python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import json import os from argparse import ArgumentParser def parse_and_load_from_model(parser): # args according to the loaded model # do not try to specify them from cmd line since they will be overwritten add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) args = parser.parse_args() args_to_overwrite = [] for group_name in ["dataset", "model", "diffusion"]: args_to_overwrite += get_args_per_group_name(parser, args, group_name) # load args from model model_path = get_model_path_from_args() args_path = os.path.join(os.path.dirname(model_path), "args.json") assert os.path.exists(args_path), "Arguments json file was not found!" with open(args_path, "r") as fr: model_args = json.load(fr) for a in args_to_overwrite: if a in model_args.keys(): # Use the chosen dataset, or use the dataset that is used to train the model if a == "dataset": if args.__dict__[a] is None: args.__dict__[a] = model_args[a] elif a == "input_motion_length": continue else: args.__dict__[a] = model_args[a] else: print( "Warning: was not able to load [{}], using default value [{}] instead.".format( a, args.__dict__[a] ) ) return args def get_args_per_group_name(parser, args, group_name): for group in parser._action_groups: if group.title == group_name: group_dict = { a.dest: getattr(args, a.dest, None) for a in group._group_actions } return list(argparse.Namespace(**group_dict).__dict__.keys()) return ValueError("group_name was not found.") def get_model_path_from_args(): try: dummy_parser = ArgumentParser() dummy_parser.add_argument("model_path") dummy_args, _ = dummy_parser.parse_known_args() return dummy_args.model_path except Exception: raise ValueError("model_path argument must be specified.") def add_base_options(parser): group = parser.add_argument_group("base") group.add_argument( "--cuda", default=True, type=bool, help="Use cuda device, otherwise use CPU." ) group.add_argument("--device", default=0, type=int, help="Device id to use.") group.add_argument("--seed", default=10, type=int, help="For fixing random seed.") group.add_argument( "--batch_size", default=64, type=int, help="Batch size during training." ) group.add_argument( "--timestep_respacing", default="", type=str, help="ddim timestep respacing." ) def add_diffusion_options(parser): group = parser.add_argument_group("diffusion") group.add_argument( "--noise_schedule", default="cosine", choices=["linear", "cosine"], type=str, help="Noise schedule type", ) group.add_argument( "--diffusion_steps", default=1000, type=int, help="Number of diffusion steps (denoted T in the paper)", ) group.add_argument( "--sigma_small", default=True, type=bool, help="Use smaller sigma values." ) def add_model_options(parser): group = parser.add_argument_group("model") group.add_argument( "--arch", default="DiffMLP", type=str, help="Architecture types as reported in the paper.", ) group.add_argument( "--motion_nfeat", default=132, type=int, help="motion feature dimension" ) group.add_argument( "--sparse_dim", default=54, type=int, help="sparse signal feature dimension" ) group.add_argument("--layers", default=8, type=int, help="Number of layers.") group.add_argument( "--latent_dim", default=512, type=int, help="Transformer/GRU width." ) group.add_argument( "--cond_mask_prob", default=0.0, type=float, help="The probability of masking the condition during training." " For classifier-free guidance learning.", ) group.add_argument( "--input_motion_length", default=196, type=int, help="Limit for the maximal number of frames.", ) group.add_argument( "--no_normalization", action="store_true", help="no data normalisation for the 6d motions", ) def add_data_options(parser): group = parser.add_argument_group("dataset") group.add_argument( "--dataset", default=None, choices=[ "amass", ], type=str, help="Dataset name (choose from list).", ) group.add_argument( "--dataset_path", default="./dataset/AMASS/", type=str, help="Dataset path", ) def add_training_options(parser): group = parser.add_argument_group("training") group.add_argument( "--save_dir", required=True, type=str, help="Path to save checkpoints and results.", ) group.add_argument( "--overwrite", action="store_true", help="If True, will enable to use an already existing save_dir.", ) group.add_argument( "--train_platform_type", default="NoPlatform", choices=["NoPlatform", "ClearmlPlatform", "TensorboardPlatform"], type=str, help="Choose platform to log results. NoPlatform means no logging.", ) group.add_argument("--lr", default=2e-4, type=float, help="Learning rate.") group.add_argument( "--weight_decay", default=0.0, type=float, help="Optimizer weight decay." ) group.add_argument( "--lr_anneal_steps", default=0, type=int, help="Number of learning rate anneal steps.", ) group.add_argument( "--train_dataset_repeat_times", default=1000, type=int, help="Repeat the training dataset to save training time", ) group.add_argument( "--eval_during_training", action="store_true", help="If True, will run evaluation during training.", ) group.add_argument( "--log_interval", default=100, type=int, help="Log losses each N steps" ) group.add_argument( "--save_interval", default=5000, type=int, help="Save checkpoints and run evaluation each N steps", ) group.add_argument( "--num_steps", default=6000000, type=int, help="Training will stop after the specified number of steps.", ) group.add_argument( "--resume_checkpoint", default="", type=str, help="If not empty, will start from the specified checkpoint (path to model###.pt file).", ) group.add_argument( "--load_optimizer", action="store_true", help="If True, will also load the saved optimizer state for network initialization", ) group.add_argument( "--num_workers", default=8, type=int, help="Number of dataloader workers.", ) def add_sampling_options(parser): group = parser.add_argument_group("sampling") group.add_argument( "--overlapping_test", action="store_true", help="enabling overlapping test", ) group.add_argument( "--num_per_batch", default=256, type=int, help="the batch size of each split during non-overlapping testing", ) group.add_argument( "--sld_wind_size", default=70, type=int, help="the sliding window size", ) group.add_argument( "--vis", action="store_true", help="visualize the output", ) group.add_argument( "--fix_noise", action="store_true", help="fix init noise for the output", ) group.add_argument( "--fps", default=30, type=int, help="FPS", ) group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) group.add_argument( "--output_dir", default="", type=str, help="Path to results dir (auto created by the script). " "If empty, will create dir in parallel to checkpoint.", ) group.add_argument( "--support_dir", type=str, help="the dir that you store your smplh and dmpls dirs", ) def add_evaluation_options(parser): group = parser.add_argument_group("eval") group.add_argument( "--model_path", required=True, type=str, help="Path to model####.pt file to be sampled.", ) def train_args(): parser = ArgumentParser() add_base_options(parser) add_data_options(parser) add_model_options(parser) add_diffusion_options(parser) add_training_options(parser) return parser.parse_args() def sample_args(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_sampling_options(parser) return parse_and_load_from_model(parser) def evaluation_parser(): parser = ArgumentParser() # args specified by the user: (all other will be loaded from the model) add_base_options(parser) add_evaluation_options(parser) return parse_and_load_from_model(parser)
AGRoL-main
utils/parser_util.py
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import os import cv2 import numpy as np import trimesh from body_visualizer.mesh.mesh_viewer import MeshViewer from body_visualizer.tools.vis_tools import colors from human_body_prior.tools.omni_tools import copy2cpu as c2c from tqdm import tqdm os.environ["PYOPENGL_PLATFORM"] = "egl" class CheckerBoard: def __init__(self, white=(247, 246, 244), black=(146, 163, 171)): self.white = np.array(white) / 255.0 self.black = np.array(black) / 255.0 self.verts, self.faces, self.texts = None, None, None self.offset = None @staticmethod def gen_checker_xy(black, white, square_size=0.5, xlength=50.0, ylength=50.0): """ generate a checker board in parallel to x-y plane starting from (0, 0) to (xlength, ylength), in meters return: trimesh.Trimesh """ xsquares = int(xlength / square_size) ysquares = int(ylength / square_size) verts, faces, texts = [], [], [] fcount = 0 for i in range(xsquares): for j in range(ysquares): p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, j * square_size, 0]) p3 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 p1 = np.array([i * square_size, j * square_size, 0]) p2 = np.array([(i + 1) * square_size, (j + 1) * square_size, 0]) p3 = np.array([i * square_size, (j + 1) * square_size, 0]) verts.extend([p1, p2, p3]) faces.append([fcount * 3, fcount * 3 + 1, fcount * 3 + 2]) fcount += 1 if (i + j) % 2 == 0: texts.append(black) texts.append(black) else: texts.append(white) texts.append(white) # now compose as mesh mesh = trimesh.Trimesh( vertices=np.array(verts) + np.array([-5, -5, 0]), faces=np.array(faces), process=False, face_colors=np.array(texts)) return mesh """ # -------------------------------- # Visualize avatar using body pose information and body model # -------------------------------- """ def save_animation(body_pose, savepath, bm, fps=60, resolution=(800, 800)): imw, imh = resolution mv = MeshViewer(width=imw, height=imh, use_offscreen=True) faces = c2c(bm.f) img_array = [] for fId in tqdm(range(body_pose.v.shape[0])): body_mesh = trimesh.Trimesh( vertices=c2c(body_pose.v[fId]), faces=faces, vertex_colors=np.tile(colors["purple"], (6890, 1)), ) generator = CheckerBoard() checker_mesh = generator.gen_checker_xy(generator.black, generator.white) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) body_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) body_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(-90, (0, 0, 10)) ) checker_mesh.apply_transform( trimesh.transformations.rotation_matrix(30, (10, 0, 0)) ) checker_mesh.apply_transform(trimesh.transformations.scale_matrix(0.5)) mv.set_static_meshes([checker_mesh, body_mesh]) body_image = mv.render(render_wireframe=False) body_image = body_image.astype(np.uint8) body_image = cv2.cvtColor(body_image, cv2.COLOR_BGR2RGB) img_array.append(body_image) out = cv2.VideoWriter(savepath, cv2.VideoWriter_fourcc(*"DIVX"), fps, resolution) for i in range(len(img_array)): out.write(img_array[i]) out.release()
AGRoL-main
utils/utils_visualize.py
# MIT License # Copyright (c) 2022 ETH Sensing, Interaction & Perception Lab # # This code is based on https://github.com/eth-siplab/AvatarPoser # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch from human_body_prior.tools import tgm_conversion as tgm from human_body_prior.tools.rotation_tools import aa2matrot, matrot2aa from torch.nn import functional as F def bgs(d6s): d6s = d6s.reshape(-1, 2, 3).permute(0, 2, 1) bsz = d6s.shape[0] b1 = F.normalize(d6s[:, :, 0], p=2, dim=1) a2 = d6s[:, :, 1] c = torch.bmm(b1.view(bsz, 1, -1), a2.view(bsz, -1, 1)).view(bsz, 1) * b1 b2 = F.normalize(a2 - c, p=2, dim=1) b3 = torch.cross(b1, b2, dim=1) return torch.stack([b1, b2, b3], dim=-1) def matrot2sixd(pose_matrot): """ :param pose_matrot: Nx3x3 :return: pose_6d: Nx6 """ pose_6d = torch.cat([pose_matrot[:, :3, 0], pose_matrot[:, :3, 1]], dim=1) return pose_6d def aa2sixd(pose_aa): """ :param pose_aa Nx3 :return: pose_6d: Nx6 """ pose_matrot = aa2matrot(pose_aa) pose_6d = matrot2sixd(pose_matrot) return pose_6d def sixd2matrot(pose_6d): """ :param pose_6d: Nx6 :return: pose_matrot: Nx3x3 """ rot_vec_1 = pose_6d[:, :3] rot_vec_2 = pose_6d[:, 3:6] rot_vec_3 = torch.cross(rot_vec_1, rot_vec_2) pose_matrot = torch.stack([rot_vec_1, rot_vec_2, rot_vec_3], dim=-1) return pose_matrot def sixd2aa(pose_6d, batch=False): """ :param pose_6d: Nx6 :return: pose_aa: Nx3 """ if batch: B, J, C = pose_6d.shape pose_6d = pose_6d.reshape(-1, 6) pose_matrot = sixd2matrot(pose_6d) pose_aa = matrot2aa(pose_matrot) if batch: pose_aa = pose_aa.reshape(B, J, 3) return pose_aa def sixd2quat(pose_6d): """ :param pose_6d: Nx6 :return: pose_quaternion: Nx4 """ pose_mat = sixd2matrot(pose_6d) pose_mat_34 = torch.cat( (pose_mat, torch.zeros(pose_mat.size(0), pose_mat.size(1), 1)), dim=-1 ) pose_quaternion = tgm.rotation_matrix_to_quaternion(pose_mat_34) return pose_quaternion def quat2aa(pose_quat): """ :param pose_quat: Nx4 :return: pose_aa: Nx3 """ return tgm.quaternion_to_angle_axis(pose_quat)
AGRoL-main
utils/utils_transform.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion """ Helpers for distributed training. """ import socket import torch as th import torch.distributed as dist # Change this to reflect your cluster layout. # The GPU for a given rank is (rank % GPUS_PER_NODE). GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 used_device = 0 def setup_dist(device=0): """ Setup a distributed process group. """ global used_device used_device = device if dist.is_initialized(): return def dev(): """ Get the device to use for torch.distributed. """ global used_device if th.cuda.is_available() and used_device >= 0: return th.device(f"cuda:{used_device}") return th.device("cpu") def load_state_dict(path, **kwargs): """ Load a PyTorch file without redundant fetches across MPI ranks. """ return th.load(path, **kwargs) def sync_params(params): """ Synchronize a sequence of Tensors across ranks from rank 0. """ for p in params: with th.no_grad(): dist.broadcast(p, 0) def _find_free_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] finally: s.close()
AGRoL-main
utils/dist_util.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import torch as th from .diffusion_model import DiffusionModel def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. If the stride is a string starting with "ddim", then the fixed striding from the DDIM paper is used, and only one section is allowed. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim") :]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError( f"cannot create exactly {num_timesteps} steps with an integer stride" ) section_counts = [int(x) for x in section_counts.split(",")] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError( f"cannot divide section of {size} steps into {section_count}" ) if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) class SpacedDiffusion(DiffusionModel): """ A diffusion process which can skip steps in a base diffusion process. :param use_timesteps: a collection (sequence or set) of timesteps from the original diffusion process to retain. :param kwargs: the kwargs to create the base diffusion process. """ def __init__(self, use_timesteps, **kwargs): self.use_timesteps = set(use_timesteps) self.timestep_map = [] self.original_num_steps = len(kwargs["betas"]) base_diffusion = DiffusionModel(**kwargs) last_alpha_cumprod = 1.0 new_betas = [] for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): if i in self.use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod self.timestep_map.append(i) kwargs["betas"] = np.array(new_betas) super().__init__(**kwargs) def p_mean_variance( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) def training_losses( self, model, *args, **kwargs ): # pylint: disable=signature-differs return super().training_losses(self._wrap_model(model), *args, **kwargs) def condition_mean(self, cond_fn, *args, **kwargs): return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) def condition_score(self, cond_fn, *args, **kwargs): return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) def _wrap_model(self, model): if isinstance(model, _WrappedModel): return model return _WrappedModel( model, self.timestep_map, self.rescale_timesteps, self.original_num_steps ) def _scale_timesteps(self, t): # Scaling is done by the wrapped model. return t class _WrappedModel: def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): self.model = model self.timestep_map = timestep_map self.rescale_timesteps = rescale_timesteps self.original_num_steps = original_num_steps def __call__(self, x, ts, sparse, **kwargs): map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) new_ts = map_tensor[ts] if self.rescale_timesteps: new_ts = new_ts.float() * (1000.0 / self.original_num_steps) return self.model(x, new_ts, sparse, **kwargs)
AGRoL-main
diffusion/respace.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion from abc import ABC, abstractmethod import numpy as np import torch as th import torch.distributed as dist def create_named_schedule_sampler(name, diffusion): """ Create a ScheduleSampler from a library of pre-defined samplers. :param name: the name of the sampler. :param diffusion: the diffusion object to sample for. """ if name == "uniform": return UniformSampler(diffusion) elif name == "loss-second-moment": return LossSecondMomentResampler(diffusion) else: raise NotImplementedError(f"unknown schedule sampler: {name}") class ScheduleSampler(ABC): """ A distribution over timesteps in the diffusion process, intended to reduce variance of the objective. By default, samplers perform unbiased importance sampling, in which the objective's mean is unchanged. However, subclasses may override sample() to change how the resampled terms are reweighted, allowing for actual changes in the objective. """ @abstractmethod def weights(self): """ Get a numpy array of weights, one per diffusion step. The weights needn't be normalized, but must be positive. """ def sample(self, batch_size, device): """ Importance-sample timesteps for a batch. :param batch_size: the number of timesteps. :param device: the torch device to save to. :return: a tuple (timesteps, weights): - timesteps: a tensor of timestep indices. - weights: a tensor of weights to scale the resulting losses. """ w = self.weights() p = w / np.sum(w) indices_np = np.random.choice(len(p), size=(batch_size,), p=p) indices = th.from_numpy(indices_np).long().to(device) weights_np = 1 / (len(p) * p[indices_np]) weights = th.from_numpy(weights_np).float().to(device) return indices, weights class UniformSampler(ScheduleSampler): def __init__(self, diffusion): self.diffusion = diffusion self._weights = np.ones([diffusion.num_timesteps]) def weights(self): return self._weights class LossAwareSampler(ScheduleSampler): def update_with_local_losses(self, local_ts, local_losses): """ Update the reweighting using losses from a model. Call this method from each rank with a batch of timesteps and the corresponding losses for each of those timesteps. This method will perform synchronization to make sure all of the ranks maintain the exact same reweighting. :param local_ts: an integer Tensor of timesteps. :param local_losses: a 1D Tensor of losses. """ batch_sizes = [ th.tensor([0], dtype=th.int32, device=local_ts.device) for _ in range(dist.get_world_size()) ] dist.all_gather( batch_sizes, th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device), ) # Pad all_gather batches to be the maximum batch size. batch_sizes = [x.item() for x in batch_sizes] max_bs = max(batch_sizes) timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes] loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes] dist.all_gather(timestep_batches, local_ts) dist.all_gather(loss_batches, local_losses) timesteps = [ x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs] ] losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]] self.update_with_all_losses(timesteps, losses) @abstractmethod def update_with_all_losses(self, ts, losses): """ Update the reweighting using losses from a model. Sub-classes should override this method to update the reweighting using losses from the model. This method directly updates the reweighting without synchronizing between workers. It is called by update_with_local_losses from all ranks with identical arguments. Thus, it should have deterministic behavior to maintain state across workers. :param ts: a list of int timesteps. :param losses: a list of float losses, one per timestep. """ class LossSecondMomentResampler(LossAwareSampler): def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001): self.diffusion = diffusion self.history_per_term = history_per_term self.uniform_prob = uniform_prob self._loss_history = np.zeros( [diffusion.num_timesteps, history_per_term], dtype=np.float64 ) self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int) def weights(self): if not self._warmed_up(): return np.ones([self.diffusion.num_timesteps], dtype=np.float64) weights = np.sqrt(np.mean(self._loss_history**2, axis=-1)) weights /= np.sum(weights) weights *= 1 - self.uniform_prob weights += self.uniform_prob / len(weights) return weights def update_with_all_losses(self, ts, losses): for t, loss in zip(ts, losses): if self._loss_counts[t] == self.history_per_term: # Shift out the oldest loss term. self._loss_history[t, :-1] = self._loss_history[t, 1:] self._loss_history[t, -1] = loss else: self._loss_history[t, self._loss_counts[t]] = loss self._loss_counts[t] += 1 def _warmed_up(self): return (self._loss_counts == self.history_per_term).all()
AGRoL-main
diffusion/resample.py
""" Logger copied from OpenAI baselines to avoid extra RL-based dependencies: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/logger.py """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # Copyright (c) Meta Platforms, Inc. All Rights Reserved import datetime import json import os import os.path as osp import sys import tempfile import time import warnings from collections import defaultdict from contextlib import contextmanager DEBUG = 10 INFO = 20 WARN = 30 ERROR = 40 DISABLED = 50 class KVWriter(object): def writekvs(self, kvs): raise NotImplementedError class SeqWriter(object): def writeseq(self, seq): raise NotImplementedError class HumanOutputFormat(KVWriter, SeqWriter): def __init__(self, filename_or_file): if isinstance(filename_or_file, str): self.file = open(filename_or_file, "wt") self.own_file = True else: assert hasattr(filename_or_file, "read"), ( "expected file or str, got %s" % filename_or_file ) self.file = filename_or_file self.own_file = False def writekvs(self, kvs): # Create strings for printing key2str = {} for (key, val) in sorted(kvs.items()): if hasattr(val, "__float__"): valstr = "%-8.3g" % val else: valstr = str(val) key2str[self._truncate(key)] = self._truncate(valstr) # Find max widths if len(key2str) == 0: print("WARNING: tried to write empty key-value dict") return else: keywidth = max(map(len, key2str.keys())) valwidth = max(map(len, key2str.values())) # Write out the data dashes = "-" * (keywidth + valwidth + 7) lines = [dashes] for (key, val) in sorted(key2str.items(), key=lambda kv: kv[0].lower()): lines.append( "| %s%s | %s%s |" % (key, " " * (keywidth - len(key)), val, " " * (valwidth - len(val))) ) lines.append(dashes) self.file.write("\n".join(lines) + "\n") # Flush the output to the file self.file.flush() def _truncate(self, s): maxlen = 30 return s[: maxlen - 3] + "..." if len(s) > maxlen else s def writeseq(self, seq): seq = list(seq) for (i, elem) in enumerate(seq): self.file.write(elem) if i < len(seq) - 1: # add space unless this is the last one self.file.write(" ") self.file.write("\n") self.file.flush() def close(self): if self.own_file: self.file.close() class JSONOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "wt") def writekvs(self, kvs): for k, v in sorted(kvs.items()): if hasattr(v, "dtype"): kvs[k] = float(v) self.file.write(json.dumps(kvs) + "\n") self.file.flush() def close(self): self.file.close() class CSVOutputFormat(KVWriter): def __init__(self, filename): self.file = open(filename, "w+t") self.keys = [] self.sep = "," def writekvs(self, kvs): # Add our current row to the history extra_keys = list(kvs.keys() - self.keys) extra_keys.sort() if extra_keys: self.keys.extend(extra_keys) self.file.seek(0) lines = self.file.readlines() self.file.seek(0) for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") self.file.write(k) self.file.write("\n") for line in lines[1:]: self.file.write(line[:-1]) self.file.write(self.sep * len(extra_keys)) self.file.write("\n") for (i, k) in enumerate(self.keys): if i > 0: self.file.write(",") v = kvs.get(k) if v is not None: self.file.write(str(v)) self.file.write("\n") self.file.flush() def close(self): self.file.close() class TensorBoardOutputFormat(KVWriter): """ Dumps key/value pairs into TensorBoard's numeric format. """ def __init__(self, dir): os.makedirs(dir, exist_ok=True) self.dir = dir self.step = 1 prefix = "events" path = osp.join(osp.abspath(dir), prefix) import tensorflow as tf from tensorflow.core.util import event_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.util import compat self.tf = tf self.event_pb2 = event_pb2 self.pywrap_tensorflow = pywrap_tensorflow self.writer = pywrap_tensorflow.EventsWriter(compat.as_bytes(path)) def writekvs(self, kvs): def summary_val(k, v): kwargs = {"tag": k, "simple_value": float(v)} return self.tf.Summary.Value(**kwargs) summary = self.tf.Summary(value=[summary_val(k, v) for k, v in kvs.items()]) event = self.event_pb2.Event(wall_time=time.time(), summary=summary) event.step = ( self.step ) # is there any reason why you'd want to specify the step? self.writer.WriteEvent(event) self.writer.Flush() self.step += 1 def close(self): if self.writer: self.writer.Close() self.writer = None def make_output_format(format, ev_dir, log_suffix=""): os.makedirs(ev_dir, exist_ok=True) if format == "stdout": return HumanOutputFormat(sys.stdout) elif format == "log": return HumanOutputFormat(osp.join(ev_dir, "log%s.txt" % log_suffix)) elif format == "json": return JSONOutputFormat(osp.join(ev_dir, "progress%s.json" % log_suffix)) elif format == "csv": return CSVOutputFormat(osp.join(ev_dir, "progress%s.csv" % log_suffix)) elif format == "tensorboard": return TensorBoardOutputFormat(osp.join(ev_dir, "tb%s" % log_suffix)) else: raise ValueError("Unknown format specified: %s" % (format,)) # ================================================================ # API # ================================================================ def logkv(key, val): """ Log a value of some diagnostic Call this once for each diagnostic quantity, each iteration If called many times, last value will be used. """ get_current().logkv(key, val) def logkv_mean(key, val): """ The same as logkv(), but if called many times, values averaged. """ get_current().logkv_mean(key, val) def logkvs(d): """ Log a dictionary of key-value pairs """ for (k, v) in d.items(): logkv(k, v) def dumpkvs(): """ Write all of the diagnostics from the current iteration """ return get_current().dumpkvs() def getkvs(): return get_current().name2val def log(*args, level=INFO): """ Write the sequence of args, with no separators, to the console and output files (if you've configured an output file). """ get_current().log(*args, level=level) def debug(*args): log(*args, level=DEBUG) def info(*args): log(*args, level=INFO) def warn(*args): log(*args, level=WARN) def error(*args): log(*args, level=ERROR) def set_level(level): """ Set logging threshold on current logger. """ get_current().set_level(level) def set_comm(comm): get_current().set_comm(comm) def get_dir(): """ Get directory that log files are being written to. will be None if there is no output directory (i.e., if you didn't call start) """ return get_current().get_dir() record_tabular = logkv dump_tabular = dumpkvs @contextmanager def profile_kv(scopename): logkey = "wait_" + scopename tstart = time.time() try: yield finally: get_current().name2val[logkey] += time.time() - tstart def profile(n): """ Usage: @profile("my_func") def my_func(): code """ def decorator_with_name(func): def func_wrapper(*args, **kwargs): with profile_kv(n): return func(*args, **kwargs) return func_wrapper return decorator_with_name # ================================================================ # Backend # ================================================================ def get_current(): if Logger.CURRENT is None: _configure_default_logger() return Logger.CURRENT class Logger(object): DEFAULT = None # A logger with no output files. (See right below class definition) # So that you can still log to the terminal without setting up any output files CURRENT = None # Current logger being used by the free functions above def __init__(self, dir, output_formats, comm=None): self.name2val = defaultdict(float) # values this iteration self.name2cnt = defaultdict(int) self.level = INFO self.dir = dir self.output_formats = output_formats self.comm = comm # Logging API, forwarded # ---------------------------------------- def logkv(self, key, val): self.name2val[key] = val def logkv_mean(self, key, val): oldval, cnt = self.name2val[key], self.name2cnt[key] self.name2val[key] = oldval * cnt / (cnt + 1) + val / (cnt + 1) self.name2cnt[key] = cnt + 1 def dumpkvs(self): if self.comm is None: d = self.name2val else: d = mpi_weighted_mean( self.comm, { name: (val, self.name2cnt.get(name, 1)) for (name, val) in self.name2val.items() }, ) if self.comm.rank != 0: d["dummy"] = 1 # so we don't get a warning about empty dict out = d.copy() # Return the dict for unit testing purposes for fmt in self.output_formats: if isinstance(fmt, KVWriter): fmt.writekvs(d) self.name2val.clear() self.name2cnt.clear() return out def log(self, *args, level=INFO): if self.level <= level: self._do_log(args) # Configuration # ---------------------------------------- def set_level(self, level): self.level = level def set_comm(self, comm): self.comm = comm def get_dir(self): return self.dir def close(self): for fmt in self.output_formats: fmt.close() # Misc # ---------------------------------------- def _do_log(self, args): for fmt in self.output_formats: if isinstance(fmt, SeqWriter): fmt.writeseq(map(str, args)) def get_rank_without_mpi_import(): # check environment variables here instead of importing mpi4py # to avoid calling MPI_Init() when this module is imported for varname in ["PMI_RANK", "OMPI_COMM_WORLD_RANK"]: if varname in os.environ: return int(os.environ[varname]) return 0 def mpi_weighted_mean(comm, local_name2valcount): """ Copied from: https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/common/mpi_util.py#L110 Perform a weighted average over dicts that are each on a different node Input: local_name2valcount: dict mapping key -> (value, count) Returns: key -> mean """ all_name2valcount = comm.gather(local_name2valcount) if comm.rank == 0: name2sum = defaultdict(float) name2count = defaultdict(float) for n2vc in all_name2valcount: for (name, (val, count)) in n2vc.items(): try: val = float(val) except ValueError: if comm.rank == 0: warnings.warn( "WARNING: tried to compute mean on non-float {}={}".format( name, val ) ) else: name2sum[name] += val * count name2count[name] += count return {name: name2sum[name] / name2count[name] for name in name2sum} else: return {} def configure(dir=None, format_strs=None, comm=None, log_suffix=""): """ If comm is provided, average all numerical stats across that comm """ if dir is None: dir = os.getenv("OPENAI_LOGDIR") if dir is None: dir = osp.join( tempfile.gettempdir(), datetime.datetime.now().strftime("agrol-%Y-%m-%d-%H-%M-%S-%f"), ) assert isinstance(dir, str) dir = os.path.expanduser(dir) os.makedirs(os.path.expanduser(dir), exist_ok=True) rank = get_rank_without_mpi_import() if rank > 0: log_suffix = log_suffix + "-rank%03i" % rank if format_strs is None: if rank == 0: format_strs = os.getenv("OPENAI_LOG_FORMAT", "stdout,log,csv").split(",") else: format_strs = os.getenv("OPENAI_LOG_FORMAT_MPI", "log").split(",") format_strs = filter(None, format_strs) output_formats = [make_output_format(f, dir, log_suffix) for f in format_strs] Logger.CURRENT = Logger(dir=dir, output_formats=output_formats, comm=comm) if output_formats: log("Logging to %s" % dir) def _configure_default_logger(): configure() Logger.DEFAULT = Logger.CURRENT def reset(): if Logger.CURRENT is not Logger.DEFAULT: Logger.CURRENT.close() Logger.CURRENT = Logger.DEFAULT log("Reset logger") @contextmanager def scoped_configure(dir=None, format_strs=None, comm=None): prevlogger = Logger.CURRENT configure(dir=dir, format_strs=format_strs, comm=comm) try: yield finally: Logger.CURRENT.close() Logger.CURRENT = prevlogger
AGRoL-main
diffusion/logger.py
""" This code started out as a PyTorch port of Ho et al's diffusion models: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch import torch as th from diffusion.gaussian_diffusion import ( GaussianDiffusion, LossType, ModelMeanType, ModelVarType, ) class DiffusionModel(GaussianDiffusion): def __init__( self, **kwargs, ): super(DiffusionModel, self).__init__( **kwargs, ) def masked_l2(self, a, b): bs, n, c = a.shape loss = torch.mean( torch.norm( (a - b).reshape(-1, 6), 2, 1, ) ) return loss def training_losses( self, model, x_start, t, sparse, model_kwargs=None, noise=None, dataset=None ): if model_kwargs is None: model_kwargs = {} if noise is None: noise = th.randn_like(x_start) x_t = self.q_sample(x_start, t, noise=noise) terms = {} if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: terms["loss"] = self._vb_terms_bpd( model=model, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, model_kwargs=model_kwargs, )["output"] if self.loss_type == LossType.RESCALED_KL: terms["loss"] *= self.num_timesteps elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: model_output = model(x_t, self._scale_timesteps(t), sparse, **model_kwargs) if self.model_var_type in [ ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE, ]: B, C = x_t.shape[:2] assert model_output.shape == (B, C * 2, *x_t.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) # Learn the variance using the variational bound, but don't let # it affect our mean prediction. frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) terms["vb"] = self._vb_terms_bpd( model=lambda *args, r=frozen_out: r, x_start=x_start, x_t=x_t, t=t, clip_denoised=False, )["output"] if self.loss_type == LossType.RESCALED_MSE: # Divide by 1000 for equivalence with initial implementation. # Without a factor of 1/1000, the VB term hurts the MSE term. terms["vb"] *= self.num_timesteps / 1000.0 target = { ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t )[0], ModelMeanType.START_X: x_start, ModelMeanType.EPSILON: noise, }[self.model_mean_type] assert model_output.shape == target.shape == x_start.shape terms["rot_mse"] = self.masked_l2( target, model_output, ) terms["loss"] = terms["rot_mse"] + terms.get("vb", 0.0) else: raise NotImplementedError(self.loss_type) return terms
AGRoL-main
diffusion/diffusion_model.py
""" Helpers for various likelihood-based losses. These are ported from the original Ho et al. diffusion models codebase: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion import numpy as np import torch as th def normal_kl(mean1, logvar1, mean2, logvar2): """ Compute the KL divergence between two gaussians. Shapes are automatically broadcasted, so batches can be compared to scalars, among other use cases. """ tensor = None for obj in (mean1, logvar1, mean2, logvar2): if isinstance(obj, th.Tensor): tensor = obj break assert tensor is not None, "at least one argument must be a Tensor" # Force variances to be Tensors. Broadcasting helps convert scalars to # Tensors, but it does not work for th.exp(). logvar1, logvar2 = [ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2) ] return 0.5 * ( -1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2) ) def approx_standard_normal_cdf(x): """ A fast approximation of the cumulative distribution function of the standard normal. """ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) def discretized_gaussian_log_likelihood(x, *, means, log_scales): """ Compute the log-likelihood of a Gaussian distribution discretizing to a given image. :param x: the target images. It is assumed that this was uint8 values, rescaled to the range [-1, 1]. :param means: the Gaussian mean Tensor. :param log_scales: the Gaussian log stddev Tensor. :return: a tensor like x of log probabilities (in nats). """ assert x.shape == means.shape == log_scales.shape centered_x = x - means inv_stdv = th.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1.0 / 255.0) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1.0 / 255.0) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) cdf_delta = cdf_plus - cdf_min log_probs = th.where( x < -0.999, log_cdf_plus, th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), ) assert log_probs.shape == x.shape return log_probs
AGRoL-main
diffusion/losses.py
# MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion """ Helpers to train with 16-bit precision. """ import numpy as np import torch as th import torch.nn as nn from diffusion import logger from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors INITIAL_LOG_LOSS_SCALE = 20.0 def convert_module_to_f16(l): """ Convert primitive modules to float16. """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() def convert_module_to_f32(l): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.float() if l.bias is not None: l.bias.data = l.bias.data.float() def make_master_params(param_groups_and_shapes): """ Copy model parameters into a (differently-shaped) list of full-precision parameters. """ master_params = [] for param_group, shape in param_groups_and_shapes: master_param = nn.Parameter( _flatten_dense_tensors( [param.detach().float() for (_, param) in param_group] ).view(shape) ) master_param.requires_grad = True master_params.append(master_param) return master_params def model_grads_to_master_grads(param_groups_and_shapes, master_params): """ Copy the gradients from the model parameters into the master parameters from make_master_params(). """ for master_param, (param_group, shape) in zip( master_params, param_groups_and_shapes ): master_param.grad = _flatten_dense_tensors( [param_grad_or_zeros(param) for (_, param) in param_group] ).view(shape) def master_params_to_model_params(param_groups_and_shapes, master_params): """ Copy the master parameter data back into the model parameters. """ # Without copying to a list, if a generator is passed, this will # silently not copy any parameters. for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): for (_, param), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): param.detach().copy_(unflat_master_param) def unflatten_master_params(param_group, master_param): return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) def get_param_groups_and_shapes(named_model_params): named_model_params = list(named_model_params) scalar_vector_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim <= 1], (-1), ) matrix_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim > 1], (1, -1), ) return [scalar_vector_named_params, matrix_named_params] def master_params_to_state_dict( model, param_groups_and_shapes, master_params, use_fp16 ): if use_fp16: state_dict = model.state_dict() for master_param, (param_group, _) in zip( master_params, param_groups_and_shapes ): for (name, _), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): assert name in state_dict state_dict[name] = unflat_master_param else: state_dict = model.state_dict() for i, (name, _value) in enumerate(model.named_parameters()): assert name in state_dict state_dict[name] = master_params[i] return state_dict def state_dict_to_master_params(model, state_dict, use_fp16): if use_fp16: named_model_params = [ (name, state_dict[name]) for name, _ in model.named_parameters() ] param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) master_params = make_master_params(param_groups_and_shapes) else: master_params = [state_dict[name] for name, _ in model.named_parameters()] return master_params def zero_master_grads(master_params): for param in master_params: param.grad = None def zero_grad(model_params): for param in model_params: # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group if param.grad is not None: param.grad.detach_() param.grad.zero_() def param_grad_or_zeros(param): if param.grad is not None: return param.grad.data.detach() else: return th.zeros_like(param) class MixedPrecisionTrainer: def __init__( self, *, model, use_fp16=False, fp16_scale_growth=1e-3, initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, ): self.model = model self.use_fp16 = use_fp16 self.fp16_scale_growth = fp16_scale_growth self.model_params = list(self.model.parameters()) self.master_params = self.model_params self.param_groups_and_shapes = None self.lg_loss_scale = initial_lg_loss_scale if self.use_fp16: self.param_groups_and_shapes = get_param_groups_and_shapes( self.model.named_parameters() ) self.master_params = make_master_params(self.param_groups_and_shapes) self.model.convert_to_fp16() def zero_grad(self): zero_grad(self.model_params) def backward(self, loss: th.Tensor): if self.use_fp16: loss_scale = 2**self.lg_loss_scale (loss * loss_scale).backward() else: loss.backward() def optimize(self, opt: th.optim.Optimizer): if self.use_fp16: return self._optimize_fp16(opt) else: return self._optimize_normal(opt) def _optimize_fp16(self, opt: th.optim.Optimizer): logger.logkv_mean("lg_loss_scale", self.lg_loss_scale) model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) grad_norm, param_norm = self._compute_norms(grad_scale=2**self.lg_loss_scale) if check_overflow(grad_norm): self.lg_loss_scale -= 1 logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}") zero_master_grads(self.master_params) return False logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) self.master_params[0].grad.mul_(1.0 / (2**self.lg_loss_scale)) opt.step() zero_master_grads(self.master_params) master_params_to_model_params(self.param_groups_and_shapes, self.master_params) self.lg_loss_scale += self.fp16_scale_growth return True def _optimize_normal(self, opt: th.optim.Optimizer): grad_norm, param_norm = self._compute_norms() logger.logkv_mean("grad_norm", grad_norm) logger.logkv_mean("param_norm", param_norm) opt.step() return True def _compute_norms(self, grad_scale=1.0): grad_norm = 0.0 param_norm = 0.0 for p in self.master_params: with th.no_grad(): param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 if p.grad is not None: grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) def master_params_to_state_dict(self, master_params): return master_params_to_state_dict( self.model, self.param_groups_and_shapes, master_params, self.use_fp16 ) def state_dict_to_master_params(self, state_dict): return state_dict_to_master_params(self.model, state_dict, self.use_fp16) def check_overflow(value): return (value == float("inf")) or (value == -float("inf")) or (value != value)
AGRoL-main
diffusion/fp16_util.py
""" This code started out as a PyTorch port of Ho et al's diffusion models: https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. """ # MIT License # Copyright (c) 2021 OpenAI # # This code is based on https://github.com/openai/guided-diffusion # MIT License # Copyright (c) 2022 Guy Tevet # # This code is based on https://github.com/GuyTevet/motion-diffusion-model # Copyright (c) Meta Platforms, Inc. All Rights Reserved import enum import math from copy import deepcopy import numpy as np import torch import torch as th from diffusion.losses import discretized_gaussian_log_likelihood, normal_kl def mean_flat(tensor): """ Take the mean over all non-batch dimensions. """ return tensor.mean(dim=list(range(1, len(tensor.shape)))) def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.0): """ Get a pre-defined beta schedule for the given name. The beta schedule library consists of beta schedules which remain similar in the limit of num_diffusion_timesteps. Beta schedules may be added, but should not be removed or changed once they are committed to maintain backwards compatibility. """ if schedule_name == "linear": # Linear schedule from Ho et al, extended to work for any number of # diffusion steps. scale = scale_betas * 1000 / num_diffusion_timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return np.linspace( beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 ) elif schedule_name == "cosine": return betas_for_alpha_bar( num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ) else: raise NotImplementedError(f"unknown beta schedule: {schedule_name}") def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. :param num_diffusion_timesteps: the number of betas to produce. :param alpha_bar: a lambda that takes an argument t from 0 to 1 and produces the cumulative product of (1-beta) up to that part of the diffusion process. :param max_beta: the maximum beta to use; use values lower than 1 to prevent singularities. """ betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return np.array(betas) class ModelMeanType(enum.Enum): """ Which type of output the model predicts. """ PREVIOUS_X = enum.auto() # the model predicts x_{t-1} START_X = enum.auto() # the model predicts x_0 EPSILON = enum.auto() # the model predicts epsilon class ModelVarType(enum.Enum): """ What is used as the model's output variance. The LEARNED_RANGE option has been added to allow the model to predict values between FIXED_SMALL and FIXED_LARGE, making its job easier. """ LEARNED = enum.auto() FIXED_SMALL = enum.auto() FIXED_LARGE = enum.auto() LEARNED_RANGE = enum.auto() class LossType(enum.Enum): MSE = enum.auto() # use raw MSE loss (and KL when learning variances) RESCALED_MSE = ( enum.auto() ) # use raw MSE loss (with RESCALED_KL when learning variances) KL = enum.auto() # use the variational lower-bound RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB def is_vb(self): return self == LossType.KL or self == LossType.RESCALED_KL class GaussianDiffusion: """ Utilities for training and sampling diffusion models. Ported directly from here, and then adapted over time to further experimentation. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 :param betas: a 1-D numpy array of betas for each diffusion timestep, starting at T and going to 1. :param model_mean_type: a ModelMeanType determining what the model outputs. :param model_var_type: a ModelVarType determining how variance is output. :param loss_type: a LossType determining the loss function to use. :param rescale_timesteps: if True, pass floating point timesteps into the model so that they are always scaled like in the original paper (0 to 1000). """ def __init__( self, *, dataset, betas, model_mean_type, model_var_type, loss_type, rescale_timesteps=False, lambda_rcxyz=0.0, lambda_vel=1.0, lambda_pose=1.0, lambda_orient=1.0, lambda_loc=1.0, data_rep="rot", lambda_root_vel=0.0, lambda_vel_rcxyz=0.0, lambda_fc=0.0, ): self.dataset = dataset self.model_mean_type = model_mean_type self.model_var_type = model_var_type self.loss_type = loss_type self.rescale_timesteps = rescale_timesteps self.data_rep = data_rep if data_rep != "rot_vel" and lambda_pose != 1.0: raise ValueError( "lambda_pose is relevant only when training on velocities!" ) self.lambda_pose = lambda_pose self.lambda_orient = lambda_orient self.lambda_loc = lambda_loc self.lambda_rcxyz = lambda_rcxyz self.lambda_vel = lambda_vel self.lambda_root_vel = lambda_root_vel self.lambda_vel_rcxyz = lambda_vel_rcxyz self.lambda_fc = lambda_fc if ( self.lambda_rcxyz > 0.0 or self.lambda_vel > 0.0 or self.lambda_root_vel > 0.0 or self.lambda_vel_rcxyz > 0.0 or self.lambda_fc > 0.0 ): assert ( self.loss_type == LossType.MSE ), "Geometric losses are supported by MSE loss type only!" # Use float64 for accuracy. betas = np.array(betas, dtype=np.float64) self.betas = betas assert len(betas.shape) == 1, "betas must be 1-D" assert (betas > 0).all() and (betas <= 1).all() self.num_timesteps = int(betas.shape[0]) alphas = 1.0 - betas self.alphas_cumprod = np.cumprod(alphas, axis=0) self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) # calculations for diffusion q(x_t | x_{t-1}) and others self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) # calculations for posterior q(x_{t-1} | x_t, x_0) self.posterior_variance = ( betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) # log calculation clipped because the posterior variance is 0 at the # beginning of the diffusion chain. self.posterior_log_variance_clipped = np.log( np.append(self.posterior_variance[1], self.posterior_variance[1:]) ) self.posterior_mean_coef1 = ( betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) ) self.posterior_mean_coef2 = ( (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) ) def masked_l2(self, a, b): pass def q_mean_variance(self, x_start, t): """ Get the distribution q(x_t | x_0). :param x_start: the [N x C x ...] tensor of noiseless inputs. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :return: A tuple (mean, variance, log_variance), all of x_start's shape. """ mean = ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start ) variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) log_variance = _extract_into_tensor( self.log_one_minus_alphas_cumprod, t, x_start.shape ) return mean, variance, log_variance def q_sample(self, x_start, t, noise=None): """ Diffuse the dataset for a given number of diffusion steps. In other words, sample from q(x_t | x_0). :param x_start: the initial dataset batch. :param t: the number of diffusion steps (minus 1). Here, 0 means one step. :param noise: if specified, the split-out normal noise. :return: A noisy version of x_start. """ if noise is None: noise = th.randn_like(x_start) assert noise.shape == x_start.shape return ( _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def q_posterior_mean_variance(self, x_start, x_t, t): """ Compute the mean and variance of the diffusion posterior: q(x_{t-1} | x_t, x_0) """ assert x_start.shape == x_t.shape posterior_mean = ( _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = _extract_into_tensor( self.posterior_log_variance_clipped, t, x_t.shape ) assert ( posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] == x_start.shape[0] ) return posterior_mean, posterior_variance, posterior_log_variance_clipped def p_mean_variance( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, model_kwargs=None, ): """ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of the initial x, x_0. :param model: the model, which takes a signal and a batch of timesteps as input. :param x: the [N x C x ...] tensor at time t. :param t: a 1-D Tensor of timesteps. :param clip_denoised: if True, clip the denoised signal into [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. Applies before clip_denoised. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict with the following keys: - 'mean': the model mean output. - 'variance': the model variance output. - 'log_variance': the log of 'variance'. - 'pred_xstart': the prediction for x_0. """ B, C = x.shape[:2] assert t.shape == (B,) if model_kwargs is not None: model_output = model(x, self._scale_timesteps(t), sparse, **model_kwargs) else: model_output = model(x, self._scale_timesteps(t), sparse) if model_kwargs is not None: if ( "inpainting_mask" in model_kwargs["y"].keys() and "inpainted_motion" in model_kwargs["y"].keys() ): inpainting_mask, inpainted_motion = ( model_kwargs["y"]["inpainting_mask"], model_kwargs["y"]["inpainted_motion"], ) assert ( self.model_mean_type == ModelMeanType.START_X ), "This feature supports only X_start pred for mow!" assert ( model_output.shape == inpainting_mask.shape == inpainted_motion.shape ) model_output = (model_output * (1 - inpainting_mask)) + ( inpainted_motion * inpainting_mask ) if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: assert model_output.shape == (B, C * 2, *x.shape[2:]) model_output, model_var_values = th.split(model_output, C, dim=1) if self.model_var_type == ModelVarType.LEARNED: model_log_variance = model_var_values model_variance = th.exp(model_log_variance) else: min_log = _extract_into_tensor( self.posterior_log_variance_clipped, t, x.shape ) max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) # The model_var_values is [-1, 1] for [min_var, max_var]. frac = (model_var_values + 1) / 2 model_log_variance = frac * max_log + (1 - frac) * min_log model_variance = th.exp(model_log_variance) else: model_variance, model_log_variance = { # for fixedlarge, we set the initial (log-)variance like so # to get a better decoder log likelihood. ModelVarType.FIXED_LARGE: ( np.append(self.posterior_variance[1], self.betas[1:]), np.log(np.append(self.posterior_variance[1], self.betas[1:])), ), ModelVarType.FIXED_SMALL: ( self.posterior_variance, self.posterior_log_variance_clipped, ), }[self.model_var_type] model_variance = _extract_into_tensor(model_variance, t, x.shape) model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) def process_xstart(x): if denoised_fn is not None: x = denoised_fn(x) if clip_denoised: # print('clip_denoised', clip_denoised) return x.clamp(-1, 1) return x if self.model_mean_type == ModelMeanType.PREVIOUS_X: pred_xstart = process_xstart( self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output) ) model_mean = model_output elif self.model_mean_type in [ ModelMeanType.START_X, ModelMeanType.EPSILON, ]: # THIS IS US! if self.model_mean_type == ModelMeanType.START_X: pred_xstart = process_xstart(model_output) else: pred_xstart = process_xstart( self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output) ) model_mean, _, _ = self.q_posterior_mean_variance( x_start=pred_xstart, x_t=x, t=t ) else: raise NotImplementedError(self.model_mean_type) assert ( model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape ) return { "mean": model_mean, "variance": model_variance, "log_variance": model_log_variance, "pred_xstart": pred_xstart, } def _predict_xstart_from_eps(self, x_t, t, eps): assert x_t.shape == eps.shape return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps ) def _predict_xstart_from_xprev(self, x_t, t, xprev): assert x_t.shape == xprev.shape return ( # (xprev - coef2*x_t) / coef1 _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev - _extract_into_tensor( self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape ) * x_t ) def _predict_eps_from_xstart(self, x_t, t, pred_xstart): return ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) def _scale_timesteps(self, t): if self.rescale_timesteps: return t.float() * (1000.0 / self.num_timesteps) return t def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute the mean for the previous step, given a function cond_fn that computes the gradient of a conditional log probability with respect to x. In particular, cond_fn computes grad(log(p(y|x))), and we want to condition on y. This uses the conditioning strategy from Sohl-Dickstein et al. (2015). """ gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) new_mean = ( p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() ) return new_mean def condition_mean_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute the mean for the previous step, given a function cond_fn that computes the gradient of a conditional log probability with respect to x. In particular, cond_fn computes grad(log(p(y|x))), and we want to condition on y. This uses the conditioning strategy from Sohl-Dickstein et al. (2015). """ gradient = cond_fn(x, t, p_mean_var, **model_kwargs) new_mean = ( p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() ) return new_mean def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute what the p_mean_variance output would have been, should the model's score function be conditioned by cond_fn. See condition_mean() for details on cond_fn. Unlike condition_mean(), this instead uses the conditioning strategy from Song et al (2020). """ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn( x, self._scale_timesteps(t), **model_kwargs ) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance( x_start=out["pred_xstart"], x_t=x, t=t ) return out def condition_score_with_grad(self, cond_fn, p_mean_var, x, t, model_kwargs=None): """ Compute what the p_mean_variance output would have been, should the model's score function be conditioned by cond_fn. See condition_mean() for details on cond_fn. Unlike condition_mean(), this instead uses the conditioning strategy from Song et al (2020). """ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, p_mean_var, **model_kwargs) out = p_mean_var.copy() out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) out["mean"], _, _ = self.q_posterior_mean_variance( x_start=out["pred_xstart"], x_t=x, t=t ) return out def p_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, const_noise=False, ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) # print('const_noise', const_noise) if const_noise: noise = noise[[0]].repeat(x.shape[0], 1, 1, 1) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean( cond_fn, out, x, t, model_kwargs=model_kwargs ) # print('mean', out["mean"].shape, out["mean"]) # print('log_variance', out["log_variance"].shape, out["log_variance"]) # print('nonzero_mask', nonzero_mask.shape, nonzero_mask) sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"]} def p_sample_with_grad( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, ): """ Sample x_{t-1} from the model at the given timestep. :param model: the model to sample from. :param x: the current tensor at x_{t-1}. :param t: the value of t, starting at 0 for the first diffusion step. :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - 'sample': a random sample from the model. - 'pred_xstart': a prediction of x_0. """ with th.enable_grad(): x = x.detach().requires_grad_() out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) noise = th.randn_like(x) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 if cond_fn is not None: out["mean"] = self.condition_mean_with_grad( cond_fn, out, x, t, model_kwargs=model_kwargs ) sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise return {"sample": sample, "pred_xstart": out["pred_xstart"].detach()} def p_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, dump_steps=None, const_noise=False, ): """ Generate samples from the model. :param model: the model module. :param shape: the shape of the samples, (N, C, H, W). :param noise: if specified, the noise from the encoder to sample. Should be of the same shape as `shape`. :param clip_denoised: if True, clip x_start predictions to [-1, 1]. :param denoised_fn: if not None, a function which applies to the x_start prediction before it is used to sample. :param cond_fn: if not None, this is a gradient function that acts similarly to the model. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :param device: if specified, the device to create the samples on. If not specified, use a model parameter's device. :param progress: if True, show a tqdm progress bar. :param const_noise: If True, will noise all samples with the same noise throughout sampling :return: a non-differentiable batch of samples. """ final = None if dump_steps is not None: dump = [] for i, sample in enumerate( self.p_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, const_noise=const_noise, ) ): if dump_steps is not None and i in dump_steps: dump.append(deepcopy(sample["sample"])) final = sample if dump_steps is not None: return dump return final["sample"] def p_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, const_noise=False, ): """ Generate samples from the model and yield intermediate samples from each timestep of diffusion. Arguments are the same as p_sample_loop(). Returns a generator over dicts, where each dict is the return value of p_sample(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) if randomize_class and "y" in model_kwargs: model_kwargs["y"] = th.randint( low=0, high=model.num_classes, size=model_kwargs["y"].shape, device=model_kwargs["y"].device, ) with th.no_grad(): sample_fn = ( self.p_sample_with_grad if cond_fn_with_grad else self.p_sample ) out = sample_fn( model, img, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, const_noise=const_noise, ) yield out img = out["sample"] def ddim_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out_orig["pred_xstart"]} def ddim_sample_with_grad( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t-1} from the model using DDIM. Same usage as p_sample(). """ with th.enable_grad(): x = x.detach().requires_grad_() out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: out = self.condition_score_with_grad( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig out["pred_xstart"] = out["pred_xstart"].detach() # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) sigma = ( eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) ) # Equation 12. noise = th.randn_like(x) mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps ) nonzero_mask = ( (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) ) # no noise when t == 0 sample = mean_pred + nonzero_mask * sigma * noise return {"sample": sample, "pred_xstart": out_orig["pred_xstart"].detach()} def ddim_reverse_sample( self, model, x, t, sparse, clip_denoised=True, denoised_fn=None, model_kwargs=None, eta=0.0, ): """ Sample x_{t+1} from the model using DDIM reverse ODE. """ assert eta == 0.0, "Reverse ODE only for deterministic path" out = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = ( _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) # Equation 12. reversed mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps ) return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} def ddim_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, dump_steps=None, const_noise=False, ): """ Generate samples from the model using DDIM. Same usage as p_sample_loop(). """ if dump_steps is not None: raise NotImplementedError() if const_noise: raise NotImplementedError() final = None for sample in self.ddim_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, eta=eta, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, ): final = sample return final["sample"] def ddim_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, eta=0.0, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, ): """ Use DDIM to sample from the model and yield intermediate samples from each timestep of DDIM. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) for i in indices: t = th.tensor([i] * shape[0], device=device) with th.no_grad(): sample_fn = ( self.ddim_sample_with_grad if cond_fn_with_grad else self.ddim_sample ) out = sample_fn( model, img, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, eta=eta, ) yield out img = out["sample"] def plms_sample( self, model, x, t, sparse=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, cond_fn_with_grad=False, order=2, old_out=None, ): """ Sample x_{t-1} from the model using Pseudo Linear Multistep. Same usage as p_sample(). """ if not int(order) or not 1 <= order <= 4: raise ValueError("order is invalid (should be int from 1-4).") def get_model_output(x, t): with th.set_grad_enabled(cond_fn_with_grad and cond_fn is not None): x = x.detach().requires_grad_() if cond_fn_with_grad else x out_orig = self.p_mean_variance( model, x, t, sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, model_kwargs=model_kwargs, ) if cond_fn is not None: if cond_fn_with_grad: out = self.condition_score_with_grad( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) x = x.detach() else: out = self.condition_score( cond_fn, out_orig, x, t, model_kwargs=model_kwargs ) else: out = out_orig # Usually our model outputs epsilon, but we re-derive it # in case we used x_start or x_prev prediction. eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) return eps, out, out_orig alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) eps, out, out_orig = get_model_output(x, t) if order > 1 and old_out is None: # Pseudo Improved Euler old_eps = [eps] mean_pred = ( out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps ) eps_2, _, _ = get_model_output(mean_pred, t - 1) eps_prime = (eps + eps_2) / 2 pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) mean_pred = ( pred_prime * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps_prime ) else: # Pseudo Linear Multistep (Adams-Bashforth) old_eps = old_out["old_eps"] old_eps.append(eps) cur_order = min(order, len(old_eps)) if cur_order == 1: eps_prime = old_eps[-1] elif cur_order == 2: eps_prime = (3 * old_eps[-1] - old_eps[-2]) / 2 elif cur_order == 3: eps_prime = (23 * old_eps[-1] - 16 * old_eps[-2] + 5 * old_eps[-3]) / 12 elif cur_order == 4: eps_prime = ( 55 * old_eps[-1] - 59 * old_eps[-2] + 37 * old_eps[-3] - 9 * old_eps[-4] ) / 24 else: raise RuntimeError("cur_order is invalid.") pred_prime = self._predict_xstart_from_eps(x, t, eps_prime) mean_pred = ( pred_prime * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev) * eps_prime ) if len(old_eps) >= order: old_eps.pop(0) nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) sample = mean_pred * nonzero_mask + out["pred_xstart"] * (1 - nonzero_mask) return { "sample": sample, "pred_xstart": out_orig["pred_xstart"], "old_eps": old_eps, } def plms_sample_loop( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, order=2, ): """ Generate samples from the model using Pseudo Linear Multistep. Same usage as p_sample_loop(). """ final = None for sample in self.plms_sample_loop_progressive( model, shape, sparse=sparse, noise=noise, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, device=device, progress=progress, skip_timesteps=skip_timesteps, init_image=init_image, randomize_class=randomize_class, cond_fn_with_grad=cond_fn_with_grad, order=order, ): final = sample return final["sample"] def plms_sample_loop_progressive( self, model, shape, sparse=None, noise=None, clip_denoised=True, denoised_fn=None, cond_fn=None, model_kwargs=None, device=None, progress=False, skip_timesteps=0, init_image=None, randomize_class=False, cond_fn_with_grad=False, order=2, ): """ Use PLMS to sample from the model and yield intermediate samples from each timestep of PLMS. Same usage as p_sample_loop_progressive(). """ if device is None: device = next(model.parameters()).device assert isinstance(shape, (tuple, list)) if noise is not None: img = noise else: img = th.randn(*shape, device=device) if skip_timesteps and init_image is None: init_image = th.zeros_like(img) indices = list(range(self.num_timesteps - skip_timesteps))[::-1] if init_image is not None: my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] img = self.q_sample(init_image, my_t, img) if progress: # Lazy import so that we don't depend on tqdm. from tqdm.auto import tqdm indices = tqdm(indices) old_out = None for i in indices: t = th.tensor([i] * shape[0], device=device) if randomize_class and "y" in model_kwargs: model_kwargs["y"] = th.randint( low=0, high=model.num_classes, size=model_kwargs["y"].shape, device=model_kwargs["y"].device, ) with th.no_grad(): out = self.plms_sample( model, img, t, sparse=sparse, clip_denoised=clip_denoised, denoised_fn=denoised_fn, cond_fn=cond_fn, model_kwargs=model_kwargs, cond_fn_with_grad=cond_fn_with_grad, order=order, old_out=old_out, ) yield out old_out = out img = out["sample"] def _vb_terms_bpd( self, model, x_start, x_t, t, sparse=None, clip_denoised=True, model_kwargs=None ): """ Get a term for the variational lower-bound. The resulting units are bits (rather than nats, as one might expect). This allows for comparison to other papers. :return: a dict with the following keys: - 'output': a shape [N] tensor of NLLs or KLs. - 'pred_xstart': the x_0 predictions. """ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance( x_start=x_start, x_t=x_t, t=t ) out = self.p_mean_variance( model, x_t, t, sparse=sparse, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) kl = normal_kl( true_mean, true_log_variance_clipped, out["mean"], out["log_variance"] ) kl = mean_flat(kl) / np.log(2.0) decoder_nll = -discretized_gaussian_log_likelihood( x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] ) assert decoder_nll.shape == x_start.shape decoder_nll = mean_flat(decoder_nll) / np.log(2.0) # At the first timestep return the decoder NLL, # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) output = th.where((t == 0), decoder_nll, kl) return {"output": output, "pred_xstart": out["pred_xstart"]} def training_losses( self, model, x_start, t, sparse, model_kwargs=None, noise=None, dataset=None ): pass def _prior_bpd(self, x_start): """ Get the prior KL term for the variational lower-bound, measured in bits-per-dim. This term can't be optimized, as it only depends on the encoder. :param x_start: the [N x C x ...] tensor of inputs. :return: a batch of [N] KL values (in bits), one per batch element. """ batch_size = x_start.shape[0] t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) kl_prior = normal_kl( mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0 ) return mean_flat(kl_prior) / np.log(2.0) def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): """ Compute the entire variational lower-bound, measured in bits-per-dim, as well as other related quantities. :param model: the model to evaluate loss on. :param x_start: the [N x C x ...] tensor of inputs. :param clip_denoised: if True, clip denoised samples. :param model_kwargs: if not None, a dict of extra keyword arguments to pass to the model. This can be used for conditioning. :return: a dict containing the following keys: - total_bpd: the total variational lower-bound, per batch element. - prior_bpd: the prior term in the lower-bound. - vb: an [N x T] tensor of terms in the lower-bound. - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. - mse: an [N x T] tensor of epsilon MSEs for each timestep. """ device = x_start.device batch_size = x_start.shape[0] vb = [] xstart_mse = [] mse = [] for t in list(range(self.num_timesteps))[::-1]: t_batch = th.tensor([t] * batch_size, device=device) noise = th.randn_like(x_start) x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) # Calculate VLB term at the current timestep with th.no_grad(): out = self._vb_terms_bpd( model, x_start=x_start, x_t=x_t, t=t_batch, clip_denoised=clip_denoised, model_kwargs=model_kwargs, ) vb.append(out["output"]) xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) mse.append(mean_flat((eps - noise) ** 2)) vb = th.stack(vb, dim=1) xstart_mse = th.stack(xstart_mse, dim=1) mse = th.stack(mse, dim=1) prior_bpd = self._prior_bpd(x_start) total_bpd = vb.sum(dim=1) + prior_bpd return { "total_bpd": total_bpd, "prior_bpd": prior_bpd, "vb": vb, "xstart_mse": xstart_mse, "mse": mse, } def _extract_into_tensor(arr, timesteps, broadcast_shape): """ Extract values from a 1-D numpy array for a batch of indices. :param arr: the 1-D numpy array. :param timesteps: a tensor of indices into the array to extract. :param broadcast_shape: a larger shape of K dimensions with the batch dimension equal to the length of timesteps. :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. """ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() while len(res.shape) < len(broadcast_shape): res = res[..., None] return res.expand(broadcast_shape)
AGRoL-main
diffusion/gaussian_diffusion.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import numpy as np import torch import torch.nn as nn from model.networks import DiffMLP class MetaModel(nn.Module): def __init__( self, arch, nfeats, latent_dim=256, num_layers=8, dropout=0.1, dataset="amass", sparse_dim=54, **kargs, ): super().__init__() self.arch = DiffMLP self.dataset = dataset self.input_feats = nfeats self.latent_dim = latent_dim self.num_layers = num_layers self.dropout = dropout self.sparse_dim = sparse_dim self.cond_mask_prob = kargs.get("cond_mask_prob", 0.0) self.input_process = nn.Linear(self.input_feats, self.latent_dim) self.mlp = self.arch( self.latent_dim, seq=kargs.get("input_motion_length"), num_layers=num_layers ) self.embed_timestep = TimestepEmbeding(self.latent_dim) self.sparse_process = nn.Linear(self.sparse_dim, self.latent_dim) self.output_process = nn.Linear(self.latent_dim, self.input_feats) def mask_cond_sparse(self, cond, force_mask=True): bs, n, c = cond.shape if force_mask: return torch.zeros_like(cond) elif self.training and self.cond_mask_prob > 0.0: mask = torch.bernoulli( torch.ones(bs, device=cond.device) * self.cond_mask_prob ).view( bs, 1, 1 ) # 1-> use null_cond, 0-> use real cond return cond * (1.0 - mask) else: return cond def forward(self, x, timesteps, sparse_emb, force_mask=False): """ x: [batch_size, nfeats, nframes], denoted x_t in the paper sparse: [batch_size, nframes, sparse_dim], the sparse features timesteps: [batch_size] (int) """ emb = self.embed_timestep(timesteps) # time step embedding : [1, bs, d] # Pass the sparse signal to a FC sparse_emb = self.sparse_process( self.mask_cond_sparse(sparse_emb, force_mask=force_mask) ) # Pass the input to a FC x = self.input_process(x) # Concat the sparse feature with input x = torch.cat((sparse_emb, x), axis=-1) output = self.mlp(x, emb) # Pass the output to a FC and reshape the output output = self.output_process(output) return output class TimestepEmbeding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp( torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model) ) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer("pe", pe) def forward(self, timesteps): return self.pe[timesteps]
AGRoL-main
model/meta_model.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch.nn as nn ############################### ############ Layers ########### ############################### class MLPblock(nn.Module): def __init__(self, dim, seq0, seq1, first=False, w_embed=True): super().__init__() self.w_embed = w_embed self.fc0 = nn.Conv1d(seq0, seq1, 1) if self.w_embed: if first: self.conct = nn.Linear(dim * 2, dim) else: self.conct = nn.Identity() self.emb_fc = nn.Linear(dim, dim) self.fc1 = nn.Linear(dim, dim) self.norm0 = nn.LayerNorm(dim) self.norm1 = nn.LayerNorm(dim) self.act = nn.SiLU() def forward(self, inputs): if self.w_embed: x = inputs[0] embed = inputs[1] x = self.conct(x) + self.emb_fc(self.act(embed)) else: x = inputs x_ = self.norm0(x) x_ = self.fc0(x_) x_ = self.act(x_) x = x + x_ x_ = self.norm1(x) x_ = self.fc1(x_) x_ = self.act(x_) x = x + x_ if self.w_embed: return x, embed else: return x class BaseMLP(nn.Module): def __init__(self, dim, seq, num_layers, w_embed=True): super().__init__() layers = [] for i in range(num_layers): layers.append( MLPblock(dim, seq, seq, first=i == 0 and w_embed, w_embed=w_embed) ) self.mlps = nn.Sequential(*layers) def forward(self, x): x = self.mlps(x) return x ############################### ########### Networks ########## ############################### class DiffMLP(nn.Module): def __init__(self, latent_dim=512, seq=98, num_layers=12): super(DiffMLP, self).__init__() self.motion_mlp = BaseMLP(dim=latent_dim, seq=seq, num_layers=num_layers) def forward(self, motion_input, embed): motion_feats = self.motion_mlp([motion_input, embed])[0] return motion_feats class PureMLP(nn.Module): def __init__( self, latent_dim=512, seq=98, num_layers=12, input_dim=54, output_dim=132 ): super(PureMLP, self).__init__() self.input_fc = nn.Linear(input_dim, latent_dim) self.motion_mlp = BaseMLP( dim=latent_dim, seq=seq, num_layers=num_layers, w_embed=False ) self.output_fc = nn.Linear(latent_dim, output_dim) def forward(self, motion_input): motion_feats = self.input_fc(motion_input) motion_feats = self.motion_mlp(motion_feats) motion_feats = self.output_fc(motion_feats) return motion_feats
AGRoL-main
model/networks.py
# Copyright (c) Meta Platforms, Inc. All Rights Reserved import glob import os import torch from torch.utils.data import DataLoader, Dataset from tqdm import tqdm class TrainDataset(Dataset): def __init__( self, dataset, mean, std, motions, sparses, input_motion_length=196, train_dataset_repeat_times=1, no_normalization=False, ): self.dataset = dataset self.mean = mean self.std = std self.motions = motions self.sparses = sparses self.train_dataset_repeat_times = train_dataset_repeat_times self.no_normalization = no_normalization self.motions = motions self.sparses = sparses self.input_motion_length = input_motion_length def __len__(self): return len(self.motions) * self.train_dataset_repeat_times def inv_transform(self, data): return data * self.std + self.mean def __getitem__(self, idx): motion = self.motions[idx % len(self.motions)] sparse = self.sparses[idx % len(self.motions)] seqlen = motion.shape[0] if seqlen <= self.input_motion_length: idx = 0 else: idx = torch.randint(0, int(seqlen - self.input_motion_length), (1,))[0] motion = motion[idx : idx + self.input_motion_length] sparse = sparse[idx : idx + self.input_motion_length] # Normalization if not self.no_normalization: motion = (motion - self.mean) / (self.std + 1e-8) return motion.float(), sparse.float() class TestDataset(Dataset): def __init__( self, name, mean, std, all_info, filename_list, normalize_sparse="none", ): self.name = name self.mean = mean self.std = std self.filename_list = filename_list self.normalize_sparse = normalize_sparse self.motions = [] self.sparses = [] self.body_params = [] self.head_motion = [] for i in all_info: self.motions.append(i["rotation_local_full_gt_list"]) self.sparses.append(i["hmd_position_global_full_gt_list"]) self.body_params.append(i["body_parms_list"]) self.head_motion.append(i["head_global_trans_list"]) def __len__(self): return len(self.motions) def inv_transform(self, data): return data * self.std + self.mean def __getitem__(self, idx): motion = self.motions[idx] sparse = self.sparses[idx] body_param = self.body_params[idx] head_motion = self.head_motion[idx] filename = self.filename_list[idx] return ( motion, sparse.unsqueeze(0), body_param, head_motion, filename, ) def get_mean_std_path(dataset): return dataset + "_mean.pt", dataset + "_std.pt" def get_motion(motion_list): # rotation_local_full_gt_list : 6d rotation parameters # hmd_position_global_full_gt_list : 3 joints(head, hands) 6d rotation/6d rotation velocity/global translation/global translation velocity motions = [i["rotation_local_full_gt_list"] for i in motion_list] sparses = [i["hmd_position_global_full_gt_list"] for i in motion_list] return motions, sparses def get_path(dataset_path, split): data_list_path = [] parent_data_path = glob.glob(dataset_path + "/*") for d in parent_data_path: if os.path.isdir(d): files = glob.glob(d + "/" + split + "/*pt") data_list_path.extend(files) return data_list_path def load_data(dataset, dataset_path, split, **kwargs): """ Collect the data for the given split Args: - For test: dataset : the name of the testing dataset split : test or train - For train: dataset : the name of the training dataset split : train or test input_motion_length : the input motion length Outout: - For test: filename_list : List of all filenames in the dataset motion_list : List contains N dictoinaries, with "hmd_position_global_full_gt_list" - sparse features of the 3 joints "local_joint_parameters_gt_list" - body parameters Nx7[tx,ty,tz,rx,ry,rz] as the input of the human kinematic model "head_global_trans_list" - Tx4x4 matrix which contains the global rotation and global translation of the head movement mean : mean of train dataset std : std of train dataset - For train: new_motions : motions indicates the sequences of rotation representation of each joint new_sparses : sparses indicates the sequences of sparse features of the 3 joints mean : mean of train dataset std : std of train dataset """ if split == "test": motion_list = get_path(dataset_path, split) mean_path, std_path = get_mean_std_path(dataset) filename_list = [ "-".join([i.split("/")[-3], i.split("/")[-1]]).split(".")[0] for i in motion_list ] motion_list = [torch.load(i) for i in tqdm(motion_list)] mean = torch.load(os.path.join(dataset_path, mean_path)) std = torch.load(os.path.join(dataset_path, std_path)) return filename_list, motion_list, mean, std assert split == "train" assert ( "input_motion_length" in kwargs ), "Please specify the input_motion_length to load training dataset" motion_list = get_path(dataset_path, split) mean_path, std_path = get_mean_std_path(dataset) input_motion_length = kwargs["input_motion_length"] motion_list = [torch.load(i) for i in tqdm(motion_list)] motions, sparses = get_motion(motion_list) new_motions = [] new_sparses = [] for idx, motion in enumerate(motions): if motion.shape[0] < input_motion_length: # Arbitrary choice continue new_sparses.append(sparses[idx]) new_motions.append(motions[idx]) if os.path.exists(os.path.join(dataset_path, mean_path)): mean = torch.load(os.path.join(dataset_path, mean_path)) std = torch.load(os.path.join(dataset_path, std_path)) else: tmp_data_list = torch.cat(new_motions, dim=0) mean = tmp_data_list.mean(axis=0).float() std = tmp_data_list.std(axis=0).float() with open(os.path.join(dataset_path, mean_path), "wb") as f: torch.save(mean, f) with open(os.path.join(dataset_path, std_path), "wb") as f: torch.save(std, f) return new_motions, new_sparses, mean, std def get_dataloader( dataset, split, batch_size, num_workers=32, ): if split == "train": shuffle = True drop_last = True num_workers = num_workers else: shuffle = False drop_last = False num_workers = 1 loader = DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, drop_last=drop_last, persistent_workers=False, ) return loader
AGRoL-main
data_loaders/dataloader.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning multi-lingual models on XNLI (Bert, DistilBERT, XLM, MiniLM). Adapted from `examples/run_glue.py`""" import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForSequenceClassification, BertTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, get_linear_schedule_with_warmup, XLMRobertaTokenizer, ) from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import xnli_compute_metrics as compute_metrics from transformers import xnli_output_modes as output_modes from transformers import xnli_processors as processors try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum( (tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, DistilBertConfig, XLMConfig)), () ) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassification, BertTokenizer), "minilm": (BertConfig, BertForSequenceClassification, XLMRobertaTokenizer), "xlm": (XLMConfig, XLMForSequenceClassification, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): eval_task_names = (args.task_name,) eval_outputs_dirs = (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert"] else None ) # XLM and DistilBERT don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) else: raise ValueError("No other `output_mode` for XNLI.") result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task](language=args.language, train_language=args.train_language) output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}_{}".format( "test" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), str(args.train_language if (not evaluate and args.train_language is not None) else args.language), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() examples = ( processor.get_test_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, pad_on_left=False, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) else: raise ValueError("No other `output_mode` for XNLI.") dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--language", default=None, type=str, required=True, help="Evaluation language. Also train language if `train_language` is set to None.", ) parser.add_argument( "--train_language", default=None, type=str, help="Train language if is different of the evaluation language." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare XNLI task args.task_name = "xnli" if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name](language=args.language, train_language=args.train_language) args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results if __name__ == "__main__": main()
data2vec_vision-main
minilm/examples/run_xnli.py
import argparse import os import torch from fairseq.data import (FairseqDataset, PrependTokenDataset, TokenBlockDataset, TruncateDataset, data_utils, StripTokenDataset, ConcatDataset) from fairseq.data.indexed_dataset import make_builder from tqdm import tqdm from transformers import AutoTokenizer from infoxlm.data.tlm_dataset import TLMDataset class IndexDataset(FairseqDataset): def __init__(self, indices): self.indices = indices self._sizes = [len(i) for i in indices] @property def sizes(self): return self._sizes def size(self, index): item = self.__getitem__(index) return len(item) def __getitem__(self, index): item = self.indices[index] item = torch.LongTensor(item) return item def __len__(self): return len(self.indices) def collater(self, samples): raise NotImplementedError def build_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained(args.model_name) return tokenizer def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="CZWin32768/xlm-align") parser.add_argument("--input_src", type=str, default="") parser.add_argument("--input_trg", type=str, default="") parser.add_argument("--output", type=str, default="") parser.add_argument("--max_pos", type=int, default=256) args = parser.parse_args() return args def save_items(items, prefix, vocab_size): bin_fn = "%s.bin" % prefix idx_fn = "%s.idx" % prefix builder = make_builder(bin_fn, "mmap", vocab_size=vocab_size) print("builder: " + str(builder)) for item in items: builder.add_item(item) builder.finalize(idx_fn) def get_indices(input_fn, tokenizer): indices = [] with open(input_fn) as fp: for lid, line in tqdm(enumerate(fp)): # DEBUG # if lid > 500: break line = line.strip() indices.append(tokenizer.encode(line)) print("tokenize finished.") return indices def main(args): tokenizer = build_tokenizer(args) src_indices = get_indices(args.input_src, tokenizer) trg_indices = get_indices(args.input_trg, tokenizer) src_dataset = IndexDataset(src_indices) trg_dataset = IndexDataset(trg_indices) eos = tokenizer.sep_token_id bos = tokenizer.cls_token_id max_pos = args.max_pos datasets = [] src_dataset = TruncateDataset( StripTokenDataset(src_dataset, eos), max_pos - 2,) trg_dataset = TruncateDataset( StripTokenDataset(trg_dataset, eos), max_pos - 2,) datasets.append( TLMDataset(src_dataset, trg_dataset, bos, eos)) datasets.append( TLMDataset(trg_dataset, src_dataset, bos, eos)) dataset = ConcatDataset(datasets) print("| get all items ...") items = [i for i in tqdm(dataset)] print("| writing binary file ...") prefix = os.path.join(args.output, "train.0") save_items(items, prefix, len(tokenizer)) if __name__ == "__main__": args = get_args() main(args)
data2vec_vision-main
infoxlm/tools/para2bin.py
import argparse import os import torch from fairseq.data import (FairseqDataset, PrependTokenDataset, TokenBlockDataset, TruncateDataset, data_utils, StripTokenDataset, ConcatDataset, PrependTokenDataset, AppendTokenDataset) from fairseq.data.indexed_dataset import make_builder from tqdm import tqdm from transformers import AutoTokenizer from infoxlm.data.tlm_dataset import TLMDataset class IndexDataset(FairseqDataset): def __init__(self, indices): self.indices = indices self._sizes = [len(i) for i in indices] @property def sizes(self): return self._sizes def size(self, index): item = self.__getitem__(index) return len(item) def __getitem__(self, index): item = self.indices[index] item = torch.LongTensor(item) return item def __len__(self): return len(self.indices) def collater(self, samples): raise NotImplementedError def build_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained(args.model_name) return tokenizer def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="CZWin32768/xlm-align") parser.add_argument("--input_src", type=str, default="") parser.add_argument("--input_trg", type=str, default="") parser.add_argument("--output", type=str, default="") parser.add_argument("--max_pos", type=int, default=256) args = parser.parse_args() return args def save_items(items, prefix, vocab_size): bin_fn = "%s.bin" % prefix idx_fn = "%s.idx" % prefix builder = make_builder(bin_fn, "mmap", vocab_size=vocab_size) print("builder: " + str(builder)) for item in items: builder.add_item(item) builder.finalize(idx_fn) def get_indices(input_fn, tokenizer): indices = [] with open(input_fn) as fp: for lid, line in tqdm(enumerate(fp)): # DEBUG # if lid > 500: break line = line.strip() indices.append(tokenizer.encode(line)) print("tokenize finished.") return indices def main(args): tokenizer = build_tokenizer(args) src_indices = get_indices(args.input_src, tokenizer) trg_indices = get_indices(args.input_trg, tokenizer) src_dataset = IndexDataset(src_indices) trg_dataset = IndexDataset(trg_indices) eos = tokenizer.sep_token_id bos = tokenizer.cls_token_id max_pos = args.max_pos datasets = [] src_dataset = TruncateDataset( StripTokenDataset(src_dataset, eos), max_pos - 2,) trg_dataset = TruncateDataset( StripTokenDataset(trg_dataset, eos), max_pos - 2,) src_dataset = PrependTokenDataset(src_dataset, bos) trg_dataset = PrependTokenDataset(trg_dataset, bos) src_dataset = AppendTokenDataset(src_dataset, eos) trg_dataset = AppendTokenDataset(trg_dataset, eos) print("| get all items ...") # items = [i for i in tqdm(dataset)] items = [] for t1, t2 in tqdm(zip(src_dataset, trg_dataset)): items.append(t1) items.append(t2) print("| writing binary file ...") prefix = os.path.join(args.output, "train.0") save_items(items, prefix, len(tokenizer)) if __name__ == "__main__": args = get_args() main(args)
data2vec_vision-main
infoxlm/tools/para2bin4xlco.py
import argparse import os import torch from fairseq.data import (FairseqDataset, PrependTokenDataset, TokenBlockDataset, TruncateDataset, data_utils) from fairseq.data.indexed_dataset import make_builder from tqdm import tqdm from transformers import AutoTokenizer class IndexDataset(FairseqDataset): def __init__(self, indices): self.indices = indices self._sizes = [len(i) for i in indices] @property def sizes(self): return self._sizes def size(self, index): item = self.__getitem__(index) return len(item) def __getitem__(self, index): item = self.indices[index] item = torch.LongTensor(item) return item def __len__(self): return len(self.indices) def collater(self, samples): raise NotImplementedError def build_tokenizer(args): tokenizer = AutoTokenizer.from_pretrained(args.model_name) return tokenizer def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="CZWin32768/xlm-align") parser.add_argument("--input", type=str, default="") parser.add_argument("--output", type=str, default="") parser.add_argument('--sample-break-mode', default='complete', choices=['none', 'complete', 'complete_doc', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' 'of sentence, but may include multiple sentences per sample. ' '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.') parser.add_argument('--tokens-per-sample', default=510, type=int, help='max number of total tokens over all segments per sample') parser.add_argument('--dataset_impl', default="mmap", type=str) args = parser.parse_args() return args def save_items(items, prefix, vocab_size): bin_fn = "%s.bin" % prefix idx_fn = "%s.idx" % prefix builder = make_builder(bin_fn, "mmap", vocab_size=vocab_size) print("builder: " + str(builder)) for item in items: builder.add_item(item) builder.finalize(idx_fn) def main(args): tokenizer = build_tokenizer(args) indices = [] with open(args.input) as fp: for line in tqdm(fp): line = line.strip() indices.append(tokenizer.encode(line)) print("tokenize finished.") for i in range(5): print("example[%d]:" % i) input_ids = indices[i] print(input_ids) tokens = tokenizer.convert_ids_to_tokens(input_ids) print(tokens) dataset = IndexDataset(indices) dataset = TruncateDataset(dataset, args.tokens_per_sample - 1) dataset = TokenBlockDataset( dataset, dataset.sizes, args.tokens_per_sample - 1, # one less for <s> pad=tokenizer.pad_token_id, eos=tokenizer.sep_token_id, break_mode=args.sample_break_mode, ) print('| loaded {} blocks from: {}'.format(len(dataset), args.input), flush=True) dataset = PrependTokenDataset(dataset, tokenizer.cls_token_id) print("| get all items ...") items = [i for i in tqdm(dataset)] print("| writing binary file ...") prefix = os.path.join(args.output, "train.0") save_items(items, prefix, len(tokenizer)) if __name__ == "__main__": args = get_args() main(args)
data2vec_vision-main
infoxlm/tools/txt2bin.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Data pre-processing: build vocabularies and binarize training data. """ from collections import Counter from itertools import zip_longest from fairseq import options, tasks, utils from fairseq.data import indexed_dataset from fairseq.binarizer import Binarizer from multiprocessing import Pool import os import shutil def main(args): utils.import_user_module(args) print(args) os.makedirs(args.destdir, exist_ok=True) target = not args.only_source task = tasks.get_task(args.task) def train_path(lang): return "{}{}".format(args.trainpref, ("." + lang) if lang else "") def file_name(prefix, lang): fname = prefix if lang is not None: fname += ".{lang}".format(lang=lang) return fname def dest_path(prefix, lang): return os.path.join(args.destdir, file_name(prefix, lang)) def dict_path(lang): return dest_path("dict", lang) + ".txt" def build_dictionary(filenames, src=False, tgt=False): assert src ^ tgt return task.build_dictionary( filenames, workers=args.workers, threshold=args.thresholdsrc if src else args.thresholdtgt, nwords=args.nwordssrc if src else args.nwordstgt, padding_factor=args.padding_factor, ) if not args.srcdict and os.path.exists(dict_path(args.source_lang)): raise FileExistsError(dict_path(args.source_lang)) if target and not args.tgtdict and os.path.exists(dict_path(args.target_lang)): raise FileExistsError(dict_path(args.target_lang)) if args.joined_dictionary: assert not args.srcdict or not args.tgtdict, \ "cannot use both --srcdict and --tgtdict with --joined-dictionary" if args.srcdict: src_dict = task.load_dictionary(args.srcdict) elif args.tgtdict: src_dict = task.load_dictionary(args.tgtdict) else: assert args.trainpref, "--trainpref must be set if --srcdict is not specified" src_dict = build_dictionary( {train_path(lang) for lang in [args.source_lang, args.target_lang]}, src=True ) tgt_dict = src_dict else: if args.srcdict: src_dict = task.load_dictionary(args.srcdict) else: assert args.trainpref, "--trainpref must be set if --srcdict is not specified" src_dict = build_dictionary([train_path(args.source_lang)], src=True) if target: if args.tgtdict: tgt_dict = task.load_dictionary(args.tgtdict) else: assert args.trainpref, "--trainpref must be set if --tgtdict is not specified" tgt_dict = build_dictionary([train_path(args.target_lang)], tgt=True) else: tgt_dict = None src_dict.save(dict_path(args.source_lang)) if target and tgt_dict is not None: tgt_dict.save(dict_path(args.target_lang)) def make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers): print("| [{}] Dictionary: {} types".format(lang, len(vocab) - 1)) n_seq_tok = [0, 0] replaced = Counter() def merge_result(worker_result): replaced.update(worker_result["replaced"]) n_seq_tok[0] += worker_result["nseq"] n_seq_tok[1] += worker_result["ntok"] input_file = "{}{}".format( input_prefix, ("." + lang) if lang is not None else "" ) offsets = Binarizer.find_offsets(input_file, num_workers) pool = None if num_workers > 1: pool = Pool(processes=num_workers - 1) for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) pool.apply_async( binarize, ( args, input_file, vocab, prefix, lang, offsets[worker_id], offsets[worker_id + 1] ), callback=merge_result ) pool.close() ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, lang, "bin"), impl=args.dataset_impl, vocab_size=len(vocab)) merge_result( Binarizer.binarize( input_file, vocab, lambda t: ds.add_item(t), offset=0, end=offsets[1] ) ) if num_workers > 1: pool.join() for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) temp_file_path = dataset_dest_prefix(args, prefix, lang) ds.merge_file_(temp_file_path) os.remove(indexed_dataset.data_file_path(temp_file_path)) os.remove(indexed_dataset.index_file_path(temp_file_path)) ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx")) print( "| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}".format( lang, input_file, n_seq_tok[0], n_seq_tok[1], 100 * sum(replaced.values()) / n_seq_tok[1], vocab.unk_word, ) ) def make_binary_alignment_dataset(input_prefix, output_prefix, num_workers): nseq = [0] def merge_result(worker_result): nseq[0] += worker_result['nseq'] input_file = input_prefix offsets = Binarizer.find_offsets(input_file, num_workers) pool = None if num_workers > 1: pool = Pool(processes=num_workers - 1) for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) pool.apply_async( binarize_alignments, ( args, input_file, utils.parse_alignment, prefix, offsets[worker_id], offsets[worker_id + 1] ), callback=merge_result ) pool.close() ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, None, "bin"), impl=args.dataset_impl) merge_result( Binarizer.binarize_alignments( input_file, utils.parse_alignment, lambda t: ds.add_item(t), offset=0, end=offsets[1] ) ) if num_workers > 1: pool.join() for worker_id in range(1, num_workers): prefix = "{}{}".format(output_prefix, worker_id) temp_file_path = dataset_dest_prefix(args, prefix, None) ds.merge_file_(temp_file_path) os.remove(indexed_dataset.data_file_path(temp_file_path)) os.remove(indexed_dataset.index_file_path(temp_file_path)) ds.finalize(dataset_dest_file(args, output_prefix, None, "idx")) print( "| [alignments] {}: parsed {} alignments".format( input_file, nseq[0] ) ) def make_dataset(vocab, input_prefix, output_prefix, lang, num_workers=1): if args.dataset_impl == "raw": # Copy original text file to destination folder output_text_file = dest_path( output_prefix + ".{}-{}".format(args.source_lang, args.target_lang), lang, ) shutil.copyfile(file_name(input_prefix, lang), output_text_file) else: make_binary_dataset(vocab, input_prefix, output_prefix, lang, num_workers) def make_all(lang, vocab): if args.trainpref: make_dataset(vocab, args.trainpref, "train", lang, num_workers=args.workers) if args.validpref: for k, validpref in enumerate(args.validpref.split(",")): outprefix = "valid{}".format(k) if k > 0 else "valid" make_dataset(vocab, validpref, outprefix, lang, num_workers=args.workers) if args.testpref: for k, testpref in enumerate(args.testpref.split(",")): outprefix = "test{}".format(k) if k > 0 else "test" make_dataset(vocab, testpref, outprefix, lang, num_workers=args.workers) def make_all_alignments(): if args.trainpref and os.path.exists(args.trainpref + "." + args.align_suffix): make_binary_alignment_dataset(args.trainpref + "." + args.align_suffix, "train.align", num_workers=args.workers) if args.validpref and os.path.exists(args.validpref + "." + args.align_suffix): make_binary_alignment_dataset(args.validpref + "." + args.align_suffix, "valid.align", num_workers=args.workers) if args.testpref and os.path.exists(args.testpref + "." + args.align_suffix): make_binary_alignment_dataset(args.testpref + "." + args.align_suffix, "test.align", num_workers=args.workers) make_all(args.source_lang, src_dict) if target: make_all(args.target_lang, tgt_dict) if args.align_suffix: make_all_alignments() print("| Wrote preprocessed data to {}".format(args.destdir)) if args.alignfile: assert args.trainpref, "--trainpref must be set if --alignfile is specified" src_file_name = train_path(args.source_lang) tgt_file_name = train_path(args.target_lang) freq_map = {} with open(args.alignfile, "r", encoding='utf-8') as align_file: with open(src_file_name, "r", encoding='utf-8') as src_file: with open(tgt_file_name, "r", encoding='utf-8') as tgt_file: for a, s, t in zip_longest(align_file, src_file, tgt_file): si = src_dict.encode_line(s, add_if_not_exist=False) ti = tgt_dict.encode_line(t, add_if_not_exist=False) ai = list(map(lambda x: tuple(x.split("-")), a.split())) for sai, tai in ai: srcidx = si[int(sai)] tgtidx = ti[int(tai)] if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk(): assert srcidx != src_dict.pad() assert srcidx != src_dict.eos() assert tgtidx != tgt_dict.pad() assert tgtidx != tgt_dict.eos() if srcidx not in freq_map: freq_map[srcidx] = {} if tgtidx not in freq_map[srcidx]: freq_map[srcidx][tgtidx] = 1 else: freq_map[srcidx][tgtidx] += 1 align_dict = {} for srcidx in freq_map.keys(): align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get) with open( os.path.join( args.destdir, "alignment.{}-{}.txt".format(args.source_lang, args.target_lang), ), "w", encoding='utf-8' ) as f: for k, v in align_dict.items(): print("{} {}".format(src_dict[k], tgt_dict[v]), file=f) def binarize(args, filename, vocab, output_prefix, lang, offset, end, append_eos=True): ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, lang, "bin"), impl=args.dataset_impl, vocab_size=len(vocab)) def consumer(tensor): ds.add_item(tensor) res = Binarizer.binarize(filename, vocab, consumer, append_eos=append_eos, offset=offset, end=end) ds.finalize(dataset_dest_file(args, output_prefix, lang, "idx")) return res def binarize_alignments(args, filename, parse_alignment, output_prefix, offset, end): ds = indexed_dataset.make_builder(dataset_dest_file(args, output_prefix, None, "bin"), impl=args.dataset_impl, vocab_size=None) def consumer(tensor): ds.add_item(tensor) res = Binarizer.binarize_alignments(filename, parse_alignment, consumer, offset=offset, end=end) ds.finalize(dataset_dest_file(args, output_prefix, None, "idx")) return res def dataset_dest_prefix(args, output_prefix, lang): base = "{}/{}".format(args.destdir, output_prefix) if lang is not None: lang_part = ".{}-{}.{}".format(args.source_lang, args.target_lang, lang) elif args.only_source: lang_part = "" else: lang_part = ".{}-{}".format(args.source_lang, args.target_lang) return "{}{}".format(base, lang_part) def dataset_dest_file(args, output_prefix, lang, extension): base = dataset_dest_prefix(args, output_prefix, lang) return "{}.{}".format(base, extension) def get_offsets(input_file, num_workers): return Binarizer.find_offsets(input_file, num_workers) def cli_main(): parser = options.get_preprocessing_parser() args = parser.parse_args() main(args) if __name__ == "__main__": cli_main()
data2vec_vision-main
infoxlm/fairseq/preprocess.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate pre-processed data with a trained model. """ import torch from fairseq import bleu, checkpoint_utils, options, progress_bar, tasks, utils from fairseq.meters import StopwatchMeter, TimeMeter def main(args): assert args.path is not None, '--path required for generation!' assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert args.replace_unk is None or args.raw_text, \ '--replace-unk requires a raw text dataset (--raw-text)' utils.import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) # Set dictionaries try: src_dict = getattr(task, 'source_dictionary', None) except NotImplementedError: src_dict = None tgt_dict = task.target_dictionary # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(':'), arg_overrides=eval(args.model_overrides), task=task, ) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = task.get_batch_iterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) # Initialize generator gen_timer = StopwatchMeter() generator = task.build_generator(args) # Generate and compute BLEU score if args.sacrebleu: scorer = bleu.SacrebleuScorer() else: scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk()) num_sentences = 0 has_target = True with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: sample = utils.move_to_cuda(sample) if use_cuda else sample if 'net_input' not in sample: continue prefix_tokens = None if args.prefix_size > 0: prefix_tokens = sample['target'][:, :args.prefix_size] gen_timer.start() hypos = task.inference_step(generator, models, sample, prefix_tokens) num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos) gen_timer.stop(num_generated_tokens) for i, sample_id in enumerate(sample['id'].tolist()): has_target = sample['target'] is not None # Remove padding src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad()) target_tokens = None if has_target: target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu() # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id) else: if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) else: src_str = "" if has_target: target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True) if not args.quiet: if src_dict is not None: print('S-{}\t{}'.format(sample_id, src_str)) if has_target: print('T-{}\t{}'.format(sample_id, target_str)) # Process top predictions for j, hypo in enumerate(hypos[i][:args.nbest]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) if not args.quiet: print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( sample_id, ' '.join(map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )) )) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment]) )) if args.print_step: print('I-{}\t{}'.format(sample_id, hypo['steps'])) if getattr(args, 'retain_iter_history', False): print("\n".join([ 'E-{}_{}\t{}'.format( sample_id, step, utils.post_process_prediction( h['tokens'].int().cpu(), src_str, None, None, tgt_dict, None)[1]) for step, h in enumerate(hypo['history'])])) # Score only the top hypothesis if has_target and j == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True) if hasattr(scorer, 'add_string'): scorer.add_string(target_str, hypo_str) else: scorer.add(target_tokens, hypo_tokens) wps_meter.update(num_generated_tokens) t.log({'wps': round(wps_meter.avg)}) num_sentences += sample['nsentences'] print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format( num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string())) return scorer def cli_main(): parser = options.get_generation_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == '__main__': cli_main()
data2vec_vision-main
infoxlm/fairseq/generate.py
#!/usr/bin/env python3 -u #!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import checkpoint_utils, options, progress_bar, utils def main(args, override_args=None): utils.import_user_module(args) use_fp16 = args.fp16 use_cuda = torch.cuda.is_available() and not args.cpu if override_args is not None: overrides = vars(override_args) overrides.update(eval(getattr(override_args, 'model_overrides', '{}'))) else: overrides = None # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, model_args, task = checkpoint_utils.load_model_ensemble_and_task( [args.path], arg_overrides=overrides, ) model = models[0] # Move models to GPU for model in models: if use_fp16: model.half() if use_cuda: model.cuda() # Print args print(model_args) # Build criterion criterion = task.build_criterion(model_args) criterion.eval() # Load valid dataset (we load training data below, based on the latest checkpoint) for subset in args.valid_subset.split(','): try: task.load_dataset(subset, combine=False, epoch=0) dataset = task.dataset(subset) except KeyError: raise Exception('Cannot find dataset: ' + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models], ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) progress = progress_bar.build_progress_bar( args, itr, prefix='valid on \'{}\' subset'.format(subset), no_progress_bar='simple' ) log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample _loss, _sample_size, log_output = task.valid_step(sample, model, criterion) progress.log(log_output, step=i) log_outputs.append(log_output) log_output = task.aggregate_logging_outputs(log_outputs, criterion) progress.print(log_output, tag=subset, step=i) def cli_main(): parser = options.get_validation_parser() args = options.parse_args_and_arch(parser) # only override args that are explicitly given on the command line override_parser = options.get_validation_parser() override_args = options.parse_args_and_arch(override_parser, suppress_defaults=True) main(args, override_args) if __name__ == '__main__': cli_main()
data2vec_vision-main
infoxlm/fairseq/validate.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from setuptools import setup, find_packages, Extension import sys if sys.version_info < (3, 5): sys.exit('Sorry, Python >=3.5 is required for fairseq.') with open('README.md') as f: readme = f.read() if sys.platform == 'darwin': extra_compile_args = ['-stdlib=libc++', '-O3'] else: extra_compile_args = ['-std=c++11', '-O3'] class NumpyExtension(Extension): """Source: https://stackoverflow.com/a/54128391""" def __init__(self, *args, **kwargs): self.__include_dirs = [] super().__init__(*args, **kwargs) @property def include_dirs(self): import numpy return self.__include_dirs + [numpy.get_include()] @include_dirs.setter def include_dirs(self, dirs): self.__include_dirs = dirs extensions = [ Extension( 'fairseq.libbleu', sources=[ 'fairseq/clib/libbleu/libbleu.cpp', 'fairseq/clib/libbleu/module.cpp', ], extra_compile_args=extra_compile_args, ), NumpyExtension( 'fairseq.data.data_utils_fast', sources=['fairseq/data/data_utils_fast.pyx'], language='c++', extra_compile_args=extra_compile_args, ), NumpyExtension( 'fairseq.data.token_block_utils_fast', sources=['fairseq/data/token_block_utils_fast.pyx'], language='c++', extra_compile_args=extra_compile_args, ), ] cmdclass = {} try: # torch is not available when generating docs from torch.utils import cpp_extension extensions.extend([ cpp_extension.CppExtension( 'fairseq.libnat', sources=[ 'fairseq/clib/libnat/edit_dist.cpp', ], ), ]) cmdclass['build_ext'] = cpp_extension.BuildExtension except ImportError: pass if 'READTHEDOCS' in os.environ: # don't build extensions when generating docs extensions = [] if 'build_ext' in cmdclass: del cmdclass['build_ext'] # use CPU build of PyTorch dependency_links = [ 'https://download.pytorch.org/whl/cpu/torch-1.3.0%2Bcpu-cp36-cp36m-linux_x86_64.whl' ] else: dependency_links = [] if 'clean' in sys.argv[1:]: # Source: https://bit.ly/2NLVsgE print("deleting Cython files...") import subprocess subprocess.run(['rm -f fairseq/*.so fairseq/**/*.so'], shell=True) if 'test' in sys.argv[1:]: try: import fairseq.data.token_block_utils_fast except (ImportError, ModuleNotFoundError): raise Exception( 'Please install Cython components with `python setup.py build_ext --inplace`' 'before running unit tests.' ) setup( name='fairseq', version='0.9.0', description='Facebook AI Research Sequence-to-Sequence Toolkit', url='https://github.com/pytorch/fairseq', classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], long_description=readme, long_description_content_type='text/markdown', setup_requires=[ 'cython', 'numpy', 'setuptools>=18.0', ], install_requires=[ 'cffi', 'cython', 'numpy', 'regex', 'sacrebleu', 'torch', 'tqdm', ], dependency_links=dependency_links, packages=find_packages(exclude=['scripts', 'tests']), ext_modules=extensions, test_suite='tests', entry_points={ 'console_scripts': [ 'fairseq-eval-lm = fairseq_cli.eval_lm:cli_main', 'fairseq-generate = fairseq_cli.generate:cli_main', 'fairseq-interactive = fairseq_cli.interactive:cli_main', 'fairseq-preprocess = fairseq_cli.preprocess:cli_main', 'fairseq-score = fairseq_cli.score:main', 'fairseq-train = fairseq_cli.train:cli_main', 'fairseq-validate = fairseq_cli.validate:cli_main', ], }, cmdclass=cmdclass, zip_safe=False, )
data2vec_vision-main
infoxlm/fairseq/setup.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate raw text with a trained model. Batches data on-the-fly. """ from collections import namedtuple import fileinput import torch from fairseq import checkpoint_utils, options, tasks, utils from fairseq.data import encoders Batch = namedtuple('Batch', 'ids src_tokens src_lengths') Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments') def buffered_read(input, buffer_size): buffer = [] with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h: for src_str in h: buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer def make_batches(lines, args, task, max_positions, encode_fn): tokens = [ task.source_dictionary.encode_line( encode_fn(src_str), add_if_not_exist=False ).long() for src_str in lines ] lengths = torch.LongTensor([t.numel() for t in tokens]) itr = task.get_batch_iterator( dataset=task.build_dataset_for_inference(tokens, lengths), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=max_positions, ).next_epoch_itr(shuffle=False) for batch in itr: yield Batch( ids=batch['id'], src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'], ) def main(args): utils.import_user_module(args) if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _model_args = checkpoint_utils.load_model_ensemble( args.path.split(':'), arg_overrides=eval(args.model_overrides), task=task, ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() # Initialize generator generator = task.build_generator(args) # Handle tokenization and BPE tokenizer = encoders.build_tokenizer(args) bpe = encoders.build_bpe(args) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) if args.buffer_size > 1: print('| Sentence buffer size:', args.buffer_size) print('| Type the input sentence and press return:') start_id = 0 for inputs in buffered_read(args.input, args.buffer_size): results = [] for batch in make_batches(inputs, args, task, max_positions, encode_fn): src_tokens = batch.src_tokens src_lengths = batch.src_lengths if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() sample = { 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, }, } translations = task.inference_step(generator, models, sample) for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) results.append((start_id + id, src_tokens_i, hypos)) # sort output to match input order for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]): if src_dict is not None: src_str = src_dict.string(src_tokens, args.remove_bpe) print('S-{}\t{}'.format(id, src_str)) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) hypo_str = decode_fn(hypo_str) print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( id, ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist())) )) if args.print_alignment: alignment_str = " ".join(["{}-{}".format(src, tgt) for src, tgt in alignment]) print('A-{}\t{}'.format( id, alignment_str )) # update running id counter start_id += len(inputs) def cli_main(): parser = options.get_generation_parser(interactive=True) args = options.parse_args_and_arch(parser) main(args) if __name__ == '__main__': cli_main()
data2vec_vision-main
infoxlm/fairseq/interactive.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a new model on one or across multiple GPUs. """ import collections import math import random import numpy as np import torch from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils from fairseq.data import iterators from fairseq.trainer import Trainer from fairseq.meters import AverageMeter, StopwatchMeter def main(args, init_distributed=False): utils.import_user_module(args) assert args.max_tokens is not None or args.max_sentences is not None, \ 'Must specify batch size either with --max-tokens or --max-sentences' # Initialize CUDA and distributed training if torch.cuda.is_available() and not args.cpu: torch.cuda.set_device(args.device_id) np.random.seed(args.seed) torch.manual_seed(args.seed) if init_distributed: args.distributed_rank = distributed_utils.distributed_init(args) if distributed_utils.is_master(args): checkpoint_utils.verify_checkpoint_directory(args.save_dir) # Print args print(args) # Setup task, e.g., translation, language modeling, etc. task = tasks.setup_task(args) # Load valid dataset (we load training data below, based on the latest checkpoint) for valid_sub_split in args.valid_subset.split(','): task.load_dataset(valid_sub_split, combine=False, epoch=0) # Build model and criterion model = task.build_model(args) criterion = task.build_criterion(args) print(model) print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__)) print('| num. model params: {} (num. trained: {})'.format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), )) # Build trainer trainer = Trainer(args, task, model, criterion) print('| training on {} GPUs'.format(args.distributed_world_size)) print('| max tokens per GPU = {} and max sentences per GPU = {}'.format( args.max_tokens, args.max_sentences, )) # Load the latest checkpoint if one is available and restore the # corresponding train iterator extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer) # Prepare train task.prepare_train(model, criterion) # Train until the learning rate gets too small max_epoch = args.max_epoch or math.inf max_update = args.max_update or math.inf lr = trainer.get_lr() train_meter = StopwatchMeter() train_meter.start() valid_subsets = args.valid_subset.split(',') while ( lr > args.min_lr and (epoch_itr.epoch < max_epoch or (epoch_itr.epoch == max_epoch and epoch_itr._next_epoch_itr is not None)) and trainer.get_num_updates() < max_update ): # train for one epoch train(args, trainer, task, epoch_itr) if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0: valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets) else: valid_losses = [None] # only use first validation loss to update the learning rate lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0]) # save checkpoint if epoch_itr.epoch % args.save_interval == 0: checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0]) reload_dataset = ':' in getattr(args, 'data', '') reload_dataset = reload_dataset or args.reload_dataset_per_epoch # sharded data: get train iterator for next epoch epoch_itr = trainer.get_train_iterator(epoch_itr.epoch, load_dataset=reload_dataset) train_meter.stop() print('| done training in {:.1f} seconds'.format(train_meter.sum)) def train(args, trainer, task, epoch_itr): """Train the model for one epoch.""" # Update parameters every N batches print("| Start train.train ..." , flush=True) update_freq = args.update_freq[epoch_itr.epoch - 1] \ if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1] # Initialize data iterator itr = epoch_itr.next_epoch_itr( fix_batches_to_gpus=args.fix_batches_to_gpus, shuffle=(epoch_itr.epoch >= args.curriculum), ) print("| Itr init (1) ...", flush=True) itr = iterators.GroupedIterator(itr, update_freq) progress = progress_bar.build_progress_bar( args, itr, epoch_itr.epoch, no_progress_bar='simple', ) print("| Itr init (2) ...", flush=True) extra_meters = collections.defaultdict(lambda: AverageMeter()) valid_subsets = args.valid_subset.split(',') max_update = args.max_update or math.inf # ##################### DEBUG ##################### # debug_samples = [] # print("Fetch debug examples ...") # for i in range(1000): # debug_samples.append(next(itr)) # progress = progress_bar.build_progress_bar( # args, iter(debug_samples), epoch_itr.epoch, no_progress_bar='simple', # ) # ##################### DEBUG ##################### for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch): log_output = trainer.train_step(samples) if log_output is None: continue # log mid-epoch stats stats = get_training_stats(trainer) for k, v in log_output.items(): if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']: continue # these are already logged above if 'loss' in k or k == 'accuracy': extra_meters[k].update(v, log_output['sample_size']) else: extra_meters[k].update(v) stats[k] = extra_meters[k].val progress.log(stats, tag='train', step=stats['num_updates']) # ignore the first mini-batch in words-per-second and updates-per-second calculation if i == 0: trainer.get_meter('wps').reset() trainer.get_meter('ups').reset() num_updates = trainer.get_num_updates() if ( not args.disable_validation and args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0 ): valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets) checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0]) elif (args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0): checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, None) if num_updates >= max_update: break # log end-of-epoch stats stats = get_training_stats(trainer) for k, meter in extra_meters.items(): stats[k] = meter.val progress.print(stats, tag='train', step=stats['num_updates']) # reset training meters for k in [ 'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip', ]: meter = trainer.get_meter(k) if meter is not None: meter.reset() def get_training_stats(trainer): stats = collections.OrderedDict() stats['loss'] = trainer.get_meter('train_loss') if trainer.get_meter('train_nll_loss').count > 0: nll_loss = trainer.get_meter('train_nll_loss') stats['nll_loss'] = nll_loss else: nll_loss = trainer.get_meter('train_loss') stats['ppl'] = utils.get_perplexity(nll_loss.avg) stats['wps'] = trainer.get_meter('wps') stats['ups'] = trainer.get_meter('ups') stats['wpb'] = trainer.get_meter('wpb') stats['bsz'] = trainer.get_meter('bsz') stats['num_updates'] = trainer.get_num_updates() stats['lr'] = trainer.get_lr() stats['gnorm'] = trainer.get_meter('gnorm') stats['clip'] = trainer.get_meter('clip') stats['oom'] = trainer.get_meter('oom') if trainer.get_meter('loss_scale') is not None: stats['loss_scale'] = trainer.get_meter('loss_scale') stats['wall'] = round(trainer.get_meter('wall').elapsed_time) stats['train_wall'] = trainer.get_meter('train_wall') return stats def validate(args, trainer, task, epoch_itr, subsets): """Evaluate the model on the validation set(s) and return the losses.""" if args.fixed_validation_seed is not None: # set fixed seed for every validation utils.set_torch_seed(args.fixed_validation_seed) valid_losses = [] for subset in subsets: # Initialize data iterator itr = task.get_batch_iterator( dataset=task.dataset(subset), max_tokens=args.max_tokens_valid, max_sentences=args.max_sentences_valid, max_positions=utils.resolve_max_positions( task.max_positions(), trainer.get_model().max_positions(), ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=args.distributed_world_size, shard_id=args.distributed_rank, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) progress = progress_bar.build_progress_bar( args, itr, epoch_itr.epoch, prefix='valid on \'{}\' subset'.format(subset), no_progress_bar='simple' ) # reset validation loss meters for k in ['valid_loss', 'valid_nll_loss']: meter = trainer.get_meter(k) if meter is not None: meter.reset() extra_meters = collections.defaultdict(lambda: AverageMeter()) for sample in progress: log_output = trainer.valid_step(sample) for k, v in log_output.items(): if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']: continue extra_meters[k].update(v) # log validation stats stats = get_valid_stats(trainer, args, extra_meters) for k, meter in extra_meters.items(): stats[k] = meter.avg progress.print(stats, tag=subset, step=trainer.get_num_updates()) valid_losses.append( stats[args.best_checkpoint_metric].avg if args.best_checkpoint_metric == 'loss' else stats[args.best_checkpoint_metric] ) return valid_losses def get_valid_stats(trainer, args, extra_meters=None): stats = collections.OrderedDict() stats['loss'] = trainer.get_meter('valid_loss') if trainer.get_meter('valid_nll_loss').count > 0: nll_loss = trainer.get_meter('valid_nll_loss') stats['nll_loss'] = nll_loss else: nll_loss = stats['loss'] stats['ppl'] = utils.get_perplexity(nll_loss.avg) stats['num_updates'] = trainer.get_num_updates() if hasattr(checkpoint_utils.save_checkpoint, 'best'): key = 'best_{0}'.format(args.best_checkpoint_metric) best_function = max if args.maximize_best_checkpoint_metric else min current_metric = None if args.best_checkpoint_metric == 'loss': current_metric = stats['loss'].avg elif args.best_checkpoint_metric in extra_meters: current_metric = extra_meters[args.best_checkpoint_metric].avg elif args.best_checkpoint_metric in stats: current_metric = stats[args.best_checkpoint_metric] else: raise ValueError("best_checkpoint_metric not found in logs") stats[key] = best_function( checkpoint_utils.save_checkpoint.best, current_metric, ) return stats def distributed_main(i, args, start_rank=0): args.device_id = i if args.distributed_rank is None: # torch.multiprocessing.spawn args.distributed_rank = start_rank + i main(args, init_distributed=True) def cli_main(): parser = options.get_training_parser() args = options.parse_args_and_arch(parser) if args.distributed_init_method is None: distributed_utils.infer_init_method(args) if args.distributed_init_method is not None: # distributed training if torch.cuda.device_count() > 1 and not args.distributed_no_spawn: start_rank = args.distributed_rank args.distributed_rank = None # assign automatically torch.multiprocessing.spawn( fn=distributed_main, args=(args, start_rank), nprocs=torch.cuda.device_count(), ) else: distributed_main(args.device_id, args) elif args.distributed_world_size > 1: # fallback for single node with multiple GPUs assert args.distributed_world_size <= torch.cuda.device_count() port = random.randint(10000, 20000) args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port) args.distributed_rank = None # set based on device id if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d': print('| NOTE: you may get better performance with: --ddp-backend=no_c10d') torch.multiprocessing.spawn( fn=distributed_main, args=(args, ), nprocs=args.distributed_world_size, ) else: # single GPU training main(args) if __name__ == '__main__': cli_main()
data2vec_vision-main
infoxlm/fairseq/train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools from fairseq.hub_utils import BPEHubInterface as bpe # noqa from fairseq.hub_utils import TokenizerHubInterface as tokenizer # noqa from fairseq.models import MODEL_REGISTRY dependencies = [ 'numpy', 'regex', 'requests', 'torch', ] # torch.hub doesn't build Cython components, so if they are not found then try # to build them here try: import fairseq.data.token_block_utils_fast except (ImportError, ModuleNotFoundError): try: import cython import os from setuptools import sandbox sandbox.run_setup( os.path.join(os.path.dirname(__file__), 'setup.py'), ['build_ext', '--inplace'], ) except (ImportError, ModuleNotFoundError): print( 'Unable to build Cython components. Please make sure Cython is ' 'installed if the torch.hub model you are loading depends on it.' ) for _model_type, _cls in MODEL_REGISTRY.items(): for model_name in _cls.hub_models().keys(): globals()[model_name] = functools.partial( _cls.from_pretrained, model_name, ) # to simplify the interface we only expose named models # globals()[_model_type] = _cls.from_pretrained
data2vec_vision-main
infoxlm/fairseq/hubconf.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Evaluate the perplexity of a trained language model. """ import numpy as np import torch from fairseq import checkpoint_utils, options, progress_bar, tasks, utils from fairseq.data import LMContextWindowDataset from fairseq.meters import StopwatchMeter, TimeMeter from fairseq.sequence_scorer import SequenceScorer class WordStat(object): def __init__(self, word, is_bpe): self.word = word self.is_bpe = is_bpe self.log_prob = 0 self.next_word_prob = 0 self.count = 0 self.missing_next_words = 0 def add(self, log_prob, next_word_prob): """ increments counters for the sum of log probs of current word and next word (given context ending at current word). Since the next word might be at the end of the example, or it might be not counted because it is not an ending subword unit, also keeps track of how many of those we have seen """ if next_word_prob is not None: self.next_word_prob += next_word_prob else: self.missing_next_words += 1 self.log_prob += log_prob self.count += 1 def __str__(self): return '{}\t{}\t{}\t{}\t{}\t{}'.format(self.word, self.count, self.log_prob, self.is_bpe, self.next_word_prob, self.count - self.missing_next_words) def main(parsed_args): assert parsed_args.path is not None, '--path required for evaluation!' utils.import_user_module(parsed_args) print(parsed_args) use_cuda = torch.cuda.is_available() and not parsed_args.cpu task = tasks.setup_task(parsed_args) # Load ensemble print('| loading model(s) from {}'.format(parsed_args.path)) models, args = checkpoint_utils.load_model_ensemble( parsed_args.path.split(':'), arg_overrides=eval(parsed_args.model_overrides), task=task, ) for arg in vars(parsed_args).keys(): if arg not in { 'self_target', 'future_target', 'past_target', 'tokens_per_sample', 'output_size_dictionary', 'add_bos_token', }: setattr(args, arg, getattr(parsed_args, arg)) # reduce tokens per sample by the required context window size args.tokens_per_sample -= args.context_window task = tasks.setup_task(args) # Load dataset splits task.load_dataset(args.gen_subset) dataset = task.dataset(args.gen_subset) if args.context_window > 0: dataset = LMContextWindowDataset( dataset=dataset, tokens_per_sample=args.tokens_per_sample, context_window=args.context_window, pad_idx=task.source_dictionary.pad(), ) print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset))) # Optimize ensemble for generation and set the source and dest dicts on the model (required by scorer) for model in models: model.make_generation_fast_() if args.fp16: model.half() if use_cuda: model.cuda() assert len(models) > 0 print('num. model params: {}'.format(sum(p.numel() for p in models[0].parameters()))) itr = task.get_batch_iterator( dataset=dataset, max_tokens=args.max_tokens or 36000, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions(*[ model.max_positions() for model in models ]), ignore_invalid_inputs=True, num_shards=args.num_shards, shard_id=args.shard_id, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) gen_timer = StopwatchMeter() scorer = SequenceScorer(task.target_dictionary, args.softmax_batch) score_sum = 0. count = 0 if args.remove_bpe is not None: if args.remove_bpe == 'sentencepiece': raise NotImplementedError else: bpe_cont = args.remove_bpe.rstrip() bpe_toks = set( i for i in range(len(task.source_dictionary)) if task.source_dictionary[i].endswith(bpe_cont) ) bpe_len = len(bpe_cont) else: bpe_toks = None bpe_len = 0 word_stats = dict() with progress_bar.build_progress_bar(args, itr) as t: wps_meter = TimeMeter() for sample in t: if 'net_input' not in sample: continue sample = utils.move_to_cuda(sample) if use_cuda else sample gen_timer.start() hypos = scorer.generate(models, sample) gen_timer.stop(sample['ntokens']) for i, hypos_i in enumerate(hypos): hypo = hypos_i[0] sample_id = sample['id'][i] tokens = hypo['tokens'] tgt_len = tokens.numel() pos_scores = hypo['positional_scores'].float() if args.add_bos_token: assert hypo['tokens'][0].item() == task.target_dictionary.bos() tokens = tokens[1:] pos_scores = pos_scores[1:] skipped_toks = 0 if bpe_toks is not None: for i in range(tgt_len - 1): if tokens[i].item() in bpe_toks: skipped_toks += 1 pos_scores[i + 1] += pos_scores[i] pos_scores[i] = 0 inf_scores = pos_scores.eq(float('inf')) | pos_scores.eq(float('-inf')) if inf_scores.any(): print('| Skipping tokens with inf scores:', task.target_dictionary.string(tokens[inf_scores.nonzero()])) pos_scores = pos_scores[(~inf_scores).nonzero()] score_sum += pos_scores.sum().cpu() count += pos_scores.numel() - skipped_toks if args.output_word_probs or args.output_word_stats: w = '' word_prob = [] is_bpe = False for i in range(len(tokens)): w_ind = tokens[i].item() w += task.source_dictionary[w_ind] if bpe_toks is not None and w_ind in bpe_toks: w = w[:-bpe_len] is_bpe = True else: word_prob.append((w, pos_scores[i].item())) next_prob = None ind = i + 1 while ind < len(tokens): if pos_scores[ind].item() != 0: next_prob = pos_scores[ind] break ind += 1 word_stats.setdefault(w, WordStat(w, is_bpe)).add(pos_scores[i].item(), next_prob) is_bpe = False w = '' if args.output_word_probs: print( str(int(sample_id)) + " " + ('\t'.join('{} [{:2f}]'.format(x[0], x[1]) for x in word_prob)) ) wps_meter.update(sample['ntokens']) t.log({'wps': round(wps_meter.avg)}) avg_nll_loss = -score_sum / count print('| Evaluated {} tokens in {:.1f}s ({:.2f} tokens/s)'.format(gen_timer.n, gen_timer.sum, 1. / gen_timer.avg)) print('| Loss: {:.4f}, Perplexity: {:.2f}'.format(avg_nll_loss, np.exp(avg_nll_loss))) if args.output_word_stats: for ws in sorted(word_stats.values(), key=lambda x: x.count, reverse=True): print(ws) def cli_main(): parser = options.get_eval_lm_parser() args = options.parse_args_and_arch(parser) main(args) if __name__ == '__main__': cli_main()
data2vec_vision-main
infoxlm/fairseq/eval_lm.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ BLEU scoring of generated translations against reference translations. """ import argparse import os import sys from fairseq import bleu from fairseq.data import dictionary def get_parser(): parser = argparse.ArgumentParser(description='Command-line script for BLEU scoring.') # fmt: off parser.add_argument('-s', '--sys', default='-', help='system output') parser.add_argument('-r', '--ref', required=True, help='references') parser.add_argument('-o', '--order', default=4, metavar='N', type=int, help='consider ngrams up to this order') parser.add_argument('--ignore-case', action='store_true', help='case-insensitive scoring') parser.add_argument('--sacrebleu', action='store_true', help='score with sacrebleu') parser.add_argument('--sentence-bleu', action='store_true', help='report sentence-level BLEUs (i.e., with +1 smoothing)') # fmt: on return parser def main(): parser = get_parser() args = parser.parse_args() print(args) assert args.sys == '-' or os.path.exists(args.sys), \ "System output file {} does not exist".format(args.sys) assert os.path.exists(args.ref), \ "Reference file {} does not exist".format(args.ref) dict = dictionary.Dictionary() def readlines(fd): for line in fd.readlines(): if args.ignore_case: yield line.lower() else: yield line if args.sacrebleu: import sacrebleu def score(fdsys): with open(args.ref) as fdref: print(sacrebleu.corpus_bleu(fdsys, [fdref])) elif args.sentence_bleu: def score(fdsys): with open(args.ref) as fdref: scorer = bleu.Scorer(dict.pad(), dict.eos(), dict.unk()) for i, (sys_tok, ref_tok) in enumerate(zip(readlines(fdsys), readlines(fdref))): scorer.reset(one_init=True) sys_tok = dict.encode_line(sys_tok) ref_tok = dict.encode_line(ref_tok) scorer.add(ref_tok, sys_tok) print(i, scorer.result_string(args.order)) else: def score(fdsys): with open(args.ref) as fdref: scorer = bleu.Scorer(dict.pad(), dict.eos(), dict.unk()) for sys_tok, ref_tok in zip(readlines(fdsys), readlines(fdref)): sys_tok = dict.encode_line(sys_tok) ref_tok = dict.encode_line(ref_tok) scorer.add(ref_tok, sys_tok) print(scorer.result_string(args.order)) if args.sys == '-': score(sys.stdin) else: with open(args.sys, 'r') as f: score(f) if __name__ == '__main__': main()
data2vec_vision-main
infoxlm/fairseq/score.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tempfile import unittest import torch from fairseq.data import Dictionary class TestDictionary(unittest.TestCase): def test_finalize(self): txt = [ 'A B C D', 'B C D', 'C D', 'D', ] ref_ids1 = list(map(torch.IntTensor, [ [4, 5, 6, 7, 2], [5, 6, 7, 2], [6, 7, 2], [7, 2], ])) ref_ids2 = list(map(torch.IntTensor, [ [7, 6, 5, 4, 2], [6, 5, 4, 2], [5, 4, 2], [4, 2], ])) # build dictionary d = Dictionary() for line in txt: d.encode_line(line, add_if_not_exist=True) def get_ids(dictionary): ids = [] for line in txt: ids.append(dictionary.encode_line(line, add_if_not_exist=False)) return ids def assertMatch(ids, ref_ids): for toks, ref_toks in zip(ids, ref_ids): self.assertEqual(toks.size(), ref_toks.size()) self.assertEqual(0, (toks != ref_toks).sum().item()) ids = get_ids(d) assertMatch(ids, ref_ids1) # check finalized dictionary d.finalize() finalized_ids = get_ids(d) assertMatch(finalized_ids, ref_ids2) # write to disk and reload with tempfile.NamedTemporaryFile(mode='w') as tmp_dict: d.save(tmp_dict.name) d = Dictionary.load(tmp_dict.name) reload_ids = get_ids(d) assertMatch(reload_ids, ref_ids2) assertMatch(finalized_ids, reload_ids) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_dictionary.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse from multiprocessing import Manager import random import unittest import torch import torch.nn as nn from fairseq import distributed_utils, optim class Model(nn.Module): def __init__(self, input_size, output_size): super(Model, self).__init__() self.fc = nn.Linear(input_size, output_size) def forward(self, input): output = self.fc(input) return output def setup_model_loss_criterion(args, rank, is_cuda): """ setup model, criterion and optimizer based on input args """ args.distributed_rank = rank distributed_utils.distributed_init(args) torch.manual_seed(1) model = Model(args.input_size, args.nb_classes) loss_fn = nn.CrossEntropyLoss() if is_cuda: model = model.cuda() loss_fn = loss_fn.cuda() optimizer = optim.sgd.SGD(args, model.parameters()) optimizer = optim.FairseqBMUF(args, optimizer) return model, loss_fn, optimizer def train_step(input, target, model, loss_fn, optimizer): """Do forward, backward and parameter update.""" model.train() output = model(input) loss = loss_fn(output, target) optimizer.backward(loss) optimizer.step() def single_gpu_training(args, rank, iterations, shared_results): is_cuda = torch.cuda.is_available() if is_cuda: torch.cuda.set_device(rank) model, loss_fn, optimizer = setup_model_loss_criterion(args, rank, is_cuda) for _ in range(iterations): input = torch.randn(1, args.input_size) target = torch.empty(args.batch_size, dtype=torch.long).random_(args.nb_classes) if is_cuda: input = input.cuda() target = target.cuda() train_step(input, target, model, loss_fn, optimizer) results = [] for param in model.parameters(): if len(results) == 0: results = param.flatten().cpu().data else: results = torch.cat((results, param.flatten().cpu().data), 0) shared_results[rank] = results def setup_args(): args = argparse.Namespace() args.global_sync_iter = 20 args.block_momentum = 0.875 args.block_lr = 0.5 args.input_size = 5 args.nb_classes = 2 args.batch_size = 1 args.lr = [1e-3] args.momentum = 0 args.weight_decay = 0 args.warmup_iterations = 0 args.use_nbm = True args.average_sync = True args.global_sync_iter = 1 args.distributed_backend = "gloo" args.distributed_world_size = 2 port = random.randint(10000, 20000) args.distributed_init_method = "tcp://localhost:{port}".format(port=port) args.distributed_init_host = "localhost" args.distributed_port = port + 1 args.local_world_size = args.distributed_world_size return args class TestBMUF(unittest.TestCase): def bmuf_process(self, args, iterations): processes = [] results = Manager().dict() ctx = torch.multiprocessing.get_context("spawn") for rank in range(args.distributed_world_size): p = ctx.Process( target=single_gpu_training, args=(args, rank, iterations, results) ) p.start() processes.append(p) for p in processes: p.join() # Make sure params in both machines are same assert len(results) == 2 self.assertAlmostEqual(results[0], results[1]) def test_bmuf_sync(self): # Train model for 1 iteration and do bmuf sync without doing warmup args = setup_args() iterations = 1 self.bmuf_process(args, iterations) def test_warmup_sync(self): # Train model for 20 iteration and do warmup sync without doing bmuf sync args = setup_args() args.warmup_iterations = 20 iterations = 20 self.bmuf_process(args, iterations) def test_warmup_sync_bmuf_sync(self): # Train model for 25 iteration and do warmup sync after 20 iteration # and bmuf sync after 25 iteration args = setup_args() args.warmup_iterations = 20 args.global_sync_iter = 5 iterations = 25 self.bmuf_process(args, iterations) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_bmuf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq import utils class TestUtils(unittest.TestCase): def test_convert_padding_direction(self): pad = 1 left_pad = torch.LongTensor([ [2, 3, 4, 5, 6], [1, 7, 8, 9, 10], [1, 1, 1, 11, 12], ]) right_pad = torch.LongTensor([ [2, 3, 4, 5, 6], [7, 8, 9, 10, 1], [11, 12, 1, 1, 1], ]) self.assertAlmostEqual( right_pad, utils.convert_padding_direction( left_pad, pad, left_to_right=True, ), ) self.assertAlmostEqual( left_pad, utils.convert_padding_direction( right_pad, pad, right_to_left=True, ), ) def test_make_positions(self): pad = 1 left_pad_input = torch.LongTensor([ [9, 9, 9, 9, 9], [1, 9, 9, 9, 9], [1, 1, 1, 9, 9], ]) left_pad_output = torch.LongTensor([ [2, 3, 4, 5, 6], [1, 2, 3, 4, 5], [1, 1, 1, 2, 3], ]) right_pad_input = torch.LongTensor([ [9, 9, 9, 9, 9], [9, 9, 9, 9, 1], [9, 9, 1, 1, 1], ]) right_pad_output = torch.LongTensor([ [2, 3, 4, 5, 6], [2, 3, 4, 5, 1], [2, 3, 1, 1, 1], ]) self.assertAlmostEqual( left_pad_output, utils.make_positions(left_pad_input, pad), ) self.assertAlmostEqual( right_pad_output, utils.make_positions(right_pad_input, pad), ) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess(utils.item((t1 - t2).abs().max()), 1e-4) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from fairseq.data import iterators class TestIterators(unittest.TestCase): def test_counting_iterator(self): x = list(range(10)) itr = iterators.CountingIterator(x) self.assertTrue(itr.has_next()) self.assertEqual(next(itr), 0) self.assertEqual(next(itr), 1) itr.skip(3) self.assertEqual(next(itr), 5) itr.skip(3) self.assertEqual(next(itr), 9) self.assertFalse(itr.has_next()) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_iterators.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Dict, List import tests.utils as test_utils import torch from fairseq import utils from fairseq.data import ( Dictionary, LanguagePairDataset, TransformEosDataset, data_utils, noising, ) class TestDataNoising(unittest.TestCase): def _get_test_data_with_bpe_cont_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with continuation markers as suffixes to denote non-end of word tokens. This is the standard BPE format used in fairseq's preprocessing. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he@@") vocab.add_symbol("llo") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("y@@") vocab.add_symbol("ou") vocab.add_symbol("n@@") vocab.add_symbol("ew") vocab.add_symbol("or@@") vocab.add_symbol("k") src_tokens = [ ["he@@", "llo", "n@@", "ew", "y@@", "or@@", "k"], ["how", "are", "y@@", "ou"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_bpe_end_marker(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: BPE vocab with end-of-word markers as suffixes to denote tokens at the end of a word. This is an alternative to fairseq's standard preprocessing framework and is not generally supported within fairseq. x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("he") vocab.add_symbol("llo_EOW") vocab.add_symbol("how_EOW") vocab.add_symbol("are_EOW") vocab.add_symbol("y") vocab.add_symbol("ou_EOW") vocab.add_symbol("n") vocab.add_symbol("ew_EOW") vocab.add_symbol("or") vocab.add_symbol("k_EOW") src_tokens = [ ["he", "llo_EOW", "n", "ew_EOW", "y", "or", "k_EOW"], ["how_EOW", "are_EOW", "y", "ou_EOW"], ] x, src_lengths = x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _get_test_data_with_word_vocab(self, append_eos=True): """ Args: append_eos: if True, each input sentence in the source tokens tensor will have an EOS appended to the end. Returns: vocabs: word vocab x: input tensor containing numberized source tokens, with EOS at the end if append_eos is true src_lengths: and source lengths. """ vocab = Dictionary() vocab.add_symbol("hello") vocab.add_symbol("how") vocab.add_symbol("are") vocab.add_symbol("you") vocab.add_symbol("new") vocab.add_symbol("york") src_tokens = [ ["hello", "new", "york", "you"], ["how", "are", "you", "new", "york"], ] x, src_lengths = self._convert_src_tokens_to_tensor( vocab=vocab, src_tokens=src_tokens, append_eos=append_eos ) return vocab, x, src_lengths def _convert_src_tokens_to_tensor( self, vocab: Dictionary, src_tokens: List[List[str]], append_eos: bool ): src_len = [len(x) for x in src_tokens] # If we have to append EOS, we include EOS in counting src length if append_eos: src_len = [length + 1 for length in src_len] x = torch.LongTensor(len(src_tokens), max(src_len)).fill_(vocab.pad()) for i in range(len(src_tokens)): for j in range(len(src_tokens[i])): x[i][j] = vocab.index(src_tokens[i][j]) if append_eos: x[i][j + 1] = vocab.eos() x = x.transpose(1, 0) return x, torch.LongTensor(src_len) def assert_eos_at_end(self, x, x_len, eos): """Asserts last token of every sentence in x is EOS """ for i in range(len(x_len)): self.assertEqual( x[x_len[i] - 1][i], eos, ( "Expected eos (token id {eos}) at the end of sentence {i} " "but got {other} instead" ).format(i=i, eos=eos, other=x[i][-1]), ) def assert_word_dropout_correct(self, x, x_noised, x_len, l_noised): # Expect only the first word (2 bpe tokens) of the first example # was dropped out self.assertEqual(x_len[0] - 2, l_noised[0]) for i in range(l_noised[0]): self.assertEqual(x_noised[i][0], x[i + 2][0]) def test_word_dropout_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def assert_word_blanking_correct(self, x, x_noised, x_len, l_noised, unk): # Expect only the first word (2 bpe tokens) of the first example # was blanked out self.assertEqual(x_len[0], l_noised[0]) for i in range(l_noised[0]): if i < 2: self.assertEqual(x_noised[i][0], unk) else: self.assertEqual(x_noised[i][0], x[i][0]) def test_word_blank_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def generate_unchanged_shuffle_map(self, length): return {i: i for i in range(length)} def assert_word_shuffle_matches_expected( self, x, x_len, max_shuffle_distance: int, vocab: Dictionary, expected_shufle_maps: List[Dict[int, int]], expect_eos_at_end: bool, bpe_end_marker=None, ): """ This verifies that with a given x, x_len, max_shuffle_distance, and vocab, we get the expected shuffle result. Args: x: Tensor of shape (T x B) = (sequence_length, batch_size) x_len: Tensor of length B = batch_size max_shuffle_distance: arg to pass to noising expected_shuffle_maps: List[mapping] where mapping is a Dict[old_index, new_index], mapping x's elements from their old positions in x to their new positions in x. expect_eos_at_end: if True, check the output to make sure there is an EOS at the end. bpe_end_marker: str denoting the BPE end token. If this is not None, we set the BPE cont token to None in the noising classes. """ bpe_cont_marker = None if bpe_end_marker is None: bpe_cont_marker = "@@" with data_utils.numpy_seed(1234): word_shuffle = noising.WordShuffle( vocab, bpe_cont_marker=bpe_cont_marker, bpe_end_marker=bpe_end_marker ) x_noised, l_noised = word_shuffle.noising( x, x_len, max_shuffle_distance=max_shuffle_distance ) # For every example, we have a different expected shuffle map. We check # that each example is shuffled as expected according to each # corresponding shuffle map. for i in range(len(expected_shufle_maps)): shuffle_map = expected_shufle_maps[i] for k, v in shuffle_map.items(): self.assertEqual(x[k][i], x_noised[v][i]) # Shuffling should not affect the length of each example for pre_shuffle_length, post_shuffle_length in zip(x_len, l_noised): self.assertEqual(pre_shuffle_length, post_shuffle_length) if expect_eos_at_end: self.assert_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_shuffle_with_eos(self): vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=True, ) def test_word_shuffle_with_eos_nonbpe(self): """The purpose of this is to test shuffling logic with word vocabs""" vocab, x, x_len = self._get_test_data_with_word_vocab(append_eos=True) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=True, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ {0: 0, 1: 1, 2: 3, 3: 2}, {0: 0, 1: 2, 2: 1, 3: 3, 4: 4}, ], expect_eos_at_end=True, ) def test_word_shuffle_without_eos(self): """Same result as word shuffle with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, ) def test_word_shuffle_without_eos_with_bpe_end_marker(self): """Same result as word shuffle without eos except using BPE end token""" vocab, x, x_len = self._get_test_data_with_bpe_end_marker(append_eos=False) # Assert word shuffle with max shuffle distance 0 causes input to be # unchanged self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, max_shuffle_distance=0, vocab=vocab, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(example_len) for example_len in x_len ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) # Assert word shuffle with max shuffle distance 3 matches our expected # shuffle order self.assert_word_shuffle_matches_expected( x=x, x_len=x_len, vocab=vocab, max_shuffle_distance=3, expected_shufle_maps=[ self.generate_unchanged_shuffle_map(x_len[0]), {0: 0, 1: 3, 2: 1, 3: 2}, ], expect_eos_at_end=False, bpe_end_marker="_EOW", ) def assert_no_eos_at_end(self, x, x_len, eos): """Asserts that the last token of each sentence in x is not EOS """ for i in range(len(x_len)): self.assertNotEqual( x[x_len[i] - 1][i], eos, "Expected no eos (token id {eos}) at the end of sentence {i}.".format( eos=eos, i=i ), ) def test_word_dropout_without_eos(self): """Same result as word dropout with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2) self.assert_word_dropout_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def test_word_blank_without_eos(self): """Same result as word blank with eos except no EOS at end""" vocab, x, x_len = self._get_test_data_with_bpe_cont_marker(append_eos=False) with data_utils.numpy_seed(1234): noising_gen = noising.WordDropout(vocab) x_noised, l_noised = noising_gen.noising(x, x_len, 0.2, vocab.unk()) self.assert_word_blanking_correct( x=x, x_noised=x_noised, x_len=x_len, l_noised=l_noised, unk=vocab.unk() ) self.assert_no_eos_at_end(x=x_noised, x_len=l_noised, eos=vocab.eos()) def _get_noising_dataset_batch( self, src_tokens_no_pad, src_dict, append_eos_to_tgt=False, ): """ Constructs a NoisingDataset and the corresponding ``LanguagePairDataset(NoisingDataset(src), src)``. If *append_eos_to_tgt* is True, wrap the source dataset in :class:`TransformEosDataset` to append EOS to the clean source when using it as the target. """ src_dataset = test_utils.TestDataset(data=src_tokens_no_pad) noising_dataset = noising.NoisingDataset( src_dataset=src_dataset, src_dict=src_dict, seed=1234, max_word_shuffle_distance=3, word_dropout_prob=0.2, word_blanking_prob=0.2, noising_class=noising.UnsupervisedMTNoising, ) tgt = src_dataset language_pair_dataset = LanguagePairDataset( src=noising_dataset, tgt=tgt, src_sizes=None, src_dict=src_dict ) language_pair_dataset = TransformEosDataset( language_pair_dataset, src_dict.eos(), append_eos_to_tgt=append_eos_to_tgt, ) dataloader = torch.utils.data.DataLoader( dataset=language_pair_dataset, batch_size=2, collate_fn=language_pair_dataset.collater, ) denoising_batch_result = next(iter(dataloader)) return denoising_batch_result def test_noising_dataset_with_eos(self): src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=True ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [pad, pad, pad, 6, 8, 9, 7, eos]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_noising_dataset_without_eos(self): """ Similar to test noising dataset with eos except that we have to set *append_eos_to_tgt* to ``True``. """ src_dict, src_tokens, _ = self._get_test_data_with_bpe_cont_marker( append_eos=False ) # Format data for src_dataset src_tokens = torch.t(src_tokens) src_tokens_no_pad = [] for src_sentence in src_tokens: src_tokens_no_pad.append( utils.strip_pad(tensor=src_sentence, pad=src_dict.pad()) ) denoising_batch_result = self._get_noising_dataset_batch( src_tokens_no_pad=src_tokens_no_pad, src_dict=src_dict, append_eos_to_tgt=True, ) eos, pad = src_dict.eos(), src_dict.pad() # Generated noisy source as source expected_src = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13], [pad, pad, pad, 6, 8, 9, 7]] ) # Original clean source as target (right-padded) expected_tgt = torch.LongTensor( [[4, 5, 10, 11, 8, 12, 13, eos], [6, 7, 8, 9, eos, pad, pad, pad]] ) generated_src = denoising_batch_result["net_input"]["src_tokens"] tgt_tokens = denoising_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_noising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import unittest from fairseq.modules.sparse_multihead_attention import SparseMultiheadAttention class TestSparseMultiheadAttention(unittest.TestCase): def test_sparse_multihead_attention(self): attn_weights = torch.randn(1, 8, 8) bidirectional_sparse_mask = torch.tensor([ [0, 0, 0, 0, 0, float('-inf'), float('-inf'), 0], [0, 0, 0, 0, 0, float('-inf'), float('-inf'), 0], [0, 0, 0, 0, 0, float('-inf'), float('-inf'), 0], [0, 0, 0, 0, 0, float('-inf'), float('-inf'), 0], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, 0], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, 0], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, 0], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, 0] ]) bidirectional_attention = SparseMultiheadAttention(16, 1, stride=4, expressivity=1, is_bidirectional=True) bidirectional_attention_sparse_mask = bidirectional_attention.buffered_sparse_mask(attn_weights, 8, 8) torch.all(torch.eq(bidirectional_attention_sparse_mask, bidirectional_sparse_mask)) sparse_mask = torch.tensor([ [0, float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf')], [0, 0, float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf')], [0, 0, 0, float('-inf'), float('-inf'), float('-inf'), float('-inf'), float('-inf')], [0, 0, 0, 0, float('-inf'), float('-inf'), float('-inf'), float('-inf')], [0, 0, 0, 0, 0, float('-inf'), float('-inf'), float('-inf')], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, float('-inf'), float('-inf')], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, float('-inf')], [float('-inf'), float('-inf'), float('-inf'), 0, 0, 0, 0, 0], ]) attention = SparseMultiheadAttention(16, 1, stride=4, expressivity=1, is_bidirectional=False) attention_sparse_mask = attention.buffered_sparse_mask(attn_weights, 8, 8) torch.all(torch.eq(attention_sparse_mask, sparse_mask)) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_sparse_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib from io import StringIO import unittest from unittest.mock import MagicMock, patch import torch from fairseq import data, checkpoint_utils def mock_trainer(epoch, num_updates, iterations_in_epoch): trainer = MagicMock() trainer.load_checkpoint.return_value = { 'train_iterator': { 'epoch': epoch, 'iterations_in_epoch': iterations_in_epoch, 'shuffle': False, }, } trainer.get_num_updates.return_value = num_updates return trainer def mock_dict(): d = MagicMock() d.pad.return_value = 1 d.eos.return_value = 2 d.unk.return_value = 3 return d def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch): tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1) tokens_ds = data.TokenBlockDataset( tokens, sizes=[tokens.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) trainer = mock_trainer(epoch, num_updates, iterations_in_epoch) dataset = data.LanguagePairDataset(tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False) epoch_itr = data.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=[[i] for i in range(epoch_size)], ) return trainer, epoch_itr class TestLoadCheckpoint(unittest.TestCase): def setUp(self): self.args_mock = MagicMock() self.args_mock.optimizer_overrides = '{}' self.args_mock.reset_dataloader = False self.args_mock.reset_meters = False self.args_mock.reset_optimizer = False self.patches = { 'os.makedirs': MagicMock(), 'os.path.join': MagicMock(), 'os.path.isfile': MagicMock(return_value=True), 'os.path.isabs': MagicMock(return_value=False), } self.applied_patches = [patch(p, d) for p, d in self.patches.items()] [p.start() for p in self.applied_patches] def test_load_partial_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer) self.assertEqual(epoch_itr.epoch, 2) self.assertEqual(epoch_itr.iterations_in_epoch, 50) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 2) self.assertEqual(epoch_itr.iterations_in_epoch, 50) self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 50) self.assertEqual(epoch_itr.iterations_in_epoch, 51) for _ in range(150 - 52): next(itr) self.assertEqual(epoch_itr.iterations_in_epoch, 149) self.assertTrue(itr.has_next()) next(itr) self.assertFalse(itr.has_next()) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertTrue(itr.has_next()) self.assertEqual(epoch_itr.epoch, 3) self.assertEqual(epoch_itr.iterations_in_epoch, 0) def test_load_full_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 300, 150) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 3) self.assertEqual(epoch_itr.iterations_in_epoch, 0) self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 0) def test_load_no_checkpoint(self): with contextlib.redirect_stdout(StringIO()): trainer, epoch_itr = get_trainer_and_epoch_itr(0, 150, 0, 0) trainer.get_train_iterator = MagicMock(return_value=epoch_itr) self.patches['os.path.isfile'].return_value = False _, epoch_itr = checkpoint_utils.load_checkpoint(self.args_mock, trainer) itr = epoch_itr.next_epoch_itr(shuffle=False) self.assertEqual(epoch_itr.epoch, 1) self.assertEqual(epoch_itr.iterations_in_epoch, 0) self.assertEqual(next(itr)['net_input']['src_tokens'][0].item(), 0) def tearDown(self): patch.stopall() if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_train.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import unittest import torch from fairseq.sequence_scorer import SequenceScorer import tests.utils as test_utils class TestSequenceScorer(unittest.TestCase): def test_sequence_scorer(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) eos = d.eos() w1 = 4 w2 = 5 # construct dataloader data = [ { 'source': torch.LongTensor([w1, w2, eos]), 'target': torch.LongTensor([w1, w2, w1, eos]), }, { 'source': torch.LongTensor([w2, eos]), 'target': torch.LongTensor([w2, w1, eos]), }, { 'source': torch.LongTensor([w2, eos]), 'target': torch.LongTensor([w2, eos]), }, ] data_itr = test_utils.dummy_dataloader(data) # specify expected output probabilities args = argparse.Namespace() unk = 0. args.beam_probs = [ # step 0: torch.FloatTensor([ # eos w1 w2 [0.0, unk, 0.6, 0.4], # sentence 1 [0.0, unk, 0.4, 0.6], # sentence 2 [0.0, unk, 0.7, 0.3], # sentence 3 ]), # step 1: torch.FloatTensor([ # eos w1 w2 [0.0, unk, 0.2, 0.7], # sentence 1 [0.0, unk, 0.8, 0.2], # sentence 2 [0.7, unk, 0.1, 0.2], # sentence 3 ]), # step 2: torch.FloatTensor([ # eos w1 w2 [0.10, unk, 0.50, 0.4], # sentence 1 [0.15, unk, 0.15, 0.7], # sentence 2 [0.00, unk, 0.00, 0.0], # sentence 3 ]), # step 3: torch.FloatTensor([ # eos w1 w2 [0.9, unk, 0.05, 0.05], # sentence 1 [0.0, unk, 0.00, 0.0], # sentence 2 [0.0, unk, 0.00, 0.0], # sentence 3 ]), ] expected_scores = [ [0.6, 0.7, 0.5, 0.9], # sentence 1 [0.6, 0.8, 0.15], # sentence 2 [0.3, 0.7], # sentence 3 ] task = test_utils.TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) scorer = SequenceScorer(task.target_dictionary) for sample in data_itr: hypos = task.inference_step(scorer, [model], sample) for id, hypos_id in zip(sample['id'].tolist(), hypos): self.assertHypoTokens(hypos_id[0], data[id]['target']) self.assertHypoScore(hypos_id[0], expected_scores[id]) def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypo['tokens'].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel()**lenpen self.assertLess(abs(score - hypo['score']), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_sequence_scorer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import unittest from fairseq.modules.multihead_attention import MultiheadAttention class TestMultiheadAttention(unittest.TestCase): def test_append_prev_key_padding_mask(self): bsz = 1 src_len = 4 cases = [ # no padding mask (None, None, None), # current padding mask only ( torch.tensor([[1]]).bool(), None, torch.tensor([[0, 0, 0, 1]]).bool(), ), # previous padding mask only ( None, torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 0]]).bool(), ), # both padding masks ( torch.tensor([[1]]).bool(), torch.tensor([[0, 1, 0]]).bool(), torch.tensor([[0, 1, 0, 1]]).bool(), ), ] for c in cases: key_padding_mask = MultiheadAttention._append_prev_key_padding_mask( c[0], c[1], batch_size=bsz, src_len=src_len, static_kv=False, ) if key_padding_mask is not None: self.assertTrue( torch.all(torch.eq(key_padding_mask, c[2])), f'Unexpected resultant key padding mask: {key_padding_mask}' f' given current: {c[0]} and previous: {c[1]}', ) self.assertEqual(key_padding_mask.size(0), bsz) self.assertEqual(key_padding_mask.size(1), src_len) else: self.assertIsNone(c[2]) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_multihead_attention.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import unittest import numpy as np from fairseq.data import ListDataset, ResamplingDataset class TestResamplingDataset(unittest.TestCase): def setUp(self): self.strings = ["ab", "c", "def", "ghij"] self.weights = [4.0, 2.0, 7.0, 1.5] self.size_ratio = 2 self.dataset = ListDataset( self.strings, np.array([len(s) for s in self.strings]) ) def _test_common(self, resampling_dataset, iters): assert len(self.dataset) == len(self.strings) == len(self.weights) assert len(resampling_dataset) == self.size_ratio * len(self.strings) results = {"ordered_by_size": True, "max_distribution_diff": 0.0} totalfreqs = 0 freqs = collections.defaultdict(int) for epoch_num in range(iters): resampling_dataset.set_epoch(epoch_num) indices = resampling_dataset.ordered_indices() assert len(indices) == len(resampling_dataset) prev_size = -1 for i in indices: cur_size = resampling_dataset.size(i) # Make sure indices map to same sequences within an epoch assert resampling_dataset[i] == resampling_dataset[i] # Make sure length of sequence is correct assert cur_size == len(resampling_dataset[i]) freqs[resampling_dataset[i]] += 1 totalfreqs += 1 if prev_size > cur_size: results["ordered_by_size"] = False prev_size = cur_size assert set(freqs.keys()) == set(self.strings) for s, weight in zip(self.strings, self.weights): freq = freqs[s] / totalfreqs expected_freq = weight / sum(self.weights) results["max_distribution_diff"] = max( results["max_distribution_diff"], abs(expected_freq - freq) ) return results def test_resampling_dataset_batch_by_size_false(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=False, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = False, the batches should be returned in # arbitrary order of size. assert not results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 def test_resampling_dataset_batch_by_size_true(self): resampling_dataset = ResamplingDataset( self.dataset, self.weights, size_ratio=self.size_ratio, batch_by_size=True, seed=0, ) results = self._test_common(resampling_dataset, iters=1000) # For batch_by_size = True, the batches should be returned in # increasing order of size. assert results["ordered_by_size"] # Allow tolerance in distribution error of 2%. assert results["max_distribution_diff"] < 0.02 if __name__ == "__main__": unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_resampling_dataset.py
data2vec_vision-main
infoxlm/fairseq/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import ( BacktranslationDataset, LanguagePairDataset, TransformEosDataset, ) from fairseq.sequence_generator import SequenceGenerator import tests.utils as test_utils class TestBacktranslationDataset(unittest.TestCase): def setUp(self): self.tgt_dict, self.w1, self.w2, self.src_tokens, self.src_lengths, self.model = ( test_utils.sequence_generator_setup() ) dummy_src_samples = self.src_tokens self.tgt_dataset = test_utils.TestDataset(data=dummy_src_samples) self.cuda = torch.cuda.is_available() def _backtranslation_dataset_helper( self, remove_eos_from_input_src, remove_eos_from_output_src, ): tgt_dataset = LanguagePairDataset( src=self.tgt_dataset, src_sizes=self.tgt_dataset.sizes, src_dict=self.tgt_dict, tgt=None, tgt_sizes=None, tgt_dict=None, ) generator = SequenceGenerator( tgt_dict=self.tgt_dict, max_len_a=0, max_len_b=200, beam_size=2, unk_penalty=0, sampling=False, ) backtranslation_dataset = BacktranslationDataset( tgt_dataset=TransformEosDataset( dataset=tgt_dataset, eos=self.tgt_dict.eos(), # remove eos from the input src remove_eos_from_src=remove_eos_from_input_src, ), src_dict=self.tgt_dict, backtranslation_fn=( lambda sample: generator.generate([self.model], sample) ), output_collater=TransformEosDataset( dataset=tgt_dataset, eos=self.tgt_dict.eos(), # if we remove eos from the input src, then we need to add it # back to the output tgt append_eos_to_tgt=remove_eos_from_input_src, remove_eos_from_src=remove_eos_from_output_src, ).collater, cuda=self.cuda, ) dataloader = torch.utils.data.DataLoader( backtranslation_dataset, batch_size=2, collate_fn=backtranslation_dataset.collater, ) backtranslation_batch_result = next(iter(dataloader)) eos, pad, w1, w2 = self.tgt_dict.eos(), self.tgt_dict.pad(), self.w1, self.w2 # Note that we sort by src_lengths and add left padding, so actually # ids will look like: [1, 0] expected_src = torch.LongTensor([[w1, w2, w1, eos], [pad, pad, w1, eos]]) if remove_eos_from_output_src: expected_src = expected_src[:, :-1] expected_tgt = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) generated_src = backtranslation_batch_result["net_input"]["src_tokens"] tgt_tokens = backtranslation_batch_result["target"] self.assertTensorEqual(expected_src, generated_src) self.assertTensorEqual(expected_tgt, tgt_tokens) def test_backtranslation_dataset_no_eos_in_output_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=False, remove_eos_from_output_src=True, ) def test_backtranslation_dataset_with_eos_in_output_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=False, remove_eos_from_output_src=False, ) def test_backtranslation_dataset_no_eos_in_input_src(self): self._backtranslation_dataset_helper( remove_eos_from_input_src=True, remove_eos_from_output_src=False, ) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_backtranslation_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib from io import StringIO import os import random import sys import tempfile import unittest import torch from fairseq import options import preprocess import train import generate import interactive import eval_lm import validate class TestTranslation(unittest.TestCase): def test_fconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_fconv') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'fconv_iwslt_de_en') generate_main(data_dir) def test_raw(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_fconv_raw') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--dataset-impl', 'raw']) train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--dataset-impl', 'raw']) generate_main(data_dir, ['--dataset-impl', 'raw']) def test_fp16(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_fp16') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--fp16']) generate_main(data_dir) def test_memory_efficient_fp16(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_memory_efficient_fp16') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--memory-efficient-fp16']) generate_main(data_dir) def test_update_freq(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_update_freq') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'fconv_iwslt_de_en', ['--update-freq', '3']) generate_main(data_dir) def test_max_positions(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_max_positions') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) with self.assertRaises(Exception) as context: train_translation_model( data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5'], ) self.assertTrue( 'skip this example with --skip-invalid-size-inputs-valid-test' in str(context.exception) ) train_translation_model( data_dir, 'fconv_iwslt_de_en', ['--max-target-positions', '5', '--skip-invalid-size-inputs-valid-test'], ) with self.assertRaises(Exception) as context: generate_main(data_dir) generate_main(data_dir, ['--skip-invalid-size-inputs-valid-test']) def test_generation(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_sampling') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'fconv_iwslt_de_en') generate_main(data_dir, [ '--sampling', '--temperature', '2', '--beam', '2', '--nbest', '2', ]) generate_main(data_dir, [ '--sampling', '--sampling-topk', '3', '--beam', '2', '--nbest', '2', ]) generate_main(data_dir, [ '--sampling', '--sampling-topp', '0.2', '--beam', '2', '--nbest', '2', ]) generate_main(data_dir, ['--prefix-size', '2']) def test_lstm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_lstm') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'lstm_wiseman_iwslt_de_en', [ '--encoder-layers', '2', '--decoder-layers', '2', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', '--decoder-out-embed-dim', '8', ]) generate_main(data_dir) def test_lstm_bidirectional(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_lstm_bidirectional') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'lstm', [ '--encoder-layers', '2', '--encoder-bidirectional', '--encoder-hidden-size', '16', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', '--decoder-out-embed-dim', '8', '--decoder-layers', '2', ]) generate_main(data_dir) def test_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'transformer_iwslt_de_en', [ '--encoder-layers', '2', '--decoder-layers', '2', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', ], run_validation=True) generate_main(data_dir) def test_transformer_cross_self_attention(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_transformer_cross_self_attention') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'transformer_iwslt_de_en', [ '--encoder-layers', '2', '--decoder-layers', '2', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', '--decoder-embed-dim', '8', '--no-cross-attention', '--cross-self-attention', '--layer-wise-attention', ], run_validation=True) generate_main(data_dir, extra_flags=[]) def test_lightconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_lightconv') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'lightconv_iwslt_de_en', [ '--encoder-conv-type', 'lightweight', '--decoder-conv-type', 'lightweight', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', ]) generate_main(data_dir) def test_dynamicconv(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_dynamicconv') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'lightconv_iwslt_de_en', [ '--encoder-conv-type', 'dynamic', '--decoder-conv-type', 'dynamic', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', ]) generate_main(data_dir) def test_cmlm_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_cmlm_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--joined-dictionary']) train_translation_model(data_dir, 'cmlm_transformer', [ '--apply-bert-init', '--criterion', 'nat_loss', '--noise', 'full_mask', '--pred-length-offset', '--length-loss-factor', '0.1' ], task='translation_lev') generate_main(data_dir, [ '--task', 'translation_lev', '--iter-decode-max-iter', '9', '--iter-decode-eos-penalty', '0', '--print-step', ]) def test_levenshtein_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_levenshtein_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--joined-dictionary']) train_translation_model(data_dir, 'levenshtein_transformer', [ '--apply-bert-init', '--early-exit', '6,6,6', '--criterion', 'nat_loss' ], task='translation_lev') generate_main(data_dir, [ '--task', 'translation_lev', '--iter-decode-max-iter', '9', '--iter-decode-eos-penalty', '0', '--print-step', ]) def test_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_nonautoregressive_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--joined-dictionary']) train_translation_model(data_dir, 'nonautoregressive_transformer', [ '--apply-bert-init', '--src-embedding-copy', '--criterion', 'nat_loss', '--noise', 'full_mask', '--pred-length-offset', '--length-loss-factor', '0.1' ], task='translation_lev') generate_main(data_dir, [ '--task', 'translation_lev', '--iter-decode-max-iter', '9', '--iter-decode-eos-penalty', '0', '--print-step', ]) def test_iterative_nonautoregressive_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_iterative_nonautoregressive_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--joined-dictionary']) train_translation_model(data_dir, 'iterative_nonautoregressive_transformer', [ '--apply-bert-init', '--src-embedding-copy', '--criterion', 'nat_loss', '--noise', 'full_mask', '--stochastic-approx', '--dae-ratio', '0.5', '--train-step', '3' ], task='translation_lev') generate_main(data_dir, [ '--task', 'translation_lev', '--iter-decode-max-iter', '9', '--iter-decode-eos-penalty', '0', '--print-step', ]) def test_insertion_transformer(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_insertion_transformer') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir, ['--joined-dictionary']) train_translation_model(data_dir, 'insertion_transformer', [ '--apply-bert-init', '--criterion', 'nat_loss', '--noise', 'random_mask' ], task='translation_lev') generate_main(data_dir, [ '--task', 'translation_lev', '--iter-decode-max-iter', '9', '--iter-decode-eos-penalty', '0', '--print-step', ]) def test_mixture_of_experts(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_moe') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) train_translation_model(data_dir, 'transformer_iwslt_de_en', [ '--task', 'translation_moe', '--method', 'hMoElp', '--mean-pool-gating-network', '--num-experts', '3', '--encoder-layers', '2', '--decoder-layers', '2', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', ]) generate_main(data_dir, [ '--task', 'translation_moe', '--method', 'hMoElp', '--mean-pool-gating-network', '--num-experts', '3', '--gen-expert', '0' ]) def test_alignment(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_alignment') as data_dir: create_dummy_data(data_dir, alignment=True) preprocess_translation_data(data_dir, ['--align-suffix', 'align']) train_translation_model( data_dir, 'transformer_align', [ '--encoder-layers', '2', '--decoder-layers', '2', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', '--load-alignments', '--alignment-layer', '1', '--criterion', 'label_smoothed_cross_entropy_with_alignment' ], run_validation=True, ) generate_main(data_dir) class TestStories(unittest.TestCase): def test_fconv_self_att_wp(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_fconv_self_att_wp') as data_dir: create_dummy_data(data_dir) preprocess_translation_data(data_dir) config = [ '--encoder-layers', '[(128, 3)] * 2', '--decoder-layers', '[(128, 3)] * 2', '--decoder-attention', 'True', '--encoder-attention', 'False', '--gated-attention', 'True', '--self-attention', 'True', '--project-input', 'True', '--encoder-embed-dim', '8', '--decoder-embed-dim', '8', '--decoder-out-embed-dim', '8', '--multihead-self-attention-nheads', '2' ] train_translation_model(data_dir, 'fconv_self_att_wp', config) generate_main(data_dir) # fusion model os.rename(os.path.join(data_dir, 'checkpoint_last.pt'), os.path.join(data_dir, 'pretrained.pt')) config.extend([ '--pretrained', 'True', '--pretrained-checkpoint', os.path.join(data_dir, 'pretrained.pt'), '--save-dir', os.path.join(data_dir, 'fusion_model'), ]) train_translation_model(data_dir, 'fconv_self_att_wp', config) class TestLanguageModeling(unittest.TestCase): def test_fconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_fconv_lm') as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model(data_dir, 'fconv_lm', [ '--decoder-layers', '[(850, 3)] * 2 + [(1024,4)]', '--decoder-embed-dim', '280', '--optimizer', 'nag', '--lr', '0.1', ]) eval_lm_main(data_dir) def test_transformer_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_transformer_lm') as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, 'transformer_lm', ['--add-bos-token'], run_validation=True, ) eval_lm_main(data_dir) generate_main(data_dir, [ '--task', 'language_modeling', '--sample-break-mode', 'eos', '--tokens-per-sample', '500', ]) def test_lightconv_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_lightconv_lm') as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_language_model( data_dir, 'lightconv_lm', ['--add-bos-token'], run_validation=True, ) eval_lm_main(data_dir) generate_main(data_dir, [ '--task', 'language_modeling', '--sample-break-mode', 'eos', '--tokens-per-sample', '500', ]) class TestMaskedLanguageModel(unittest.TestCase): def test_legacy_masked_lm(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_legacy_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model(data_dir, "masked_lm") def _test_pretrained_masked_lm_for_translation(self, learned_pos_emb, encoder_only): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory("test_mlm") as data_dir: create_dummy_data(data_dir) preprocess_lm_data(data_dir) train_legacy_masked_language_model( data_dir, arch="masked_lm", extra_args=('--encoder-learned-pos',) if learned_pos_emb else () ) with tempfile.TemporaryDirectory( "test_mlm_translation" ) as translation_dir: create_dummy_data(translation_dir) preprocess_translation_data( translation_dir, extra_flags=["--joined-dictionary"] ) # Train transformer with data_dir/checkpoint_last.pt train_translation_model( translation_dir, arch="transformer_from_pretrained_xlm", extra_flags=[ "--decoder-layers", "1", "--decoder-embed-dim", "32", "--decoder-attention-heads", "1", "--decoder-ffn-embed-dim", "32", "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", "--pretrained-xlm-checkpoint", "{}/checkpoint_last.pt".format(data_dir), "--activation-fn", "gelu", "--max-source-positions", "500", "--max-target-positions", "500", ] + ( ["--encoder-learned-pos", "--decoder-learned-pos"] if learned_pos_emb else [] ) + (['--init-encoder-only'] if encoder_only else []), task="translation_from_pretrained_xlm", ) def test_pretrained_masked_lm_for_translation_learned_pos_emb(self): self._test_pretrained_masked_lm_for_translation(True, False) def test_pretrained_masked_lm_for_translation_sinusoidal_pos_emb(self): self._test_pretrained_masked_lm_for_translation(False, False) def test_pretrained_masked_lm_for_translation_encoder_only(self): self._test_pretrained_masked_lm_for_translation(True, True) def train_legacy_masked_language_model(data_dir, arch, extra_args=()): train_parser = options.get_training_parser() # TODO: langs should be in and out right? train_args = options.parse_args_and_arch( train_parser, [ "--task", "cross_lingual_lm", data_dir, "--arch", arch, # Optimizer args "--optimizer", "adam", "--lr-scheduler", "reduce_lr_on_plateau", "--lr-shrink", "0.5", "--lr", "0.0001", "--min-lr", "1e-09", # dropout, attention args "--dropout", "0.1", "--attention-dropout", "0.1", # MLM args "--criterion", "legacy_masked_lm_loss", "--masked-lm-only", "--monolingual-langs", "in,out", "--num-segment", "5", # Transformer args: use a small transformer model for fast training "--encoder-layers", "1", "--encoder-embed-dim", "32", "--encoder-attention-heads", "1", "--encoder-ffn-embed-dim", "32", # Other training args "--max-tokens", "500", "--tokens-per-sample", "500", "--save-dir", data_dir, "--max-epoch", "1", "--no-progress-bar", "--distributed-world-size", "1", "--dataset-impl", "raw", ] + list(extra_args), ) train.main(train_args) class TestCommonOptions(unittest.TestCase): def test_optimizers(self): with contextlib.redirect_stdout(StringIO()): with tempfile.TemporaryDirectory('test_optimizers') as data_dir: # Use just a bit of data and tiny model to keep this test runtime reasonable create_dummy_data(data_dir, num_examples=10, maxlen=5) preprocess_translation_data(data_dir) optimizers = ['adafactor', 'adam', 'nag', 'adagrad', 'sgd', 'adadelta'] last_checkpoint = os.path.join(data_dir, 'checkpoint_last.pt') for optimizer in optimizers: if os.path.exists(last_checkpoint): os.remove(last_checkpoint) train_translation_model(data_dir, 'lstm', [ '--required-batch-size-multiple', '1', '--encoder-layers', '1', '--encoder-hidden-size', '32', '--decoder-layers', '1', '--optimizer', optimizer, ]) generate_main(data_dir) def create_dummy_data(data_dir, num_examples=1000, maxlen=20, alignment=False): def _create_dummy_data(filename): data = torch.rand(num_examples * maxlen) data = 97 + torch.floor(26 * data).int() with open(os.path.join(data_dir, filename), 'w') as h: offset = 0 for _ in range(num_examples): ex_len = random.randint(1, maxlen) ex_str = ' '.join(map(chr, data[offset:offset+ex_len])) print(ex_str, file=h) offset += ex_len def _create_dummy_alignment_data(filename_src, filename_tgt, filename): with open(os.path.join(data_dir, filename_src), 'r') as src_f, \ open(os.path.join(data_dir, filename_tgt), 'r') as tgt_f, \ open(os.path.join(data_dir, filename), 'w') as h: for src, tgt in zip(src_f, tgt_f): src_len = len(src.split()) tgt_len = len(tgt.split()) avg_len = (src_len + tgt_len) // 2 num_alignments = random.randint(avg_len // 2, 2 * avg_len) src_indices = torch.floor(torch.rand(num_alignments) * src_len).int() tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int() ex_str = ' '.join(["{}-{}".format(src, tgt) for src, tgt in zip(src_indices, tgt_indices)]) print(ex_str, file=h) _create_dummy_data('train.in') _create_dummy_data('train.out') _create_dummy_data('valid.in') _create_dummy_data('valid.out') _create_dummy_data('test.in') _create_dummy_data('test.out') if alignment: _create_dummy_alignment_data('train.in', 'train.out', 'train.align') _create_dummy_alignment_data('valid.in', 'valid.out', 'valid.align') _create_dummy_alignment_data('test.in', 'test.out', 'test.align') def preprocess_translation_data(data_dir, extra_flags=None): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args( [ '--source-lang', 'in', '--target-lang', 'out', '--trainpref', os.path.join(data_dir, 'train'), '--validpref', os.path.join(data_dir, 'valid'), '--testpref', os.path.join(data_dir, 'test'), '--thresholdtgt', '0', '--thresholdsrc', '0', '--destdir', data_dir, ] + (extra_flags or []), ) preprocess.main(preprocess_args) def train_translation_model(data_dir, arch, extra_flags=None, task='translation', run_validation=False): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ '--task', task, data_dir, '--save-dir', data_dir, '--arch', arch, '--lr', '0.05', '--max-tokens', '500', '--max-epoch', '1', '--no-progress-bar', '--distributed-world-size', '1', '--source-lang', 'in', '--target-lang', 'out', ] + (extra_flags or []), ) train.main(train_args) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ '--task', task, data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--valid-subset', 'valid', '--max-tokens', '500', '--no-progress-bar', ] ) validate.main(validate_args) def generate_main(data_dir, extra_flags=None): if extra_flags is None: extra_flags = [ '--print-alignment', ] generate_parser = options.get_generation_parser() generate_args = options.parse_args_and_arch( generate_parser, [ data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--beam', '3', '--batch-size', '64', '--max-len-b', '5', '--gen-subset', 'valid', '--no-progress-bar', ] + (extra_flags or []), ) # evaluate model in batch mode generate.main(generate_args) # evaluate model interactively generate_args.buffer_size = 0 generate_args.input = '-' generate_args.max_sentences = None orig_stdin = sys.stdin sys.stdin = StringIO('h e l l o\n') interactive.main(generate_args) sys.stdin = orig_stdin def preprocess_lm_data(data_dir): preprocess_parser = options.get_preprocessing_parser() preprocess_args = preprocess_parser.parse_args([ '--only-source', '--trainpref', os.path.join(data_dir, 'train.out'), '--validpref', os.path.join(data_dir, 'valid.out'), '--testpref', os.path.join(data_dir, 'test.out'), '--destdir', data_dir, ]) preprocess.main(preprocess_args) def train_language_model(data_dir, arch, extra_flags=None, run_validation=False): train_parser = options.get_training_parser() train_args = options.parse_args_and_arch( train_parser, [ '--task', 'language_modeling', data_dir, '--arch', arch, '--optimizer', 'adam', '--lr', '0.0001', '--criterion', 'adaptive_loss', '--adaptive-softmax-cutoff', '5,10,15', '--max-tokens', '500', '--tokens-per-sample', '500', '--save-dir', data_dir, '--max-epoch', '1', '--no-progress-bar', '--distributed-world-size', '1', '--ddp-backend', 'no_c10d', ] + (extra_flags or []), ) train.main(train_args) if run_validation: # test validation validate_parser = options.get_validation_parser() validate_args = options.parse_args_and_arch( validate_parser, [ '--task', 'language_modeling', data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--valid-subset', 'valid', '--max-tokens', '500', '--no-progress-bar', ] ) validate.main(validate_args) def eval_lm_main(data_dir): eval_lm_parser = options.get_eval_lm_parser() eval_lm_args = options.parse_args_and_arch( eval_lm_parser, [ data_dir, '--path', os.path.join(data_dir, 'checkpoint_last.pt'), '--no-progress-bar', ], ) eval_lm.main(eval_lm_args) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_binaries.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import unittest import torch from fairseq.criterions.cross_entropy import CrossEntropyCriterion from fairseq.criterions.label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterion import tests.utils as test_utils class TestLabelSmoothing(unittest.TestCase): def setUp(self): # build dictionary self.d = test_utils.dummy_dictionary(3) vocab = len(self.d) self.assertEqual(vocab, 4 + 3) # 4 special + 3 tokens self.assertEqual(self.d.pad(), 1) self.assertEqual(self.d.eos(), 2) self.assertEqual(self.d.unk(), 3) pad, eos, unk, w1, w2, w3 = 1, 2, 3, 4, 5, 6 # noqa: F841 # build dataset self.data = [ # the first batch item has padding {'source': torch.LongTensor([w1, eos]), 'target': torch.LongTensor([w1, eos])}, {'source': torch.LongTensor([w1, eos]), 'target': torch.LongTensor([w1, w1, eos])}, ] self.sample = next(test_utils.dummy_dataloader(self.data)) # build model self.args = argparse.Namespace() self.args.sentence_avg = False self.args.probs = torch.FloatTensor([ # pad eos unk w1 w2 w3 [0.05, 0.05, 0.1, 0.05, 0.3, 0.4, 0.05], [0.05, 0.10, 0.2, 0.05, 0.2, 0.3, 0.10], [0.05, 0.15, 0.3, 0.05, 0.1, 0.2, 0.15], ]).unsqueeze(0).expand(2, 3, 7) # add batch dimension self.task = test_utils.TestTranslationTask.setup_task(self.args, self.d, self.d) self.model = self.task.build_model(self.args) def test_nll_loss(self): self.args.label_smoothing = 0.1 nll_crit = CrossEntropyCriterion(self.args, self.task) smooth_crit = LabelSmoothedCrossEntropyCriterion(self.args, self.task) nll_loss, nll_sample_size, nll_logging_output = nll_crit(self.model, self.sample) smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit(self.model, self.sample) self.assertLess(abs(nll_loss - nll_logging_output['loss']), 1e-6) self.assertLess(abs(nll_loss - smooth_logging_output['nll_loss']), 1e-6) def test_padding(self): self.args.label_smoothing = 0.1 crit = LabelSmoothedCrossEntropyCriterion(self.args, self.task) loss, _, logging_output = crit(self.model, self.sample) def get_one_no_padding(idx): # create a new sample with just a single batch item so that there's # no padding sample1 = next(test_utils.dummy_dataloader([self.data[idx]])) args1 = copy.copy(self.args) args1.probs = args1.probs[idx, :, :].unsqueeze(0) model1 = self.task.build_model(args1) loss1, _, _ = crit(model1, sample1) return loss1 loss1 = get_one_no_padding(0) loss2 = get_one_no_padding(1) self.assertAlmostEqual(loss, loss1 + loss2) def test_reduction(self): self.args.label_smoothing = 0.1 crit = LabelSmoothedCrossEntropyCriterion(self.args, self.task) loss, _, logging_output = crit(self.model, self.sample, reduce=True) unreduced_loss, _, _ = crit(self.model, self.sample, reduce=False) self.assertAlmostEqual(loss, unreduced_loss.sum()) def test_zero_eps(self): self.args.label_smoothing = 0.0 nll_crit = CrossEntropyCriterion(self.args, self.task) smooth_crit = LabelSmoothedCrossEntropyCriterion(self.args, self.task) nll_loss, nll_sample_size, nll_logging_output = nll_crit(self.model, self.sample) smooth_loss, smooth_sample_size, smooth_logging_output = smooth_crit(self.model, self.sample) self.assertAlmostEqual(nll_loss, smooth_loss) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-6) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_label_smoothing.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch from fairseq import utils from fairseq.data import Dictionary from fairseq.data.language_pair_dataset import collate from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, ) from fairseq.tasks import FairseqTask def dummy_dictionary(vocab_size, prefix='token_'): d = Dictionary() for i in range(vocab_size): token = prefix + str(i) d.add_symbol(token) d.finalize(padding_factor=1) # don't add extra padding symbols return d def dummy_dataloader( samples, padding_idx=1, eos_idx=2, batch_size=None, ): if batch_size is None: batch_size = len(samples) # add any missing data to samples for i, sample in enumerate(samples): if 'id' not in sample: sample['id'] = i # create dataloader dataset = TestDataset(samples) dataloader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)), ) return iter(dataloader) def sequence_generator_setup(): # construct dummy dictionary d = dummy_dictionary(vocab_size=2) eos = d.eos() w1 = 4 w2 = 5 # construct source data src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]]) src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0. args.beam_probs = [ # step 0: torch.FloatTensor([ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ]), # step 1: torch.FloatTensor([ # eos w1 w2 prefix # sentence 1: [1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0) [0.0, unk, 0.9, 0.1], # w2: 0.1 # sentence 2: [0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25) [0.00, unk, 0.10, 0.9], # w2: 0.3 ]), # step 2: torch.FloatTensor([ # eos w1 w2 prefix # sentence 1: [0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9 [0.6, unk, 0.2, 0.2], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6) # sentence 2: [0.60, unk, 0.4, 0.00], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6) [0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9 ]), # step 3: torch.FloatTensor([ # eos w1 w2 prefix # sentence 1: [1.0, unk, 0.0, 0.0], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0) [1.0, unk, 0.0, 0.0], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0) # sentence 2: [0.1, unk, 0.5, 0.4], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1) [1.0, unk, 0.0, 0.0], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0) ]), ] task = TestTranslationTask.setup_task(args, d, d) model = task.build_model(args) tgt_dict = task.target_dictionary return tgt_dict, w1, w2, src_tokens, src_lengths, model class TestDataset(torch.utils.data.Dataset): def __init__(self, data): super().__init__() self.data = data self.sizes = None def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) class TestTranslationTask(FairseqTask): def __init__(self, args, src_dict, tgt_dict, model): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict self.model = model @classmethod def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None): return cls(args, src_dict, tgt_dict, model) def build_model(self, args): return TestModel.build_model(args, self) @property def source_dictionary(self): return self.src_dict @property def target_dictionary(self): return self.tgt_dict class TestModel(FairseqEncoderDecoderModel): def __init__(self, encoder, decoder): super().__init__(encoder, decoder) @classmethod def build_model(cls, args, task): encoder = TestEncoder(args, task.source_dictionary) decoder = TestIncrementalDecoder(args, task.target_dictionary) return cls(encoder, decoder) class TestEncoder(FairseqEncoder): def __init__(self, args, dictionary): super().__init__(dictionary) self.args = args def forward(self, src_tokens, src_lengths=None, **kwargs): return src_tokens def reorder_encoder_out(self, encoder_out, new_order): return encoder_out.index_select(0, new_order) class TestIncrementalDecoder(FairseqIncrementalDecoder): def __init__(self, args, dictionary): super().__init__(dictionary) assert hasattr(args, 'beam_probs') or hasattr(args, 'probs') args.max_decoder_positions = getattr(args, 'max_decoder_positions', 100) self.args = args def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None): if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] bbsz = prev_output_tokens.size(0) vocab = len(self.dictionary) src_len = encoder_out.size(1) tgt_len = prev_output_tokens.size(1) # determine number of steps if incremental_state is not None: # cache step number step = utils.get_incremental_state(self, incremental_state, 'step') if step is None: step = 0 utils.set_incremental_state(self, incremental_state, 'step', step + 1) steps = [step] else: steps = list(range(tgt_len)) # define output in terms of raw probs if hasattr(self.args, 'probs'): assert self.args.probs.dim() == 3, \ 'expected probs to have size bsz*steps*vocab' probs = self.args.probs.index_select(1, torch.LongTensor(steps)) else: probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_() for i, step in enumerate(steps): # args.beam_probs gives the probability for every vocab element, # starting with eos, then unknown, and then the rest of the vocab if step < len(self.args.beam_probs): probs[:, i, self.dictionary.eos():] = self.args.beam_probs[step] else: probs[:, i, self.dictionary.eos()] = 1.0 # random attention attn = torch.rand(bbsz, tgt_len, src_len) dev = prev_output_tokens.device return probs.to(dev), attn.to(dev) def get_normalized_probs(self, net_output, log_probs, _): # the decoder returns probabilities directly probs = net_output[0] if log_probs: return probs.log() else: return probs def max_positions(self): return self.args.max_decoder_positions
data2vec_vision-main
infoxlm/fairseq/tests/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import unittest from fairseq.modules import ConvTBC import torch.nn as nn class TestConvTBC(unittest.TestCase): def test_convtbc(self): # ksz, in_channels, out_channels conv_tbc = ConvTBC(4, 5, kernel_size=3, padding=1) # out_channels, in_channels, ksz conv1d = nn.Conv1d(4, 5, kernel_size=3, padding=1) conv_tbc.weight.data.copy_(conv1d.weight.data.transpose(0, 2)) conv_tbc.bias.data.copy_(conv1d.bias.data) input_tbc = torch.randn(7, 2, 4, requires_grad=True) input1d = input_tbc.data.transpose(0, 1).transpose(1, 2) input1d.requires_grad = True output_tbc = conv_tbc(input_tbc) output1d = conv1d(input1d) self.assertAlmostEqual(output_tbc.data.transpose(0, 1).transpose(1, 2), output1d.data) grad_tbc = torch.randn(output_tbc.size()) grad1d = grad_tbc.transpose(0, 1).transpose(1, 2).contiguous() output_tbc.backward(grad_tbc) output1d.backward(grad1d) self.assertAlmostEqual(conv_tbc.weight.grad.data.transpose(0, 2), conv1d.weight.grad.data) self.assertAlmostEqual(conv_tbc.bias.grad.data, conv1d.bias.grad.data) self.assertAlmostEqual(input_tbc.grad.data.transpose(0, 1).transpose(1, 2), input1d.grad.data) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_convtbc.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import unittest import torch from fairseq.optim.adam import FairseqAdam from fairseq.optim.fp16_optimizer import MemoryEfficientFP16Optimizer class TestMemoryEfficientFP16(unittest.TestCase): def test_load_state_dict(self): # define simple FP16 model model = torch.nn.Linear(5, 5).cuda().half() params = list(model.parameters()) # initialize memory efficient FP16 optimizer optimizer = FairseqAdam( argparse.Namespace( lr=[0.00001], adam_betas='(0.9, 0.999)', adam_eps=1e-8, weight_decay=0.0, ), params, ) me_optimizer = MemoryEfficientFP16Optimizer( argparse.Namespace( fp16_init_scale=1, fp16_scale_window=1, fp16_scale_tolerance=1, threshold_loss_scale=1, min_loss_scale=1e-4, ), params, optimizer, ) # optimizer state is created in the first step loss = model(torch.rand(5).cuda().half()).sum() me_optimizer.backward(loss) me_optimizer.step() # reload state state = me_optimizer.state_dict() me_optimizer.load_state_dict(state) for k, v in me_optimizer.optimizer.state.items(): self.assertTrue(k.dtype == torch.float16) for v_i in v.values(): if torch.is_tensor(v_i): self.assertTrue(v_i.dtype == torch.float32) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_memory_efficient_fp16.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import TokenBlockDataset import tests.utils as test_utils class TestTokenBlockDataset(unittest.TestCase): def _build_dataset(self, data, **kwargs): sizes = [len(x) for x in data] underlying_ds = test_utils.TestDataset(data) return TokenBlockDataset(underlying_ds, sizes, **kwargs) def test_eos_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode='eos') self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [1]) self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode='eos') self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) self.assertEqual(ds[2].tolist(), [1]) def test_block_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode='none') self.assertEqual(ds[0].tolist(), [5, 4, 3]) self.assertEqual(ds[1].tolist(), [2, 1, 8]) self.assertEqual(ds[2].tolist(), [7, 6, 1]) self.assertEqual(ds[3].tolist(), [9, 1]) def test_complete_break_mode(self): data = [ torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), torch.tensor([8, 7, 6, 1], dtype=torch.long), torch.tensor([9, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=6, pad=0, eos=1, break_mode='complete') self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) data = [ torch.tensor([4, 3, 2, 1], dtype=torch.long), torch.tensor([5, 1], dtype=torch.long), torch.tensor([1], dtype=torch.long), torch.tensor([6, 1], dtype=torch.long), ] ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode='complete') self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) self.assertEqual(ds[1].tolist(), [5, 1, 1]) self.assertEqual(ds[2].tolist(), [6, 1]) if __name__ == "__main__": unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_token_block_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import unittest import torch from fairseq.sequence_generator import SequenceGenerator import tests.utils as test_utils class TestSequenceGeneratorBase(unittest.TestCase): def assertHypoTokens(self, hypo, tokens): self.assertTensorEqual(hypo['tokens'], torch.LongTensor(tokens)) def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.): pos_scores = torch.FloatTensor(pos_probs).log() self.assertAlmostEqual(hypo['positional_scores'], pos_scores) self.assertEqual(pos_scores.numel(), hypo['tokens'].numel()) score = pos_scores.sum() if normalized: score /= pos_scores.numel()**lenpen self.assertLess(abs(score - hypo['score']), 1e-6) def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-4) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) class TestSequenceGenerator(TestSequenceGeneratorBase): def setUp(self): self.tgt_dict, self.w1, self.w2, src_tokens, src_lengths, self.model = ( test_utils.sequence_generator_setup() ) self.sample = { 'net_input': { 'src_tokens': src_tokens, 'src_lengths': src_lengths, }, } def test_with_normalization(self): generator = SequenceGenerator(self.tgt_dict, beam_size=2) hypos = generator.generate([self.model], self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6]) def test_without_normalization(self): # Sentence 1: unchanged from the normalized case # Sentence 2: beams swap order generator = SequenceGenerator(self.tgt_dict, beam_size=2, normalize_scores=False) hypos = generator.generate([self.model], self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False) def test_with_lenpen_favoring_short_hypos(self): lenpen = 0.6 generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen) hypos = generator.generate([self.model], self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) def test_with_lenpen_favoring_long_hypos(self): lenpen = 5.0 generator = SequenceGenerator(self.tgt_dict, beam_size=2, len_penalty=lenpen) hypos = generator.generate([self.model], self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos]) self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, eos]) self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen) def test_maxlen(self): generator = SequenceGenerator(self.tgt_dict, beam_size=2, max_len_b=2) hypos = generator.generate([self.model], self.sample) eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w2, w2, eos]) self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w2, w2, eos]) self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01]) class TestDiverseBeamSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 # construct source data self.src_tokens = torch.LongTensor([ [self.w1, self.w2, self.eos], [self.w1, self.w2, self.eos], ]) self.src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0. args.beam_probs = [ # step 0: torch.FloatTensor([ # eos w1 w2 # sentence 1: [0.0, unk, 0.9, 0.1], # beam 1 [0.0, unk, 0.9, 0.1], # beam 2 # sentence 2: [0.0, unk, 0.7, 0.3], [0.0, unk, 0.7, 0.3], ]), # step 1: torch.FloatTensor([ # eos w1 w2 # sentence 1: [0.0, unk, 0.6, 0.4], [0.0, unk, 0.6, 0.4], # sentence 2: [0.25, unk, 0.35, 0.4], [0.25, unk, 0.35, 0.4], ]), # step 2: torch.FloatTensor([ # eos w1 w2 # sentence 1: [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], # sentence 2: [0.9, unk, 0.1, 0.0], [0.9, unk, 0.1, 0.0], ]), ] task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_diverse_beam_search(self): generator = SequenceGenerator( self.tgt_dict, beam_size=2, diverse_beam_groups=2, diverse_beam_strength=0., ) sample = {'net_input': {'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths}} hypos = generator.generate([self.model], sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w2, eos]) self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w2, eos]) self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9]) class TestTopPSamplingSearch(TestSequenceGeneratorBase): def setUp(self): # construct dummy dictionary d = test_utils.dummy_dictionary(vocab_size=2) self.assertEqual(d.pad(), 1) self.assertEqual(d.eos(), 2) self.assertEqual(d.unk(), 3) self.eos = d.eos() self.w1 = 4 self.w2 = 5 # construct source data self.src_tokens = torch.LongTensor([ [self.w1, self.w2, self.eos], [self.w1, self.w2, self.eos], ]) self.src_lengths = torch.LongTensor([2, 2]) args = argparse.Namespace() unk = 0. # The minimal probability of top 2 tokens. self.min_top2_prob = 0.75 # The minimal probability of the top 1 token. self.min_top1_prob = 0.4 w1_prob = self.min_top1_prob w2_prob = self.min_top2_prob - self.min_top1_prob eos_prob = 1 - self.min_top2_prob args.beam_probs = [ # step 0: torch.FloatTensor([ # eos w1 w2 [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], [0.0, unk, 1.0, 0.0], ]), # step 1: torch.FloatTensor([ # eos w1 w2 [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], [eos_prob, unk, w1_prob, w2_prob], ]), # step 2: torch.FloatTensor([ # eos w1 w2 [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], [1.0, unk, 0.0, 0.0], ]), ] task = test_utils.TestTranslationTask.setup_task(args, d, d) self.model = task.build_model(args) self.tgt_dict = task.target_dictionary def test_topp_sampling_search_low_prob(self): # Given a prob low enough to top-P sampling, we expect only the top # 1 token to be sampled, which always results in the same output. low_sampling_topp = self.min_top1_prob/2.0 generator = SequenceGenerator( self.tgt_dict, beam_size=2, sampling=True, sampling_topp=low_sampling_topp ) sample = { 'net_input': { 'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths } } hypos = generator.generate([self.model], sample) eos, w1 = self.eos, self.w1 # sentence 1, beam 1 self.assertHypoTokens(hypos[0][0], [w1, w1, eos]) self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0]) # sentence 1, beam 2 self.assertHypoTokens(hypos[0][1], [w1, w1, eos]) self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0]) # sentence 2, beam 1 self.assertHypoTokens(hypos[1][0], [w1, w1, eos]) self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0]) # sentence 2, beam 2 self.assertHypoTokens(hypos[1][1], [w1, w1, eos]) self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0]) def test_topp_sampling_search_high_prob(self): # Given a prob high enough to top-P sampling, any of the top 2 # tokens could be sampled. This can cause different outputs. high_sampling_topp = (self.min_top1_prob+self.min_top2_prob)/2.0 generator = SequenceGenerator( self.tgt_dict, beam_size=2, sampling=True, sampling_topp=high_sampling_topp ) sample = { 'net_input': { 'src_tokens': self.src_tokens, 'src_lengths': self.src_lengths } } hypos = generator.generate([self.model], sample) eos, w1, w2 = self.eos, self.w1, self.w2 # sentence 1, beam 1 self.assertTrue(self.hypoTokens(hypos[0][0], [w1, w1, eos]) or self.hypoTokens(hypos[0][0], [w1, w2, eos])) self.assertTrue(self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0])) # sentence 1, beam 2 self.assertTrue(self.hypoTokens(hypos[0][1], [w1, w1, eos]) or self.hypoTokens(hypos[0][1], [w1, w2, eos])) self.assertTrue(self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0])) # sentence 2, beam 1 self.assertTrue(self.hypoTokens(hypos[1][0], [w1, w1, eos]) or self.hypoTokens(hypos[1][0], [w1, w2, eos])) self.assertTrue(self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0])) # sentence 2, beam 2 self.assertTrue(self.hypoTokens(hypos[1][1], [w1, w1, eos]) or self.hypoTokens(hypos[1][1], [w1, w2, eos])) self.assertTrue(self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0]) or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0])) def hypoTokens(self, hypo, tokens): return self.tensorEqual(hypo['tokens'], torch.LongTensor(tokens)) def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.): pos_scores = torch.FloatTensor(pos_probs).log() if not self.almostEqual(hypo['positional_scores'], pos_scores): return False if pos_scores.numel() != hypo['tokens'].numel(): return False score = pos_scores.sum() if normalized: score /= pos_scores.numel() ** lenpen return abs(score - hypo['score']) < 1e-6 def almostEqual(self, t1, t2): return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4 def tensorEqual(self, t1, t2): return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0 if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from fairseq.data import LanguagePairDataset, TokenBlockDataset from fairseq.data.concat_dataset import ConcatDataset from tests.test_train import mock_dict class TestConcatDataset(unittest.TestCase): def setUp(self): d = mock_dict() tokens_1 = torch.LongTensor([1]).view(1, -1) tokens_ds1 = TokenBlockDataset( tokens_1, sizes=[tokens_1.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_1 = LanguagePairDataset( tokens_ds1, tokens_ds1.sizes, d, shuffle=False ) tokens_2 = torch.LongTensor([2]).view(1, -1) tokens_ds2 = TokenBlockDataset( tokens_2, sizes=[tokens_2.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_2 = LanguagePairDataset( tokens_ds2, tokens_ds2.sizes, d, shuffle=False ) def test_concat_dataset_basics(self): d = ConcatDataset( [self.dataset_1, self.dataset_2] ) assert(len(d) == 2) assert(d[0]['source'][0] == 1) assert(d[1]['source'][0] == 2) d = ConcatDataset( [self.dataset_1, self.dataset_2], sample_ratios=[1, 2] ) assert(len(d) == 3) assert(d[0]['source'][0] == 1) assert(d[1]['source'][0] == 2) assert(d[2]['source'][0] == 2) d = ConcatDataset( [self.dataset_1, self.dataset_2], sample_ratios=[2, 1] ) assert(len(d) == 3) assert(d[0]['source'][0] == 1) assert(d[1]['source'][0] == 1) assert(d[2]['source'][0] == 2)
data2vec_vision-main
infoxlm/fairseq/tests/test_concat_dataset.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib from io import StringIO import json import os import tempfile import unittest from . import test_binaries class TestReproducibility(unittest.TestCase): def _test_reproducibility(self, name, extra_flags=None): if extra_flags is None: extra_flags = [] with tempfile.TemporaryDirectory(name) as data_dir: with contextlib.redirect_stdout(StringIO()): test_binaries.create_dummy_data(data_dir) test_binaries.preprocess_translation_data(data_dir) # train epochs 1 and 2 together stdout = StringIO() with contextlib.redirect_stdout(stdout): test_binaries.train_translation_model( data_dir, 'fconv_iwslt_de_en', [ '--dropout', '0.0', '--log-format', 'json', '--log-interval', '1', '--max-epoch', '3', ] + extra_flags, ) stdout = stdout.getvalue() train_log, valid_log = map(json.loads, stdout.split('\n')[-5:-3]) # train epoch 2, resuming from previous checkpoint 1 os.rename( os.path.join(data_dir, 'checkpoint1.pt'), os.path.join(data_dir, 'checkpoint_last.pt'), ) stdout = StringIO() with contextlib.redirect_stdout(stdout): test_binaries.train_translation_model( data_dir, 'fconv_iwslt_de_en', [ '--dropout', '0.0', '--log-format', 'json', '--log-interval', '1', '--max-epoch', '3', ] + extra_flags, ) stdout = stdout.getvalue() train_res_log, valid_res_log = map(json.loads, stdout.split('\n')[-5:-3]) def cast(s): return round(float(s), 3) for k in ['train_loss', 'train_ppl', 'train_num_updates', 'train_gnorm']: self.assertEqual(cast(train_log[k]), cast(train_res_log[k])) for k in ['valid_loss', 'valid_ppl', 'valid_num_updates', 'valid_best_loss']: self.assertEqual(cast(valid_log[k]), cast(valid_res_log[k])) def test_reproducibility(self): self._test_reproducibility('test_reproducibility') def test_reproducibility_fp16(self): self._test_reproducibility('test_reproducibility_fp16', [ '--fp16', '--fp16-init-scale', '4096', ]) def test_reproducibility_memory_efficient_fp16(self): self._test_reproducibility('test_reproducibility_memory_efficient_fp16', [ '--memory-efficient-fp16', '--fp16-init-scale', '4096', ]) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_reproducibility.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import unittest from fairseq.data import Dictionary from fairseq.modules import CharacterTokenEmbedder class TestCharacterTokenEmbedder(unittest.TestCase): def test_character_token_embedder(self): vocab = Dictionary() vocab.add_symbol('hello') vocab.add_symbol('there') embedder = CharacterTokenEmbedder(vocab, [(2, 16), (4, 32), (8, 64), (16, 2)], 64, 5, 2) test_sents = [['hello', 'unk', 'there'], ['there'], ['hello', 'there']] max_len = max(len(s) for s in test_sents) input = torch.LongTensor(len(test_sents), max_len + 2).fill_(vocab.pad()) for i in range(len(test_sents)): input[i][0] = vocab.eos() for j in range(len(test_sents[i])): input[i][j + 1] = vocab.index(test_sents[i][j]) input[i][j + 2] = vocab.eos() embs = embedder(input) assert embs.size() == (len(test_sents), max_len + 2, 5) self.assertAlmostEqual(embs[0][0], embs[1][0]) self.assertAlmostEqual(embs[0][0], embs[0][-1]) self.assertAlmostEqual(embs[0][1], embs[2][1]) self.assertAlmostEqual(embs[0][3], embs[1][1]) embs.sum().backward() assert embedder.char_embeddings.weight.grad is not None def assertAlmostEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertLess((t1 - t2).abs().max(), 1e-6) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_character_token_embedder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import os import tempfile import unittest import shutil import numpy as np import torch from torch import nn from scripts.average_checkpoints import average_checkpoints class ModelWithSharedParameter(nn.Module): def __init__(self): super(ModelWithSharedParameter, self).__init__() self.embedding = nn.Embedding(1000, 200) self.FC1 = nn.Linear(200, 200) self.FC2 = nn.Linear(200, 200) # tie weight in FC2 to FC1 self.FC2.weight = nn.Parameter(self.FC1.weight) self.FC2.bias = nn.Parameter(self.FC1.bias) self.relu = nn.ReLU() def forward(self, input): return self.FC2(self.ReLU(self.FC1(input))) + self.FC1(input) class TestAverageCheckpoints(unittest.TestCase): def test_average_checkpoints(self): params_0 = collections.OrderedDict( [ ('a', torch.DoubleTensor([100.0])), ('b', torch.FloatTensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])), ('c', torch.IntTensor([7, 8, 9])), ] ) params_1 = collections.OrderedDict( [ ('a', torch.DoubleTensor([1.0])), ('b', torch.FloatTensor([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])), ('c', torch.IntTensor([2, 2, 2])), ] ) params_avg = collections.OrderedDict( [ ('a', torch.DoubleTensor([50.5])), ('b', torch.FloatTensor([[1.0, 1.5, 2.0], [2.5, 3.0, 3.5]])), # We expect truncation for integer division ('c', torch.IntTensor([4, 5, 5])), ] ) fd_0, path_0 = tempfile.mkstemp() fd_1, path_1 = tempfile.mkstemp() torch.save(collections.OrderedDict([('model', params_0)]), path_0) torch.save(collections.OrderedDict([('model', params_1)]), path_1) output = average_checkpoints([path_0, path_1])['model'] os.close(fd_0) os.remove(path_0) os.close(fd_1) os.remove(path_1) for (k_expected, v_expected), (k_out, v_out) in zip( params_avg.items(), output.items()): self.assertEqual( k_expected, k_out, 'Key mismatch - expected {} but found {}. ' '(Expected list of keys: {} vs actual list of keys: {})'.format( k_expected, k_out, params_avg.keys(), output.keys() ) ) np.testing.assert_allclose( v_expected.numpy(), v_out.numpy(), err_msg='Tensor value mismatch for key {}'.format(k_expected) ) def test_average_checkpoints_with_shared_parameters(self): def _construct_model_with_shared_parameters(path, value): m = ModelWithSharedParameter() nn.init.constant_(m.FC1.weight, value) torch.save( {'model': m.state_dict()}, path ) return m tmpdir = tempfile.mkdtemp() paths = [] path = os.path.join(tmpdir, "m1.pt") m1 = _construct_model_with_shared_parameters(path, 1.0) paths.append(path) path = os.path.join(tmpdir, "m2.pt") m2 = _construct_model_with_shared_parameters(path, 2.0) paths.append(path) path = os.path.join(tmpdir, "m3.pt") m3 = _construct_model_with_shared_parameters(path, 3.0) paths.append(path) new_model = average_checkpoints(paths) self.assertTrue( torch.equal( new_model['model']['embedding.weight'], (m1.embedding.weight + m2.embedding.weight + m3.embedding.weight) / 3.0 ) ) self.assertTrue( torch.equal( new_model['model']['FC1.weight'], (m1.FC1.weight + m2.FC1.weight + m3.FC1.weight) / 3.0 ) ) self.assertTrue( torch.equal( new_model['model']['FC2.weight'], (m1.FC2.weight + m2.FC2.weight + m3.FC2.weight) / 3.0 ) ) shutil.rmtree(tmpdir) if __name__ == '__main__': unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/test_average_checkpoints.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from collections import OrderedDict import numpy as np import torch from fairseq.data import LanguagePairDataset, TokenBlockDataset from fairseq.data.multi_corpus_sampled_dataset import MultiCorpusSampledDataset from tests.test_train import mock_dict class TestMultiCorpusSampledDataset(unittest.TestCase): def setUp(self): d = mock_dict() tokens_1 = torch.LongTensor([1]).view(1, -1) tokens_ds1 = TokenBlockDataset( tokens_1, sizes=[tokens_1.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_1 = LanguagePairDataset( tokens_ds1, tokens_ds1.sizes, d, shuffle=False ) tokens_2 = torch.LongTensor([2]).view(1, -1) tokens_ds2 = TokenBlockDataset( tokens_2, sizes=[tokens_2.size(-1)], block_size=1, pad=0, eos=1, include_targets=False, ) self.dataset_2 = LanguagePairDataset( tokens_ds2, tokens_ds2.sizes, d, shuffle=False ) def _test_sample_helper( self, expected_sample_from_first_ds_percentage, num_samples=1000, sampling_func=None, ): # To make sure test is not flaky np.random.seed(0) if sampling_func is None: m = MultiCorpusSampledDataset( OrderedDict({0: self.dataset_1, 1: self.dataset_2}), ) else: m = MultiCorpusSampledDataset( OrderedDict({0: self.dataset_1, 1: self.dataset_2}), sampling_func=sampling_func, ) m.ordered_indices() count_sample_from_first_dataset = 0 for _ in range(num_samples): if m.collater([m[0], m[1]])["net_input"]["src_tokens"][0] == 1: count_sample_from_first_dataset += 1 sample_from_first_ds_percentage = ( 1.0 * count_sample_from_first_dataset / num_samples ) self.assertLess( abs( sample_from_first_ds_percentage - expected_sample_from_first_ds_percentage ), 0.01, ) def test_multi_corpus_sampled_dataset_uniform_sample(self): self._test_sample_helper(expected_sample_from_first_ds_percentage=0.5) def test_multi_corpus_sampled_dataset_weighted_sample(self): def naive_weighted_sample(weights): def f(l): v = np.random.random() agg = 0 for i, weight in enumerate(weights): agg += weight if agg > v: return i return f self._test_sample_helper( expected_sample_from_first_ds_percentage=0.9, sampling_func=naive_weighted_sample(weights=[0.9, 0.1]), )
data2vec_vision-main
infoxlm/fairseq/tests/test_multi_corpus_sampled_dataset.py
#!/usr/bin/env python3 import argparse import os import unittest from inspect import currentframe, getframeinfo import numpy as np import torch from fairseq.data import data_utils as fairseq_data_utils from fairseq.data.dictionary import Dictionary from fairseq.models import ( BaseFairseqModel, FairseqDecoder, FairseqEncoder, FairseqEncoderDecoderModel, FairseqEncoderModel, FairseqModel, ) from fairseq.tasks.fairseq_task import FairseqTask from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask DEFAULT_TEST_VOCAB_SIZE = 100 # /////////////////////////////////////////////////////////////////////////// # utility function to setup dummy dict/task/input # /////////////////////////////////////////////////////////////////////////// def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): dummy_dict = Dictionary() # add dummy symbol to satisfy vocab size for id, _ in enumerate(range(vocab_size)): dummy_dict.add_symbol("{}".format(id), 1000) return dummy_dict class DummyTask(FairseqTask): def __init__(self, args): super().__init__(args) self.dictionary = get_dummy_dictionary() if getattr(self.args, "ctc", False): self.dictionary.add_symbol("<ctc_blank>") self.tgt_dict = self.dictionary @property def target_dictionary(self): return self.dictionary def get_dummy_task_and_parser(): """ to build a fariseq model, we need some dummy parse and task. This function is used to create dummy task and parser to faciliate model/criterion test Note: we use FbSpeechRecognitionTask as the dummy task. You may want to use other task by providing another function """ parser = argparse.ArgumentParser( description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS ) DummyTask.add_args(parser) args = parser.parse_args([]) task = DummyTask.setup_task(args) return task, parser def get_dummy_input(T=100, D=80, B=5, K=100): forward_input = {} # T max sequence length # D feature vector dimension # B batch size # K target dimension size feature = torch.randn(B, T, D) # this (B, T, D) layout is just a convention, you can override it by # write your own _prepare_forward_input function src_lengths = torch.from_numpy( np.random.randint(low=1, high=T, size=B).astype(np.int64) ) src_lengths[0] = T # make sure the maximum length matches prev_output_tokens = [] for b in range(B): token_length = np.random.randint(low=1, high=src_lengths[b].item() + 1) tokens = np.random.randint(low=0, high=K, size=token_length) prev_output_tokens.append(torch.from_numpy(tokens)) prev_output_tokens = fairseq_data_utils.collate_tokens( prev_output_tokens, pad_idx=1, eos_idx=2, left_pad=False, move_eos_to_beginning=False, ) src_lengths, sorted_order = src_lengths.sort(descending=True) forward_input["src_tokens"] = feature.index_select(0, sorted_order) forward_input["src_lengths"] = src_lengths forward_input["prev_output_tokens"] = prev_output_tokens return forward_input def get_dummy_encoder_output(encoder_out_shape=(100, 80, 5)): """ This only provides an example to generate dummy encoder output """ (T, B, D) = encoder_out_shape encoder_out = {} encoder_out["encoder_out"] = torch.from_numpy( np.random.randn(*encoder_out_shape).astype(np.float32) ) seq_lengths = torch.from_numpy(np.random.randint(low=1, high=T, size=B)) # some dummy mask encoder_out["encoder_padding_mask"] = torch.arange(T).view(1, T).expand( B, -1 ) >= seq_lengths.view(B, 1).expand(-1, T) encoder_out["encoder_padding_mask"].t_() # encoer_padding_mask is (T, B) tensor, with (t, b)-th element indicate # whether encoder_out[t, b] is valid (=0) or not (=1) return encoder_out def _current_postion_info(): cf = currentframe() frameinfo = " (at {}:{})".format( os.path.basename(getframeinfo(cf).filename), cf.f_back.f_lineno ) return frameinfo def check_encoder_output(encoder_output, batch_size=None): """we expect encoder_output to be a dict with the following key/value pairs: - encoder_out: a Torch.Tensor - encoder_padding_mask: a binary Torch.Tensor """ if not isinstance(encoder_output, dict): msg = ( "FairseqEncoderModel.forward(...) must be a dict" + _current_postion_info() ) return False, msg if "encoder_out" not in encoder_output: msg = ( "FairseqEncoderModel.forward(...) must contain encoder_out" + _current_postion_info() ) return False, msg if "encoder_padding_mask" not in encoder_output: msg = ( "FairseqEncoderModel.forward(...) must contain encoder_padding_mask" + _current_postion_info() ) return False, msg if not isinstance(encoder_output["encoder_out"], torch.Tensor): msg = "encoder_out must be a torch.Tensor" + _current_postion_info() return False, msg if encoder_output["encoder_out"].dtype != torch.float32: msg = "encoder_out must have float32 dtype" + _current_postion_info() return False, msg mask = encoder_output["encoder_padding_mask"] if mask is not None: if not isinstance(mask, torch.Tensor): msg = ( "encoder_padding_mask must be a torch.Tensor" + _current_postion_info() ) return False, msg if ( mask.dtype != torch.uint8 and (not hasattr(torch, 'bool') or mask.dtype != torch.bool) ): msg = ( "encoder_padding_mask must have dtype of uint8" + _current_postion_info() ) return False, msg if mask.dim() != 2: msg = ( "we expect encoder_padding_mask to be a 2-d tensor, in shape (T, B)" + _current_postion_info() ) return False, msg if batch_size is not None and mask.size(1) != batch_size: msg = ( "we expect encoder_padding_mask to be a 2-d tensor, with size(1)" + " being the batch size" + _current_postion_info() ) return False, msg return True, None def check_decoder_output(decoder_output): """we expect output from a decoder is a tuple with the following constraint: - the first element is a torch.Tensor - the second element can be anything (reserved for future use) """ if not isinstance(decoder_output, tuple): msg = "FariseqDecoder output must be a tuple" + _current_postion_info() return False, msg if len(decoder_output) != 2: msg = "FairseqDecoder output must be 2-elem tuple" + _current_postion_info() return False, msg if not isinstance(decoder_output[0], torch.Tensor): msg = ( "FariseqDecoder output[0] must be a torch.Tensor" + _current_postion_info() ) return False, msg return True, None # /////////////////////////////////////////////////////////////////////////// # Base Test class # /////////////////////////////////////////////////////////////////////////// class TestBaseFairseqModelBase(unittest.TestCase): """ This class is used to facilitate writing unittest for any class derived from `BaseFairseqModel`. """ @classmethod def setUpClass(cls): if cls is TestBaseFairseqModelBase: raise unittest.SkipTest("Skipping test case in base") super().setUpClass() def setUpModel(self, model): self.assertTrue(isinstance(model, BaseFairseqModel)) self.model = model def setupInput(self): pass def setUp(self): self.model = None self.forward_input = None pass class TestFairseqEncoderDecoderModelBase(TestBaseFairseqModelBase): """ base code to test FairseqEncoderDecoderModel (formally known as `FairseqModel`) must be derived from this base class """ @classmethod def setUpClass(cls): if cls is TestFairseqEncoderDecoderModelBase: raise unittest.SkipTest("Skipping test case in base") super().setUpClass() def setUpModel(self, model_cls, extra_args_setters=None): self.assertTrue( issubclass(model_cls, (FairseqEncoderDecoderModel, FairseqModel)), msg="This class only tests for FairseqModel subclasses", ) task, parser = get_dummy_task_and_parser() model_cls.add_args(parser) args = parser.parse_args([]) if extra_args_setters is not None: for args_setter in extra_args_setters: args_setter(args) model = model_cls.build_model(args, task) self.model = model def setUpInput(self, input=None): self.forward_input = get_dummy_input() if input is None else input def setUp(self): super().setUp() def test_forward(self): if self.model and self.forward_input: forward_output = self.model.forward(**self.forward_input) # for FairseqEncoderDecoderModel, forward returns a tuple of two # elements, the first one is a Torch.Tensor succ, msg = check_decoder_output(forward_output) if not succ: self.assertTrue(succ, msg=msg) self.forward_output = forward_output def test_get_normalized_probs(self): if self.model and self.forward_input: forward_output = self.model.forward(**self.forward_input) logprob = self.model.get_normalized_probs(forward_output, log_probs=True) prob = self.model.get_normalized_probs(forward_output, log_probs=False) # in order for different models/criterion to play with each other # we need to know whether the logprob or prob output is batch_first # or not. We assume an additional attribute will be attached to logprob # or prob. If you find your code failed here, simply override # FairseqModel.get_normalized_probs, see example at # https://fburl.com/batch_first_example self.assertTrue(hasattr(logprob, "batch_first")) self.assertTrue(hasattr(prob, "batch_first")) self.assertTrue(torch.is_tensor(logprob)) self.assertTrue(torch.is_tensor(prob)) class TestFairseqEncoderModelBase(TestBaseFairseqModelBase): """ base class to test FairseqEncoderModel """ @classmethod def setUpClass(cls): if cls is TestFairseqEncoderModelBase: raise unittest.SkipTest("Skipping test case in base") super().setUpClass() def setUpModel(self, model_cls, extra_args_setters=None): self.assertTrue( issubclass(model_cls, FairseqEncoderModel), msg="This class is only used for testing FairseqEncoderModel", ) task, parser = get_dummy_task_and_parser() model_cls.add_args(parser) args = parser.parse_args([]) if extra_args_setters is not None: for args_setter in extra_args_setters: args_setter(args) model = model_cls.build_model(args, task) self.model = model def setUpInput(self, input=None): self.forward_input = get_dummy_input() if input is None else input # get_dummy_input() is originally for s2s, here we delete extra dict # items, so it can be used for EncoderModel / Encoder as well self.forward_input.pop("prev_output_tokens", None) def setUp(self): super().setUp() def test_forward(self): if self.forward_input and self.model: bsz = self.forward_input["src_tokens"].size(0) forward_output = self.model.forward(**self.forward_input) # we expect forward_output to be a dict with the following # key/value pairs: # - encoder_out: a Torch.Tensor # - encoder_padding_mask: a binary Torch.Tensor succ, msg = check_encoder_output(forward_output, batch_size=bsz) if not succ: self.assertTrue(succ, msg=msg) self.forward_output = forward_output def test_get_normalized_probs(self): if self.model and self.forward_input: forward_output = self.model.forward(**self.forward_input) logprob = self.model.get_normalized_probs(forward_output, log_probs=True) prob = self.model.get_normalized_probs(forward_output, log_probs=False) # in order for different models/criterion to play with each other # we need to know whether the logprob or prob output is batch_first # or not. We assume an additional attribute will be attached to logprob # or prob. If you find your code failed here, simply override # FairseqModel.get_normalized_probs, see example at # https://fburl.com/batch_first_example self.assertTrue(hasattr(logprob, "batch_first")) self.assertTrue(hasattr(prob, "batch_first")) self.assertTrue(torch.is_tensor(logprob)) self.assertTrue(torch.is_tensor(prob)) class TestFairseqEncoderBase(unittest.TestCase): """ base class to test FairseqEncoder """ @classmethod def setUpClass(cls): if cls is TestFairseqEncoderBase: raise unittest.SkipTest("Skipping test case in base") super().setUpClass() def setUpEncoder(self, encoder): self.assertTrue( isinstance(encoder, FairseqEncoder), msg="This class is only used for test FairseqEncoder", ) self.encoder = encoder def setUpInput(self, input=None): self.forward_input = get_dummy_input() if input is None else input # get_dummy_input() is originally for s2s, here we delete extra dict # items, so it can be used for EncoderModel / Encoder as well self.forward_input.pop("prev_output_tokens", None) def setUp(self): self.encoder = None self.forward_input = None def test_forward(self): if self.encoder and self.forward_input: bsz = self.forward_input["src_tokens"].size(0) forward_output = self.encoder.forward(**self.forward_input) succ, msg = check_encoder_output(forward_output, batch_size=bsz) if not succ: self.assertTrue(succ, msg=msg) self.forward_output = forward_output class TestFairseqDecoderBase(unittest.TestCase): """ base class to test FairseqDecoder """ @classmethod def setUpClass(cls): if cls is TestFairseqDecoderBase: raise unittest.SkipTest("Skipping test case in base") super().setUpClass() def setUpDecoder(self, decoder): self.assertTrue( isinstance(decoder, FairseqDecoder), msg="This class is only used for test FairseqDecoder", ) self.decoder = decoder def setUpInput(self, input=None): self.forward_input = get_dummy_encoder_output() if input is None else input def setUpPrevOutputTokens(self, tokens=None): if tokens is None: self.encoder_input = get_dummy_input() self.prev_output_tokens = self.encoder_input["prev_output_tokens"] else: self.prev_output_tokens = tokens def setUp(self): self.decoder = None self.forward_input = None self.prev_output_tokens = None def test_forward(self): if ( self.decoder is not None and self.forward_input is not None and self.prev_output_tokens is not None ): forward_output = self.decoder.forward( prev_output_tokens=self.prev_output_tokens, encoder_out=self.forward_input, ) succ, msg = check_decoder_output(forward_output) if not succ: self.assertTrue(succ, msg=msg) self.forward_input = forward_output class DummyEncoderModel(FairseqEncoderModel): def __init__(self, encoder): super().__init__(encoder) @classmethod def build_model(cls, args, task): return cls(DummyEncoder()) def get_logits(self, net_output): # Inverse of sigmoid to use with BinaryCrossEntropyWithLogitsCriterion as # F.binary_cross_entropy_with_logits combines sigmoid and CE return torch.log( torch.div(net_output["encoder_out"], 1 - net_output["encoder_out"]) ) class DummyEncoder(FairseqEncoder): def __init__(self): super().__init__(None) def forward(self, src_tokens, src_lengths): mask, max_len = lengths_to_encoder_padding_mask(src_lengths) return {"encoder_out": src_tokens, "encoder_padding_mask": mask} class CrossEntropyCriterionTestBase(unittest.TestCase): @classmethod def setUpClass(cls): if cls is CrossEntropyCriterionTestBase: raise unittest.SkipTest("Skipping base class test case") super().setUpClass() def setUpArgs(self): args = argparse.Namespace() args.sentence_avg = False args.threshold = 0.1 # to use with BinaryCrossEntropyWithLogitsCriterion return args def setUp(self): args = self.setUpArgs() self.model = DummyEncoderModel(encoder=DummyEncoder()) self.criterion = self.criterion_cls(args=args, task=DummyTask(args)) def get_src_tokens(self, correct_prediction, aggregate): """ correct_prediction: True if the net_output (src_tokens) should predict the correct target aggregate: True if the criterion expects net_output (src_tokens) aggregated across time axis """ predicted_idx = 0 if correct_prediction else 1 if aggregate: src_tokens = torch.zeros((2, 2), dtype=torch.float) for b in range(2): src_tokens[b][predicted_idx] = 1.0 else: src_tokens = torch.zeros((2, 10, 2), dtype=torch.float) for b in range(2): for t in range(10): src_tokens[b][t][predicted_idx] = 1.0 return src_tokens def get_target(self, soft_target): if soft_target: target = torch.zeros((2, 2), dtype=torch.float) for b in range(2): target[b][0] = 1.0 else: target = torch.zeros((2, 10), dtype=torch.long) return target def get_test_sample(self, correct, soft_target, aggregate): src_tokens = self.get_src_tokens(correct, aggregate) target = self.get_target(soft_target) L = src_tokens.size(1) return { "net_input": {"src_tokens": src_tokens, "src_lengths": torch.tensor([L])}, "target": target, "ntokens": src_tokens.size(0) * src_tokens.size(1), }
data2vec_vision-main
infoxlm/fairseq/tests/speech_recognition/asr_test_base.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from examples.speech_recognition.data.collaters import Seq2SeqCollater class TestSeq2SeqCollator(unittest.TestCase): def test_collate(self): eos_idx = 1 pad_idx = 0 collater = Seq2SeqCollater( feature_index=0, label_index=1, pad_index=pad_idx, eos_index=eos_idx ) # 2 frames in the first sample and 3 frames in the second one frames1 = np.array([[7, 8], [9, 10]]) frames2 = np.array([[1, 2], [3, 4], [5, 6]]) target1 = np.array([4, 2, 3, eos_idx]) target2 = np.array([3, 2, eos_idx]) sample1 = {"id": 0, "data": [frames1, target1]} sample2 = {"id": 1, "data": [frames2, target2]} batch = collater.collate([sample1, sample2]) # collate sort inputs by frame's length before creating the batch self.assertTensorEqual(batch["id"], torch.tensor([1, 0])) self.assertEqual(batch["ntokens"], 7) self.assertTensorEqual( batch["net_input"]["src_tokens"], torch.tensor( [[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [pad_idx, pad_idx]]] ), ) self.assertTensorEqual( batch["net_input"]["prev_output_tokens"], torch.tensor([[eos_idx, 3, 2, pad_idx], [eos_idx, 4, 2, 3]]), ) self.assertTensorEqual(batch["net_input"]["src_lengths"], torch.tensor([3, 2])) self.assertTensorEqual( batch["target"], torch.tensor([[3, 2, eos_idx, pad_idx], [4, 2, 3, eos_idx]]), ) self.assertEqual(batch["nsentences"], 2) def assertTensorEqual(self, t1, t2): self.assertEqual(t1.size(), t2.size(), "size mismatch") self.assertEqual(t1.ne(t2).long().sum(), 0) if __name__ == "__main__": unittest.main()
data2vec_vision-main
infoxlm/fairseq/tests/speech_recognition/test_collaters.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from examples.speech_recognition.criterions.cross_entropy_acc import CrossEntropyWithAccCriterion from .asr_test_base import CrossEntropyCriterionTestBase class CrossEntropyWithAccCriterionTest(CrossEntropyCriterionTestBase): def setUp(self): self.criterion_cls = CrossEntropyWithAccCriterion super().setUp() def test_cross_entropy_all_correct(self): sample = self.get_test_sample(correct=True, soft_target=False, aggregate=False) loss, sample_size, logging_output = self.criterion( self.model, sample, "sum", log_probs=True ) assert logging_output["correct"] == 20 assert logging_output["total"] == 20 assert logging_output["sample_size"] == 20 assert logging_output["ntokens"] == 20 def test_cross_entropy_all_wrong(self): sample = self.get_test_sample(correct=False, soft_target=False, aggregate=False) loss, sample_size, logging_output = self.criterion( self.model, sample, "sum", log_probs=True ) assert logging_output["correct"] == 0 assert logging_output["total"] == 20 assert logging_output["sample_size"] == 20 assert logging_output["ntokens"] == 20
data2vec_vision-main
infoxlm/fairseq/tests/speech_recognition/test_cross_entropy.py
#!/usr/bin/env python3 # import models/encoder/decoder to be tested from examples.speech_recognition.models.vggtransformer import ( TransformerDecoder, VGGTransformerEncoder, VGGTransformerModel, vggtransformer_1, vggtransformer_2, vggtransformer_base, ) # import base test class from .asr_test_base import ( DEFAULT_TEST_VOCAB_SIZE, TestFairseqDecoderBase, TestFairseqEncoderBase, TestFairseqEncoderDecoderModelBase, get_dummy_dictionary, get_dummy_encoder_output, get_dummy_input, ) class VGGTransformerModelTest_mid(TestFairseqEncoderDecoderModelBase): def setUp(self): def override_config(args): """ vggtrasformer_1 use 14 layers of transformer, for testing purpose, it is too expensive. For fast turn-around test, reduce the number of layers to 3. """ args.transformer_enc_config = ( "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 3" ) super().setUp() extra_args_setter = [vggtransformer_1, override_config] self.setUpModel(VGGTransformerModel, extra_args_setter) self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) class VGGTransformerModelTest_big(TestFairseqEncoderDecoderModelBase): def setUp(self): def override_config(args): """ vggtrasformer_2 use 16 layers of transformer, for testing purpose, it is too expensive. For fast turn-around test, reduce the number of layers to 3. """ args.transformer_enc_config = ( "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 3" ) super().setUp() extra_args_setter = [vggtransformer_2, override_config] self.setUpModel(VGGTransformerModel, extra_args_setter) self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) class VGGTransformerModelTest_base(TestFairseqEncoderDecoderModelBase): def setUp(self): def override_config(args): """ vggtrasformer_base use 12 layers of transformer, for testing purpose, it is too expensive. For fast turn-around test, reduce the number of layers to 3. """ args.transformer_enc_config = ( "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 3" ) super().setUp() extra_args_setter = [vggtransformer_base, override_config] self.setUpModel(VGGTransformerModel, extra_args_setter) self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) class VGGTransformerEncoderTest(TestFairseqEncoderBase): def setUp(self): super().setUp() self.setUpInput(get_dummy_input(T=50, D=80, B=5)) def test_forward(self): print("1. test standard vggtransformer") self.setUpEncoder(VGGTransformerEncoder(input_feat_per_channel=80)) super().test_forward() print("2. test vggtransformer with limited right context") self.setUpEncoder( VGGTransformerEncoder( input_feat_per_channel=80, transformer_context=(-1, 5) ) ) super().test_forward() print("3. test vggtransformer with limited left context") self.setUpEncoder( VGGTransformerEncoder( input_feat_per_channel=80, transformer_context=(5, -1) ) ) super().test_forward() print("4. test vggtransformer with limited right context and sampling") self.setUpEncoder( VGGTransformerEncoder( input_feat_per_channel=80, transformer_context=(-1, 12), transformer_sampling=(2, 2), ) ) super().test_forward() print("5. test vggtransformer with windowed context and sampling") self.setUpEncoder( VGGTransformerEncoder( input_feat_per_channel=80, transformer_context=(12, 12), transformer_sampling=(2, 2), ) ) class TransformerDecoderTest(TestFairseqDecoderBase): def setUp(self): super().setUp() dict = get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE) decoder = TransformerDecoder(dict) dummy_encoder_output = get_dummy_encoder_output(encoder_out_shape=(50, 5, 256)) self.setUpDecoder(decoder) self.setUpInput(dummy_encoder_output) self.setUpPrevOutputTokens()
data2vec_vision-main
infoxlm/fairseq/tests/speech_recognition/test_vggtransformer.py
data2vec_vision-main
infoxlm/fairseq/tests/speech_recognition/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ A modified version of the legacy DistributedDataParallel module that uses c10d communication primitives. This version is simpler than the latest PyTorch version and is useful for debugging. Notably it does not overlap gradient communication with the backward pass, which makes it slower but more robust than the PyTorch version. This version also supports the *no_sync* context manager, which allows faster training with `--update-freq`. """ from contextlib import contextmanager import copy import torch from torch import nn from torch.autograd import Variable from . import distributed_utils class LegacyDistributedDataParallel(nn.Module): """Implements distributed data parallelism at the module level. A simplified version of :class:`torch.nn.parallel.DistributedDataParallel`. This version uses a c10d process group for communication and does not broadcast buffers. Args: module (~torch.nn.Module): module to be parallelized world_size (int): number of parallel workers process_group (optional): the c10d process group to be used for distributed data all-reduction. If None, the default process group will be used. buffer_size (int, optional): number of elements to buffer before performing all-reduce (default: 256M). """ def __init__(self, module, world_size, process_group=None, buffer_size=2**28): super().__init__() self.module = module self.world_size = world_size self.process_group = process_group # Never use a bigger buffer than the number of model params self.buffer_size = min(buffer_size, sum(p.numel() for p in module.parameters())) self.buffer = None # Flag used by the NCCL backend to make sure we only reduce gradients # one time in the execution engine self.need_reduction = False # We can also forcibly accumulate grads locally and only do the # all-reduce at some later time self.accumulate_grads = False # For NCCL backend, since every single NCCL call is asynchoronous, we # therefore directly enqueue all the NCCL reduction calls to the # default CUDA stream without spawning up other reduction threads. # This achieves the best performance. self._register_grad_hook() def __getstate__(self): attrs = copy.copy(self.__dict__) return attrs def __setstate__(self, state): super().__setstate__(state) self._register_grad_hook() @contextmanager def no_sync(self): """A context manager to disable gradient synchronization.""" old_accumulate_grads = self.accumulate_grads self.accumulate_grads = True yield self.accumulate_grads = old_accumulate_grads def forward(self, *inputs, **kwargs): return self.module(*inputs, **kwargs) def _register_grad_hook(self): """ This function registers the callback all-reduction function for the NCCL backend. All gradients will be all reduced in one single step. The NCCL reduction will directly be enqueued into the default CUDA stream. Therefore, no synchronization is needed. """ def all_reduce(params): buffer = self.buffer nonzero_buffer = False if len(params) > 1: offset = 0 for p in params: sz = p.numel() if p.grad is not None: buffer[offset:offset+sz].copy_(p.grad.data.view(-1)) nonzero_buffer = True else: buffer[offset:offset+sz].zero_() offset += sz else: # we only have a single grad to all-reduce p = params[0] if p.grad is not None: buffer = p.grad.data nonzero_buffer = True elif p.numel() <= self.buffer.numel(): buffer = buffer[:p.numel()] buffer.zero_() else: buffer = torch.zeros_like(p) if nonzero_buffer: buffer.div_(self.world_size) distributed_utils.all_reduce(buffer, self.process_group) # copy all-reduced grads back into their original place offset = 0 for p in params: sz = p.numel() if p.grad is not None: p.grad.data.copy_(buffer[offset:offset+sz].view_as(p)) else: p.grad = buffer[offset:offset+sz].view_as(p).clone() offset += sz def reduction_fn(): # This function only needs to be called once if not self.need_reduction or self.accumulate_grads: return self.need_reduction = False if self.buffer is None: self.buffer = next(self.module.parameters()).new(self.buffer_size) # All-reduce the gradients in buckets offset = 0 buffered_params = [] for param in self.module.parameters(): if not param.requires_grad: continue if param.grad is None: param.grad = torch.zeros_like(param) if param.grad.requires_grad: raise RuntimeError("DistributedDataParallel only works " "with gradients that don't require " "grad") sz = param.numel() if sz > self.buffer.numel(): # all-reduce big params directly all_reduce([param]) else: if offset + sz > self.buffer.numel(): all_reduce(buffered_params) offset = 0 buffered_params.clear() buffered_params.append(param) offset += sz if len(buffered_params) > 0: all_reduce(buffered_params) # Now register the reduction hook on the parameters for p in self.module.parameters(): def allreduce_hook(*unused): self.need_reduction = True Variable._execution_engine.queue_callback(reduction_fn) if p.requires_grad: p.register_hook(allreduce_hook)
data2vec_vision-main
infoxlm/fairseq/fairseq/legacy_distributed_data_parallel.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torch import sys from fairseq import utils from fairseq.data.indexed_dataset import get_available_dataset_impl def get_preprocessing_parser(default_task='translation'): parser = get_parser('Preprocessing', default_task) add_preprocess_args(parser) return parser def get_training_parser(default_task='translation'): parser = get_parser('Trainer', default_task) add_dataset_args(parser, train=True) add_distributed_training_args(parser) add_model_args(parser) add_optimization_args(parser) add_checkpoint_args(parser) return parser def get_generation_parser(interactive=False, default_task='translation'): parser = get_parser('Generation', default_task) add_dataset_args(parser, gen=True) add_generation_args(parser) if interactive: add_interactive_args(parser) return parser def get_interactive_generation_parser(default_task='translation'): return get_generation_parser(interactive=True, default_task=default_task) def get_eval_lm_parser(default_task='language_modeling'): parser = get_parser('Evaluate Language Model', default_task) add_dataset_args(parser, gen=True) add_eval_lm_args(parser) return parser def get_validation_parser(default_task=None): parser = get_parser('Validation', default_task) add_dataset_args(parser, train=True) group = parser.add_argument_group('Evaluation') add_common_eval_args(group) return parser def eval_str_list(x, type=float): if x is None: return None if isinstance(x, str): x = eval(x) try: return list(map(type, x)) except TypeError: return [type(x)] def eval_bool(x, default=False): if x is None: return default try: return bool(eval(x)) except TypeError: return default def parse_args_and_arch(parser, input_args=None, parse_known=False, suppress_defaults=False): if suppress_defaults: # Parse args without any default values. This requires us to parse # twice, once to identify all the necessary task/model args, and a second # time with all defaults set to None. args = parse_args_and_arch( parser, input_args=input_args, parse_known=parse_known, suppress_defaults=False, ) suppressed_parser = argparse.ArgumentParser(add_help=False, parents=[parser]) suppressed_parser.set_defaults(**{k: None for k, v in vars(args).items()}) args = suppressed_parser.parse_args(input_args) return argparse.Namespace(**{ k: v for k, v in vars(args).items() if v is not None }) from fairseq.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY # The parser doesn't know about model/criterion/optimizer-specific args, so # we parse twice. First we parse the model/criterion/optimizer, then we # parse a second time after adding the *-specific arguments. # If input_args is given, we will parse those args instead of sys.argv. args, _ = parser.parse_known_args(input_args) # Add model-specific args to parser. if hasattr(args, 'arch'): model_specific_group = parser.add_argument_group( 'Model-specific configuration', # Only include attributes which are explicitly given as command-line # arguments or which have default values. argument_default=argparse.SUPPRESS, ) ARCH_MODEL_REGISTRY[args.arch].add_args(model_specific_group) # Add *-specific args to parser. from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): choice = getattr(args, registry_name, None) if choice is not None: cls = REGISTRY['registry'][choice] if hasattr(cls, 'add_args'): cls.add_args(parser) if hasattr(args, 'task'): from fairseq.tasks import TASK_REGISTRY TASK_REGISTRY[args.task].add_args(parser) if getattr(args, 'use_bmuf', False): # hack to support extra args for block distributed data parallelism from fairseq.optim.bmuf import FairseqBMUF FairseqBMUF.add_args(parser) # Parse a second time. if parse_known: args, extra = parser.parse_known_args(input_args) else: args = parser.parse_args(input_args) extra = None # Post-process args. if hasattr(args, 'max_sentences_valid') and args.max_sentences_valid is None: args.max_sentences_valid = args.max_sentences if hasattr(args, 'max_tokens_valid') and args.max_tokens_valid is None: args.max_tokens_valid = args.max_tokens if getattr(args, 'memory_efficient_fp16', False): args.fp16 = True # Apply architecture configuration. if hasattr(args, 'arch'): ARCH_CONFIG_REGISTRY[args.arch](args) if parse_known: return args, extra else: return args def get_parser(desc, default_task='translation'): # Before creating the true parser, we need to import optional user module # in order to eagerly import custom tasks, optimizers, architectures, etc. usr_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) usr_parser.add_argument('--user-dir', default=None) usr_args, _ = usr_parser.parse_known_args() utils.import_user_module(usr_args) parser = argparse.ArgumentParser(allow_abbrev=False) # fmt: off parser.add_argument('--no-progress-bar', action='store_true', help='disable progress bar') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='log progress every N batches (when progress bar is disabled)') parser.add_argument('--log-format', default=None, help='log format to use', choices=['json', 'none', 'simple', 'tqdm']) parser.add_argument('--tensorboard-logdir', metavar='DIR', default='', help='path to save logs for tensorboard, should match --logdir ' 'of running tensorboard (default: no tensorboard logging)') parser.add_argument('--seed', default=1, type=int, metavar='N', help='pseudo random number generator seed') parser.add_argument('--cpu', action='store_true', help='use CPU instead of CUDA') parser.add_argument('--fp16', action='store_true', help='use FP16') parser.add_argument('--memory-efficient-fp16', action='store_true', help='use a memory-efficient version of FP16 training; implies --fp16') parser.add_argument('--fp16-init-scale', default=2 ** 7, type=int, help='default FP16 loss scale') parser.add_argument('--fp16-scale-window', type=int, help='number of updates before increasing loss scale') parser.add_argument('--fp16-scale-tolerance', default=0.0, type=float, help='pct of updates that can overflow before decreasing the loss scale') parser.add_argument('--min-loss-scale', default=1e-4, type=float, metavar='D', help='minimum FP16 loss scale, after which training is stopped') parser.add_argument('--threshold-loss-scale', type=float, help='threshold FP16 loss scale from below') parser.add_argument('--user-dir', default=None, help='path to a python module containing custom extensions (tasks and/or architectures)') parser.add_argument('--empty-cache-freq', default=0, type=int, help='how often to clear the PyTorch CUDA cache (0 to disable)') from fairseq.registry import REGISTRIES for registry_name, REGISTRY in REGISTRIES.items(): parser.add_argument( '--' + registry_name.replace('_', '-'), default=REGISTRY['default'], choices=REGISTRY['registry'].keys(), ) # Task definitions can be found under fairseq/tasks/ from fairseq.tasks import TASK_REGISTRY parser.add_argument('--task', metavar='TASK', default=default_task, choices=TASK_REGISTRY.keys(), help='task') # fmt: on return parser def add_preprocess_args(parser): group = parser.add_argument_group('Preprocessing') # fmt: off group.add_argument("-s", "--source-lang", default=None, metavar="SRC", help="source language") group.add_argument("-t", "--target-lang", default=None, metavar="TARGET", help="target language") group.add_argument("--trainpref", metavar="FP", default=None, help="train file prefix") group.add_argument("--validpref", metavar="FP", default=None, help="comma separated, valid file prefixes") group.add_argument("--testpref", metavar="FP", default=None, help="comma separated, test file prefixes") group.add_argument("--align-suffix", metavar="FP", default=None, help="alignment file suffix") group.add_argument("--destdir", metavar="DIR", default="data-bin", help="destination dir") group.add_argument("--thresholdtgt", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--thresholdsrc", metavar="N", default=0, type=int, help="map words appearing less than threshold times to unknown") group.add_argument("--tgtdict", metavar="FP", help="reuse given target dictionary") group.add_argument("--srcdict", metavar="FP", help="reuse given source dictionary") group.add_argument("--nwordstgt", metavar="N", default=-1, type=int, help="number of target words to retain") group.add_argument("--nwordssrc", metavar="N", default=-1, type=int, help="number of source words to retain") group.add_argument("--alignfile", metavar="ALIGN", default=None, help="an alignment file (optional)") parser.add_argument('--dataset-impl', metavar='FORMAT', default='mmap', choices=get_available_dataset_impl(), help='output dataset implementation') group.add_argument("--joined-dictionary", action="store_true", help="Generate joined dictionary") group.add_argument("--only-source", action="store_true", help="Only process the source language") group.add_argument("--padding-factor", metavar="N", default=8, type=int, help="Pad dictionary size to be multiple of N") group.add_argument("--workers", metavar="N", default=1, type=int, help="number of parallel workers") # fmt: on return parser def add_dataset_args(parser, train=False, gen=False): group = parser.add_argument_group('Dataset and data loading') # fmt: off group.add_argument('--num-workers', default=1, type=int, metavar='N', help='how many subprocesses to use for data loading') group.add_argument('--skip-invalid-size-inputs-valid-test', action='store_true', help='ignore too long or too short lines in valid and test set') group.add_argument('--max-tokens', type=int, metavar='N', help='maximum number of tokens in a batch') group.add_argument('--max-sentences', '--batch-size', type=int, metavar='N', help='maximum number of sentences in a batch') group.add_argument('--required-batch-size-multiple', default=8, type=int, metavar='N', help='batch size will be a multiplier of this value') parser.add_argument('--dataset-impl', metavar='FORMAT', choices=get_available_dataset_impl(), help='output dataset implementation') if train: group.add_argument('--train-subset', default='train', metavar='SPLIT', choices=['train', 'valid', 'test'], help='data subset to use for training (train, valid, test)') group.add_argument('--valid-subset', default='valid', metavar='SPLIT', help='comma separated list of data subsets to use for validation' ' (train, valid, valid1, test, test1)') group.add_argument('--validate-interval', type=int, default=1, metavar='N', help='validate every N epochs') group.add_argument('--fixed-validation-seed', default=None, type=int, metavar='N', help='specified random seed for validation') group.add_argument('--disable-validation', action='store_true', help='disable validation') group.add_argument('--max-tokens-valid', type=int, metavar='N', help='maximum number of tokens in a validation batch' ' (defaults to --max-tokens)') group.add_argument('--max-sentences-valid', type=int, metavar='N', help='maximum number of sentences in a validation batch' ' (defaults to --max-sentences)') group.add_argument('--curriculum', default=0, type=int, metavar='N', help='don\'t shuffle batches for first N epochs') group.add_argument('--reload-dataset-per-epoch', action='store_true', help='reload dataset per epoch') if gen: group.add_argument('--gen-subset', default='test', metavar='SPLIT', help='data subset to generate (train, valid, test)') group.add_argument('--num-shards', default=1, type=int, metavar='N', help='shard generation over N shards') group.add_argument('--shard-id', default=0, type=int, metavar='ID', help='id of the shard to generate (id < num_shards)') # fmt: on return group def add_distributed_training_args(parser): group = parser.add_argument_group('Distributed training') # fmt: off group.add_argument('--distributed-world-size', type=int, metavar='N', default=max(1, torch.cuda.device_count()), help='total number of GPUs across all nodes (default: all visible GPUs)') group.add_argument('--distributed-rank', default=0, type=int, help='rank of the current worker') group.add_argument('--distributed-backend', default='nccl', type=str, help='distributed backend') group.add_argument('--distributed-init-method', default=None, type=str, help='typically tcp://hostname:port that will be used to ' 'establish initial connetion') group.add_argument('--distributed-port', default=-1, type=int, help='port number (not required if using --distributed-init-method)') group.add_argument('--device-id', '--local_rank', default=0, type=int, help='which GPU to use (usually configured automatically)') group.add_argument('--distributed-no-spawn', action='store_true', help='do not spawn multiple processes even if multiple GPUs are visible') group.add_argument('--ddp-backend', default='c10d', type=str, choices=['c10d', 'no_c10d'], help='DistributedDataParallel backend') group.add_argument('--bucket-cap-mb', default=25, type=int, metavar='MB', help='bucket size for reduction') group.add_argument('--fix-batches-to-gpus', action='store_true', help='don\'t shuffle batches between GPUs; this reduces overall ' 'randomness and may affect precision but avoids the cost of ' 're-reading the data') group.add_argument('--find-unused-parameters', default=False, action='store_true', help='disable unused parameter detection (not applicable to ' 'no_c10d ddp-backend') group.add_argument('--fast-stat-sync', default=False, action='store_true', help='Enable fast sync of stats between nodes, this hardcodes to ' 'sync only some default stats from logging_output.') # fmt: on return group def add_optimization_args(parser): group = parser.add_argument_group('Optimization') # fmt: off group.add_argument('--max-epoch', '--me', default=0, type=int, metavar='N', help='force stop training at specified epoch') group.add_argument('--max-update', '--mu', default=0, type=int, metavar='N', help='force stop training at specified update') group.add_argument('--clip-norm', default=25, type=float, metavar='NORM', help='clip threshold of gradients') group.add_argument('--sentence-avg', action='store_true', help='normalize gradients by the number of sentences in a batch' ' (default is to normalize by number of tokens)') group.add_argument('--update-freq', default='1', metavar='N1,N2,...,N_K', type=lambda uf: eval_str_list(uf, type=int), help='update parameters every N_i batches, when in epoch i') group.add_argument('--lr', '--learning-rate', default='0.25', type=eval_str_list, metavar='LR_1,LR_2,...,LR_N', help='learning rate for the first N epochs; all epochs >N using LR_N' ' (note: this may be interpreted differently depending on --lr-scheduler)') group.add_argument('--min-lr', default=-1, type=float, metavar='LR', help='stop training when the learning rate reaches this minimum') group.add_argument('--use-bmuf', default=False, action='store_true', help='specify global optimizer for syncing models on different GPUs/shards') # fmt: on return group def add_checkpoint_args(parser): group = parser.add_argument_group('Checkpointing') # fmt: off group.add_argument('--save-dir', metavar='DIR', default='checkpoints', help='path to save checkpoints') group.add_argument('--restore-file', default='checkpoint_last.pt', help='filename from which to load checkpoint ' '(default: <save-dir>/checkpoint_last.pt') group.add_argument('--reset-dataloader', action='store_true', help='if set, does not reload dataloader state from the checkpoint') group.add_argument('--reset-lr-scheduler', action='store_true', help='if set, does not load lr scheduler state from the checkpoint') group.add_argument('--reset-meters', action='store_true', help='if set, does not load meters from the checkpoint') group.add_argument('--reset-optimizer', action='store_true', help='if set, does not load optimizer state from the checkpoint') group.add_argument('--optimizer-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override optimizer args when loading a checkpoint') group.add_argument('--save-interval', type=int, default=1, metavar='N', help='save a checkpoint every N epochs') group.add_argument('--save-interval-updates', type=int, default=0, metavar='N', help='save a checkpoint (and validate) every N updates') group.add_argument('--keep-interval-updates', type=int, default=-1, metavar='N', help='keep the last N checkpoints saved with --save-interval-updates') group.add_argument('--keep-last-epochs', type=int, default=-1, metavar='N', help='keep last N epoch checkpoints') group.add_argument('--no-save', action='store_true', help='don\'t save models or checkpoints') group.add_argument('--no-epoch-checkpoints', action='store_true', help='only store last and best checkpoints') group.add_argument('--no-last-checkpoints', action='store_true', help='don\'t store last checkpoints') group.add_argument('--no-save-optimizer-state', action='store_true', help='don\'t save optimizer-state as part of checkpoint') group.add_argument('--best-checkpoint-metric', type=str, default='loss', help='metric to use for saving "best" checkpoints') group.add_argument('--maximize-best-checkpoint-metric', action='store_true', help='select the largest metric value for saving "best" checkpoints') # fmt: on return group def add_common_eval_args(group): # fmt: off group.add_argument('--path', metavar='FILE', help='path(s) to model file(s), colon separated') group.add_argument('--remove-bpe', nargs='?', const='@@ ', default=None, help='remove BPE tokens before scoring (can be set to sentencepiece)') group.add_argument('--quiet', action='store_true', help='only print final scores') group.add_argument('--model-overrides', default="{}", type=str, metavar='DICT', help='a dictionary used to override model args at generation ' 'that were used during model training') group.add_argument('--results-path', metavar='RESDIR', type=str, default=None, help='path to save eval results (optional)"') # fmt: on def add_eval_lm_args(parser): group = parser.add_argument_group('LM Evaluation') add_common_eval_args(group) # fmt: off group.add_argument('--output-word-probs', action='store_true', help='if set, outputs words and their predicted log probabilities to standard output') group.add_argument('--output-word-stats', action='store_true', help='if set, outputs word statistics such as word count, average probability, etc') group.add_argument('--context-window', default=0, type=int, metavar='N', help='ensures that every evaluated token has access to a context of at least this size,' ' if possible') group.add_argument('--softmax-batch', default=sys.maxsize, type=int, metavar='N', help='if BxT is more than this, will batch the softmax over vocab to this amount of tokens' ' in order to fit into GPU memory') # fmt: on def add_generation_args(parser): group = parser.add_argument_group('Generation') add_common_eval_args(group) # fmt: off group.add_argument('--beam', default=5, type=int, metavar='N', help='beam size') group.add_argument('--nbest', default=1, type=int, metavar='N', help='number of hypotheses to output') group.add_argument('--max-len-a', default=0, type=float, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--max-len-b', default=200, type=int, metavar='N', help=('generate sequences of maximum length ax + b, ' 'where x is the source length')) group.add_argument('--min-len', default=1, type=float, metavar='N', help=('minimum generation length')) group.add_argument('--match-source-len', default=False, action='store_true', help=('generations should match the source length')) group.add_argument('--no-early-stop', action='store_true', help='deprecated') group.add_argument('--unnormalized', action='store_true', help='compare unnormalized hypothesis scores') group.add_argument('--no-beamable-mm', action='store_true', help='don\'t use BeamableMM in attention layers') group.add_argument('--lenpen', default=1, type=float, help='length penalty: <1.0 favors shorter, >1.0 favors longer sentences') group.add_argument('--unkpen', default=0, type=float, help='unknown word penalty: <0 produces more unks, >0 produces fewer') group.add_argument('--replace-unk', nargs='?', const=True, default=None, help='perform unknown replacement (optionally with alignment dictionary)') group.add_argument('--sacrebleu', action='store_true', help='score with sacrebleu') group.add_argument('--score-reference', action='store_true', help='just score the reference translation') group.add_argument('--prefix-size', default=0, type=int, metavar='PS', help='initialize generation by target prefix of given length') group.add_argument('--no-repeat-ngram-size', default=0, type=int, metavar='N', help='ngram blocking such that this size ngram cannot be repeated in the generation') group.add_argument('--sampling', action='store_true', help='sample hypotheses instead of using beam search') group.add_argument('--sampling-topk', default=-1, type=int, metavar='PS', help='sample from top K likely next words instead of all words') group.add_argument('--sampling-topp', default=-1.0, type=float, metavar='PS', help='sample from the smallest set whose cumulative probability mass exceeds p for next words') group.add_argument('--temperature', default=1., type=float, metavar='N', help='temperature for generation') group.add_argument('--diverse-beam-groups', default=-1, type=int, metavar='N', help='number of groups for Diverse Beam Search') group.add_argument('--diverse-beam-strength', default=0.5, type=float, metavar='N', help='strength of diversity penalty for Diverse Beam Search') group.add_argument('--print-alignment', action='store_true', help='if set, uses attention feedback to compute and print alignment to source tokens') group.add_argument('--print-step', action='store_true') # arguments for iterative refinement generator group.add_argument('--iter-decode-eos-penalty', default=0.0, type=float, metavar='N', help='if > 0.0, it penalized early-stopping in decoding.') group.add_argument('--iter-decode-max-iter', default=10, type=int, metavar='N', help='maximum iterations for iterative refinement.') group.add_argument('--iter-decode-force-max-iter', action='store_true', help='if set, run exact the maximum number of iterations without early stop') group.add_argument('--retain-iter-history', action='store_true', help='if set, decoding returns the whole history of iterative refinement') # special decoding format for advanced decoding. group.add_argument('--decoding-format', default=None, type=str, choices=['unigram', 'ensemble', 'vote', 'dp', 'bs']) # fmt: on return group def add_interactive_args(parser): group = parser.add_argument_group('Interactive') # fmt: off group.add_argument('--buffer-size', default=0, type=int, metavar='N', help='read this many sentences into a buffer before processing them') group.add_argument('--input', default='-', type=str, metavar='FILE', help='file to read from; use - for stdin') # fmt: on def add_model_args(parser): group = parser.add_argument_group('Model configuration') # fmt: off # Model definitions can be found under fairseq/models/ # # The model architecture can be specified in several ways. # In increasing order of priority: # 1) model defaults (lowest priority) # 2) --arch argument # 3) --encoder/decoder-* arguments (highest priority) from fairseq.models import ARCH_MODEL_REGISTRY group.add_argument('--arch', '-a', default='fconv', metavar='ARCH', required=True, choices=ARCH_MODEL_REGISTRY.keys(), help='Model Architecture') # fmt: on return group
data2vec_vision-main
infoxlm/fairseq/fairseq/options.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import namedtuple import torch from fairseq import utils DecoderOut = namedtuple('IterativeRefinementDecoderOut', [ 'output_tokens', 'output_scores', 'attn', 'step', 'max_step', 'history' ]) class IterativeRefinementGenerator(object): def __init__( self, tgt_dict, models=None, eos_penalty=0.0, max_iter=10, max_ratio=2, decoding_format=None, retain_dropout=False, adaptive=True, retain_history=False, ): """ Generates translations based on iterative refinement. Args: tgt_dict: target dictionary eos_penalty: if > 0.0, it penalized early-stopping in decoding max_iter: maximum number of refinement iterations max_ratio: generate sequences of maximum length ax, where x is the source length decoding_format: decoding mode in {'unigram', 'ensemble', 'vote', 'dp', 'bs'} retain_dropout: retaining dropout in the inference adaptive: decoding with early stop """ self.bos = tgt_dict.bos() self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.eos_penalty = eos_penalty self.max_iter = max_iter self.max_ratio = max_ratio self.decoding_format = decoding_format self.retain_dropout = retain_dropout self.retain_history = retain_history self.adaptive = adaptive self.models = models def generate_batched_itr( self, data_itr, maxlen_a=None, maxlen_b=None, cuda=False, timer=None, prefix_size=0, ): """Iterate over a batched dataset and yield individual translations. Args: maxlen_a/b: generate sequences of maximum length ax + b, where x is the source sentence length. cuda: use GPU for generation timer: StopwatchMeter for timing generations. """ for sample in data_itr: if "net_input" not in sample: continue if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate( self.models, sample, prefix_tokens=sample["target"][:, :prefix_size] if prefix_size > 0 else None, ) if timer is not None: timer.stop(sample["ntokens"]) for i, id in enumerate(sample["id"]): # remove padding src = utils.strip_pad(sample["net_input"]["src_tokens"][i, :], self.pad) ref = utils.strip_pad(sample["target"][i, :], self.pad) yield id, src, ref, hypos[i] @torch.no_grad() def generate(self, models, sample, prefix_tokens=None): from fairseq.models.levenshtein_transformer import LevenshteinTransformerModel from fairseq.models.nonautoregressive_ensembles import EnsembleLevT if len(models) == 1: # Keep this for other NAT models for which we have yet to implement ensemble wrappers. Later delete this. model = models[0] elif isinstance(models[0], LevenshteinTransformerModel): model = EnsembleLevT(models) else: raise NotImplementedError if not self.retain_dropout: model.eval() # TODO: better encoder inputs? src_tokens = sample["net_input"]["src_tokens"] src_lengths = sample["net_input"]["src_lengths"] bsz, src_len = src_tokens.size() sent_idxs = torch.arange(bsz) # encoding encoder_out = model.forward_encoder([src_tokens, src_lengths]) # initialize buffers (very model specific, with length prediction or not) prev_decoder_out = model.initialize_output_tokens(encoder_out, src_tokens) prev_output_tokens = prev_decoder_out.output_tokens.clone() if self.retain_history: prev_decoder_out = prev_decoder_out._replace(history=[prev_output_tokens]) finalized = [[] for _ in range(bsz)] def is_a_loop(x, y, s, a): b, l_x, l_y = x.size(0), x.size(1), y.size(1) if l_x > l_y: y = torch.cat([y, x.new_zeros(b, l_x - l_y).fill_(self.pad)], 1) s = torch.cat([s, s.new_zeros(b, l_x - l_y)], 1) if a is not None: a = torch.cat([a, a.new_zeros(b, l_x - l_y, a.size(2))], 1) elif l_x < l_y: x = torch.cat([x, y.new_zeros(b, l_y - l_x).fill_(self.pad)], 1) return (x == y).all(1), y, s, a def finalized_hypos(step, prev_out_token, prev_out_score, prev_out_attn): cutoff = prev_out_token.ne(self.pad) tokens = prev_out_token[cutoff] if prev_out_score is None: scores, score = None, None else: scores = prev_out_score[cutoff] score = scores.mean() if prev_out_attn is None: hypo_attn, alignment = None, None else: hypo_attn = prev_out_attn[cutoff] alignment = hypo_attn.max(dim=1)[1] return { "steps": step, "tokens": tokens, "positional_scores": scores, "score": score, "hypo_attn": hypo_attn, "alignment": alignment, } for step in range(self.max_iter + 1): decoder_options = { "eos_penalty": self.eos_penalty, "max_ratio": self.max_ratio, "decoding_format": self.decoding_format, } prev_decoder_out = prev_decoder_out._replace( step=step, max_step=self.max_iter + 1, ) decoder_out = model.forward_decoder( prev_decoder_out, encoder_out, **decoder_options ) if self.adaptive: # terminate if there is a loop terminated, out_tokens, out_scores, out_attn = is_a_loop( prev_output_tokens, decoder_out.output_tokens, decoder_out.output_scores, decoder_out.attn ) decoder_out = decoder_out._replace( output_tokens=out_tokens, output_scores=out_scores, attn=out_attn, ) else: terminated = decoder_out.output_tokens.new_zeros(decoder_out.output_tokens.size(0)).bool() if step == self.max_iter: # reach last iteration, terminate terminated.fill_(1) # collect finalized sentences finalized_idxs = sent_idxs[terminated] finalized_tokens = decoder_out.output_tokens[terminated] finalized_scores = decoder_out.output_scores[terminated] finalized_attn = ( None if decoder_out.attn is None else decoder_out.attn[terminated] ) if self.retain_history: finalized_history_tokens = [h[terminated] for h in decoder_out.history] for i in range(finalized_idxs.size(0)): finalized[finalized_idxs[i]] = [ finalized_hypos( step, finalized_tokens[i], finalized_scores[i], None if finalized_attn is None else finalized_attn[i], ) ] if self.retain_history: finalized[finalized_idxs[i]][0]['history'] = [] for j in range(len(finalized_history_tokens)): finalized[finalized_idxs[i]][0]['history'].append( finalized_hypos( step, finalized_history_tokens[j][i], None, None ) ) # check if all terminated if terminated.sum() == terminated.size(0): break # for next step not_terminated = ~terminated prev_decoder_out = decoder_out._replace( output_tokens=decoder_out.output_tokens[not_terminated], output_scores=decoder_out.output_scores[not_terminated], attn=decoder_out.attn[not_terminated] if decoder_out.attn is not None else None, history=[h[not_terminated] for h in decoder_out.history] if decoder_out.history is not None else None ) encoder_out = model.encoder.reorder_encoder_out(encoder_out, not_terminated.nonzero().squeeze()) sent_idxs = sent_idxs[not_terminated] prev_output_tokens = prev_decoder_out.output_tokens.clone() return finalized
data2vec_vision-main
infoxlm/fairseq/fairseq/iterative_refinement_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n if self.count <= 0: self.count = 1 self.avg = self.sum / self.count class TimeMeter(object): """Computes the average occurrence of some event per second""" def __init__(self, init=0): self.reset(init) def reset(self, init=0): self.init = init self.start = time.time() self.n = 0 def update(self, val=1): self.n += val @property def avg(self): return self.n / self.elapsed_time @property def elapsed_time(self): return self.init + (time.time() - self.start) class StopwatchMeter(object): """Computes the sum/avg duration of some event in seconds""" def __init__(self): self.reset() def start(self): self.start_time = time.time() def stop(self, n=1): if self.start_time is not None: delta = time.time() - self.start_time self.sum += delta self.n += n self.start_time = None def reset(self): self.sum = 0 self.n = 0 self.start_time = None @property def avg(self): return self.sum / self.n
data2vec_vision-main
infoxlm/fairseq/fairseq/meters.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse REGISTRIES = {} def setup_registry( registry_name: str, base_class=None, default=None, ): assert registry_name.startswith('--') registry_name = registry_name[2:].replace('-', '_') REGISTRY = {} REGISTRY_CLASS_NAMES = set() # maintain a registry of all registries if registry_name in REGISTRIES: return # registry already exists REGISTRIES[registry_name] = { 'registry': REGISTRY, 'default': default, } def build_x(args, *extra_args, **extra_kwargs): choice = getattr(args, registry_name, None) if choice is None: return None cls = REGISTRY[choice] if hasattr(cls, 'build_' + registry_name): builder = getattr(cls, 'build_' + registry_name) else: builder = cls set_defaults(args, cls) return builder(args, *extra_args, **extra_kwargs) def register_x(name): def register_x_cls(cls): if name in REGISTRY: raise ValueError('Cannot register duplicate {} ({})'.format(registry_name, name)) if cls.__name__ in REGISTRY_CLASS_NAMES: raise ValueError( 'Cannot register {} with duplicate class name ({})'.format( registry_name, cls.__name__, ) ) if base_class is not None and not issubclass(cls, base_class): raise ValueError('{} must extend {}'.format(cls.__name__, base_class.__name__)) REGISTRY[name] = cls REGISTRY_CLASS_NAMES.add(cls.__name__) return cls return register_x_cls return build_x, register_x, REGISTRY def set_defaults(args, cls): """Helper to set default arguments based on *add_args*.""" if not hasattr(cls, 'add_args'): return parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS, allow_abbrev=False) cls.add_args(parser) # copied from argparse.py: defaults = argparse.Namespace() for action in parser._actions: if action.dest is not argparse.SUPPRESS: if not hasattr(defaults, action.dest): if action.default is not argparse.SUPPRESS: setattr(defaults, action.dest, action.default) for key, default_value in vars(defaults).items(): if not hasattr(args, key): setattr(args, key, default_value)
data2vec_vision-main
infoxlm/fairseq/fairseq/registry.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ctypes import math import torch try: from fairseq import libbleu except ImportError as e: import sys sys.stderr.write('ERROR: missing libbleu.so. run `pip install --editable .`\n') raise e C = ctypes.cdll.LoadLibrary(libbleu.__file__) class BleuStat(ctypes.Structure): _fields_ = [ ('reflen', ctypes.c_size_t), ('predlen', ctypes.c_size_t), ('match1', ctypes.c_size_t), ('count1', ctypes.c_size_t), ('match2', ctypes.c_size_t), ('count2', ctypes.c_size_t), ('match3', ctypes.c_size_t), ('count3', ctypes.c_size_t), ('match4', ctypes.c_size_t), ('count4', ctypes.c_size_t), ] class SacrebleuScorer(object): def __init__(self): import sacrebleu self.sacrebleu = sacrebleu self.reset() def reset(self, one_init=False): if one_init: raise NotImplementedError self.ref = [] self.sys = [] def add_string(self, ref, pred): self.ref.append(ref) self.sys.append(pred) def score(self, order=4): return self.result_string(order).score def result_string(self, order=4): if order != 4: raise NotImplementedError return self.sacrebleu.corpus_bleu(self.sys, [self.ref]) class Scorer(object): def __init__(self, pad, eos, unk): self.stat = BleuStat() self.pad = pad self.eos = eos self.unk = unk self.reset() def reset(self, one_init=False): if one_init: C.bleu_one_init(ctypes.byref(self.stat)) else: C.bleu_zero_init(ctypes.byref(self.stat)) def add(self, ref, pred): if not isinstance(ref, torch.IntTensor): raise TypeError('ref must be a torch.IntTensor (got {})' .format(type(ref))) if not isinstance(pred, torch.IntTensor): raise TypeError('pred must be a torch.IntTensor(got {})' .format(type(pred))) # don't match unknown words rref = ref.clone() assert not rref.lt(0).any() rref[rref.eq(self.unk)] = -999 rref = rref.contiguous().view(-1) pred = pred.contiguous().view(-1) C.bleu_add( ctypes.byref(self.stat), ctypes.c_size_t(rref.size(0)), ctypes.c_void_p(rref.data_ptr()), ctypes.c_size_t(pred.size(0)), ctypes.c_void_p(pred.data_ptr()), ctypes.c_int(self.pad), ctypes.c_int(self.eos)) def score(self, order=4): psum = sum(math.log(p) if p > 0 else float('-Inf') for p in self.precision()[:order]) return self.brevity() * math.exp(psum / order) * 100 def precision(self): def ratio(a, b): return a / b if b > 0 else 0 return [ ratio(self.stat.match1, self.stat.count1), ratio(self.stat.match2, self.stat.count2), ratio(self.stat.match3, self.stat.count3), ratio(self.stat.match4, self.stat.count4), ] def brevity(self): r = self.stat.reflen / self.stat.predlen return min(1, math.exp(1 - r)) def result_string(self, order=4): assert order <= 4, "BLEU scores for order > 4 aren't supported" fmt = 'BLEU{} = {:2.2f}, {:2.1f}' for _ in range(1, order): fmt += '/{:2.1f}' fmt += ' (BP={:.3f}, ratio={:.3f}, syslen={}, reflen={})' bleup = [p * 100 for p in self.precision()[:order]] return fmt.format(order, self.score(order=order), *bleup, self.brevity(), self.stat.predlen/self.stat.reflen, self.stat.predlen, self.stat.reflen)
data2vec_vision-main
infoxlm/fairseq/fairseq/bleu.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. __all__ = ['pdb'] __version__ = '0.9.0' import fairseq.criterions # noqa import fairseq.models # noqa import fairseq.modules # noqa import fairseq.optim # noqa import fairseq.optim.lr_scheduler # noqa import fairseq.pdb # noqa import fairseq.tasks # noqa
data2vec_vision-main
infoxlm/fairseq/fairseq/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch from fairseq import search, utils from fairseq.data import data_utils from fairseq.models import FairseqIncrementalDecoder class SequenceGenerator(object): def __init__( self, tgt_dict, beam_size=1, max_len_a=0, max_len_b=200, min_len=1, normalize_scores=True, len_penalty=1., unk_penalty=0., retain_dropout=False, sampling=False, sampling_topk=-1, sampling_topp=-1.0, temperature=1., diverse_beam_groups=-1, diverse_beam_strength=0.5, match_source_len=False, no_repeat_ngram_size=0, ): """Generates translations of a given source sentence. Args: tgt_dict (~fairseq.data.Dictionary): target dictionary beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) retain_dropout (bool, optional): use dropout when generating (default: False) sampling (bool, optional): sample outputs instead of beam search (default: False) sampling_topk (int, optional): only sample among the top-k choices at each step (default: -1) sampling_topp (float, optional): only sample among the smallest set of words whose cumulative probability mass exceeds p at each step (default: -1.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) diverse_beam_groups/strength (float, optional): parameters for Diverse Beam Search sampling match_source_len (bool, optional): outputs should match the source length (default: False) """ self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.retain_dropout = retain_dropout self.temperature = temperature self.match_source_len = match_source_len self.no_repeat_ngram_size = no_repeat_ngram_size assert sampling_topk < 0 or sampling, '--sampling-topk requires --sampling' assert sampling_topp < 0 or sampling, '--sampling-topp requires --sampling' assert temperature > 0, '--temperature must be greater than 0' if sampling: self.search = search.Sampling(tgt_dict, sampling_topk, sampling_topp) elif diverse_beam_groups > 0: self.search = search.DiverseBeamSearch(tgt_dict, diverse_beam_groups, diverse_beam_strength) elif match_source_len: self.search = search.LengthConstrainedBeamSearch( tgt_dict, min_len_a=1, min_len_b=0, max_len_a=1, max_len_b=0, ) else: self.search = search.BeamSearch(tgt_dict) @torch.no_grad() def generate(self, models, sample, **kwargs): """Generate a batch of translations. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ model = EnsembleModel(models) return self._generate(model, sample, **kwargs) @torch.no_grad() def _generate( self, model, sample, prefix_tokens=None, bos_token=None, **kwargs ): if not self.retain_dropout: model.eval() # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in sample['net_input'].items() if k != 'prev_output_tokens' } src_tokens = encoder_input['src_tokens'] src_lengths = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) input_size = src_tokens.size() # batch dimension goes first followed by source lengths bsz = input_size[0] src_len = input_size[1] beam_size = self.beam_size if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), # exclude the EOS marker model.max_decoder_positions() - 1, ) # compute the encoder output for each beam encoder_outs = model.forward_encoder(encoder_input) new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = model.reorder_encoder_out(encoder_outs, new_order) # initialize buffers scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0) scores_buf = scores.clone() tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad) tokens_buf = tokens.clone() tokens[:, 0] = self.eos if bos_token is None else bos_token attn, attn_buf = None, None # The blacklist indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then the blacklist would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. blacklist = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask # list of completed sentences finalized = [[] for i in range(bsz)] finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens) cand_offsets = torch.arange(0, cand_size).type_as(tokens) # helper function for allocating buffers on the fly buffers = {} def buffer(name, type_of=tokens): # noqa if name not in buffers: buffers[name] = type_of.new() return buffers[name] def is_finished(sent, step, unfin_idx): """ Check whether we've finished generation for a given sentence, by comparing the worst score among finalized hypotheses to the best possible score among unfinalized hypotheses. """ assert len(finalized[sent]) <= beam_size if len(finalized[sent]) == beam_size or step == max_len: return True return False def finalize_hypos(step, bbsz_idx, eos_scores): """ Finalize the given hypotheses at this step, while keeping the total number of finalized hypotheses per sentence <= beam_size. Note: the input must be in the desired finalization order, so that hypotheses that appear earlier in the input are preferred to those that appear later. Args: step: current time step bbsz_idx: A vector of indices in the range [0, bsz*beam_size), indicating which hypotheses to finalize eos_scores: A vector of the same size as bbsz_idx containing scores for each hypothesis """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors tokens_clone = tokens.index_select(0, bbsz_idx) tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS assert not tokens_clone.eq(self.eos).any() tokens_clone[:, step] = self.eos attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty cum_unfin = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) sents_seen = set() for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), eos_scores.tolist())): unfin_idx = idx // beam_size sent = unfin_idx + cum_unfin[unfin_idx] sents_seen.add((sent, unfin_idx)) if self.match_source_len and step > src_lengths[unfin_idx]: score = -math.inf def get_hypo(): if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = None return { 'tokens': tokens_clone[i], 'score': score, 'attention': hypo_attn, # src_len x tgt_len 'alignment': None, 'positional_scores': pos_scores[i], } if len(finalized[sent]) < beam_size: finalized[sent].append(get_hypo()) newly_finished = [] for sent, unfin_idx in sents_seen: # check termination conditions for this sentence if not finished[sent] and is_finished(sent, step, unfin_idx): finished[sent] = True newly_finished.append(unfin_idx) return newly_finished reorder_state = None batch_idxs = None for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs) reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size) model.reorder_incremental_state(reorder_state) encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state) lprobs, avg_attn_scores = model.forward_decoder( tokens[:, :step + 1], encoder_outs, temperature=self.temperature, ) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, :self.eos] = -math.inf lprobs[:, self.eos + 1:] = -math.inf # handle prefix tokens (possibly with different lengths) if prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len: prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = -math.inf lprobs[prefix_mask] = lprobs[prefix_mask].scatter_( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() def replicate_first_beam(tensor, mask): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) # copy tokens, scores and lprobs from the first beam to all beams tokens = replicate_first_beam(tokens, eos_mask_batch_dim) scores = replicate_first_beam(scores, eos_mask_batch_dim) lprobs = replicate_first_beam(lprobs, eos_mask_batch_dim) elif step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf if self.no_repeat_ngram_size > 0: # for each beam and batch sentence, generate a list of previous ngrams gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): gen_tokens = tokens[bbsz_idx].tolist() for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]): gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \ gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]] # Record attention scores if avg_attn_scores is not None: if attn is None: attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2) attn_buf = attn.clone() attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) scores_buf = scores_buf.type_as(lprobs) eos_bbsz_idx = buffer('eos_bbsz_idx') eos_scores = buffer('eos_scores', type_of=scores) self.search.set_src_lengths(src_lengths) if self.no_repeat_ngram_size > 0: def calculate_banned_tokens(bbsz_idx): # before decoding the next token, prevent decoding of ngrams that have already appeared ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist()) return gen_ngrams[bbsz_idx].get(ngram_index, []) if step + 2 - self.no_repeat_ngram_size >= 0: # no banned tokens if we haven't generated no_repeat_ngram_size tokens yet banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)] else: banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)] for bbsz_idx in range(bsz * beam_size): lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos, except for blacklisted ones # or candidates with a score of -inf eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][blacklist] = 0 # only consider eos when it's among the top beam_size indices torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size], out=eos_bbsz_idx, ) finalized_sents = set() if eos_bbsz_idx.numel() > 0: torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size], out=eos_scores, ) finalized_sents = finalize_hypos(step, eos_bbsz_idx, eos_scores) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break assert step < max_len if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = cand_indices.new_ones(bsz) batch_mask[cand_indices.new(finalized_sents)] = 0 batch_idxs = batch_mask.nonzero().squeeze(-1) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] blacklist = blacklist[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) scores_buf.resize_as_(scores) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens_buf.resize_as_(tokens) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1) attn_buf.resize_as_(attn) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos or # blacklisted hypos and values < cand_size indicate candidate # active hypos. After this, the min values per row are the top # candidate active hypos. active_mask = buffer('active_mask') eos_mask[:, :beam_size] |= blacklist torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[:eos_mask.size(1)], out=active_mask, ) # get the top beam_size active hypotheses, which are just the hypos # with the smallest values in active_mask active_hypos, new_blacklist = buffer('active_hypos'), buffer('new_blacklist') torch.topk( active_mask, k=beam_size, dim=1, largest=False, out=(new_blacklist, active_hypos) ) # update blacklist to ignore any finalized hypos blacklist = new_blacklist.ge(cand_size)[:, :beam_size] assert (~blacklist).any(dim=1).all() active_bbsz_idx = buffer('active_bbsz_idx') torch.gather( cand_bbsz_idx, dim=1, index=active_hypos, out=active_bbsz_idx, ) active_scores = torch.gather( cand_scores, dim=1, index=active_hypos, out=scores[:, step].view(bsz, beam_size), ) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses torch.index_select( tokens[:, :step + 1], dim=0, index=active_bbsz_idx, out=tokens_buf[:, :step + 1], ) torch.gather( cand_indices, dim=1, index=active_hypos, out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1], ) if step > 0: torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx, out=scores_buf[:, :step], ) torch.gather( cand_scores, dim=1, index=active_hypos, out=scores_buf.view(bsz, beam_size, -1)[:, :, step], ) # copy attention for active hypotheses if attn is not None: torch.index_select( attn[:, :, :step + 2], dim=0, index=active_bbsz_idx, out=attn_buf[:, :, :step + 2], ) # swap buffers tokens, tokens_buf = tokens_buf, tokens scores, scores_buf = scores_buf, scores if attn is not None: attn, attn_buf = attn_buf, attn # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True) return finalized class EnsembleModel(torch.nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models = torch.nn.ModuleList(models) self.incremental_states = None if all(isinstance(m.decoder, FairseqIncrementalDecoder) for m in models): self.incremental_states = {m: {} for m in models} def has_encoder(self): return hasattr(self.models[0], 'encoder') def max_decoder_positions(self): return min(m.max_decoder_positions() for m in self.models) @torch.no_grad() def forward_encoder(self, encoder_input): if not self.has_encoder(): return None return [model.encoder(**encoder_input) for model in self.models] @torch.no_grad() def forward_decoder(self, tokens, encoder_outs, temperature=1.): if len(self.models) == 1: return self._decode_one( tokens, self.models[0], encoder_outs[0] if self.has_encoder() else None, self.incremental_states, log_probs=True, temperature=temperature, ) log_probs = [] avg_attn = None for model, encoder_out in zip(self.models, encoder_outs): probs, attn = self._decode_one( tokens, model, encoder_out, self.incremental_states, log_probs=True, temperature=temperature, ) log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log(len(self.models)) if avg_attn is not None: avg_attn.div_(len(self.models)) return avg_probs, avg_attn def _decode_one( self, tokens, model, encoder_out, incremental_states, log_probs, temperature=1., ): if self.incremental_states is not None: decoder_out = list(model.forward_decoder( tokens, encoder_out=encoder_out, incremental_state=self.incremental_states[model], )) else: decoder_out = list(model.forward_decoder(tokens, encoder_out=encoder_out)) decoder_out[0] = decoder_out[0][:, -1:, :] if temperature != 1.: decoder_out[0].div_(temperature) attn = decoder_out[1] if type(attn) is dict: attn = attn.get('attn', None) if attn is not None: attn = attn[:, -1, :] probs = model.get_normalized_probs(decoder_out, log_probs=log_probs) probs = probs[:, -1, :] return probs, attn def reorder_encoder_out(self, encoder_outs, new_order): if not self.has_encoder(): return return [ model.encoder.reorder_encoder_out(encoder_out, new_order) for model, encoder_out in zip(self.models, encoder_outs) ] def reorder_incremental_state(self, new_order): if self.incremental_states is None: return for model in self.models: model.decoder.reorder_incremental_state(self.incremental_states[model], new_order) class SequenceGeneratorWithAlignment(SequenceGenerator): def __init__(self, tgt_dict, left_pad_target=False, **kwargs): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(tgt_dict, **kwargs) self.left_pad_target = left_pad_target @torch.no_grad() def generate(self, models, sample, **kwargs): model = EnsembleModelWithAlignment(models) finalized = super()._generate(model, sample, **kwargs) src_tokens = sample['net_input']['src_tokens'] bsz = src_tokens.shape[0] beam_size = self.beam_size src_tokens, src_lengths, prev_output_tokens, tgt_tokens = \ self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, 'full_context_alignment', False) for m in model.models): attn = model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]['attention'].transpose(1, 0) for i in range(bsz * beam_size) ] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = utils.extract_hard_alignment(attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos) finalized[i // beam_size][i % beam_size]['alignment'] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample['net_input']['src_tokens'] bsz = src_tokens.shape[0] src_tokens = src_tokens[:, None, :].expand(-1, self.beam_size, -1).contiguous().view(bsz * self.beam_size, -1) src_lengths = sample['net_input']['src_lengths'] src_lengths = src_lengths[:, None].expand(-1, self.beam_size).contiguous().view(bsz * self.beam_size) prev_output_tokens = data_utils.collate_tokens( [beam['tokens'] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = data_utils.collate_tokens( [beam['tokens'] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]['attn'] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn def _decode_one( self, tokens, model, encoder_out, incremental_states, log_probs, temperature=1., ): if self.incremental_states is not None: decoder_out = list(model.forward_decoder( tokens, encoder_out=encoder_out, incremental_state=self.incremental_states[model], )) else: decoder_out = list(model.forward_decoder(tokens, encoder_out=encoder_out)) decoder_out[0] = decoder_out[0][:, -1:, :] if temperature != 1.: decoder_out[0].div_(temperature) attn = decoder_out[1] if type(attn) is dict: attn = attn.get('attn', None) if attn is not None: attn = attn[:, -1, :] probs = model.get_normalized_probs(decoder_out, log_probs=log_probs) probs = probs[:, -1, :] return probs, attn
data2vec_vision-main
infoxlm/fairseq/fairseq/sequence_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import multiprocessing import os import pdb import sys __all__ = ['set_trace'] _stdin = [None] _stdin_lock = multiprocessing.Lock() try: _stdin_fd = sys.stdin.fileno() except Exception: _stdin_fd = None class MultiprocessingPdb(pdb.Pdb): """A Pdb wrapper that works in a multiprocessing environment. Usage: `from fairseq import pdb; pdb.set_trace()` """ def __init__(self): pdb.Pdb.__init__(self, nosigint=True) def _cmdloop(self): stdin_bak = sys.stdin with _stdin_lock: try: if _stdin_fd is not None: if not _stdin[0]: _stdin[0] = os.fdopen(_stdin_fd) sys.stdin = _stdin[0] self.cmdloop() finally: sys.stdin = stdin_bak def set_trace(): pdb = MultiprocessingPdb() pdb.set_trace(sys._getframe().f_back)
data2vec_vision-main
infoxlm/fairseq/fairseq/pdb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re SPACE_NORMALIZER = re.compile(r"\s+") def tokenize_line(line): line = SPACE_NORMALIZER.sub(" ", line) line = line.strip() return line.split()
data2vec_vision-main
infoxlm/fairseq/fairseq/tokenizer.py
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import os import torch from torch import nn from fairseq import utils from fairseq.data import encoders def from_pretrained( model_name_or_path, checkpoint_file='model.pt', data_name_or_path='.', archive_map=None, **kwargs ): from fairseq import checkpoint_utils, file_utils if archive_map is not None: if model_name_or_path in archive_map: model_name_or_path = archive_map[model_name_or_path] if data_name_or_path is not None and data_name_or_path in archive_map: data_name_or_path = archive_map[data_name_or_path] # allow archive_map to set default arg_overrides (e.g., tokenizer, bpe) # for each model if isinstance(model_name_or_path, dict): for k, v in model_name_or_path.items(): if k == 'checkpoint_file': checkpoint_file = v elif ( k != 'path' # only set kwargs that don't already have overrides and k not in kwargs ): kwargs[k] = v model_name_or_path = model_name_or_path['path'] model_path = file_utils.load_archive_file(model_name_or_path) # convenience hack for loading data and BPE codes from model archive if data_name_or_path.startswith('.'): kwargs['data'] = os.path.abspath(os.path.join(model_path, data_name_or_path)) else: kwargs['data'] = file_utils.load_archive_file(data_name_or_path) for file, arg in { 'code': 'bpe_codes', 'bpecodes': 'bpe_codes', 'sentencepiece.bpe.model': 'sentencepiece_vocab', }.items(): path = os.path.join(model_path, file) if os.path.exists(path): kwargs[arg] = path if 'user_dir' in kwargs: utils.import_user_module(argparse.Namespace(user_dir=kwargs['user_dir'])) models, args, task = checkpoint_utils.load_model_ensemble_and_task( [os.path.join(model_path, cpt) for cpt in checkpoint_file.split(':')], arg_overrides=kwargs, ) return { 'args': args, 'task': task, 'models': models, } class GeneratorHubInterface(nn.Module): """ PyTorch Hub interface for generating sequences from a pre-trained translation or language model. """ def __init__(self, args, task, models): super().__init__() self.args = args self.task = task self.models = nn.ModuleList(models) self.src_dict = task.source_dictionary self.tgt_dict = task.target_dictionary # optimize model for generation for model in self.models: model.make_generation_fast_( beamable_mm_beam_size=( None if getattr(args, 'no_beamable_mm', False) else getattr(args, 'beam', 5) ), need_attn=getattr(args, 'print_alignment', False), ) # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) self.align_dict = utils.load_align_dict(getattr(args, 'replace_unk', None)) self.tokenizer = encoders.build_tokenizer(args) self.bpe = encoders.build_bpe(args) # this is useful for determining the device self.register_buffer('_float_tensor', torch.tensor([0], dtype=torch.float)) @property def device(self): return self._float_tensor.device def translate(self, sentence: str, beam: int = 5, verbose: bool = False, **kwargs) -> str: return self.sample(sentence, beam, verbose, **kwargs) def sample(self, sentence: str, beam: int = 1, verbose: bool = False, **kwargs) -> str: input = self.encode(sentence) hypo = self.generate(input, beam, verbose, **kwargs)[0]['tokens'] return self.decode(hypo) def generate(self, tokens: torch.LongTensor, beam: int = 5, verbose: bool = False, **kwargs) -> torch.LongTensor: sample = self._build_sample(tokens) # build generator using current args as well as any kwargs gen_args = copy.copy(self.args) gen_args.beam = beam for k, v in kwargs.items(): setattr(gen_args, k, v) generator = self.task.build_generator(gen_args) translations = self.task.inference_step(generator, self.models, sample) if verbose: src_str_with_unk = self.string(tokens) print('S\t{}'.format(src_str_with_unk)) def getarg(name, default): return getattr(gen_args, name, getattr(self.args, name, default)) # Process top predictions hypos = translations[0] if verbose: for hypo in hypos: hypo_str = self.decode(hypo['tokens']) print('H\t{}\t{}'.format(hypo['score'], hypo_str)) print('P\t{}'.format( ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist())) )) if hypo['alignment'] is not None and getarg('print_alignment', False): print('A\t{}'.format( ' '.join(map(lambda x: str(utils.item(x)), hypo['alignment'].int().cpu())) )) return hypos def encode(self, sentence: str) -> torch.LongTensor: sentence = self.tokenize(sentence) sentence = self.apply_bpe(sentence) return self.binarize(sentence) def decode(self, tokens: torch.LongTensor) -> str: sentence = self.string(tokens) sentence = self.remove_bpe(sentence) return self.detokenize(sentence) def tokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.encode(sentence) return sentence def detokenize(self, sentence: str) -> str: if self.tokenizer is not None: sentence = self.tokenizer.decode(sentence) return sentence def apply_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.encode(sentence) return sentence def remove_bpe(self, sentence: str) -> str: if self.bpe is not None: sentence = self.bpe.decode(sentence) return sentence def binarize(self, sentence: str) -> torch.LongTensor: return self.src_dict.encode_line(sentence, add_if_not_exist=False).long() def string(self, tokens: torch.LongTensor) -> str: return self.tgt_dict.string(tokens) def _build_sample(self, src_tokens: torch.LongTensor): assert torch.is_tensor(src_tokens) dataset = self.task.build_dataset_for_inference([src_tokens], [src_tokens.numel()]) sample = dataset.collater([dataset[0]]) sample = utils.apply_to_sample( lambda tensor: tensor.to(self.device), sample ) return sample class BPEHubInterface(object): """PyTorch Hub interface for Byte-Pair Encoding (BPE).""" def __init__(self, bpe, **kwargs): super().__init__() args = argparse.Namespace(bpe=bpe, **kwargs) self.bpe = encoders.build_bpe(args) assert self.bpe is not None def encode(self, sentence: str) -> str: return self.bpe.encode(sentence) def decode(self, sentence: str) -> str: return self.bpe.decode(sentence) class TokenizerHubInterface(object): """PyTorch Hub interface for tokenization.""" def __init__(self, tokenizer, **kwargs): super().__init__() args = argparse.Namespace(tokenizer=tokenizer, **kwargs) self.tokenizer = encoders.build_tokenizer(args) assert self.tokenizer is not None def encode(self, sentence: str) -> str: return self.tokenizer.encode(sentence) def decode(self, sentence: str) -> str: return self.tokenizer.decode(sentence)
data2vec_vision-main
infoxlm/fairseq/fairseq/hub_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import sys from fairseq import utils class SequenceScorer(object): """Scores the target for a given source sentence.""" def __init__(self, tgt_dict, softmax_batch=None): self.pad = tgt_dict.pad() self.eos = tgt_dict.eos() self.softmax_batch = softmax_batch or sys.maxsize assert self.softmax_batch > 0 @torch.no_grad() def generate(self, models, sample, **kwargs): """Score a batch of translations.""" net_input = sample['net_input'] def batch_for_softmax(dec_out, target): # assumes decoder_out[0] is the only thing needed (may not be correct for future models!) first, rest = dec_out[0], dec_out[1:] bsz, tsz, dim = first.shape if bsz * tsz < self.softmax_batch: yield dec_out, target, True else: flat = first.contiguous().view(1, -1, dim) flat_tgt = target.contiguous().view(flat.shape[:-1]) s = 0 while s < flat.size(1): e = s + self.softmax_batch yield (flat[:, s:e],) + rest, flat_tgt[:, s:e], False s = e def gather_target_probs(probs, target): probs = probs.gather( dim=2, index=target.unsqueeze(-1), ) return probs orig_target = sample['target'] # compute scores for each model in the ensemble avg_probs = None avg_attn = None for model in models: model.eval() decoder_out = model.forward(**net_input) attn = decoder_out[1] if type(attn) is dict: attn = attn.get('attn', None) batched = batch_for_softmax(decoder_out, orig_target) probs, idx = None, 0 for bd, tgt, is_single in batched: sample['target'] = tgt curr_prob = model.get_normalized_probs(bd, log_probs=len(models) == 1, sample=sample).data if is_single: probs = gather_target_probs(curr_prob, orig_target) else: if probs is None: probs = curr_prob.new(orig_target.numel()) step = curr_prob.size(0) * curr_prob.size(1) end = step + idx tgt_probs = gather_target_probs(curr_prob.view(tgt.shape + (curr_prob.size(-1),)), tgt) probs[idx:end] = tgt_probs.view(-1) idx = end sample['target'] = orig_target probs = probs.view(sample['target'].shape) if avg_probs is None: avg_probs = probs else: avg_probs.add_(probs) if attn is not None and torch.is_tensor(attn): attn = attn.data if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(models) > 1: avg_probs.div_(len(models)) avg_probs.log_() if avg_attn is not None: avg_attn.div_(len(models)) bsz = avg_probs.size(0) hypos = [] start_idxs = sample['start_indices'] if 'start_indices' in sample else [0] * bsz for i in range(bsz): # remove padding from ref ref = utils.strip_pad(sample['target'][i, start_idxs[i]:], self.pad) \ if sample['target'] is not None else None tgt_len = ref.numel() avg_probs_i = avg_probs[i][start_idxs[i]:start_idxs[i] + tgt_len] score_i = avg_probs_i.sum() / tgt_len if avg_attn is not None: avg_attn_i = avg_attn[i] alignment = utils.extract_hard_alignment(avg_attn_i, sample['net_input']['src_tokens'][i], sample['target'][i], self.pad, self.eos) else: avg_attn_i = alignment = None hypos.append([{ 'tokens': ref, 'score': score_i, 'attention': avg_attn_i, 'alignment': alignment, 'positional_scores': avg_probs_i, }]) return hypos
data2vec_vision-main
infoxlm/fairseq/fairseq/sequence_scorer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict import contextlib import copy import importlib.util import math import os import sys from typing import Callable, List import warnings import torch import torch.nn.functional as F from itertools import accumulate from fairseq.modules import gelu, gelu_accurate def load_ensemble_for_inference(filenames, task, model_arg_overrides=None): from fairseq import checkpoint_utils deprecation_warning( 'utils.load_ensemble_for_inference is deprecated. ' 'Please use checkpoint_utils.load_model_ensemble instead.' ) return checkpoint_utils.load_model_ensemble( filenames, arg_overrides=model_arg_overrides, task=task, ) def apply_to_sample(f, sample): if len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return { key: _apply(value) for key, value in x.items() } elif isinstance(x, list): return [_apply(x) for x in x] else: return x return _apply(sample) def move_to_cuda(sample): def _move_to_cuda(tensor): return tensor.cuda() return apply_to_sample(_move_to_cuda, sample) INCREMENTAL_STATE_INSTANCE_ID = defaultdict(lambda: 0) def _get_full_incremental_state_key(module_instance, key): module_name = module_instance.__class__.__name__ # assign a unique ID to each module instance, so that incremental state is # not shared across module instances if not hasattr(module_instance, '_fairseq_instance_id'): INCREMENTAL_STATE_INSTANCE_ID[module_name] += 1 module_instance._fairseq_instance_id = INCREMENTAL_STATE_INSTANCE_ID[module_name] return '{}.{}.{}'.format(module_name, module_instance._fairseq_instance_id, key) def get_incremental_state(module, incremental_state, key): """Helper for getting incremental state for an nn.Module.""" full_key = _get_full_incremental_state_key(module, key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state(module, incremental_state, key, value): """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = _get_full_incremental_state_key(module, key) incremental_state[full_key] = value def load_align_dict(replace_unk): if replace_unk is None: align_dict = None elif isinstance(replace_unk, str) and len(replace_unk) > 0: # Load alignment dictionary for unknown word replacement if it was passed as an argument. align_dict = {} with open(replace_unk, 'r') as f: for line in f: cols = line.split() align_dict[cols[0]] = cols[1] else: # No alignment dictionary provided but we still want to perform unknown word replacement by copying the # original source word. align_dict = {} return align_dict def print_embed_overlap(embed_dict, vocab_dict): embed_keys = set(embed_dict.keys()) vocab_keys = set(vocab_dict.symbols) overlap = len(embed_keys & vocab_keys) print("| Found {}/{} types in embedding file.".format(overlap, len(vocab_dict))) def parse_embedding(embed_path): """Parse embedding text file into a dictionary of word and embedding tensors. The first line can have vocabulary size and dimension. The following lines should contain word and embedding separated by spaces. Example: 2 5 the -0.0230 -0.0264 0.0287 0.0171 0.1403 at -0.0395 -0.1286 0.0275 0.0254 -0.0932 """ embed_dict = {} with open(embed_path) as f_embed: next(f_embed) # skip header for line in f_embed: pieces = line.rstrip().split(" ") embed_dict[pieces[0]] = torch.Tensor([float(weight) for weight in pieces[1:]]) return embed_dict def load_embedding(embed_dict, vocab, embedding): for idx in range(len(vocab)): token = vocab[idx] if token in embed_dict: embedding.weight.data[idx] = embed_dict[token] return embedding def replace_unk(hypo_str, src_str, alignment, align_dict, unk): from fairseq import tokenizer # Tokens are strings here hypo_tokens = tokenizer.tokenize_line(hypo_str) # TODO: Very rare cases where the replacement is '<eos>' should be handled gracefully src_tokens = tokenizer.tokenize_line(src_str) + ['<eos>'] for i, ht in enumerate(hypo_tokens): if ht == unk: src_token = src_tokens[alignment[i]] # Either take the corresponding value in the aligned dictionary or just copy the original value. hypo_tokens[i] = align_dict.get(src_token, src_token) return ' '.join(hypo_tokens) def post_process_prediction(hypo_tokens, src_str, alignment, align_dict, tgt_dict, remove_bpe=None): hypo_str = tgt_dict.string(hypo_tokens, remove_bpe) if align_dict is not None: hypo_str = replace_unk(hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string()) if align_dict is not None or remove_bpe is not None: # Convert back to tokens for evaluating with unk replacement or without BPE # Note that the dictionary can be modified inside the method. hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True) return hypo_tokens, hypo_str, alignment def make_positions(tensor, padding_idx, onnx_trace=False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return ( torch.cumsum(mask, dim=1).type_as(mask) * mask ).long() + padding_idx def strip_pad(tensor, pad): return tensor[tensor.ne(pad)] def buffered_arange(max): if not hasattr(buffered_arange, 'buf'): buffered_arange.buf = torch.LongTensor() if max > buffered_arange.buf.numel(): torch.arange(max, out=buffered_arange.buf) return buffered_arange.buf[:max] def convert_padding_direction(src_tokens, padding_idx, right_to_left=False, left_to_right=False): assert right_to_left ^ left_to_right pad_mask = src_tokens.eq(padding_idx) if not pad_mask.any(): # no padding, return early return src_tokens if left_to_right and not pad_mask[:, 0].any(): # already right padded return src_tokens if right_to_left and not pad_mask[:, -1].any(): # already left padded return src_tokens max_len = src_tokens.size(1) range = buffered_arange(max_len).type_as(src_tokens).expand_as(src_tokens) num_pads = pad_mask.long().sum(dim=1, keepdim=True) if right_to_left: index = torch.remainder(range - num_pads, max_len) else: index = torch.remainder(range + num_pads, max_len) return src_tokens.gather(1, index) def item(tensor): if hasattr(tensor, 'item'): return tensor.item() if hasattr(tensor, '__getitem__'): return tensor[0] return tensor def clip_grad_norm_(tensor, max_norm): grad_norm = item(torch.norm(tensor)) if grad_norm > max_norm > 0: clip_coef = max_norm / (grad_norm + 1e-6) tensor.mul_(clip_coef) return grad_norm def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float('-inf')).type_as(t) def resolve_max_positions(*args): """Resolve max position constraints from multiple sources.""" def map_value_update(d1, d2): updated_value = copy.deepcopy(d1) for key in d2: if key not in updated_value: updated_value[key] = d2[key] else: updated_value[key] = min(d1[key], d2[key]) return updated_value def nullsafe_min(l): minim = None for item in l: if minim is None: minim = item elif item is not None and item < minim: minim = item return minim max_positions = None for arg in args: if max_positions is None: max_positions = arg elif arg is not None: if isinstance(arg, float) or isinstance(arg, int): max_positions = min(max_positions, arg) elif isinstance(arg, dict): max_positions = map_value_update(max_positions, arg) else: max_positions = tuple( map(nullsafe_min, zip(max_positions, arg)) ) return max_positions def import_user_module(args): module_path = getattr(args, 'user_dir', None) if module_path is not None: module_path = os.path.abspath(args.user_dir) if not os.path.exists(module_path): fairseq_rel_path = os.path.join(os.path.dirname(__file__), '..', args.user_dir) if os.path.exists(fairseq_rel_path): module_path = fairseq_rel_path module_parent, module_name = os.path.split(module_path) if module_name not in sys.modules: sys.path.insert(0, module_parent) importlib.import_module(module_name) sys.path.pop(0) def softmax(x, dim, onnx_trace=False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def log_softmax(x, dim, onnx_trace=False): if onnx_trace: return F.log_softmax(x.float(), dim=dim) else: return F.log_softmax(x, dim=dim, dtype=torch.float32) def get_perplexity(loss): try: return float('{:.2f}'.format(math.pow(2, loss))) except OverflowError: return float('inf') def deprecation_warning(message, stacklevel=3): # don't use DeprecationWarning, since it's ignored by default warnings.warn(message, stacklevel=stacklevel) def get_activation_fn(activation: str) -> Callable: """ Returns the activation function corresponding to `activation` """ if activation == 'relu': return F.relu elif activation == 'gelu': return gelu elif activation == 'gelu_fast': deprecation_warning('--activation-fn=gelu_fast has been renamed to gelu_accurate') return gelu_accurate elif activation == 'gelu_accurate': return gelu_accurate elif activation == 'tanh': return torch.tanh elif activation == 'linear': return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def get_available_activation_fns() -> List: return [ 'relu', 'gelu', 'gelu_fast', # deprecated 'gelu_accurate', 'tanh', 'linear', ] @contextlib.contextmanager def eval(model): is_training = model.training model.eval() yield model.train(is_training) def has_parameters(module): try: next(module.parameters()) return True except StopIteration: return False def set_torch_seed(seed): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints assert isinstance(seed, int) torch.manual_seed(seed) torch.cuda.manual_seed(seed) def parse_alignment(line): """ Parses a single line from the alingment file. Args: line (str): String containing the alignment of the format: <src_idx_1>-<tgt_idx_1> <src_idx_2>-<tgt_idx_2> .. <src_idx_m>-<tgt_idx_m>. All indices are 0 indexed. Returns: torch.IntTensor: packed alignments of shape (2 * m). """ alignments = line.strip().split() parsed_alignment = torch.IntTensor(2 * len(alignments)) for idx, alignment in enumerate(alignments): src_idx, tgt_idx = alignment.split('-') parsed_alignment[2 * idx] = int(src_idx) parsed_alignment[2 * idx + 1] = int(tgt_idx) return parsed_alignment def get_token_to_word_mapping(tokens, exclude_list): n = len(tokens) word_start = [int(token not in exclude_list) for token in tokens] word_idx = list(accumulate(word_start)) token_to_word = {i: word_idx[i] for i in range(n)} return token_to_word def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ((tgt_sent != pad) & (tgt_sent != eos)).nonzero().squeeze(dim=-1) src_invalid = ((src_sent == pad) | (src_sent == eos)).nonzero().squeeze(dim=-1) src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad]) tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad]) alignment = [] if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent): attn_valid = attn[tgt_valid] attn_valid[:, src_invalid] = float('-inf') _, src_indices = attn_valid.max(dim=1) for tgt_idx, src_idx in zip(tgt_valid, src_indices): alignment.append((src_token_to_word[src_idx.item()] - 1, tgt_token_to_word[tgt_idx.item()] - 1)) return alignment def new_arange(x, *size): """ Return a Tensor of `size` filled with a range function on the device of x. If size is empty, using the size of the variable x. """ if len(size) == 0: size = x.size() return torch.arange(size[-1], device=x.device).expand(*size).contiguous()
data2vec_vision-main
infoxlm/fairseq/fairseq/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections import logging import os import re import shutil import traceback from collections import OrderedDict from typing import Union import torch from fairseq.models import FairseqDecoder, FairseqEncoder from torch.serialization import default_restore_location def save_checkpoint(args, trainer, epoch_itr, val_loss): from fairseq import distributed_utils, meters prev_best = getattr(save_checkpoint, "best", val_loss) if val_loss is not None: best_function = max if args.maximize_best_checkpoint_metric else min save_checkpoint.best = best_function(val_loss, prev_best) if args.no_save or not distributed_utils.is_master(args): return def is_better(a, b): return a >= b if args.maximize_best_checkpoint_metric else a <= b write_timer = meters.StopwatchMeter() write_timer.start() epoch = epoch_itr.epoch end_of_epoch = epoch_itr.end_of_epoch() updates = trainer.get_num_updates() checkpoint_conds = collections.OrderedDict() checkpoint_conds["checkpoint{}.pt".format(epoch)] = ( end_of_epoch and not args.no_epoch_checkpoints and epoch % args.save_interval == 0 ) checkpoint_conds["checkpoint_{}_{}.pt".format(epoch, updates)] = ( not end_of_epoch and args.save_interval_updates > 0 and updates % args.save_interval_updates == 0 ) checkpoint_conds["checkpoint_best.pt"] = val_loss is not None and ( not hasattr(save_checkpoint, "best") or is_better(val_loss, save_checkpoint.best) ) checkpoint_conds["checkpoint_last.pt"] = not args.no_last_checkpoints extra_state = {"train_iterator": epoch_itr.state_dict(), "val_loss": val_loss} if hasattr(save_checkpoint, "best"): extra_state.update({"best": save_checkpoint.best}) checkpoints = [ os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond ] if len(checkpoints) > 0: trainer.save_checkpoint(checkpoints[0], extra_state) for cp in checkpoints[1:]: try: from fairseq.fb_pathmgr import fb_pathmgr fb_pathmgr.copy(checkpoints[0], cp, True) except (ModuleNotFoundError, ImportError): shutil.copyfile(checkpoints[0], cp) write_timer.stop() print( "| saved checkpoint {} (epoch {} @ {} updates) (writing took {} seconds)".format( checkpoints[0], epoch, updates, write_timer.sum ) ) if not end_of_epoch and args.keep_interval_updates > 0: # remove old checkpoints; checkpoints are sorted in descending order checkpoints = checkpoint_paths( args.save_dir, pattern=r"checkpoint_\d+_(\d+)\.pt" ) for old_chk in checkpoints[args.keep_interval_updates :]: if os.path.lexists(old_chk): os.remove(old_chk) if args.keep_last_epochs > 0: # remove old epoch checkpoints; checkpoints are sorted in descending order checkpoints = checkpoint_paths(args.save_dir, pattern=r"checkpoint(\d+)\.pt") for old_chk in checkpoints[args.keep_last_epochs :]: if os.path.lexists(old_chk): os.remove(old_chk) def load_checkpoint(args, trainer, **passthrough_args): """ Load a checkpoint and restore the training iterator. *passthrough_args* will be passed through to ``trainer.get_train_iterator``. """ # only one worker should attempt to create the required dir if args.distributed_rank == 0: os.makedirs(args.save_dir, exist_ok=True) if args.restore_file == "checkpoint_last.pt": checkpoint_path = os.path.join(args.save_dir, "checkpoint_last.pt") else: checkpoint_path = args.restore_file extra_state = trainer.load_checkpoint( checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler, eval(args.optimizer_overrides), reset_meters=args.reset_meters, ) if ( extra_state is not None and "best" in extra_state and not args.reset_optimizer and not args.reset_meters ): save_checkpoint.best = extra_state["best"] if extra_state is not None and not args.reset_dataloader: # restore iterator from checkpoint itr_state = extra_state["train_iterator"] epoch_itr = trainer.get_train_iterator( epoch=itr_state["epoch"], load_dataset=True, **passthrough_args ) epoch_itr.load_state_dict(itr_state) else: epoch_itr = trainer.get_train_iterator( epoch=0, load_dataset=True, **passthrough_args ) trainer.lr_step(epoch_itr.epoch) return extra_state, epoch_itr def load_checkpoint_to_cpu(path, arg_overrides=None): """Loads a checkpoint to CPU (with upgrading for backward compatibility).""" try: from fairseq.fb_pathmgr import fb_pathmgr with fb_pathmgr.open(path, "rb") as f: state = torch.load( f, map_location=lambda s, l: default_restore_location(s, "cpu") ) except (ModuleNotFoundError, ImportError): # if path manager not found, continue with local file. state = torch.load( path, map_location=lambda s, l: default_restore_location(s, "cpu") ) args = state["args"] if arg_overrides is not None: for arg_name, arg_val in arg_overrides.items(): setattr(args, arg_name, arg_val) state = _upgrade_state_dict(state) return state def load_model_ensemble(filenames, arg_overrides=None, task=None): """Loads an ensemble of models. Args: filenames (List[str]): checkpoint files to load arg_overrides (Dict[str,Any], optional): override model args that were used during model training task (fairseq.tasks.FairseqTask, optional): task to use for loading """ ensemble, args, _task = load_model_ensemble_and_task(filenames, arg_overrides, task) return ensemble, args def load_model_ensemble_and_task(filenames, arg_overrides=None, task=None): from fairseq import tasks ensemble = [] for filename in filenames: if not os.path.exists(filename): raise IOError("Model file not found: {}".format(filename)) state = load_checkpoint_to_cpu(filename, arg_overrides) args = state["args"] if task is None: task = tasks.setup_task(args) # build model for ensemble model = task.build_model(args) model.load_state_dict(state["model"], strict=True, args=args) ensemble.append(model) return ensemble, args, task def checkpoint_paths(path, pattern=r"checkpoint(\d+)\.pt"): """Retrieves all checkpoints found in `path` directory. Checkpoints are identified by matching filename to the specified pattern. If the pattern contains groups, the result will be sorted by the first group in descending order. """ pt_regexp = re.compile(pattern) files = os.listdir(path) entries = [] for i, f in enumerate(files): m = pt_regexp.fullmatch(f) if m is not None: idx = int(m.group(1)) if len(m.groups()) > 0 else i entries.append((idx, m.group(0))) return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)] def torch_persistent_save(*args, **kwargs): for i in range(3): try: return torch.save(*args, **kwargs) except Exception: if i == 2: logging.error(traceback.format_exc()) def convert_state_dict_type(state_dict, ttype=torch.FloatTensor): if isinstance(state_dict, dict): cpu_dict = OrderedDict() for k, v in state_dict.items(): cpu_dict[k] = convert_state_dict_type(v) return cpu_dict elif isinstance(state_dict, list): return [convert_state_dict_type(v) for v in state_dict] elif torch.is_tensor(state_dict): return state_dict.type(ttype) else: return state_dict def save_state( filename, args, model_state_dict, criterion, optimizer, lr_scheduler, num_updates, optim_history=None, extra_state=None, ): from fairseq import utils if optim_history is None: optim_history = [] if extra_state is None: extra_state = {} state_dict = { "args": args, "model": model_state_dict if model_state_dict else {}, "optimizer_history": optim_history + [ { "criterion_name": criterion.__class__.__name__, "optimizer_name": optimizer.__class__.__name__, "lr_scheduler_state": lr_scheduler.state_dict(), "num_updates": num_updates, } ], "extra_state": extra_state, } if utils.has_parameters(criterion): state_dict["criterion"] = criterion.state_dict() if not args.no_save_optimizer_state: state_dict["last_optimizer_state"] = convert_state_dict_type( optimizer.state_dict() ) try: from fairseq.fb_pathmgr import fb_pathmgr with fb_pathmgr.open(filename, "wb") as f: torch_persistent_save(state_dict, f) except (ModuleNotFoundError, ImportError): # if path manager not found, continue with local file. torch_persistent_save(state_dict, filename) def _upgrade_state_dict(state): """Helper for upgrading old model checkpoints.""" from fairseq import models, registry, tasks # add optimizer_history if "optimizer_history" not in state: state["optimizer_history"] = [ {"criterion_name": "CrossEntropyCriterion", "best_loss": state["best_loss"]} ] state["last_optimizer_state"] = state["optimizer"] del state["optimizer"] del state["best_loss"] # move extra_state into sub-dictionary if "epoch" in state and "extra_state" not in state: state["extra_state"] = { "epoch": state["epoch"], "batch_offset": state["batch_offset"], "val_loss": state["val_loss"], } del state["epoch"] del state["batch_offset"] del state["val_loss"] # reduce optimizer history's memory usage (only keep the last state) if "optimizer" in state["optimizer_history"][-1]: state["last_optimizer_state"] = state["optimizer_history"][-1]["optimizer"] for optim_hist in state["optimizer_history"]: del optim_hist["optimizer"] # record the optimizer class name if "optimizer_name" not in state["optimizer_history"][-1]: state["optimizer_history"][-1]["optimizer_name"] = "FairseqNAG" # move best_loss into lr_scheduler_state if "lr_scheduler_state" not in state["optimizer_history"][-1]: state["optimizer_history"][-1]["lr_scheduler_state"] = { "best": state["optimizer_history"][-1]["best_loss"] } del state["optimizer_history"][-1]["best_loss"] # keep track of number of updates if "num_updates" not in state["optimizer_history"][-1]: state["optimizer_history"][-1]["num_updates"] = 0 # old model checkpoints may not have separate source/target positions if hasattr(state["args"], "max_positions") and not hasattr( state["args"], "max_source_positions" ): state["args"].max_source_positions = state["args"].max_positions state["args"].max_target_positions = state["args"].max_positions # use stateful training data iterator if "train_iterator" not in state["extra_state"]: state["extra_state"]["train_iterator"] = { "epoch": state["extra_state"]["epoch"], "iterations_in_epoch": state["extra_state"].get("batch_offset", 0), } # default to translation task if not hasattr(state["args"], "task"): state["args"].task = "translation" # set any missing default values in the task, model or other registries registry.set_defaults(state["args"], tasks.TASK_REGISTRY[state["args"].task]) registry.set_defaults(state["args"], models.ARCH_MODEL_REGISTRY[state["args"].arch]) for registry_name, REGISTRY in registry.REGISTRIES.items(): choice = getattr(state["args"], registry_name, None) if choice is not None: cls = REGISTRY["registry"][choice] registry.set_defaults(state["args"], cls) return state def prune_state_dict(state_dict, args): """Prune the given state_dict if desired for LayerDrop (https://arxiv.org/abs/1909.11556). Training with LayerDrop allows models to be robust to pruning at inference time. This function prunes state_dict to allow smaller models to be loaded from a larger model and re-maps the existing state_dict for this to occur. It's called by functions that load models from checkpoints and does not need to be called directly. """ if not args or args.arch == "ptt_transformer": # args should not be none, but don't crash if it is. return state_dict encoder_layers_to_keep = ( args.encoder_layers_to_keep if "encoder_layers_to_keep" in vars(args) else None ) decoder_layers_to_keep = ( args.decoder_layers_to_keep if "decoder_layers_to_keep" in vars(args) else None ) if not encoder_layers_to_keep and not decoder_layers_to_keep: return state_dict # apply pruning print( "| Pruning model to specified layer configuration - this works best if the model was trained with LayerDrop" ) def create_pruning_pass(layers_to_keep, layer_name): keep_layers = sorted( [int(layer_string) for layer_string in layers_to_keep.split(",")] ) mapping_dict = {} for i in range(len(keep_layers)): mapping_dict[str(keep_layers[i])] = str(i) regex = re.compile("^{layer}.*\.layers\.(\d+)".format(layer=layer_name)) return {"substitution_regex": regex, "mapping_dict": mapping_dict} pruning_passes = [] if encoder_layers_to_keep: pruning_passes.append(create_pruning_pass(encoder_layers_to_keep, "encoder")) if decoder_layers_to_keep: pruning_passes.append(create_pruning_pass(decoder_layers_to_keep, "decoder")) new_state_dict = {} for layer_name in state_dict.keys(): match = re.search("\.layers\.(\d+)\.", layer_name) # if layer has no number in it, it is a supporting layer, such as an # embedding if not match: new_state_dict[layer_name] = state_dict[layer_name] continue # otherwise, layer should be pruned. original_layer_number = match.group(1) # figure out which mapping dict to replace from for pruning_pass in pruning_passes: if original_layer_number in pruning_pass["mapping_dict"] and pruning_pass[ "substitution_regex" ].search(layer_name): new_layer_number = pruning_pass["mapping_dict"][original_layer_number] substitution_match = pruning_pass["substitution_regex"].search( layer_name ) new_state_key = ( layer_name[: substitution_match.start(1)] + new_layer_number + layer_name[substitution_match.end(1) :] ) new_state_dict[new_state_key] = state_dict[layer_name] # Since layers are now pruned, *_layers_to_keep are no longer needed. # This is more of "It would make it work fix" rather than a proper fix. if "encoder_layers_to_keep" in vars(args): args.encoder_layers_to_keep = None if "decoder_layers_to_keep" in vars(args): args.decoder_layers_to_keep = None return new_state_dict def load_pretrained_component_from_model( component: Union[FairseqEncoder, FairseqDecoder], checkpoint: str ): """ Load a pretrained FairseqEncoder or FairseqDecoder from checkpoint into the provided `component` object. If state_dict fails to load, there may be a mismatch in the architecture of the corresponding `component` found in the `checkpoint` file. """ if not os.path.exists(checkpoint): raise IOError("Model file not found: {}".format(checkpoint)) state = load_checkpoint_to_cpu(checkpoint) if isinstance(component, FairseqEncoder): component_type = "encoder" elif isinstance(component, FairseqDecoder): component_type = "decoder" else: raise ValueError( "component to load must be either a FairseqEncoder or " "FairseqDecoder. Loading other component types are not supported." ) component_state_dict = OrderedDict() for key in state["model"].keys(): if key.startswith(component_type): # encoder.input_layers.0.0.weight --> input_layers.0.0.weight component_subkey = key[len(component_type) + 1 :] component_state_dict[component_subkey] = state["model"][key] component.load_state_dict(component_state_dict, strict=True) return component def verify_checkpoint_directory(save_dir: str) -> None: if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) temp_file_path = os.path.join(save_dir, "dummy") try: with open(temp_file_path, "w"): pass except OSError as e: print("| Unable to access checkpoint save directory: {}".format(save_dir)) raise e else: os.remove(temp_file_path)
data2vec_vision-main
infoxlm/fairseq/fairseq/checkpoint_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import pickle import socket import subprocess import warnings import torch import torch.distributed as dist from fairseq import utils def is_master(args): return args.distributed_rank == 0 def infer_init_method(args): if args.distributed_init_method is not None: return # support torch.distributed.launch if all(key in os.environ for key in [ 'MASTER_ADDR', 'MASTER_PORT', 'WORLD_SIZE', 'RANK' ]): args.distributed_init_method = 'env://' args.distributed_world_size = int(os.environ['WORLD_SIZE']) args.distributed_rank = int(os.environ['RANK']) # we can determine the init method automatically for Slurm elif args.distributed_port > 0: node_list = os.environ.get('SLURM_STEP_NODELIST') if node_list is None: node_list = os.environ.get('SLURM_JOB_NODELIST') if node_list is not None: try: hostnames = subprocess.check_output(['scontrol', 'show', 'hostnames', node_list]) args.distributed_init_method = 'tcp://{host}:{port}'.format( host=hostnames.split()[0].decode('utf-8'), port=args.distributed_port, ) nnodes = int(os.environ.get('SLURM_NNODES')) ntasks_per_node = os.environ.get('SLURM_NTASKS_PER_NODE') if ntasks_per_node is not None: ntasks_per_node = int(ntasks_per_node) else: ntasks = int(os.environ.get('SLURM_NTASKS')) nnodes = int(os.environ.get('SLURM_NNODES')) assert ntasks % nnodes == 0 ntasks_per_node = int(ntasks / nnodes) if ntasks_per_node == 1: assert args.distributed_world_size % nnodes == 0 gpus_per_node = args.distributed_world_size // nnodes node_id = int(os.environ.get('SLURM_NODEID')) args.distributed_rank = node_id * gpus_per_node else: assert ntasks_per_node == args.distributed_world_size // nnodes args.distributed_no_spawn = True args.distributed_rank = int(os.environ.get('SLURM_PROCID')) args.device_id = int(os.environ.get('SLURM_LOCALID')) except subprocess.CalledProcessError as e: # scontrol failed raise e except FileNotFoundError: # Slurm is not installed pass def distributed_init(args): if args.distributed_world_size == 1: raise ValueError('Cannot initialize distributed with distributed_world_size=1') if torch.distributed.is_initialized(): warnings.warn('Distributed is already initialized, cannot initialize twice!') else: print('| distributed init (rank {}): {}'.format( args.distributed_rank, args.distributed_init_method), flush=True) dist.init_process_group( backend=args.distributed_backend, init_method=args.distributed_init_method, world_size=args.distributed_world_size, rank=args.distributed_rank, ) print('| initialized host {} as rank {}'.format( socket.gethostname(), args.distributed_rank), flush=True) # perform a dummy all-reduce to initialize the NCCL communicator if torch.cuda.is_available(): dist.all_reduce(torch.zeros(1).cuda()) else: dist.all_reduce(torch.zeros(1)) suppress_output(is_master(args)) args.distributed_rank = torch.distributed.get_rank() return args.distributed_rank def suppress_output(is_master): """Suppress printing on the current device. Force printing with `force=True`.""" import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def get_rank(): return dist.get_rank() def get_world_size(): return dist.get_world_size() def get_default_group(): return dist.group.WORLD def all_reduce(tensor, group=None): if group is None: group = get_default_group() return dist.all_reduce(tensor, group=group) def all_gather_list(data, group=None, max_size=16384): """Gathers arbitrary data from all nodes into a list. Similar to :func:`~torch.distributed.all_gather` but for arbitrary Python data. Note that *data* must be picklable. Args: data (Any): data from the local worker to be gathered on other workers group (optional): group of the collective max_size (int, optional): maximum size of the data to be gathered across workers """ rank = get_rank() world_size = get_world_size() buffer_size = max_size * world_size if not hasattr(all_gather_list, '_buffer') or \ all_gather_list._buffer.numel() < buffer_size: all_gather_list._buffer = torch.cuda.ByteTensor(buffer_size) all_gather_list._cpu_buffer = torch.ByteTensor(max_size).pin_memory() buffer = all_gather_list._buffer buffer.zero_() cpu_buffer = all_gather_list._cpu_buffer enc = pickle.dumps(data) enc_size = len(enc) if enc_size + 2 > max_size: raise ValueError('encoded data exceeds max_size: {}'.format(enc_size + 2)) assert max_size < 255*256 cpu_buffer[0] = enc_size // 255 # this encoding works for max_size < 65k cpu_buffer[1] = enc_size % 255 cpu_buffer[2 : enc_size + 2] = torch.ByteTensor(list(enc)) start = rank * max_size size = enc_size + 2 buffer[start : start + size].copy_(cpu_buffer[:size]) all_reduce(buffer, group=group) try: result = [] for i in range(world_size): out_buffer = buffer[i * max_size : (i + 1) * max_size] size = (255 * utils.item(out_buffer[0])) + utils.item(out_buffer[1]) if size > 0: result.append(pickle.loads(bytes(out_buffer[2 : size + 2].tolist()))) return result except pickle.UnpicklingError: raise Exception( 'Unable to unpickle data from other workers. all_gather_list requires all ' 'workers to enter the function together, so this error usually indicates ' 'that the workers have fallen out of sync somehow. Workers can fall out of ' 'sync if one of them runs out of memory, or if there are other conditions ' 'in your training script that can cause one worker to finish an epoch ' 'while other workers are still iterating over their portions of the data.' )
data2vec_vision-main
infoxlm/fairseq/fairseq/distributed_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Utilities for working with the local dataset cache. This file is adapted from `AllenNLP <https://github.com/allenai/allennlp>`_. and `huggingface <https://github.com/huggingface>`_. """ import fnmatch from functools import wraps from hashlib import sha256 from io import open import json import logging import os import shutil import tarfile import tempfile try: from torch.hub import _get_torch_home torch_cache_home = _get_torch_home() except ImportError: torch_cache_home = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join( os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch'))) default_cache_path = os.path.join(torch_cache_home, 'pytorch_fairseq') try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse try: from pathlib import Path PYTORCH_FAIRSEQ_CACHE = Path( os.getenv('PYTORCH_FAIRSEQ_CACHE', default_cache_path)) except (AttributeError, ImportError): PYTORCH_FAIRSEQ_CACHE = os.getenv( 'PYTORCH_FAIRSEQ_CACHE', default_cache_path) CONFIG_NAME = "config.json" WEIGHTS_NAME = "pytorch_model.bin" logger = logging.getLogger(__name__) # pylint: disable=invalid-name def load_archive_file(archive_file): # redirect to the cache, if necessary try: resolved_archive_file = cached_path(archive_file, cache_dir=None) except EnvironmentError: print( "Archive name '{}' was not found in archive name list. " "We assumed '{}' was a path or URL but couldn't find any file " "associated to this path or URL.".format( archive_file, archive_file, ) ) return None if resolved_archive_file == archive_file: print("loading archive file {}".format(archive_file)) else: print("loading archive file {} from cache at {}".format( archive_file, resolved_archive_file)) # Extract archive to temp dir and replace .tar.bz2 if necessary tempdir = None if not os.path.isdir(resolved_archive_file): tempdir = tempfile.mkdtemp() print("extracting archive file {} to temp dir {}".format( resolved_archive_file, tempdir)) ext = os.path.splitext(archive_file)[1][1:] with tarfile.open(resolved_archive_file, 'r:' + ext) as archive: top_dir = os.path.commonprefix(archive.getnames()) archive.extractall(tempdir) os.remove(resolved_archive_file) shutil.move(os.path.join(tempdir, top_dir), resolved_archive_file) shutil.rmtree(tempdir) return resolved_archive_file def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the URL's, delimited by a period. """ url_bytes = url.encode('utf-8') url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode('utf-8') etag_hash = sha256(etag_bytes) filename += '.' + etag_hash.hexdigest() return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + '.json' if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata['url'] etag = metadata['etag'] return url, etag def cached_path(url_or_filename, cache_dir=None): """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) parsed = urlparse(url_or_filename) if parsed.scheme in ('http', 'https', 's3'): # URL, so get it from the cache (downloading if necessary) return get_from_cache(url_or_filename, cache_dir) elif os.path.exists(url_or_filename): # File, and it exists. return url_or_filename elif parsed.scheme == '': # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): from botocore.exceptions import ClientError try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url): """Check ETag on S3 object.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file): """Pull a file directly from S3.""" import boto3 s3_resource = boto3.resource("s3") bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def http_get(url, temp_file): import requests from tqdm import tqdm req = requests.get(url, stream=True) content_length = req.headers.get('Content-Length') total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total) for chunk in req.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache(url, cache_dir=None): """ Given a URL, look for the corresponding dataset in the local cache. If it's not there, download it. Then return the path to the cached file. """ if cache_dir is None: cache_dir = PYTORCH_FAIRSEQ_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if not os.path.exists(cache_dir): os.makedirs(cache_dir) # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url) else: try: import requests response = requests.head(url, allow_redirects=True) if response.status_code != 200: etag = None else: etag = response.headers.get("ETag") except EnvironmentError: etag = None filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # If we don't have a connection (etag is None) and can't identify the file # try to get the last downloaded one if not os.path.exists(cache_path) and etag is None: matching_files = fnmatch.filter(os.listdir(cache_dir), filename + '.*') matching_files = list(filter(lambda s: not s.endswith('.json'), matching_files)) if matching_files: cache_path = os.path.join(cache_dir, matching_files[-1]) if not os.path.exists(cache_path): # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with tempfile.NamedTemporaryFile() as temp_file: logger.info("%s not found in cache, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): s3_get(url, temp_file) else: http_get(url, temp_file) # we are copying the file before closing it, so flush to avoid truncation temp_file.flush() # shutil.copyfileobj() starts at the current position, so go to the start temp_file.seek(0) logger.info("copying %s to cache at %s", temp_file.name, cache_path) with open(cache_path, 'wb') as cache_file: shutil.copyfileobj(temp_file, cache_file) logger.info("creating metadata file for %s", cache_path) meta = {'url': url, 'etag': etag} meta_path = cache_path + '.json' with open(meta_path, 'w') as meta_file: output_string = json.dumps(meta) meta_file.write(output_string) logger.info("removing temp file %s", temp_file.name) return cache_path def read_set_from_file(filename): ''' Extract a de-duped collection (set) of text from a file. Expected file format is one item per line. ''' collection = set() with open(filename, 'r', encoding='utf-8') as file_: for line in file_: collection.add(line.rstrip()) return collection def get_file_extension(path, dot=True, lower=True): ext = os.path.splitext(path)[1] ext = ext if dot else ext[1:] return ext.lower() if lower else ext
data2vec_vision-main
infoxlm/fairseq/fairseq/file_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch class Search(object): def __init__(self, tgt_dict): self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.scores_buf = None self.indices_buf = None self.beams_buf = None def _init_buffers(self, t): if self.scores_buf is None: self.scores_buf = t.new() self.indices_buf = torch.LongTensor().to(device=t.device) self.beams_buf = torch.LongTensor().to(device=t.device) def step(self, step, lprobs, scores): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step scores: (bsz x input_beam_size x step) the historical model scores of each hypothesis up to this point Return: A tuple of (scores, indices, beams) where: scores: (bsz x output_beam_size) the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: (bsz x output_beam_size) the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) """ raise NotImplementedError def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths class BeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) def step(self, step, lprobs, scores): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() else: # make probs contain cumulative scores for each hypothesis lprobs.add_(scores[:, :, step - 1].unsqueeze(-1)) torch.topk( lprobs.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), out=(self.scores_buf, self.indices_buf), ) torch.div(self.indices_buf, vocab_size, out=self.beams_buf) self.indices_buf.fmod_(vocab_size) return self.scores_buf, self.indices_buf, self.beams_buf class LengthConstrainedBeamSearch(Search): def __init__(self, tgt_dict, min_len_a, min_len_b, max_len_a, max_len_b): super().__init__(tgt_dict) self.min_len_a = min_len_a self.min_len_b = min_len_b self.max_len_a = max_len_a self.max_len_b = max_len_b self.beam = BeamSearch(tgt_dict) def step(self, step, lprobs, scores): min_lens = self.min_len_a * self.src_lengths + self.min_len_b max_lens = self.max_len_a * self.src_lengths + self.max_len_b lprobs[step < min_lens, :, self.eos] = -math.inf lprobs[step == max_lens, :, self.eos] = 0 lprobs[step > max_lens, :, self.eos] = -math.inf return self.beam.step(step, lprobs, scores) class DiverseBeamSearch(Search): """Diverse Beam Search. See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models" for details. We only implement the Hamming Diversity penalty here, which performed best in the original paper. """ def __init__(self, tgt_dict, num_groups, diversity_strength): super().__init__(tgt_dict) self.num_groups = num_groups self.diversity_strength = -diversity_strength self.diversity_buf = None self.beam = BeamSearch(tgt_dict) def step(self, step, lprobs, scores): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if beam_size % self.num_groups != 0: raise ValueError( 'DiverseBeamSearch requires --beam to be divisible by the number of groups' ) # initialize diversity penalty if self.diversity_buf is None: self.diversity_buf = lprobs.new() torch.zeros(lprobs[:, 0, :].size(), out=self.diversity_buf) scores_G, indices_G, beams_G = [], [], [] for g in range(self.num_groups): lprobs_g = lprobs[:, g::self.num_groups, :] scores_g = scores[:, g::self.num_groups, :] if step > 0 else None # apply diversity penalty if g > 0: lprobs_g = torch.add(lprobs_g, self.diversity_strength, self.diversity_buf.unsqueeze(1)) else: lprobs_g = lprobs_g.contiguous() scores_buf, indices_buf, beams_buf = self.beam.step(step, lprobs_g, scores_g) beams_buf.mul_(self.num_groups).add_(g) scores_G.append(scores_buf.clone()) indices_G.append(indices_buf.clone()) beams_G.append(beams_buf.clone()) # update diversity penalty self.diversity_buf.scatter_add_( 1, indices_buf, self.diversity_buf.new_ones(indices_buf.size()) ) # interleave results from different groups self.scores_buf = torch.stack(scores_G, dim=2, out=self.scores_buf).view(bsz, -1) self.indices_buf = torch.stack(indices_G, dim=2, out=self.indices_buf).view(bsz, -1) self.beams_buf = torch.stack(beams_G, dim=2, out=self.beams_buf).view(bsz, -1) return self.scores_buf, self.indices_buf, self.beams_buf class Sampling(Search): def __init__(self, tgt_dict, sampling_topk=-1, sampling_topp=-1.0): super().__init__(tgt_dict) self.sampling_topk = sampling_topk self.sampling_topp = sampling_topp def _sample_topp(self, lprobs): """Sample among the smallest set of elements whose cumulative probability mass exceeds p. See `"The Curious Case of Neural Text Degeneration" (Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_. Args: lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step Return: A tuple of (trimed_probs, truncated_indices) where: trimed_probs: (bsz x input_beam_size x ?) the model's probabilities over the elements selected to sample from. The width of the third dimension is determined by top-P. truncated_indices: (bsz x input_beam_size x ?) the indices of the chosen elements. """ probs = lprobs.exp_() # sort the last dimension (vocab dimension) in descending order sorted_probs, sorted_indices = probs.sort(descending=True) # compute a mask to indicate the words to be included in the top-P set. cumsum_probs = sorted_probs.cumsum(dim=2) mask = cumsum_probs.lt(self.sampling_topp) # note that mask was computed by 'lt'. One more word needs to be included # so that the cumulative probability mass can exceed p. cumsum_mask = mask.cumsum(dim=2) last_included = cumsum_mask[:, :, -1:] last_included.clamp_(0, mask.size()[2] - 1) mask = mask.scatter_(2, last_included, 1) # truncate unnecessary dims. max_dim = last_included.max() truncated_mask = mask[:, :, :max_dim + 1] truncated_probs = sorted_probs[:, :, :max_dim + 1] truncated_indices = sorted_indices[:, :, :max_dim + 1] # trim the words that are not in top-P by setting their probabilities # to 0, so that they would not be sampled later. trim_mask = (~truncated_mask) trimed_probs = truncated_probs.masked_fill_(trim_mask, 0) return trimed_probs, truncated_indices def step(self, step, lprobs, scores): super()._init_buffers(lprobs) bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() # we exclude the first two vocab items, one of which is pad assert self.pad <= 1, 'sampling assumes the first two symbols can be ignored' lprobs_nopad = lprobs[:, :, 2:] if self.sampling_topp > 0: # only sample from the smallest set of words whose cumulative probability mass exceeds p probs_nopad, top_indices = self._sample_topp(lprobs_nopad) elif self.sampling_topk > 0: # only sample from top-k candidates lprobs_nopad, top_indices = lprobs_nopad.topk(self.sampling_topk) probs_nopad = lprobs_nopad.exp_() else: probs_nopad = lprobs_nopad.exp_() # sample if step == 0: self.indices_buf = torch.multinomial( probs_nopad.view(bsz, -1), beam_size, replacement=True, out=self.indices_buf, ).view(bsz, beam_size) else: self.indices_buf = torch.multinomial( probs_nopad.view(bsz * beam_size, -1), 1, replacement=True, out=self.indices_buf, ).view(bsz, beam_size) if step == 0: # expand to beam size probs_nopad = probs_nopad.expand(bsz, beam_size, -1) # gather scores torch.gather( probs_nopad, dim=2, index=self.indices_buf.unsqueeze(-1), out=self.scores_buf, ) self.scores_buf = self.scores_buf.log_().view(bsz, -1) # remap indices if using top-k or top-P sampling if self.sampling_topk > 0 or self.sampling_topp > 0: self.indices_buf = torch.gather( top_indices.expand(bsz, beam_size, -1), dim=2, index=self.indices_buf.unsqueeze(-1), ).squeeze(2) # remap indices since we excluded the first two vocab items self.indices_buf.add_(2) if step == 0: self.beams_buf = self.indices_buf.new_zeros(bsz, beam_size) else: self.beams_buf = torch.arange(0, beam_size, out=self.beams_buf).repeat(bsz, 1) # make scores cumulative self.scores_buf.add_( torch.gather( scores[:, :, step - 1], dim=1, index=self.beams_buf, ) ) return self.scores_buf, self.indices_buf, self.beams_buf
data2vec_vision-main
infoxlm/fairseq/fairseq/search.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Wrapper around various loggers and progress bars (e.g., tqdm). """ from collections import OrderedDict import json from numbers import Number import os import sys from fairseq import distributed_utils from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter def build_progress_bar(args, iterator, epoch=None, prefix=None, default='tqdm', no_progress_bar='none'): if args.log_format is None: args.log_format = no_progress_bar if args.no_progress_bar else default if args.log_format == 'tqdm' and not sys.stderr.isatty(): args.log_format = 'simple' if args.log_format == 'json': bar = json_progress_bar(iterator, epoch, prefix, args.log_interval) elif args.log_format == 'none': bar = noop_progress_bar(iterator, epoch, prefix) elif args.log_format == 'simple': bar = simple_progress_bar(iterator, epoch, prefix, args.log_interval) elif args.log_format == 'tqdm': bar = tqdm_progress_bar(iterator, epoch, prefix) else: raise ValueError('Unknown log format: {}'.format(args.log_format)) if args.tensorboard_logdir and distributed_utils.is_master(args): try: # [FB only] custom wrapper for TensorBoard import palaas # noqa from fairseq.fb_tbmf_wrapper import fb_tbmf_wrapper bar = fb_tbmf_wrapper(bar, args, args.log_interval) except ImportError: bar = tensorboard_log_wrapper(bar, args.tensorboard_logdir, args) return bar def format_stat(stat): if isinstance(stat, Number): stat = '{:g}'.format(stat) elif isinstance(stat, AverageMeter): stat = '{:.3f}'.format(stat.val) # stat = '{:.3f}'.format(stat.avg) elif isinstance(stat, TimeMeter): stat = '{:g}'.format(round(stat.avg)) elif isinstance(stat, StopwatchMeter): stat = '{:g}'.format(round(stat.sum)) return stat class progress_bar(object): """Abstract class for progress bars.""" def __init__(self, iterable, epoch=None, prefix=None): self.iterable = iterable self.offset = getattr(iterable, 'offset', 0) self.epoch = epoch self.prefix = '' if epoch is not None: self.prefix += '| epoch {:03d}'.format(epoch) if prefix is not None: self.prefix += ' | {}'.format(prefix) def __len__(self): return len(self.iterable) def __enter__(self): return self def __exit__(self, *exc): return False def __iter__(self): raise NotImplementedError def log(self, stats, tag='', step=None): """Log intermediate stats according to log_interval.""" raise NotImplementedError def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" raise NotImplementedError def _str_commas(self, stats): return ', '.join(key + '=' + stats[key].strip() for key in stats.keys()) def _str_pipes(self, stats): return ' | '.join(key + ' ' + stats[key].strip() for key in stats.keys()) def _format_stats(self, stats): postfix = OrderedDict(stats) # Preprocess stats according to datatype for key in postfix.keys(): postfix[key] = str(format_stat(postfix[key])) return postfix class json_progress_bar(progress_bar): """Log output in JSON format.""" def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000): super().__init__(iterable, epoch, prefix) self.log_interval = log_interval self.stats = None def __iter__(self): size = float(len(self.iterable)) for i, obj in enumerate(self.iterable, start=self.offset): yield obj if self.stats is not None and i > 0 and \ self.log_interval is not None and i % self.log_interval == 0: update = self.epoch - 1 + float(i / size) if self.epoch is not None else None stats = self._format_stats(self.stats, epoch=self.epoch, update=update) print(json.dumps(stats), flush=True) def log(self, stats, tag='', step=None): """Log intermediate stats according to log_interval.""" self.stats = stats def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" self.stats = stats if tag != '': self.stats = OrderedDict([(tag + '_' + k, v) for k, v in self.stats.items()]) stats = self._format_stats(self.stats, epoch=self.epoch) print(json.dumps(stats), flush=True) def _format_stats(self, stats, epoch=None, update=None): postfix = OrderedDict() if epoch is not None: postfix['epoch'] = epoch if update is not None: postfix['update'] = round(update, 3) # Preprocess stats according to datatype for key in stats.keys(): postfix[key] = format_stat(stats[key]) return postfix class noop_progress_bar(progress_bar): """No logging.""" def __init__(self, iterable, epoch=None, prefix=None): super().__init__(iterable, epoch, prefix) def __iter__(self): for obj in self.iterable: yield obj def log(self, stats, tag='', step=None): """Log intermediate stats according to log_interval.""" pass def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" pass class simple_progress_bar(progress_bar): """A minimal logger for non-TTY environments.""" def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000): super().__init__(iterable, epoch, prefix) self.log_interval = log_interval self.stats = None def __iter__(self): size = len(self.iterable) for i, obj in enumerate(self.iterable, start=self.offset): yield obj if self.stats is not None and i > 0 and \ self.log_interval is not None and i % self.log_interval == 0: postfix = self._str_commas(self.stats) print('{}: {:5d} / {:d} {}'.format(self.prefix, i, size, postfix), flush=True) def log(self, stats, tag='', step=None): """Log intermediate stats according to log_interval.""" self.stats = self._format_stats(stats) def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" postfix = self._str_pipes(self._format_stats(stats)) print('{} | {}'.format(self.prefix, postfix), flush=True) class tqdm_progress_bar(progress_bar): """Log to tqdm.""" def __init__(self, iterable, epoch=None, prefix=None): super().__init__(iterable, epoch, prefix) from tqdm import tqdm self.tqdm = tqdm(iterable, self.prefix, leave=False) def __iter__(self): return iter(self.tqdm) def log(self, stats, tag='', step=None): """Log intermediate stats according to log_interval.""" self.tqdm.set_postfix(self._format_stats(stats), refresh=False) def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" postfix = self._str_pipes(self._format_stats(stats)) self.tqdm.write('{} | {}'.format(self.tqdm.desc, postfix)) class tensorboard_log_wrapper(progress_bar): """Log to tensorboard.""" def __init__(self, wrapped_bar, tensorboard_logdir, args): self.wrapped_bar = wrapped_bar self.tensorboard_logdir = tensorboard_logdir self.args = args try: from tensorboardX import SummaryWriter self.SummaryWriter = SummaryWriter self._writers = {} except ImportError: print("tensorboard or required dependencies not found, " "please see README for using tensorboard. (e.g. pip install tensorboardX)") self.SummaryWriter = None def _writer(self, key): if self.SummaryWriter is None: return None if key not in self._writers: self._writers[key] = self.SummaryWriter( os.path.join(self.tensorboard_logdir, key), ) self._writers[key].add_text('args', str(vars(self.args))) self._writers[key].add_text('sys.argv', " ".join(sys.argv)) return self._writers[key] def __iter__(self): return iter(self.wrapped_bar) def log(self, stats, tag='', step=None): """Log intermediate stats to tensorboard.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.log(stats, tag=tag, step=step) def print(self, stats, tag='', step=None): """Print end-of-epoch stats.""" self._log_to_tensorboard(stats, tag, step) self.wrapped_bar.print(stats, tag=tag, step=step) def __exit__(self, *exc): for writer in getattr(self, '_writers', {}).values(): writer.close() return False def _log_to_tensorboard(self, stats, tag='', step=None): writer = self._writer(tag) if writer is None: return if step is None: step = stats['num_updates'] for key in stats.keys() - {'num_updates'}: if isinstance(stats[key], AverageMeter): writer.add_scalar(key, stats[key].val, step) elif isinstance(stats[key], Number): writer.add_scalar(key, stats[key], step)
data2vec_vision-main
infoxlm/fairseq/fairseq/progress_bar.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Train a network across multiple GPUs. """ import contextlib import math import os import sys from collections import OrderedDict from itertools import chain import torch from fairseq import checkpoint_utils, distributed_utils, models, optim, utils from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter from fairseq.optim import lr_scheduler class Trainer(object): """Main class for data parallel training. This class supports synchronous distributed data parallel training, where multiple workers each have a full model replica and gradients are accumulated across workers before each update. We use :class:`~torch.nn.parallel.DistributedDataParallel` to handle communication of the gradients across workers. """ def __init__(self, args, task, model, criterion, dummy_batch=None, oom_batch=None): self.args = args self.task = task # copy model and criterion to current device self._criterion = criterion self._model = model self.cuda = torch.cuda.is_available() and not args.cpu if args.fp16: self._criterion = self._criterion.half() self._model = self._model.half() if self.cuda: self._criterion = self._criterion.cuda() self._model = self._model.cuda() self._dummy_batch = dummy_batch self._oom_batch = oom_batch or dummy_batch self._lr_scheduler = None self._num_updates = 0 self._optim_history = None self._optimizer = None self._prev_grad_norm = None self._wrapped_criterion = None self._wrapped_model = None # Fast stats sync avoids memcpy and is 7% faster when tested on 16 nodes. # It is less flexible and syncs only the default stats. self._all_reduce_list = [0.0] * 6 self.fast_stat_sync = args.fast_stat_sync self.init_meters(args) def init_meters(self, args): self.meters = OrderedDict() self.meters["train_loss"] = AverageMeter() self.meters["train_nll_loss"] = AverageMeter() self.meters["valid_loss"] = AverageMeter() self.meters["valid_nll_loss"] = AverageMeter() self.meters["wps"] = TimeMeter() # words per second self.meters["ups"] = TimeMeter() # updates per second self.meters["wpb"] = AverageMeter() # words per batch self.meters["bsz"] = AverageMeter() # sentences per batch self.meters["gnorm"] = AverageMeter() # gradient norm self.meters["clip"] = AverageMeter() # % of updates clipped self.meters["oom"] = AverageMeter() # out of memory if args.fp16: self.meters["loss_scale"] = AverageMeter() # dynamic loss scale self.meters["wall"] = TimeMeter() # wall time in seconds self.meters["train_wall"] = StopwatchMeter() # train wall time in seconds @property def criterion(self): if self._wrapped_criterion is None: if ( utils.has_parameters(self._criterion) and self.args.distributed_world_size > 1 and not self.args.use_bmuf ): self._wrapped_criterion = models.DistributedFairseqModel( self.args, self._criterion ) else: self._wrapped_criterion = self._criterion return self._wrapped_criterion @property def model(self): if self._wrapped_model is None: if self.args.distributed_world_size > 1 and not self.args.use_bmuf: self._wrapped_model = models.DistributedFairseqModel( self.args, self._model ) else: self._wrapped_model = self._model return self._wrapped_model @property def optimizer(self): if self._optimizer is None: self._build_optimizer() return self._optimizer @property def lr_scheduler(self): if self._lr_scheduler is None: self._build_optimizer() # this will initialize self._lr_scheduler return self._lr_scheduler def _build_optimizer(self): params = list( filter( lambda p: p.requires_grad, chain(self.model.parameters(), self.criterion.parameters()), ) ) if self.args.fp16: if self.cuda and torch.cuda.get_device_capability(0)[0] < 7: print( "| WARNING: your device does NOT support faster training with --fp16, " "please switch to FP32 which is likely to be faster" ) if self.args.memory_efficient_fp16: self._optimizer = optim.MemoryEfficientFP16Optimizer.build_optimizer( self.args, params ) else: self._optimizer = optim.FP16Optimizer.build_optimizer(self.args, params) else: if self.cuda and torch.cuda.get_device_capability(0)[0] >= 7: print("| NOTICE: your device may support faster training with --fp16") self._optimizer = optim.build_optimizer(self.args, params) if self.args.use_bmuf: self._optimizer = optim.FairseqBMUF(self.args, self._optimizer) # We should initialize the learning rate scheduler immediately after # building the optimizer, so that the initial learning rate is set. self._lr_scheduler = lr_scheduler.build_lr_scheduler(self.args, self.optimizer) self._lr_scheduler.step_update(0) def save_checkpoint(self, filename, extra_state): """Save all training state in a checkpoint file.""" if distributed_utils.is_master(self.args): # only save one checkpoint extra_state["train_meters"] = self.meters checkpoint_utils.save_state( filename, self.args, self.get_model().state_dict(), self.get_criterion(), self.optimizer, self.lr_scheduler, self.get_num_updates(), self._optim_history, extra_state, ) def load_checkpoint( self, filename, reset_optimizer=False, reset_lr_scheduler=False, optimizer_overrides=None, reset_meters=False, ): """Load all training state from a checkpoint file.""" extra_state, self._optim_history, last_optim_state = None, [], None try: from fairseq.fb_pathmgr import fb_pathmgr bexists = fb_pathmgr.isfile(filename) except (ModuleNotFoundError, ImportError): bexists = os.path.exists(filename) if bexists: state = checkpoint_utils.load_checkpoint_to_cpu(filename) # load model parameters try: self.get_model().load_state_dict( state["model"], strict=True, args=self.args ) if utils.has_parameters(self.get_criterion()): self.get_criterion().load_state_dict( state["criterion"], strict=True ) except Exception: raise Exception( "Cannot load model parameters from checkpoint {}; " "please ensure that the architectures match.".format(filename) ) extra_state = state["extra_state"] self._optim_history = state["optimizer_history"] last_optim_state = state.get("last_optimizer_state", None) if last_optim_state is not None and not reset_optimizer: # rebuild optimizer after loading model, since params may have changed self._build_optimizer() # only reload optimizer and lr_scheduler if they match last_optim = self._optim_history[-1] assert ( last_optim["criterion_name"] == self.get_criterion().__class__.__name__ ), "Criterion does not match; please reset the optimizer (--reset-optimizer)." assert ( last_optim["optimizer_name"] == self.optimizer.__class__.__name__ ), "Optimizer does not match; please reset the optimizer (--reset-optimizer)." if not reset_lr_scheduler: self.lr_scheduler.load_state_dict(last_optim["lr_scheduler_state"]) self.optimizer.load_state_dict(last_optim_state, optimizer_overrides) self.set_num_updates(last_optim["num_updates"]) if extra_state is not None: epoch = extra_state["train_iterator"]["epoch"] print( "| loaded checkpoint {} (epoch {} @ {} updates)".format( filename, epoch, self.get_num_updates() ) ) self.lr_step(epoch) if "train_meters" in extra_state and not reset_meters: self.meters.update(extra_state["train_meters"]) del extra_state["train_meters"] # reset TimeMeters, since their start times don't make sense anymore for meter in self.meters.values(): if isinstance(meter, TimeMeter): meter.reset() else: print("| no existing checkpoint found {}".format(filename)) return extra_state def get_train_iterator( self, epoch, combine=True, load_dataset=True, data_selector=None, shard_batch_itr=True, ): """Return an EpochBatchIterator over the training set for a given epoch.""" if load_dataset: print("| loading train data for epoch {}".format(epoch)) self.task.load_dataset( self.args.train_subset, epoch=epoch, combine=combine, data_selector=data_selector, ) print("| Max positions: " + str((self.task.max_positions(), self.model.max_positions()))) return self.task.get_batch_iterator( dataset=self.task.dataset(self.args.train_subset), max_tokens=self.args.max_tokens, max_sentences=self.args.max_sentences, max_positions=utils.resolve_max_positions( self.task.max_positions(), self.model.max_positions() ), ignore_invalid_inputs=True, required_batch_size_multiple=self.args.required_batch_size_multiple, seed=self.args.seed, num_shards=self.args.distributed_world_size if shard_batch_itr else 1, shard_id=self.args.distributed_rank if shard_batch_itr else 0, num_workers=self.args.num_workers, epoch=epoch, ) def train_step(self, samples, dummy_batch=False, raise_oom=False): """Do forward, backward and parameter update.""" if self._dummy_batch is None: self._dummy_batch = samples[0] self._set_seed() self.model.train() self.criterion.train() self.zero_grad() if not dummy_batch: self.meters["train_wall"].start() # forward and backward pass logging_outputs, sample_sizes, ooms = [], [], 0 for i, sample in enumerate(samples): sample = self._prepare_sample(sample) if sample is None: # when sample is None, run forward/backward on a dummy batch # and ignore the resulting gradients sample = self._prepare_sample(self._dummy_batch) ignore_grad = True else: ignore_grad = False def maybe_no_sync(): """ Whenever *samples* contains more than one mini-batch, we want to accumulate gradients locally and only call all-reduce in the last backwards pass. """ if ( self.args.distributed_world_size > 1 and hasattr(self.model, "no_sync") and i < len(samples) - 1 ): return self.model.no_sync() else: return contextlib.ExitStack() # dummy contextmanager try: with maybe_no_sync(): # forward and backward loss, sample_size, logging_output = self.task.train_step( sample, self.model, self.criterion, self.optimizer, ignore_grad ) if not ignore_grad: logging_outputs.append(logging_output) sample_sizes.append(sample_size) if self.fast_stat_sync: self._all_reduce_list[0] += sample_size self._all_reduce_list[1] += logging_output.get( "nsentences", 0.0 ) self._all_reduce_list[2] += logging_output.get("loss", 0.0) self._all_reduce_list[3] += logging_output.get("nll_loss", 0.0) self._all_reduce_list[4] += logging_output.get("ntokens", 0.0) except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if raise_oom: raise e print("| WARNING OOM!", flush=True) print( "| WARNING: attempting to recover from OOM in forward/backward pass", file=sys.stderr, ) ooms += 1 self.zero_grad() else: raise e if self.fast_stat_sync: self._all_reduce_list[5] += ooms if ooms > 0 and self._oom_batch is not None: self.handle_ooms(ooms) if dummy_batch: return None # gather logging outputs from all replicas if self.fast_stat_sync: # rework all_gather_list all_reduce_list_tensor = torch.cuda.DoubleTensor(self._all_reduce_list) if self._sync_stats(): torch.distributed.all_reduce(all_reduce_list_tensor) # Normalize loss and nll_loss by "sample_size" # and convert to log base 2 all_reduce_list_tensor[2:4].div_( (all_reduce_list_tensor[0:1] * torch.log(torch.cuda.DoubleTensor([2]))) ) self._all_reduce_list = all_reduce_list_tensor.tolist() logging_output = {} [ sample_size, logging_output["nsentences"], logging_output["loss"], logging_output["nll_loss"], logging_output["ntokens"], ooms, ] = self._all_reduce_list elif self._sync_stats(): logging_outputs, sample_sizes, ooms, prev_norms = zip( *distributed_utils.all_gather_list( [logging_outputs, sample_sizes, ooms, self._prev_grad_norm] ) ) logging_outputs = list(chain.from_iterable(logging_outputs)) sample_sizes = list(chain.from_iterable(sample_sizes)) ooms = sum(ooms) if not self.args.use_bmuf: assert all(norm == prev_norms[0] for norm in prev_norms) or all( math.isnan(norm) or math.isinf(norm) for norm in prev_norms ), "Fatal error: gradients are inconsistent between workers" self.meters["oom"].update(ooms, len(samples)) if ooms == self.args.distributed_world_size * len(samples): print("| WARNING: OOM in all workers, skipping update") self.zero_grad() return None if not self.fast_stat_sync: # aggregate logging outputs and sample sizes logging_output = self.task.aggregate_logging_outputs( logging_outputs, self.get_criterion() ) sample_size = self.task.grad_denom(sample_sizes, self.get_criterion()) if not all(k in logging_output for k in ["ntokens", "nsentences"]): raise Exception( ( "Please update the {}.aggregate_logging_outputs() method to " "return ntokens and nsentences" ).format(self.task.__class__.__name__) ) try: # normalize grads by sample size if sample_size > 0: self.optimizer.multiply_grads( self.args.distributed_world_size / float(sample_size) ) # clip grads grad_norm = self.optimizer.clip_grad_norm(self.args.clip_norm) self._prev_grad_norm = grad_norm # take an optimization step self.optimizer.step() self.set_num_updates(self.get_num_updates() + 1) # task specific update per step self.task.update_step(self._num_updates) # update meters ntokens = logging_output.get("ntokens", 0) nsentences = logging_output.get("nsentences", 0) self.meters["wps"].update(ntokens) self.meters["ups"].update(1.0) self.meters["wpb"].update(ntokens) self.meters["bsz"].update(nsentences) self.meters["gnorm"].update(grad_norm) self.meters["clip"].update( 1.0 if grad_norm > self.args.clip_norm and self.args.clip_norm > 0 else 0.0 ) self.meters["train_loss"].update(logging_output.get("loss", 0), sample_size) if "train_acc" in self.meters: self.meters["train_acc"].update( logging_output.get("acc", 0), sample_size ) if "nll_loss" in logging_output: self.meters["train_nll_loss"].update( logging_output.get("nll_loss", 0), ntokens ) # clear CUDA cache to reduce memory fragmentation if ( self.args.empty_cache_freq > 0 and ( (self.get_num_updates() + self.args.empty_cache_freq - 1) % self.args.empty_cache_freq ) == 0 and torch.cuda.is_available() and not self.args.cpu ): torch.cuda.empty_cache() except OverflowError as e: print("| WARNING: overflow detected, " + str(e)) self.zero_grad() logging_output = None except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) print("| ERROR: OOM during optimization, irrecoverable") raise e if self.args.fp16: self.meters["loss_scale"].reset() self.meters["loss_scale"].update(self.optimizer.scaler.loss_scale) self.clear_buffered_stats() self.meters["train_wall"].stop() return logging_output def valid_step(self, sample, raise_oom=False): """Do forward pass in evaluation mode.""" with torch.no_grad(): self.model.eval() self.criterion.eval() sample = self._prepare_sample(sample) if sample is None: sample = self._prepare_sample(self._dummy_batch) ignore_results = True else: ignore_results = False try: _loss, sample_size, logging_output = self.task.valid_step( sample, self.model, self.criterion ) except RuntimeError as e: if "out of memory" in str(e): self._log_oom(e) if not raise_oom: print( "| WARNING: ran out of memory in validation step, retrying batch" ) for p in self.model.parameters(): if p.grad is not None: p.grad = None # free some memory if self.cuda: torch.cuda.empty_cache() return self.valid_step(sample, raise_oom=True) raise e if ignore_results: logging_output, sample_size = {}, 0 # gather logging outputs from all replicas if self.args.distributed_world_size > 1: logging_output, sample_size = zip( *distributed_utils.all_gather_list([logging_output, sample_size]) ) logging_output = list(logging_output) sample_size = list(sample_size) else: logging_output = [logging_output] sample_size = [sample_size] # aggregate logging outputs and sample sizes logging_output = self.task.aggregate_logging_outputs( logging_output, self.get_criterion() ) sample_size = self.task.grad_denom(sample_size, self.get_criterion()) # update meters for validation ntokens = logging_output.get("ntokens", 0) self.meters["valid_loss"].update(logging_output.get("loss", 0), sample_size) if "valid_acc" in self.meters: self.meters["valid_acc"].update(logging_output.get("acc", 0), sample_size) if "nll_loss" in logging_output: self.meters["valid_nll_loss"].update( logging_output.get("nll_loss", 0), ntokens ) return logging_output def dummy_train_step(self, dummy_batch): """Dummy training step for warming caching allocator.""" self.train_step(dummy_batch, dummy_batch=True) self.zero_grad() def handle_ooms(self, number_of_ooms): """ c10d accumulates/syncs gradients between gpus during backward pass. In case of OOMs, gpus may fail to sync, so we manually iterate extra to make sure each gpu makes same number of iterations. """ for _ in range(number_of_ooms): self.train_step([self._oom_batch], True) def zero_grad(self): self.optimizer.zero_grad() def clear_buffered_stats(self): self._all_reduce_list = [0.0] * 6 def lr_step(self, epoch, val_loss=None): """Adjust the learning rate based on the validation loss.""" self.lr_scheduler.step(epoch, val_loss) # prefer updating the LR based on the number of steps return self.lr_step_update() def lr_step_update(self): """Update the learning rate after each update.""" return self.lr_scheduler.step_update(self.get_num_updates()) def get_lr(self): """Get the current learning rate.""" return self.optimizer.get_lr() def get_model(self): """Get the (non-wrapped) model instance.""" return self._model def get_criterion(self): """Get the (non-wrapped) criterion instance.""" return self._criterion def get_meter(self, name): """Get a specific meter by name.""" if name not in self.meters: return None return self.meters[name] def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates self.lr_step_update() def _prepare_sample(self, sample): if sample is None or len(sample) == 0: return None if self.cuda: sample = utils.move_to_cuda(sample) def apply_half(t): if t.dtype is torch.float32: return t.half() return t if self.args.fp16: sample = utils.apply_to_sample(apply_half, sample) return sample def _set_seed(self): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints seed = self.args.seed + self.get_num_updates() torch.manual_seed(seed) if self.cuda: torch.cuda.manual_seed(seed) def _sync_stats(self): return self.args.distributed_world_size > 1 and ( (not self.args.use_bmuf) or ( self.args.use_bmuf and (self.get_num_updates() + 1) % self.args.global_sync_iter == 0 ) ) def _log_oom(self, exc): msg = "| OOM: Ran out of memory with exception: {}".format(exc) # TODO: print should really go to logger, this print goes # to stderr, which is buffered, which in many cases is not # printed out if another exception happens. # NB(jerry): added a flush to mitigate this print(msg, file=sys.stderr) if torch.cuda.is_available() and hasattr(torch.cuda, "memory_summary"): for device_idx in range(torch.cuda.device_count()): print(torch.cuda.memory_summary(device=device_idx), file=sys.stderr) sys.stderr.flush()
data2vec_vision-main
infoxlm/fairseq/fairseq/trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Counter import os from fairseq.tokenizer import tokenize_line def safe_readline(f): pos = f.tell() while True: try: return f.readline() except UnicodeDecodeError: pos -= 1 f.seek(pos) # search where this character begins class Binarizer: @staticmethod def binarize(filename, dict, consumer, tokenize=tokenize_line, append_eos=True, reverse_order=False, offset=0, end=-1): nseq, ntok = 0, 0 replaced = Counter() def replaced_consumer(word, idx): if idx == dict.unk_index and word != dict.unk_word: replaced.update([word]) with open(filename, 'r', encoding='utf-8') as f: f.seek(offset) # next(f) breaks f.tell(), hence readline() must be used line = safe_readline(f) while line: if end > 0 and f.tell() > end: break ids = dict.encode_line( line=line, line_tokenizer=tokenize, add_if_not_exist=False, consumer=replaced_consumer, append_eos=append_eos, reverse_order=reverse_order, ) nseq += 1 ntok += len(ids) consumer(ids) line = f.readline() return {'nseq': nseq, 'nunk': sum(replaced.values()), 'ntok': ntok, 'replaced': replaced} @staticmethod def binarize_alignments(filename, alignment_parser, consumer, offset=0, end=-1): nseq = 0 with open(filename, 'r') as f: f.seek(offset) line = safe_readline(f) while line: if end > 0 and f.tell() > end: break ids = alignment_parser(line) nseq += 1 consumer(ids) line = f.readline() return {'nseq': nseq} @staticmethod def find_offsets(filename, num_chunks): with open(filename, 'r', encoding='utf-8') as f: size = os.fstat(f.fileno()).st_size chunk_size = size // num_chunks offsets = [0 for _ in range(num_chunks + 1)] for i in range(1, num_chunks): f.seek(chunk_size * i) safe_readline(f) offsets[i] = f.tell() return offsets
data2vec_vision-main
infoxlm/fairseq/fairseq/binarizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from fairseq import tokenizer from fairseq.data import ( data_utils, FairseqDataset, iterators, Dictionary, ) class FairseqTask(object): """ Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" pass def __init__(self, args): self.args = args self.datasets = {} self.dataset_to_epoch_iter = {} @classmethod def load_dictionary(cls, filename): """Load the dictionary from the filename Args: filename (str): the filename """ return Dictionary.load(filename) @classmethod def build_dictionary(cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8): """Build the dictionary Args: filenames (list): list of filenames workers (int): number of concurrent workers threshold (int): defines the minimum word count nwords (int): defines the total number of words in the final dictionary, including special symbols padding_factor (int): can be used to pad the dictionary size to be a multiple of 8, which is important on some hardware (e.g., Nvidia Tensor Cores). """ d = Dictionary() for filename in filenames: Dictionary.add_file_to_dictionary(filename, d, tokenizer.tokenize_line, workers) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ return cls(args, **kwargs) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ raise NotImplementedError def dataset(self, split): """ Return a loaded dataset split. Args: split (str): name of the split (e.g., train, valid, test) Returns: a :class:`~fairseq.data.FairseqDataset` corresponding to *split* """ from fairseq.data import FairseqDataset if split not in self.datasets: raise KeyError('Dataset not loaded: ' + split) if not isinstance(self.datasets[split], FairseqDataset): raise TypeError('Datasets are expected to be of type FairseqDataset') return self.datasets[split] def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=0, ): """ Get an iterator that yields batches of data from the given dataset. Args: dataset (~fairseq.data.FairseqDataset): dataset to batch max_tokens (int, optional): max number of tokens in each batch (default: None). max_sentences (int, optional): max number of sentences in each batch (default: None). max_positions (optional): max sentence length supported by the model (default: None). ignore_invalid_inputs (bool, optional): don't raise Exception for sentences that are too long (default: False). required_batch_size_multiple (int, optional): require batch size to be a multiple of N (default: 1). seed (int, optional): seed for random number generator for reproducibility (default: 1). num_shards (int, optional): shard the data iterator into N shards (default: 1). shard_id (int, optional): which shard of the data iterator to return (default: 0). num_workers (int, optional): how many subprocesses to use for data loading. 0 means the data will be loaded in the main process (default: 0). epoch (int, optional): the epoch to start the iterator from (default: 0). Returns: ~fairseq.iterators.EpochBatchIterator: a batched iterator over the given dataset split """ # For default fairseq task, return same iterator across epochs # as datasets are not dynamic, can be overridden in task specific # setting. print("| At task.get_batch_iterator ...", flush=True) if dataset in self.dataset_to_epoch_iter: return self.dataset_to_epoch_iter[dataset] assert isinstance(dataset, FairseqDataset) # initialize the dataset with the correct starting epoch dataset.set_epoch(epoch) # get indices ordered by example size with data_utils.numpy_seed(seed): indices = dataset.ordered_indices() print("| At task.get_batch_iterator, indices ordered ... ", flush=True) # filter examples that are too large if max_positions is not None: indices = data_utils.filter_by_size( indices, dataset, max_positions, raise_exception=(not ignore_invalid_inputs), ) print("| At task.get_batch_iterator, examples filtered ... ", flush=True) # create mini-batches with given size constraints batch_sampler = data_utils.batch_by_size( indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, ) print("| At task.get_batch_iterator, batch_sampler created ... ", flush=True) # return a reusable, sharded iterator epoch_iter = iterators.EpochBatchIterator( dataset=dataset, collate_fn=dataset.collater, batch_sampler=batch_sampler, seed=seed, num_shards=num_shards, shard_id=shard_id, num_workers=num_workers, epoch=epoch, ) self.dataset_to_epoch_iter[dataset] = epoch_iter print("| At task.get_batch_iterator, iterator created ... ", flush=True) return epoch_iter def build_model(self, args): """ Build the :class:`~fairseq.models.BaseFairseqModel` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.models.BaseFairseqModel` instance """ from fairseq import models return models.build_model(args, self) def build_criterion(self, args): """ Build the :class:`~fairseq.criterions.FairseqCriterion` instance for this task. Args: args (argparse.Namespace): parsed command-line arguments Returns: a :class:`~fairseq.criterions.FairseqCriterion` instance """ from fairseq import criterions return criterions.build_criterion(args, self) def build_generator(self, args): if getattr(args, 'score_reference', False): from fairseq.sequence_scorer import SequenceScorer return SequenceScorer(self.target_dictionary) else: from fairseq.sequence_generator import SequenceGenerator, SequenceGeneratorWithAlignment if getattr(args, 'print_alignment', False): seq_gen_cls = SequenceGeneratorWithAlignment else: seq_gen_cls = SequenceGenerator return seq_gen_cls( self.target_dictionary, beam_size=getattr(args, 'beam', 5), max_len_a=getattr(args, 'max_len_a', 0), max_len_b=getattr(args, 'max_len_b', 200), min_len=getattr(args, 'min_len', 1), normalize_scores=(not getattr(args, 'unnormalized', False)), len_penalty=getattr(args, 'lenpen', 1), unk_penalty=getattr(args, 'unkpen', 0), sampling=getattr(args, 'sampling', False), sampling_topk=getattr(args, 'sampling_topk', -1), sampling_topp=getattr(args, 'sampling_topp', -1.0), temperature=getattr(args, 'temperature', 1.), diverse_beam_groups=getattr(args, 'diverse_beam_groups', -1), diverse_beam_strength=getattr(args, 'diverse_beam_strength', 0.5), match_source_len=getattr(args, 'match_source_len', False), no_repeat_ngram_size=getattr(args, 'no_repeat_ngram_size', 0), ) def prepare_train(self, model=None, criterion=None): pass def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~fairseq.data.FairseqDataset`. model (~fairseq.models.BaseFairseqModel): the model criterion (~fairseq.criterions.FairseqCriterion): the criterion optimizer (~fairseq.optim.FairseqOptimizer): the optimizer ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): return generator.generate(models, sample, prefix_tokens=prefix_tokens) def update_step(self, num_updates): """Task level update when number of update increases. This is called after optimization step and learning rate update of each step""" pass def grad_denom(self, sample_sizes, criterion): return criterion.__class__.grad_denom(sample_sizes) def aggregate_logging_outputs(self, logging_outputs, criterion): return criterion.__class__.aggregate_logging_outputs(logging_outputs) def max_positions(self): """Return the max input length allowed by the task.""" return None @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary` (if applicable for this task).""" raise NotImplementedError
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/fairseq_task.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from fairseq.data import ( data_utils, Dictionary, AppendTokenDataset, DenoisingDataset, PrependTokenDataset, StripTokenDataset, TokenBlockDataset, ) from fairseq.data.encoders.utils import get_whole_word_mask from . import FairseqTask, register_task @register_task('denoising') class DenoisingTask(FairseqTask): """ Denoising task for applying sequence to sequence denoising. (ie. BART) """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='path to data directory') parser.add_argument('--tokens-per-sample', default=512, type=int, help='max number of total tokens over all segments' ' per sample for dataset') parser.add_argument('--raw-text', default=False, action='store_true', help='load raw text dataset') parser.add_argument( '--sample-break-mode', default="complete_doc", type=str, help='mode for breaking sentence', ) parser.add_argument( '--mask', default=0.0, type=float, help='fraction of words/subwords that will be masked', ) parser.add_argument( '--mask-random', default=0.0, type=float, help='instead of using [MASK], use random token this often' ) parser.add_argument( '--insert', default=0.0, type=float, help='insert this percentage of additional random tokens', ) parser.add_argument( '--permute', default=0.0, type=float, help='take this proportion of subwords and permute them', ) parser.add_argument( '--rotate', default=0.5, type=float, help='rotate this proportion of inputs', ) parser.add_argument( '--poisson-lambda', default=3.0, type=float, help='randomly shuffle sentences for this proportion of inputs' ) parser.add_argument( '--permute-sentences', default=0.0, type=float, help='shuffle this proportion of sentences in all inputs' ) parser.add_argument( '--mask-length', default="subword", type=str, choices=['subword', 'word', 'span-poisson'], help='mask length to choose' ) parser.add_argument( '--replace-length', default=-1, type=int, help='when masking N tokens, replace with 0, 1, or N tokens (use -1 for N)' ) parser.add_argument( '--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence' ) parser.add_argument( '--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence' ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = self.dictionary.add_symbol('<mask>') @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) if not hasattr(args, 'shuffle_instance'): args.shuffle_instance = False return cls(args, dictionary) def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path)) dataset = StripTokenDataset(dataset, self.dictionary.eos()) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 2, # one less for <s> and one for </s> pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, document_sep_len=0 ) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) dataset = AppendTokenDataset(dataset, self.source_dictionary.eos()) mask_whole_words = get_whole_word_mask(self.args, self.source_dictionary) \ if self.args.mask_length != 'subword' else None self.datasets[split] = DenoisingDataset( dataset, dataset.sizes, self.dictionary, self.mask_idx, mask_whole_words, shuffle=self.args.shuffle_instance, seed=self.seed, args=self.args ) print( "| Split: {0}, Loaded {1} samples of denoising_dataset".format( split, len(self.datasets[split]), ) ) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.dictionary @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/denoising.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict import os import torch from fairseq import options, utils from fairseq.data import ( Dictionary, LanguagePairDataset, RoundRobinZipDatasets, TransformEosLangPairDataset, ) from fairseq.models import FairseqMultiModel from fairseq.tasks.translation import load_langpair_dataset from . import FairseqTask, register_task def _lang_token(lang: str): return '__{}__'.format(lang) def _lang_token_index(dic: Dictionary, lang: str): """Return language token index.""" idx = dic.index(_lang_token(lang)) assert idx != dic.unk_index, \ 'cannot find language token for lang {}'.format(lang) return idx @register_task('multilingual_translation') class MultilingualTranslationTask(FairseqTask): """A task for training multiple translation models simultaneously. We iterate round-robin over batches from multiple language pairs, ordered according to the `--lang-pairs` argument. The training loop is roughly: for i in range(len(epoch)): for lang_pair in args.lang_pairs: batch = next_batch_for_lang_pair(lang_pair) loss = criterion(model_for_lang_pair(lang_pair), batch) loss.backward() optimizer.step() In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset (e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that implements the `FairseqMultiModel` interface. During inference it is required to specify a single `--source-lang` and `--target-lang`, which indicates the inference langauge direction. `--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to the same value as training. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('data', metavar='DIR', help='path to data directory') parser.add_argument('--lang-pairs', default=None, metavar='PAIRS', help='comma-separated list of language pairs (in training order): en-de,en-fr,de-fr') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language (only needed for inference)') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language (only needed for inference)') parser.add_argument('--lazy-load', action='store_true', help='load the dataset lazily') parser.add_argument('--raw-text', default=False, action='store_true', help='load raw text dataset') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left (default: True)') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left (default: False)') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--encoder-langtok', default=None, type=str, choices=['src', 'tgt'], metavar='SRCTGT', help='replace beginning-of-sentence in source sentence with source or target ' 'language token. (src/tgt)') parser.add_argument('--decoder-langtok', action='store_true', help='replace beginning-of-sentence in target sentence with target language token') # fmt: on def __init__(self, args, dicts, training): super().__init__(args) self.dicts = dicts self.training = training if training: self.lang_pairs = args.lang_pairs args.source_lang, args.target_lang = args.lang_pairs[0].split('-') else: self.lang_pairs = ['{}-{}'.format(args.source_lang, args.target_lang)] # eval_lang_pairs for multilingual translation is usually all of the # lang_pairs. However for other multitask settings or when we want to # optimize for certain languages we want to use a different subset. Thus # the eval_lang_pairs class variable is provided for classes that extend # this class. self.eval_lang_pairs = self.lang_pairs # model_lang_pairs will be used to build encoder-decoder model pairs in # models.build_model(). This allows multitask type of sub-class can # build models other than the input lang_pairs self.model_lang_pairs = self.lang_pairs self.langs = list(dicts.keys()) @classmethod def setup_task(cls, args, **kwargs): dicts, training = cls.prepare(args, **kwargs) return cls(args, dicts, training) @classmethod def prepare(cls, args, **kargs): args.left_pad_source = options.eval_bool(args.left_pad_source) args.left_pad_target = options.eval_bool(args.left_pad_target) if getattr(args, 'raw_text', False): utils.deprecation_warning('--raw-text is deprecated, please use --dataset-impl=raw') args.dataset_impl = 'raw' elif getattr(args, 'lazy_load', False): utils.deprecation_warning('--lazy-load is deprecated, please use --dataset-impl=lazy') args.dataset_impl = 'lazy' if args.lang_pairs is None: raise ValueError('--lang-pairs is required. List all the language pairs in the training objective.') args.lang_pairs = args.lang_pairs.split(',') sorted_langs = sorted(list({x for lang_pair in args.lang_pairs for x in lang_pair.split('-')})) if args.source_lang is not None or args.target_lang is not None: training = False else: training = True # load dictionaries dicts = OrderedDict() for lang in sorted_langs: paths = args.data.split(':') assert len(paths) > 0 dicts[lang] = Dictionary.load(os.path.join(paths[0], 'dict.{}.txt'.format(lang))) if len(dicts) > 0: assert dicts[lang].pad() == dicts[sorted_langs[0]].pad() assert dicts[lang].eos() == dicts[sorted_langs[0]].eos() assert dicts[lang].unk() == dicts[sorted_langs[0]].unk() if args.encoder_langtok is not None or args.decoder_langtok: for lang_to_add in sorted_langs: dicts[lang].add_symbol(_lang_token(lang_to_add)) print('| [{}] dictionary: {} types'.format(lang, len(dicts[lang]))) return dicts, training def get_encoder_langtok(self, src_lang, tgt_lang): if self.args.encoder_langtok is None: return self.dicts[src_lang].eos() if self.args.encoder_langtok == 'src': return _lang_token_index(self.dicts[src_lang], src_lang) else: return _lang_token_index(self.dicts[src_lang], tgt_lang) def get_decoder_langtok(self, tgt_lang): if not self.args.decoder_langtok: return self.dicts[tgt_lang].eos() return _lang_token_index(self.dicts[tgt_lang], tgt_lang) def alter_dataset_langtok(self, lang_pair_dataset, src_eos=None, src_lang=None, tgt_eos=None, tgt_lang=None): if self.args.encoder_langtok is None and not self.args.decoder_langtok: return lang_pair_dataset new_src_eos = None if self.args.encoder_langtok is not None and src_eos is not None \ and src_lang is not None and tgt_lang is not None: new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang) else: src_eos = None new_tgt_bos = None if self.args.decoder_langtok and tgt_eos is not None and tgt_lang is not None: new_tgt_bos = self.get_decoder_langtok(tgt_lang) else: tgt_eos = None return TransformEosLangPairDataset( lang_pair_dataset, src_eos=src_eos, new_src_eos=new_src_eos, tgt_bos=tgt_eos, new_tgt_bos=new_tgt_bos, ) def load_dataset(self, split, epoch=0, **kwargs): """Load a dataset split.""" paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] def language_pair_dataset(lang_pair): src, tgt = lang_pair.split('-') langpair_dataset = load_langpair_dataset( data_path, split, src, self.dicts[src], tgt, self.dicts[tgt], combine=True, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, ) return self.alter_dataset_langtok( langpair_dataset, src_eos=self.dicts[src].eos(), src_lang=src, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ) self.datasets[split] = RoundRobinZipDatasets( OrderedDict([ (lang_pair, language_pair_dataset(lang_pair)) for lang_pair in self.lang_pairs ]), eval_key=None if self.training else "%s-%s" % (self.args.source_lang, self.args.target_lang), ) def build_dataset_for_inference(self, src_tokens, src_lengths): lang_pair = "%s-%s" % (self.args.source_lang, self.args.target_lang) return RoundRobinZipDatasets( OrderedDict([( lang_pair, self.alter_dataset_langtok( LanguagePairDataset( src_tokens, src_lengths, self.source_dictionary ), src_eos=self.source_dictionary.eos(), src_lang=self.args.source_lang, tgt_eos=self.target_dictionary.eos(), tgt_lang=self.args.target_lang, ), )]), eval_key=lang_pair, ) def build_model(self, args): def check_args(): messages = [] if len(set(self.args.lang_pairs).symmetric_difference(args.lang_pairs)) != 0: messages.append('--lang-pairs should include all the language pairs {}.'.format(args.lang_pairs)) if self.args.encoder_langtok != args.encoder_langtok: messages.append('--encoder-langtok should be {}.'.format(args.encoder_langtok)) if self.args.decoder_langtok != args.decoder_langtok: messages.append('--decoder-langtok should {} be set.'.format("" if args.decoder_langtok else "not")) if len(messages) > 0: raise ValueError(' '.join(messages)) # Check if task args are consistant with model args check_args() from fairseq import models model = models.build_model(args, self) if not isinstance(model, FairseqMultiModel): raise ValueError('MultilingualTranslationTask requires a FairseqMultiModel architecture') return model def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): model.train() agg_loss, agg_sample_size, agg_logging_output = 0., 0., {} for lang_pair in self.model_lang_pairs: if sample[lang_pair] is None or len(sample[lang_pair]) == 0: continue loss, sample_size, logging_output = criterion(model.models[lang_pair], sample[lang_pair]) if ignore_grad: loss *= 0 optimizer.backward(loss) agg_loss += loss.detach().item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size agg_logging_output[lang_pair] = logging_output return agg_loss, agg_sample_size, agg_logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): agg_loss, agg_sample_size, agg_logging_output = 0., 0., {} for lang_pair in self.eval_lang_pairs: if lang_pair not in sample or sample[lang_pair] is None or len(sample[lang_pair]) == 0: continue loss, sample_size, logging_output = criterion(model.models[lang_pair], sample[lang_pair]) agg_loss += loss.data.item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size agg_logging_output[lang_pair] = logging_output return agg_loss, agg_sample_size, agg_logging_output def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=_lang_token_index(self.target_dictionary, self.args.target_lang) if self.args.decoder_langtok else self.target_dictionary.eos(), ) def init_logging_output(self, sample): return { 'ntokens': sum( sample_lang.get('ntokens', 0) for sample_lang in sample.values() ) if sample is not None else 0, 'nsentences': sum( sample_lang['target'].size(0) if 'target' in sample_lang else 0 for sample_lang in sample.values() ) if sample is not None else 0, } def grad_denom(self, sample_sizes, criterion): return criterion.__class__.grad_denom(sample_sizes) def aggregate_logging_outputs(self, logging_outputs, criterion, logging_output_keys=None): logging_output_keys = logging_output_keys or self.eval_lang_pairs # aggregate logging outputs for each language pair agg_logging_outputs = { key: criterion.__class__.aggregate_logging_outputs([ logging_output.get(key, {}) for logging_output in logging_outputs ]) for key in logging_output_keys } def sum_over_languages(key): return sum(logging_output[key] for logging_output in agg_logging_outputs.values()) # flatten logging outputs flat_logging_output = { '{}:{}'.format(lang_pair, k): v for lang_pair, agg_logging_output in agg_logging_outputs.items() for k, v in agg_logging_output.items() } flat_logging_output['loss'] = sum_over_languages('loss') if any('nll_loss' in logging_output for logging_output in agg_logging_outputs.values()): flat_logging_output['nll_loss'] = sum_over_languages('nll_loss') flat_logging_output['sample_size'] = sum_over_languages('sample_size') flat_logging_output['nsentences'] = sum_over_languages('nsentences') flat_logging_output['ntokens'] = sum_over_languages('ntokens') return flat_logging_output @property def source_dictionary(self): return self.dicts[self.args.source_lang] @property def target_dictionary(self): return self.dicts[self.args.target_lang] def max_positions(self): """Return the max sentence length allowed by the task.""" if len(self.datasets.values()) == 0: return {'%s-%s' % (self.args.source_lang, self.args.target_lang): (self.args.max_source_positions, self.args.max_target_positions)} return OrderedDict([ (key, (self.args.max_source_positions, self.args.max_target_positions)) for split in self.datasets.keys() for key in self.datasets[split].datasets.keys() ])
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/multilingual_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq.utils import new_arange from fairseq.tasks import register_task from fairseq.tasks.translation import TranslationTask, load_langpair_dataset @register_task('translation_lev') class TranslationLevenshteinTask(TranslationTask): """ Translation (Sequence Generation) task for Levenshtein Transformer See `"Levenshtein Transformer" <https://arxiv.org/abs/1905.11006>`_. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off TranslationTask.add_args(parser) parser.add_argument( '--noise', default='random_delete', choices=['random_delete', 'random_mask', 'no_noise', 'full_mask']) def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] # infer langcode src, tgt = self.args.source_lang, self.args.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, prepend_bos=True, ) def inject_noise(self, target_tokens): def _random_delete(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() max_len = target_tokens.size(1) target_mask = target_tokens.eq(pad) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_( target_tokens.eq(bos) | target_tokens.eq(eos), 0.0) target_score.masked_fill_(target_mask, 1) target_score, target_rank = target_score.sort(1) target_length = target_mask.size(1) - target_mask.float().sum( 1, keepdim=True) # do not delete <bos> and <eos> (we assign 0 score for them) target_cutoff = 2 + ((target_length - 2) * target_score.new_zeros( target_score.size(0), 1).uniform_()).long() target_cutoff = target_score.sort(1)[1] >= target_cutoff prev_target_tokens = target_tokens.gather( 1, target_rank).masked_fill_(target_cutoff, pad).gather( 1, target_rank.masked_fill_(target_cutoff, max_len).sort(1)[1]) prev_target_tokens = prev_target_tokens[:, :prev_target_tokens. ne(pad).sum(1).max()] return prev_target_tokens def _random_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_masks = target_tokens.ne(pad) & \ target_tokens.ne(bos) & \ target_tokens.ne(eos) target_score = target_tokens.clone().float().uniform_() target_score.masked_fill_(~target_masks, 2.0) target_length = target_masks.sum(1).float() target_length = target_length * target_length.clone().uniform_() target_length = target_length + 1 # make sure to mask at least one token. _, target_rank = target_score.sort(1) target_cutoff = new_arange(target_rank) < target_length[:, None].long() prev_target_tokens = target_tokens.masked_fill( target_cutoff.scatter(1, target_rank, target_cutoff), unk) return prev_target_tokens def _full_mask(target_tokens): pad = self.tgt_dict.pad() bos = self.tgt_dict.bos() eos = self.tgt_dict.eos() unk = self.tgt_dict.unk() target_mask = target_tokens.eq(bos) | target_tokens.eq( eos) | target_tokens.eq(pad) return target_tokens.masked_fill(~target_mask, unk) if self.args.noise == 'random_delete': return _random_delete(target_tokens) elif self.args.noise == 'random_mask': return _random_mask(target_tokens) elif self.args.noise == 'full_mask': return _full_mask(target_tokens) elif self.args.noise == 'no_noise': return target_tokens else: raise NotImplementedError def build_generator(self, args): from fairseq.iterative_refinement_generator import IterativeRefinementGenerator return IterativeRefinementGenerator( self.target_dictionary, eos_penalty=getattr(args, 'iter_decode_eos_penalty', 0.0), max_iter=getattr(args, 'iter_decode_max_iter', 10), decoding_format=getattr(args, 'decoding_format', None), adaptive=not getattr(args, 'iter_decode_force_max_iter', False), retain_history=getattr(args, 'retain_iter_history', False)) def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): model.train() sample['prev_target'] = self.inject_noise(sample['target']) loss, sample_size, logging_output = criterion(model, sample) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): sample['prev_target'] = self.inject_noise(sample['target']) loss, sample_size, logging_output = criterion(model, sample) return loss, sample_size, logging_output
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/translation_lev.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import torch from fairseq import utils from fairseq.data import ( data_utils, Dictionary, MonolingualDataset, TokenBlockDataset, TransformEosDataset, TruncatedDictionary, ) from fairseq.tasks import FairseqTask, register_task @register_task("language_modeling") class LanguageModelingTask(FairseqTask): """ Train a language model. Args: dictionary (~fairseq.data.Dictionary): the dictionary for the input of the language model output_dictionary (~fairseq.data.Dictionary): the dictionary for the output of the language model. In most cases it will be the same as *dictionary*, but could possibly be a more limited version of the dictionary (if ``--output-dictionary-size`` is used). targets (List[str]): list of the target types that the language model should predict. Can be one of "self", "future", and "past". Defaults to "future". .. note:: The language modeling task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate`, :mod:`fairseq-interactive` and :mod:`fairseq-eval-lm`. The language modeling task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.language_modeling_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('data', help='path to data directory') parser.add_argument('--sample-break-mode', default='none', choices=['none', 'complete', 'complete_doc', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' 'of sentence, but may include multiple sentences per sample. ' '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.') parser.add_argument('--tokens-per-sample', default=1024, type=int, help='max number of tokens per sample for LM dataset') parser.add_argument('--lazy-load', action='store_true', help='load the dataset lazily') parser.add_argument('--raw-text', default=False, action='store_true', help='load raw text dataset') parser.add_argument('--output-dictionary-size', default=-1, type=int, help='limit the size of output dictionary') parser.add_argument('--self-target', action='store_true', help='include self target') parser.add_argument('--future-target', action='store_true', help='include future target') parser.add_argument('--past-target', action='store_true', help='include past target') parser.add_argument('--add-bos-token', action='store_true', help='prepend beginning of sentence token (<s>)') parser.add_argument('--max-target-positions', type=int, metavar='N', help='max number of tokens in the target sequence') # fmt: on def __init__(self, args, dictionary, output_dictionary=None, targets=None): super().__init__(args) self.dictionary = dictionary self.output_dictionary = output_dictionary or dictionary if targets is None: targets = ["future"] self.targets = targets @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ if getattr(args, "raw_text", False): utils.deprecation_warning( "--raw-text is deprecated, please use --dataset-impl=raw" ) args.dataset_impl = "raw" elif getattr(args, "lazy_load", False): utils.deprecation_warning( "--lazy-load is deprecated, please use --dataset-impl=lazy" ) args.dataset_impl = "lazy" dictionary = None output_dictionary = None if args.data: paths = args.data.split(":") assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], "dict.txt")) print("| dictionary: {} types".format(len(dictionary))) output_dictionary = dictionary if args.output_dictionary_size >= 0: output_dictionary = TruncatedDictionary( dictionary, args.output_dictionary_size ) # upgrade old checkpoints if hasattr(args, "exclude_self_target"): args.self_target = not args.exclude_self_target targets = [] if getattr(args, "self_target", False): targets.append("self") if getattr(args, "future_target", False): targets.append("future") if getattr(args, "past_target", False): targets.append("past") if len(targets) == 0: # standard language modeling targets = ["future"] return cls(args, dictionary, output_dictionary, targets=targets) def build_model(self, args): model = super().build_model(args) for target in self.targets: if target not in model.supported_targets: raise ValueError( "Unsupported language modeling target: {}".format(target) ) return model def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(":") assert len(paths) > 0 data_path = paths[epoch % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.dictionary, self.args.dataset_impl, combine=combine ) if dataset is None: raise FileNotFoundError( "Dataset not found: {} ({})".format(split, split_path) ) dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample, pad=self.dictionary.pad(), eos=self.dictionary.eos(), break_mode=self.args.sample_break_mode, include_targets=True, ) add_eos_for_other_targets = ( self.args.sample_break_mode is not None and self.args.sample_break_mode != "none" ) self.datasets[split] = MonolingualDataset( dataset, dataset.sizes, self.dictionary, self.output_dictionary, add_eos_for_other_targets=add_eos_for_other_targets, shuffle=True, targets=self.targets, add_bos_token=self.args.add_bos_token, ) def build_dataset_for_inference(self, src_tokens, src_lengths): return TransformEosDataset( MonolingualDataset( TokenBlockDataset( src_tokens, src_lengths, block_size=None, pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode="eos", include_targets=False, ), src_lengths, self.source_dictionary, self.target_dictionary, add_eos_for_other_targets=False, shuffle=False, add_bos_token=self.args.add_bos_token, ), eos=self.source_dictionary.eos(), # remove EOS since this will be used as a prefix for generation remove_eos_from_src=True, has_target=False, ) def inference_step(self, generator, models, sample, prefix_tokens=None): with torch.no_grad(): if prefix_tokens is None and sample["net_input"]["src_tokens"].nelement(): prefix_tokens = sample["net_input"]["src_tokens"] if prefix_tokens[:, 0].eq(self.source_dictionary.eos()).all(): prefix_tokens = prefix_tokens[:, 1:] return generator.generate(models, sample, prefix_tokens=prefix_tokens) @property def source_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self.output_dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/language_modeling.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import numpy as np import os from fairseq import tokenizer from fairseq.data import ( ConcatDataset, indexed_dataset, data_utils, ) from fairseq.data import Dictionary from fairseq.data.legacy.block_pair_dataset import BlockPairDataset from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset from fairseq.data.legacy.masked_lm_dictionary import BertDictionary from . import FairseqTask, register_task @register_task('legacy_masked_lm') class LegacyMaskedLMTask(FairseqTask): """ Task for training Masked LM (BERT) model. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('--tokens-per-sample', default=512, type=int, help='max number of total tokens over all segments' ' per sample for BERT dataset') parser.add_argument('--break-mode', default="doc", type=str, help='mode for breaking sentence') parser.add_argument('--shuffle-dataset', action='store_true', default=False) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed @classmethod def load_dictionary(cls, filename): return BertDictionary.load(filename) @classmethod def build_dictionary(cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8): d = BertDictionary() for filename in filenames: Dictionary.add_file_to_dictionary(filename, d, tokenizer.tokenize_line, workers) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @property def target_dictionary(self): return self.dictionary @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ paths = args.data.split(':') assert len(paths) > 0 dictionary = BertDictionary.load(os.path.join(paths[0], 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=0, combine=False): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ loaded_datasets = [] paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] print("| data_path", data_path) for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') path = os.path.join(data_path, split_k) ds = indexed_dataset.make_dataset( path, impl=self.args.dataset_impl, fix_lua_indexing=True, dictionary=self.dictionary, ) if ds is None: if k > 0: break else: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path)) with data_utils.numpy_seed(self.seed + k): loaded_datasets.append( BlockPairDataset( ds, self.dictionary, ds.sizes, self.args.tokens_per_sample, break_mode=self.args.break_mode, doc_break_size=1, ) ) print('| {} {} {} examples'.format(data_path, split_k, len(loaded_datasets[-1]))) if not combine: break if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) self.datasets[split] = MaskedLMDataset( dataset=dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.cls(), sep_token_idx=self.dictionary.sep(), shuffle=self.args.shuffle_dataset, seed=self.seed, )
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/legacy_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import importlib import os from .fairseq_task import FairseqTask TASK_REGISTRY = {} TASK_CLASS_NAMES = set() def setup_task(args, **kwargs): return TASK_REGISTRY[args.task].setup_task(args, **kwargs) def register_task(name): """ New tasks can be added to fairseq with the :func:`~fairseq.tasks.register_task` function decorator. For example:: @register_task('classification') class ClassificationTask(FairseqTask): (...) .. note:: All Tasks must implement the :class:`~fairseq.tasks.FairseqTask` interface. Please see the Args: name (str): the name of the task """ def register_task_cls(cls): if name in TASK_REGISTRY: raise ValueError('Cannot register duplicate task ({})'.format(name)) if not issubclass(cls, FairseqTask): raise ValueError('Task ({}: {}) must extend FairseqTask'.format(name, cls.__name__)) if cls.__name__ in TASK_CLASS_NAMES: raise ValueError('Cannot register task with duplicate class name ({})'.format(cls.__name__)) TASK_REGISTRY[name] = cls TASK_CLASS_NAMES.add(cls.__name__) return cls return register_task_cls # automatically import any Python files in the tasks/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith('.py') and not file.startswith('_'): task_name = file[:file.find('.py')] importlib.import_module('fairseq.tasks.' + task_name) # expose `task_parser` for sphinx if task_name in TASK_REGISTRY: parser = argparse.ArgumentParser(add_help=False) group_task = parser.add_argument_group('Task name') # fmt: off group_task.add_argument('--task', metavar=task_name, help='Enable this task with: ``--task=' + task_name + '``') # fmt: on group_args = parser.add_argument_group('Additional command-line arguments') TASK_REGISTRY[task_name].add_args(group_args) globals()[task_name + '_parser'] = parser def get_task(name): return TASK_REGISTRY[name]
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from fairseq.data import FileAudioDataset from . import FairseqTask, register_task @register_task('audio_pretraining') class AudioPretrainingTask(FairseqTask): """ """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='path to data directory') parser.add_argument('--sample-rate', default=16000, type=int, help='target sample rate. audio files will be up/down sampled to this rate') parser.add_argument('--max-sample-size', default=None, type=int, help='max sample size to crop to for batching. default = min sample length') parser.add_argument('--min-sample-size', default=None, type=int, help='min sample size to crop to for batching. default = same as --max-sample-size') def __init__(self, args): super().__init__(args) @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ return cls(args) def load_dataset(self, split, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ manifest = os.path.join(self.args.data, '{}.tsv'.format(split)) self.datasets[split] = FileAudioDataset(manifest, sample_rate=self.args.sample_rate, max_sample_size=self.args.max_sample_size, min_sample_size=self.args.min_sample_size) @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return None
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/audio_pretraining.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import os from fairseq import options, utils from fairseq.data import ( AppendTokenDataset, ConcatDataset, data_utils, indexed_dataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, ) from . import FairseqTask, register_task def load_langpair_dataset( data_path, split, src, src_dict, tgt, tgt_dict, combine, dataset_impl, upsample_primary, left_pad_source, left_pad_target, max_source_positions, max_target_positions, prepend_bos=False, load_alignments=False, truncate_source=False, ): def split_exists(split, src, tgt, lang, data_path): filename = os.path.join(data_path, '{}.{}-{}.{}'.format(split, src, tgt, lang)) return indexed_dataset.dataset_exists(filename, impl=dataset_impl) src_datasets = [] tgt_datasets = [] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') # infer langcode if split_exists(split_k, src, tgt, src, data_path): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split_k, src, tgt)) elif split_exists(split_k, tgt, src, src, data_path): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split_k, tgt, src)) else: if k > 0: break else: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path)) src_dataset = data_utils.load_indexed_dataset(prefix + src, src_dict, dataset_impl) if truncate_source: src_dataset = AppendTokenDataset( TruncateDataset( StripTokenDataset(src_dataset, src_dict.eos()), max_source_positions - 1, ), src_dict.eos(), ) src_datasets.append(src_dataset) tgt_datasets.append( data_utils.load_indexed_dataset(prefix + tgt, tgt_dict, dataset_impl) ) print('| {} {} {}-{} {} examples'.format(data_path, split_k, src, tgt, len(src_datasets[-1]))) if not combine: break assert len(src_datasets) == len(tgt_datasets) if len(src_datasets) == 1: src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0] else: sample_ratios = [1] * len(src_datasets) sample_ratios[0] = upsample_primary src_dataset = ConcatDataset(src_datasets, sample_ratios) tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) if prepend_bos: assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) align_dataset = None if load_alignments: align_path = os.path.join(data_path, '{}.align.{}-{}'.format(split, src, tgt)) if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): align_dataset = data_utils.load_indexed_dataset(align_path, None, dataset_impl) return LanguagePairDataset( src_dataset, src_dataset.sizes, src_dict, tgt_dataset, tgt_dataset.sizes, tgt_dict, left_pad_source=left_pad_source, left_pad_target=left_pad_target, max_source_positions=max_source_positions, max_target_positions=max_target_positions, align_dataset=align_dataset, ) @register_task('translation') class TranslationTask(FairseqTask): """ Translate from one (source) language to another (target) language. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language') parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language') parser.add_argument('--lazy-load', action='store_true', help='load the dataset lazily') parser.add_argument('--raw-text', action='store_true', help='load raw text dataset') parser.add_argument('--load-alignments', action='store_true', help='load the binarized alignments') parser.add_argument('--left-pad-source', default='True', type=str, metavar='BOOL', help='pad the source on the left') parser.add_argument('--left-pad-target', default='False', type=str, metavar='BOOL', help='pad the target on the left') parser.add_argument('--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence') parser.add_argument('--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence') parser.add_argument('--upsample-primary', default=1, type=int, help='amount to upsample primary dataset') parser.add_argument('--truncate-source', default=False, action='store_true', help='boolean to truncate source to max-source-positions') # fmt: on def __init__(self, args, src_dict, tgt_dict): super().__init__(args) self.src_dict = src_dict self.tgt_dict = tgt_dict @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (argparse.Namespace): parsed command-line arguments """ args.left_pad_source = options.eval_bool(args.left_pad_source) args.left_pad_target = options.eval_bool(args.left_pad_target) if getattr(args, 'raw_text', False): utils.deprecation_warning('--raw-text is deprecated, please use --dataset-impl=raw') args.dataset_impl = 'raw' elif getattr(args, 'lazy_load', False): utils.deprecation_warning('--lazy-load is deprecated, please use --dataset-impl=lazy') args.dataset_impl = 'lazy' paths = args.data.split(':') assert len(paths) > 0 # find language pair automatically if args.source_lang is None or args.target_lang is None: args.source_lang, args.target_lang = data_utils.infer_language_pair(paths[0]) if args.source_lang is None or args.target_lang is None: raise Exception('Could not infer language pair, please provide it explicitly') # load dictionaries src_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.source_lang))) tgt_dict = cls.load_dictionary(os.path.join(paths[0], 'dict.{}.txt'.format(args.target_lang))) assert src_dict.pad() == tgt_dict.pad() assert src_dict.eos() == tgt_dict.eos() assert src_dict.unk() == tgt_dict.unk() print('| [{}] dictionary: {} types'.format(args.source_lang, len(src_dict))) print('| [{}] dictionary: {} types'.format(args.target_lang, len(tgt_dict))) return cls(args, src_dict, tgt_dict) def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] # infer langcode src, tgt = self.args.source_lang, self.args.target_lang self.datasets[split] = load_langpair_dataset( data_path, split, src, self.src_dict, tgt, self.tgt_dict, combine=combine, dataset_impl=self.args.dataset_impl, upsample_primary=self.args.upsample_primary, left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, load_alignments=self.args.load_alignments, truncate_source=self.args.truncate_source, ) def build_dataset_for_inference(self, src_tokens, src_lengths): return LanguagePairDataset(src_tokens, src_lengths, self.source_dictionary) def max_positions(self): """Return the max sentence length allowed by the task.""" return (self.args.max_source_positions, self.args.max_target_positions) @property def source_dictionary(self): """Return the source :class:`~fairseq.data.Dictionary`.""" return self.src_dict @property def target_dictionary(self): """Return the target :class:`~fairseq.data.Dictionary`.""" return self.tgt_dict
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict import os from fairseq.data import ( BacktranslationDataset, IndexedCachedDataset, IndexedDataset, IndexedRawTextDataset, LanguagePairDataset, NoisingDataset, RoundRobinZipDatasets, ) from fairseq.models import FairseqMultiModel from fairseq.sequence_generator import SequenceGenerator from .multilingual_translation import MultilingualTranslationTask from . import register_task def _get_bt_dataset_key(lang_pair): return "bt:" + lang_pair def _get_denoising_dataset_key(lang_pair): return "denoising:" + lang_pair # ported from UnsupervisedMT def parse_lambda_config(x): """ Parse the configuration of lambda coefficient (for scheduling). x = "3" # lambda will be a constant equal to x x = "0:1,1000:0" # lambda will start from 1 and linearly decrease # to 0 during the first 1000 iterations x = "0:0,1000:0,2000:1" # lambda will be equal to 0 for the first 1000 # iterations, then will linearly increase to 1 until iteration 2000 """ split = x.split(',') if len(split) == 1: return float(x), None else: split = [s.split(':') for s in split] assert all(len(s) == 2 for s in split) assert all(k.isdigit() for k, _ in split) assert all(int(split[i][0]) < int(split[i + 1][0]) for i in range(len(split) - 1)) return float(split[0][1]), [(int(k), float(v)) for k, v in split] @register_task('semisupervised_translation') class SemisupervisedTranslationTask(MultilingualTranslationTask): """A task for training multiple translation models simultaneously. We iterate round-robin over batches from multiple language pairs, ordered according to the `--lang-pairs` argument. The training loop is roughly: for i in range(len(epoch)): for lang_pair in args.lang_pairs: batch = next_batch_for_lang_pair(lang_pair) loss = criterion(model_for_lang_pair(lang_pair), batch) loss.backward() optimizer.step() In practice, `next_batch_for_lang_pair` is abstracted in a FairseqDataset (e.g., `RoundRobinZipDatasets`) and `model_for_lang_pair` is a model that implements the `FairseqMultiModel` interface. During inference it is required to specify a single `--source-lang` and `--target-lang`, instead of `--lang-pairs`. """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off MultilingualTranslationTask.add_args(parser) parser.add_argument('--lambda-parallel-config', default="1.0", type=str, metavar='CONFIG', help='cross-entropy reconstruction coefficient (parallel data). ' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--lambda-denoising-config', default="0.0", type=str, metavar='CONFIG', help='Cross-entropy reconstruction coefficient (denoising autoencoding)' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--lambda-otf-bt-config', default="0.0", type=str, metavar='CONFIG', help='cross-entropy reconstruction coefficient (on-the-fly back-translation parallel data)' 'use fixed weight during training if set to floating point number. ' 'use piecewise linear function over number of updates to schedule the ' 'weight with the format: w0:step0,w1:step1,...') parser.add_argument('--bt-max-len-a', default=1.1, type=float, metavar='N', help='generate back-translated sequences of maximum length ax + b, where x is the ' 'source length') parser.add_argument('--bt-max-len-b', default=10.0, type=float, metavar='N', help='generate back-translated sequences of maximum length ax + b, where x is the ' 'source length') parser.add_argument('--bt-beam-size', default=1, type=int, metavar='N', help='beam size used in beam search of online back-translation') parser.add_argument('--max-word-shuffle-distance', default=3.0, type=float, metavar='N', help='maximum word shuffle distance for denoising autoencoding data generation') parser.add_argument('--word-dropout-prob', default=0.1, type=float, metavar='N', help='word dropout probability for denoising autoencoding data generation') parser.add_argument('--word-blanking-prob', default=0.2, type=float, metavar='N', help='word blanking probability for denoising autoencoding data generation') # fmt: on def __init__(self, args, dicts, training): super().__init__(args, dicts, training) self.lambda_parallel, self.lambda_parallel_steps = parse_lambda_config(args.lambda_parallel_config) self.lambda_otf_bt, self.lambda_otf_bt_steps = parse_lambda_config(args.lambda_otf_bt_config) self.lambda_denoising, self.lambda_denoising_steps = parse_lambda_config(args.lambda_denoising_config) if (self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None): denoising_lang_pairs = [ "%s-%s" % (tgt, tgt) for tgt in {lang_pair.split('-')[1] for lang_pair in args.lang_pairs} ] self.model_lang_pairs = self.model_lang_pairs + denoising_lang_pairs self.backtranslate_datasets = {} self.backtranslators = {} @classmethod def setup_task(cls, args, **kwargs): dicts, training = MultilingualTranslationTask.prepare(args, **kwargs) return cls(args, dicts, training) def load_dataset(self, split, epoch=0, **kwargs): """Load a dataset split.""" paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] def split_exists(split, src, tgt, lang): if src is not None: filename = os.path.join(data_path, '{}.{}-{}.{}'.format(split, src, tgt, lang)) else: filename = os.path.join(data_path, '{}.{}-None.{}'.format(split, src, tgt)) if self.args.raw_text and IndexedRawTextDataset.exists(filename): return True elif not self.args.raw_text and IndexedDataset.exists(filename): return True return False def indexed_dataset(path, dictionary): if self.args.raw_text: return IndexedRawTextDataset(path, dictionary) elif IndexedDataset.exists(path): if self.args.lazy_load: return IndexedDataset(path, fix_lua_indexing=True) else: return IndexedCachedDataset(path, fix_lua_indexing=True) return None # load parallel datasets src_datasets, tgt_datasets = {}, {} if (self.lambda_parallel > 0.0 or self.lambda_parallel_steps is not None or not split.startswith("train")): for lang_pair in self.lang_pairs: src, tgt = lang_pair.split('-') if split_exists(split, src, tgt, src): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split, src, tgt)) elif split_exists(split, tgt, src, src): prefix = os.path.join(data_path, '{}.{}-{}.'.format(split, tgt, src)) else: continue src_datasets[lang_pair] = indexed_dataset(prefix + src, self.dicts[src]) tgt_datasets[lang_pair] = indexed_dataset(prefix + tgt, self.dicts[tgt]) print('| parallel-{} {} {} examples'.format(data_path, split, len(src_datasets[lang_pair]))) if len(src_datasets) == 0: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path)) # back translation datasets backtranslate_datasets = {} if (self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None) and split.startswith("train"): for lang_pair in self.lang_pairs: src, tgt = lang_pair.split('-') if not split_exists(split, tgt, None, tgt): raise FileNotFoundError('Dataset not found: backtranslation {} ({})'.format(split, data_path)) filename = os.path.join(data_path, '{}.{}-None.{}'.format(split, tgt, tgt)) dataset = indexed_dataset(filename, self.dicts[tgt]) lang_pair_dataset_tgt = LanguagePairDataset( dataset, dataset.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ) lang_pair_dataset = LanguagePairDataset( dataset, dataset.sizes, src_dict=self.dicts[src], tgt=dataset, tgt_sizes=dataset.sizes, tgt_dict=self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ) backtranslate_datasets[lang_pair] = BacktranslationDataset( tgt_dataset=self.alter_dataset_langtok( lang_pair_dataset_tgt, src_eos=self.dicts[tgt].eos(), src_lang=tgt, tgt_lang=src, ), backtranslation_fn=self.backtranslators[lang_pair], src_dict=self.dicts[src], tgt_dict=self.dicts[tgt], output_collater=self.alter_dataset_langtok( lang_pair_dataset=lang_pair_dataset, src_eos=self.dicts[src].eos(), src_lang=src, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ).collater, ) print('| backtranslate-{}: {} {} {} examples'.format( tgt, data_path, split, len(backtranslate_datasets[lang_pair]), )) self.backtranslate_datasets[lang_pair] = backtranslate_datasets[lang_pair] # denoising autoencoder noising_datasets = {} if (self.lambda_denoising > 0.0 or self.lambda_denoising_steps is not None) and split.startswith("train"): for lang_pair in self.lang_pairs: _, tgt = lang_pair.split('-') if not split_exists(split, tgt, None, tgt): continue filename = os.path.join(data_path, '{}.{}-None.{}'.format(split, tgt, tgt)) tgt_dataset1 = indexed_dataset(filename, self.dicts[tgt]) tgt_dataset2 = indexed_dataset(filename, self.dicts[tgt]) noising_dataset = NoisingDataset( tgt_dataset1, self.dicts[tgt], seed=1, max_word_shuffle_distance=self.args.max_word_shuffle_distance, word_dropout_prob=self.args.word_dropout_prob, word_blanking_prob=self.args.word_blanking_prob, ) noising_datasets[lang_pair] = self.alter_dataset_langtok( LanguagePairDataset( noising_dataset, tgt_dataset1.sizes, self.dicts[tgt], tgt_dataset2, tgt_dataset2.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, ), src_eos=self.dicts[tgt].eos(), src_lang=tgt, tgt_eos=self.dicts[tgt].eos(), tgt_lang=tgt, ) print('| denoising-{}: {} {} {} examples'.format( tgt, data_path, split, len(noising_datasets[lang_pair]), )) def language_pair_dataset(lang_pair): src, tgt = lang_pair.split('-') src_dataset, tgt_dataset = src_datasets[lang_pair], tgt_datasets[lang_pair] return self.alter_dataset_langtok( LanguagePairDataset( src_dataset, src_dataset.sizes, self.dicts[src], tgt_dataset, tgt_dataset.sizes, self.dicts[tgt], left_pad_source=self.args.left_pad_source, left_pad_target=self.args.left_pad_target, max_source_positions=self.args.max_source_positions, max_target_positions=self.args.max_target_positions, ), self.dicts[src].eos(), src, self.dicts[tgt].eos(), tgt, ) self.datasets[split] = RoundRobinZipDatasets( OrderedDict([ (lang_pair, language_pair_dataset(lang_pair)) for lang_pair in src_datasets.keys() ] + [ (_get_bt_dataset_key(lang_pair), dataset) for lang_pair, dataset in backtranslate_datasets.items() ] + [ (_get_denoising_dataset_key(lang_pair), dataset) for lang_pair, dataset in noising_datasets.items() ]), eval_key=None if self.training else "%s-%s" % (self.args.source_lang, self.args.target_lang), ) def build_model(self, args): from fairseq import models model = models.build_model(args, self) if not isinstance(model, FairseqMultiModel): raise ValueError('SemisupervisedTranslationTask requires a FairseqMultiModel architecture') # create SequenceGenerator for each model that has backtranslation dependency on it self.sequence_generators = {} if (self.lambda_otf_bt > 0.0 or self.lambda_otf_bt_steps is not None) and self.training: for lang_pair in self.lang_pairs: src, tgt = lang_pair.split('-') key = '{}-{}'.format(tgt, src) self.sequence_generators[key] = SequenceGenerator( tgt_dict=self.dicts[src], beam_size=args.bt_beam_size, max_len_a=args.bt_max_len_a, max_len_b=args.bt_max_len_b, ) decoder_lang_tok_idx = self.get_decoder_langtok(src) def backtranslate_fn( sample, model=model.models[key], bos_token=decoder_lang_tok_idx, sequence_generator=self.sequence_generators[key], ): return sequence_generator.generate( [model], sample, bos_token=bos_token, ) self.backtranslators[lang_pair] = backtranslate_fn return model def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): model.train() agg_loss, agg_sample_size, agg_logging_output = 0., 0., {} def forward_backward(model, samples, logging_output_key, weight): nonlocal agg_loss, agg_sample_size, agg_logging_output if samples is None or len(samples) == 0: return loss, sample_size, logging_output = criterion(model, samples) if ignore_grad: loss *= 0 else: loss *= weight optimizer.backward(loss) agg_loss += loss.detach().item() # TODO make summing of the sample sizes configurable agg_sample_size += sample_size agg_logging_output[logging_output_key] = logging_output if self.lambda_parallel > 0.0: for lang_pair in self.lang_pairs: forward_backward(model.models[lang_pair], sample[lang_pair], lang_pair, self.lambda_parallel) if self.lambda_otf_bt > 0.0: for lang_pair in self.lang_pairs: sample_key = _get_bt_dataset_key(lang_pair) forward_backward(model.models[lang_pair], sample[sample_key], sample_key, self.lambda_otf_bt) if self.lambda_denoising > 0.0: for lang_pair in self.lang_pairs: _, tgt = lang_pair.split('-') sample_key = _get_denoising_dataset_key(lang_pair) forward_backward(model.models['{0}-{0}'.format(tgt)], sample[sample_key], sample_key, self.lambda_denoising) return agg_loss, agg_sample_size, agg_logging_output def update_step(self, num_updates): def lambda_step_func(config, n_iter): """ Update a lambda value according to its schedule configuration. """ ranges = [i for i in range(len(config) - 1) if config[i][0] <= n_iter < config[i + 1][0]] if len(ranges) == 0: assert n_iter >= config[-1][0] return config[-1][1] assert len(ranges) == 1 i = ranges[0] x_a, y_a = config[i] x_b, y_b = config[i + 1] return y_a + (n_iter - x_a) * float(y_b - y_a) / float(x_b - x_a) if self.lambda_parallel_steps is not None: self.lambda_parallel = lambda_step_func(self.lambda_parallel_steps, num_updates) if self.lambda_denoising_steps is not None: self.lambda_denoising = lambda_step_func(self.lambda_denoising_steps, num_updates) if self.lambda_otf_bt_steps is not None: self.lambda_otf_bt = lambda_step_func(self.lambda_otf_bt_steps, num_updates) def aggregate_logging_outputs(self, logging_outputs, criterion): # aggregate logging outputs for each language pair logging_output_keys = { key for logging_output in logging_outputs for key in logging_output } lang_pair_keys = set(self.lang_pairs + [ _get_bt_dataset_key(lang_pair) for lang_pair in self.lang_pairs ] + [ _get_denoising_dataset_key(lang_pair) for lang_pair in self.lang_pairs ]) logging_output_keys = logging_output_keys.intersection(lang_pair_keys) return super().aggregate_logging_outputs(logging_outputs, criterion, logging_output_keys)
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/semisupervised_translation.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from fairseq.data import ( ConcatSentencesDataset, data_utils, Dictionary, IdDataset, NestedDictionaryDataset, NumSamplesDataset, NumelDataset, OffsetTokensDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, RollDataset, SortDataset, StripTokenDataset, TruncateDataset, ) from . import FairseqTask, register_task @register_task('sentence_prediction') class SentencePredictionTask(FairseqTask): """ Sentence (or sentence pair) prediction (classification or regression) task. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', metavar='FILE', help='file prefix for data') parser.add_argument('--num-classes', type=int, default=-1, help='number of classes') parser.add_argument('--init-token', type=int, default=None, help='add token at the beginning of each batch item') parser.add_argument('--separator-token', type=int, default=None, help='add separator token between inputs') parser.add_argument('--regression-target', action='store_true', default=False) parser.add_argument('--no-shuffle', action='store_true', default=False) parser.add_argument('--truncate-sequence', action='store_true', default=False, help='Truncate sequence to max_sequence_length') parser.add_argument('--add-prev-output-tokens', action='store_true', default=False, help='Add prev_output_tokens to sample, used for encoder-decoder arch') def __init__(self, args, data_dictionary, label_dictionary): super().__init__(args) self.dictionary = data_dictionary self._label_dictionary = label_dictionary if not hasattr(args, 'max_positions'): self._max_positions = ( args.max_source_positions, args.max_target_positions, ) else: self._max_positions = args.max_positions args.tokens_per_sample = self._max_positions @classmethod def load_dictionary(cls, args, filename, source=True): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol('<mask>') return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.num_classes > 0, 'Must set --num-classes' # load data dictionary data_dict = cls.load_dictionary( args, os.path.join(args.data, 'input0', 'dict.txt'), source=True, ) print('| [input] dictionary: {} types'.format(len(data_dict))) label_dict = None if not args.regression_target: # load label dictionary label_dict = cls.load_dictionary( args, os.path.join(args.data, 'label', 'dict.txt'), source=False, ) print('| [label] dictionary: {} types'.format(len(label_dict))) else: label_dict = data_dict return SentencePredictionTask(args, data_dict, label_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(type, split): return os.path.join(self.args.data, type, split) def make_dataset(type, dictionary): split_path = get_path(type, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset('input0', self.source_dictionary) assert input0 is not None, 'could not find dataset: {}'.format(get_path(type, split)) input1 = make_dataset('input1', self.source_dictionary) if self.args.init_token is not None: input0 = PrependTokenDataset(input0, self.args.init_token) if input1 is None: src_tokens = input0 else: if self.args.separator_token is not None: input1 = PrependTokenDataset(input1, self.args.separator_token) src_tokens = ConcatSentencesDataset(input0, input1) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens)) if self.args.truncate_sequence: src_tokens = TruncateDataset(src_tokens, self.args.max_positions) dataset = { 'id': IdDataset(), 'net_input': { 'src_tokens': RightPadDataset( src_tokens, pad_idx=self.source_dictionary.pad(), ), 'src_lengths': NumelDataset(src_tokens, reduce=False), }, 'nsentences': NumSamplesDataset(), 'ntokens': NumelDataset(src_tokens, reduce=True), } if self.args.add_prev_output_tokens: prev_tokens_dataset = RightPadDataset( RollDataset(src_tokens, 1), pad_idx=self.dictionary.pad(), ) dataset['net_input'].update( prev_output_tokens=prev_tokens_dataset, ) if not self.args.regression_target: label_dataset = make_dataset('label', self.target_dictionary) if label_dataset is not None: dataset.update( target=OffsetTokensDataset( StripTokenDataset( label_dataset, id_to_strip=self.target_dictionary.eos(), ), offset=-self.target_dictionary.nspecial, ) ) else: label_path = "{0}.label".format(get_path('label', split)) if os.path.exists(label_path): dataset.update( target=RawLabelDataset([ float(x.strip()) for x in open(label_path).readlines() ]) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[src_tokens.sizes], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) print("| Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( 'sentence_classification_head', num_classes=self.args.num_classes, ) return model def max_positions(self): return self._max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary @property def label_dictionary(self): return self._label_dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/sentence_prediction.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from fairseq import modules, utils from fairseq.tasks import register_task from fairseq.tasks.translation import TranslationTask @register_task('translation_moe') class TranslationMoETask(TranslationTask): """ Translation task for Mixture of Experts (MoE) models. See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade" (Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_. Args: src_dict (~fairseq.data.Dictionary): dictionary for the source language tgt_dict (~fairseq.data.Dictionary): dictionary for the target language .. note:: The translation task is compatible with :mod:`fairseq-train`, :mod:`fairseq-generate` and :mod:`fairseq-interactive`. The translation task provides the following additional command-line arguments: .. argparse:: :ref: fairseq.tasks.translation_parser :prog: """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off TranslationTask.add_args(parser) parser.add_argument('--method', default='hMoEup', choices=['sMoElp', 'sMoEup', 'hMoElp', 'hMoEup']) parser.add_argument('--num-experts', default=3, type=int, metavar='N', help='number of experts') parser.add_argument('--mean-pool-gating-network', action='store_true', help='use a simple mean-pooling gating network') parser.add_argument('--mean-pool-gating-network-dropout', type=float, help='dropout for mean-pooling gating network') parser.add_argument('--mean-pool-gating-network-encoder-dim', type=float, help='encoder output dim for mean-pooling gating network') parser.add_argument('--gen-expert', type=int, default=0, help='which expert to use for generation') # fmt: on def __init__(self, args, src_dict, tgt_dict): if args.method == 'sMoElp': # soft MoE with learned prior self.uniform_prior = False self.hard_selection = False elif args.method == 'sMoEup': # soft MoE with uniform prior self.uniform_prior = True self.hard_selection = False elif args.method == 'hMoElp': # hard MoE with learned prior self.uniform_prior = False self.hard_selection = True elif args.method == 'hMoEup': # hard MoE with uniform prior self.uniform_prior = True self.hard_selection = True # add indicator tokens for each expert for i in range(args.num_experts): # add to both dictionaries in case we're sharing embeddings src_dict.add_symbol('<expert_{}>'.format(i)) tgt_dict.add_symbol('<expert_{}>'.format(i)) super().__init__(args, src_dict, tgt_dict) def build_model(self, args): from fairseq import models model = models.build_model(args, self) if not self.uniform_prior and not hasattr(model, 'gating_network'): if self.args.mean_pool_gating_network: if getattr(args, 'mean_pool_gating_network_encoder_dim', None): encoder_dim = args.mean_pool_gating_network_encoder_dim elif getattr(args, 'encoder_embed_dim', None): # assume that encoder_embed_dim is the encoder's output dimension encoder_dim = args.encoder_embed_dim else: raise ValueError('Must specify --mean-pool-gating-network-encoder-dim') if getattr(args, 'mean_pool_gating_network_dropout', None): dropout = args.mean_pool_gating_network_dropout elif getattr(args, 'dropout', None): dropout = args.dropout else: raise ValueError('Must specify --mean-pool-gating-network-dropout') model.gating_network = modules.MeanPoolGatingNetwork( encoder_dim, args.num_experts, dropout, ) else: raise ValueError( 'translation_moe task with learned prior requires the model to ' 'have a gating network; try using --mean-pool-gating-network' ) return model def expert_index(self, i): return i + self.tgt_dict.index('<expert_0>') def _get_loss(self, sample, model, criterion): assert hasattr(criterion, 'compute_loss'), \ 'translation_moe task requires the criterion to implement the compute_loss() method' k = self.args.num_experts bsz = sample['target'].size(0) def get_lprob_y(encoder_out, prev_output_tokens_k): net_output = model.decoder(prev_output_tokens_k, encoder_out) loss, _ = criterion.compute_loss(model, net_output, sample, reduce=False) loss = loss.view(bsz, -1) return -loss.sum(dim=1, keepdim=True) # -> B x 1 def get_lprob_yz(winners=None): encoder_out = model.encoder(sample['net_input']['src_tokens'], sample['net_input']['src_lengths']) if winners is None: lprob_y = [] for i in range(k): prev_output_tokens_k = sample['net_input']['prev_output_tokens'].clone() assert not prev_output_tokens_k.requires_grad prev_output_tokens_k[:, 0] = self.expert_index(i) lprob_y.append(get_lprob_y(encoder_out, prev_output_tokens_k)) lprob_y = torch.cat(lprob_y, dim=1) # -> B x K else: prev_output_tokens_k = sample['net_input']['prev_output_tokens'].clone() prev_output_tokens_k[:, 0] = self.expert_index(winners) lprob_y = get_lprob_y(encoder_out, prev_output_tokens_k) # -> B if self.uniform_prior: lprob_yz = lprob_y else: lprob_z = model.gating_network(encoder_out) # B x K if winners is not None: lprob_z = lprob_z.gather(dim=1, index=winners.unsqueeze(-1)) lprob_yz = lprob_y + lprob_z.type_as(lprob_y) # B x K return lprob_yz # compute responsibilities without dropout with utils.eval(model): # disable dropout with torch.no_grad(): # disable autograd lprob_yz = get_lprob_yz() # B x K prob_z_xy = torch.nn.functional.softmax(lprob_yz, dim=1) assert not prob_z_xy.requires_grad # compute loss with dropout if self.hard_selection: winners = prob_z_xy.max(dim=1)[1] loss = -get_lprob_yz(winners) else: lprob_yz = get_lprob_yz() # B x K loss = -modules.LogSumExpMoE.apply(lprob_yz, prob_z_xy, 1) loss = loss.sum() sample_size = sample['target'].size(0) if self.args.sentence_avg else sample['ntokens'] logging_output = { 'loss': utils.item(loss.data), 'ntokens': sample['ntokens'], 'sample_size': sample_size, 'posterior': prob_z_xy.float().sum(dim=0).cpu(), } return loss, sample_size, logging_output def train_step(self, sample, model, criterion, optimizer, ignore_grad=False): model.train() loss, sample_size, logging_output = self._get_loss(sample, model, criterion) if ignore_grad: loss *= 0 optimizer.backward(loss) return loss, sample_size, logging_output def valid_step(self, sample, model, criterion): model.eval() with torch.no_grad(): loss, sample_size, logging_output = self._get_loss(sample, model, criterion) return loss, sample_size, logging_output def inference_step(self, generator, models, sample, prefix_tokens=None, expert=None): expert = expert or self.args.gen_expert with torch.no_grad(): return generator.generate( models, sample, prefix_tokens=prefix_tokens, bos_token=self.expert_index(expert), ) def aggregate_logging_outputs(self, logging_outputs, criterion): agg_logging_outputs = criterion.__class__.aggregate_logging_outputs(logging_outputs) agg_logging_outputs['posterior'] = sum( log['posterior'] for log in logging_outputs if 'posterior' in log ) return agg_logging_outputs
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/translation_moe.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import os from collections import OrderedDict import numpy as np from fairseq import tokenizer from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.data import ( ConcatDataset, data_utils, TokenBlockDataset, ) from fairseq.data import Dictionary from fairseq.data.legacy.masked_lm_dataset import MaskedLMDataset from fairseq.data.multi_corpus_sampled_dataset import MultiCorpusSampledDataset from . import FairseqTask, register_task @register_task('cross_lingual_lm') class CrossLingualLMTask(FairseqTask): """ Task for training cross-lingual language models. For more details look at: https://arxiv.org/pdf/1901.07291.pdf Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('--tokens-per-sample', default=512, type=int, help='max number of total tokens over all segments' ' per sample') parser.add_argument('--monolingual-langs', default='en', type=str, help='comma separated list of languages for which we' ' want to train XLM on') parser.add_argument('--raw-text', default=False, action='store_true', help='load raw text dataset') parser.add_argument('--lazy-load', action='store_true', help='load the dataset lazily') parser.add_argument('--shuffle', action='store_true', help='shuffle each monolingual dataset while' ' training') def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed self.distributed_world_size = args.distributed_world_size self.langs2id = self._lang_to_id(args.monolingual_langs) def _lang_to_id( self, languages: str ): """ Build a map from languages to ids. These ids are used as segment labels for cross-lingual LM training. """ lang2id = {} langs = [l.strip() for l in languages.split(',')] for id, lang in enumerate(langs): lang2id[lang] = id return lang2id @classmethod def load_dictionary(cls, filename): return MaskedLMDictionary.load(filename) @classmethod def build_dictionary(cls, filenames, workers=1, threshold=-1, nwords=-1, padding_factor=8): d = MaskedLMDictionary() for filename in filenames: Dictionary.add_file_to_dictionary(filename, d, tokenizer.tokenize_line, workers) d.finalize(threshold=threshold, nwords=nwords, padding_factor=padding_factor) return d @property def target_dictionary(self): return self.dictionary @classmethod def setup_task(cls, args, **kwargs): """Setup the task. """ dictionary = MaskedLMDictionary.load(os.path.join(args.data, 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) return cls(args, dictionary) def _load_single_lang_dataset(self, split, epoch): loaded_datasets = [] paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] for k in itertools.count(): split_k = split + (str(k) if k > 0 else '') path = os.path.join(data_path, split_k) ds = data_utils.load_indexed_dataset(path, self.dictionary, self.args.dataset_impl) if ds is None: if k > 0: break else: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, data_path)) # Since we append each block with the classification_token, # we need to effectively create blocks of length # tokens_per_sample-1 loaded_datasets.append( TokenBlockDataset( ds, ds.sizes, self.args.tokens_per_sample - 1, pad=self.dictionary.pad(), eos=self.dictionary.eos(), ) ) print('| {} {} {} examples'.format(data_path, split_k, len(loaded_datasets[-1]))) if len(loaded_datasets) == 1: dataset = loaded_datasets[0] sizes = dataset.sizes else: dataset = ConcatDataset(loaded_datasets) sizes = np.concatenate([ds.sizes for ds in loaded_datasets]) return dataset, sizes def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ dataset_map = OrderedDict() for lang in self.langs2id.keys(): # Datasets are expected to be in "split.lang" format (Eg: train.en) language_split = '{}.{}'.format(split, lang) block_dataset, sizes = self._load_single_lang_dataset(split=language_split, epoch=epoch) dataset_map[lang] = MaskedLMDataset( dataset=block_dataset, sizes=sizes, vocab=self.dictionary, pad_idx=self.dictionary.pad(), mask_idx=self.dictionary.mask(), classif_token_idx=self.dictionary.eos(), sep_token_idx=self.dictionary.eos(), shuffle=getattr(self.args, 'shuffle', False), has_pairs=False, segment_id=self.langs2id[lang], seed=self.seed, ) self.datasets[split] = MultiCorpusSampledDataset(dataset_map) print('| {} {} {} examples'.format( self.args.data.split(':')[epoch], split, len(self.datasets[split])) )
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/cross_lingual_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq.data.legacy.masked_lm_dictionary import MaskedLMDictionary from fairseq.tasks.translation import TranslationTask from . import register_task @register_task("translation_from_pretrained_xlm") class TranslationFromPretrainedXLMTask(TranslationTask): """ Same as TranslationTask except use the MaskedLMDictionary class so that we can load data that was binarized with the MaskedLMDictionary class. This task should be used for the entire training pipeline when we want to train an NMT model from a pretrained XLM checkpoint: binarizing NMT data, training NMT with the pretrained XLM checkpoint, and subsequent evaluation of that trained model. """ @classmethod def load_dictionary(cls, filename): """Load the masked LM dictionary from the filename Args: filename (str): the filename """ return MaskedLMDictionary.load(filename)
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/translation_from_pretrained_xlm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from fairseq.data import ( data_utils, Dictionary, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PadDataset, PrependTokenDataset, SortDataset, TokenBlockDataset, ) from fairseq.tasks import FairseqTask, register_task from fairseq.data.encoders.utils import get_whole_word_mask @register_task('masked_lm') class MaskedLMTask(FairseqTask): """Task for training masked language models (e.g., BERT, RoBERTa).""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('--sample-break-mode', default='complete', choices=['none', 'complete', 'complete_doc', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' 'of sentence, but may include multiple sentences per sample. ' '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.') parser.add_argument('--tokens-per-sample', default=512, type=int, help='max number of total tokens over all segments ' 'per sample for BERT dataset') parser.add_argument('--mask-prob', default=0.15, type=float, help='probability of replacing a token with mask') parser.add_argument('--leave-unmasked-prob', default=0.1, type=float, help='probability that a masked token is unmasked') parser.add_argument('--random-token-prob', default=0.1, type=float, help='probability of replacing a token with a random token') parser.add_argument('--freq-weighted-replacement', action='store_true', help='sample random replacement words based on word frequencies') parser.add_argument('--mask-whole-words', default=False, action='store_true', help='mask whole words; you may also want to set --bpe') def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol('<mask>') @classmethod def setup_task(cls, args, **kwargs): paths = args.data.split(':') assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] split_path = os.path.join(data_path, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path)) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) print('| loaded {} blocks from: {}'.format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) # create masked input and targets mask_whole_words = get_whole_word_mask(self.args, self.source_dictionary) \ if self.args.mask_whole_words else None src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(src_dataset)) self.datasets[split] = SortDataset( NestedDictionaryDataset( { 'id': IdDataset(), 'net_input': { 'src_tokens': PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), 'src_lengths': NumelDataset(src_dataset, reduce=False), }, 'target': PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), 'nsentences': NumSamplesDataset(), 'ntokens': NumelDataset(src_dataset, reduce=True), }, sizes=[src_dataset.sizes], ), sort_order=[ shuffle, src_dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = PadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode='eos', ), pad_idx=self.source_dictionary.pad(), left_pad=False, ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { 'id': IdDataset(), 'net_input': { 'src_tokens': src_dataset, 'src_lengths': NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from fairseq.data import ( ConcatSentencesDataset, data_utils, Dictionary, IdDataset, NestedDictionaryDataset, NumSamplesDataset, NumelDataset, PrependTokenDataset, RawLabelDataset, RightPadDataset, SortDataset, TruncateDataset, ) from . import FairseqTask, register_task @register_task('sentence_ranking') class SentenceRankingTask(FairseqTask): """ Ranking task on multiple sentences. Args: dictionary (Dictionary): the dictionary for the input of the task """ @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', metavar='FILE', help='file prefix for data') parser.add_argument('--num-classes', type=int, help='number of sentences to be ranked') parser.add_argument('--init-token', type=int, help='add token at the beginning of each batch item') parser.add_argument('--separator-token', type=int, help='add separator token between inputs') parser.add_argument('--no-shuffle', action='store_true') parser.add_argument('--truncate-sequence', action='store_true', help='Truncate sequence to max_positions') parser.add_argument('--max-option-length', type=int, help='max length for each option') def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary @classmethod def load_dictionary(cls, args, filename, source=True): """Load the dictionary from the filename Args: filename (str): the filename """ dictionary = Dictionary.load(filename) dictionary.add_symbol('<mask>') return dictionary @classmethod def setup_task(cls, args, **kwargs): assert args.criterion == 'sentence_ranking', \ 'Must set --criterion=sentence_ranking' # load data dictionary data_dict = cls.load_dictionary( args, os.path.join(args.data, 'input0', 'dict.txt'), source=True, ) print('| [input] dictionary: {} types'.format(len(data_dict))) return SentenceRankingTask(args, data_dict) def load_dataset(self, split, combine=False, **kwargs): """Load a given dataset split (e.g., train, valid, test).""" def get_path(type, split): return os.path.join(self.args.data, type, split) def make_dataset(type, dictionary): split_path = get_path(type, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) return dataset input0 = make_dataset('input0', self.source_dictionary) input_options = [ make_dataset( 'input{idx}'.format(idx=idx + 1), self.source_dictionary ) for idx in range(self.args.num_classes) ] if self.args.separator_token is not None: input0 = PrependTokenDataset(input0, self.args.separator_token) src_tokens = [] for input_option in input_options: if self.args.init_token is not None: input_option = PrependTokenDataset(input_option, self.args.init_token) if self.args.max_option_length is not None: input_option = TruncateDataset(input_option, self.args.max_option_length) src_token = ConcatSentencesDataset(input_option, input0) if self.args.truncate_sequence: src_token = TruncateDataset(src_token, self.args.max_positions) src_tokens.append(src_token) with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_tokens[0])) dataset = { 'id': IdDataset(), 'nsentences': NumSamplesDataset(), 'ntokens': NumelDataset(src_tokens[0], reduce=True), } for src_token_idx in range(len(src_tokens)): dataset.update( { 'net_input{idx}'.format(idx=src_token_idx+1): { 'src_tokens': RightPadDataset( src_tokens[src_token_idx], pad_idx=self.source_dictionary.pad(), ), 'src_lengths': NumelDataset(src_tokens[src_token_idx], reduce=False), } } ) label_path = '{}.label'.format(get_path('label', split)) if os.path.exists(label_path): with open(label_path) as h: dataset.update( target=RawLabelDataset([ int(x.strip()) for x in h.readlines() ]) ) nested_dataset = NestedDictionaryDataset( dataset, sizes=[np.maximum.reduce([src_token.sizes for src_token in src_tokens])], ) if self.args.no_shuffle: dataset = nested_dataset else: dataset = SortDataset( nested_dataset, # shuffle sort_order=[shuffle], ) print("| Loaded {0} with #samples: {1}".format(split, len(dataset))) self.datasets[split] = dataset return self.datasets[split] def build_model(self, args): from fairseq import models model = models.build_model(args, self) model.register_classification_head( 'sentence_classification_head', num_classes=1, ) return model def max_positions(self): return self.args.max_positions @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/sentence_ranking.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import torch from fairseq.data import ( data_utils, Dictionary, encoders, ConcatDataset, IdDataset, MaskTokensDataset, NestedDictionaryDataset, NumelDataset, NumSamplesDataset, PadDataset, PrependTokenDataset, RawLabelDataset, ResamplingDataset, SortDataset, TokenBlockDataset, ) from fairseq.tasks import FairseqTask, register_task @register_task('multilingual_masked_lm') class MultiLingualMaskedLMTask(FairseqTask): """Task for training masked language models (e.g., BERT, RoBERTa).""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument('data', help='colon separated path to data directories list, \ will be iterated upon during epochs in round-robin manner') parser.add_argument('--sample-break-mode', default='complete', choices=['none', 'complete', 'complete_doc', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample ' 'tokens. If set to "complete", splits samples only at the end ' 'of sentence, but may include multiple sentences per sample. ' '"complete_doc" is similar but respects doc boundaries. ' 'If set to "eos", includes only one sentence per sample.') parser.add_argument('--tokens-per-sample', default=512, type=int, help='max number of total tokens over all segments ' 'per sample for BERT dataset') parser.add_argument('--mask-prob', default=0.15, type=float, help='probability of replacing a token with mask') parser.add_argument('--leave-unmasked-prob', default=0.1, type=float, help='probability that a masked token is unmasked') parser.add_argument('--random-token-prob', default=0.1, type=float, help='probability of replacing a token with a random token') parser.add_argument('--freq-weighted-replacement', action='store_true', help='sample random replacement words based on word frequencies') parser.add_argument('--mask-whole-words', default=False, action='store_true', help='mask whole words; you may also want to set --bpe') parser.add_argument('--multilang-sampling-alpha', type=float, default=1.0, help='smoothing alpha for sample rations across multiple datasets') def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol('<mask>') @classmethod def setup_task(cls, args, **kwargs): paths = args.data.split(':') assert len(paths) > 0 dictionary = Dictionary.load(os.path.join(paths[0], 'dict.txt')) print('| dictionary: {} types'.format(len(dictionary))) return cls(args, dictionary) def _get_whole_word_mask(self): # create masked input and targets if self.args.mask_whole_words: bpe = encoders.build_bpe(self.args) if bpe is not None: def is_beginning_of_word(i): if i < self.source_dictionary.nspecial: # special elements are always considered beginnings return True tok = self.source_dictionary[i] if tok.startswith('madeupword'): return True try: return bpe.is_beginning_of_word(tok) except ValueError: return True mask_whole_words = torch.ByteTensor(list( map(is_beginning_of_word, range(len(self.source_dictionary))) )) else: mask_whole_words = None return mask_whole_words def _get_sample_prob(self, dataset_lens): """ Get smoothed sampling porbability by languages. This helps low resource languages by upsampling them. """ prob = dataset_lens / dataset_lens.sum() smoothed_prob = prob ** self.args.multilang_sampling_alpha smoothed_prob = smoothed_prob / smoothed_prob.sum() return smoothed_prob def load_dataset(self, split, epoch=0, combine=False, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ paths = self.args.data.split(':') assert len(paths) > 0 data_path = paths[epoch % len(paths)] languages = [ name for name in os.listdir(data_path) if os.path.isdir(os.path.join(data_path, name)) ] print("| Training on {0} languages: {1}".format(len(languages), languages)) print("| Language to id mapping: ", { lang: id for id, lang in enumerate(languages) } ) mask_whole_words = self._get_whole_word_mask() lang_datasets = [] for lang_id, language in enumerate(languages): split_path = os.path.join(data_path, language, split) dataset = data_utils.load_indexed_dataset( split_path, self.source_dictionary, self.args.dataset_impl, combine=combine, ) if dataset is None: raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path)) # create continuous blocks of tokens dataset = TokenBlockDataset( dataset, dataset.sizes, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode=self.args.sample_break_mode, ) print('| loaded {} blocks from: {}'.format(len(dataset), split_path)) # prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT) dataset = PrependTokenDataset(dataset, self.source_dictionary.bos()) src_dataset, tgt_dataset = MaskTokensDataset.apply_mask( dataset, self.source_dictionary, pad_idx=self.source_dictionary.pad(), mask_idx=self.mask_idx, seed=self.args.seed, mask_prob=self.args.mask_prob, leave_unmasked_prob=self.args.leave_unmasked_prob, random_token_prob=self.args.random_token_prob, freq_weighted_replacement=self.args.freq_weighted_replacement, mask_whole_words=mask_whole_words, ) lang_dataset = NestedDictionaryDataset( { 'net_input': { 'src_tokens': PadDataset( src_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), 'src_lengths': NumelDataset(src_dataset, reduce=False), }, 'target': PadDataset( tgt_dataset, pad_idx=self.source_dictionary.pad(), left_pad=False, ), 'nsentences': NumSamplesDataset(), 'ntokens': NumelDataset(src_dataset, reduce=True), 'lang_id': RawLabelDataset([lang_id] * src_dataset.sizes.shape[0]), }, sizes=[src_dataset.sizes], ) lang_datasets.append(lang_dataset) if split == self.args.train_subset: # For train subset, additionally up or down sample languages. dataset_lengths = np.array( [len(d) for d in lang_datasets], dtype=float, ) sample_probs = self._get_sample_prob(dataset_lengths) print("| Sample probability by language: ", { lang: "{0:.4f}".format(sample_probs[id]) for id, lang in enumerate(languages) } ) size_ratio = (sample_probs * dataset_lengths.sum()) / dataset_lengths print("| Up/Down Sampling ratio by language: ", { lang: "{0:.2f}".format(size_ratio[id]) for id, lang in enumerate(languages) } ) resampled_lang_datasets = [ ResamplingDataset( lang_datasets[i], size_ratio=size_ratio[i], seed=self.args.seed, epoch=epoch, replace=size_ratio[i] >= 1.0, ) for i, d in enumerate(lang_datasets) ] dataset = ConcatDataset(resampled_lang_datasets) else: dataset = ConcatDataset(lang_datasets) lang_splits = [split] for lang_id, lang_dataset in enumerate(lang_datasets): split_name = split + '_' + languages[lang_id] lang_splits.append(split_name) self.datasets[split_name] = lang_dataset # [TODO]: This is hacky for now to print validation ppl for each # language individually. Maybe need task API changes to allow it # in more generic ways. if split in self.args.valid_subset: self.args.valid_subset = self.args.valid_subset.replace( split, ','.join(lang_splits) ) with data_utils.numpy_seed(self.args.seed + epoch): shuffle = np.random.permutation(len(dataset)) self.datasets[split] = SortDataset( dataset, sort_order=[ shuffle, dataset.sizes, ], ) def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True): src_dataset = PadDataset( TokenBlockDataset( src_tokens, src_lengths, self.args.tokens_per_sample - 1, # one less for <s> pad=self.source_dictionary.pad(), eos=self.source_dictionary.eos(), break_mode='eos', ), pad_idx=self.source_dictionary.pad(), left_pad=False, ) src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos()) src_dataset = NestedDictionaryDataset( { 'id': IdDataset(), 'net_input': { 'src_tokens': src_dataset, 'src_lengths': NumelDataset(src_dataset, reduce=False), }, }, sizes=src_lengths, ) if sort: src_dataset = SortDataset(src_dataset, sort_order=[src_lengths]) return src_dataset def get_batch_iterator( self, dataset, max_tokens=None, max_sentences=None, max_positions=None, ignore_invalid_inputs=False, required_batch_size_multiple=1, seed=1, num_shards=1, shard_id=0, num_workers=0, epoch=0, ): # Recreate epoch iterator every epoch cause the underlying # datasets are dynamic due to sampling. self.dataset_to_epoch_iter = None return super().get_batch_iterator( dataset, max_tokens, max_sentences, max_positions, ignore_invalid_inputs, required_batch_size_multiple, seed, num_shards, shard_id, num_workers, epoch, ) @property def source_dictionary(self): return self.dictionary @property def target_dictionary(self): return self.dictionary
data2vec_vision-main
infoxlm/fairseq/fairseq/tasks/multilingual_masked_lm.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.optim.optimizer import Optimizer, required from . import FairseqOptimizer, register_optimizer @register_optimizer('nag') class FairseqNAG(FairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = NAG(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--momentum', default=0.99, type=float, metavar='M', help='momentum factor') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { 'lr': self.args.lr[0], 'momentum': self.args.momentum, 'weight_decay': self.args.weight_decay, } class NAG(Optimizer): def __init__(self, params, lr=required, momentum=0, weight_decay=0): defaults = dict(lr=lr, lr_old=lr, momentum=momentum, weight_decay=weight_decay) super(NAG, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] lr = group['lr'] lr_old = group.get('lr_old', lr) lr_correct = lr / lr_old for p in group['params']: if p.grad is None: continue p_data_fp32 = p.data.float() d_p = p.grad.data.float() param_state = self.state[p] if 'momentum_buffer' not in param_state: param_state['momentum_buffer'] = torch.zeros_like(d_p) else: param_state['momentum_buffer'] = param_state['momentum_buffer'].type_as(d_p) buf = param_state['momentum_buffer'] if weight_decay != 0: p_data_fp32.mul_(1 - lr * weight_decay) p_data_fp32.add_(momentum * momentum * lr_correct, buf) p_data_fp32.add_(-(1 + momentum) * lr, d_p) buf.mul_(momentum * lr_correct).add_(-lr, d_p) p.data.copy_(p_data_fp32) group['lr_old'] = lr return loss
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/nag.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.distributed as dist from . import FairseqOptimizer class FairseqBMUF(FairseqOptimizer): """ Implements incremental block distributed data parallelism similar to https://ieeexplore.ieee.org/document/7472805 Paper title: Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering """ def __init__(self, args, optimizer): super().__init__(args) self._optimizer = optimizer self._num_updates = 0 self.sync_iter = self.args.global_sync_iter self.block_momentum = self.args.block_momentum self.block_lr = self.args.block_lr self._reset_local_data() self.warmup_iteration = self.args.warmup_iterations self.use_nbm = self.args.use_nbm self.initial_state = self._optimizer.state_dict() self.average_sync = self.args.average_sync @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" parser.add_argument( "--block-lr", default=1, type=float, help="block learning rate for bmuf" ) parser.add_argument( "--block-momentum", default=0.875, type=float, help="block momentum for bmuf", ) parser.add_argument( "--global-sync-iter", default=50, type=int, help="Iteration for syncing global model", ) parser.add_argument( "--warmup-iterations", default=500, type=int, help="warmup iterations for model to broadcast", ) parser.add_argument( "--use-nbm", default=True, action="store_true", help="Specify whether you want to use classical BM / Nesterov BM", ) parser.add_argument( "--average-sync", default=True, action="store_true", help="Specify whether you want to average the local momentum after each sync", ) @property def optimizer(self): return self._optimizer.optimizer @property def optimizer_config(self): return self._optimizer.optimizer_config def get_lr(self): return self._optimizer.get_lr() def set_lr(self, lr): self._optimizer.set_lr(lr) def state_dict(self): return self._optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): self._optimizer.load_state_dict(state_dict, optimizer_overrides) def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" self._optimizer.multiply_grads(c) def clip_grad_norm(self, max_norm): """Clips gradient norm.""" return self._optimizer.clip_grad_norm(max_norm) def average_params(self): self._optimizer.average_params() def _block_sync(self): # Update the global model using local models from all GPUs # (Step-1) Calculate grad between previously synced model and # currrent local model if self.block_momentum != 0: self._calc_grad() # (Step-2) Average gradient from all GPUs self._avg_grad_from_all_gpus() # (Step-3) Calculate global momentum and update the global model if self.block_momentum != 0: self._update_global_model() # (Step-4) Average local optimizer params if self.average_sync: self.average_params() def _is_warmup_end(self): # Check whether train iterations is equal to warmup iter if self.get_num_updates() == self.warmup_iteration: return True return False def _is_bmuf_iter(self): # Check whether train iterations is equal to bmuf sync iter if (self.get_num_updates() > self.warmup_iteration) and ( self.get_num_updates() % self.sync_iter == 0 ): return True return False def _warmup_sync(self, root_rank=0): # Broadcast the local model to all gpus for param in self.params: dist.broadcast(param.data, src=root_rank) # Update local optimizer state if self.average_sync: self._optimizer.average_params() else: self._optimizer.load_state_dict(self.initial_state) self._reset_local_data() def step(self, closure=None): """Performs a single optimization step.""" self._optimizer.step(closure) self.set_num_updates(self.get_num_updates() + 1) if self._is_warmup_end(): self._warmup_sync() elif self._is_bmuf_iter(): self._block_sync() def zero_grad(self): """Clears the gradients of all optimized parameters.""" self._optimizer.zero_grad() def get_num_updates(self): """Get the number of parameters updates.""" return self._num_updates def set_num_updates(self, num_updates): """Set the number of parameters updates.""" self._num_updates = num_updates @torch.no_grad() def _reset_local_data(self): # (Step-0) Initialize global momentum parameters and store global copy on each gpu self.global_params = [torch.zeros_like(p.data) for p in self.params] self.smoothed_grads = [p.data.new_zeros(p.data.size()) for p in self.params] self.grads = [p.data.new_zeros(p.data.size()) for p in self.params] # saving the global model locally for calculating gradient during bmuf sync for param, global_param in zip(self.params, self.global_params): global_param.copy_(param.data) @torch.no_grad() def _calc_grad(self): # global_params is basically the global copy from the previously finished # synchronisation. param.data is local parameter after block_sync_freq # for the local gpu. so grad is difference between previously synced # model and currrent local model. for index, (param, global_param) in enumerate( zip(self.params, self.global_params) ): self.grads[index] = global_param - param.data def _avg_grad_from_all_gpus(self): for index, param in enumerate(self.params): sync_para = param.data if self.block_momentum == 0 else self.grads[index] sync_para /= float(dist.get_world_size()) dist.all_reduce(sync_para, op=dist.ReduceOp.SUM) @torch.no_grad() def _update_global_model(self): for index, (param, global_param, smoothed_grad, grad) in enumerate( zip( self.params, self.global_params, self.smoothed_grads, # all gpus would share the same value of smoothed_grad, since it is # always computed on synchronized gradients. self.grads, ) ): # global_param is basically last syncrhornized parameter. though # smoothed_grad is local, all processes will have same value of # smoothed_grad and hence param is globally synchronized copy. # smoothed_grad(t) = BM * smoothed_grad(t-1) + BM_lr * grad(t) smoothed_grad = self.block_momentum * smoothed_grad + self.block_lr * grad param.data.copy_(global_param - smoothed_grad) # A Nesterov momentum here is to do a partial weight update before # calculating the gradient if self.use_nbm: param.data.copy_(param.data - self.block_momentum * smoothed_grad) # backup for the next synchronization. self.smoothed_grads[index] = smoothed_grad global_param.copy_(param.data)
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/bmuf.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.optim from . import FairseqOptimizer, register_optimizer @register_optimizer('adafactor') class FairseqAdafactor(FairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = Adafactor(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adafactor-eps', default='(1e-30, 1e-3)', metavar="E", help='epsilons for Adafactor optimizer') parser.add_argument('--clip-threshold', type=float, default=1.0, metavar="C", help='threshold for clipping update root mean square') parser.add_argument('--decay-rate', type=float, default=-0.8, metavar="D", help='decay rate of the second moment estimator') parser.add_argument('--beta1', type=float, default=None, metavar="B", help='beta for first moment estimator. Optional') parser.add_argument('--scale-parameter', action='store_true', help='scale learning rate by root mean square of parameter.') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--warmup-init', action='store_true', help='use relative step for warm-up learning rate schedule') parser.add_argument('--relative-step', action='store_true', help='set learning rate to inverse square root of timestep.' 'If false, external learning rate applied') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. Note : Convergence issues empirically observed with fp16 on. Might require search for appropriate configuration. """ return { 'lr': self.args.lr[0], 'eps': eval(self.args.adafactor_eps), 'clip_threshold': self.args.clip_threshold, 'beta1': self.args.beta1, 'decay_rate': self.args.decay_rate, 'scale_parameter': self.args.scale_parameter, 'weight_decay': self.args.weight_decay, 'relative_step': self.args.relative_step, 'warmup_init': self.args.warmup_init, } class Adafactor(torch.optim.Optimizer): """Implements Adafactor algorithm. This implementation is based on: `Adafactor: Adaptive Learning Rates with Sublinear Memory Cost` (see https://arxiv.org/abs/1804.04235) Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): external learning rate (default: None) eps (tuple[float, float]): regularization constans for square gradient and parameter scale respectively (default: (1e-30, 1e-3)) clip_threshold (float): threshold of root mean square of final gradient update (default: 1.0) decay_rate (float): coefficient used to compute running averages of square gradient (default: -0.8) beta1 (float): coefficient used for computing running averages of gradient (default: None) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_parameter (bool): if true, learning rate is scaled by root mean square of parameter (default: True) relative_step (bool): if true, time-dependent learning rate is computed instead of external learning rate (default: True) warmup_init (bool): time-dependent learning rate computation depends on whether warm-up initialization is being used (default: False) """ def __init__(self, params, lr=None, eps=(1e-30, 1e-3), clip_threshold=1.0, decay_rate=-0.8, beta1=None, weight_decay=0.0, scale_parameter=True, relative_step=True, warmup_init=False): defaults = dict(lr=lr, eps=eps, clip_threshold=clip_threshold, decay_rate=decay_rate, beta1=beta1, weight_decay=weight_decay, scale_parameter=scale_parameter, relative_step=relative_step, warmup_init=warmup_init) super(Adafactor, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True def _get_lr(self, param_group, param_state): rel_step_sz = param_group['lr'] if param_group['relative_step']: min_step = 1e-6 * param_state['step'] if param_group['warmup_init'] else 1e-2 rel_step_sz = min(min_step, 1.0/math.sqrt(param_state['step'])) param_scale = 1.0 if param_group['scale_parameter']: param_scale = max(param_group['eps'][1], param_state['RMS']) return param_scale * rel_step_sz def _get_options(self, param_group, param_shape): factored = len(param_shape) >= 2 use_first_moment = param_group['beta1'] is not None return factored, use_first_moment def _rms(self, tensor): return tensor.norm(2) / (tensor.numel() ** 0.5) def _approx_sq_grad(self, exp_avg_sq_row, exp_avg_sq_col, output): r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1).unsqueeze(-1)).rsqrt_().unsqueeze(-1) c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt() torch.mul(r_factor, c_factor, out=output) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adafactor does not support sparse gradients.') state = self.state[p] grad_shape = grad.shape factored, use_first_moment = self._get_options(group, grad_shape) # State Initialization if len(state) == 0: state['step'] = 0 if use_first_moment: # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(grad) if factored: state['exp_avg_sq_row'] = torch.zeros(grad_shape[:-1]).type_as(grad) state['exp_avg_sq_col'] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).type_as(grad) else: state['exp_avg_sq'] = torch.zeros_like(grad) state['RMS'] = 0 else: if use_first_moment: state['exp_avg'] = state['exp_avg'].type_as(grad) if factored: state['exp_avg_sq_row'] = state['exp_avg_sq_row'].type_as(grad) state['exp_avg_sq_col'] = state['exp_avg_sq_col'].type_as(grad) else: state['exp_avg_sq'] = state['exp_avg_sq'].type_as(grad) p_data_fp32 = p.data.float() state['step'] += 1 state['RMS'] = self._rms(p_data_fp32) group['lr'] = self._get_lr(group, state) beta2t = 1.0 - math.pow(state['step'], group['decay_rate']) update = (grad**2) + group['eps'][0] if factored: exp_avg_sq_row = state['exp_avg_sq_row'] exp_avg_sq_col = state['exp_avg_sq_col'] exp_avg_sq_row.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-1)) exp_avg_sq_col.mul_(beta2t).add_(1.0 - beta2t, update.mean(dim=-2)) # Approximation of exponential moving average of square of gradient self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col, update) update.mul_(grad) else: exp_avg_sq = state['exp_avg_sq'] exp_avg_sq.mul_(beta2t).add_(1.0 - beta2t, update) torch.rsqrt(exp_avg_sq, out=update).mul_(grad) update.div_(max(1.0, self._rms(update) / group['clip_threshold'])) update.mul_(group['lr']) if use_first_moment: exp_avg = state['exp_avg'] exp_avg.mul_(group['beta1']).add_(1 - group['beta1'], update) update = exp_avg if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.add_(-update) p.data.copy_(p_data_fp32) return loss
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/adafactor.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch.optim from . import FairseqOptimizer, register_optimizer @register_optimizer('sgd') class SGD(FairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = torch.optim.SGD(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--momentum', default=0.0, type=float, metavar='M', help='momentum factor') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { 'lr': self.args.lr[0], 'momentum': self.args.momentum, 'weight_decay': self.args.weight_decay, }
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/sgd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch class FairseqOptimizer(object): def __init__(self, args): super().__init__() self.args = args @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" pass @property def optimizer(self): """Return a torch.optim.optimizer.Optimizer instance.""" if not hasattr(self, '_optimizer'): raise NotImplementedError if not isinstance(self._optimizer, torch.optim.Optimizer): raise ValueError('_optimizer must be an instance of torch.optim.Optimizer') return self._optimizer @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ raise NotImplementedError @property def params(self): """Return an iterable of the parameters held by the optimizer.""" for param_group in self.optimizer.param_groups: for p in param_group['params']: yield p def __getstate__(self): return self._optimizer.__getstate__() def get_lr(self): """Return the current learning rate.""" return self.optimizer.param_groups[0]['lr'] def set_lr(self, lr): """Set the learning rate.""" for param_group in self.optimizer.param_groups: param_group['lr'] = lr def state_dict(self): """Return the optimizer's state dict.""" return self.optimizer.state_dict() def load_state_dict(self, state_dict, optimizer_overrides=None): """Load an optimizer state dict. In general we should prefer the configuration of the existing optimizer instance (e.g., learning rate) over that found in the state_dict. This allows us to resume training from a checkpoint using a new set of optimizer args. """ self.optimizer.load_state_dict(state_dict) if optimizer_overrides is not None and len(optimizer_overrides) > 0: # override learning rate, momentum, etc. with latest values for group in self.optimizer.param_groups: group.update(optimizer_overrides) def backward(self, loss): """Computes the sum of gradients of the given tensor w.r.t. graph leaves.""" loss.backward() def multiply_grads(self, c): """Multiplies grads by a constant *c*.""" for p in self.params: if p.grad is not None: p.grad.data.mul_(c) def clip_grad_norm(self, max_norm): """Clips gradient norm.""" if max_norm > 0: return torch.nn.utils.clip_grad_norm_(self.params, max_norm) else: return math.sqrt(sum(p.grad.data.norm()**2 for p in self.params if p.grad is not None)) def step(self, closure=None): """Performs a single optimization step.""" self.optimizer.step(closure) def zero_grad(self): """Clears the gradients of all optimized parameters.""" for p in self.params: p.grad = None self.optimizer.zero_grad() @property def supports_memory_efficient_fp16(self): if hasattr(self.optimizer, 'supports_memory_efficient_fp16'): return self.optimizer.supports_memory_efficient_fp16 return False def average_params(self): pass
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/fairseq_optimizer.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import importlib import os from fairseq import registry from fairseq.optim.fairseq_optimizer import FairseqOptimizer from fairseq.optim.fp16_optimizer import FP16Optimizer, MemoryEfficientFP16Optimizer from fairseq.optim.bmuf import FairseqBMUF # noqa __all__ = [ 'FairseqOptimizer', 'FP16Optimizer', 'MemoryEfficientFP16Optimizer', ] build_optimizer, register_optimizer, OPTIMIZER_REGISTRY = registry.setup_registry( '--optimizer', base_class=FairseqOptimizer, default='nag', ) # automatically import any Python files in the optim/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith('.py') and not file.startswith('_'): module = file[:file.find('.py')] importlib.import_module('fairseq.optim.' + module)
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.optim from . import FairseqOptimizer, register_optimizer @register_optimizer('adamax') class FairseqAdamax(FairseqOptimizer): def __init__(self, args, params): super().__init__(args) self._optimizer = Adamax(params, **self.optimizer_config) @staticmethod def add_args(parser): """Add optimizer-specific arguments to the parser.""" # fmt: off parser.add_argument('--adamax-betas', default='(0.9, 0.999)', metavar='B', help='betas for Adam optimizer') parser.add_argument('--adamax-eps', type=float, default=1e-8, metavar='D', help='epsilon for Adam optimizer') parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD', help='weight decay') parser.add_argument('--no-bias-correction', default=False, action='store_true', help='disable bias correction') # fmt: on @property def optimizer_config(self): """ Return a kwarg dictionary that will be used to override optimizer args stored in checkpoints. This allows us to load a checkpoint and resume training using a different set of optimizer args, e.g., with a different learning rate. """ return { 'lr': self.args.lr[0], 'betas': eval(self.args.adamax_betas), 'eps': self.args.adamax_eps, 'weight_decay': self.args.weight_decay, 'bias_correction': not self.args.no_bias_correction, } class Adamax(torch.optim.Optimizer): """Implements Adamax algorithm (a variant of Adam based on infinity norm). It has been proposed in `Adam: A Method for Stochastic Optimization`__. Compared to the version in PyTorch, this version implements a fix for weight decay. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) bias_correction (bool, optional): enable bias correction (default: True) __ https://arxiv.org/abs/1412.6980 """ def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, bias_correction=True): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction) super(Adamax, self).__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: raise RuntimeError('Adamax does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_inf'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_inf'] = state['exp_inf'].type_as(p_data_fp32) exp_avg, exp_inf = state['exp_avg'], state['exp_inf'] beta1, beta2 = group['betas'] eps = group['eps'] state['step'] += 1 # Update biased first moment estimate. exp_avg.mul_(beta1).add_(1 - beta1, grad) # Update the exponentially weighted infinity norm. torch.max( exp_inf.mul_(beta2), grad.abs_(), out=exp_inf, ) step_size = group['lr'] if group['bias_correction']: bias_correction = 1 - beta1 ** state['step'] step_size /= bias_correction if group['weight_decay'] != 0: p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) p_data_fp32.addcdiv_(-step_size, exp_avg, exp_inf.add(eps)) p.data.copy_(p_data_fp32) return loss
data2vec_vision-main
infoxlm/fairseq/fairseq/optim/adamax.py