist[index])[0] elem['ra_trajectory'] = select_baxter_angles(elem['joint_angle_trajectory'], self.joint_names, arm='right') elem['la_trajectory'] = select_baxter_angles(elem['joint_angle_trajectory'], self.joint_names, arm='left') # If max norm of differences is <1.0, valid. elem['is_valid'] = int(np.linalg.norm(np.diff(elem['joint_angle_trajectory'],axis=0),axis=1).max() < 1.0) return elem def recreate_dictionary(self, arm, joint_angles): if arm=="left": offset = 2 width = 7 elif arm=="right": offset = 9 width = 7 elif arm=="full": offset = 0 width = len(self.joint_names) return dict((self.joint_names[i],joint_angles[i-offset]) for i in range(offset,offset+width)) # ------------ Data Loader ----------- # # ------------------------------------ # def data_loader(opts, split='all', shuffle=True): dset = MIME_Dataset(opts, split=split) return DataLoader( dset, batch_size=opts.batch_size, shuffle=shuffle, num_workers=opts.n_data_workers, drop_last=True)
CausalSkillLearning-main
DataLoaders/MIME_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ A convenience script to playback random demonstrations from a set of demonstrations stored in a hdf5 file. Arguments: --folder (str): Path to demonstrations --use_actions (optional): If this flag is provided, the actions are played back through the MuJoCo simulator, instead of loading the simulator states one by one. Example: $ python playback_demonstrations_from_hdf5.py --folder ../models/assets/demonstrations/SawyerPickPlace/ """ import os import h5py import argparse import random import numpy as np import robosuite from robosuite.utils.mjcf_utils import postprocess_model_xml from IPython import embed if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--folder", type=str, default=os.path.join( robosuite.models.assets_root, "demonstrations/SawyerNutAssembly" ), ) parser.add_argument( "--use-actions", action='store_true', ) args = parser.parse_args() demo_path = args.folder hdf5_path = os.path.join(demo_path, "demo.hdf5") f = h5py.File(hdf5_path, "r") env_name = f["data"].attrs["env"] env = robosuite.make( env_name, has_renderer=False, # has_renderer=True, ignore_done=True, use_camera_obs=False, gripper_visualization=True, reward_shaping=True, control_freq=100, ) # list of all demonstrations episodes demos = list(f["data"].keys()) while True: print("Playing back random episode... (press ESC to quit)") # # select an episode randomly ep = random.choice(demos) # read the model xml, using the metadata stored in the attribute for this episode model_file = f["data/{}".format(ep)].attrs["model_file"] model_path = os.path.join(demo_path, "models", model_file) with open(model_path, "r") as model_f: model_xml = model_f.read() env.reset() xml = postprocess_model_xml(model_xml) env.reset_from_xml_string(xml) env.sim.reset() # env.viewer.set_camera(0) # load the flattened mujoco states states = f["data/{}/states".format(ep)].value if args.use_actions: # load the initial state env.sim.set_state_from_flattened(states[0]) env.sim.forward() # load the actions and play them back open-loop jvels = f["data/{}/joint_velocities".format(ep)].value grip_acts = f["data/{}/gripper_actuations".format(ep)].value actions = np.concatenate([jvels, grip_acts], axis=1) num_actions = actions.shape[0] for j, action in enumerate(actions): env.step(action) # env.render() if j < num_actions - 1: # ensure that the actions deterministically lead to the same recorded states state_playback = env.sim.get_state().flatten() embed() assert(np.all(np.equal(states[j + 1], state_playback))) else: print("Embedding in not use actions branch") embed() # force the sequence of internal mujoco states one by one for state in states: env.sim.set_state_from_flattened(state) env.sim.forward() # env.render() f.close()
CausalSkillLearning-main
DataLoaders/RoboturkeExp.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from .headers import * import os.path as osp from io import open import unicodedata import string import re import random import torch import torch.nn as nn from torch import optim import torch.nn.functional as F device = torch.device("cuda" if torch.cuda.is_available() else "cpu") flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') flags.DEFINE_string('lang_dir', '/private/home/shubhtuls/code/sfd/cachedir/data/lang/', 'Data Directory') SOS_token = 0 EOS_token = 1 class Lang: def __init__(self, name): self.name = name self.word2index = {} self.word2count = {} self.index2word = {0: "SOS", 1: "EOS"} self.n_words = 2 # Count SOS and EOS def addSentence(self, sentence): for word in sentence.split(' '): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 # Turn a Unicode string to plain ASCII, thanks to # https://stackoverflow.com/a/518232/2809427 def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase, trim, and remove non-letter characters def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s def readLangs(data_dir, lang1, lang2, reverse=False): print("Reading lines...") # Read the file and split into lines lines = open(osp.join(data_dir, '%s-%s.txt' % (lang1, lang2)), encoding='utf-8').\ read().strip().split('\n') # Split every line into pairs and normalize pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] # Reverse pairs, make Lang instances if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = Lang(lang2) output_lang = Lang(lang1) else: input_lang = Lang(lang1) output_lang = Lang(lang2) return input_lang, output_lang, pairs MAX_LENGTH = 10 eng_prefixes = ( "i am ", "i m ", "he is", "he s ", "she is", "she s ", "you are", "you re ", "we are", "we re ", "they are", "they re " ) def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and \ len(p[1].split(' ')) < MAX_LENGTH # and \ # p[1].startswith(eng_prefixes) def filterPairs(pairs): return [pair for pair in pairs if filterPair(pair)] def prepareData(data_dir, lang1, lang2, reverse=False): input_lang, output_lang, pairs = readLangs(data_dir, lang1, lang2, reverse) print("Read %s sentence pairs" % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs" % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) print("Counted words:") print(input_lang.name, input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs def indexesFromSentence(lang, sentence): return [lang.word2index[word] for word in sentence.split(' ')] def tensorFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) class TranslationDataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, opts): self.dataset_directory = opts.lang_dir self.l1, self.l2, self.pairs = prepareData(self.dataset_directory, 'eng', 'fra', reverse=False) def __len__(self): # Return length of file list. return len(self.l1) def tensorsFromPair(self, pair): input_tensor = tensorFromSentence(self.l1, pair[0]) target_tensor = tensorFromSentence(self.l2, pair[1]) return (input_tensor, target_tensor) def __getitem__(self, index): elem = {} elem['pair'] = self.pairs[index] elem['l1'], elem['l2'] = self.tensorsFromPair(elem['pair']) return elem
CausalSkillLearning-main
DataLoaders/Translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import glob, cv2, os from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from absl import flags from IPython import embed from absl import flags, app
CausalSkillLearning-main
DataLoaders/headers.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from __future__ import absolute_import from __future__ import division from __future__ import print_function from .headers import * import os.path as osp flags.DEFINE_integer('n_data_workers', 4, 'Number of data loading workers') flags.DEFINE_integer('batch_size', 1, 'Batch size. Code currently only handles bs=1') flags.DEFINE_string('MIME_dir', '/checkpoint/tanmayshankar/MIME/', 'Data Directory') # flags.DEFINE_boolean('downsampling', True, 'Whether to downsample trajectories. ') flags.DEFINE_integer('ds_freq', 20, 'Downsample joint trajectories by this fraction. Original recroding rate = 100Hz') flags.DEFINE_boolean('remote', False, 'Whether operating from a remote server or not.') # opts = flags.FLAGS def resample(original_trajectory, desired_number_timepoints): original_traj_len = len(original_trajectory) new_timepoints = np.linspace(0, original_traj_len-1, desired_number_timepoints, dtype=int) return original_trajectory[new_timepoints] class MIME_Dataset(Dataset): ''' Class implementing instance of dataset class for MIME data. ''' def __init__(self, opts): self.dataset_directory = opts.MIME_dir # Default: /checkpoint/tanmayshankar/MIME/ self.fulltext = osp.join(self.dataset_directory, 'MIME_jointangles/*/*/joint_angles.txt') if opts.remote: self.suff_filelist = np.load(osp.join(self.dataset_directory,"Suffix_Filelist.npy")) self.filelist = [] for j in range(len(self.suff_filelist)): self.filelist.append(osp.join(self.dataset_directory,self.suff_filelist[j])) else: self.filelist = sorted(glob.glob(self.fulltext)) self.ds_freq = opts.ds_freq with open(self.filelist[0], 'r') as file: print(self.filelist[0]) lines = file.readlines() self.joint_names = sorted(eval(lines[0].rstrip('\n')).keys()) self.train_lists = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Train_Lists.npy")) self.val_lists = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Val_Lists.npy")) self.test_lists = np.load(os.path.join(self.dataset_directory,"MIME_jointangles/Test_Lists.npy")) def __len__(self): # Return length of file list. return len(self.filelist) def setup_splits(self): self.train_filelist = [] self.val_filelist = [] self.test_filelist = [] for i in range(20): self.train_filelist.extend(self.train_lists[i]) self.val_filelist.extend(self.val_lists[i]) self.test_filelist.extend(self.test_lists[i]) def getit(self, index, split=None, return_plan_run=None): ''' # Returns Joint Angles as: # List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles. # Assumes index is within range [0,len(filelist)-1] ''' if split=="train": file = self.train_filelist[index] elif split=="val": file = self.val_filelist[index] elif split=="test": file = self.test_filelist[index] elif split is None: file = self.filelist[index] left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt')) right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt')) orig_left_traj = np.load(osp.join(osp.split(file)[0], 'Left_EE.npy')) orig_right_traj = np.load(osp.join(osp.split(file)[0], 'Right_EE.npy')) joint_angle_trajectory = [] folder = "New_Plans" if return_plan_run is not None: ee_plan = np.load(os.path.join(os.path.split(file)[0],"{0}/Run{1}_EE_Plan.npy".format(folder,return_plan_run))) ja_plan = np.load(os.path.join(os.path.split(file)[0],"{0}/Run{1}_Joint_Plan.npy".format(folder,return_plan_run))) # Open file. with open(file, 'r') as file: lines = file.readlines() for line in lines: dict_element = eval(line.rstrip('\n')) if len(dict_element.keys()) == len(self.joint_names): # some files have extra lines with gripper keys e.g. MIME_jointangles/4/12405Nov19/joint_angles.txt array_element = np.array([dict_element[joint] for joint in self.joint_names]) joint_angle_trajectory.append(array_element) joint_angle_trajectory = np.array(joint_angle_trajectory) n_samples = len(orig_left_traj) // self.ds_freq elem = {} elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples) elem['left_trajectory'] = resample(orig_left_traj, n_samples) elem['right_trajectory'] = resample(orig_right_traj, n_samples) elem['left_gripper'] = resample(left_gripper, n_samples) elem['right_gripper'] = resample(right_gripper, n_samples) elem['path_prefix'] = os.path.split(self.filelist[index])[0] elem['JA_Plan'] = ja_plan elem['EE_Plan'] = ee_plan return elem def __getitem__(self, index, split=None, return_plan_run=None): # def __getitem__(self, inputs): ''' # Returns Joint Angles as: # List of length Number_Timesteps, with each element of the list a dictionary containing the sequence of joint angles. # Assumes index is within range [0,len(filelist)-1] ''' if split=="train": file = self.train_filelist[index] elif split=="val": file = self.val_filelist[index] elif split=="test": file = self.test_filelist[index] elif split is None: file = self.filelist[index] left_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'left_gripper.txt')) right_gripper = np.loadtxt(os.path.join(os.path.split(file)[0],'right_gripper.txt')) orig_left_traj = np.load(osp.join(osp.split(file)[0], 'Left_EE.npy')) orig_right_traj = np.load(osp.join(osp.split(file)[0], 'Right_EE.npy')) joint_angle_trajectory = [] folder = "New_Plans" if return_plan_run is not None: ee_plan = np.load(os.path.join(os.path.split(file)[0],"{0}/Run{1}_EE_Plan.npy".format(folder,return_plan_run))) ja_plan = np.load(os.path.join(os.path.split(file)[0],"{0}/Run{1}_JA_Plan.npy".format(folder,return_plan_run))) # Open file. with open(file, 'r') as file: lines = file.readlines() for line in lines: dict_element = eval(line.rstrip('\n')) if len(dict_element.keys()) == len(self.joint_names): # some files have extra lines with gripper keys e.g. MIME_jointangles/4/12405Nov19/joint_angles.txt array_element = np.array([dict_element[joint] for joint in self.joint_names]) joint_angle_trajectory.append(array_element) joint_angle_trajectory = np.array(joint_angle_trajectory) n_samples = len(orig_left_traj) // self.ds_freq elem = {} elem['joint_angle_trajectory'] = resample(joint_angle_trajectory, n_samples) elem['left_trajectory'] = resample(orig_left_traj, n_samples) elem['right_trajectory'] = resample(orig_right_traj, n_samples) elem['left_gripper'] = resample(left_gripper, n_samples) elem['right_gripper'] = resample(right_gripper, n_samples) elem['path_prefix'] = os.path.split(self.filelist[index])[0] elem['JA_Plan'] = ja_plan elem['EE_Plan'] = ee_plan return elem def recreate_dictionary(self, arm, joint_angles): if arm=="left": offset = 2 width = 7 elif arm=="right": offset = 9 width = 7 elif arm=="full": offset = 0 width = len(self.joint_names) return dict((self.joint_names[i],joint_angles[i-offset]) for i in range(offset,offset+width)) # ------------ Data Loader ----------- # # ------------------------------------ # def data_loader(opts, shuffle=True): dset = MIME_Dataset(opts) return DataLoader( dset, batch_size=opts.batch_size, shuffle=shuffle, num_workers=opts.n_data_workers, drop_last=True)
CausalSkillLearning-main
DataLoaders/MIMEandPlan_DataLoader.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ # For both arms and grippers. python -m SkillsfromDemonstrations.Experiments.UseSkillsRL.TrainZPolicyRL --train --transformer --nz=64 --nh=64 --variable_nseg=False --network_dir=saved_models/T356_fnseg_vae_sl2pt0_kldwt0pt002_finetune --variable_ns=False --st_space=joint_both_gripper --vae_enc """ from __future__ import absolute_import import os, sys, torch import matplotlib.pyplot as plt from ...DataLoaders import MIME_DataLoader from ..abstraction import mime_eval from ..abstraction.abstraction_utils import ScoreFunctionEstimator from .PolicyNet import PolicyNetwork, PolicyNetworkSingleTimestep, AltPolicyNetworkSingleTimestep from absl import app, flags import imageio, numpy as np, copy, os, shutil from IPython import embed import robosuite import tensorboard, tensorboardX flags.DEFINE_boolean('train',False,'Whether to run train.') flags.DEFINE_boolean('debug',False,'Whether to debug.') # flags.DEFINE_float('sf_loss_wt', 0.1, 'Weight of pseudo loss for SF estimator') # flags.DEFINE_float('kld_loss_wt', 0, 'Weight for KL Divergence loss if using VAE encoder.') flags.DEFINE_float('reinforce_loss_wt', 1., 'Weight for primary reinforce loss.') # flags.DEFINE_string('name',None,'Name to give run.') class ZPolicyTrainer(object): def __init__(self, opts): self.opts = opts self.input_size = self.opts.n_state self.zpolicy_input_size = 85 self.hidden_size = 20 self.output_size = self.opts.nz self.primitive_length = 10 self.learning_rate = 1e-4 self.number_epochs = 200 self.number_episodes = 500 self.save_every_epoch = 5 self.maximum_skills = 6 def initialize_plots(self): self.log_dir = os.path.join("SkillsfromDemonstrations/cachedir/logs/RL",self.opts.name) if not(os.path.isdir(self.log_dir)): os.mkdir(self.log_dir) self.writer = tensorboardX.SummaryWriter(self.log_dir) def setup_networks(self): # Set up evaluator to load mime model and stuff. self.evaluator = mime_eval.PrimitiveDiscoverEvaluator(self.opts) self.evaluator.setup_testing(split='val') # Also create a ZPolicy. # self.z_policy = PolicyNetworkSingleTimestep(opts=self.opts, input_size=self.zpolicy_input_size, hidden_size=self.hidden_size, output_size=self.output_size).cuda() self.z_policy = AltPolicyNetworkSingleTimestep(opts=self.opts, input_size=self.zpolicy_input_size, hidden_size=self.hidden_size, output_size=self.output_size).cuda() if self.opts.variable_nseg: self.sf_loss_fn = ScoreFunctionEstimator() # Creating optimizer. self.z_policy_optimizer = torch.optim.Adam(self.z_policy.parameters(), lr=self.learning_rate) def load_network(self, network_dir): # Load the evaluator networks (Abstraction network and skill network) self.evaluator.load_network(self.evaluator.model, 'pred', 'latest', network_dir=network_dir) # Freeze parameters of the IntendedTrajectoryPredictorModel. for parameter in self.evaluator.model.parameters(): parameter.require_grad = False def save_zpolicy_model(self, path, suffix): if not(os.path.isdir(path)): os.mkdir(path) save_object = {} save_object['ZPolicy'] = self.z_policy.state_dict() torch.save(save_object,os.path.join(path,"ZPolicyModel"+suffix)) def load_all_models(self, path): load_object = torch.load(path) self.z_policy.load_state_dict(load_object['ZPolicy']) # def update_plots(self, counter, sample_map, loglikelihood): def update_plots(self, counter): if self.opts.variable_nseg: self.writer.add_scalar('Stop_Prob_Reinforce_Loss', torch.mean(self.stop_prob_reinforce_loss), counter) self.writer.add_scalar('Predicted_Zs_Reinforce_Loss', torch.mean(self.reinforce_predicted_Zs), counter) self.writer.add_scalar('KL_Divergence_Loss', torch.mean(self.kld_loss_seq), counter) self.writer.add_scalar('Total_Loss', torch.mean(self.total_loss), counter) def assemble_input(self, trajectory): traj_start = trajectory[0] traj_end = trajectory[-1] return torch.cat([torch.tensor(traj_start).cuda(),torch.tensor(traj_end).cuda()],dim=0) # def update_networks(self, state_traj, reward_traj, predicted_Zs): def update_networks(self, state_traj_torch, reward_traj, latent_z_seq, log_prob_seq, stop_prob_seq, stop_seq, kld_loss_seq): # embed() # Get cummulative rewards corresponding to actions executed after selecting a particular Z. -# This is basically adding up the rewards from the end of the array. # cumm_reward_to_go = torch.cumsum(torch.tensor(reward_traj[::-1]).cuda().float())[::-1] cumm_reward_to_go_numpy = copy.deepcopy(np.cumsum(copy.deepcopy(reward_traj[::-1]))[::-1]) cumm_reward_to_go = torch.tensor(cumm_reward_to_go_numpy).cuda().float() self.total_loss = 0. if self.opts.variable_nseg: # Remember, this stop probability loss is for stopping predicting Z's, #NOT INTERMEDIATE TIMESTEPS! # So we still use cumm_reward_to_go rather than cumm_reward_to_go_array self.stop_prob_reinforce_loss = self.sf_loss_fn.forward(cumm_reward_to_go, stop_prob_seq.unsqueeze(1), stop_seq.long()) # Add reinforce loss and loss value. self.total_loss += self.opts.sf_loss_wt*self.stop_prob_reinforce_loss # Now adding the reinforce loss associated with predicted Zs. # (Remember, we want to maximize reward times log prob, so multiply by -1 to minimize.) self.reinforce_predicted_Zs = (self.opts.reinforce_loss_wt * -1. * cumm_reward_to_go*log_prob_seq.view(-1)).sum() self.total_loss += self.reinforce_predicted_Zs # Add loss term with KL Divergence between 0 mean Gaussian and predicted Zs. self.kld_loss_seq = kld_loss_seq self.total_loss += self.opts.kld_loss_wt*self.kld_loss_seq[0] # Zero gradients of optimizer, compute backward, then step optimizer. self.z_policy_optimizer.zero_grad() self.total_loss.sum().backward() self.z_policy_optimizer.step() def reorder_actions(self, actions): # Assume that the actions are 16 dimensional, and are ordered as: # 7 DoF for left arm, 7 DoF for right arm, 1 for left gripper, and 1 for right gripper. # The original trajectory has gripper values from 0 (Close) to 1 (Open), but we've to rescale to -1 (Open) to 1 (Close) for Mujoco. # And handle joint velocities. # MIME Gripper values are from 0 to 100 (Close to Open), but we assume actions has values from 0 to 1 (Close to Open), and then rescale to (-1 Open to 1 Close) for Mujoco. # Mujoco needs them flipped. indices = np.array([ 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 15, 14]) reordered_actions = actions[:,indices] reordered_actions[:,14:] = 1 - 2*reordered_actions[:,14:] return reordered_actions def run_episode(self, counter): # For number of epochs: # # 1) Given start and goal (for reaching task, say) # # 2) Run Z_Policy on start and goal to retrieve predicted Zs. # # 3) Decode predicted Zs into trajectory. # # 4) Retrieve "actions" from trajectory. # # 5) Feed "actions" into RL environment and collect reward. # # 6) Train ZPolicy to maximize cummulative reward with favorite RL algorithm. # Reset environment. state = self.environment.reset() terminal = False reward_traj = None state_traj_torch = None t_out = 0 stop = False hidden = None latent_z_seq = None stop_prob_seq = None stop_seq = None log_prob_seq = None kld_loss_seq = 0. previous_state = None while terminal==False and stop==False: ######################################################## ######## 1) Collect input for first timestep. ########## ######################################################## zpolicy_input = np.concatenate([state['robot-state'],state['object-state']]).reshape(1,self.zpolicy_input_size) ######################################################## # 2) Feed into the Z policy to retrieve the predicted Z. ######################################################## latent_z, stop_probability, stop, log_prob, kld_loss, hidden = self.z_policy.forward(zpolicy_input, hidden=hidden) latent_z = latent_z.squeeze(1) ######################################################## ############## 3) Decode into trajectory. ############## ######################################################## primitive_and_skill_stop_prob = self.evaluator.model.primitive_decoder(latent_z) traj_seg = primitive_and_skill_stop_prob[0].squeeze(1).detach().cpu().numpy() if previous_state is None: previous_state = traj_seg[-1].reshape(1,self.opts.n_state) else: # Concatenate previous state to trajectory, so that when we take actions we get an action from previous segment to the current one. traj_seg = np.concatenate([previous_state,traj_seg],axis=0) previous_state = traj_seg[-1].reshape(-1,self.opts.n_state) ######################################################## ## 4) Finite diff along time axis to retrieve actions ## ######################################################## actions = np.diff(traj_seg,axis=0) actions = self.reorder_actions(actions) actions_torch = torch.tensor(actions).cuda().float() cummulative_reward_in_segment = 0. # Run step into evironment for all actions in this segment. t = 0 while t<actions_torch.shape[0] and terminal==False: # Step. state, onestep_reward, terminal, success = self.environment.step(actions[t]) # Collect onestep_rewards within this segment. cummulative_reward_in_segment += float(onestep_reward) # Assuming we have fixed_ns (i.e. novariable_ns), we can use the set decoding length of primitives to assign cummulative reward-to-go values to the various predicted Z variables. # (This is also why we need the reward history, and not just the cummulative rewards obtained over the course of training. t+=1 # Everything is going to be set to None, so set variables. # Do some bookkeeping in life. if t_out==0: state_traj_torch = torch.tensor(zpolicy_input).cuda().float().view(-1,self.zpolicy_input_size) latent_z_seq = latent_z.view(-1,self.opts.nz) stop_seq = stop.clone().detach().view(-1,1) stop_prob_seq = stop_probability.view(-1,2) log_prob_seq = log_prob.view(-1,1) # reward_traj = torch.tensor(copy.deepcopy(cummulative_reward_in_segment)).cuda().float().view(-1,1) reward_traj = np.array(cummulative_reward_in_segment).reshape((1,1)) else: state_traj_torch = torch.cat([state_traj_torch, torch.tensor(zpolicy_input).cuda().float().view(-1,self.zpolicy_input_size)],dim=0) latent_z_seq = torch.cat([latent_z_seq, latent_z.view(-1,self.opts.nz)], dim=0) stop_seq = torch.cat([stop_seq, stop.view(-1,1)], dim=0) stop_prob_seq = torch.cat([stop_prob_seq, stop_probability.view(-1,2)], dim=0) log_prob_seq = torch.cat([log_prob_seq, log_prob.view(-1,1)], dim=0) # reward_traj = torch.cat([reward_traj.view(-1,1), torch.tensor(copy.deepcopy(cummulative_reward_in_segment)).cuda().float().view(-1,1)]) reward_traj = np.concatenate([reward_traj, np.array(cummulative_reward_in_segment).reshape((1,1))], axis=0) # Either way: kld_loss_seq += kld_loss t_out += 1 # print(t_out) # Set to false by default. if self.opts.variable_nseg==False: stop = False if t_out>=self.maximum_skills: stop = True # if self.opts.debug==True: # embed() if self.opts.train: # 6) Feed states, actions, reward, and predicted Zs to update. (These are all lists of tensors.) # self.update_networks(state_traj_torch, action_torch, reward_traj, latent_zs) self.update_networks(state_traj_torch, reward_traj, latent_z_seq, log_prob_seq, stop_prob_seq, stop_seq, kld_loss_seq) self.update_plots(counter) def setup_RL_environment(self, has_display=False): # Create Mujoco environment. self.environment = robosuite.make("BaxterLift", has_renderer=has_display) self.initialize_plots() def trainRL(self): # Basic function to train. counter = 0 for e in range(self.number_epochs): # Number of episodes per epoch. for i in range(self.number_episodes): print("#########################################") print("Epoch: ",e,"Traj: ",i) # Run an episode. self.run_episode(counter) counter += 1 if self.opts.train and e%self.save_every_epoch==0: self.save_zpolicy_model(os.path.join("saved_models/RL",self.opts.name), "epoch{0}".format(e)) def main(_): # This is only to be executed for notebooks. # flags.FLAGS(['']) opts = flags.FLAGS # Set state space. if opts.st_space == 'ee_r' or opts.st_space == 'ee_l': opts.n_state = 7 if opts.st_space == 'joint_ra' or opts.st_space == 'joint_la': opts.n_state = 7 if opts.st_space == 'joint_both': opts.n_state = 14 elif opts.st_space == 'ee_all': opts.n_state = 14 elif opts.st_space == 'joint': opts.n_state = 17 elif opts.st_space =='joint_both_gripper': opts.n_state = 16 opts.logging_dir = os.path.join(opts.logging_dir, 'mime') opts.transformer = True torch.manual_seed(0) # Create instance of class. zpolicy_trainer = ZPolicyTrainer(opts) zpolicy_trainer.setup_networks() zpolicy_trainer.setup_RL_environment() # Still need this to load primitive decoder network. zpolicy_trainer.load_network(opts.network_dir) zpolicy_trainer.trainRL() if __name__ == '__main__': app.run(main)
CausalSkillLearning-main
DownstreamRL/TrainZPolicyRL.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from ..SkillNetwork.headers import * from ..SkillNetwork.LSTMNetwork import LSTMNetwork, LSTMNetwork_Fixed class PolicyNetwork(torch.nn.Module): def __init__(self, opts, input_size, hidden_size, output_size, fixed=True): super(PolicyNetwork, self).__init__() self.opts = opts self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size if fixed: self.lstmnet = LSTMNetwork_Fixed(input_size=input_size, hidden_size=hidden_size, output_size=output_size).cuda() else: self.lstmnet = LSTMNetwork(input_size=input_size, hidden_size=hidden_size, output_size=output_size).cuda() # Create linear layer to split prediction into mu and sigma. self.mu_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) self.sig_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) # Stopping probability predictor. (Softmax, not sigmoid) self.stopping_probability_layer = torch.nn.Linear(self.hidden_size, 2) self.softmax_layer = torch.nn.Softmax(dim=-1) def forward(self, input): format_input = torch.tensor(input).view(1,1,self.input_size).cuda().float() predicted_Z_preparam, stop_probabilities = self.lstmnet.forward(format_input) predicted_Z_preparam = predicted_Z_preparam.squeeze(1) self.latent_z_seq = [] self.latent_mu_seq = [] self.latent_log_sigma_seq = [] self.kld_loss = 0. t = 0 # Remember, the policy is Gaussian (so we can implement VAE-KLD on it). latent_z_mu_seq = self.mu_linear_layer(predicted_Z_preparam) latent_z_log_sig_seq = self.sig_linear_layer(predicted_Z_preparam) # Compute standard deviation. std = torch.exp(0.5*latent_z_log_sig_seq).cuda() # Sample random variable. eps = torch.randn_like(std).cuda() self.latent_z_seq = latent_z_mu_seq+eps*std # Compute KL Divergence Loss term here, so we don't have to return mu's and sigma's. self.kld_loss = torch.zeros(1) for t in range(latent_z_mu_seq.shape[0]): # Taken from mime_plan_skill.py Line 159 - KL Divergence for Gaussian prior and Gaussian prediction. self.kld_loss += -0.5 * torch.sum(1. + latent_z_log_sig_seq[t] - latent_z_mu_seq[t].pow(2) - latent_z_log_sig_seq[t].exp()) # Create distributions so that we can evaluate log probability. self.dists = [torch.distributions.MultivariateNormal(loc = latent_z_mu_seq[t], covariance_matrix = std[t]*torch.eye((self.opts.nz)).cuda()) for t in range(latent_z_mu_seq.shape[0])] # Evaluate log probability in forward so we don't have to do it elswhere. self.log_probs = [self.dists[i].log_prob(self.latent_z_seq[i]) for i in range(self.latent_z_seq.shape[0])] return self.latent_z_seq, stop_probabilities class PolicyNetworkSingleTimestep(torch.nn.Module): # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, opts, input_size, hidden_size, output_size): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(PolicyNetworkSingleTimestep, self).__init__() self.opts = opts self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = 4 self.maximum_length = 15 # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers) # Define output layers for the LSTM, and activations for this output layer. self.output_layer = torch.nn.Linear(self.hidden_size, self.output_size) # Create linear layer to split prediction into mu and sigma. self.mu_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) self.sig_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) # Stopping probability predictor. (Softmax, not sigmoid) self.stopping_probability_layer = torch.nn.Linear(self.hidden_size, 2) self.softmax_layer = torch.nn.Softmax(dim=-1) self.logsoftmax_layer = torch.nn.LogSoftmax(dim=-1) def forward(self, input, hidden=None): # Input format must be: Sequence_Length x 1 x Input_Size. # Assuming input is a numpy array. format_input = torch.tensor(input).view(input.shape[0],1,self.input_size).cuda().float() # Instead of iterating over time and passing each timestep's input to the LSTM, we can now just pass the entire input sequence. outputs, hidden = self.lstm(format_input, hidden) # Predict parameters latentz_preparam = self.output_layer(outputs[-1]) # Remember, the policy is Gaussian (so we can implement VAE-KLD on it). latent_z_mu = self.mu_linear_layer(latentz_preparam) latent_z_log_sig = self.sig_linear_layer(latentz_preparam) # Predict stop probability. preact_stop_probs = self.stopping_probability_layer(outputs[-1]) stop_probability = self.softmax_layer(preact_stop_probs) stop = self.sample_action(stop_probability) # Remember, the policy is Gaussian (so we can implement VAE-KLD on it). latent_z_mu = self.mu_linear_layer(latentz_preparam) latent_z_log_sig = self.sig_linear_layer(latentz_preparam) # Compute standard deviation. std = torch.exp(0.5*latent_z_log_sig).cuda() # Sample random variable. eps = torch.randn_like(std).cuda() latent_z = latent_z_mu+eps*std # Compute KL Divergence Loss term here, so we don't have to return mu's and sigma's. # Taken from mime_plan_skill.py Line 159 - KL Divergence for Gaussian prior and Gaussian prediction. kld_loss = -0.5 * torch.sum(1. + latent_z_log_sig - latent_z_mu.pow(2) - latent_z_log_sig.exp()) # Create distributions so that we can evaluate log probability. dist = torch.distributions.MultivariateNormal(loc = latent_z_mu, covariance_matrix = std*torch.eye((self.opts.nz)).cuda()) # Evaluate log probability in forward so we don't have to do it elswhere. log_prob = dist.log_prob(latent_z) return latent_z, stop_probability, stop, log_prob, kld_loss, hidden def sample_action(self, action_probabilities): # Categorical distribution sampling. sample_action = torch.distributions.Categorical(probs=action_probabilities).sample().squeeze(0) return sample_action class AltPolicyNetworkSingleTimestep(torch.nn.Module): # Policy Network inherits from torch.nn.Module. # Now we overwrite the init, forward functions. And define anything else that we need. def __init__(self, opts, input_size, hidden_size, output_size): # Ensures inheriting from torch.nn.Module goes nicely and cleanly. super(AltPolicyNetworkSingleTimestep, self).__init__() self.opts = opts self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = 4 self.maximum_length = 15 # Define a bidirectional LSTM now. self.lstm = torch.nn.LSTM(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=self.num_layers) # Define output layers for the LSTM, and activations for this output layer. self.output_layer = torch.nn.Linear(self.hidden_size, self.output_size) # Create linear layer to split prediction into mu and sigma. self.mu_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) self.sig_linear_layer = torch.nn.Linear(self.opts.nz, self.opts.nz) self.softplus_activation_layer = torch.nn.Softplus() # Stopping probability predictor. (Softmax, not sigmoid) self.stopping_probability_layer = torch.nn.Linear(self.hidden_size, 2) self.softmax_layer = torch.nn.Softmax(dim=-1) self.logsoftmax_layer = torch.nn.LogSoftmax(dim=-1) def forward(self, input, hidden=None): # Input format must be: Sequence_Length x 1 x Input_Size. # Assuming input is a numpy array. format_input = torch.tensor(input).view(input.shape[0],1,self.input_size).cuda().float() # Instead of iterating over time and passing each timestep's input to the LSTM, we can now just pass the entire input sequence. outputs, hidden = self.lstm(format_input, hidden) # Predict parameters latentz_preparam = self.output_layer(outputs[-1]) # Remember, the policy is Gaussian (so we can implement VAE-KLD on it). latent_z_mu = self.mu_linear_layer(latentz_preparam) latent_z_log_sig = self.sig_linear_layer(latentz_preparam) latent_z_sig = self.softplus_activation_layer(self.sig_linear_layer(latentz_preparam)) # Predict stop probability. preact_stop_probs = self.stopping_probability_layer(outputs[-1]) stop_probability = self.softmax_layer(preact_stop_probs) stop = self.sample_action(stop_probability) # Create distributions so that we can evaluate log probability. dist = torch.distributions.MultivariateNormal(loc = latent_z_mu, covariance_matrix = torch.diag_embed(latent_z_sig)) latent_z = dist.sample() # Evaluate log probability in forward so we don't have to do it elswhere. log_prob = dist.log_prob(latent_z) # Set standard distribution for KL. standard_distribution = torch.distributions.MultivariateNormal(torch.zeros((self.output_size)).cuda(),torch.eye((self.output_size)).cuda()) # Compute KL. kl_divergence = torch.distributions.kl_divergence(dist, standard_distribution) return latent_z, stop_probability, stop, log_prob, kl_divergence, hidden def sample_action(self, action_probabilities): # Categorical distribution sampling. sample_action = torch.distributions.Categorical(probs=action_probabilities).sample().squeeze(0) return sample_action
CausalSkillLearning-main
DownstreamRL/PolicyNet.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 valid_options = np.array([[2,3],[3,0],[1,2],[0,1]]) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) b_array_dataset[i,0] = 1. # Select one of four starting points. (-2,-2), (-2,2), (2,-2), (2,2) goal_array_dataset[i] = np.random.random_integers(0,high=3) x_array_dataset[i,0] = start_states[goal_array_dataset[i]] goal = -start_states[goal_array_dataset[i]] reset_counter = 0 for t in range(number_timesteps-1): # GET B if t>0: # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: axes = -goal/abs(goal) step1 = 30*np.ones((2))-axes*np.abs(x_array_dataset[i,t]-x_array_dataset[i,0]) # baseline = t*20*np.sqrt(2)/20 baseline = t step2 = step1-baseline step3 = step2/step2.sum() y_array_dataset[i,t] = np.random.choice(valid_options[goal_array_dataset[i][0]]) reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] np.save("X_array_directed_continuous.npy",x_array_dataset) np.save("Y_array_directed_continuous.npy",y_array_dataset) np.save("B_array_directed_continuous.npy",b_array_dataset) np.save("A_array_directed_continuous.npy",a_array_dataset)
CausalSkillLearning-main
DataGenerator/DirectedContinuousTrajs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed number_datapoints = 50000 number_timesteps = 20 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) b_array_dataset[i,0] = 1. reset_counter = 0 for t in range(number_timesteps-1): # GET B if t>0: # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: y_array_dataset[i,t] = np.random.random_integers(0,high=3) reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] # embed() np.save("X_array_continuous.npy",x_array_dataset) np.save("Y_array_continuous.npy",y_array_dataset) np.save("B_array_continuous.npy",b_array_dataset) np.save("A_array_continuous.npy",a_array_dataset)
CausalSkillLearning-main
DataGenerator/ContinuousTrajs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed number_datapoints = 50000 number_timesteps = 20 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) b_array_dataset[i,0] = 1. x_array_dataset[i,0] = 5*(np.random.random((2))-0.5) reset_counter = 0 for t in range(number_timesteps-1): # GET B if t>0: # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: y_array_dataset[i,t] = np.random.random_integers(0,high=3) reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A # -0.05 is because the noise is from 0-0.1, so to balance this we make it -0.05 a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] # embed() np.save("X_array_continuous_nonzero.npy",x_array_dataset) np.save("Y_array_continuous_nonzero.npy",y_array_dataset) np.save("B_array_continuous_nonzero.npy",b_array_dataset) np.save("A_array_continuous_nonzero.npy",a_array_dataset)
CausalSkillLearning-main
DataGenerator/ContinuousNonZero.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed import matplotlib.pyplot as plt #number_datapoints = 20 number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*5 valid_options = np.array([[2,3],[3,0],[1,2],[0,1]]) lim = 25 for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) # b_array_dataset[i,0] = 1. goal_array_dataset[i] = np.random.random_integers(0,high=3) # Adding random noise to start state. x_array_dataset[i,-1] = goal_states[goal_array_dataset[i]] + 0.1*(np.random.random(2)-0.5) goal = goal_states[goal_array_dataset[i]] reset_counter = 0 # for t in range(number_timesteps-1): for t in reversed(range(number_timesteps-1)): # GET B # Must end on b==0. if t<(number_timesteps-2): # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if t<3: b_array_dataset[i,t] = 0 elif reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 elif t==(number_timesteps-2): b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: current_state = x_array_dataset[i,t+1] unnorm_directions = current_state-goal.squeeze(0) directions = unnorm_directions/abs(unnorm_directions) # Set valid options. dot_product = np.dot(action_map, directions) # valid_options = np.where(dot_product>=0)[0] # Sincer we're going backwards in time, valid_options = np.where(dot_product<=0)[0] # Compare states. If x-g_x>y_g_y, choose to go along... # embed() # y_array_dataset[i,t] = np.random.choice(valid_options) y_array_dataset[i,t] = valid_options[np.argmax(np.dot(action_map,unnorm_directions)[valid_options])] reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t+1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X # x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] x_array_dataset[i,t] = x_array_dataset[i,t+1]-a_array_dataset[i,t] plt.scatter(goal_states[:,0],goal_states[:,1],s=50) plt.scatter(x_array_dataset[i,:,0],x_array_dataset[i,:,1],cmap='jet',c=range(25)) plt.xlim(-lim, lim) plt.ylim(-lim, lim) plt.show() # Roll over b's. b_array_dataset = np.roll(b_array_dataset,1,axis=1) np.save("X_deter_goal_directed.npy",x_array_dataset) np.save("Y_deter_goal_directed.npy",y_array_dataset) np.save("B_deter_goal_directed.npy",b_array_dataset) np.save("A_deter_goal_directed.npy",a_array_dataset) np.save("G_deter_goal_directed.npy",goal_array_dataset)
CausalSkillLearning-main
DataGenerator/DeterministicGoalDirectedTraj.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed import matplotlib.pyplot as plt number_datapoints = 1 # number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*5 valid_options = np.array([[2,3],[3,0],[1,2],[0,1]]) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) # b_array_dataset[i,0] = 1. goal_array_dataset[i] = np.random.random_integers(0,high=3) # Adding random noise to start state. x_array_dataset[i,-1] = goal_states[goal_array_dataset[i]] + 0.1*(np.random.random(2)-0.5) goal = goal_states[goal_array_dataset[i]] reset_counter = 0 # for t in range(number_timesteps-1): for t in reversed(range(number_timesteps-1)): # GET B # Must end on b==0. if t<(number_timesteps-2): # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if t<3: b_array_dataset[i,t] = 0 elif reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 elif t==(number_timesteps-2): b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: current_state = x_array_dataset[i,t+1] # directions = current_state-goal.squeeze(0) directions = goal.squeeze(0)-current_state norm_directions = directions/abs(directions) # # Set valid options. dot_product = np.dot(action_map, norm_directions) # valid_options = np.where(dot_product>=0)[0] # # Sincer we're going backwards in time, valid_options = np.where(dot_product<=0)[0] # # axes = -goal/abs(goal) # # step1 = 30*np.ones((2))-axes*np.abs(x_array_dataset[i,t]-x_array_dataset[i,0]) # # # baseline = t*20*np.sqrt(2)/20 # # baseline = t # # step2 = step1-baseline # # step3 = step2/step2.sum() # # y_array_dataset[i,t] = np.random.choice(valid_options[goal_array_dataset[i][0]]) # embed() dot_product = np.dot(action_map,directions) y_array_dataset[i,t] = np.argmax(dot_product) # y_array_dataset[i,t] = np.random.choice(valid_options) reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t+1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X # x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] x_array_dataset[i,t] = x_array_dataset[i,t+1]-a_array_dataset[i,t] plt.scatter(goal_states[:,0],goal_states[:,1],s=50) plt.scatter(x_array_dataset[i,:,0],x_array_dataset[i,:,1],cmap='jet',c=range(25)) plt.xlim(-25,25) plt.ylim(-25,25) plt.show() # Roll over b's. b_array_dataset = np.roll(b_array_dataset,1,axis=1) np.save("X_goal_directed.npy",x_array_dataset) np.save("Y_goal_directed.npy",y_array_dataset) np.save("B_goal_directed.npy",b_array_dataset) np.save("A_goal_directed.npy",a_array_dataset) np.save("G_goal_directed.npy",goal_array_dataset)
CausalSkillLearning-main
DataGenerator/GoalDirectedTrajs.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np, copy from IPython import embed import matplotlib.pyplot as plt number_datapoints = 20 # number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) # action_map = np.array([[-1,0],[0,-1],[1,0],[0,1]]) # start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*5 # Creating a policy map. size = 9 scale = 5 policy_map = np.zeros((size,size),dtype=int) # Row wise assignment: policy_map[0,:] = 2 policy_map[1,:7] = 2 policy_map[1,7:] = 1 policy_map[2:4,0] = 2 policy_map[2:4,1:4] = 3 policy_map[2:4,4:7] = 2 policy_map[2:4,7:] = 1 policy_map[4,:4] = 3 policy_map[4,4] = 3 policy_map[4,5:] = 1 policy_map[5,:3] = 3 policy_map[5,3:5] = 0 policy_map[5,5:] = 1 policy_map[6,:2] = 3 policy_map[6,2:7] = 0 policy_map[6,7:] = 1 policy_map[7:,0] = 3 policy_map[7:,1:7] = 0 policy_map[7:,7:] = 1 policy_map = np.transpose(policy_map) # x = np.meshgrid(range(9),range(9)) x = np.meshgrid(np.arange(9),np.arange(9)) dxdy = action_map[policy_map[x[0],x[1]]] traj = np.zeros((10,2)) traj[0] = [0,8] for t in range(9): # embed() action_index = policy_map[int(traj[t,0]),int(traj[t,1])] action = action_map[action_index] traj[t+1] = traj[t] + action print(action_index, action) plt.ylim(9,-1) plt.plot(traj[:,0],traj[:,1],'or') plt.plot(traj[:,0],traj[:,1],'r') plt.scatter(x[0],x[1]) for i in range(9): for j in range(9): plt.arrow(x[0][i,j],x[1][i,j],0.1*dxdy[i,j,0],0.1*dxdy[i,j,1],width=0.01) plt.show() # embed() # Transformed vis. size = 9 scale = 5 scaled_size = scale*size # policy_map = np.flipud(np.transpose(policy_map)) policy_map = np.transpose(policy_map) # goal_based_policy_maps = np.zeros((4,size,size),dtype=int) # goal_based_policy_maps[0] = copy.deepcopy(policy_map) # goal_based_policy_maps[1] = np.rot90(policy_map) # goal_based_policy_maps[2] = np.rot90(policy_map,k=2) # goal_based_policy_maps[3] = np.rot90(policy_map,k=3) def get_bucket(state, reference_state): # baseline = 4*np.ones(2) baseline = np.zeros(2) compensated_state = state - reference_state # compensated_state = (np.round(state - reference_state) + baseline).astype(int) scaled_size = scale*size x = (np.arange(-(size-1)/2,(size-1)/2+1)-0.5)*scale bucket = np.zeros((2)) bucket[0] = min(np.searchsorted(x,compensated_state[0]),size-1) bucket[1] = min(np.searchsorted(x,compensated_state[1]),size-1) return bucket.astype(int) goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*10 # goal_index = 1 # # meshrange = np.arange(-scaled_size/2,scaled_size/2+1,5) # meshrange = (np.arange(-(size-1)/2,(size-1)/2+1)-0.5)*scale # evalrange = (np.arange(-(size-1)/2,(size-1)/2+1)-1)*scale # x = np.meshgrid(goal_states[goal_index,0]+meshrange,goal_states[goal_index,1]+meshrange) # dxdy = np.zeros((9,9,2)) # # dxdy = action_map[policy_map[x[0],x[1]]] # plt.scatter(x[0],x[1]) # plt.ylim(50,-50) # arr = np.zeros((9,9,2)) # for i in range(9): # for j in range(9): # a = goal_states[goal_index,0]+evalrange[i] # b = goal_states[goal_index,1]+evalrange[j] # bucket = get_bucket(np.array([a,b]), goal_states[goal_index]) # arr[i,j,0] = i # arr[i,j,1] = j # dxdy[bucket[0],bucket[1]] = action_map[policy_map[bucket[0],bucket[1]]] # plt.arrow(x[0][i,j],x[1][i,j],0.1*dxdy[i,j,0],0.1*dxdy[i,j,1],width=0.01*scale) # plt.show() for goal_index in range(4): # embed() # meshrange = np.arange(-scaled_size/2,scaled_size/2+1,5) meshrange = (np.arange(-(size-1)/2,(size-1)/2+1)-0.5)*scale evalrange = (np.arange(-(size-1)/2,(size-1)/2+1)-1)*scale x = np.meshgrid(goal_states[goal_index,0]+meshrange,goal_states[goal_index,1]+meshrange) dxdy = np.zeros((9,9,2)) # dxdy = action_map[policy_map[x[0],x[1]]] plt.scatter(x[0],x[1]) plt.ylim(50,-50) plt.xlim(-50,50) arr = np.zeros((9,9,2)) for i in range(9): for j in range(9): a = goal_states[goal_index,0]+evalrange[i] b = goal_states[goal_index,1]+evalrange[j] bucket = get_bucket(np.array([a,b]), goal_states[goal_index]) arr[i,j,0] = i arr[i,j,1] = j # dxdy[bucket[0],bucket[1]] = action_map[goal_based_policy_maps[goal_index,bucket[0],bucket[1]]] dxdy[bucket[0],bucket[1]] = action_map[policy_map[bucket[0],bucket[1]]] # plt.arrow(x[0][i,j],x[1][i,j],0.1*dxdy[i,j,0],0.1*dxdy[i,j,1],width=0.01*scale) # plt.quiver(x[0],x[1],0.1*dxdy[:,:,1],0.1*dxdy[:,:,0],width=0.0001,headwidth=4,headlength=2) plt.quiver(x[0],x[1],0.1*dxdy[:,:,1],0.1*dxdy[:,:,0]) traj_len = 20 traj = np.zeros((20,2)) traj[0] = np.random.randint(-25,high=25,size=2) for t in range(traj_len-1): bucket = get_bucket(traj[t], goal_states[goal_index]) action_index = policy_map[bucket[0],bucket[1]] action = action_map[action_index] traj[t+1] = traj[t] + action plt.plot(traj[:,0],traj[:,1],'r') plt.plot(traj[:,0],traj[:,1],'or') plt.show()
CausalSkillLearning-main
DataGenerator/PolicyVisualizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 valid_options = np.array([[2,3],[3,0],[1,2],[0,1]]) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) b_array_dataset[i,0] = 1. # Select one of four starting points. (-2,-2), (-2,2), (2,-2), (2,2) goal_array_dataset[i] = np.random.random_integers(0,high=3) # Adding random noise to start state. x_array_dataset[i,0] = start_states[goal_array_dataset[i]] + 0.2*(np.random.random(2)-0.5) goal = -start_states[goal_array_dataset[i]] reset_counter = 0 for t in range(number_timesteps-1): # GET B if t>0: # b_array[t] = np.random.binomial(1,prob_b_given_x) # b_array_dataset[i,t] = np.random.binomial(1,pb_x[0,x_array_dataset[i,t]]) # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: axes = -goal/abs(goal) step1 = 30*np.ones((2))-axes*np.abs(x_array_dataset[i,t]-x_array_dataset[i,0]) # baseline = t*20*np.sqrt(2)/20 baseline = t step2 = step1-baseline step3 = step2/step2.sum() y_array_dataset[i,t] = np.random.choice(valid_options[goal_array_dataset[i][0]]) reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.05+0.1*np.random.random((2)) # GET X x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] np.save("X_dir_cont_nonzero.npy",x_array_dataset) np.save("Y_dir_cont_nonzero.npy",y_array_dataset) np.save("B_dir_cont_nonzero.npy",b_array_dataset) np.save("A_dir_cont_nonzero.npy",a_array_dataset) np.save("G_dir_cont_nonzero.npy",goal_array_dataset)
CausalSkillLearning-main
DataGenerator/DirectedContinuousNonZero.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np, copy from IPython import embed import matplotlib.pyplot as plt number_datapoints = 20 # number_datapoints = 50000 number_timesteps = 25 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) # start_states = np.array([[-2,-2],[-2,2],[2,-2],[2,2]])*5 goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*10 # Creating a policy map. lim = 50 size = 9 scale = 5 policy_map = np.zeros((size,size),dtype=int) # Row wise assignment: policy_map[0,:] = 2 policy_map[1,:7] = 2 policy_map[1,7:] = 1 policy_map[2:4,0] = 2 policy_map[2:4,1:4] = 3 policy_map[2:4,4:7] = 2 policy_map[2:4,7:] = 1 policy_map[4,:4] = 3 policy_map[4,4] = 3 policy_map[4,5:] = 1 policy_map[5,:3] = 3 policy_map[5,3:5] = 0 policy_map[5,5:] = 1 policy_map[6,:2] = 3 policy_map[6,2:7] = 0 policy_map[6,7:] = 1 policy_map[7:,0] = 3 policy_map[7:,1:7] = 0 policy_map[7:,7:] = 1 # policy_map = np.transpose(policy_map) goal_based_policy_maps = np.zeros((4,size,size)) goal_based_policy_maps[0] = copy.deepcopy(policy_map) goal_based_policy_maps[1] = np.flipud(policy_map) goal_based_policy_maps[2] = np.fliplr(policy_map) goal_based_policy_maps[3] = np.flipud(np.fliplr(policy_map)) def get_bucket(state, reference_state): # baseline = 4*np.ones(2) baseline = np.zeros(2) compensated_state = state - reference_state # compensated_state = (np.round(state - reference_state) + baseline).astype(int) x = (np.arange(-(size-1)/2,(size-1)/2+1)-0.5)*scale bucket = np.zeros((2)) bucket[0] = min(np.searchsorted(x,compensated_state[0]),size-1) bucket[1] = min(np.searchsorted(x,compensated_state[1]),size-1) return bucket.astype(int) for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) # b_array_dataset[i,0] = 1. goal_array_dataset[i] = np.random.random_integers(0,high=3) # Adding random noise to start state. # x_array_dataset[i,0] = goal_states[goal_array_dataset[i]] + 0.1*(np.random.random(2)-0.5) scale = 25 x_array_dataset[i,0] = goal_states[goal_array_dataset[i]] + scale*(np.random.random(2)-0.5) goal = goal_states[goal_array_dataset[i]] reset_counter = 0 for t in range(number_timesteps-1): # GET B if t>0: # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: current_state = x_array_dataset[i,t] # Select options from policy map, based on the bucket the current state falls in. bucket = get_bucket(current_state, goal_states[goal_array_dataset[i]][0]) # Now that we've the bucket, pick the option we should be executing given the bucket. if (bucket==0).all(): y_array_dataset[i,t] = np.random.randint(0,high=4) else: y_array_dataset[i,t] = goal_based_policy_maps[goal_array_dataset[i], bucket[0], bucket[1]] y_array_dataset[i,t] = policy_map[bucket[0], bucket[1]] reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]-0.1*(np.random.random((2))-0.5) # GET X # Already taking care of backwards generation here, no need to use action_compliments. x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] plt.scatter(goal_states[:,0],goal_states[:,1],s=50) # plt.scatter() plt.scatter(x_array_dataset[i,:,0],x_array_dataset[i,:,1],cmap='jet',c=range(25)) plt.xlim(-lim,lim) plt.ylim(-lim,lim) plt.show() # Roll over b's. b_array_dataset = np.roll(b_array_dataset,1,axis=1) np.save("X_goal_directed.npy",x_array_dataset) np.save("Y_goal_directed.npy",y_array_dataset) np.save("B_goal_directed.npy",b_array_dataset) np.save("A_goal_directed.npy",a_array_dataset) np.save("G_goal_directed.npy",goal_array_dataset)
CausalSkillLearning-main
DataGenerator/NewGoalDirectedTraj.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from IPython import embed import matplotlib.pyplot as plt # number_datapoints = 20 number_datapoints = 50000 number_timesteps = 20 x_array_dataset = np.zeros((number_datapoints, number_timesteps, 2)) a_array_dataset = np.zeros((number_datapoints, number_timesteps-1, 2)) y_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) b_array_dataset = np.zeros((number_datapoints, number_timesteps-1),dtype=int) goal_array_dataset = np.zeros((number_datapoints, 1),dtype=int) start_config_dataset = np.zeros((number_datapoints, 1),dtype=int) action_map = np.array([[0,-1],[-1,0],[0,1],[1,0]]) start_scale = 15 start_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*start_scale goal_states = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])*5 scale = 5 start_configs = np.zeros((4,5,2),dtype=int) start_configs[[0,3]] = np.array([[-2,2],[-1,1],[0,0],[1,-1],[2,-2]])*scale start_configs[[1,2]] = np.array([[-2,-2],[-1,-1],[0,0],[1,1],[2,2]])*scale # valid_options = np.array([[2,3],[3,0],[1,2],[0,1]]) valid_options = np.array([[3,2],[3,0],[2,1],[0,1]]) lim = 50 progression_of_options = np.zeros((5,4),dtype=int) progression_of_options[1,0] = 1 progression_of_options[2,:2] = 1 progression_of_options[3,1:] = 1 progression_of_options[4,:] = 1 for i in range(number_datapoints): if i%1000==0: print("Processing Datapoint: ",i) goal_array_dataset[i] = np.random.random_integers(0,high=3) start_config_dataset[i] = np.random.random_integers(0,high=4) # start_config_dataset[i] = 4 # Adding random noise to start state. x_array_dataset[i,0] = start_states[goal_array_dataset[i]] + start_configs[goal_array_dataset[i],start_config_dataset[i]] + 0.1*(np.random.random(2)-0.5) reset_counter = 0 option_counter = 0 for t in range(number_timesteps-1): # GET B if t==0: b_array_dataset[i,t] = 1 if t>0: # If 3,4,5 timesteps have passed, terminate. if reset_counter>=3 and reset_counter<5: b_array_dataset[i,t] = np.random.binomial(1,0.33) elif reset_counter==5: b_array_dataset[i,t] = 1 # GET Y if b_array_dataset[i,t]: current_state = x_array_dataset[i,t] # select new y_array_dataset[i,t] y_array_dataset[i,t] = valid_options[goal_array_dataset[i]][0][progression_of_options[start_config_dataset[i],min(option_counter,3)]] option_counter+=1 reset_counter = 0 else: reset_counter+=1 y_array_dataset[i,t] = y_array_dataset[i,t-1] # GET A a_array_dataset[i,t] = action_map[y_array_dataset[i,t]]+0.1*(np.random.random((2))-0.5) # GET X # Already taking care of backwards generation here, no need to use action_compliments. x_array_dataset[i,t+1] = x_array_dataset[i,t]+a_array_dataset[i,t] # plt.scatter(goal_states[:,0],goal_states[:,1],s=50) # # plt.scatter() # plt.scatter(x_array_dataset[i,:,0],x_array_dataset[i,:,1],cmap='jet',c=range(number_timesteps)) # plt.xlim(-lim,lim) # plt.ylim(-lim,lim) # plt.show() # Roll over b's. b_array_dataset = np.roll(b_array_dataset,1,axis=1) np.save("X_separable.npy",x_array_dataset) np.save("Y_separable.npy",y_array_dataset) np.save("B_separable.npy",b_array_dataset) np.save("A_separable.npy",a_array_dataset) np.save("G_separable.npy",goal_array_dataset) np.save("StartConfig_separable.npy",start_config_dataset)
CausalSkillLearning-main
DataGenerator/SeparableTrajs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import setup, find_packages from setuptools.extension import Extension from Cython.Build import cythonize import numpy extensions = [ Extension( "cpc.eval.ABX.dtw", ["cpc/eval/ABX/dtw.pyx"], include_dirs=[numpy.get_include()], ), ] setup( name='CPC_audio', version='1.0', description='An implementation of the contrast predictive coding (CPC) ' 'training method for audio data.', author='Facebook AI Research', packages=find_packages(), classifiers=["License :: OSI Approved :: MIT License", "Intended Audience :: Science/Research", "Topic :: Scientific/Engineering", "Programming Language :: Python"], ext_modules=cythonize(extensions, language_level="3") )
CPC_audio-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch from cpc.model import CPCModel as cpcmodel from cpc.cpc_default_config import get_default_cpc_config from cpc.feature_loader import getEncoder, getAR, loadArgs dependencies = ['torch', 'torchaudio'] def CPC_audio(pretrained=False, **kwargs): """ Contrast predictive learning model for audio data pretrained: if True, load a model trained on libri-light 60k (https://arxiv.org/abs/1912.07875) **kwargs : see cpc/cpc_default_config to get the list of possible arguments """ locArgs = get_default_cpc_config() if pretrained: checkpoint_url = 'https://dl.fbaipublicfiles.com/librilight/CPC_checkpoints/60k_epoch4-d0f474de.pt' checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, progress=False) loadArgs(locArgs, argparse.Namespace(**checkpoint["config"])) else: args = argparse.Namespace(**kwargs) loadArgs(locArgs, args) encoderNet = getEncoder(locArgs) arNet = getAR(locArgs) model = cpcmodel(encoderNet, arNet) if pretrained: model.load_state_dict(checkpoint["weights"], strict=False) return model
CPC_audio-main
hubconf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torchaudio import os import json import argparse from .cpc_default_config import get_default_cpc_config from .dataset import parseSeqLabels from .model import CPCModel, ConcatenatedModel class FeatureModule(torch.nn.Module): r""" A simpler interface to handle CPC models. Useful for a smooth workflow when working with CPC trained features. """ def __init__(self, featureMaker, get_encoded, collapse=False): super(FeatureModule, self).__init__() self.get_encoded = get_encoded self.featureMaker = featureMaker self.collapse = collapse def getDownsamplingFactor(self): return self.featureMaker.gEncoder.DOWNSAMPLING def forward(self, data): batchAudio, label = data cFeature, encoded, _ = self.featureMaker(batchAudio.cuda(), label) if self.get_encoded: cFeature = encoded if self.collapse: cFeature = cFeature.contiguous().view(-1, cFeature.size(2)) return cFeature class ModelPhoneCombined(torch.nn.Module): r""" Concatenates a CPC feature maker and a phone predictor. """ def __init__(self, model, criterion, oneHot): r""" Arguments: model (FeatureModule): feature maker criterion (PhoneCriterion): phone predictor oneHot (bool): set to True to get a one hot output """ super(ModelPhoneCombined, self).__init__() self.model = model self.criterion = criterion self.oneHot = oneHot def getDownsamplingFactor(self): return self.model.getDownsamplingFactor() def forward(self, data): c_feature = self.model(data) pred = self.criterion.getPrediction(c_feature) P = pred.size(2) if self.oneHot: pred = pred.argmax(dim=2) pred = toOneHot(pred, P) else: pred = torch.nn.functional.softmax(pred, dim=2) return pred def loadArgs(args, locArgs, forbiddenAttr=None): for k, v in vars(locArgs).items(): if forbiddenAttr is not None: if k not in forbiddenAttr: setattr(args, k, v) else: setattr(args, k, v) def loadSupervisedCriterion(pathCheckpoint): from .criterion import CTCPhoneCriterion, PhoneCriterion *_, args = getCheckpointData(os.path.dirname(pathCheckpoint)) _, nPhones = parseSeqLabels(args.pathPhone) if args.CTC: criterion = CTCPhoneCriterion(args.hiddenGar if not args.onEncoder else args.hiddenEncoder, nPhones, args.onEncoder) else: criterion = PhoneCriterion(args.hiddenGar, nPhones, args.onEncoder) state_dict = torch.load(pathCheckpoint) criterion.load_state_dict(state_dict["cpcCriterion"]) return criterion, nPhones def getCheckpointData(pathDir): if not os.path.isdir(pathDir): return None checkpoints = [x for x in os.listdir(pathDir) if os.path.splitext(x)[1] == '.pt' and os.path.splitext(x[11:])[0].isdigit()] if len(checkpoints) == 0: print("No checkpoints found at " + pathDir) return None checkpoints.sort(key=lambda x: int(os.path.splitext(x[11:])[0])) data = os.path.join(pathDir, checkpoints[-1]) with open(os.path.join(pathDir, 'checkpoint_logs.json'), 'rb') as file: logs = json.load(file) with open(os.path.join(pathDir, 'checkpoint_args.json'), 'rb') as file: args = json.load(file) args = argparse.Namespace(**args) defaultArgs = get_default_cpc_config() loadArgs(defaultArgs, args) return os.path.abspath(data), logs, defaultArgs def getEncoder(args): if args.encoder_type == 'mfcc': from .model import MFCCEncoder return MFCCEncoder(args.hiddenEncoder) elif args.encoder_type == 'lfb': from .model import LFBEnconder return LFBEnconder(args.hiddenEncoder) else: from .model import CPCEncoder return CPCEncoder(args.hiddenEncoder, args.normMode) def getAR(args): if args.arMode == 'transformer': from .transformers import buildTransformerAR arNet = buildTransformerAR(args.hiddenEncoder, 1, args.sizeWindow // 160, args.abspos) args.hiddenGar = args.hiddenEncoder elif args.arMode == 'no_ar': from .model import NoAr arNet = NoAr() else: from .model import CPCAR arNet = CPCAR(args.hiddenEncoder, args.hiddenGar, args.samplingType == "sequential", args.nLevelsGRU, mode=args.arMode, reverse=args.cpc_mode == "reverse") return arNet def loadModel(pathCheckpoints, loadStateDict=True): models = [] hiddenGar, hiddenEncoder = 0, 0 for path in pathCheckpoints: print(f"Loading checkpoint {path}") _, _, locArgs = getCheckpointData(os.path.dirname(path)) doLoad = locArgs.load is not None and \ (len(locArgs.load) > 1 or os.path.dirname(locArgs.load[0]) != os.path.dirname(path)) if doLoad: m_, hg, he = loadModel(locArgs.load, loadStateDict=False) hiddenGar += hg hiddenEncoder += he else: encoderNet = getEncoder(locArgs) arNet = getAR(locArgs) m_ = CPCModel(encoderNet, arNet) if loadStateDict: print(f"Loading the state dict at {path}") state_dict = torch.load(path, 'cpu') m_.load_state_dict(state_dict["gEncoder"], strict=False) if not doLoad: hiddenGar += locArgs.hiddenGar hiddenEncoder += locArgs.hiddenEncoder models.append(m_) if len(models) == 1: return models[0], hiddenGar, hiddenEncoder return ConcatenatedModel(models), hiddenGar, hiddenEncoder def get_module(i_module): if isinstance(i_module, torch.nn.DataParallel): return get_module(i_module.module) if isinstance(i_module, FeatureModule): return get_module(i_module.module) return i_module def save_checkpoint(model_state, criterion_state, optimizer_state, best_state, path_checkpoint): state_dict = {"gEncoder": model_state, "cpcCriterion": criterion_state, "optimizer": optimizer_state, "best": best_state} torch.save(state_dict, path_checkpoint) def toOneHot(inputVector, nItems): batchSize, seqSize = inputVector.size() out = torch.zeros((batchSize, seqSize, nItems), device=inputVector.device, dtype=torch.long) out.scatter_(2, inputVector.view(batchSize, seqSize, 1), 1) return out def seqNormalization(out): # out.size() = Batch x Seq x Channels mean = out.mean(dim=1, keepdim=True) var = out.var(dim=1, keepdim=True) return (out - mean) / torch.sqrt(var + 1e-08) def buildFeature(featureMaker, seqPath, strict=False, maxSizeSeq=64000, seqNorm=False): r""" Apply the featureMaker to the given file. Arguments: - featureMaker (FeatureModule): model to apply - seqPath (string): path of the sequence to load - strict (bool): if True, always work with chunks of the size maxSizeSeq - maxSizeSeq (int): maximal size of a chunk - seqNorm (bool): if True, normalize the output along the time dimension to get chunks of mean zero and var 1 Return: a torch vector of size 1 x Seq_size x Feature_dim """ seq = torchaudio.load(seqPath)[0] sizeSeq = seq.size(1) start = 0 out = [] while start < sizeSeq: if strict and start + maxSizeSeq > sizeSeq: break end = min(sizeSeq, start + maxSizeSeq) subseq = (seq[:, start:end]).view(1, 1, -1).cuda(device=0) with torch.no_grad(): features = featureMaker((subseq, None)) if seqNorm: features = seqNormalization(features) out.append(features.detach().cpu()) start += maxSizeSeq if strict and start < sizeSeq: subseq = (seq[:, -maxSizeSeq:]).view(1, 1, -1).cuda(device=0) with torch.no_grad(): features = featureMaker((subseq, None)) if seqNorm: features = seqNormalization(features) delta = (sizeSeq - start) // featureMaker.getDownsamplingFactor() out.append(features[:, -delta:].detach().cpu()) out = torch.cat(out, dim=1) return out
CPC_audio-main
cpc/feature_loader.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import math class ScaledDotProductAttention(nn.Module): def __init__(self, sizeSeq, # Size of the input sequence dk, # Dimension of the input sequence dropout, # Dropout parameter relpos=False): # Do we retrieve positional information ? super(ScaledDotProductAttention, self).__init__() self.drop = nn.Dropout(dropout) self.softmax = nn.Softmax(dim=2) self.relpos = relpos self.sizeSeq = sizeSeq if relpos: self.Krelpos = nn.Parameter(torch.Tensor(dk, sizeSeq)) self.initmat_(self.Krelpos) self.register_buffer('z', torch.zeros(1, sizeSeq, 1)) # A mask is set so that a node never queries data in the future mask = torch.tril(torch.ones(sizeSeq, sizeSeq), diagonal=0) mask = 1 - mask mask[mask == 1] = -float('inf') self.register_buffer('mask', mask.unsqueeze(0)) def initmat_(self, mat, dim=0): stdv = 1. / math.sqrt(mat.size(dim)) mat.data.uniform_(-stdv, stdv) def forward(self, Q, K, V): # Input dim : N x sizeSeq x dk QK = torch.bmm(Q, K.transpose(-2, -1)) if self.relpos: bsz = Q.size(0) QP = Q.matmul(self.Krelpos) # This trick with z fills QP's diagonal with zeros QP = torch.cat((self.z.expand(bsz, -1, -1), QP), 2) QK += QP.view(bsz, self.sizeSeq + 1, self.sizeSeq)[:, 1:, :] A = self.softmax(QK / math.sqrt(K.size(-1)) + self.mask) return torch.bmm(self.drop(A), V) class MultiHeadAttention(nn.Module): def __init__(self, sizeSeq, # Size of a sequence dropout, # Dropout parameter dmodel, # Model's dimension nheads, # Number of heads in the model abspos): # Is positional information encoded in the input ? super(MultiHeadAttention, self).__init__() self.Wo = nn.Linear(dmodel, dmodel, bias=False) self.Wk = nn.Linear(dmodel, dmodel, bias=False) self.Wq = nn.Linear(dmodel, dmodel, bias=False) self.Wv = nn.Linear(dmodel, dmodel, bias=False) self.nheads = nheads self.dk = dmodel // nheads self.Att = ScaledDotProductAttention(sizeSeq, self.dk, dropout, not abspos) def trans_(self, x): bsz, bptt, h, dk = x.size(0), x.size(1), self.nheads, self.dk return x.view(bsz, bptt, h, dk).transpose(1, 2).contiguous().view(bsz * h, bptt, dk) def reverse_trans_(self, x): bsz, bptt, h, dk = x.size( 0) // self.nheads, x.size(1), self.nheads, self.dk return x.view(bsz, h, bptt, dk).transpose(1, 2).contiguous().view(bsz, bptt, h * dk) def forward(self, Q, K, V): q = self.trans_(self.Wq(Q)) k = self.trans_(self.Wk(K)) v = self.trans_(self.Wv(V)) y = self.reverse_trans_(self.Att(q, k, v)) return self.Wo(y) class FFNetwork(nn.Module): def __init__(self, din, dout, dff, dropout): super(FFNetwork, self).__init__() self.lin1 = nn.Linear(din, dff, bias=True) self.lin2 = nn.Linear(dff, dout, bias=True) self.relu = nn.ReLU() self.drop = nn.Dropout(dropout) def forward(self, x): return self.lin2(self.drop(self.relu(self.lin1(x)))) class TransformerLayer(nn.Module): def __init__(self, sizeSeq=32, dmodel=512, dff=2048, dropout=0.1, nheads=8, abspos=False): super(TransformerLayer, self).__init__() self.multihead = MultiHeadAttention(sizeSeq, dropout, dmodel, nheads, abspos) self.ln_multihead = nn.LayerNorm(dmodel) self.ffnetwork = FFNetwork(dmodel, dmodel, dff, dropout) self.ln_ffnetwork = nn.LayerNorm(dmodel) def forward(self, x): y = self.ln_multihead(x + self.multihead(Q=x, K=x, V=x)) return self.ln_ffnetwork(y + self.ffnetwork(y)) class StaticPositionEmbedding(nn.Module): def __init__(self, seqlen, dmodel): super(StaticPositionEmbedding, self).__init__() pos = torch.arange(0., seqlen).unsqueeze(1).repeat(1, dmodel) dim = torch.arange(0., dmodel).unsqueeze(0).repeat(seqlen, 1) div = torch.exp(- math.log(10000) * (2*(dim//2)/dmodel)) pos *= div pos[:, 0::2] = torch.sin(pos[:, 0::2]) pos[:, 1::2] = torch.cos(pos[:, 1::2]) self.register_buffer('pe', pos.unsqueeze(0)) def forward(self, x): return x + self.pe[:, :x.size(1), :] def buildTransformerAR(dimEncoded, # Output dimension of the encoder nLayers, # Number of transformer layers sizeSeq, # Expected size of the input sequence abspos): layerSequence = [] if abspos: layerSequence += [StaticPositionEmbedding(sizeSeq, dimEncoded)] layerSequence += [TransformerLayer(sizeSeq=sizeSeq, dmodel=dimEncoded, abspos=abspos) for i in range(nLayers)] return nn.Sequential(*layerSequence)
CPC_audio-main
cpc/transformers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
CPC_audio-main
cpc/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.nn as nn import torch.nn.functional as F import torchaudio import torch ########################################### # Networks ########################################### class IDModule(nn.Module): def __init__(self, *args, **kwargs): super(IDModule, self).__init__() def forward(self, x): return x class ChannelNorm(nn.Module): def __init__(self, numFeatures, epsilon=1e-05, affine=True): super(ChannelNorm, self).__init__() if affine: self.weight = nn.parameter.Parameter(torch.Tensor(1, numFeatures, 1)) self.bias = nn.parameter.Parameter(torch.Tensor(1, numFeatures, 1)) else: self.weight = None self.bias = None self.epsilon = epsilon self.p = 0 self.affine = affine self.reset_parameters() def reset_parameters(self): if self.affine: torch.nn.init.ones_(self.weight) torch.nn.init.zeros_(self.bias) def forward(self, x): cumMean = x.mean(dim=1, keepdim=True) cumVar = x.var(dim=1, keepdim=True) x = (x - cumMean)*torch.rsqrt(cumVar + self.epsilon) if self.weight is not None: x = x * self.weight + self.bias return x class CPCEncoder(nn.Module): def __init__(self, sizeHidden=512, normMode="layerNorm"): super(CPCEncoder, self).__init__() validModes = ["batchNorm", "instanceNorm", "ID", "layerNorm"] if normMode not in validModes: raise ValueError(f"Norm mode must be in {validModes}") if normMode == "instanceNorm": def normLayer(x): return nn.InstanceNorm1d(x, affine=True) elif normMode == "ID": normLayer = IDModule elif normMode == "layerNorm": normLayer = ChannelNorm else: normLayer = nn.BatchNorm1d self.dimEncoded = sizeHidden self.conv0 = nn.Conv1d(1, sizeHidden, 10, stride=5, padding=3) self.batchNorm0 = normLayer(sizeHidden) self.conv1 = nn.Conv1d(sizeHidden, sizeHidden, 8, stride=4, padding=2) self.batchNorm1 = normLayer(sizeHidden) self.conv2 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm2 = normLayer(sizeHidden) self.conv3 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm3 = normLayer(sizeHidden) self.conv4 = nn.Conv1d(sizeHidden, sizeHidden, 4, stride=2, padding=1) self.batchNorm4 = normLayer(sizeHidden) self.DOWNSAMPLING = 160 def getDimOutput(self): return self.conv4.out_channels def forward(self, x): x = F.relu(self.batchNorm0(self.conv0(x))) x = F.relu(self.batchNorm1(self.conv1(x))) x = F.relu(self.batchNorm2(self.conv2(x))) x = F.relu(self.batchNorm3(self.conv3(x))) x = F.relu(self.batchNorm4(self.conv4(x))) return x class MFCCEncoder(nn.Module): def __init__(self, dimEncoded): super(MFCCEncoder, self).__init__() melkwargs = {"n_mels": max(128, dimEncoded), "n_fft": 321} self.dimEncoded = dimEncoded self.MFCC = torchaudio.transforms.MFCC(n_mfcc=dimEncoded, melkwargs=melkwargs) def forward(self, x): x = x.view(x.size(0), -1) x = self.MFCC(x) return x.permute(0, 2, 1) class LFBEnconder(nn.Module): def __init__(self, dimEncoded, normalize=True): super(LFBEnconder, self).__init__() self.dimEncoded = dimEncoded self.conv = nn.Conv1d(1, 2 * dimEncoded, 400, stride=1) self.register_buffer('han', torch.hann_window(400).view(1, 1, 400)) self.instancenorm = nn.InstanceNorm1d(dimEncoded, momentum=1) \ if normalize else None def forward(self, x): N, C, L = x.size() x = self.conv(x) x = x.view(N, self.dimEncoded, 2, -1) x = x[:, :, 0, :]**2 + x[:, :, 1, :]**2 x = x.view(N * self.dimEncoded, 1, -1) x = torch.nn.functional.conv1d(x, self.han, bias=None, stride=160, padding=350) x = x.view(N, self.dimEncoded, -1) x = torch.log(1 + torch.abs(x)) # Normalization if self.instancenorm is not None: x = self.instancenorm(x) return x class CPCAR(nn.Module): def __init__(self, dimEncoded, dimOutput, keepHidden, nLevelsGRU, mode="GRU", reverse=False): super(CPCAR, self).__init__() self.RESIDUAL_STD = 0.1 if mode == "LSTM": self.baseNet = nn.LSTM(dimEncoded, dimOutput, num_layers=nLevelsGRU, batch_first=True) elif mode == "RNN": self.baseNet = nn.RNN(dimEncoded, dimOutput, num_layers=nLevelsGRU, batch_first=True) else: self.baseNet = nn.GRU(dimEncoded, dimOutput, num_layers=nLevelsGRU, batch_first=True) self.hidden = None self.keepHidden = keepHidden self.reverse = reverse def getDimOutput(self): return self.baseNet.hidden_size def forward(self, x): if self.reverse: x = torch.flip(x, [1]) try: self.baseNet.flatten_parameters() except RuntimeError: pass x, h = self.baseNet(x, self.hidden) if self.keepHidden: if isinstance(h, tuple): self.hidden = tuple(x.detach() for x in h) else: self.hidden = h.detach() # For better modularity, a sequence's order should be preserved # by each module if self.reverse: x = torch.flip(x, [1]) return x class NoAr(nn.Module): def __init__(self, *args): super(NoAr, self).__init__() def forward(self, x): return x class BiDIRARTangled(nn.Module): r""" Research: bidirectionnal model for BERT training. """ def __init__(self, dimEncoded, dimOutput, nLevelsGRU): super(BiDIRARTangled, self).__init__() assert(dimOutput % 2 == 0) self.ARNet = nn.GRU(dimEncoded, dimOutput // 2, num_layers=nLevelsGRU, batch_first=True, bidirectional=True) def getDimOutput(self): return self.ARNet.hidden_size * 2 def forward(self, x): self.ARNet.flatten_parameters() xf, _ = self.ARNet(x) return xf class BiDIRAR(nn.Module): r""" Research: bidirectionnal model for BERT training. """ def __init__(self, dimEncoded, dimOutput, nLevelsGRU): super(BiDIRAR, self).__init__() assert(dimOutput % 2 == 0) self.netForward = nn.GRU(dimEncoded, dimOutput // 2, num_layers=nLevelsGRU, batch_first=True) self.netBackward = nn.GRU(dimEncoded, dimOutput // 2, num_layers=nLevelsGRU, batch_first=True) def getDimOutput(self): return self.netForward.hidden_size * 2 def forward(self, x): self.netForward.flatten_parameters() self.netBackward.flatten_parameters() xf, _ = self.netForward(x) xb, _ = self.netBackward(torch.flip(x, [1])) return torch.cat([xf, torch.flip(xb, [1])], dim=2) ########################################### # Model ########################################### class CPCModel(nn.Module): def __init__(self, encoder, AR): super(CPCModel, self).__init__() self.gEncoder = encoder self.gAR = AR def forward(self, batchData, label): encodedData = self.gEncoder(batchData).permute(0, 2, 1) cFeature = self.gAR(encodedData) return cFeature, encodedData, label class ConcatenatedModel(nn.Module): def __init__(self, model_list): super(ConcatenatedModel, self).__init__() self.models = torch.nn.ModuleList(model_list) def forward(self, batchData, label): outFeatures = [] outEncoded = [] for model in self.models: cFeature, encodedData, label = model(batchData, label) outFeatures.append(cFeature) outEncoded.append(encodedData) return torch.cat(outFeatures, dim=2), \ torch.cat(outEncoded, dim=2), label
CPC_audio-main
cpc/model.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random import time import tqdm import torch import soundfile as sf from pathlib import Path from copy import deepcopy from torch.multiprocessing import Pool from torch.utils.data import Dataset, DataLoader from torch.utils.data.sampler import Sampler, BatchSampler import torchaudio class AudioBatchData(Dataset): def __init__(self, path, sizeWindow, seqNames, phoneLabelsDict, nSpeakers, nProcessLoader=50, MAX_SIZE_LOADED=4000000000): """ Args: - path (string): path to the training dataset - sizeWindow (int): size of the sliding window - seqNames (list): sequences to load - phoneLabelsDict (dictionnary): if not None, a dictionnary with the following entries "step": size of a labelled window "$SEQ_NAME": list of phonem labels for the sequence $SEQ_NAME - nSpeakers (int): number of speakers to expect. - nProcessLoader (int): number of processes to call when loading the data from the disk - MAX_SIZE_LOADED (int): target maximal size of the floating array containing all loaded data. """ self.MAX_SIZE_LOADED = MAX_SIZE_LOADED self.nProcessLoader = nProcessLoader self.dbPath = Path(path) self.sizeWindow = sizeWindow self.seqNames = [(s, self.dbPath / x) for s, x in seqNames] self.reload_pool = Pool(nProcessLoader) self.prepare() self.speakers = list(range(nSpeakers)) self.data = [] self.phoneSize = 0 if phoneLabelsDict is None else \ phoneLabelsDict["step"] self.phoneStep = 0 if phoneLabelsDict is None else \ self.sizeWindow // self.phoneSize self.phoneLabelsDict = deepcopy(phoneLabelsDict) self.loadNextPack(first=True) self.loadNextPack() self.doubleLabels = False def resetPhoneLabels(self, newPhoneLabels, step): self.phoneSize = step self.phoneStep = self.sizeWindow // self.phoneSize self.phoneLabelsDict = deepcopy(newPhoneLabels) self.loadNextPack() def splitSeqTags(seqName): path = os.path.normpath(seqName) return path.split(os.sep) def getSeqNames(self): return [str(x[1]) for x in self.seqNames] def clear(self): if 'data' in self.__dict__: del self.data if 'speakerLabel' in self.__dict__: del self.speakerLabel if 'phoneLabels' in self.__dict__: del self.phoneLabels if 'seqLabel' in self.__dict__: del self.seqLabel def prepare(self): random.shuffle(self.seqNames) start_time = time.time() print("Checking length...") allLength = self.reload_pool.map(extractLength, self.seqNames) self.packageIndex, self.totSize = [], 0 start, packageSize = 0, 0 for index, length in tqdm.tqdm(enumerate(allLength)): packageSize += length if packageSize > self.MAX_SIZE_LOADED: self.packageIndex.append([start, index]) self.totSize += packageSize start, packageSize = index, 0 if packageSize > 0: self.packageIndex.append([start, len(self.seqNames)]) self.totSize += packageSize print(f"Done, elapsed: {time.time() - start_time:.3f} seconds") print(f'Scanned {len(self.seqNames)} sequences ' f'in {time.time() - start_time:.2f} seconds') print(f"{len(self.packageIndex)} chunks computed") self.currentPack = -1 self.nextPack = 0 def getNPacks(self): return len(self.packageIndex) def loadNextPack(self, first=False): self.clear() if not first: self.currentPack = self.nextPack start_time = time.time() print('Joining pool') self.r.wait() print(f'Joined process, elapsed={time.time()-start_time:.3f} secs') self.nextData = self.r.get() self.parseNextDataBlock() del self.nextData self.nextPack = (self.currentPack + 1) % len(self.packageIndex) seqStart, seqEnd = self.packageIndex[self.nextPack] if self.nextPack == 0 and len(self.packageIndex) > 1: self.prepare() self.r = self.reload_pool.map_async(loadFile, self.seqNames[seqStart:seqEnd]) def parseNextDataBlock(self): # Labels self.speakerLabel = [0] self.seqLabel = [0] self.phoneLabels = [] speakerSize = 0 indexSpeaker = 0 # To accelerate the process a bit self.nextData.sort(key=lambda x: (x[0], x[1])) tmpData = [] for speaker, seqName, seq in self.nextData: while self.speakers[indexSpeaker] < speaker: indexSpeaker += 1 self.speakerLabel.append(speakerSize) if self.speakers[indexSpeaker] != speaker: raise ValueError(f'{speaker} invalid speaker') if self.phoneLabelsDict is not None: self.phoneLabels += self.phoneLabelsDict[seqName] newSize = len(self.phoneLabelsDict[seqName]) * self.phoneSize seq = seq[:newSize] sizeSeq = seq.size(0) tmpData.append(seq) self.seqLabel.append(self.seqLabel[-1] + sizeSeq) speakerSize += sizeSeq del seq self.speakerLabel.append(speakerSize) self.data = torch.cat(tmpData, dim=0) def getPhonem(self, idx): idPhone = idx // self.phoneSize return self.phoneLabels[idPhone:(idPhone + self.phoneStep)] def getSpeakerLabel(self, idx): idSpeaker = next(x[0] for x in enumerate( self.speakerLabel) if x[1] > idx) - 1 return idSpeaker def __len__(self): return self.totSize // self.sizeWindow def __getitem__(self, idx): if idx < 0 or idx >= len(self.data) - self.sizeWindow - 1: print(idx) outData = self.data[idx:(self.sizeWindow + idx)].view(1, -1) label = torch.tensor(self.getSpeakerLabel(idx), dtype=torch.long) if self.phoneSize > 0: label_phone = torch.tensor(self.getPhonem(idx), dtype=torch.long) if not self.doubleLabels: label = label_phone else: label_phone = torch.zeros(1) if self.doubleLabels: return outData, label, label_phone return outData, label def getNSpeakers(self): return len(self.speakers) def getNSeqs(self): return len(self.seqLabel) - 1 def getNLoadsPerEpoch(self): return len(self.packageIndex) def getBaseSampler(self, type, batchSize, offset): if type == "samespeaker": return SameSpeakerSampler(batchSize, self.speakerLabel, self.sizeWindow, offset) if type == "samesequence": return SameSpeakerSampler(batchSize, self.seqLabel, self.sizeWindow, offset) if type == "sequential": return SequentialSampler(len(self.data), self.sizeWindow, offset, batchSize) sampler = UniformAudioSampler(len(self.data), self.sizeWindow, offset) return BatchSampler(sampler, batchSize, True) def getDataLoader(self, batchSize, type, randomOffset, numWorkers=0, onLoop=-1): r""" Get a batch sampler for the current dataset. Args: - batchSize (int): batch size - groupSize (int): in the case of type in ["speaker", "sequence"] number of items sharing a same label in the group (see AudioBatchSampler) - type (string): type == "speaker": grouped sampler speaker-wise type == "sequence": grouped sampler sequence-wise type == "sequential": sequential sampling else: uniform random sampling of the full audio vector - randomOffset (bool): if True add a random offset to the sampler at the begining of each iteration """ nLoops = len(self.packageIndex) totSize = self.totSize // (self.sizeWindow * batchSize) if onLoop >= 0: self.currentPack = onLoop - 1 self.loadNextPack() nLoops = 1 def samplerCall(): offset = random.randint(0, self.sizeWindow // 2) \ if randomOffset else 0 return self.getBaseSampler(type, batchSize, offset) return AudioLoader(self, samplerCall, nLoops, self.loadNextPack, totSize, numWorkers) def loadFile(data): speaker, fullPath = data seqName = fullPath.stem # Due to some issues happening when combining torchaudio.load # with torch.multiprocessing we use soundfile to load the data seq = torch.tensor(sf.read(fullPath)[0]).float() if len(seq.size()) == 2: seq = seq.mean(dim=1) return speaker, seqName, seq class AudioLoader(object): r""" A DataLoader meant to handle an AudioBatchData object. In order to handle big datasets AudioBatchData works with big chunks of audio it loads sequentially in memory: once all batches have been sampled on a chunk, the AudioBatchData loads the next one. """ def __init__(self, dataset, samplerCall, nLoop, updateCall, size, numWorkers): r""" Args: - dataset (AudioBatchData): target dataset - samplerCall (function): batch-sampler to call - nLoop (int): number of chunks to load - updateCall (function): function loading the next chunk - size (int): total number of batches - numWorkers (int): see torch.utils.data.DataLoader """ self.samplerCall = samplerCall self.updateCall = updateCall self.nLoop = nLoop self.size = size self.dataset = dataset self.numWorkers = numWorkers def __len__(self): return self.size def __iter__(self): for i in range(self.nLoop): sampler = self.samplerCall() dataloader = DataLoader(self.dataset, batch_sampler=sampler, num_workers=self.numWorkers) for x in dataloader: yield x if i < self.nLoop - 1: self.updateCall() class UniformAudioSampler(Sampler): def __init__(self, dataSize, sizeWindow, offset): self.len = dataSize // sizeWindow self.sizeWindow = sizeWindow self.offset = offset if self.offset > 0: self.len -= 1 def __iter__(self): return iter((self.offset + self.sizeWindow * torch.randperm(self.len)).tolist()) def __len__(self): return self.len class SequentialSampler(Sampler): def __init__(self, dataSize, sizeWindow, offset, batchSize): self.len = (dataSize // sizeWindow) // batchSize self.sizeWindow = sizeWindow self.offset = offset self.startBatches = [x * (dataSize // batchSize) for x in range(batchSize)] self.batchSize = batchSize if self.offset > 0: self.len -= 1 def __iter__(self): for idx in range(self.len): yield [self.offset + self.sizeWindow * idx + start for start in self.startBatches] def __len__(self): return self.len class SameSpeakerSampler(Sampler): def __init__(self, batchSize, samplingIntervals, sizeWindow, offset): self.samplingIntervals = samplingIntervals self.sizeWindow = sizeWindow self.batchSize = batchSize self.offset = offset if self.samplingIntervals[0] != 0: raise AttributeError("Sampling intervals should start at zero") nWindows = len(self.samplingIntervals) - 1 self.sizeSamplers = [(self.samplingIntervals[i+1] - self.samplingIntervals[i]) // self.sizeWindow for i in range(nWindows)] if self.offset > 0: self.sizeSamplers = [max(0, x - 1) for x in self.sizeSamplers] order = [(x, torch.randperm(val).tolist()) for x, val in enumerate(self.sizeSamplers) if val > 0] # Build Batches self.batches = [] for indexSampler, randperm in order: indexStart, sizeSampler = 0, self.sizeSamplers[indexSampler] while indexStart < sizeSampler: indexEnd = min(sizeSampler, indexStart + self.batchSize) locBatch = [self.getIndex(x, indexSampler) for x in randperm[indexStart:indexEnd]] indexStart = indexEnd self.batches.append(locBatch) def __len__(self): return len(self.batches) def getIndex(self, x, iInterval): return self.offset + x * self.sizeWindow \ + self.samplingIntervals[iInterval] def __iter__(self): random.shuffle(self.batches) return iter(self.batches) def extractLength(couple): speaker, locPath = couple info = torchaudio.info(str(locPath))[0] return info.length def findAllSeqs(dirName, extension='.flac', loadCache=False, speaker_level=1): r""" Lists all the sequences with the given extension in the dirName directory. Output: outSequences, speakers outSequence A list of tuples seq_path, speaker where: - seq_path is the relative path of each sequence relative to the parent directory - speaker is the corresponding speaker index outSpeakers The speaker labels (in order) The speaker labels are organized the following way \dirName \speaker_label \.. ... seqName.extension Adjust the value of speaker_level if you want to choose which level of directory defines the speaker label. Ex if speaker_level == 2 then the dataset should be organized in the following fashion \dirName \crappy_label \speaker_label \.. ... seqName.extension Set speaker_label == 0 if no speaker label will be retrieved no matter the organization of the dataset. """ cache_path = os.path.join(dirName, '_seqs_cache.txt') if loadCache: try: outSequences, speakers = torch.load(cache_path) print(f'Loaded from cache {cache_path} successfully') return outSequences, speakers except OSError as err: print(f'Ran in an error while loading {cache_path}: {err}') print('Could not load cache, rebuilding') if dirName[-1] != os.sep: dirName += os.sep prefixSize = len(dirName) speakersTarget = {} outSequences = [] for root, dirs, filenames in tqdm.tqdm(os.walk(dirName)): filtered_files = [f for f in filenames if f.endswith(extension)] if len(filtered_files) > 0: speakerStr = (os.sep).join( root[prefixSize:].split(os.sep)[:speaker_level]) if speakerStr not in speakersTarget: speakersTarget[speakerStr] = len(speakersTarget) speaker = speakersTarget[speakerStr] for filename in filtered_files: full_path = os.path.join(root[prefixSize:], filename) outSequences.append((speaker, full_path)) outSpeakers = [None for x in speakersTarget] for key, index in speakersTarget.items(): outSpeakers[index] = key try: torch.save((outSequences, outSpeakers), cache_path) print(f'Saved cache file at {cache_path}') except OSError as err: print(f'Ran in an error while saving {cache_path}: {err}') return outSequences, outSpeakers def parseSeqLabels(pathLabels): with open(pathLabels, 'r') as f: lines = f.readlines() output = {"step": 160} # Step in librispeech dataset is 160bits maxPhone = 0 for line in lines: data = line.split() output[data[0]] = [int(x) for x in data[1:]] maxPhone = max(maxPhone, max(output[data[0]])) return output, maxPhone + 1 def filterSeqs(pathTxt, seqCouples): with open(pathTxt, 'r') as f: inSeqs = [p.replace('\n', '') for p in f.readlines()] inSeqs.sort() seqCouples.sort(key=lambda x: os.path.basename(os.path.splitext(x[1])[0])) output, index = [], 0 for x in seqCouples: seq = os.path.basename(os.path.splitext(x[1])[0]) while index < len(inSeqs) and seq > inSeqs[index]: index += 1 if index == len(inSeqs): break if seq == inSeqs[index]: output.append(x) return output
CPC_audio-main
cpc/dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os import numpy as np import torch import time from copy import deepcopy import random import psutil import sys import cpc.criterion as cr import cpc.model as model import cpc.utils.misc as utils import cpc.feature_loader as fl from cpc.cpc_default_config import set_default_cpc_config from cpc.dataset import AudioBatchData, findAllSeqs, filterSeqs, parseSeqLabels def getCriterion(args, downsampling, nSpeakers, nPhones): dimFeatures = args.hiddenGar if not args.onEncoder else args.hiddenEncoder if not args.supervised: if args.cpc_mode == 'none': cpcCriterion = cr.NoneCriterion() else: sizeInputSeq = (args.sizeWindow // downsampling) cpcCriterion = cr.CPCUnsupersivedCriterion(args.nPredicts, args.hiddenGar, args.hiddenEncoder, args.negativeSamplingExt, mode=args.cpc_mode, rnnMode=args.rnnMode, dropout=args.dropout, nSpeakers=nSpeakers, speakerEmbedding=args.speakerEmbedding, sizeInputSeq=sizeInputSeq) elif args.pathPhone is not None: if not args.CTC: cpcCriterion = cr.PhoneCriterion(dimFeatures, nPhones, args.onEncoder, nLayers=args.nLevelsPhone) else: cpcCriterion = cr.CTCPhoneCriterion(dimFeatures, nPhones, args.onEncoder) else: cpcCriterion = cr.SpeakerCriterion(dimFeatures, nSpeakers) return cpcCriterion def loadCriterion(pathCheckpoint, downsampling, nSpeakers, nPhones): _, _, locArgs = fl.getCheckpointData(os.path.dirname(pathCheckpoint)) criterion = getCriterion(locArgs, downsampling, nSpeakers, nPhones) state_dict = torch.load(pathCheckpoint, 'cpu') criterion.load_state_dict(state_dict["cpcCriterion"]) return criterion def trainStep(dataLoader, cpcModel, cpcCriterion, optimizer, scheduler, loggingStep): cpcModel.train() cpcCriterion.train() start_time = time.perf_counter() n_examples = 0 logs, lastlogs = {}, None iter = 0 for step, fulldata in enumerate(dataLoader): batchData, label = fulldata n_examples += batchData.size(0) batchData = batchData.cuda(non_blocking=True) label = label.cuda(non_blocking=True) c_feature, encoded_data, label = cpcModel(batchData, label) allLosses, allAcc = cpcCriterion(c_feature, encoded_data, label) totLoss = allLosses.sum() totLoss.backward() # Show grads ? optimizer.step() optimizer.zero_grad() if "locLoss_train" not in logs: logs["locLoss_train"] = np.zeros(allLosses.size(1)) logs["locAcc_train"] = np.zeros(allLosses.size(1)) iter += 1 logs["locLoss_train"] += (allLosses.mean(dim=0)).detach().cpu().numpy() logs["locAcc_train"] += (allAcc.mean(dim=0)).cpu().numpy() if (step + 1) % loggingStep == 0: new_time = time.perf_counter() elapsed = new_time - start_time print(f"Update {step + 1}") print(f"elapsed: {elapsed:.1f} s") print( f"{1000.0 * elapsed / loggingStep:.1f} ms per batch, {1000.0 * elapsed / n_examples:.1f} ms / example") locLogs = utils.update_logs(logs, loggingStep, lastlogs) lastlogs = deepcopy(logs) utils.show_logs("Training loss", locLogs) start_time, n_examples = new_time, 0 if scheduler is not None: scheduler.step() logs = utils.update_logs(logs, iter) logs["iter"] = iter utils.show_logs("Average training loss on epoch", logs) return logs def valStep(dataLoader, cpcModel, cpcCriterion): cpcCriterion.eval() cpcModel.eval() logs = {} cpcCriterion.eval() cpcModel.eval() iter = 0 for step, fulldata in enumerate(dataLoader): batchData, label = fulldata batchData = batchData.cuda(non_blocking=True) label = label.cuda(non_blocking=True) with torch.no_grad(): c_feature, encoded_data, label = cpcModel(batchData, label) allLosses, allAcc = cpcCriterion(c_feature, encoded_data, label) if "locLoss_val" not in logs: logs["locLoss_val"] = np.zeros(allLosses.size(1)) logs["locAcc_val"] = np.zeros(allLosses.size(1)) iter += 1 logs["locLoss_val"] += allLosses.mean(dim=0).cpu().numpy() logs["locAcc_val"] += allAcc.mean(dim=0).cpu().numpy() logs = utils.update_logs(logs, iter) logs["iter"] = iter utils.show_logs("Validation loss:", logs) return logs def run(trainDataset, valDataset, batchSize, samplingMode, cpcModel, cpcCriterion, nEpoch, pathCheckpoint, optimizer, scheduler, logs): print(f"Running {nEpoch} epochs") startEpoch = len(logs["epoch"]) bestAcc = 0 bestStateDict = None start_time = time.time() for epoch in range(startEpoch, nEpoch): print(f"Starting epoch {epoch}") utils.cpu_stats() trainLoader = trainDataset.getDataLoader(batchSize, samplingMode, True, numWorkers=0) valLoader = valDataset.getDataLoader(batchSize, 'sequential', False, numWorkers=0) print("Training dataset %d batches, Validation dataset %d batches, batch size %d" % (len(trainLoader), len(valLoader), batchSize)) locLogsTrain = trainStep(trainLoader, cpcModel, cpcCriterion, optimizer, scheduler, logs["logging_step"]) locLogsVal = valStep(valLoader, cpcModel, cpcCriterion) print(f'Ran {epoch + 1} epochs ' f'in {time.time() - start_time:.2f} seconds') torch.cuda.empty_cache() currentAccuracy = float(locLogsVal["locAcc_val"].mean()) if currentAccuracy > bestAcc: bestStateDict = fl.get_module(cpcModel).state_dict() for key, value in dict(locLogsTrain, **locLogsVal).items(): if key not in logs: logs[key] = [None for x in range(epoch)] if isinstance(value, np.ndarray): value = value.tolist() logs[key].append(value) logs["epoch"].append(epoch) if pathCheckpoint is not None \ and (epoch % logs["saveStep"] == 0 or epoch == nEpoch-1): modelStateDict = fl.get_module(cpcModel).state_dict() criterionStateDict = fl.get_module(cpcCriterion).state_dict() fl.save_checkpoint(modelStateDict, criterionStateDict, optimizer.state_dict(), bestStateDict, f"{pathCheckpoint}_{epoch}.pt") utils.save_logs(logs, pathCheckpoint + "_logs.json") def main(args): args = parseArgs(args) utils.set_seed(args.random_seed) logs = {"epoch": [], "iter": [], "saveStep": args.save_step} loadOptimizer = False if args.pathCheckpoint is not None and not args.restart: cdata = fl.getCheckpointData(args.pathCheckpoint) if cdata is not None: data, logs, locArgs = cdata print(f"Checkpoint detected at {data}") fl.loadArgs(args, locArgs, forbiddenAttr={"nGPU", "pathCheckpoint", "debug", "restart", "world_size", "n_nodes", "node_id", "n_gpu_per_node", "max_size_loaded"}) args.load, loadOptimizer = [data], True args.loadCriterion = True logs["logging_step"] = args.logging_step print(f'CONFIG:\n{json.dumps(vars(args), indent=4, sort_keys=True)}') print('-' * 50) seqNames, speakers = findAllSeqs(args.pathDB, extension=args.file_extension, loadCache=not args.ignore_cache) print(f'Found files: {len(seqNames)} seqs, {len(speakers)} speakers') # Datasets if args.pathTrain is not None: seqTrain = filterSeqs(args.pathTrain, seqNames) else: seqTrain = seqNames if args.pathVal is None: random.shuffle(seqTrain) sizeTrain = int(0.99 * len(seqTrain)) seqTrain, seqVal = seqTrain[:sizeTrain], seqTrain[sizeTrain:] print(f'Found files: {len(seqTrain)} train, {len(seqVal)} val') else: seqVal = filterSeqs(args.pathVal, seqNames) if args.debug: seqTrain = seqTrain[-1000:] seqVal = seqVal[-100:] phoneLabels, nPhones = None, None if args.supervised and args.pathPhone is not None: print("Loading the phone labels at " + args.pathPhone) phoneLabels, nPhones = parseSeqLabels(args.pathPhone) print(f"{nPhones} phones found") print("") print(f'Loading audio data at {args.pathDB}') print("Loading the training dataset") trainDataset = AudioBatchData(args.pathDB, args.sizeWindow, seqTrain, phoneLabels, len(speakers), nProcessLoader=args.n_process_loader, MAX_SIZE_LOADED=args.max_size_loaded) print("Training dataset loaded") print("") print("Loading the validation dataset") valDataset = AudioBatchData(args.pathDB, args.sizeWindow, seqVal, phoneLabels, len(speakers), nProcessLoader=args.n_process_loader) print("Validation dataset loaded") print("") if args.load is not None: cpcModel, args.hiddenGar, args.hiddenEncoder = \ fl.loadModel(args.load) else: # Encoder network encoderNet = fl.getEncoder(args) # AR Network arNet = fl.getAR(args) cpcModel = model.CPCModel(encoderNet, arNet) batchSize = args.nGPU * args.batchSizeGPU cpcModel.supervised = args.supervised # Training criterion if args.load is not None and args.loadCriterion: cpcCriterion = loadCriterion(args.load[0], cpcModel.gEncoder.DOWNSAMPLING, len(speakers), nPhones) else: cpcCriterion = getCriterion(args, cpcModel.gEncoder.DOWNSAMPLING, len(speakers), nPhones) if loadOptimizer: state_dict = torch.load(args.load[0], 'cpu') cpcCriterion.load_state_dict(state_dict["cpcCriterion"]) cpcCriterion.cuda() cpcModel.cuda() # Optimizer g_params = list(cpcCriterion.parameters()) + list(cpcModel.parameters()) lr = args.learningRate optimizer = torch.optim.Adam(g_params, lr=lr, betas=(args.beta1, args.beta2), eps=args.epsilon) if loadOptimizer: print("Loading optimizer " + args.load[0]) state_dict = torch.load(args.load[0], 'cpu') if "optimizer" in state_dict: optimizer.load_state_dict(state_dict["optimizer"]) # Checkpoint if args.pathCheckpoint is not None: if not os.path.isdir(args.pathCheckpoint): os.mkdir(args.pathCheckpoint) args.pathCheckpoint = os.path.join(args.pathCheckpoint, "checkpoint") scheduler = None if args.schedulerStep > 0: scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.schedulerStep, gamma=0.5) if args.schedulerRamp is not None: n_epoch = args.schedulerRamp print(f"Ramp activated. n_e = {n_epoch}") scheduler_ramp = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda epoch: utils.ramp_scheduling_function( n_epoch, epoch), last_epoch=-1) if scheduler is None: scheduler = scheduler_ramp else: scheduler = utils.SchedulerCombiner([scheduler_ramp, scheduler], [0, args.schedulerRamp]) if scheduler is not None: for i in range(len(logs["epoch"])): scheduler.step() cpcModel = torch.nn.DataParallel(cpcModel, device_ids=range(args.nGPU)).cuda() cpcCriterion = torch.nn.DataParallel(cpcCriterion, device_ids=range(args.nGPU)).cuda() run(trainDataset, valDataset, batchSize, args.samplingType, cpcModel, cpcCriterion, args.nEpoch, args.pathCheckpoint, optimizer, scheduler, logs) def parseArgs(argv): # Run parameters parser = argparse.ArgumentParser(description='Trainer') # Default arguments: parser = set_default_cpc_config(parser) group_db = parser.add_argument_group('Dataset') group_db.add_argument('--pathDB', type=str, default=None, help='Path to the directory containing the ' 'data.') group_db.add_argument('--file_extension', type=str, default=".flac", help="Extension of the audio files in the dataset.") group_db.add_argument('--pathTrain', type=str, default=None, help='Path to a .txt file containing the list of the ' 'training sequences.') group_db.add_argument('--pathVal', type=str, default=None, help='Path to a .txt file containing the list of the ' 'validation sequences.') group_db.add_argument('--n_process_loader', type=int, default=8, help='Number of processes to call to load the ' 'dataset') group_db.add_argument('--ignore_cache', action='store_true', help='Activate if the dataset has been modified ' 'since the last training session.') group_db.add_argument('--max_size_loaded', type=int, default=4000000000, help='Maximal amount of data (in byte) a dataset ' 'can hold in memory at any given time') group_supervised = parser.add_argument_group( 'Supervised mode (depreciated)') group_supervised.add_argument('--supervised', action='store_true', help='(Depreciated) Disable the CPC loss and activate ' 'the supervised mode. By default, the supervised ' 'training method is the speaker classification.') group_supervised.add_argument('--pathPhone', type=str, default=None, help='(Supervised mode only) Path to a .txt ' 'containing the phone labels of the dataset. If given ' 'and --supervised, will train the model using a ' 'phone classification task.') group_supervised.add_argument('--CTC', action='store_true') group_save = parser.add_argument_group('Save') group_save.add_argument('--pathCheckpoint', type=str, default=None, help="Path of the output directory.") group_save.add_argument('--logging_step', type=int, default=1000) group_save.add_argument('--save_step', type=int, default=5, help="Frequency (in epochs) at which a checkpoint " "should be saved") group_load = parser.add_argument_group('Load') group_load.add_argument('--load', type=str, default=None, nargs='*', help="Load an exsiting checkpoint. Should give a path " "to a .pt file. The directory containing the file to " "load should also have a 'checkpoint.logs' and a " "'checkpoint.args'") group_load.add_argument('--loadCriterion', action='store_true', help="If --load is activated, load the state of the " "training criterion as well as the state of the " "feature network (encoder + AR)") group_load.add_argument('--restart', action='store_true', help="If any checkpoint is found, ignore it and " "restart the training from scratch.") group_gpu = parser.add_argument_group('GPUs') group_gpu.add_argument('--nGPU', type=int, default=-1, help="Number of GPU to use (default: use all " "available GPUs)") group_gpu.add_argument('--batchSizeGPU', type=int, default=8, help='Number of batches per GPU.') parser.add_argument('--debug', action='store_true', help="Load only a very small amount of files for " "debugging purposes.") args = parser.parse_args(argv) if args.pathDB is None and (args.pathCheckpoint is None or args.restart): parser.print_help() print("Either provides an input dataset or a checkpoint to load") sys.exit() if args.pathCheckpoint is not None: args.pathCheckpoint = os.path.abspath(args.pathCheckpoint) if args.load is not None: args.load = [os.path.abspath(x) for x in args.load] # set it up if needed, so that it is dumped along with other args if args.random_seed is None: args.random_seed = random.randint(0, 2**31) if args.nGPU < 0: args.nGPU = torch.cuda.device_count() assert args.nGPU <= torch.cuda.device_count(),\ f"number of GPU asked: {args.nGPU}," \ f"number GPU detected: {torch.cuda.device_count()}" print(f"Let's use {args.nGPU} GPUs!") if args.arMode == 'no_ar': args.hiddenGar = args.hiddenEncoder return args if __name__ == "__main__": torch.multiprocessing.set_start_method('spawn') args = sys.argv[1:] main(args)
CPC_audio-main
cpc/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch import os import cpc.feature_loader as fl from .dataset import AudioBatchData, findAllSeqs, filterSeqs from nose.tools import eq_, ok_ from math import log from pathlib import Path class TestDataLoader(unittest.TestCase): def setUp(self): self.seq_names = ['6476/57446/6476-57446-0019.flac', '5678/43303/5678-43303-0032.flac', '5678/43303/5678-43303-0024.flac', '5678/43301/5678-43301-0021.flac', '5393/19218/5393-19218-0024.flac', '4397/15668/4397-15668-0007.flac', '4397/15668/4397-15668-0003.flac'] self.test_data_dir = Path(__file__).parent / 'test_data' self.path_db = self.test_data_dir / 'test_db' self.seq_list = self.test_data_dir / 'seq_list.txt' self.size_window = 20480 def testFindAllSeqs(self): seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac") expected_output = [(0, '2911/12359/2911-12359-0007.flac'), (1, '4051/11218/4051-11218-0044.flac'), (2, '4397/15668/4397-15668-0003.flac'), (2, '4397/15668/4397-15668-0007.flac'), (3, '5393/19218/5393-19218-0024.flac'), (4, '5678/43301/5678-43301-0021.flac'), (4, '5678/43303/5678-43303-0024.flac'), (4, '5678/43303/5678-43303-0032.flac'), (5, '6476/57446/6476-57446-0019.flac')] # We do not expect the findAllSeqs function to retrieve all sequences # in a specific order. However, it should retrieve them all correctly # Check the number of speakers eq_(len(speakers), 6) # Check the speakers names eq_(set(speakers), {'2911', '4051', '4397', '5393', '5678', '6476'}) # Check that all speakers from 0 to 5 are represented speaker_set = {x[0] for x in seq_names} eq_(speaker_set, {x[0] for x in expected_output}) # Check the number of sequences eq_(len(seq_names), len(expected_output)) # Check that the sequences are correct sequence_set = {x[1] for x in seq_names} eq_(sequence_set, {x[1] for x in expected_output}) # Check that the speakers are properly matched for index_speaker, seq_name in seq_names: speaker_name = str(Path(seq_name).stem).split('-')[0] eq_(speakers[index_speaker], speaker_name) def testFindAllSeqsCustomSpeakers(self): seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac", speaker_level=2) expected_speakers = {'2911/12359', '4051/11218', '4397/15668', '5393/19218', '5678/43301', '5678/43303', '6476/57446'} eq_(set(speakers), expected_speakers) for index_speaker, seq_name in seq_names: speaker_name = '/'.join(str(Path(seq_name).stem).split('-')[:2]) eq_(speakers[index_speaker], speaker_name) expected_output = [(0, '2911/12359/2911-12359-0007.flac'), (1, '4051/11218/4051-11218-0044.flac'), (2, '4397/15668/4397-15668-0003.flac'), (2, '4397/15668/4397-15668-0007.flac'), (3, '5393/19218/5393-19218-0024.flac'), (4, '5678/43301/5678-43301-0021.flac'), (5, '5678/43303/5678-43303-0024.flac'), (5, '5678/43303/5678-43303-0032.flac'), (6, '6476/57446/6476-57446-0019.flac')] # Check that the sequences are correct sequence_set = {x[1] for x in seq_names} eq_(sequence_set, {x[1] for x in expected_output}) def testFindAllSeqs0Speakers(self): seq_names, speakers = findAllSeqs(str(self.path_db / '2911/12359/'), extension=".flac") eq_(speakers, ['']) def testFindAllSeqs0SpeakersForced(self): seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac", speaker_level=0) eq_(speakers, ['']) def testLoadData(self): seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac") seq_names = filterSeqs(self.seq_list, seq_names) expected_output = [(2, '4397/15668/4397-15668-0003.flac'), (2, '4397/15668/4397-15668-0007.flac'), (3, '5393/19218/5393-19218-0024.flac'), (4, '5678/43301/5678-43301-0021.flac'), (4, '5678/43303/5678-43303-0024.flac'), (4, '5678/43303/5678-43303-0032.flac'), (5, '6476/57446/6476-57446-0019.flac')] eq_(len(seq_names), len(expected_output)) eq_({x[1] for x in seq_names}, {x[1] for x in expected_output}) phone_labels_dict = None n_speakers = 9 test_data = AudioBatchData(self.path_db, self.size_window, seq_names, phone_labels_dict, n_speakers) assert(test_data.getNSpeakers() == 9) assert(test_data.getNSeqs() == 7) def testDataLoader(self): batch_size = 2 seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac") seq_names = filterSeqs(self.seq_list, seq_names) test_data = AudioBatchData(self.path_db, self.size_window, seq_names, None, len(speakers)) test_data_loader = test_data.getDataLoader(batch_size, "samespeaker", True, numWorkers=2) visted_labels = set() for index, item in enumerate(test_data_loader): _, labels = item p = labels[0].item() visted_labels.add(p) eq_(torch.sum(labels == p), labels.size(0)) eq_(len(visted_labels), 4) def testPartialLoader(self): batch_size = 16 seq_names, speakers = findAllSeqs(str(self.path_db), extension=".flac") seq_names = filterSeqs(self.seq_list, seq_names) test_data = AudioBatchData(self.path_db, self.size_window, seq_names, None, len(speakers), MAX_SIZE_LOADED=1000000) eq_(test_data.getNPacks(), 2) test_data_loader = test_data.getDataLoader(batch_size, "samespeaker", True, numWorkers=2) visted_labels = set() for index, item in enumerate(test_data_loader): _, labels = item p = labels[0].item() eq_(torch.sum(labels == p), labels.size(0)) visted_labels.add(p) eq_(len(visted_labels), 4) class TestPhonemParser(unittest.TestCase): def setUp(self): from .train import parseSeqLabels self.seqLoader = parseSeqLabels self.test_data_dir = Path(__file__).parent / 'test_data' self.pathPhone = self.test_data_dir / 'phone_labels.txt' self.path_db = self.test_data_dir / 'test_db' def testSeqLoader(self): phone_data, nPhones = self.seqLoader(self.pathPhone) eq_(len(phone_data), 7) eq_(phone_data['step'], 160) eq_(phone_data['4051-11218-0044'][43], 14) eq_(len(phone_data['4051-11218-0044']), 1119) eq_(nPhones, 41) def testSeqLabels(self): size_window = 640 seq_names = [(0, '2911/12359/2911-12359-0007.flac'), (1, '4051/11218/4051-11218-0044.flac')] speakers = list(set([x[0] for x in seq_names])) phone_data, _ = self.seqLoader(self.pathPhone) test_data = AudioBatchData( self.path_db, size_window, seq_names, phone_data, len(speakers)) eq_(test_data.getPhonem(81280), [0, 0, 0, 0]) eq_(test_data.getPhonem(84841), [0, 0, 0, 18]) eq_(test_data.getPhonem(88201), [14, 14, 14, 14]) class TestLabelProcess(unittest.TestCase): def setUp(self): pass def testLabelCollapse(self): from .criterion.seq_alignment import collapseLabelChain input_chain = torch.tensor([[0, 0, 0, 1, 1, 2, 0, 2, 2], [1, 1, 1, 1, 1, 2, 2, 2, 0]], dtype=torch.int64) out_chain, sizes = collapseLabelChain(input_chain) target = torch.tensor([[0, 1, 2, 0, 2], [1, 2, 0, 0, 0]], dtype=torch.int64) target_size = torch.tensor([5, 3], dtype=torch.int64) eq_((out_chain - target).sum().item(), 0) eq_((target_size - sizes).sum().item(), 0) def test_beam_search(self): from .criterion.seq_alignment import beam_search import numpy as np blank_label = 2 n_keep = 10 data = np.array([[0.1, 0.2, 0.], [0.4, 0.2, 0.6], [0.01, 0.3, 0.]]) output = beam_search(data, n_keep, blank_label) expected_pos_output = [(0.036, [1, 1]), (0.0004, [0]), (0.012, [1]), (0.024, [1, 0, 1]), (0.0002, [ 0, 1, 0]), (0.0, [1, 1, 1]), (0.0, [1, 1, 0]), (0.0006, [0, 0]), (0.036, [0, 1]), (0.0024, [1, 0])] expected_pos_output.sort(reverse=True) for index, item in enumerate(expected_pos_output): eq_(item[1], output[index][1]) ok_(abs(item[0] - output[index][0]) < 1e-08) def test_big_beam_search(self): from .criterion.seq_alignment import beam_search import numpy as np blank_label = 11 n_keep = 10 data = np.array([[0.1, 0.2, 0., 0., 0., 0., 0., 0.01, 0., 0.1, 0.99, 0.1], [0.1, 0.2, 0.6, 0.1, 0.9, 0., 0., 0.01, 0., 0.9, 1., 0.]]) output = beam_search(data, n_keep, blank_label)[0] expected_output = (1.09, [10]) eq_(output[0], expected_output[0]) eq_(output[1], expected_output[1]) class TestPER(unittest.TestCase): def setUp(self): pass def testPER(self): from .criterion.seq_alignment import get_seq_PER ref_seq = [0, 1, 1, 2, 0, 2, 2] pred_seq = [1, 1, 2, 2, 0, 0] expected_PER = 4. / 7. eq_(get_seq_PER(ref_seq, pred_seq), expected_PER) class TestEncoderBuilder(unittest.TestCase): def setUp(self): from cpc.cpc_default_config import get_default_cpc_config self.default_args = get_default_cpc_config() def testBuildMFCCEncoder(self): from cpc.model import MFCCEncoder self.default_args.encoder_type = 'mfcc' self.default_args.hiddenEncoder = 30 test_encoder = fl.getEncoder(self.default_args) ok_(isinstance(test_encoder, MFCCEncoder)) eq_(test_encoder.dimEncoded, 30) def testBuildLFBEnconder(self): from cpc.model import LFBEnconder self.default_args.encoder_type = 'lfb' self.default_args.hiddenEncoder = 12 test_encoder = fl.getEncoder(self.default_args) ok_(isinstance(test_encoder, LFBEnconder)) eq_(test_encoder.dimEncoded, 12) def testBuildCPCEncoder(self): from cpc.model import CPCEncoder test_encoder = fl.getEncoder(self.default_args) ok_(isinstance(test_encoder, CPCEncoder)) eq_(test_encoder.dimEncoded, 256) class TestARBuilder(unittest.TestCase): def setUp(self): from cpc.cpc_default_config import get_default_cpc_config self.default_args = get_default_cpc_config() def testbuildNoAR(self): from cpc.model import NoAr self.default_args.arMode = 'no_ar' test_ar = fl.getAR(self.default_args) ok_(isinstance(test_ar, NoAr)) def testbuildNoAR(self): from cpc.model import CPCAR self.default_args.arMode = 'LSTM' test_ar = fl.getAR(self.default_args) ok_(isinstance(test_ar, CPCAR)) ok_(isinstance(test_ar.baseNet, torch.nn.LSTM)) def testbuildNoAR(self): from cpc.model import CPCAR self.default_args.arMode = 'GRU' test_ar = fl.getAR(self.default_args) ok_(isinstance(test_ar, CPCAR)) ok_(isinstance(test_ar.baseNet, torch.nn.GRU)) def testbuildNoAR(self): from cpc.model import CPCAR self.default_args.arMode = 'RNN' test_ar = fl.getAR(self.default_args) ok_(isinstance(test_ar, CPCAR)) ok_(isinstance(test_ar.baseNet, torch.nn.RNN))
CPC_audio-main
cpc/unit_tests.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse def get_default_cpc_config(): parser = set_default_cpc_config(argparse.ArgumentParser()) return parser.parse_args([]) def set_default_cpc_config(parser): # Run parameters group = parser.add_argument_group('Architecture configuration', description="The arguments defining the " "model's architecture.") group.add_argument('--hiddenEncoder', type=int, default=256, help='Hidden dimension of the encoder network.') group.add_argument('--hiddenGar', type=int, default=256, help='Hidden dimension of the auto-regressive network') group.add_argument('--nPredicts', type=int, default=12, help='Number of steps to predict.') group.add_argument('--negativeSamplingExt', type=int, default=128, help='Number of negative samples to take.') group.add_argument('--learningRate', type=float, default=2e-4) group.add_argument('--schedulerStep', type=int, default=-1, help='Step of the learning rate scheduler: at each ' 'step the learning rate is divided by 2. Default: ' 'no scheduler.') group.add_argument('--schedulerRamp', type=int, default=None, help='Enable a warm up phase for the learning rate: ' 'adds a linear ramp of the given size.') group.add_argument('--beta1', type=float, default=0.9, help='Value of beta1 for the Adam optimizer') group.add_argument('--beta2', type=float, default=0.999, help='Value of beta2 for the Adam optimizer') group.add_argument('--epsilon', type=float, default=1e-08, help='Value of epsilon for the Adam optimizer') group.add_argument('--sizeWindow', type=int, default=20480, help='Number of frames to consider at each batch.') group.add_argument('--nEpoch', type=int, default=200, help='Number of epoch to run') group.add_argument('--samplingType', type=str, default='samespeaker', choices=['samespeaker', 'uniform', 'samesequence', 'sequential'], help='How to sample the negative examples in the ' 'CPC loss.') group.add_argument('--nLevelsPhone', type=int, default=1, help='(Supervised mode only). Number of layers in ' 'the phone classification network.') group.add_argument('--cpc_mode', type=str, default=None, choices=['reverse', 'none'], help='Some variations on CPC.') group.add_argument('--encoder_type', type=str, choices=['cpc', 'mfcc', 'lfb'], default='cpc', help='Replace the encoder network by mfcc features ' 'or learned filter banks') group.add_argument('--normMode', type=str, default='layerNorm', choices=['instanceNorm', 'ID', 'layerNorm', 'batchNorm'], help="Type of normalization to use in the encoder " "network (default is layerNorm).") group.add_argument('--onEncoder', action='store_true', help="(Supervised mode only) Perform the " "classification on the encoder's output.") group.add_argument('--random_seed', type=int, default=None, help="Set a specific random seed.") group.add_argument('--speakerEmbedding', type=int, default=0, help="(Depreciated) Feed the prediction network with " "speaker embeddings along with the usual sequence.") group.add_argument('--arMode', default='LSTM', choices=['GRU', 'LSTM', 'RNN', 'no_ar', 'transformer'], help="Architecture to use for the auto-regressive " "network (default is lstm).") group.add_argument('--nLevelsGRU', type=int, default=1, help='Number of layers in the autoregressive network.') group.add_argument('--rnnMode', type=str, default='transformer', choices=['transformer', 'RNN', 'LSTM', 'linear', 'ffd', 'conv4', 'conv8', 'conv12'], help="Architecture to use for the prediction network") group.add_argument('--dropout', action='store_true', help="Add a dropout layer at the output of the " "prediction network.") group.add_argument('--abspos', action='store_true', help='If the prediction network is a transformer, ' 'active to use absolute coordinates.') return parser
CPC_audio-main
cpc/cpc_default_config.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import numpy as np import random import torch import sys import psutil from copy import deepcopy from bisect import bisect_left def untensor(d): if isinstance(d, list): return [untensor(v) for v in d] if isinstance(d, dict): return dict((k, untensor(v)) for k, v in d.items()) if hasattr(d, 'tolist'): return d.tolist() return d def save_logs(data, pathLogs): with open(pathLogs, 'w') as file: json.dump(data, file, indent=2) def update_logs(logs, logStep, prevlogs=None): out = {} for key in logs: out[key] = deepcopy(logs[key]) if prevlogs is not None: out[key] -= prevlogs[key] out[key] /= logStep return out def show_logs(text, logs): print("") print('-'*50) print(text) for key in logs: if key == "iter": continue nPredicts = logs[key].shape[0] strSteps = ['Step'] + [str(s) for s in range(1, nPredicts + 1)] formatCommand = ' '.join(['{:>16}' for x in range(nPredicts + 1)]) print(formatCommand.format(*strSteps)) strLog = [key] + ["{:10.6f}".format(s) for s in logs[key]] print(formatCommand.format(*strLog)) print('-'*50) def set_seed(seed): random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def cpu_stats(): print(sys.version) print(psutil.cpu_percent()) print(psutil.virtual_memory()) def ramp_scheduling_function(n_epoch_ramp, epoch): if epoch >= n_epoch_ramp: return 1 else: return (epoch + 1) / n_epoch_ramp class SchedulerCombiner: r""" An object which applies a list of learning rate schedulers sequentially. """ def __init__(self, scheduler_list, activation_step, curr_step=0): r""" Args: - scheduler_list (list): a list of learning rate schedulers - activation_step (list): a list of int. activation_step[i] indicates at which step scheduler_list[i] should be activated - curr_step (int): the starting step. Must be lower than activation_step[0] """ if len(scheduler_list) != len(activation_step): raise ValueError("The number of scheduler must be the same as " "the number of activation step") if activation_step[0] > curr_step: raise ValueError("The first activation step cannot be higher than " "the current step.") self.scheduler_list = scheduler_list self.activation_step = deepcopy(activation_step) self.curr_step = curr_step def step(self): self.curr_step += 1 index = bisect_left(self.activation_step, self.curr_step) - 1 for i in reversed(range(index, len(self.scheduler_list))): self.scheduler_list[i].step() def __str__(self): out = "SchedulerCombiner \n" out += "(\n" for index, scheduler in enumerate(self.scheduler_list): out += f"({index}) {scheduler.__str__()} \n" out += ")\n" return out
CPC_audio-main
cpc/utils/misc.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
CPC_audio-main
cpc/utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch import os from nose.tools import eq_, ok_ from .misc import SchedulerCombiner, ramp_scheduling_function class TestCombineSchedulers(unittest.TestCase): def setUp(self): self.baseLR = 1 self.module = torch.nn.Linear(1, 1) self.optimizer = torch.optim.SGD( list(self.module.parameters()), lr=self.baseLR) def testCombineRamp(self): scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: ramp_scheduling_function( 3, epoch)) self.optimizer.step() eq_(self.optimizer.param_groups[0]['lr'], self.baseLR / 3) scheduler.step() eq_(self.optimizer.param_groups[0]['lr'], 2 * self.baseLR / 3) scheduler.step() eq_(self.optimizer.param_groups[0]['lr'], 1) for i in range(12): scheduler.step() eq_(self.optimizer.param_groups[0]['lr'], 1) def testCombineRampStep(self): scheduler_step = torch.optim.lr_scheduler.StepLR( self.optimizer, 6, gamma=0.5) scheduler_ramp = torch.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=lambda epoch: ramp_scheduling_function( 3, epoch)) scheduler = SchedulerCombiner([scheduler_ramp, scheduler_step], [0, 3]) self.optimizer.step() # Epoch 0 eq_(self.optimizer.param_groups[0]['lr'], self.baseLR / 3) scheduler.step() # Epoch 1 eq_(self.optimizer.param_groups[0]['lr'], 2 * self.baseLR / 3) scheduler.step() # Epoch 2 eq_(self.optimizer.param_groups[0]['lr'], 1) scheduler.step() # Epoch 3, 4, 5 for i in range(3): eq_(self.optimizer.param_groups[0]['lr'], 1) scheduler.step() # Epoch 6 eq_(self.optimizer.param_groups[0]['lr'], 0.5)
CPC_audio-main
cpc/utils/unit_tests.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import math import torch.nn as nn from numpy import prod class NormalizationLayer(nn.Module): def __init__(self): super(NormalizationLayer, self).__init__() def forward(self, x, epsilon=1e-8): return x * (((x**2).mean(dim=1, keepdim=True) + epsilon).rsqrt()) def Upscale2d(x, factor=2): assert isinstance(factor, int) and factor >= 1 if factor == 1: return x s = x.size() x = x.view(-1, s[1], s[2], 1, s[3], 1) x = x.expand(-1, s[1], s[2], factor, s[3], factor) x = x.contiguous().view(-1, s[1], s[2] * factor, s[3] * factor) return x def getLayerNormalizationFactor(x): r""" Get He's constant for the given layer https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf """ size = x.weight.size() fan_in = prod(size[1:]) return math.sqrt(2.0 / fan_in) class ConstrainedLayer(nn.Module): r""" A handy refactor that allows the user to: - initialize one layer's bias to zero - apply He's initialization at runtime """ def __init__(self, module, equalized=True, lrMul=1.0, initBiasToZero=True): r""" equalized (bool): if true, the layer's weight should evolve within the range (-1, 1) initBiasToZero (bool): if true, bias will be initialized to zero """ super(ConstrainedLayer, self).__init__() self.module = module self.equalized = equalized if initBiasToZero and module.bias is not None: self.module.bias.data.fill_(0) if self.equalized: self.module.weight.data.normal_(0, 1) self.weight = getLayerNormalizationFactor(self.module) * lrMul def forward(self, x): x = self.module(x) if self.equalized: x *= self.weight return x class EqualizedConv1d(ConstrainedLayer): def __init__(self, nChannelsPrevious, nChannels, kernelSize, padding=0, bias=True, stride=1, **kwargs): r""" A nn.Conv2d module with specific constraints Args: nChannelsPrevious (int): number of channels in the previous layer nChannels (int): number of channels of the current layer kernelSize (int): size of the convolutional kernel padding (int): convolution's padding bias (bool): with bias ? """ ConstrainedLayer.__init__(self, nn.Conv1d(nChannelsPrevious, nChannels, kernelSize, padding=padding, bias=bias, stride=stride), **kwargs) class EqualizedConv2d(ConstrainedLayer): def __init__(self, nChannelsPrevious, nChannels, kernelSize, padding=0, bias=True, **kwargs): r""" A nn.Conv2d module with specific constraints Args: nChannelsPrevious (int): number of channels in the previous layer nChannels (int): number of channels of the current layer kernelSize (int): size of the convolutional kernel padding (int): convolution's padding bias (bool): with bias ? """ ConstrainedLayer.__init__(self, nn.Conv2d(nChannelsPrevious, nChannels, kernelSize, padding=padding, bias=bias), **kwargs) class EqualizedLinear(ConstrainedLayer): def __init__(self, nChannelsPrevious, nChannels, bias=True, **kwargs): r""" A nn.Linear module with specific constraints Args: nChannelsPrevious (int): number of channels in the previous layer nChannels (int): number of channels of the current layer bias (bool): with bias ? """ ConstrainedLayer.__init__(self, nn.Linear(nChannelsPrevious, nChannels, bias=bias), **kwargs)
CPC_audio-main
cpc/criterion/custom_layers.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .criterion import CPCUnsupersivedCriterion, SpeakerCriterion, \ PhoneCriterion, NoneCriterion, CTCPhoneCriterion
CPC_audio-main
cpc/criterion/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import progressbar import torch from multiprocessing import Lock, Manager, Process from copy import deepcopy def beam_search(score_preds, nKeep, blankLabel): T, P = score_preds.shape beams = set(['']) pb_t_1 = {"": 1} pnb_t_1 = {"": 0} def getLastNumber(b): return int(b.split(',')[-1]) for t in range(T): nextBeams = set() pb_t = {} pnb_t = {} for i_beam, b in enumerate(beams): if b not in pb_t: pb_t[b] = 0 pnb_t[b] = 0 if len(b) > 0: pnb_t[b] += pnb_t_1[b] * score_preds[t, getLastNumber(b)] pb_t[b] = (pnb_t_1[b] + pb_t_1[b]) * score_preds[t, blankLabel] nextBeams.add(b) for c in range(P): if c == blankLabel: continue b_ = b + "," + str(c) if b_ not in pb_t: pb_t[b_] = 0 pnb_t[b_] = 0 if b != "" and getLastNumber(b) == c: pnb_t[b_] += pb_t_1[b] * score_preds[t, c] else: pnb_t[b_] += (pb_t_1[b] + pnb_t_1[b]) * score_preds[t, c] nextBeams.add(b_) allPreds = [(pb_t[b] + pnb_t[b], b) for b in nextBeams] allPreds.sort(reverse=True) beams = [x[1] for x in allPreds[:nKeep]] pb_t_1 = deepcopy(pb_t) pnb_t_1 = deepcopy(pnb_t) output = [] for score, x in allPreds[:nKeep]: output.append((score, [int(y) for y in x.split(',') if len(y) > 0])) return output def collapseLabelChain(inputLabels): # Shape N,T N, T = inputLabels.size() outSizes = torch.zeros(N, device=inputLabels.device, dtype=torch.int64) output = [] for l in range(N): status = inputLabels[l, :-1] - inputLabels[l, 1:] status = torch.cat([torch.ones(1, device=status.device, dtype=status.dtype), status], dim=0) outSizes[l] = (status != 0).sum() output.append(inputLabels[l][status != 0]) maxSize = int(outSizes.max().item()) paddedOutput = torch.zeros(N, maxSize, device=inputLabels.device, dtype=torch.int64) for l in range(N): S = int(outSizes[l]) paddedOutput[l, :S] = output[l] return paddedOutput, outSizes def NeedlemanWunschAlignScore(seq1, seq2, d, m, r, normalize=True): N1, N2 = len(seq1), len(seq2) # Fill up the errors tmpRes_ = [[None for x in range(N2 + 1)] for y in range(N1 + 1)] for i in range(N1 + 1): tmpRes_[i][0] = i * d for j in range(N2 + 1): tmpRes_[0][j] = j * d for i in range(N1): for j in range(N2): match = r if seq1[i] == seq2[j] else m v1 = tmpRes_[i][j] + match v2 = tmpRes_[i + 1][j] + d v3 = tmpRes_[i][j + 1] + d tmpRes_[i + 1][j + 1] = max(v1, max(v2, v3)) i = j = 0 res = -tmpRes_[N1][N2] if normalize: res /= float(N1) return res def get_seq_PER(seqLabels, detectedLabels): return NeedlemanWunschAlignScore(seqLabels, detectedLabels, -1, -1, 0, normalize=True) def getPER(dataLoader, featureMaker, blankLabel): bar = progressbar.ProgressBar(len(dataLoader)) bar.start() out = 0 n_items = 0 n_keep_beam_search = 100 for index, data in enumerate(dataLoader): bar.update(index) with torch.no_grad(): output = featureMaker(data).cpu().numpy() labels = data[1] labels, targetSize = collapseLabelChain(labels) lock = Lock() def per(rank, outScore): S = int(targetSize[rank]) seqLabels = labels[rank, :S] preds = beam_search(output[rank], n_keep_beam_search, blankLabel)[0][1] value = get_seq_PER(seqLabels, preds) with lock: outScore.value += value manager = Manager() outScore = manager.Value('f', 0.) N, S, D = output.shape processes = [] for rank in range(N): p = Process( target=per, args=(rank, outScore)) p.start() processes.append(p) for p in processes: p.join() out += outScore.value n_items += N bar.finish() return (out / n_items)
CPC_audio-main
cpc/criterion/seq_alignment.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from .seq_alignment import collapseLabelChain from .custom_layers import EqualizedLinear, EqualizedConv1d class FFNetwork(nn.Module): def __init__(self, din, dout, dff, dropout): super(FFNetwork, self).__init__() self.lin1 = EqualizedLinear(din, dff, bias=True, equalized=True) self.lin2 = EqualizedLinear(dff, dout, bias=True, equalized=True) self.relu = nn.ReLU() self.drop = nn.Dropout(dropout) def forward(self, x): return self.lin2(self.drop(self.relu(self.lin1(x)))) class ShiftedConv(nn.Module): def __init__(self, dimOutputAR, dimOutputEncoder, kernelSize): super(ShiftedConv, self).__init__() self.module = EqualizedConv1d(dimOutputAR, dimOutputEncoder, kernelSize, equalized=True, padding=0) self.kernelSize = kernelSize def forward(self, x): # Input format: N, S, C -> need to move to N, C, S N, S, C = x.size() x = x.permute(0, 2, 1) padding = torch.zeros(N, C, self.kernelSize - 1, device=x.device) x = torch.cat([padding, x], dim=2) x = self.module(x) x = x.permute(0, 2, 1) return x class PredictionNetwork(nn.Module): def __init__(self, nPredicts, dimOutputAR, dimOutputEncoder, rnnMode=None, dropout=False, sizeInputSeq=116): super(PredictionNetwork, self).__init__() self.predictors = nn.ModuleList() self.RESIDUAL_STD = 0.01 self.dimOutputAR = dimOutputAR self.dropout = nn.Dropout(p=0.5) if dropout else None for i in range(nPredicts): if rnnMode == 'RNN': self.predictors.append( nn.RNN(dimOutputAR, dimOutputEncoder)) self.predictors[-1].flatten_parameters() elif rnnMode == 'LSTM': self.predictors.append( nn.LSTM(dimOutputAR, dimOutputEncoder, batch_first=True)) self.predictors[-1].flatten_parameters() elif rnnMode == 'ffd': self.predictors.append( FFNetwork(dimOutputAR, dimOutputEncoder, dimOutputEncoder, 0)) elif rnnMode == 'conv4': self.predictors.append( ShiftedConv(dimOutputAR, dimOutputEncoder, 4)) elif rnnMode == 'conv8': self.predictors.append( ShiftedConv(dimOutputAR, dimOutputEncoder, 8)) elif rnnMode == 'conv12': self.predictors.append( ShiftedConv(dimOutputAR, dimOutputEncoder, 12)) elif rnnMode == 'transformer': from transformers import buildTransformerAR self.predictors.append( buildTransformerAR(dimOutputEncoder, 1, sizeInputSeq, False)) else: self.predictors.append( nn.Linear(dimOutputAR, dimOutputEncoder, bias=False)) if dimOutputEncoder > dimOutputAR: residual = dimOutputEncoder - dimOutputAR self.predictors[-1].weight.data.copy_(torch.cat([torch.randn( dimOutputAR, dimOutputAR), self.RESIDUAL_STD * torch.randn(residual, dimOutputAR)], dim=0)) def forward(self, c, candidates): assert(len(candidates) == len(self.predictors)) out = [] # UGLY if isinstance(self.predictors[0], EqualizedConv1d): c = c.permute(0, 2, 1) for k in range(len(self.predictors)): locC = self.predictors[k](c) if isinstance(locC, tuple): locC = locC[0] if isinstance(self.predictors[k], EqualizedConv1d): locC = locC.permute(0, 2, 1) if self.dropout is not None: locC = self.dropout(locC) locC = locC.view(locC.size(0), 1, locC.size(1), locC.size(2)) outK = (locC*candidates[k]).mean(dim=3) out.append(outK) return out class BaseCriterion(nn.Module): def warmUp(self): return False def update(self): return class NoneCriterion(BaseCriterion): def __init__(self): super(NoneCriterion, self).__init__() def forward(self, cFeature, encodedData, label): return torch.zeros(1, 1, device=cFeature.device), \ torch.zeros(1, 1, device=cFeature.device) class CPCUnsupersivedCriterion(BaseCriterion): def __init__(self, nPredicts, # Number of steps dimOutputAR, # Dimension of G_ar dimOutputEncoder, # Dimension of the convolutional net negativeSamplingExt, # Number of negative samples to draw mode=None, rnnMode=False, dropout=False, speakerEmbedding=0, nSpeakers=0, sizeInputSeq=128): super(CPCUnsupersivedCriterion, self).__init__() if speakerEmbedding > 0: print( f"Using {speakerEmbedding} speaker embeddings for {nSpeakers} speakers") self.speakerEmb = torch.nn.Embedding(nSpeakers, speakerEmbedding) dimOutputAR += speakerEmbedding else: self.speakerEmb = None self.wPrediction = PredictionNetwork( nPredicts, dimOutputAR, dimOutputEncoder, rnnMode=rnnMode, dropout=dropout, sizeInputSeq=sizeInputSeq - nPredicts) self.nPredicts = nPredicts self.negativeSamplingExt = negativeSamplingExt self.lossCriterion = nn.CrossEntropyLoss() if mode not in [None, "reverse"]: raise ValueError("Invalid mode") self.mode = mode def sampleClean(self, encodedData, windowSize): batchSize, nNegativeExt, dimEncoded = encodedData.size() outputs = [] negExt = encodedData.contiguous().view(-1, dimEncoded) # Draw nNegativeExt * batchSize negative samples anywhere in the batch batchIdx = torch.randint(low=0, high=batchSize, size=(self.negativeSamplingExt * windowSize * batchSize, ), device=encodedData.device) seqIdx = torch.randint(low=1, high=nNegativeExt, size=(self.negativeSamplingExt * windowSize * batchSize, ), device=encodedData.device) baseIdx = torch.arange(0, windowSize, device=encodedData.device) baseIdx = baseIdx.view(1, 1, windowSize).expand(1, self.negativeSamplingExt, windowSize).expand(batchSize, self.negativeSamplingExt, windowSize) seqIdx += baseIdx.contiguous().view(-1) seqIdx = torch.remainder(seqIdx, nNegativeExt) extIdx = seqIdx + batchIdx * nNegativeExt negExt = negExt[extIdx].view(batchSize, self.negativeSamplingExt, windowSize, dimEncoded) labelLoss = torch.zeros((batchSize * windowSize), dtype=torch.long, device=encodedData.device) for k in range(1, self.nPredicts + 1): # Positive samples if k < self.nPredicts: posSeq = encodedData[:, k:-(self.nPredicts-k)] else: posSeq = encodedData[:, k:] posSeq = posSeq.view(batchSize, 1, posSeq.size(1), dimEncoded) fullSeq = torch.cat((posSeq, negExt), dim=1) outputs.append(fullSeq) return outputs, labelLoss def getInnerLoss(self): return "orthoLoss", self.orthoLoss * self.wPrediction.orthoCriterion() def forward(self, cFeature, encodedData, label): if self.mode == "reverse": encodedData = torch.flip(encodedData, [1]) cFeature = torch.flip(cFeature, [1]) batchSize, seqSize, dimAR = cFeature.size() windowSize = seqSize - self.nPredicts cFeature = cFeature[:, :windowSize] sampledData, labelLoss = self.sampleClean(encodedData, windowSize) if self.speakerEmb is not None: l_ = label.view(batchSize, 1).expand(batchSize, windowSize) embeddedSpeaker = self.speakerEmb(l_) cFeature = torch.cat([cFeature, embeddedSpeaker], dim=2) predictions = self.wPrediction(cFeature, sampledData) outLosses = [0 for x in range(self.nPredicts)] outAcc = [0 for x in range(self.nPredicts)] for k, locPreds in enumerate(predictions[:self.nPredicts]): locPreds = locPreds.permute(0, 2, 1) locPreds = locPreds.contiguous().view(-1, locPreds.size(2)) lossK = self.lossCriterion(locPreds, labelLoss) outLosses[k] += lossK.view(1, -1) _, predsIndex = locPreds.max(1) outAcc[k] += torch.sum(predsIndex == labelLoss).float().view(1, -1) return torch.cat(outLosses, dim=1), \ torch.cat(outAcc, dim=1) / (windowSize * batchSize) class SpeakerCriterion(BaseCriterion): def __init__(self, dimEncoder, nSpeakers): super(SpeakerCriterion, self).__init__() self.linearSpeakerClassifier = nn.Linear( dimEncoder, nSpeakers) self.lossCriterion = nn.CrossEntropyLoss() self.entropyCriterion = nn.LogSoftmax(dim=1) def forward(self, cFeature, otherEncoded, label): # cFeature.size() : batchSize x seq Size x hidden size batchSize = cFeature.size(0) cFeature = cFeature[:, -1, :] cFeature = cFeature.view(batchSize, -1) predictions = self.linearSpeakerClassifier(cFeature) loss = self.lossCriterion(predictions, label).view(1, -1) acc = (predictions.max(1)[1] == label).double().mean().view(1, -1) return loss, acc class PhoneCriterion(BaseCriterion): def __init__(self, dimEncoder, nPhones, onEncoder, nLayers=1): super(PhoneCriterion, self).__init__() if nLayers == 1: self.PhoneCriterionClassifier = nn.Linear(dimEncoder, nPhones) else: outLayers = [nn.Linear(dimEncoder, nPhones)] for l in range(nLayers - 1): outLayers.append(nn.ReLU()) outLayers.append(nn.Linear(nPhones, nPhones)) self.PhoneCriterionClassifier = nn.Sequential(*outLayers) self.lossCriterion = nn.CrossEntropyLoss() self.onEncoder = onEncoder def forward(self, cFeature, otherEncoded, label): # cFeature.size() : batchSize x seq Size x hidden size if self.onEncoder: predictions = self.getPrediction(otherEncoded) else: predictions = self.getPrediction(cFeature) predictions = predictions.view(-1, predictions.size(2)) label = label.view(-1) loss = self.lossCriterion(predictions, label).view(1, -1) acc = (predictions.max(1)[1] == label).double().mean().view(1, -1) return loss, acc def getPrediction(self, cFeature): batchSize, seqSize = cFeature.size(0), cFeature.size(1) cFeature = cFeature.contiguous().view(batchSize * seqSize, -1) output = self.PhoneCriterionClassifier(cFeature) return output.view(batchSize, seqSize, -1) class CTCPhoneCriterion(BaseCriterion): def __init__(self, dimEncoder, nPhones, onEncoder): super(CTCPhoneCriterion, self).__init__() self.PhoneCriterionClassifier = nn.Linear(dimEncoder, nPhones + 1) self.lossCriterion = nn.CTCLoss(blank=nPhones, zero_infinity=True) self.onEncoder = onEncoder if onEncoder: raise ValueError("On encoder version not implemented yet") self.BLANK_LABEL = nPhones def getPrediction(self, cFeature): B, S, H = cFeature.size() cFeature = cFeature.contiguous().view(B*S, H) return self.PhoneCriterionClassifier(cFeature).view(B, S, -1) def forward(self, cFeature, otherEncoded, label): # cFeature.size() : batchSize x seq Size x hidden size B, S, H = cFeature.size() predictions = self.getPrediction(cFeature) label = label.to(predictions.device) label, sizeLabels = collapseLabelChain(label) avgPER = 0. predictions = torch.nn.functional.log_softmax(predictions, dim=2) predictions = predictions.permute(1, 0, 2) targetSizePred = torch.ones(B, dtype=torch.int64, device=predictions.device) * S loss = self.lossCriterion(predictions, label, targetSizePred, sizeLabels).view(1, -1) return loss, avgPER * torch.ones(1, 1, device=loss.device) class ModelCriterionCombined(torch.nn.Module): def __init__(self, model, criterion): super(ModelCriterionCombined, self).__init__() self.model = model self.criterion = criterion def forward(self, data, label): c_feature, encoded_data, label = self.model(data, label) loss, acc = self.criterion(c_feature, encoded_data, label) return loss, acc
CPC_audio-main
cpc/criterion/criterion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys import torch import json from pathlib import Path import ABX.abx_group_computation as abx_g import ABX.abx_iterators as abx_it from cpc.dataset import findAllSeqs from cpc.feature_loader import buildFeature, FeatureModule, loadModel def reduce_sparse_data(quotient, divisor): return quotient / (1e-08 * (divisor == 0) + divisor) def ABX(feature_function, path_item_file, seq_list, distance_mode, step_feature, modes, seq_norm=True, cuda=False, max_x_across=5, max_size_group=30): # ABX dataset ABXDataset = abx_it.ABXFeatureLoader(path_item_file, seq_list, feature_function, step_feature, True) if cuda: ABXDataset.cuda() # Distance function distance_function = abx_g.get_distance_function_from_name(distance_mode) # Output scores = {} # ABX within if 'within' in modes: print("Computing ABX within speakers...") ABXIterator = ABXDataset.get_iterator('within', max_size_group) group_confusion = abx_g.get_abx_scores_dtw_on_group(ABXIterator, distance_function, ABXIterator.symmetric) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor(group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size()) divisor_context = torch.sparse.sum(index_, dim=3).to_dense() group_confusion = torch.sparse.sum(group_confusion, dim=3).to_dense() group_confusion = reduce_sparse_data(group_confusion, divisor_context) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = reduce_sparse_data(group_confusion.sum(dim=0), divisor_speaker) scores['within'] = (phone_confusion.sum() / (divisor_speaker > 0).sum()).item() print(f"...done. ABX within : {scores['within']}") # ABX across if 'across' in modes: print("Computing ABX across speakers...") ABXIterator = ABXDataset.get_iterator('across', max_size_group) ABXIterator.max_x = max_x_across group_confusion = abx_g.get_abx_scores_dtw_on_group(ABXIterator, distance_function, ABXIterator.symmetric) n_data = group_confusion._values().size(0) index_ = torch.sparse.LongTensor(group_confusion._indices(), torch.ones((n_data), dtype=torch.float), group_confusion.size()) divisor_context = torch.sparse.sum(index_, dim=[3, 4]).to_dense() group_confusion = torch.sparse.sum( group_confusion, dim=[3, 4]).to_dense() group_confusion = reduce_sparse_data(group_confusion, divisor_context) S, p1, p2 = group_confusion.size() index_speaker = divisor_context > 0 divisor_speaker = index_speaker.sum(dim=0) phone_confusion = reduce_sparse_data(group_confusion.sum(dim=0), divisor_speaker) scores['across'] = (phone_confusion.sum() / (divisor_speaker > 0).sum()).item() print(f"...done. ABX across : {scores['across']}") return scores def update_base_parser(parser): parser.add_argument('--debug', action='store_true') parser.add_argument('--feature_size', type=int, default=0.01, help="Size (in s) of one feature") parser.add_argument('--cuda', action='store_true', help="Use the GPU to compute distances") parser.add_argument('--mode', type=str, default='all', choices=['all', 'within', 'across'], help="Type of ABX score to compute") parser.add_argument("--max_size_group", type=int, default=10, help="Max size of a group while computing the" "ABX score") parser.add_argument("--max_x_across", type=int, default=5, help="When computing the ABX across score, maximum" "number of speaker X to sample per couple A,B") parser.add_argument("--out", type=str, default=None, help="Path where the results should be saved") def parse_args(argv): base_parser = argparse.ArgumentParser(description='ABX metric') subparsers = base_parser.add_subparsers(dest='load') parser_checkpoint = subparsers.add_parser('from_checkpoint') update_base_parser(parser_checkpoint) parser_checkpoint.add_argument('path_checkpoint', type=str, help="Path to the model's checkpoint") parser_checkpoint.add_argument('path_item_file', type=str, help="Path to the ABX .item file containing " "the triplets labels") parser_checkpoint.add_argument('path_dataset', type=str, help="Path to the dataset") parser_checkpoint.add_argument('--seq_norm', action='store_true', help='If activated, normalize each batch ' 'of feature across the time channel before ' 'computing ABX.') parser_checkpoint.add_argument('--max_size_seq', default=64000, type=int, help='Maximal number of frames to consider ' 'when computing a batch of features.') parser_checkpoint.add_argument('--strict', action='store_true', help='If activated, each batch of feature ' 'will contain exactly max_size_seq frames.') parser_checkpoint.add_argument('--file_extension', type=str, default='.wav', help='Extension of ecah audio file in the ' 'dataset.') parser_checkpoint.add_argument('--get_encoded', action='store_true', help='If activated, compute the ABX score ' 'using the output of the encoder network.') parser_db = subparsers.add_parser('from_pre_computed') update_base_parser(parser_db) parser_db.add_argument('path_features', type=str, help="Path to pre-computed torch features (.pt)") parser_db.add_argument('--file_extension', type=str, default='.pt', help='Extension of each feature ' 'in the dataset') # multi-gpu / multi-node return base_parser.parse_args(argv) def main(argv): args = parse_args(argv) if args.load == 'from_checkpoint': # Checkpoint model = loadModel([args.path_checkpoint])[0] model.gAR.keepHidden = True # Feature maker feature_maker = FeatureModule(model, args.get_encoded).cuda().eval() def feature_function(x): return buildFeature(feature_maker, x, seqNorm=args.seq_norm, strict=args.strict, maxSizeSeq=args.max_size_seq) elif args.load == 'from_pre_computed': def feature_function(x): return torch.load(x, 'cpu') # Modes if args.mode == 'all': modes = ["within", "across"] else: modes = [args.mode] distance_mode = 'cosine' step_feature = 1 / args.feature_size # Get the list of sequences seq_list, _ = findAllSeqs(args.path_dataset, extension=args.file_extension) seq_list = [(str(Path(x).stem), str(Path(args.path_dataset) / x)) for (_, x) in seq_list] if args.debug: seq_list = seq_list[:1000] scores = ABX(feature_function, args.path_item_file, seq_list, distance_mode, step_feature, modes, cuda=args.cuda, seq_norm=args.seq_norm, max_x_across=args.max_x_across, max_size_group=args.max_size_group) out_dir = Path(args.path_checkpoint).parent if args.out is None \ else Path(args.out) out_dir.mkdir(exist_ok=True) path_score = out_dir / 'ABX_scores.json' with open(path_score, 'w') as file: json.dump(scores, file, indent=2) path_args = out_dir / 'ABX_args.json' with open(path_args, 'w') as file: json.dump(vars(args), file, indent=2) if __name__ == "__main__": args = sys.argv[1:] main(args)
CPC_audio-main
cpc/eval/ABX.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import torchaudio from copy import deepcopy import torch import time import random import math import json import subprocess import sys import progressbar from pathlib import Path from torch.utils.data import Dataset, DataLoader from torch.multiprocessing import Pool from cpc.criterion.seq_alignment import get_seq_PER from cpc.criterion.seq_alignment import beam_search from cpc.feature_loader import loadModel from cpc.dataset import findAllSeqs, parseSeqLabels, filterSeqs def load(path_item): seq_name = path_item.stem data = torchaudio.load(str(path_item))[0].view(1, -1) return seq_name, data class SingleSequenceDataset(Dataset): def __init__(self, pathDB, seqNames, phoneLabelsDict, inDim=1, transpose=True): """ Args: - path (string): path to the training dataset - sizeWindow (int): size of the sliding window - seqNames (list): sequences to load - phoneLabels (dictionnary): if not None, a dictionnary with the following entries "step": size of a labelled window "$SEQ_NAME": list of phonem labels for the sequence $SEQ_NAME """ self.seqNames = deepcopy(seqNames) self.pathDB = pathDB self.phoneLabelsDict = deepcopy(phoneLabelsDict) self.inDim = inDim self.transpose = transpose self.loadSeqs() def loadSeqs(self): # Labels self.seqOffset = [0] self.phoneLabels = [] self.phoneOffsets = [0] self.data = [] self.maxSize = 0 self.maxSizePhone = 0 # Data nprocess = min(30, len(self.seqNames)) start_time = time.time() to_load = [Path(self.pathDB) / x for _, x in self.seqNames] with Pool(nprocess) as p: poolData = p.map(load, to_load) tmpData = [] poolData.sort() totSize = 0 minSizePhone = float('inf') for seqName, seq in poolData: self.phoneLabels += self.phoneLabelsDict[seqName] self.phoneOffsets.append(len(self.phoneLabels)) self.maxSizePhone = max(self.maxSizePhone, len( self.phoneLabelsDict[seqName])) minSizePhone = min(minSizePhone, len( self.phoneLabelsDict[seqName])) sizeSeq = seq.size(1) self.maxSize = max(self.maxSize, sizeSeq) totSize += sizeSeq tmpData.append(seq) self.seqOffset.append(self.seqOffset[-1] + sizeSeq) del seq self.data = torch.cat(tmpData, dim=1) self.phoneLabels = torch.tensor(self.phoneLabels, dtype=torch.long) print(f'Loaded {len(self.phoneOffsets)} sequences ' f'in {time.time() - start_time:.2f} seconds') print(f'maxSizeSeq : {self.maxSize}') print(f'maxSizePhone : {self.maxSizePhone}') print(f"minSizePhone : {minSizePhone}") print(f'Total size dataset {totSize / (16000 * 3600)} hours') def __getitem__(self, idx): offsetStart = self.seqOffset[idx] offsetEnd = self.seqOffset[idx+1] offsetPhoneStart = self.phoneOffsets[idx] offsetPhoneEnd = self.phoneOffsets[idx + 1] sizeSeq = int(offsetEnd - offsetStart) sizePhone = int(offsetPhoneEnd - offsetPhoneStart) outSeq = torch.zeros((self.inDim, self.maxSize)) outPhone = torch.zeros((self.maxSizePhone)) outSeq[:, :sizeSeq] = self.data[:, offsetStart:offsetEnd] outPhone[:sizePhone] = self.phoneLabels[offsetPhoneStart:offsetPhoneEnd] return outSeq, torch.tensor([sizeSeq], dtype=torch.long), outPhone.long(), torch.tensor([sizePhone], dtype=torch.long) def __len__(self): return len(self.seqOffset) - 1 class CTCphone_criterion(torch.nn.Module): def __init__(self, dimEncoder, nPhones, LSTM=False, sizeKernel=8, seqNorm=False, dropout=False, reduction='sum'): super(CTCphone_criterion, self).__init__() self.seqNorm = seqNorm self.epsilon = 1e-8 self.dropout = torch.nn.Dropout2d( p=0.5, inplace=False) if dropout else None self.conv1 = torch.nn.LSTM(dimEncoder, dimEncoder, num_layers=1, batch_first=True) self.PhoneCriterionClassifier = torch.nn.Conv1d( dimEncoder, nPhones + 1, sizeKernel, stride=sizeKernel // 2) self.lossCriterion = torch.nn.CTCLoss(blank=nPhones, reduction=reduction, zero_infinity=True) self.relu = torch.nn.ReLU() self.BLANK_LABEL = nPhones self.useLSTM = LSTM def getPrediction(self, cFeature, featureSize): B, S, H = cFeature.size() if self.seqNorm: for b in range(B): size = featureSize[b] m = cFeature[b, :size].mean(dim=0, keepdim=True) v = cFeature[b, :size].var(dim=0, keepdim=True) cFeature[b] = (cFeature[b] - m) / torch.sqrt(v + self.epsilon) if self.useLSTM: cFeature = self.conv1(cFeature)[0] cFeature = cFeature.permute(0, 2, 1) if self.dropout is not None: cFeature = self.dropout(cFeature) cFeature = self.PhoneCriterionClassifier(cFeature) return cFeature.permute(0, 2, 1) def forward(self, cFeature, featureSize, label, labelSize): # cFeature.size() : batchSize x seq Size x hidden size B, S, H = cFeature.size() predictions = self.getPrediction(cFeature, featureSize) featureSize /= 4 predictions = cut_data(predictions, featureSize) featureSize = torch.clamp(featureSize, max=predictions.size(1)) label = cut_data(label, labelSize) if labelSize.min() <= 0: print(label, labelSize) predictions = torch.nn.functional.log_softmax(predictions, dim=2) predictions = predictions.permute(1, 0, 2) loss = self.lossCriterion(predictions, label, featureSize, labelSize).view(1, -1) if torch.isinf(loss).sum() > 0 or torch.isnan(loss).sum() > 0: loss = 0 return loss class IDModule(torch.nn.Module): def __init__(self): super(IDModule, self).__init__() def forward(self, feature, *args): B, C, S = feature.size() return feature.permute(0, 2, 1), None, None def cut_data(seq, sizeSeq): maxSeq = sizeSeq.max() return seq[:, :maxSeq] def prepare_data(data): seq, sizeSeq, phone, sizePhone = data seq = seq.cuda(non_blocking=True) phone = phone.cuda(non_blocking=True) sizeSeq = sizeSeq.cuda(non_blocking=True).view(-1) sizePhone = sizePhone.cuda(non_blocking=True).view(-1) seq = cut_data(seq.permute(0, 2, 1), sizeSeq).permute(0, 2, 1) return seq, sizeSeq, phone, sizePhone def train_step(train_loader, model, criterion, optimizer, downsampling_factor): if model.optimize: model.train() criterion.train() avg_loss = 0 nItems = 0 for data in train_loader: optimizer.zero_grad() seq, sizeSeq, phone, sizePhone = prepare_data(data) c_feature, _, _ = model(seq, None) if not model.optimize: c_feature = c_feature.detach() sizeSeq = sizeSeq / downsampling_factor loss = criterion(c_feature, sizeSeq, phone, sizePhone) loss.mean().backward() avg_loss += loss.mean().item() nItems += 1 optimizer.step() return avg_loss / nItems def val_step(val_loader, model, criterion, downsampling_factor): model.eval() criterion.eval() avg_loss = 0 nItems = 0 for data in val_loader: with torch.no_grad(): seq, sizeSeq, phone, sizePhone = prepare_data(data) c_feature, _, _ = model(seq, None) sizeSeq = sizeSeq / downsampling_factor loss = criterion(c_feature, sizeSeq, phone, sizePhone) avg_loss += loss.mean().item() nItems += 1 return avg_loss / nItems def get_per(data): pred, size_pred, gt, size_gt, blank_label = data l_ = min(size_pred // 4, pred.size(0)) p_ = pred[:l_].view(l_, -1).numpy() gt_seq = gt[:size_gt].view(-1).tolist() predSeq = beam_search(p_, 20, blank_label)[0][1] out = get_seq_PER(gt_seq, predSeq) return out def perStep(val_loader, model, criterion, downsampling_factor): model.eval() criterion.eval() avgPER = 0 varPER = 0 nItems = 0 print("Starting the PER computation through beam search") bar = progressbar.ProgressBar(maxval=len(val_loader)) bar.start() for index, data in enumerate(val_loader): bar.update(index) with torch.no_grad(): seq, sizeSeq, phone, sizePhone = prepare_data(data) c_feature, _, _ = model(seq, None) sizeSeq = sizeSeq / downsampling_factor predictions = torch.nn.functional.softmax( criterion.module.getPrediction(c_feature, sizeSeq), dim=2).cpu() phone = phone.cpu() sizeSeq = sizeSeq.cpu() sizePhone = sizePhone.cpu() bs = c_feature.size(0) data_per = [(predictions[b], sizeSeq[b], phone[b], sizePhone[b], criterion.module.BLANK_LABEL) for b in range(bs)] with Pool(bs) as p: poolData = p.map(get_per, data_per) avgPER += sum([x for x in poolData]) varPER += sum([x*x for x in poolData]) nItems += len(poolData) bar.finish() avgPER /= nItems varPER /= nItems varPER -= avgPER**2 print(f"Average PER {avgPER}") print(f"Standard deviation PER {math.sqrt(varPER)}") def run(train_loader, val_loader, model, criterion, optimizer, downsampling_factor, nEpochs, pathCheckpoint): print(f"Starting the training for {nEpochs} epochs") bestLoss = float('inf') for epoch in range(nEpochs): lossTrain = train_step(train_loader, model, criterion, optimizer, downsampling_factor) print(f"Epoch {epoch} loss train : {lossTrain}") lossVal = val_step(val_loader, model, criterion, downsampling_factor) print(f"Epoch {epoch} loss val : {lossVal}") if lossVal < bestLoss: bestLoss = lossVal state_dict = {'classifier': criterion.state_dict(), 'model': model.state_dict(), 'bestLoss': bestLoss} torch.save(state_dict, pathCheckpoint) def get_PER_args(args): path_args_training = os.path.join(args.output, "args_training.json") with open(path_args_training, 'rb') as file: data = json.load(file) if args.pathDB is None: args.pathDB = data["pathDB"] args.file_extension = data["file_extension"] if args.pathVal is None and args.pathPhone is None: args.pathPhone = data["pathPhone"] args.pathVal = data["pathVal"] args.pathCheckpoint = data["pathCheckpoint"] args.no_pretraining = data["no_pretraining"] args.LSTM = data.get("LSTM", False) args.seqNorm = data.get("seqNorm", False) args.dropout = data.get("dropout", False) args.in_dim = data.get("in_dim", 1) args.loss_reduction = data.get("loss_reduction", "mean") return args if __name__ == "__main__": torch.multiprocessing.set_start_method('spawn') parser = argparse.ArgumentParser(description='Simple phone recognition pipeline ' 'for the common voices datasets') subparsers = parser.add_subparsers(dest='command') parser_train = subparsers.add_parser('train') parser_train.add_argument('pathDB', type=str, help='Path to the directory containing the ' 'audio data / pre-computed features.') parser_train.add_argument('pathPhone', type=str, help='Path to the .txt file containing the ' 'phone transcription.') parser_train.add_argument('pathCheckpoint', type=str, help='Path to the CPC checkpoint to load. ' 'Set to ID to work with pre-cimputed features.') parser_train.add_argument('--freeze', action='store_true', help="Freeze the CPC features layers") parser_train.add_argument('--pathTrain', default=None, type=str, help='Path to the .txt files containing the ' 'list of the training sequences.') parser_train.add_argument('--pathVal', default=None, type=str, help='Path to the .txt files containing the ' 'list of the validation sequences.') parser_train.add_argument('--file_extension', type=str, default=".mp3", help='Extension of the files in the ' 'dataset') parser_train.add_argument('--batchSize', type=int, default=8) parser_train.add_argument('--nEpochs', type=int, default=30) parser_train.add_argument('--beta1', type=float, default=0.9, help='Value of beta1 for the Adam optimizer.') parser_train.add_argument('--beta2', type=float, default=0.999, help='Value of beta2 for the Adam optimizer.') parser_train.add_argument('--epsilon', type=float, default=1e-08, help='Value of epsilon for the Adam optimizer.') parser_train.add_argument('--lr', type=float, default=2e-04, help='Learning rate.') parser_train.add_argument('-o', '--output', type=str, default='out', help="Output directory") parser_train.add_argument('--debug', action='store_true', help='If activated, will only load a few ' 'sequences from the dataset.') parser_train.add_argument('--no_pretraining', action='store_true', help='Activate use a randmly initialized ' 'network') parser_train.add_argument('--LSTM', action='store_true', help='Activate to add a LSTM to the phone ' 'classifier') parser_train.add_argument('--seqNorm', action='store_true', help='Activate if you want to normalize each ' 'batch of features through time before the ' 'phone classification.') parser_train.add_argument('--kernelSize', type=int, default=8, help='Number of features to concatenate before ' 'feeding them to the phone classifier.') parser_train.add_argument('--dropout', action='store_true') parser_train.add_argument('--in_dim', type=int, default=1, help='Dimension of the input data: useful when ' 'working with pre-computed features or ' 'stereo audio.') parser_train.add_argument('--loss_reduction', type=str, default='mean', choices=['mean', 'sum']) parser_per = subparsers.add_parser('per') parser_per.add_argument('output', type=str) parser_per.add_argument('--batchSize', type=int, default=8) parser_per.add_argument('--debug', action='store_true', help='If activated, will only load a few ' 'sequences from the dataset.') parser_per.add_argument('--pathDB', help="For computing the PER on another dataset", type=str, default=None) parser_per.add_argument('--pathVal', help="For computing the PER on specific sequences", type=str, default=None) parser_per.add_argument('--pathPhone', help="For computing the PER on specific sequences", default=None, type=str) parser_per.add_argument('--file_extension', type=str, default=".mp3") parser_per.add_argument('--name', type=str, default="0") args = parser.parse_args() if args.command == 'per': args = get_PER_args(args) # Output Directory if not os.path.isdir(args.output): os.mkdir(args.output) name = f"_{args.name}" if args.command == "per" else "" pathLogs = os.path.join(args.output, f'logs_{args.command}{name}.txt') tee = subprocess.Popen(["tee", pathLogs], stdin=subprocess.PIPE) os.dup2(tee.stdin.fileno(), sys.stdout.fileno()) phoneLabels, nPhones = parseSeqLabels(args.pathPhone) inSeqs, _ = findAllSeqs(args.pathDB, extension=args.file_extension) # Datasets if args.command == 'train' and args.pathTrain is not None: seqTrain = filterSeqs(args.pathTrain, inSeqs) else: seqTrain = inSeqs if args.pathVal is None and args.command == 'train': random.shuffle(seqTrain) sizeTrain = int(0.9 * len(seqTrain)) seqTrain, seqVal = seqTrain[:sizeTrain], seqTrain[sizeTrain:] elif args.pathVal is not None: seqVal = filterSeqs(args.pathVal, inSeqs) else: raise RuntimeError("No validation dataset found for PER computation") if args.debug: seqVal = seqVal[:100] downsampling_factor = 160 if args.pathCheckpoint == 'ID': downsampling_factor = 1 feature_maker = IDModule() hiddenGar = args.in_dim else: feature_maker, hiddenGar, _ = loadModel([args.pathCheckpoint], loadStateDict=not args.no_pretraining) feature_maker.cuda() feature_maker = torch.nn.DataParallel(feature_maker) phone_criterion = CTCphone_criterion(hiddenGar, nPhones, args.LSTM, seqNorm=args.seqNorm, dropout=args.dropout, reduction=args.loss_reduction) phone_criterion.cuda() phone_criterion = torch.nn.DataParallel(phone_criterion) print(f"Loading the validation dataset at {args.pathDB}") datasetVal = SingleSequenceDataset(args.pathDB, seqVal, phoneLabels, inDim=args.in_dim) val_loader = DataLoader(datasetVal, batch_size=args.batchSize, shuffle=True) # Checkpoint file where the model should be saved pathCheckpoint = os.path.join(args.output, 'checkpoint.pt') if args.command == 'train': feature_maker.optimize = True if args.freeze: feature_maker.eval() feature_maker.optimize = False for g in feature_maker.parameters(): g.requires_grad = False if args.debug: print("debug") random.shuffle(seqTrain) seqTrain = seqTrain[:1000] seqVal = seqVal[:100] print(f"Loading the training dataset at {args.pathDB}") datasetTrain = SingleSequenceDataset(args.pathDB, seqTrain, phoneLabels, inDim=args.in_dim) train_loader = DataLoader(datasetTrain, batch_size=args.batchSize, shuffle=True) # Optimizer g_params = list(phone_criterion.parameters()) if not args.freeze: print("Optimizing model") g_params += list(feature_maker.parameters()) optimizer = torch.optim.Adam(g_params, lr=args.lr, betas=(args.beta1, args.beta2), eps=args.epsilon) pathArgs = os.path.join(args.output, "args_training.json") with open(pathArgs, 'w') as file: json.dump(vars(args), file, indent=2) run(train_loader, val_loader, feature_maker, phone_criterion, optimizer, downsampling_factor, args.nEpochs, pathCheckpoint) else: print(f"Loading data at {pathCheckpoint}") state_dict = torch.load(pathCheckpoint, map_location=lambda storage, loc: storage) if 'bestLoss' in state_dict: print(f"Best loss : {state_dict['bestLoss']}") phone_criterion.load_state_dict(state_dict['classifier']) feature_maker.load_state_dict(state_dict['model']) pathArgs = os.path.join(args.output, f"args_validation_{args.name}.json") with open(pathArgs, 'w') as file: json.dump(vars(args), file, indent=2) perStep(val_loader, feature_maker, phone_criterion, downsampling_factor)
CPC_audio-main
cpc/eval/common_voices_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import torch import progressbar import argparse import numpy as np from cpc.dataset import findAllSeqs from cpc.feature_loader import buildFeature, FeatureModule, \ ModelPhoneCombined, loadSupervisedCriterion, loadModel def getArgs(pathCheckpoints): pathArgs = os.path.join(os.path.dirname(pathCheckpoints), "checkpoint_args.json") with open(pathArgs, 'rb') as file: return json.load(file) def buildAllFeature(featureMaker, pathDB, pathOut, seqList, stepSize=0.01, strict=False, maxSizeSeq=64000, format='fea', seqNorm=False): totSeqs = len(seqList) startStep = stepSize / 2 bar = progressbar.ProgressBar(maxval=totSeqs) bar.start() for nseq, seqPath in enumerate(seqList): bar.update(nseq) feature = buildFeature(featureMaker, os.path.join(pathDB, seqPath), strict=strict or seqNorm, maxSizeSeq=maxSizeSeq, seqNorm=seqNorm) _, nSteps, hiddenSize = feature.size() outName = os.path.basename(os.path.splitext(seqPath)[0]) + f'.{format}' fname = os.path.join(pathOut, outName) if format == 'npz': time = [startStep + step * stepSize for step in range(nSteps)] values = feature.squeeze(0).float().cpu().numpy() totTime = np.array([stepSize * nSteps], dtype=np.float32) with open(fname, 'wb') as f: np.savez(f, time=time, features=values, totTime=totTime) elif format == 'npy': time = [startStep + step * stepSize for step in range(nSteps)] values = feature.squeeze(0).float().cpu().numpy() with open(fname, 'wb') as f: np.save(f, values) elif format == 'af': import arrayfire as af time = [startStep + step * stepSize for step in range(nSteps)] values = feature.squeeze(0).float().cpu().numpy() totTime = np.array([stepSize * nSteps], dtype=np.float32) af.save_array("time", af.Array(time, dtype=af.Dtype.f32), fname) af.save_array("totTime", af.interop.from_ndarray(totTime), fname, append=True) af.save_array("features", af.interop.from_ndarray(values), fname, append=True) else: with open(fname, 'w') as f: _, nSteps, hiddenSize = feature.size() for step in range(nSteps): line = [startStep + step * stepSize] + \ feature[0, step, :].tolist() line = [str(x) for x in line] linestr = ' '.join(line) + '\n' f.write(linestr) bar.finish() if __name__ == "__main__": parser = argparse.ArgumentParser('Build features for zerospeech \ Track1 evaluation') parser.add_argument('pathDB', help='Path to the reference dataset') parser.add_argument('pathOut', help='Path to the output features') parser.add_argument('pathCheckpoint', help='Checkpoint to load') parser.add_argument('--extension', type=str, default='.wav') parser.add_argument('--addCriterion', action='store_true') parser.add_argument('--oneHot', action='store_true') parser.add_argument('--maxSizeSeq', default=64000, type=int) parser.add_argument('--train_mode', action='store_true') parser.add_argument('--format', default='fea', type=str, choices=['npz', 'fea', 'npy', 'af']) parser.add_argument('--strict', action='store_true') parser.add_argument('--dimReduction', type=str, default=None) parser.add_argument('--centroidLimits', type=int, nargs=2, default=None) parser.add_argument('--getEncoded', action='store_true') parser.add_argument('--clusters', type=str, default=None) parser.add_argument('--seqNorm', action='store_true') args = parser.parse_args() if not os.path.isdir(args.pathOut): os.mkdir(args.pathOut) with open(os.path.join(os.path.dirname(args.pathOut), f"{os.path.basename(args.pathOut)}.json"), 'w') \ as file: json.dump(vars(args), file, indent=2) outData = [x[1] for x in findAllSeqs(args.pathDB, extension=args.extension, loadCache=False)[0]] featureMaker = loadModel([args.pathCheckpoint])[0] stepSize = featureMaker.gEncoder.DOWNSAMPLING / 16000 print(f"stepSize : {stepSize}") featureMaker = FeatureModule(featureMaker, args.getEncoded) featureMaker.collapse = False if args.addCriterion: criterion, nPhones = loadSupervisedCriterion(args.pathCheckpoint) featureMaker = ModelPhoneCombined(featureMaker, criterion, nPhones, args.oneHot) featureMaker = featureMaker.cuda(device=0) if not args.train_mode: featureMaker.eval() buildAllFeature(featureMaker, args.pathDB, args.pathOut, outData, stepSize=stepSize, strict=args.strict, maxSizeSeq=args.maxSizeSeq, format=args.format, seqNorm=args.seqNorm)
CPC_audio-main
cpc/eval/build_zeroSpeech_features.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import sys import torch import json import time import numpy as np from pathlib import Path from copy import deepcopy import os import cpc.criterion as cr import cpc.feature_loader as fl import cpc.utils.misc as utils from cpc.dataset import AudioBatchData, findAllSeqs, filterSeqs, parseSeqLabels def train_step(feature_maker, criterion, data_loader, optimizer): if feature_maker.optimize: feature_maker.train() criterion.train() logs = {"locLoss_train": 0, "locAcc_train": 0} for step, fulldata in enumerate(data_loader): optimizer.zero_grad() batch_data, label = fulldata c_feature, encoded_data, _ = feature_maker(batch_data, None) if not feature_maker.optimize: c_feature, encoded_data = c_feature.detach(), encoded_data.detach() all_losses, all_acc = criterion(c_feature, encoded_data, label) totLoss = all_losses.sum() totLoss.backward() optimizer.step() logs["locLoss_train"] += np.asarray([all_losses.mean().item()]) logs["locAcc_train"] += np.asarray([all_acc.mean().item()]) logs = utils.update_logs(logs, step) logs["iter"] = step return logs def val_step(feature_maker, criterion, data_loader): feature_maker.eval() criterion.eval() logs = {"locLoss_val": 0, "locAcc_val": 0} for step, fulldata in enumerate(data_loader): with torch.no_grad(): batch_data, label = fulldata c_feature, encoded_data, _ = feature_maker(batch_data, None) all_losses, all_acc = criterion(c_feature, encoded_data, label) logs["locLoss_val"] += np.asarray([all_losses.mean().item()]) logs["locAcc_val"] += np.asarray([all_acc.mean().item()]) logs = utils.update_logs(logs, step) return logs def run(feature_maker, criterion, train_loader, val_loader, optimizer, logs, n_epochs, path_checkpoint): start_epoch = len(logs["epoch"]) best_acc = -1 start_time = time.time() for epoch in range(start_epoch, n_epochs): logs_train = train_step(feature_maker, criterion, train_loader, optimizer) logs_val = val_step(feature_maker, criterion, val_loader) print('') print('_'*50) print(f'Ran {epoch + 1} epochs ' f'in {time.time() - start_time:.2f} seconds') utils.show_logs("Training loss", logs_train) utils.show_logs("Validation loss", logs_val) print('_'*50) print('') if logs_val["locAcc_val"] > best_acc: best_state = deepcopy(fl.get_module(feature_maker).state_dict()) best_acc = logs_val["locAcc_val"] logs["epoch"].append(epoch) for key, value in dict(logs_train, **logs_val).items(): if key not in logs: logs[key] = [None for x in range(epoch)] if isinstance(value, np.ndarray): value = value.tolist() logs[key].append(value) if (epoch % logs["saveStep"] == 0 and epoch > 0) or epoch == n_epochs - 1: model_state_dict = fl.get_module(feature_maker).state_dict() criterion_state_dict = fl.get_module(criterion).state_dict() fl.save_checkpoint(model_state_dict, criterion_state_dict, optimizer.state_dict(), best_state, f"{path_checkpoint}_{epoch}.pt") utils.save_logs(logs, f"{path_checkpoint}_logs.json") def parse_args(argv): parser = argparse.ArgumentParser(description='Linear separability trainer' ' (default test in speaker separability)') parser.add_argument('pathDB', type=str, help="Path to the directory containing the audio data.") parser.add_argument('pathTrain', type=str, help="Path to the list of the training sequences.") parser.add_argument('pathVal', type=str, help="Path to the list of the test sequences.") parser.add_argument('load', type=str, nargs='*', help="Path to the checkpoint to evaluate.") parser.add_argument('--pathPhone', type=str, default=None, help="Path to the phone labels. If given, will" " compute the phone separability.") parser.add_argument('--CTC', action='store_true', help="Use the CTC loss (for phone separability only)") parser.add_argument('--pathCheckpoint', type=str, default='out', help="Path of the output directory where the " " checkpoints should be dumped.") parser.add_argument('--nGPU', type=int, default=-1, help='Bumber of GPU. Default=-1, use all available ' 'GPUs') parser.add_argument('--batchSizeGPU', type=int, default=8, help='Batch size per GPU.') parser.add_argument('--n_epoch', type=int, default=10) parser.add_argument('--debug', action='store_true', help='If activated, will load only a small number ' 'of audio data.') parser.add_argument('--unfrozen', action='store_true', help="If activated, update the feature network as well" " as the linear classifier") parser.add_argument('--no_pretraining', action='store_true', help="If activated, work from an untrained model.") parser.add_argument('--file_extension', type=str, default=".flac", help="Extension of the audio files in pathDB.") parser.add_argument('--save_step', type=int, default=-1, help="Frequency at which a checkpoint should be saved," " et to -1 (default) to save only the best checkpoint.") parser.add_argument('--get_encoded', action='store_true', help="If activated, will work with the output of the " " convolutional encoder (see CPC's architecture).") parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate.') parser.add_argument('--beta1', type=float, default=0.9, help='Value of beta1 for the Adam optimizer.') parser.add_argument('--beta2', type=float, default=0.999, help='Value of beta2 for the Adam optimizer.') parser.add_argument('--epsilon', type=float, default=2e-8, help='Value of epsilon for the Adam optimizer.') parser.add_argument('--ignore_cache', action='store_true', help="Activate if the sequences in pathDB have" " changed.") parser.add_argument('--size_window', type=int, default=20480, help="Number of frames to consider in each batch.") args = parser.parse_args(argv) if args.nGPU < 0: args.nGPU = torch.cuda.device_count() if args.save_step <= 0: args.save_step = args.n_epoch args.load = [str(Path(x).resolve()) for x in args.load] args.pathCheckpoint = str(Path(args.pathCheckpoint).resolve()) return args def main(argv): args = parse_args(argv) logs = {"epoch": [], "iter": [], "saveStep": args.save_step} load_criterion = False seqNames, speakers = findAllSeqs(args.pathDB, extension=args.file_extension, loadCache=not args.ignore_cache) model, hidden_gar, hidden_encoder = fl.loadModel(args.load, loadStateDict=not args.no_pretraining) model.cuda() model = torch.nn.DataParallel(model, device_ids=range(args.nGPU)) dim_features = hidden_encoder if args.get_encoded else hidden_gar # Now the criterion phone_labels = None if args.pathPhone is not None: phone_labels, n_phones = parseSeqLabels(args.pathPhone) if not args.CTC: print(f"Running phone separability with aligned phones") criterion = cr.PhoneCriterion(dim_features, n_phones, args.get_encoded) else: print(f"Running phone separability with CTC loss") criterion = cr.CTCPhoneCriterion(dim_features, n_phones, args.get_encoded) else: print(f"Running speaker separability") criterion = cr.SpeakerCriterion(dim_features, len(speakers)) criterion.cuda() criterion = torch.nn.DataParallel(criterion, device_ids=range(args.nGPU)) # Dataset seq_train = filterSeqs(args.pathTrain, seqNames) seq_val = filterSeqs(args.pathVal, seqNames) if args.debug: seq_train = seq_train[:1000] seq_val = seq_val[:100] db_train = AudioBatchData(args.pathDB, args.size_window, seq_train, phone_labels, len(speakers)) db_val = AudioBatchData(args.pathDB, args.size_window, seq_val, phone_labels, len(speakers)) batch_size = args.batchSizeGPU * args.nGPU train_loader = db_train.getDataLoader(batch_size, "uniform", True, numWorkers=0) val_loader = db_val.getDataLoader(batch_size, 'sequential', False, numWorkers=0) # Optimizer g_params = list(criterion.parameters()) model.optimize = False model.eval() if args.unfrozen: print("Working in full fine-tune mode") g_params += list(model.parameters()) model.optimize = True else: print("Working with frozen features") for g in model.parameters(): g.requires_grad = False optimizer = torch.optim.Adam(g_params, lr=args.lr, betas=(args.beta1, args.beta2), eps=args.epsilon) # Checkpoint directory args.pathCheckpoint = Path(args.pathCheckpoint) args.pathCheckpoint.mkdir(exist_ok=True) args.pathCheckpoint = str(args.pathCheckpoint / "checkpoint") with open(f"{args.pathCheckpoint}_args.json", 'w') as file: json.dump(vars(args), file, indent=2) run(model, criterion, train_loader, val_loader, optimizer, logs, args.n_epoch, args.pathCheckpoint) if __name__ == "__main__": torch.multiprocessing.set_start_method('spawn') args = sys.argv[1:] main(args)
CPC_audio-main
cpc/eval/linear_separability.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
CPC_audio-main
cpc/eval/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import progressbar import math import random def normalize_with_singularity(x): r""" Normalize the given vector across the third dimension. Extend all vectors by eps=1e-12 to put the null vector at the maximal cosine distance from any non-null vector. """ N, S, H = x.size() norm_x = (x**2).sum(dim=2, keepdim=True) x /= torch.sqrt(norm_x) zero_vals = (norm_x == 0).view(N, S) x[zero_vals] = 1 / math.sqrt(H) border_vect = torch.zeros((N, S, 1), dtype=x.dtype, device=x.device) + 1e-12 border_vect[zero_vals] = -2*1e12 return torch.cat([x, border_vect], dim=2) def load_item_file(path_item_file): r""" Load a .item file indicating the triplets for the ABX score. The input file must have the following fomat: line 0 : whatever (not read) line > 0: #file_ID onset offset #phone prev-phone next-phone speaker onset : begining of the triplet (in s) onset : end of the triplet (in s) """ with open(path_item_file, 'r') as file: data = file.readlines()[1:] data = [x.replace('\n', '') for x in data] out = {} phone_match = {} speaker_match = {} context_match = {} for line in data: items = line.split() assert(len(items) == 7) fileID = items[0] if fileID not in out: out[fileID] = [] onset, offset = float(items[1]), float(items[2]) context = '+'.join([items[4], items[5]]) phone = items[3] speaker = items[6] if phone not in phone_match: s = len(phone_match) phone_match[phone] = s phone_id = phone_match[phone] if context not in context_match: s = len(context_match) context_match[context] = s context_id = context_match[context] if speaker not in speaker_match: s = len(speaker_match) speaker_match[speaker] = s speaker_id = speaker_match[speaker] out[fileID].append([onset, offset, context_id, phone_id, speaker_id]) return out, context_match, phone_match, speaker_match def get_features_group(in_data, index_order): in_index = list(range(len(in_data))) in_index.sort(key=lambda x: [in_data[x][i] for i in index_order]) out_groups = [] last_values = [in_data[in_index[0]][i] for i in index_order] i_s = 0 curr_group = [[] for i in index_order] n_orders = len(index_order) - 1 tmp = [in_data[i] for i in in_index] for index, item in enumerate(tmp): for order_index, order in enumerate(index_order): if item[order] != last_values[order_index]: curr_group[-1].append((i_s, index)) for i in range(n_orders, order_index, -1): curr_group[i-1].append(curr_group[i]) curr_group[i] = [] if order_index == 0: out_groups += curr_group[0] curr_group[0] = [] last_values = [item[i] for i in index_order] i_s = index break if i_s < len(in_data): curr_group[-1].append((i_s, len(in_data))) for i in range(n_orders, 0, -1): curr_group[i-1].append(curr_group[i]) out_groups += curr_group[0] return in_index, out_groups class ABXFeatureLoader: def __init__(self, path_item_file, seqList, featureMaker, stepFeature, normalize): r""" Args: path_item_file (str): path to the .item files containing the ABX triplets seqList (list): list of items (fileID, path) where fileID refers to the file's ID as used in path_item_file, and path is the actual path to the input audio sequence featureMaker (function): either a function or a callable object. Takes a path as input and outputs the feature sequence corresponding to the given file. normalize (bool): if True all input features will be noramlized across the channels dimension. Note: You can use this dataset with pre-computed features. For example, if you have a collection of features files in the torch .pt format then you can just set featureMaker = torch.load. """ files_data, self.context_match, self.phone_match, self.speaker_match = \ load_item_file(path_item_file) self.seqNorm = True self.stepFeature = stepFeature self.loadFromFileData(files_data, seqList, featureMaker, normalize) def loadFromFileData(self, files_data, seqList, feature_maker, normalize): # self.features[i]: index_start, size, context_id, phone_id, speaker_id self.features = [] self.INDEX_CONTEXT = 2 self.INDEX_PHONE = 3 self.INDEX_SPEAKER = 4 data = [] totSize = 0 print("Building the input features...") bar = progressbar.ProgressBar(maxval=len(seqList)) bar.start() for index, vals in enumerate(seqList): fileID, file_path = vals bar.update(index) if fileID not in files_data: continue features = feature_maker(file_path) if normalize: features = normalize_with_singularity(features) features = features.detach().cpu() features = features.view(features.size(1), features.size(2)) phone_data = files_data[fileID] for phone_start, phone_end, context_id, phone_id, speaker_id in phone_data: index_start = max( 0, int(math.ceil(self.stepFeature * phone_start - 0.5))) index_end = min(features.size(0), int(math.floor(self.stepFeature * phone_end - 0.5))) if index_start >= features.size(0) or index_end <= index_start: continue loc_size = index_end - index_start self.features.append([totSize, loc_size, context_id, phone_id, speaker_id]) data.append(features[index_start:index_end]) totSize += loc_size bar.finish() print("...done") self.data = torch.cat(data, dim=0) self.feature_dim = self.data.size(1) def get_data_device(self): return self.data.device def cuda(self): self.data = self.data.cuda() def cpu(self): self.data = self.data.cpu() def get_max_group_size(self, i_group, i_sub_group): id_start, id_end = self.group_index[i_group][i_sub_group] return max([self.features[i][1] for i in range(id_start, id_end)]) def get_ids(self, index): context_id, phone_id, speaker_id = self.features[index][2:] return context_id, phone_id, speaker_id def __getitem__(self, index): i_data, out_size, context_id, phone_id, speaker_id = self.features[index] return self.data[i_data:(i_data + out_size)], out_size, (context_id, phone_id, speaker_id) def __len__(self): return len(self.features) def get_n_speakers(self): return len(self.speaker_match) def get_n_context(self): return len(self.context_match) def get_n_phone(self): return len(self.phone_match) def get_n_groups(self): return len(self.group_index) def get_n_sub_group(self, index_sub_group): return len(self.group_index[index_sub_group]) def get_iterator(self, mode, max_size_group): if mode == 'within': return ABXWithinGroupIterator(self, max_size_group) if mode == 'across': return ABXAcrossGroupIterator(self, max_size_group) raise ValueError(f"Invalid mode: {mode}") class ABXIterator: r""" Base class building ABX's triplets. """ def __init__(self, abxDataset, max_size_group): self.max_size_group = max_size_group self.dataset = abxDataset self.len = 0 self.index_csp, self.groups_csp = \ get_features_group(abxDataset.features, [abxDataset.INDEX_CONTEXT, abxDataset.INDEX_SPEAKER, abxDataset.INDEX_PHONE]) def get_group(self, i_start, i_end): data = [] max_size = 0 to_take = list(range(i_start, i_end)) if i_end - i_start > self.max_size_group: to_take = random.sample(to_take, k=self.max_size_group) for i in to_take: loc_data, loc_size, loc_id = self.dataset[self.index_csp[i]] max_size = max(loc_size, max_size) data.append(loc_data) N = len(to_take) out_data = torch.zeros(N, max_size, self.dataset.feature_dim, device=self.dataset.get_data_device()) out_size = torch.zeros(N, dtype=torch.long, device=self.dataset.get_data_device()) for i in range(N): size = data[i].size(0) out_data[i, :size] = data[i] out_size[i] = size return out_data, out_size, loc_id def __len__(self): return self.len def get_board_size(self): r""" Get the output dimension of the triplet's space. """ pass class ABXWithinGroupIterator(ABXIterator): r""" Iterator giving the triplets for the ABX within score. """ def __init__(self, abxDataset, max_size_group): super(ABXWithinGroupIterator, self).__init__(abxDataset, max_size_group) self.symmetric = True for context_group in self.groups_csp: for speaker_group in context_group: if len(speaker_group) > 1: for i_start, i_end in speaker_group: if i_end - i_start > 1: self.len += (len(speaker_group) - 1) def __iter__(self): for i_c, context_group in enumerate(self.groups_csp): for i_s, speaker_group in enumerate(context_group): n_phones = len(speaker_group) if n_phones == 1: continue for i_a in range(n_phones): i_start_a, i_end_a = self.groups_csp[i_c][i_s][i_a] if i_end_a - i_start_a == 1: continue for i_b in range(n_phones): if i_b == i_a: continue i_start_b, i_end_b = self.groups_csp[i_c][i_s][i_b] data_b, size_b, id_b = self.get_group(i_start_b, i_end_b) data_a, size_a, id_a = self.get_group(i_start_a, i_end_a) out_coords = id_a[2], id_a[1], id_b[1], id_a[0] yield out_coords, (data_a, size_a), (data_b, size_b), \ (data_a, size_a) def get_board_size(self): return (self.dataset.get_n_speakers(), self.dataset.get_n_phone(), self.dataset.get_n_phone(), self.dataset.get_n_context()) class ABXAcrossGroupIterator(ABXIterator): r""" Iterator giving the triplets for the ABX across score. """ def __init__(self, abxDataset, max_size_group): super(ABXAcrossGroupIterator, self).__init__(abxDataset, max_size_group) self.symmetric = False self.get_speakers_from_cp = {} self.max_x = 5 for context_group in self.groups_csp: for speaker_group in context_group: for i_start, i_end in speaker_group: c_id, p_id, s_id = self.dataset.get_ids( self.index_csp[i_start]) if c_id not in self.get_speakers_from_cp: self.get_speakers_from_cp[c_id] = {} if p_id not in self.get_speakers_from_cp[c_id]: self.get_speakers_from_cp[c_id][p_id] = {} self.get_speakers_from_cp[c_id][p_id][s_id] = ( i_start, i_end) for context_group in self.groups_csp: for speaker_group in context_group: if len(speaker_group) > 1: for i_start, i_end in speaker_group: c_id, p_id, s_id = self.dataset.get_ids( self.index_csp[i_start]) self.len += (len(speaker_group) - 1) * (min(self.max_x, len(self.get_speakers_from_cp[c_id][p_id]) - 1)) def get_other_speakers_in_group(self, i_start_group): c_id, p_id, s_id = self.dataset.get_ids(self.index_csp[i_start_group]) return [v for k, v in self.get_speakers_from_cp[c_id][p_id].items() if k != s_id] def get_abx_triplet(self, i_a, i_b, i_x): i_start_a, i_end_a = i_a data_a, size_a, id_a = self.get_group(i_start_a, i_end_a) i_start_b, i_end_b = i_b data_b, size_b, id_b = self.get_group(i_start_b, i_end_b) i_start_x, i_end_x = i_x data_x, size_x, id_x = self.get_group(i_start_x, i_end_x) out_coords = id_a[2], id_a[1], id_b[1], id_a[0], id_x[2] return out_coords, (data_a, size_a), (data_b, size_b), \ (data_x, size_x) def __iter__(self): for i_c, context_group in enumerate(self.groups_csp): for i_s, speaker_group in enumerate(context_group): n_phones = len(speaker_group) if n_phones == 1: continue for i_a in range(n_phones): i_start_a, i_end_a = self.groups_csp[i_c][i_s][i_a] ref = self.get_other_speakers_in_group(i_start_a) if len(ref) > self.max_x: speakers_a = random.sample(ref, k=self.max_x) else: speakers_a = ref for i_start_x, i_end_x in speakers_a: for i_b in range(n_phones): if i_b == i_a: continue i_start_b, i_end_b = self.groups_csp[i_c][i_s][i_b] yield self.get_abx_triplet((i_start_a, i_end_a), (i_start_b, i_end_b), (i_start_x, i_end_x)) def get_board_size(self): return (self.dataset.get_n_speakers(), self.dataset.get_n_phone(), self.dataset.get_n_phone(), self.dataset.get_n_context(), self.dataset.get_n_speakers())
CPC_audio-main
cpc/eval/ABX/abx_iterators.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
CPC_audio-main
cpc/eval/ABX/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from nose.tools import eq_, ok_ from . import abx_group_computation from . import abx_iterators from pathlib import Path import numpy as np import math class TestDistancesDTW(unittest.TestCase): def testDTWFunction(self): X = torch.tensor([[[0, 1], [0, 0], [1, 1], [42, 42]], [[0, 2], [0, 1], [1, 1], [-1, 0]], [[0, 0], [0, 1], [0, 0], [21, 211]]], dtype=torch.float) X_size = torch.tensor([3, 4, 2]) Y = torch.tensor([[[0, 1], [1, 2], [0, 0]]], dtype=torch.float) Y_size = torch.tensor([3]) distance_mode = abx_group_computation.get_euclidian_distance_batch dist = abx_group_computation.get_distance_group_dtw(X, Y, X_size, Y_size, distance_function=distance_mode) eq_(dist.size(), (3, 1)) expected_dist = [[(math.sqrt(2)) / 2], [3 / 4], [(2 + math.sqrt(2)) / 3]] for i in range(3): ok_(abs(expected_dist[i][0] - dist[i].item()) < 1e-4) def testThetaDTWFunctionSymetric(self): A = torch.tensor([[[0, 1], [0, 0], [1, 1], [42, 42]], [[0, 2], [0, 1], [1, 1], [-1, 0]], [[0, 0], [0, 1], [0, 0], [21, 211]]], dtype=torch.float) A_size = torch.tensor([3, 4, 2]) B = torch.tensor([[[0, 1], [1, 2], [0, 0]]], dtype=torch.float) B_size = torch.tensor([3]) distance_mode = abx_group_computation.get_euclidian_distance_batch symetric = True theta = abx_group_computation.get_theta_group_dtw(A, B, A, A_size, B_size, A_size, distance_mode, symetric) eq_(theta, 0.5) class testSingularityNormalization(unittest.TestCase): def testCosineNormalized(self): x = torch.tensor([[[1., 0., 0., 0.], [0., 0., 0., 0.]], [[0., 0., -1., 0.], [0.5, -0.5, 0.5, -0.5]]]) y = torch.tensor( [[[-0.5, -0.5, -0.5, 0.5], [0., 0., 0., 0.], [0., 1., 0., 0.]]]) norm_x = abx_iterators.normalize_with_singularity(x) norm_y = abx_iterators.normalize_with_singularity(y) dist = abx_group_computation.get_cosine_distance_batch(norm_x, norm_y) eq_(dist.size(), (2, 1, 2, 3)) ok_(abs(dist[0, 0, 0, 0] - 0.6667) < 1e-4) ok_(abs(dist[0, 0, 0, 1] - 1.) < 1e-4) ok_(abs(dist[0, 0, 0, 2] - 0.5) < 1e-4) ok_(abs(dist[0, 0, 1, 0] - 1) < 1e-4) ok_(abs(dist[0, 0, 1, 1]) < 1e-4) ok_(abs(dist[0, 0, 1, 2] - 1) < 1e-4) ok_(abs(dist[1, 0, 0, 0] - 0.3333) < 1e-4) ok_(abs(dist[1, 0, 0, 1] - 1.) < 1e-4) ok_(abs(dist[1, 0, 0, 2] - 0.5) < 1e-4) ok_(abs(dist[1, 0, 1, 0]-0.6667) < 1e-4) ok_(abs(dist[1, 0, 1, 1] - 1.) < 1e-4) ok_(abs(dist[1, 0, 1, 2] - 0.6667) < 1e-4) class testGroupMaker(unittest.TestCase): def test1DGroupMaker(self): data = [[0], [1], [2], [3], [4], [2], [2], [2]] order = [0] out_index, out_data = abx_iterators.get_features_group(data, order) expected_index = [0, 1, 2, 5, 6, 7, 3, 4] eq_(out_index, expected_index) expected_output = [(0, 1), (1, 2), (2, 6), (6, 7), (7, 8)] eq_(out_data, expected_output) def test2DGroupMaker(self): data = [[0, 1], [1, 2], [2, 3], [3, 3], [4, 0], [2, 2], [4, 2], [2, 2], [0, 3]] order = [1, 0] out_index, out_data = abx_iterators.get_features_group(data, order) expected_index = [4, 0, 1, 5, 7, 6, 8, 2, 3] eq_(out_index, expected_index) expected_output = [[(0, 1)], [(1, 2)], [(2, 3), (3, 5), (5, 6)], [(6, 7), (7, 8), (8, 9)]] eq_(out_data, expected_output) def test3DGroupMaker(self): data = [[0, 0, 0, 1], [41, 1, 0, 2], [-23, 0, 3, 1], [220, 1, -2, 3], [40, 2, 1, 0], [200, 0, 0, 1]] order = [1, 3, 2] out_index, out_data = abx_iterators.get_features_group(data, order) expected_index = [0, 5, 2, 1, 3, 4] eq_(out_index, expected_index) expected_output = [[[(0, 2), (2, 3)]], [ [(3, 4)], [(4, 5)]], [[(5, 6)]]] eq_(out_data, expected_output) class testItemLoader(unittest.TestCase): def setUp(self): self.test_data_dir = Path(__file__).parent / 'test_data' def testLoadItemFile(self): path_item_file = self.test_data_dir / "dummy_item_file.item" out, context_match, phone_match, speaker_match = \ abx_iterators.load_item_file(path_item_file) eq_(len(out), 4) eq_(len(phone_match), 5) eq_(len(speaker_match), 3) expected_phones = {'n': 0, 'd': 1, 'ih': 2, 's': 3, 'dh': 4} eq_(phone_match, expected_phones) expected_speakers = {'8193': 0, '2222': 1, '12': 2} eq_(speaker_match, expected_speakers) expected_context = {'ae+d': 0, 'n+l': 1, 'l+n': 2, 'ih+s': 3, 'n+ax': 4, 'ax+dh': 5, 's+ax': 6} eq_(context_match, expected_context) expected_output = {'2107': [[0.3225, 0.5225, 0, 0, 0], [0.4225, 0.5925, 1, 1, 1], [1.1025, 1.2925, 6, 4, 2]], '42': [[0.4525, 0.6525, 1, 1, 1], [0.5225, 0.7325, 2, 2, 0], [0.5925, 0.8725, 3, 0, 0]], '23': [[0.6525, 1.1025, 4, 3, 0], [0.7325, 1.1925, 4, 3, 1]], '407': [[0.8725, 1.2425, 5, 3, 1]]} eq_(expected_output, out) def testLoadWithinItemFile(self): path_item_file = self.test_data_dir / "dummy_item_within.item" out, context_match, phone_match, speaker_match = \ abx_iterators.load_item_file(path_item_file) expected_output = {'2107': [[0., 0.2, 0, 0, 0], [0.3225, 0.5225, 1, 0, 0], [0.6, 0.75, 1, 0, 0], [0.4225, 0.5925, 2, 1, 1]], '42': [[0.4525, 0.6525, 2, 1, 1], [0.1301, 0.2501, 2, 2, 1], [0.5225, 0.7325, 2, 1, 0], [0.0025, 0.3561, 3, 1, 1], [0.5925, 0.8725, 3, 1, 0]]} eq_(expected_output, out) class testABXFeatureLoader(unittest.TestCase): def setUp(self): self.stepFeature = 10 self.test_data_dir = Path(__file__).parent / 'test_data' def dummy_feature_maker(path_file, *args): data = torch.tensor(np.load(path_file)) assert(len(data.size()) == 1) return data.view(1, -1, 1) def testBaseLoader(self): seqList = [('2107', self.test_data_dir / '2107.npy'), ('42', self.test_data_dir / '42.npy'), ('23', self.test_data_dir / '23.npy'), ('407', self.test_data_dir / '407.npy')] dataset = abx_iterators.ABXFeatureLoader(self.test_data_dir / "dummy_item_file.item", seqList, testABXFeatureLoader.dummy_feature_maker, self.stepFeature, False) print(dataset.features) eq_(dataset.feature_dim, 1) eq_(len(dataset), 9) eq_(len(dataset.data.size()), 2) eq_(len(dataset.data), 16) data, size, coords = dataset[0] eq_(size, 1) eq_(coords, (0, 0, 0)) eq_(data.tolist(), [[3]]) data, size, coords = dataset[3] eq_(size, 1) eq_(coords, (1, 1, 1)) eq_(data.tolist(), [[5]]) def testWithinIterator(self): seqList = [('2107', self.test_data_dir / '2107.npy'), ('42', self.test_data_dir / '42.npy')] dataset = abx_iterators.ABXFeatureLoader(self.test_data_dir / "dummy_item_within.item", seqList, testABXFeatureLoader.dummy_feature_maker, self.stepFeature, False) iterator = dataset.get_iterator('within', 40) eq_(iterator.index_csp, [0, 1, 2, 6, 3, 4, 5, 8, 7]) eq_(iterator.groups_csp, [[[(0, 1)]], [[(1, 3)]], [ [(3, 4)], [(4, 6), (6, 7)]], [[(7, 8)], [(8, 9)]]]) eq_(len(iterator), 1) it = iter(iterator) c1, a_01, b_01, x_01 = next(it) eq_(c1, (1, 1, 2, 2)) a_1, s_a = a_01 eq_(s_a.tolist(), [1, 1]) eq_(a_1.tolist(), [[[4.]], [[5.]]]) eq_(x_01[0].tolist(), a_1.tolist()) eq_(x_01[1].tolist(), s_a.tolist()) eq_(b_01[0].tolist(), [[[1.]]]) eq_(b_01[1].item(), 1) eq_(next(it, False), False) eq_(iterator.get_board_size(), (2, 3, 3, 4))
CPC_audio-main
cpc/eval/ABX/unit_tests.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import math from . import dtw import progressbar def get_distance_function_from_name(name_str): if name_str == 'euclidian': return get_euclidian_distance_batch if name_str == 'cosine': return get_cosine_distance_batch raise ValueError(f"Invalid distance mode") def check_dtw_group_validity(a, b, x): assert(len(a.size()) == len(b.size())) assert(len(a.size()) == len(x.size())) assert(a.size(2) == x.size(2)) assert(a.size(2) == b.size(2)) def get_cosine_distance_batch(a1, a2, epsilon=1e-8): r""" a1 and a2 must be normalized""" N1, S1, D = a1.size() # Batch x Seq x Channel N2, S2, D = a2.size() # Batch x Seq x Channel prod = (a1.view(N1, 1, S1, 1, D)) * (a2.view(1, N2, 1, S2, D)) # Sum accross the channel dimension prod = torch.clamp(prod.sum(dim=4), -1, 1).acos() / math.pi return prod def get_euclidian_distance_batch(a1, a2): N1, S1, D = a1.size() N2, S2, D = a2.size() diff = a1.view(N1, 1, S1, 1, D) - a2.view(1, N2, 1, S2, D) return torch.sqrt((diff**2).sum(dim=4)) def get_distance_group_dtw(a1, a2, size1, size2, ignore_diag=False, symmetric=False, distance_function=get_cosine_distance_batch): N1, S1, D = a1.size() N2, S2, D = a2.size() if size1.size(0) != N1: print(a1.size(), size1.size()) print(a2.size(), size2.size()) assert(size1.size(0) == N1) assert(size2.size(0) == N2) distance_mat = distance_function(a1, a2).detach().cpu().numpy() return dtw.dtw_batch(a1, a2, size1, size2, distance_mat, ignore_diag, symmetric) def get_theta_group_dtw(a, b, x, sa, sb, sx, distance_function, symmetric): check_dtw_group_validity(a, b, x) dxb = get_distance_group_dtw( x, b, sx, sb, distance_function=distance_function) dxa = get_distance_group_dtw(x, a, sx, sa, ignore_diag=symmetric, symmetric=symmetric, distance_function=distance_function) Nx, Na = dxa.size() Nx, Nb = dxb.size() if symmetric: n_pos = Na * (Na - 1) max_val = dxb.max().item() for i in range(Na): dxa[i, i] = max_val + 1 else: n_pos = Na * Nx dxb = dxb.view(Nx, 1, Nb).expand(Nx, Na, Nb) dxa = dxa.view(Nx, Na, 1).expand(Nx, Na, Nb) sc = (dxa < dxb).sum() + 0.5 * (dxa == dxb).sum() sc /= (n_pos * Nb) return sc.item() def loc_dtw(data, distance_function, symmetric): coords, group_a, group_b, group_x = data group_a_data, group_a_size = group_a group_b_data, group_b_size = group_b group_x_data, group_x_size = group_x theta = get_theta_group_dtw(group_a_data, group_b_data, group_x_data, group_a_size, group_b_size, group_x_size, distance_function, symmetric) return (coords, 1 - theta) def get_abx_scores_dtw_on_group(group_iterator, distance_function, symmetric): data_list = [] coords_list = [] bar = progressbar.ProgressBar(maxval=len(group_iterator)) bar.start() with torch.no_grad(): for index, group in enumerate(group_iterator): bar.update(index) coords, abx = loc_dtw(group, distance_function, symmetric) data_list.append(abx) coords_list.append(coords) bar.finish() return torch.sparse.FloatTensor(torch.LongTensor(coords_list).t(), torch.FloatTensor(data_list), group_iterator.get_board_size())
CPC_audio-main
cpc/eval/ABX/abx_group_computation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torchaudio import progressbar import os import sys from pathlib import Path def adjust_sample_rate(path_db, file_list, path_db_out, target_sr): bar = progressbar.ProgressBar(maxval=len(file_list)) bar.start() for index, item in enumerate(file_list): path_in = os.path.join(path_db, item) path_out = os.path.join(path_db_out, item) bar.update(index) data, sr = torchaudio.load(path_in) transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr, resampling_method='sinc_interpolation') data = transform(data) torchaudio.save(path_out, data, target_sr, precision=16, channels_first=True) bar.finish() def get_names_list(path_tsv_file): with open(path_tsv_file, 'r') as file: data = file.readlines() return [x.split()[0] for x in data] def parse_args(argv): parser = argparse.ArgumentParser(description='Adjust the sample rate of ' 'a given group of audio files') parser.add_argument('path_db', type=str, help='Path to the directory containing the audio ' 'files') parser.add_argument("path_phone_files", type=str, help='Path to the .txt file containing the list of ' 'the files with a phone transcription') parser.add_argument("path_out", type=str, help='Path out the output directory') parser.add_argument("--out_sample_rate", type=int, default=16000, help="Sample rate of the output audio files " "(default is 160000)") parser.add_argument('--file_extension', type=str, default='.mp3') return parser.parse_args(argv) def main(argv): args = parse_args(argv) file_list_db = [f for f in os.listdir(args.path_db) if Path(f).suffix == args.file_extension] print(f"Found {len(file_list_db)} in the dataset") file_list_phone = get_names_list(args.path_phone_files) print(f"Found {len(file_list_phone)} with a phone transcription") file_list_db.sort() file_list_phone.sort() out_list = [] index_phone = 0 for file_name in file_list_db: while Path(file_name).stem > file_list_phone[index_phone]: index_phone += 1 if index_phone >= len(file_list_phone): break if Path(file_name).stem == file_list_phone[index_phone]: out_list.append(file_name) print(f"Converting {len(out_list)} files") Path(args.path_out).mkdir(parents=True, exist_ok=True) adjust_sample_rate(args.path_db, out_list, args.path_out, args.out_sample_rate) if __name__ == '__main__': main(sys.argv[1:])
CPC_audio-main
cpc/eval/utils/adjust_sample_rate.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import os import glob import argparse import numpy as np import resampy from scikits.audiolab import Sndfile, Format def load_wav(fname, rate=None): fp = Sndfile(fname, 'r') _signal = fp.read_frames(fp.nframes) _signal = _signal.reshape((-1, fp.channels)) _rate = fp.samplerate if _signal.ndim == 1: _signal.reshape((-1, 1)) if rate is not None and rate != _rate: signal = resampy.resample(_signal, _rate, rate, axis=0, filter='kaiser_best') else: signal = _signal rate = _rate return signal, rate def save_wav(fname, signal, rate): fp = Sndfile(fname, 'w', Format('wav'), signal.shape[1], rate) fp.write_frames(signal) fp.close() def reEncodeAudio(audio_path, new_rate): audio, audio_rate = load_wav(audio_path,new_rate) save_wav(audio_path, audio, new_rate) def main(): parser = argparse.ArgumentParser(description="re-encode all audios under a directory") parser.add_argument("--audio_dir_path", type=str, required=True) parser.add_argument("--new_rate", type=int, default=16000) args = parser.parse_args() audio_list = glob.glob(args.audio_dir_path + '/*.wav') print "Total number of audios to re-encode: ", len(audio_list) for audio_path in audio_list: reEncodeAudio(os.path.join(args.audio_dir_path, audio_path), args.new_rate) if __name__ == '__main__': main()
2.5D-Visual-Sound-main
reEncodeAudio.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import time import torch from options.train_options import TrainOptions from data.data_loader import CreateDataLoader from models.models import ModelBuilder from models.audioVisual_model import AudioVisualModel from torch.autograd import Variable from tensorboardX import SummaryWriter def create_optimizer(nets, opt): (net_visual, net_audio) = nets param_groups = [{'params': net_visual.parameters(), 'lr': opt.lr_visual}, {'params': net_audio.parameters(), 'lr': opt.lr_audio}] if opt.optimizer == 'sgd': return torch.optim.SGD(param_groups, momentum=opt.beta1, weight_decay=opt.weight_decay) elif opt.optimizer == 'adam': return torch.optim.Adam(param_groups, betas=(opt.beta1,0.999), weight_decay=opt.weight_decay) def decrease_learning_rate(optimizer, decay_factor=0.94): for param_group in optimizer.param_groups: param_group['lr'] *= decay_factor #used to display validation loss def display_val(model, loss_criterion, writer, index, dataset_val, opt): losses = [] with torch.no_grad(): for i, val_data in enumerate(dataset_val): if i < opt.validation_batches: output = model.forward(val_data) loss = loss_criterion(output['binaural_spectrogram'], output['audio_gt']) losses.append(loss.item()) else: break avg_loss = sum(losses)/len(losses) if opt.tensorboard: writer.add_scalar('data/val_loss', avg_loss, index) print('val loss: %.3f' % avg_loss) return avg_loss #parse arguments opt = TrainOptions().parse() opt.device = torch.device("cuda") #construct data loader data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print('#training clips = %d' % dataset_size) #create validation set data loader if validation_on option is set if opt.validation_on: #temperally set to val to load val data opt.mode = 'val' data_loader_val = CreateDataLoader(opt) dataset_val = data_loader_val.load_data() dataset_size_val = len(data_loader_val) print('#validation clips = %d' % dataset_size_val) opt.mode = 'train' #set it back if opt.tensorboard: from tensorboardX import SummaryWriter writer = SummaryWriter(comment=opt.name) else: writer = None # network builders builder = ModelBuilder() net_visual = builder.build_visual(weights=opt.weights_visual) net_audio = builder.build_audio( ngf=opt.unet_ngf, input_nc=opt.unet_input_nc, output_nc=opt.unet_output_nc, weights=opt.weights_audio) nets = (net_visual, net_audio) # construct our audio-visual model model = AudioVisualModel(nets, opt) model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) model.to(opt.device) # set up optimizer optimizer = create_optimizer(nets, opt) # set up loss function loss_criterion = torch.nn.MSELoss() if(len(opt.gpu_ids) > 0): loss_criterion.cuda(opt.gpu_ids[0]) # initialization total_steps = 0 data_loading_time = [] model_forward_time = [] model_backward_time = [] batch_loss = [] best_err = float("inf") for epoch in range(1, opt.niter+1): torch.cuda.synchronize() epoch_start_time = time.time() if(opt.measure_time): iter_start_time = time.time() for i, data in enumerate(dataset): if(opt.measure_time): torch.cuda.synchronize() iter_data_loaded_time = time.time() total_steps += opt.batchSize # forward pass model.zero_grad() output = model.forward(data) # compute loss loss = loss_criterion(output['binaural_spectrogram'], Variable(output['audio_gt'], requires_grad=False)) batch_loss.append(loss.item()) if(opt.measure_time): torch.cuda.synchronize() iter_data_forwarded_time = time.time() # update optimizer optimizer.zero_grad() loss.backward() optimizer.step() if(opt.measure_time): iter_model_backwarded_time = time.time() data_loading_time.append(iter_data_loaded_time - iter_start_time) model_forward_time.append(iter_data_forwarded_time - iter_data_loaded_time) model_backward_time.append(iter_model_backwarded_time - iter_data_forwarded_time) if(total_steps // opt.batchSize % opt.display_freq == 0): print('Display training progress at (epoch %d, total_steps %d)' % (epoch, total_steps)) avg_loss = sum(batch_loss) / len(batch_loss) print('Average loss: %.3f' % (avg_loss)) batch_loss = [] if opt.tensorboard: writer.add_scalar('data/loss', avg_loss, total_steps) if(opt.measure_time): print('average data loading time: ' + str(sum(data_loading_time)/len(data_loading_time))) print('average forward time: ' + str(sum(model_forward_time)/len(model_forward_time))) print('average backward time: ' + str(sum(model_backward_time)/len(model_backward_time))) data_loading_time = [] model_forward_time = [] model_backward_time = [] print('end of display \n') if(total_steps // opt.batchSize % opt.save_latest_freq == 0): print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'visual_latest.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'audio_latest.pth')) if(total_steps // opt.batchSize % opt.validation_freq == 0 and opt.validation_on): model.eval() opt.mode = 'val' print('Display validation results at (epoch %d, total_steps %d)' % (epoch, total_steps)) val_err = display_val(model, loss_criterion, writer, total_steps, dataset_val, opt) print('end of display \n') model.train() opt.mode = 'train' #save the model that achieves the smallest validation error if val_err < best_err: best_err = val_err print('saving the best model (epoch %d, total_steps %d) with validation error %.3f\n' % (epoch, total_steps, val_err)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'visual_best.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, 'audio_best.pth')) if(opt.measure_time): iter_start_time = time.time() if(epoch % opt.save_epoch_freq == 0): print('saving the model at the end of epoch %d, total_steps %d' % (epoch, total_steps)) torch.save(net_visual.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, str(epoch) + '_visual.pth')) torch.save(net_audio.state_dict(), os.path.join('.', opt.checkpoints_dir, opt.name, str(epoch) + '_audio.pth')) #decrease learning rate 6% every opt.learning_rate_decrease_itr epochs if(opt.learning_rate_decrease_itr > 0 and epoch % opt.learning_rate_decrease_itr == 0): decrease_learning_rate(optimizer, opt.decay_factor) print('decreased learning rate by ', opt.decay_factor)
2.5D-Visual-Sound-main
train.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import librosa import argparse import numpy as np from numpy import linalg as LA from scipy.signal import hilbert from data.audioVisual_dataset import generate_spectrogram import statistics as stat def normalize(samples): return samples / np.maximum(1e-20, np.max(np.abs(samples))) def STFT_L2_distance(predicted_binaural, gt_binaural): #channel1 predicted_spect_channel1 = librosa.core.stft(np.asfortranarray(predicted_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True) gt_spect_channel1 = librosa.core.stft(np.asfortranarray(gt_binaural[0,:]), n_fft=512, hop_length=160, win_length=400, center=True) real = np.expand_dims(np.real(predicted_spect_channel1), axis=0) imag = np.expand_dims(np.imag(predicted_spect_channel1), axis=0) predicted_realimag_channel1 = np.concatenate((real, imag), axis=0) real = np.expand_dims(np.real(gt_spect_channel1), axis=0) imag = np.expand_dims(np.imag(gt_spect_channel1), axis=0) gt_realimag_channel1 = np.concatenate((real, imag), axis=0) channel1_distance = np.mean(np.power((predicted_realimag_channel1 - gt_realimag_channel1), 2)) #channel2 predicted_spect_channel2 = librosa.core.stft(np.asfortranarray(predicted_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True) gt_spect_channel2 = librosa.core.stft(np.asfortranarray(gt_binaural[1,:]), n_fft=512, hop_length=160, win_length=400, center=True) real = np.expand_dims(np.real(predicted_spect_channel2), axis=0) imag = np.expand_dims(np.imag(predicted_spect_channel2), axis=0) predicted_realimag_channel2 = np.concatenate((real, imag), axis=0) real = np.expand_dims(np.real(gt_spect_channel2), axis=0) imag = np.expand_dims(np.imag(gt_spect_channel2), axis=0) gt_realimag_channel2 = np.concatenate((real, imag), axis=0) channel2_distance = np.mean(np.power((predicted_realimag_channel2 - gt_realimag_channel2), 2)) #sum the distance between two channels stft_l2_distance = channel1_distance + channel2_distance return float(stft_l2_distance) def Envelope_distance(predicted_binaural, gt_binaural): #channel1 pred_env_channel1 = np.abs(hilbert(predicted_binaural[0,:])) gt_env_channel1 = np.abs(hilbert(gt_binaural[0,:])) channel1_distance = np.sqrt(np.mean((gt_env_channel1 - pred_env_channel1)**2)) #channel2 pred_env_channel2 = np.abs(hilbert(predicted_binaural[1,:])) gt_env_channel2 = np.abs(hilbert(gt_binaural[1,:])) channel2_distance = np.sqrt(np.mean((gt_env_channel2 - pred_env_channel2)**2)) #sum the distance between two channels envelope_distance = channel1_distance + channel2_distance return float(envelope_distance) def main(): parser = argparse.ArgumentParser() parser.add_argument('--results_root', type=str, required=True) parser.add_argument('--audio_sampling_rate', default=16000, type=int, help='audio sampling rate') parser.add_argument('--real_mono', default=False, type=bool, help='whether the input predicted binaural audio is mono audio') parser.add_argument('--normalization', default=False, type=bool) args = parser.parse_args() stft_distance_list = [] envelope_distance_list = [] audioNames = os.listdir(args.results_root) index = 1 for audio_name in audioNames: if index % 10 == 0: print "Evaluating testing example " + str(index) + " :", audio_name #check whether input binaural is mono, replicate to two channels if it's mono if args.real_mono: mono_sound, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'mixed_mono.wav'), sr=args.audio_sampling_rate) predicted_binaural = np.repeat(np.expand_dims(mono_sound, 0), 2, axis=0) if args.normalization: predicted_binaural = normalize(predicted_binaural) else: predicted_binaural, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'predicted_binaural.wav'), sr=args.audio_sampling_rate, mono=False) if args.normalization: predicted_binaural = normalize(predicted_binaural) gt_binaural, audio_rate = librosa.load(os.path.join(args.results_root, audio_name, 'input_binaural.wav'), sr=args.audio_sampling_rate, mono=False) if args.normalization: gt_binaural = normalize(gt_binaural) #get results for this audio stft_distance_list.append(STFT_L2_distance(predicted_binaural, gt_binaural)) envelope_distance_list.append(Envelope_distance(predicted_binaural, gt_binaural)) index = index + 1 #print the results print "STFT L2 Distance: ", stat.mean(stft_distance_list), stat.stdev(stft_distance_list), stat.stdev(stft_distance_list) / np.sqrt(len(stft_distance_list)) print "Average Envelope Distance: ", stat.mean(envelope_distance_list), stat.stdev(envelope_distance_list), stat.stdev(envelope_distance_list) / np.sqrt(len(envelope_distance_list)) if __name__ == '__main__': main()
2.5D-Visual-Sound-main
evaluate.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import argparse import librosa import numpy as np from PIL import Image import subprocess from options.test_options import TestOptions import torchvision.transforms as transforms import torch from models.models import ModelBuilder from models.audioVisual_model import AudioVisualModel from data.audioVisual_dataset import generate_spectrogram def audio_normalize(samples, desired_rms = 0.1, eps = 1e-4): rms = np.maximum(eps, np.sqrt(np.mean(samples**2))) samples = samples * (desired_rms / rms) return rms / desired_rms, samples def main(): #load test arguments opt = TestOptions().parse() opt.device = torch.device("cuda") # network builders builder = ModelBuilder() net_visual = builder.build_visual(weights=opt.weights_visual) net_audio = builder.build_audio( ngf=opt.unet_ngf, input_nc=opt.unet_input_nc, output_nc=opt.unet_output_nc, weights=opt.weights_audio) nets = (net_visual, net_audio) # construct our audio-visual model model = AudioVisualModel(nets, opt) model = torch.nn.DataParallel(model, device_ids=opt.gpu_ids) model.to(opt.device) model.eval() #load the audio to perform separation audio, audio_rate = librosa.load(opt.input_audio_path, sr=opt.audio_sampling_rate, mono=False) audio_channel1 = audio[0,:] audio_channel2 = audio[1,:] #define the transformation to perform on visual frames vision_transform_list = [transforms.Resize((224,448)), transforms.ToTensor()] vision_transform_list.append(transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) vision_transform = transforms.Compose(vision_transform_list) #perform spatialization over the whole audio using a sliding window approach overlap_count = np.zeros((audio.shape)) #count the number of times a data point is calculated binaural_audio = np.zeros((audio.shape)) #perform spatialization over the whole spectrogram in a siliding-window fashion sliding_window_start = 0 data = {} samples_per_window = int(opt.audio_length * opt.audio_sampling_rate) while sliding_window_start + samples_per_window < audio.shape[-1]: sliding_window_end = sliding_window_start + samples_per_window normalizer, audio_segment = audio_normalize(audio[:,sliding_window_start:sliding_window_end]) audio_segment_channel1 = audio_segment[0,:] audio_segment_channel2 = audio_segment[1,:] audio_segment_mix = audio_segment_channel1 + audio_segment_channel2 data['audio_diff_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension data['audio_mix_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for current window frame_index = int(round((((sliding_window_start + samples_per_window / 2.0) / audio.shape[-1]) * opt.input_audio_length + 0.05) * 10 )) image = Image.open(os.path.join(opt.video_frame_path, str(frame_index).zfill(6) + '.png')).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame = vision_transform(image).unsqueeze(0) #unsqueeze to add a batch dimension data['frame'] = frame output = model.forward(data) predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() #ISTFT to convert back to audio reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 reconstructed_binaural = np.concatenate((np.expand_dims(reconstructed_signal_left, axis=0), np.expand_dims(reconstructed_signal_right, axis=0)), axis=0) * normalizer binaural_audio[:,sliding_window_start:sliding_window_end] = binaural_audio[:,sliding_window_start:sliding_window_end] + reconstructed_binaural overlap_count[:,sliding_window_start:sliding_window_end] = overlap_count[:,sliding_window_start:sliding_window_end] + 1 sliding_window_start = sliding_window_start + int(opt.hop_size * opt.audio_sampling_rate) #deal with the last segment normalizer, audio_segment = audio_normalize(audio[:,-samples_per_window:]) audio_segment_channel1 = audio_segment[0,:] audio_segment_channel2 = audio_segment[1,:] data['audio_diff_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 - audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension data['audio_mix_spec'] = torch.FloatTensor(generate_spectrogram(audio_segment_channel1 + audio_segment_channel2)).unsqueeze(0) #unsqueeze to add a batch dimension #get the frame index for last window frame_index = int(round(((opt.input_audio_length - opt.audio_length / 2.0) + 0.05) * 10)) image = Image.open(os.path.join(opt.video_frame_path, str(frame_index).zfill(6) + '.png')).convert('RGB') #image = image.transpose(Image.FLIP_LEFT_RIGHT) frame = vision_transform(image).unsqueeze(0) #unsqueeze to add a batch dimension data['frame'] = frame output = model.forward(data) predicted_spectrogram = output['binaural_spectrogram'][0,:,:,:].data[:].cpu().numpy() #ISTFT to convert back to audio reconstructed_stft_diff = predicted_spectrogram[0,:,:] + (1j * predicted_spectrogram[1,:,:]) reconstructed_signal_diff = librosa.istft(reconstructed_stft_diff, hop_length=160, win_length=400, center=True, length=samples_per_window) reconstructed_signal_left = (audio_segment_mix + reconstructed_signal_diff) / 2 reconstructed_signal_right = (audio_segment_mix - reconstructed_signal_diff) / 2 reconstructed_binaural = np.concatenate((np.expand_dims(reconstructed_signal_left, axis=0), np.expand_dims(reconstructed_signal_right, axis=0)), axis=0) * normalizer #add the spatialized audio to reconstructed_binaural binaural_audio[:,-samples_per_window:] = binaural_audio[:,-samples_per_window:] + reconstructed_binaural overlap_count[:,-samples_per_window:] = overlap_count[:,-samples_per_window:] + 1 #divide aggregated predicted audio by their corresponding counts predicted_binaural_audio = np.divide(binaural_audio, overlap_count) #check output directory if not os.path.isdir(opt.output_dir_root): os.mkdir(opt.output_dir_root) mixed_mono = (audio_channel1 + audio_channel2) / 2 librosa.output.write_wav(os.path.join(opt.output_dir_root, 'predicted_binaural.wav'), predicted_binaural_audio, opt.audio_sampling_rate) librosa.output.write_wav(os.path.join(opt.output_dir_root, 'mixed_mono.wav'), mixed_mono, opt.audio_sampling_rate) librosa.output.write_wav(os.path.join(opt.output_dir_root, 'input_binaural.wav'), audio, opt.audio_sampling_rate) if __name__ == '__main__': main()
2.5D-Visual-Sound-main
demo.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .base_options import BaseOptions class TestOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--input_audio_path', required=True, help='path to the input audio file') self.parser.add_argument('--video_frame_path', required=True, help='path to the input video frames') self.parser.add_argument('--output_dir_root', type=str, default='test_output', help='path to the output files') self.parser.add_argument('--input_audio_length', type=float, default=10, help='length of the testing video/audio') self.parser.add_argument('--hop_size', default=0.05, type=float, help='the hop length to perform audio spatialization in a sliding window approach') #model arguments self.parser.add_argument('--weights_visual', type=str, default='', help="weights for visual stream") self.parser.add_argument('--weights_audio', type=str, default='', help="weights for audio stream") self.parser.add_argument('--unet_ngf', type=int, default=64, help="unet base channel dimension") self.parser.add_argument('--unet_input_nc', type=int, default=2, help="input spectrogram number of channels") self.parser.add_argument('--unet_output_nc', type=int, default=2, help="output spectrogram number of channels") self.mode = "test" self.isTrain = False
2.5D-Visual-Sound-main
options/test_options.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self): BaseOptions.initialize(self) self.parser.add_argument('--display_freq', type=int, default=50, help='frequency of displaying average loss') self.parser.add_argument('--save_epoch_freq', type=int, default=50, help='frequency of saving checkpoints at the end of epochs') self.parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') self.parser.add_argument('--niter', type=int, default=1000, help='# of epochs to train') self.parser.add_argument('--learning_rate_decrease_itr', type=int, default=-1, help='how often is the learning rate decreased by six percent') self.parser.add_argument('--decay_factor', type=float, default=0.94, help='learning rate decay factor') self.parser.add_argument('--tensorboard', type=bool, default=False, help='use tensorboard to visualize loss change ') self.parser.add_argument('--measure_time', type=bool, default=False, help='measure time of different steps during training') self.parser.add_argument('--validation_on', action='store_true', help='whether to test on validation set during training') self.parser.add_argument('--validation_freq', type=int, default=100, help='frequency of testing on validation set') self.parser.add_argument('--validation_batches', type=int, default=10, help='number of batches to test for validation') self.parser.add_argument('--enable_data_augmentation', type=bool, default=True, help='whether to augment input frame') #model arguments self.parser.add_argument('--weights_visual', type=str, default='', help="weights for visual stream") self.parser.add_argument('--weights_audio', type=str, default='', help="weights for audio stream") self.parser.add_argument('--unet_ngf', type=int, default=64, help="unet base channel dimension") self.parser.add_argument('--unet_input_nc', type=int, default=2, help="input spectrogram number of channels") self.parser.add_argument('--unet_output_nc', type=int, default=2, help="output spectrogram number of channels") #optimizer arguments self.parser.add_argument('--lr_visual', type=float, default=0.0001, help='learning rate for visual stream') self.parser.add_argument('--lr_audio', type=float, default=0.001, help='learning rate for unet') self.parser.add_argument('--optimizer', default='adam', type=str, help='adam or sgd for optimization') self.parser.add_argument('--beta1', default=0.9, type=float, help='momentum for sgd, beta1 for adam') self.parser.add_argument('--weight_decay', default=0.0005, type=float, help='weights regularizer') self.mode = "train" self.isTrain = True self.enable_data_augmentation = True
2.5D-Visual-Sound-main
options/train_options.py
2.5D-Visual-Sound-main
options/__init__.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import os from util import util import torch class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False def initialize(self): self.parser.add_argument('--hdf5FolderPath', help='path to the folder that contains train.h5, val.h5 and test.h5') self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') self.parser.add_argument('--name', type=str, default='spatialAudioVisual', help='name of the experiment. It decides where to store models') self.parser.add_argument('--checkpoints_dir', type=str, default='checkpoints/', help='models are saved here') self.parser.add_argument('--model', type=str, default='audioVisual', help='chooses how datasets are loaded.') self.parser.add_argument('--batchSize', type=int, default=32, help='input batch size') self.parser.add_argument('--nThreads', default=16, type=int, help='# threads for loading data') self.parser.add_argument('--audio_sampling_rate', default=16000, type=int, help='audio sampling rate') self.parser.add_argument('--audio_length', default=0.63, type=float, help='audio length, default 0.63s') self.enable_data_augmentation = True self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.mode = self.mode self.opt.isTrain = self.isTrain self.opt.enable_data_augmentation = self.enable_data_augmentation str_ids = self.opt.gpu_ids.split(',') self.opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: self.opt.gpu_ids.append(id) # set gpu ids if len(self.opt.gpu_ids) > 0: torch.cuda.set_device(self.opt.gpu_ids[0]) #I should process the opt here, like gpu ids, etc. args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
2.5D-Visual-Sound-main
options/base_options.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path)
2.5D-Visual-Sound-main
util/util.py
2.5D-Visual-Sound-main
util/__init__.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torchvision from .networks import VisualNet, AudioNet, weights_init class ModelBuilder(): # builder for visual stream def build_visual(self, weights=''): pretrained = True original_resnet = torchvision.models.resnet18(pretrained) net = VisualNet(original_resnet) if len(weights) > 0: print('Loading weights for visual stream') net.load_state_dict(torch.load(weights)) return net #builder for audio stream def build_audio(self, ngf=64, input_nc=2, output_nc=2, weights=''): #AudioNet: 5 layer UNet net = AudioNet(ngf, input_nc, output_nc) net.apply(weights_init) if len(weights) > 0: print('Loading weights for audio stream') net.load_state_dict(torch.load(weights)) return net
2.5D-Visual-Sound-main
models/models.py