python_code
stringlengths 0
4.04M
| repo_name
stringlengths 8
58
| file_path
stringlengths 5
147
|
---|---|---|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
def gen_forward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
blocks = [32, 64, 128, 256]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "dynamicconv_cuda.cuh"
std::vector<at::Tensor> dynamicconv_cuda_forward(at::Tensor input, at::Tensor weight, int padding_l) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = weight.size(1);
const auto filterSize = weight.size(2);
const auto numFiltersInBlock = numFeatures / numHeads;
const dim3 blocks(minibatch, numFeatures);
auto output = at::zeros_like(input);
auto stream = at::cuda::getCurrentCUDAStream();
"""
switch = """
switch(filterSize) {
"""
case_k = """
case {k}:
"""
main_block = """
if (padding_l == {pad}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "dynamicconv_forward", ([&] {{
dynamicconv_forward_kernel<{k}, {b_size}, {pad}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
input.data<scalar_t>(),
weight.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
output.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping forward pass" << std::endl;
}
break;\n
"""
end = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping forward pass" << std::endl;
}
return {output};
}
"""
with open("dynamicconv_cuda_forward.cu", "w") as forward:
forward.write(head)
forward.write(switch)
for k in kernels:
b_size = 32
for b in blocks:
if b > k:
b_size = b
break
forward.write(case_k.format(k=k))
for pad in [k // 2, k - 1]:
forward.write(main_block.format(k=k, b_size=b_size, pad=pad))
forward.write(bad_padding)
forward.write(end)
def gen_backward():
kernels = [3, 5, 7, 15, 31, 63, 127, 255]
thresh = [512, 512, 512, 512, 512, 380, 256, 256]
min_block = [64, 64, 64, 64, 64, 64, 128, 256]
seqs = [32 * x for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]]
head = """
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "dynamicconv_cuda.cuh"
std::vector<at::Tensor> dynamicconv_cuda_backward(at::Tensor gradOutput, int padding_l, at::Tensor input, at::Tensor weight) {
at::DeviceGuard g(input.device());
const auto minibatch = input.size(0);
const auto numFeatures = input.size(1);
const auto sequenceLength = input.size(2);
const auto numHeads = weight.size(1);
const auto filterSize = weight.size(2);
const auto numFiltersInBlock = numFeatures / numHeads;
auto numChunks = 1;
auto gradInput = at::zeros_like(input);
auto gradWeight = at::zeros_like(weight);
auto stream = at::cuda::getCurrentCUDAStream();
dim3 blocks(minibatch, numHeads, numChunks);
"""
sequence_if = """
if (sequenceLength < {seq}) {{
switch(filterSize) {{
"""
case_k = """
case {k}:
"""
chunks_reset = """
numChunks = int(ceilf(sequenceLength/float({b_size})));
blocks = dim3(minibatch, numHeads, numChunks);
"""
main_block = """
if (padding_l == {p}) {{
AT_DISPATCH_FLOATING_TYPES_AND_HALF(gradOutput.scalar_type(), "dynamicconv_backward", ([&] {{
dynamicconv_backward_kernel<{k}, {b_size}, {p}, scalar_t>
<<<blocks, {b_size}, 0, stream>>>(
gradOutput.data<scalar_t>(),
input.data<scalar_t>(),
weight.data<scalar_t>(),
minibatch,
sequenceLength,
numFeatures,
numFiltersInBlock,
numHeads,
gradWeight.data<scalar_t>(),
gradInput.data<scalar_t>());
}}));
}} else
"""
bad_padding = """
{
std::cout << "WARNING: Unsupported padding size - skipping backward pass" << std::endl;
}
break;\n
"""
bad_filter = """
default:
std::cout << "WARNING: Unsupported filter length passed - skipping backward pass" << std::endl;
}
"""
con_else = """
} else
"""
final_else = """
{
switch(filterSize) {
"""
last_return = """
}
return {gradInput, gradWeight};
}
"""
with open("dynamicconv_cuda_backward.cu", "w") as backward:
backward.write(head)
for seq in seqs:
backward.write(sequence_if.format(seq=seq))
for k, t, m in zip(kernels, thresh, min_block):
backward.write(case_k.format(k=k))
if seq <= t:
b_size = seq
else:
b_size = m
backward.write(chunks_reset.format(b_size=b_size))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=b_size, p=p))
backward.write(bad_padding)
backward.write(bad_filter)
backward.write(con_else)
backward.write(final_else)
for k, m in zip(kernels, min_block):
backward.write(case_k.format(k=k))
backward.write(chunks_reset.format(b_size=m))
for p in [k // 2, k - 1]:
backward.write(main_block.format(k=k, b_size=m, p=p))
backward.write(bad_padding)
backward.write(bad_filter)
backward.write(last_return)
if __name__ == "__main__":
gen_forward()
gen_backward()
| data2vec_vision-main | deltalm/src/fairseq/modules/dynamicconv_layer/cuda_function_gen.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .dynamicconv_layer import DynamicconvLayer # noqa
| data2vec_vision-main | deltalm/src/fairseq/modules/dynamicconv_layer/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import dynamicconv_cuda
import torch
import torch.nn.functional as F
from fairseq import utils
from fairseq.incremental_decoding_utils import with_incremental_state
from fairseq.modules.fairseq_dropout import FairseqDropout
from fairseq.modules.unfold import unfold1d
from torch import nn
from torch.autograd import Function
class dynamicconvFunction(Function):
@staticmethod
def forward(ctx, x, weights, padding_l):
ctx.padding_l = padding_l
outputs = dynamicconv_cuda.forward(x, weights, padding_l)
variables = [x, weights]
ctx.save_for_backward(*variables)
return outputs[0]
@staticmethod
def backward(ctx, grad_output):
outputs = dynamicconv_cuda.backward(
grad_output.contiguous(), ctx.padding_l, *ctx.saved_tensors
)
grad_input, grad_weights = outputs
return grad_input, grad_weights, None
@with_incremental_state
class DynamicconvLayer(nn.Module):
def __init__(
self,
input_size,
kernel_size=1,
padding_l=None,
weight_softmax=False,
num_heads=1,
weight_dropout=0.0,
bias=False,
renorm_padding=False,
conv_bias=False,
query_size=None,
):
super(DynamicconvLayer, self).__init__()
self.input_size = input_size
self.query_size = input_size if query_size is None else query_size
self.kernel_size = kernel_size
self.padding_l = padding_l
self.num_heads = num_heads
self.weight_softmax = weight_softmax
self.weight_dropout_module = FairseqDropout(
weight_dropout, module_name=self.__class__.__name__
)
self.renorm_padding = renorm_padding
self.bias = bias
self.weight_linear = nn.Linear(input_size, num_heads * kernel_size, bias)
if conv_bias:
self.conv_bias = nn.Parameter(torch.Tensor(input_size))
else:
self.conv_bias = None
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight_linear.weight)
if self.conv_bias is not None:
nn.init.constant_(self.conv_bias, 0.0)
nn.init.constant_(self.weight_linaer.bias, 0.0)
def forward(self, x, incremental_state=None, query=None, unfold=None):
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
# R = C // H
# during inference time, incremental BMM is faster
if incremental_state is not None:
unfold = (
x.size(0) > 512 if unfold is None else unfold
) # use unfold mode as default for long sequence to save memory
unfold = unfold or (incremental_state is not None)
assert query is None
if query is None:
query = x
if unfold:
output = self._forward_unfolded(x, incremental_state, query)
else:
output = self._forward_expanded(x, incremental_state, query)
if self.conv_bias is not None:
output = output + self.conv_bias.view(1, 1, -1)
return output
# during training time, use CUDA kernel
else:
weight = self.weight_linear(x).view(T, B, H, K)
if self.weight_softmax:
weight = F.softmax(weight, dim=-1)
if self.weight_dropout_module.p:
weight = self.weight_dropout_module(weight)
weight = weight.permute(1, 2, 3, 0).contiguous()
self.filters = weight
x = x.permute(1, 2, 0).contiguous()
output = dynamicconvFunction.apply(x, weight, self.padding_l).permute(
2, 0, 1
)
if self.conv_bias is not None:
output = output + self.conv_bias.view(1, 1, -1)
return output
def reorder_incremental_state(self, incremental_state, new_order):
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is not None:
input_buffer = input_buffer.index_select(1, new_order)
self._set_input_buffer(incremental_state, input_buffer)
def _get_input_buffer(self, incremental_state):
return utils.get_incremental_state(self, incremental_state, "input_buffer")
def _set_input_buffer(self, incremental_state, new_buffer):
return utils.set_incremental_state(
self, incremental_state, "input_buffer", new_buffer
)
def _forward_unfolded(self, x, incremental_state, query):
"""The conventional implementation of convolutions.
Unfolding the input by having a window shifting to the right."""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight_linear(query).view(T * B * H, -1)
# renorm_padding is only implemented in _forward_expanded
assert not self.renorm_padding or incremental_state is not None
if incremental_state is not None:
input_buffer = self._get_input_buffer(incremental_state)
if input_buffer is None:
input_buffer = x.new()
x_unfold = torch.cat([input_buffer, x.unsqueeze(3)], dim=3)
if self.kernel_size > 1:
self._set_input_buffer(
incremental_state, x_unfold[:, :, :, -self.kernel_size + 1 :]
)
x_unfold = x_unfold.view(T * B * H, R, -1)
else:
padding_l = self.padding_l
if K > T and padding_l == K - 1:
weight = weight.narrow(1, K - T, T)
K, padding_l = T, T - 1
# unfold the input: T x B x C --> T' x B x C x K
x_unfold = unfold1d(x, K, padding_l, 0)
x_unfold = x_unfold.view(T * B * H, R, K)
if self.weight_softmax and not self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = weight.narrow(1, 0, K)
if incremental_state is not None:
weight = weight[:, -x_unfold.size(2) :]
K = weight.size(1)
if self.weight_softmax and self.renorm_padding:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
output = torch.bmm(x_unfold, weight.unsqueeze(2)) # T*B*H x R x 1
output = output.view(T, B, C)
return output
def _forward_expanded(self, x, incremental_stat, query):
"""Turn the convolution filters into band matrices and do matrix multiplication.
This is faster when the sequence is short, but less memory efficient.
This is not used in the decoder during inference.
"""
T, B, C = x.size()
K, H = self.kernel_size, self.num_heads
R = C // H
assert R * H == C == self.input_size
weight = self.weight_linear(query).view(T * B * H, -1)
if not self.renorm_padding:
if self.weight_softmax:
weight = F.softmax(weight, dim=1)
weight = self.weight_dropout_module(weight, inplace=False)
weight = weight.narrow(1, 0, K).contiguous()
weight = weight.view(T, B * H, K).transpose(0, 1)
x = x.view(T, B * H, R).transpose(0, 1)
if self.weight_softmax and self.renorm_padding:
# turn the convolution filters into band matrices
weight_expanded = weight.new(B * H, T, T + K - 1).fill_(float("-inf"))
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, self.padding_l, T)
# normalize the weight over valid positions like self-attention
weight_expanded = F.softmax(weight_expanded, dim=2)
weight_expanded = self.weight_dropout_module(weight_expanded, inplace=False)
else:
P = self.padding_l
# For efficieny, we cut the kernel size and reduce the padding when the kernel is larger than the length
if K > T and P == K - 1:
weight = weight.narrow(2, K - T, T)
K, P = T, T - 1
# turn the convolution filters into band matrices
weight_expanded = weight.new_zeros(B * H, T, T + K - 1, requires_grad=False)
weight_expanded.as_strided(
(B * H, T, K), (T * (T + K - 1), T + K, 1)
).copy_(weight)
weight_expanded = weight_expanded.narrow(2, P, T) # B*H x T x T
output = torch.bmm(weight_expanded, x)
output = output.transpose(0, 1).contiguous().view(T, B, C)
return output
| data2vec_vision-main | deltalm/src/fairseq/modules/dynamicconv_layer/dynamicconv_layer.py |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name="dynamicconv_layer",
ext_modules=[
CUDAExtension(
name="dynamicconv_cuda",
sources=[
"dynamicconv_cuda.cpp",
"dynamicconv_cuda_kernel.cu",
],
),
],
cmdclass={"build_ext": BuildExtension},
)
| data2vec_vision-main | deltalm/src/fairseq/modules/dynamicconv_layer/setup.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class OffsetTokensDataset(BaseWrapperDataset):
def __init__(self, dataset, offset):
super().__init__(dataset)
self.offset = offset
def __getitem__(self, idx):
return self.dataset[idx] + self.offset
| data2vec_vision-main | deltalm/src/fairseq/data/offset_tokens_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
import torch
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
def _flatten(dico, prefix=None):
"""Flatten a nested dictionary."""
new_dico = OrderedDict()
if isinstance(dico, dict):
prefix = prefix + "." if prefix is not None else ""
for k, v in dico.items():
if v is None:
continue
new_dico.update(_flatten(v, prefix + k))
elif isinstance(dico, list):
for i, v in enumerate(dico):
new_dico.update(_flatten(v, prefix + ".[" + str(i) + "]"))
else:
new_dico = OrderedDict({prefix: dico})
return new_dico
def _unflatten(dico):
"""Unflatten a flattened dictionary into a nested dictionary."""
new_dico = OrderedDict()
for full_k, v in dico.items():
full_k = full_k.split(".")
node = new_dico
for k in full_k[:-1]:
if k.startswith("[") and k.endswith("]"):
k = int(k[1:-1])
if k not in node:
node[k] = OrderedDict()
node = node[k]
node[full_k[-1]] = v
return new_dico
class NestedDictionaryDataset(FairseqDataset):
def __init__(self, defn, sizes=None):
super().__init__()
self.defn = _flatten(defn)
self.sizes = [sizes] if not isinstance(sizes, (list, tuple)) else sizes
first = None
for v in self.defn.values():
if not isinstance(
v,
(
FairseqDataset,
torch.utils.data.Dataset,
),
):
raise ValueError("Expected Dataset but found: {}".format(v.__class__))
first = first or v
if len(v) > 0:
assert len(v) == len(first), "dataset lengths must match"
self._len = len(first)
def __getitem__(self, index):
return OrderedDict((k, ds[index]) for k, ds in self.defn.items())
def __len__(self):
return self._len
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
if len(samples) == 0:
return {}
sample = OrderedDict()
for k, ds in self.defn.items():
try:
sample[k] = ds.collater([s[k] for s in samples])
except NotImplementedError:
sample[k] = default_collate([s[k] for s in samples])
return _unflatten(sample)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return max(s[index] for s in self.sizes)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if len(self.sizes) == 1:
return self.sizes[0][index]
else:
return (s[index] for s in self.sizes)
@property
def supports_prefetch(self):
"""Whether this dataset supports prefetching."""
return any(ds.supports_prefetch for ds in self.defn.values())
def prefetch(self, indices):
"""Prefetch the data required for this epoch."""
for ds in self.defn.values():
if getattr(ds, "supports_prefetch", False):
ds.prefetch(indices)
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(ds.can_reuse_epoch_itr_across_epochs for ds in self.defn.values())
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.defn.values():
ds.set_epoch(epoch)
| data2vec_vision-main | deltalm/src/fairseq/data/nested_dictionary_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from collections import OrderedDict
from typing import Dict, List
import numpy as np
from fairseq.data import data_utils
from . import FairseqDataset
logger = logging.getLogger(__name__)
class MultiCorpusDataset(FairseqDataset):
"""
Stores multiple instances of FairseqDataset together. Requires each instance
to be the same dataset, as the collate method needs to work on batches with
samples from each dataset.
Allows specifying a distribution over the datasets to use. Note that unlike
MultiCorpusSampledDataset, this distribution allows sampling for each item,
rather than on a batch level.
Each time ordered_indices() is called, a new sample is generated with
the specified distribution.
Args:
datasets: a OrderedDict of FairseqDataset instances.
distribution: a List containing the probability of getting an utterance from
corresponding dataset
seed: random seed for sampling the datsets
sort_indices: if true, will sort the ordered indices by size
"""
def __init__(
self,
datasets: Dict[str, FairseqDataset],
distribution: List[float],
seed: int,
sort_indices: bool = False,
):
super().__init__()
assert isinstance(datasets, OrderedDict)
assert len(datasets) == len(distribution)
self.datasets = datasets
self.distribution = distribution
self.seed = seed
self.sort_indices = sort_indices
# Avoid repeated conversions to list later
self.dataset_list = list(datasets.values())
self.total_num_instances = 0
first_dataset = list(self.datasets.values())[0]
self.dataset_offsets = []
for dataset in datasets.values():
assert isinstance(dataset, FairseqDataset)
assert type(dataset) is type(first_dataset)
self.dataset_offsets.append(self.total_num_instances)
self.total_num_instances += len(dataset)
def ordered_indices(self):
with data_utils.numpy_seed(self.seed, self.epoch):
# Used to store the order of indices of each dataset to use
indices = [
np.random.permutation(len(dataset))
for dataset in self.datasets.values()
]
# Keep track of which samples we've used for each dataset
counters = [0 for _ in self.datasets]
sampled_indices = [
self._sample(indices, counters) for _ in range(self.total_num_instances)
]
if self.sort_indices:
sampled_indices.sort(key=lambda i: self.num_tokens(i))
return np.array(sampled_indices, dtype=np.int64)
def _sample(self, indices, counters):
# First pick dataset
dataset_idx = np.random.choice(len(self.distribution), p=self.distribution)
# Then get dataset internal index
idx = indices[dataset_idx][counters[dataset_idx]]
# Convert to multi-datasets index
idx += self.dataset_offsets[dataset_idx]
counters[dataset_idx] += 1
# Reset if we reach end
if counters[dataset_idx] == len(self.dataset_list[dataset_idx]):
counters[dataset_idx] = 0
indices[dataset_idx] = np.random.permutation(
len(self.dataset_list[dataset_idx])
)
return idx
def _map_index(self, index: int):
"""
If dataset A has length N and dataset B has length M
then index 1 maps to index 1 of dataset A, and index N + 1
maps to index 1 of B.
"""
counter = 0
for key, dataset in self.datasets.items():
if index < counter + len(dataset):
return index - counter, key
counter += len(dataset)
raise ValueError(
"Invalid index: {}, max: {}".format(index, self.total_num_instances)
)
def __len__(self):
"""
Length of this dataset is the sum of individual datasets
"""
return self.total_num_instances
def __getitem__(self, index):
index, key = self._map_index(index)
return self.datasets[key][index]
def collater(self, samples):
"""
Since we enforce all datsets to be the same, collating is just
picking the first one and doing collate.
"""
if len(samples) == 0:
return None
return list(self.datasets.values())[0].collater(samples)
def num_tokens(self, index: int):
index, key = self._map_index(index)
return self.datasets[key].num_tokens(index)
def size(self, index: int):
index, key = self._map_index(index)
return self.datasets[key].size(index)
@property
def can_reuse_epoch_itr_across_epochs(self):
return False
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
@property
def supports_prefetch(self):
return False
@property
def supports_fetch_outside_dataloader(self):
return all(
self.datasets[key].supports_fetch_outside_dataloader
for key in self.datasets
)
| data2vec_vision-main | deltalm/src/fairseq/data/multi_corpus_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import numpy as np
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
class ConcatDataset(FairseqDataset):
@staticmethod
def cumsum(sequence, sample_ratios):
r, s = [], 0
for e, ratio in zip(sequence, sample_ratios):
curr_len = int(ratio * len(e))
r.append(curr_len + s)
s += curr_len
return r
def __init__(self, datasets, sample_ratios=1):
super(ConcatDataset, self).__init__()
assert len(datasets) > 0, "datasets should not be an empty iterable"
self.datasets = list(datasets)
if isinstance(sample_ratios, int):
sample_ratios = [sample_ratios] * len(self.datasets)
self.sample_ratios = sample_ratios
self.cumulative_sizes = self.cumsum(self.datasets, sample_ratios)
self.real_sizes = [len(d) for d in self.datasets]
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
return self.datasets[dataset_idx][sample_idx]
def _get_dataset_and_sample_index(self, idx: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
sample_idx = sample_idx % self.real_sizes[dataset_idx]
return dataset_idx, sample_idx
def collater(self, samples, **extra_args):
# For now only supports datasets with same underlying collater implementations
if hasattr(self.datasets[0], "collater"):
return self.datasets[0].collater(samples, **extra_args)
else:
return default_collate(samples, **extra_args)
def size(self, idx: int):
"""
Return an example's size as a float or tuple.
"""
dataset_idx, sample_idx = self._get_dataset_and_sample_index(idx)
return self.datasets[dataset_idx].size(sample_idx)
def num_tokens(self, index: int):
return np.max(self.size(index))
def attr(self, attr: str, index: int):
dataset_idx = bisect.bisect_right(self.cumulative_sizes, index)
return getattr(self.datasets[dataset_idx], attr, None)
@property
def sizes(self):
_dataset_sizes = []
for ds, sr in zip(self.datasets, self.sample_ratios):
if isinstance(ds.sizes, np.ndarray):
_dataset_sizes.append(np.tile(ds.sizes, sr))
else:
# Only support underlying dataset with single size array.
assert isinstance(ds.sizes, list)
_dataset_sizes.append(np.tile(ds.sizes[0], sr))
return np.concatenate(_dataset_sizes)
@property
def supports_prefetch(self):
return all(d.supports_prefetch for d in self.datasets)
def ordered_indices(self):
"""
Returns indices sorted by length. So less padding is needed.
"""
if isinstance(self.sizes, np.ndarray) and len(self.sizes.shape) > 1:
# special handling for concatenating lang_pair_datasets
indices = np.arange(len(self))
sizes = self.sizes
tgt_sizes = (
sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
)
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
# sort by target length, then source length
if tgt_sizes is not None:
indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")]
return indices[np.argsort(src_sizes[indices], kind="mergesort")]
else:
return np.argsort(self.sizes)
def prefetch(self, indices):
frm = 0
for to, ds in zip(self.cumulative_sizes, self.datasets):
real_size = len(ds)
if getattr(ds, "supports_prefetch", False):
ds.prefetch([(i - frm) % real_size for i in indices if frm <= i < to])
frm = to
@property
def can_reuse_epoch_itr_across_epochs(self):
return all(d.can_reuse_epoch_itr_across_epochs for d in self.datasets)
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.datasets:
if hasattr(ds, "set_epoch"):
ds.set_epoch(epoch)
| data2vec_vision-main | deltalm/src/fairseq/data/concat_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class ReplaceDataset(BaseWrapperDataset):
"""Replaces tokens found in the dataset by a specified replacement token
Args:
dataset (~torch.utils.data.Dataset): dataset to replace tokens in
replace_map(Dictionary[int,int]): map of token to replace -> replacement token
offsets (List[int]): do not replace tokens before (from left if pos, right if neg) this offset. should be
as many as the number of objects returned by the underlying dataset __getitem__ method.
"""
def __init__(self, dataset, replace_map, offsets):
super().__init__(dataset)
assert len(replace_map) > 0
self.replace_map = replace_map
self.offsets = offsets
def __getitem__(self, index):
item = self.dataset[index]
is_tuple = isinstance(item, tuple)
srcs = item if is_tuple else [item]
for offset, src in zip(self.offsets, srcs):
for k, v in self.replace_map.items():
src_off = src[offset:] if offset >= 0 else src[:offset]
src_off.masked_fill_(src_off == k, v)
item = srcs if is_tuple else srcs[0]
return item
| data2vec_vision-main | deltalm/src/fairseq/data/replace_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq import utils
from . import FairseqDataset
def backtranslate_samples(samples, collate_fn, generate_fn, cuda=True):
"""Backtranslate a list of samples.
Given an input (*samples*) of the form:
[{'id': 1, 'source': 'hallo welt'}]
this will return:
[{'id': 1, 'source': 'hello world', 'target': 'hallo welt'}]
Args:
samples (List[dict]): samples to backtranslate. Individual samples are
expected to have a 'source' key, which will become the 'target'
after backtranslation.
collate_fn (callable): function to collate samples into a mini-batch
generate_fn (callable): function to generate backtranslations
cuda (bool): use GPU for generation (default: ``True``)
Returns:
List[dict]: an updated list of samples with a backtranslated source
"""
collated_samples = collate_fn(samples)
s = utils.move_to_cuda(collated_samples) if cuda else collated_samples
generated_sources = generate_fn(s)
id_to_src = {sample["id"]: sample["source"] for sample in samples}
# Go through each tgt sentence in batch and its corresponding best
# generated hypothesis and create a backtranslation data pair
# {id: id, source: generated backtranslation, target: original tgt}
return [
{
"id": id.item(),
"target": id_to_src[id.item()],
"source": hypos[0]["tokens"].cpu(),
}
for id, hypos in zip(collated_samples["id"], generated_sources)
]
class BacktranslationDataset(FairseqDataset):
"""
Sets up a backtranslation dataset which takes a tgt batch, generates
a src using a tgt-src backtranslation function (*backtranslation_fn*),
and returns the corresponding `{generated src, input tgt}` batch.
Args:
tgt_dataset (~fairseq.data.FairseqDataset): the dataset to be
backtranslated. Only the source side of this dataset will be used.
After backtranslation, the source sentences in this dataset will be
returned as the targets.
src_dict (~fairseq.data.Dictionary): the dictionary of backtranslated
sentences.
tgt_dict (~fairseq.data.Dictionary, optional): the dictionary of
sentences to be backtranslated.
backtranslation_fn (callable, optional): function to call to generate
backtranslations. This is typically the `generate` method of a
:class:`~fairseq.sequence_generator.SequenceGenerator` object.
Pass in None when it is not available at initialization time, and
use set_backtranslation_fn function to set it when available.
output_collater (callable, optional): function to call on the
backtranslated samples to create the final batch
(default: ``tgt_dataset.collater``).
cuda: use GPU for generation
"""
def __init__(
self,
tgt_dataset,
src_dict,
tgt_dict=None,
backtranslation_fn=None,
output_collater=None,
cuda=True,
**kwargs
):
self.tgt_dataset = tgt_dataset
self.backtranslation_fn = backtranslation_fn
self.output_collater = (
output_collater if output_collater is not None else tgt_dataset.collater
)
self.cuda = cuda if torch.cuda.is_available() else False
self.src_dict = src_dict
self.tgt_dict = tgt_dict
def __getitem__(self, index):
"""
Returns a single sample from *tgt_dataset*. Note that backtranslation is
not applied in this step; use :func:`collater` instead to backtranslate
a batch of samples.
"""
return self.tgt_dataset[index]
def __len__(self):
return len(self.tgt_dataset)
def set_backtranslation_fn(self, backtranslation_fn):
self.backtranslation_fn = backtranslation_fn
def collater(self, samples):
"""Merge and backtranslate a list of samples to form a mini-batch.
Using the samples from *tgt_dataset*, load a collated target sample to
feed to the backtranslation model. Then take the backtranslation with
the best score as the source and the original input as the target.
Note: we expect *tgt_dataset* to provide a function `collater()` that
will collate samples into the format expected by *backtranslation_fn*.
After backtranslation, we will feed the new list of samples (i.e., the
`(backtranslated source, original source)` pairs) to *output_collater*
and return the result.
Args:
samples (List[dict]): samples to backtranslate and collate
Returns:
dict: a mini-batch with keys coming from *output_collater*
"""
if samples[0].get("is_dummy", False):
return samples
samples = backtranslate_samples(
samples=samples,
collate_fn=self.tgt_dataset.collater,
generate_fn=(lambda net_input: self.backtranslation_fn(net_input)),
cuda=self.cuda,
)
return self.output_collater(samples)
def num_tokens(self, index):
"""Just use the tgt dataset num_tokens"""
return self.tgt_dataset.num_tokens(index)
def ordered_indices(self):
"""Just use the tgt dataset ordered_indices"""
return self.tgt_dataset.ordered_indices()
def size(self, index):
"""Return an example's size as a float or tuple. This value is used
when filtering a dataset with ``--max-positions``.
Note: we use *tgt_dataset* to approximate the length of the source
sentence, since we do not know the actual length until after
backtranslation.
"""
tgt_size = self.tgt_dataset.size(index)[0]
return (tgt_size, tgt_size)
@property
def supports_prefetch(self):
return getattr(self.tgt_dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.tgt_dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/backtranslation_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class IdDataset(FairseqDataset):
def __getitem__(self, index):
return index
def __len__(self):
return 0
def collater(self, samples):
return torch.tensor(samples)
| data2vec_vision-main | deltalm/src/fairseq/data/id_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import BaseWrapperDataset
class PrependDataset(BaseWrapperDataset):
def __init__(self, dataset, prepend_getter, ensure_first_token_is=None):
super().__init__(dataset)
self.prepend_getter = prepend_getter
self.ensure_first_token = ensure_first_token_is
def __getitem__(self, idx):
item = self.dataset[idx]
is_tuple = isinstance(item, tuple)
src = item[0] if is_tuple else item
assert self.ensure_first_token is None or src[0] == self.ensure_first_token
prepend_idx = self.prepend_getter(self.dataset, idx)
assert isinstance(prepend_idx, int)
src[0] = prepend_idx
item = tuple((src,) + item[1:]) if is_tuple else src
return item
| data2vec_vision-main | deltalm/src/fairseq/data/prepend_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
from typing import Callable, Dict, List
import numpy as np
from . import FairseqDataset
def uniform_sampler(x):
# Sample from uniform distribution
return np.random.choice(x, 1).item()
class MultiCorpusSampledDataset(FairseqDataset):
"""
Stores multiple instances of FairseqDataset together and in every iteration
creates a batch by first sampling a dataset according to a specified
probability distribution and then getting instances from that dataset.
Args:
datasets: an OrderedDict of FairseqDataset instances.
sampling_func: A function for sampling over list of dataset keys.
The default strategy is to sample uniformly.
"""
def __init__(
self,
datasets: Dict[str, FairseqDataset],
sampling_func: Callable[[List], int] = None,
):
super().__init__()
assert isinstance(datasets, OrderedDict)
self.datasets = datasets
if sampling_func is None:
sampling_func = uniform_sampler
self.sampling_func = sampling_func
self.total_num_instances = 0
for _, dataset in datasets.items():
assert isinstance(dataset, FairseqDataset)
self.total_num_instances += len(dataset)
self._ordered_indices = None
def __len__(self):
"""
Length of this dataset is the sum of individual datasets
"""
return self.total_num_instances
def ordered_indices(self):
"""
Ordered indices for batching. Here we call the underlying
dataset's ordered_indices() so that we get the same random ordering
as we would have from using the underlying dataset directly.
"""
if self._ordered_indices is None:
self._ordered_indices = OrderedDict(
[
(key, dataset.ordered_indices())
for key, dataset in self.datasets.items()
]
)
return np.arange(len(self))
def _map_index_to_dataset(self, key: int, index: int):
"""
Different underlying datasets have different lengths. In order to ensure
we are not accessing an index outside the range of the current dataset
size, we wrap around. This function should be called after we have
created an ordering for this and all underlying datasets.
"""
assert (
self._ordered_indices is not None
), "Must call MultiCorpusSampledDataset.ordered_indices() first"
mapped_index = index % len(self.datasets[key])
return self._ordered_indices[key][mapped_index]
def __getitem__(self, index: int):
"""
Get the item associated with index from each underlying dataset.
Since index is in the range of [0, TotalNumInstances], we need to
map the index to the dataset before retrieving the item.
"""
return OrderedDict(
[
(key, dataset[self._map_index_to_dataset(key, index)])
for key, dataset in self.datasets.items()
]
)
def collater(self, samples: List[Dict]):
"""
Generate a mini-batch for this dataset.
To convert this into a regular mini-batch we use the following
logic:
1. Select a dataset using the specified probability distribution.
2. Call the collater function of the selected dataset.
"""
if len(samples) == 0:
return None
selected_key = self.sampling_func(list(self.datasets.keys()))
selected_samples = [sample[selected_key] for sample in samples]
return self.datasets[selected_key].collater(selected_samples)
def num_tokens(self, index: int):
"""
Return an example's length (number of tokens), used for batching. Here
we return the max across all examples at index across all underlying
datasets.
"""
return max(
dataset.num_tokens(self._map_index_to_dataset(key, index))
for key, dataset in self.datasets.items()
)
def size(self, index: int):
"""
Return an example's size as a float or tuple. Here we return the max
across all underlying datasets. This value is used when filtering a
dataset with max-positions.
"""
return max(
dataset.size(self._map_index_to_dataset(key, index))
for key, dataset in self.datasets.items()
)
@property
def supports_prefetch(self):
return all(
getattr(dataset, "supports_prefetch", False)
for dataset in self.datasets.values()
)
def prefetch(self, indices):
for key, dataset in self.datasets.items():
dataset.prefetch(
[self._map_index_to_dataset(key, index) for index in indices]
)
@property
def supports_fetch_outside_dataloader(self):
return all(
self.datasets[key].supports_fetch_outside_dataloader
for key in self.datasets
)
| data2vec_vision-main | deltalm/src/fairseq/data/multi_corpus_sampled_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import FairseqDataset
class NumSamplesDataset(FairseqDataset):
def __getitem__(self, index):
return 1
def __len__(self):
return 0
def collater(self, samples):
return sum(samples)
| data2vec_vision-main | deltalm/src/fairseq/data/num_samples_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from fairseq.data import data_utils
class WordNoising(object):
"""Generate a noisy version of a sentence, without changing words themselves."""
def __init__(self, dictionary, bpe_cont_marker="@@", bpe_end_marker=None):
self.dictionary = dictionary
self.bpe_end = None
if bpe_cont_marker:
self.bpe_end = np.array(
[
not self.dictionary[i].endswith(bpe_cont_marker)
for i in range(len(self.dictionary))
]
)
elif bpe_end_marker:
self.bpe_end = np.array(
[
self.dictionary[i].endswith(bpe_end_marker)
for i in range(len(self.dictionary))
]
)
self.get_word_idx = (
self._get_bpe_word_idx if self.bpe_end is not None else self._get_token_idx
)
def noising(self, x, lengths, noising_prob=0.0):
raise NotImplementedError()
def _get_bpe_word_idx(self, x):
"""
Given a list of BPE tokens, for every index in the tokens list,
return the index of the word grouping that it belongs to.
For example, for input x corresponding to ["how", "are", "y@@", "ou"],
return [[0], [1], [2], [2]].
"""
# x: (T x B)
bpe_end = self.bpe_end[x]
if x.size(0) == 1 and x.size(1) == 1:
# Special case when we only have one word in x. If x = [[N]],
# bpe_end is a scalar (bool) instead of a 2-dim array of bools,
# which makes the sum operation below fail.
return np.array([[0]])
# do a reduce front sum to generate word ids
word_idx = bpe_end[::-1].cumsum(0)[::-1]
word_idx = word_idx.max(0)[None, :] - word_idx
return word_idx
def _get_token_idx(self, x):
"""
This is to extend noising functions to be able to apply to non-bpe
tokens, e.g. word or characters.
"""
x = torch.t(x)
word_idx = np.array([range(len(x_i)) for x_i in x])
return np.transpose(word_idx)
class WordDropout(WordNoising):
"""Randomly drop input words. If not passing blank_idx (default is None),
then dropped words will be removed. Otherwise, it will be replaced by the
blank_idx."""
def __init__(
self,
dictionary,
default_dropout_prob=0.1,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary, bpe_cont_marker, bpe_end_marker)
self.default_dropout_prob = default_dropout_prob
def noising(self, x, lengths, dropout_prob=None, blank_idx=None):
if dropout_prob is None:
dropout_prob = self.default_dropout_prob
# x: (T x B), lengths: B
if dropout_prob == 0:
return x, lengths
assert 0 < dropout_prob < 1
# be sure to drop entire words
word_idx = self.get_word_idx(x)
sentences = []
modified_lengths = []
for i in range(lengths.size(0)):
# Since dropout probabilities need to apply over non-pad tokens,
# it is not trivial to generate the keep mask without consider
# input lengths; otherwise, this could be done outside the loop
# We want to drop whole words based on word_idx grouping
num_words = max(word_idx[:, i]) + 1
# ith example: [x0, x1, ..., eos, pad, ..., pad]
# We should only generate keep probs for non-EOS tokens. Thus if the
# input sentence ends in EOS, the last word idx is not included in
# the dropout mask generation and we append True to always keep EOS.
# Otherwise, just generate the dropout mask for all word idx
# positions.
has_eos = x[lengths[i] - 1, i] == self.dictionary.eos()
if has_eos: # has eos?
keep = np.random.rand(num_words - 1) >= dropout_prob
keep = np.append(keep, [True]) # keep EOS symbol
else:
keep = np.random.rand(num_words) >= dropout_prob
words = x[: lengths[i], i].tolist()
# TODO: speed up the following loop
# drop words from the input according to keep
new_s = [
w if keep[word_idx[j, i]] else blank_idx for j, w in enumerate(words)
]
new_s = [w for w in new_s if w is not None]
# we need to have at least one word in the sentence (more than the
# start / end sentence symbols)
if len(new_s) <= 1:
# insert at beginning in case the only token left is EOS
# EOS should be at end of list.
new_s.insert(0, words[np.random.randint(0, len(words))])
assert len(new_s) >= 1 and (
not has_eos # Either don't have EOS at end or last token is EOS
or (len(new_s) >= 2 and new_s[-1] == self.dictionary.eos())
), "New sentence is invalid."
sentences.append(new_s)
modified_lengths.append(len(new_s))
# re-construct input
modified_lengths = torch.LongTensor(modified_lengths)
modified_x = torch.LongTensor(
modified_lengths.max(), modified_lengths.size(0)
).fill_(self.dictionary.pad())
for i in range(modified_lengths.size(0)):
modified_x[: modified_lengths[i], i].copy_(torch.LongTensor(sentences[i]))
return modified_x, modified_lengths
class WordShuffle(WordNoising):
"""Shuffle words by no more than k positions."""
def __init__(
self,
dictionary,
default_max_shuffle_distance=3,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary, bpe_cont_marker, bpe_end_marker)
self.default_max_shuffle_distance = 3
def noising(self, x, lengths, max_shuffle_distance=None):
if max_shuffle_distance is None:
max_shuffle_distance = self.default_max_shuffle_distance
# x: (T x B), lengths: B
if max_shuffle_distance == 0:
return x, lengths
# max_shuffle_distance < 1 will return the same sequence
assert max_shuffle_distance > 1
# define noise word scores
noise = np.random.uniform(
0,
max_shuffle_distance,
size=(x.size(0), x.size(1)),
)
noise[0] = -1 # do not move start sentence symbol
# be sure to shuffle entire words
word_idx = self.get_word_idx(x)
x2 = x.clone()
for i in range(lengths.size(0)):
length_no_eos = lengths[i]
if x[lengths[i] - 1, i] == self.dictionary.eos():
length_no_eos = lengths[i] - 1
# generate a random permutation
scores = word_idx[:length_no_eos, i] + noise[word_idx[:length_no_eos, i], i]
# ensure no reordering inside a word
scores += 1e-6 * np.arange(length_no_eos.item())
permutation = scores.argsort()
# shuffle words
x2[:length_no_eos, i].copy_(
x2[:length_no_eos, i][torch.from_numpy(permutation)]
)
return x2, lengths
class UnsupervisedMTNoising(WordNoising):
"""
Implements the default configuration for noising in UnsupervisedMT
(github.com/facebookresearch/UnsupervisedMT)
"""
def __init__(
self,
dictionary,
max_word_shuffle_distance,
word_dropout_prob,
word_blanking_prob,
bpe_cont_marker="@@",
bpe_end_marker=None,
):
super().__init__(dictionary)
self.max_word_shuffle_distance = max_word_shuffle_distance
self.word_dropout_prob = word_dropout_prob
self.word_blanking_prob = word_blanking_prob
self.word_dropout = WordDropout(
dictionary=dictionary,
bpe_cont_marker=bpe_cont_marker,
bpe_end_marker=bpe_end_marker,
)
self.word_shuffle = WordShuffle(
dictionary=dictionary,
bpe_cont_marker=bpe_cont_marker,
bpe_end_marker=bpe_end_marker,
)
def noising(self, x, lengths):
# 1. Word Shuffle
noisy_src_tokens, noisy_src_lengths = self.word_shuffle.noising(
x=x,
lengths=lengths,
max_shuffle_distance=self.max_word_shuffle_distance,
)
# 2. Word Dropout
noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising(
x=noisy_src_tokens,
lengths=noisy_src_lengths,
dropout_prob=self.word_dropout_prob,
)
# 3. Word Blanking
noisy_src_tokens, noisy_src_lengths = self.word_dropout.noising(
x=noisy_src_tokens,
lengths=noisy_src_lengths,
dropout_prob=self.word_blanking_prob,
blank_idx=self.dictionary.unk(),
)
return noisy_src_tokens
class NoisingDataset(torch.utils.data.Dataset):
def __init__(
self,
src_dataset,
src_dict,
seed,
noiser=None,
noising_class=UnsupervisedMTNoising,
**kwargs
):
"""
Wrap a :class:`~torch.utils.data.Dataset` and apply noise to the
samples based on the supplied noising configuration.
Args:
src_dataset (~torch.utils.data.Dataset): dataset to wrap.
to build self.src_dataset --
a LanguagePairDataset with src dataset as the source dataset and
None as the target dataset. Should NOT have padding so that
src_lengths are accurately calculated by language_pair_dataset
collate function.
We use language_pair_dataset here to encapsulate the tgt_dataset
so we can re-use the LanguagePairDataset collater to format the
batches in the structure that SequenceGenerator expects.
src_dict (~fairseq.data.Dictionary): source dictionary
seed (int): seed to use when generating random noise
noiser (WordNoising): a pre-initialized :class:`WordNoising`
instance. If this is None, a new instance will be created using
*noising_class* and *kwargs*.
noising_class (class, optional): class to use to initialize a
default :class:`WordNoising` instance.
kwargs (dict, optional): arguments to initialize the default
:class:`WordNoising` instance given by *noiser*.
"""
self.src_dataset = src_dataset
self.src_dict = src_dict
self.seed = seed
self.noiser = (
noiser
if noiser is not None
else noising_class(
dictionary=src_dict,
**kwargs,
)
)
def __getitem__(self, index):
"""
Returns a single noisy sample. Multiple samples are fed to the collater
create a noising dataset batch.
"""
src_tokens = self.src_dataset[index]
src_lengths = torch.LongTensor([len(src_tokens)])
src_tokens = src_tokens.unsqueeze(0)
# Transpose src tokens to fit expected shape of x in noising function
# (batch size, sequence length) -> (sequence length, batch size)
src_tokens_t = torch.t(src_tokens)
with data_utils.numpy_seed(self.seed + index):
noisy_src_tokens = self.noiser.noising(src_tokens_t, src_lengths)
# Transpose back to expected src_tokens format
# (sequence length, 1) -> (1, sequence length)
noisy_src_tokens = torch.t(noisy_src_tokens)
return noisy_src_tokens[0]
def __len__(self):
"""
The length of the noising dataset is the length of src.
"""
return len(self.src_dataset)
@property
def supports_prefetch(self):
return self.src_dataset.supports_prefetch
def prefetch(self, indices):
if self.src_dataset.supports_prefetch:
self.src_dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/noising.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from fairseq.data import data_utils
from . import BaseWrapperDataset
import math
class TruncateDataset(BaseWrapperDataset):
"""Truncate a sequence by returning the first truncation_length tokens"""
def __init__(self, dataset, truncation_length):
super().__init__(dataset)
assert truncation_length is not None
self.truncation_length = truncation_length
self.dataset = dataset
def __getitem__(self, index):
item = self.dataset[index]
item_len = item.size(0)
if item_len > self.truncation_length:
item = item[: self.truncation_length]
return item
@property
def sizes(self):
return np.minimum(self.dataset.sizes, self.truncation_length)
def __len__(self):
return len(self.dataset)
class RandomCropDataset(TruncateDataset):
"""Truncate a sequence by returning a random crop of truncation_length tokens"""
def __init__(self, dataset, truncation_length, seed=1):
super().__init__(dataset, truncation_length)
self.seed = seed
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the crop changes, not item sizes
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch, index):
item = self.dataset[index]
item_len = item.size(0)
excess = item_len - self.truncation_length
if excess > 0:
start_idx = np.random.randint(0, excess)
item = item[start_idx : start_idx + self.truncation_length]
return item
class ContextCropDataset(TruncateDataset):
"""Truncate a sequence by returning a random crop of truncation_length tokens"""
def __init__(self, dataset, truncation_length, seed=1):
super().__init__(dataset, truncation_length)
self.seed = seed
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the crop changes, not item sizes
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
def get_start_idx(self, document_len):
interval_number = math.ceil(document_len / self.truncation_length)
last_interval_range = document_len % self.truncation_length
interval_index = np.random.randint(0, interval_number) # 0...(interval_number - 1)
if interval_index == interval_number - 1 and last_interval_range > 0:
start_idx = document_len - self.truncation_length
else:
start_idx = interval_index * self.truncation_length
return start_idx
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch, index):
item = self.dataset[index]
item_len = item.size(0)
excess = item_len - self.truncation_length
if excess > 0:
start_idx = self.get_start_idx(item_len)
item = item[start_idx : start_idx + self.truncation_length]
return item
def maybe_shorten_dataset(
dataset,
split,
shorten_data_split_list,
shorten_method,
tokens_per_sample,
seed,
):
truncate_split = (
split in shorten_data_split_list.split(",") or len(shorten_data_split_list) == 0
)
if shorten_method == "truncate" and truncate_split:
dataset = TruncateDataset(dataset, tokens_per_sample)
elif shorten_method == "random_crop" and truncate_split:
dataset = RandomCropDataset(dataset, tokens_per_sample, seed)
return dataset
| data2vec_vision-main | deltalm/src/fairseq/data/shorten_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
from . import BaseWrapperDataset
logger = logging.getLogger(__name__)
class SubsampleDataset(BaseWrapperDataset):
"""Subsamples a given dataset by a specified ratio. Subsampling is done on the number of examples
Args:
dataset (~torch.utils.data.Dataset): dataset to subsample
size_ratio(float): the ratio to subsample to. must be between 0 and 1 (exclusive)
"""
def __init__(self, dataset, size_ratio, shuffle=False):
super().__init__(dataset)
assert size_ratio < 1
self.actual_size = np.ceil(len(dataset) * size_ratio).astype(int)
self.indices = np.random.choice(
list(range(len(self.dataset))), self.actual_size, replace=False
)
self.shuffle = shuffle
logger.info(
"subsampled dataset from {} to {} (ratio={})".format(
len(self.dataset), self.actual_size, size_ratio
)
)
def __getitem__(self, index):
return self.dataset[self.indices[index]]
def __len__(self):
return self.actual_size
def collater(self, samples):
return self.dataset.collater(samples)
@property
def sizes(self):
return self.dataset.sizes[self.indices]
@property
def name(self):
return self.dataset.name
def num_tokens(self, index):
return self.dataset.num_tokens(self.indices[index])
def size(self, index):
return self.dataset.size(self.indices[index])
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
def prefetch(self, indices):
self.dataset.prefetch(self.indices[indices])
| data2vec_vision-main | deltalm/src/fairseq/data/subsample_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
from . import BaseWrapperDataset
class SortDataset(BaseWrapperDataset):
def __init__(self, dataset, sort_order):
super().__init__(dataset)
if not isinstance(sort_order, (list, tuple)):
sort_order = [sort_order]
self.sort_order = sort_order
assert all(len(so) == len(dataset) for so in sort_order)
def ordered_indices(self):
return np.lexsort(self.sort_order)
| data2vec_vision-main | deltalm/src/fairseq/data/sort_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import FairseqDataset, data_utils
def collate(samples, pad_idx, eos_idx):
if len(samples) == 0:
return {}
def merge(key, is_list=False):
if is_list:
res = []
for i in range(len(samples[0][key])):
res.append(
data_utils.collate_tokens(
[s[key][i] for s in samples],
pad_idx,
eos_idx,
left_pad=False,
)
)
return res
else:
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx,
left_pad=False,
)
src_tokens = merge("source")
if samples[0]["target"] is not None:
is_target_list = isinstance(samples[0]["target"], list)
target = merge("target", is_target_list)
else:
target = src_tokens
return {
"id": torch.LongTensor([s["id"] for s in samples]),
"nsentences": len(samples),
"ntokens": sum(len(s["source"]) for s in samples),
"net_input": {
"src_tokens": src_tokens,
"src_lengths": torch.LongTensor([s["source"].numel() for s in samples]),
},
"target": target,
}
class MonolingualDataset(FairseqDataset):
"""
A wrapper around torch.utils.data.Dataset for monolingual data.
Args:
dataset (torch.utils.data.Dataset): dataset to wrap
sizes (List[int]): sentence lengths
vocab (~fairseq.data.Dictionary): vocabulary
shuffle (bool, optional): shuffle the elements before batching
(default: True).
"""
def __init__(
self,
dataset,
sizes,
src_vocab,
tgt_vocab,
add_eos_for_other_targets,
shuffle,
targets=None,
add_bos_token=False,
):
self.dataset = dataset
self.sizes = np.array(sizes)
self.vocab = src_vocab
self.tgt_vocab = tgt_vocab
self.add_eos_for_other_targets = add_eos_for_other_targets
self.shuffle = shuffle
self.add_bos_token = add_bos_token
assert targets is None or all(
t in {"self", "future", "past"} for t in targets
), "targets must be none or one of 'self', 'future', 'past'"
if targets is not None and len(targets) == 0:
targets = None
self.targets = targets
def __getitem__(self, index):
if self.targets is not None:
# *future_target* is the original sentence
# *source* is shifted right by 1 (maybe left-padded with eos)
# *past_target* is shifted right by 2 (left-padded as needed)
#
# Left-to-right language models should condition on *source* and
# predict *future_target*.
# Right-to-left language models should condition on *source* and
# predict *past_target*.
source, future_target, past_target = self.dataset[index]
source, target = self._make_source_target(
source, future_target, past_target
)
else:
source = self.dataset[index]
target = None
source, target = self._maybe_add_bos(source, target)
return {"id": index, "source": source, "target": target}
def __len__(self):
return len(self.dataset)
def _make_source_target(self, source, future_target, past_target):
if self.targets is not None:
target = []
if (
self.add_eos_for_other_targets
and (("self" in self.targets) or ("past" in self.targets))
and source[-1] != self.vocab.eos()
):
# append eos at the end of source
source = torch.cat([source, source.new([self.vocab.eos()])])
if "future" in self.targets:
future_target = torch.cat(
[future_target, future_target.new([self.vocab.pad()])]
)
if "past" in self.targets:
# first token is before the start of sentence which is only used in "none" break mode when
# add_eos_for_other_targets is False
past_target = torch.cat(
[
past_target.new([self.vocab.pad()]),
past_target[1:],
source[-2, None],
]
)
for t in self.targets:
if t == "self":
target.append(source)
elif t == "future":
target.append(future_target)
elif t == "past":
target.append(past_target)
else:
raise Exception("invalid target " + t)
if len(target) == 1:
target = target[0]
else:
target = future_target
return source, self._filter_vocab(target)
def _maybe_add_bos(self, source, target):
if self.add_bos_token:
source = torch.cat([source.new([self.vocab.bos()]), source])
if target is not None:
target = torch.cat([target.new([self.tgt_vocab.bos()]), target])
return source, target
def _filter_vocab(self, target):
if len(self.tgt_vocab) != len(self.vocab):
def _filter(target):
mask = target.ge(len(self.tgt_vocab))
if mask.any():
target[mask] = self.tgt_vocab.unk()
return target
if isinstance(target, list):
return [_filter(t) for t in target]
return _filter(target)
return target
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the right.
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the right.
"""
return collate(samples, self.vocab.pad(), self.vocab.eos())
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return self.sizes[index]
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return self.sizes[index]
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
self.dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/monolingual_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import subprocess
import threading
from pathlib import Path
import numpy as np
import torch
def fasta_file_path(prefix_path):
return prefix_path + ".fasta"
class FastaDataset(torch.utils.data.Dataset):
"""
For loading protein sequence datasets in the common FASTA data format
"""
def __init__(self, path: str, cache_indices=False):
self.fn = fasta_file_path(path)
self.threadlocal = threading.local()
self.cache = Path(f"{path}.fasta.idx.npy")
if cache_indices:
if self.cache.exists():
self.offsets, self.sizes = np.load(self.cache)
else:
self.offsets, self.sizes = self._build_index(path)
np.save(self.cache, np.stack([self.offsets, self.sizes]))
else:
self.offsets, self.sizes = self._build_index(path)
def _get_file(self):
if not hasattr(self.threadlocal, "f"):
self.threadlocal.f = open(self.fn, "r")
return self.threadlocal.f
def __getitem__(self, idx):
f = self._get_file()
f.seek(self.offsets[idx])
desc = f.readline().strip()
line = f.readline()
seq = ""
while line != "" and line[0] != ">":
seq += line.strip()
line = f.readline()
return desc, seq
def __len__(self):
return self.offsets.size
def _build_index(self, path: str):
# Use grep and awk to get 100M/s on local SSD.
# Should process your enormous 100G fasta in ~10 min single core...
path = fasta_file_path(path)
bytes_offsets = subprocess.check_output(
f"cat {path} | tqdm --bytes --total $(wc -c < {path})"
"| grep --byte-offset '^>' -o | cut -d: -f1",
shell=True,
)
fasta_lengths = subprocess.check_output(
f"cat {path} | tqdm --bytes --total $(wc -c < {path})"
"| awk '/^>/ {print \"\";next;} { printf(\"%s\",$0);}' | tail -n+2 | awk '{print length($1)}'",
shell=True,
)
bytes_np = np.fromstring(bytes_offsets, dtype=np.int64, sep=" ")
sizes_np = np.fromstring(fasta_lengths, dtype=np.int64, sep=" ")
return bytes_np, sizes_np
def __setstate__(self, state):
self.__dict__ = state
self.threadlocal = threading.local()
def __getstate__(self):
d = {}
for i, v in self.__dict__.items():
if i != "threadlocal":
d[i] = v
return d
def __del__(self):
if hasattr(self.threadlocal, "f"):
self.threadlocal.f.close()
del self.threadlocal.f
@staticmethod
def exists(path):
return os.path.exists(fasta_file_path(path))
class EncodedFastaDataset(FastaDataset):
"""
The FastaDataset returns raw sequences - this allows us to return
indices with a dictionary instead.
"""
def __init__(self, path, dictionary):
super().__init__(path, cache_indices=True)
self.dictionary = dictionary
def __getitem__(self, idx):
desc, seq = super().__getitem__(idx)
return self.dictionary.encode_line(seq, line_tokenizer=list).long()
| data2vec_vision-main | deltalm/src/fairseq/data/fasta_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from torch.utils.data.dataloader import default_collate
from . import FairseqDataset
class BaseWrapperDataset(FairseqDataset):
def __init__(self, dataset):
super().__init__()
self.dataset = dataset
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
def collater(self, samples):
if hasattr(self.dataset, "collater"):
return self.dataset.collater(samples)
else:
return default_collate(samples)
@property
def sizes(self):
return self.dataset.sizes
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
return self.dataset.size(index)
def ordered_indices(self):
return self.dataset.ordered_indices()
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def attr(self, attr: str, index: int):
return self.dataset.attr(attr, index)
def prefetch(self, indices):
self.dataset.prefetch(indices)
def get_batch_shapes(self):
return self.dataset.get_batch_shapes()
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
return self.dataset.batch_by_size(
indices,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
def filter_indices_by_size(self, indices, max_sizes):
return self.dataset.filter_indices_by_size(indices, max_sizes)
@property
def can_reuse_epoch_itr_across_epochs(self):
return self.dataset.can_reuse_epoch_itr_across_epochs
def set_epoch(self, epoch):
super().set_epoch(epoch)
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)
| data2vec_vision-main | deltalm/src/fairseq/data/base_wrapper_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import BaseWrapperDataset
class NumelDataset(BaseWrapperDataset):
def __init__(self, dataset, reduce=False):
super().__init__(dataset)
self.reduce = reduce
def __getitem__(self, index):
item = self.dataset[index]
if torch.is_tensor(item):
return torch.numel(item)
else:
return np.size(item)
def __len__(self):
return len(self.dataset)
def collater(self, samples):
if self.reduce:
return sum(samples)
else:
return torch.tensor(samples)
| data2vec_vision-main | deltalm/src/fairseq/data/numel_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
from .dictionary import Dictionary, TruncatedDictionary
from .fairseq_dataset import FairseqDataset, FairseqIterableDataset
from .base_wrapper_dataset import BaseWrapperDataset
from .add_target_dataset import AddTargetDataset
from .append_token_dataset import AppendTokenDataset
from .audio.raw_audio_dataset import FileAudioDataset
from .backtranslation_dataset import BacktranslationDataset
from .bucket_pad_length_dataset import BucketPadLengthDataset
from .colorize_dataset import ColorizeDataset
from .concat_dataset import ConcatDataset
from .concat_sentences_dataset import ConcatSentencesDataset
from .denoising_dataset import DenoisingDataset
from .id_dataset import IdDataset
from .indexed_dataset import (
IndexedCachedDataset,
IndexedDataset,
IndexedRawTextDataset,
MMapIndexedDataset,
)
from .language_pair_dataset import LanguagePairDataset
from .list_dataset import ListDataset
from .lm_context_window_dataset import LMContextWindowDataset
from .lru_cache_dataset import LRUCacheDataset
from .mask_tokens_dataset import MaskTokensDataset
from .monolingual_dataset import MonolingualDataset
from .multi_corpus_sampled_dataset import MultiCorpusSampledDataset
from .nested_dictionary_dataset import NestedDictionaryDataset
from .noising import NoisingDataset
from .numel_dataset import NumelDataset
from .num_samples_dataset import NumSamplesDataset
from .offset_tokens_dataset import OffsetTokensDataset
from .pad_dataset import LeftPadDataset, PadDataset, RightPadDataset
from .prepend_dataset import PrependDataset
from .prepend_token_dataset import PrependTokenDataset
from .raw_label_dataset import RawLabelDataset
from .replace_dataset import ReplaceDataset
from .resampling_dataset import ResamplingDataset
from .roll_dataset import RollDataset
from .round_robin_zip_datasets import RoundRobinZipDatasets
from .sort_dataset import SortDataset
from .strip_token_dataset import StripTokenDataset
from .subsample_dataset import SubsampleDataset
from .token_block_dataset import TokenBlockDataset
from .transform_eos_dataset import TransformEosDataset
from .transform_eos_lang_pair_dataset import TransformEosLangPairDataset
from .shorten_dataset import TruncateDataset, RandomCropDataset, ContextCropDataset
from .multilingual.sampled_multi_dataset import SampledMultiDataset
from .multilingual.sampled_multi_epoch_dataset import SampledMultiEpochDataset
from .multilingual.sampled_multi_language_dataset import SampledMultiLangDataset
from .fasta_dataset import FastaDataset, EncodedFastaDataset
from .iterators import (
CountingIterator,
EpochBatchIterator,
GroupedIterator,
ShardedIterator,
)
__all__ = [
"AddTargetDataset",
"AppendTokenDataset",
"BacktranslationDataset",
"BaseWrapperDataset",
"BucketPadLengthDataset",
"ColorizeDataset",
"ConcatDataset",
"ConcatSentencesDataset",
"CountingIterator",
"DenoisingDataset",
"Dictionary",
"EncodedFastaDataset",
"EpochBatchIterator",
"FairseqDataset",
"FairseqIterableDataset",
"FastaDataset",
"GroupedIterator",
"IdDataset",
"IndexedCachedDataset",
"IndexedDataset",
"IndexedRawTextDataset",
"LanguagePairDataset",
"LeftPadDataset",
"ListDataset",
"LMContextWindowDataset",
"LRUCacheDataset",
"MaskTokensDataset",
"MMapIndexedDataset",
"MonolingualDataset",
"MultiCorpusSampledDataset",
"NestedDictionaryDataset",
"NoisingDataset",
"NumelDataset",
"NumSamplesDataset",
"OffsetTokensDataset",
"PadDataset",
"PrependDataset",
"PrependTokenDataset",
"ReplaceDataset",
"RollDataset",
"FileAudioDataset",
"RawLabelDataset",
"ResamplingDataset",
"RightPadDataset",
"RoundRobinZipDatasets",
"SampledMultiDataset",
"SampledMultiEpochDataset",
"ShardedIterator",
"SortDataset",
"StripTokenDataset",
"SubsampleDataset",
"TokenBlockDataset",
"TransformEosDataset",
"TransformEosLangPairDataset",
"TruncateDataset",
"ContextCropDataset",
"TruncatedDictionary",
]
| data2vec_vision-main | deltalm/src/fairseq/data/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class ConcatSentencesDataset(FairseqDataset):
def __init__(self, *datasets):
super().__init__()
self.datasets = datasets
assert all(
len(ds) == len(datasets[0]) for ds in datasets
), "datasets must have the same length"
def __getitem__(self, index):
return torch.cat([ds[index] for ds in self.datasets])
def __len__(self):
return len(self.datasets[0])
def collater(self, samples):
return self.datasets[0].collater(samples)
@property
def sizes(self):
return sum(ds.sizes for ds in self.datasets)
def num_tokens(self, index):
return sum(ds.num_tokens(index) for ds in self.datasets)
def size(self, index):
return sum(ds.size(index) for ds in self.datasets)
def ordered_indices(self):
return self.datasets[0].ordered_indices()
@property
def supports_prefetch(self):
return any(getattr(ds, "supports_prefetch", False) for ds in self.datasets)
def prefetch(self, indices):
for ds in self.datasets:
if getattr(ds, "supports_prefetch", False):
ds.prefetch(indices)
def set_epoch(self, epoch):
super().set_epoch(epoch)
for ds in self.datasets:
if hasattr(ds, "set_epoch"):
ds.set_epoch(epoch)
| data2vec_vision-main | deltalm/src/fairseq/data/concat_sentences_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from functools import lru_cache
import numpy as np
import torch
from fairseq.data import Dictionary, data_utils
from . import BaseWrapperDataset, LRUCacheDataset
class MaskTokensDataset(BaseWrapperDataset):
"""
A wrapper Dataset for masked language modeling.
Input items are masked according to the specified masking probability.
Args:
dataset: Dataset to wrap.
sizes: Sentence lengths
vocab: Dictionary with the vocabulary and special tokens.
pad_idx: Id of pad token in vocab
mask_idx: Id of mask token in vocab
return_masked_tokens: controls whether to return the non-masked tokens
(the default) or to return a tensor with the original masked token
IDs (and *pad_idx* elsewhere). The latter is useful as targets for
masked LM training.
seed: Seed for random number generator for reproducibility.
mask_prob: probability of replacing a token with *mask_idx*.
leave_unmasked_prob: probability that a masked token is unmasked.
random_token_prob: probability of replacing a masked token with a
random token from the vocabulary.
freq_weighted_replacement: sample random replacement words based on
word frequencies in the vocab.
mask_whole_words: only mask whole words. This should be a byte mask
over vocab indices, indicating whether it is the beginning of a
word. We will extend any mask to encompass the whole word.
bpe: BPE to use for whole-word masking.
mask_multiple_length : repeat each mask index multiple times. Default
value is 1.
mask_stdev : standard deviation of masks distribution in case of
multiple masking. Default value is 0.
"""
@classmethod
def apply_mask(cls, dataset: torch.utils.data.Dataset, *args, **kwargs):
"""Return the source and target datasets for masked LM training."""
dataset = LRUCacheDataset(dataset)
return (
LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=False)),
LRUCacheDataset(cls(dataset, *args, **kwargs, return_masked_tokens=True)),
)
def __init__(
self,
dataset: torch.utils.data.Dataset,
vocab: Dictionary,
pad_idx: int,
mask_idx: int,
return_masked_tokens: bool = False,
seed: int = 1,
mask_prob: float = 0.15,
leave_unmasked_prob: float = 0.1,
random_token_prob: float = 0.1,
freq_weighted_replacement: bool = False,
mask_whole_words: torch.Tensor = None,
mask_multiple_length: int = 1,
mask_stdev: float = 0.0,
):
assert 0.0 < mask_prob < 1.0
assert 0.0 <= random_token_prob <= 1.0
assert 0.0 <= leave_unmasked_prob <= 1.0
assert random_token_prob + leave_unmasked_prob <= 1.0
assert mask_multiple_length >= 1
assert mask_stdev >= 0.0
self.dataset = dataset
self.vocab = vocab
self.pad_idx = pad_idx
self.mask_idx = mask_idx
self.return_masked_tokens = return_masked_tokens
self.seed = seed
self.mask_prob = mask_prob
self.leave_unmasked_prob = leave_unmasked_prob
self.random_token_prob = random_token_prob
self.mask_whole_words = mask_whole_words
self.mask_multiple_length = mask_multiple_length
self.mask_stdev = mask_stdev
if random_token_prob > 0.0:
if freq_weighted_replacement:
weights = np.array(self.vocab.count)
else:
weights = np.ones(len(self.vocab))
weights[: self.vocab.nspecial] = 0
self.weights = weights / weights.sum()
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the noise changes, not item sizes
def set_epoch(self, epoch, **unused):
super().set_epoch(epoch)
self.epoch = epoch
@lru_cache(maxsize=8)
def __getitem__(self, index: int):
with data_utils.numpy_seed(self.seed, self.epoch, index):
item = self.dataset[index]
sz = len(item)
assert (
self.mask_idx not in item
), "Dataset contains mask_idx (={}), this is not expected!".format(
self.mask_idx,
)
if self.mask_whole_words is not None:
word_begins_mask = self.mask_whole_words.gather(0, item)
word_begins_idx = word_begins_mask.nonzero().view(-1)
sz = len(word_begins_idx)
words = np.split(word_begins_mask, word_begins_idx)[1:]
assert len(words) == sz
word_lens = list(map(len, words))
# decide elements to mask
mask = np.full(sz, False)
num_mask = int(
# add a random number for probabilistic rounding
self.mask_prob * sz / float(self.mask_multiple_length)
+ np.random.rand()
)
# multiple masking as described in the vq-wav2vec paper (https://arxiv.org/abs/1910.05453)
mask_idc = np.random.choice(sz, num_mask, replace=False)
if self.mask_stdev > 0.0:
lengths = np.random.normal(
self.mask_multiple_length, self.mask_stdev, size=num_mask
)
lengths = [max(0, int(round(x))) for x in lengths]
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
],
dtype=np.int64,
)
else:
mask_idc = np.concatenate(
[mask_idc + i for i in range(self.mask_multiple_length)]
)
mask_idc = mask_idc[mask_idc < len(mask)]
try:
mask[mask_idc] = True
except: # something wrong
print(
"Assigning mask indexes {} to mask {} failed!".format(
mask_idc, mask
)
)
raise
if self.return_masked_tokens:
# exit early if we're just returning the masked tokens
# (i.e., the targets for masked LM training)
if self.mask_whole_words is not None:
mask = np.repeat(mask, word_lens)
new_item = np.full(len(mask), self.pad_idx)
new_item[mask] = item[torch.from_numpy(mask.astype(np.uint8)) == 1]
return torch.from_numpy(new_item)
# decide unmasking and random replacement
rand_or_unmask_prob = self.random_token_prob + self.leave_unmasked_prob
if rand_or_unmask_prob > 0.0:
rand_or_unmask = mask & (np.random.rand(sz) < rand_or_unmask_prob)
if self.random_token_prob == 0.0:
unmask = rand_or_unmask
rand_mask = None
elif self.leave_unmasked_prob == 0.0:
unmask = None
rand_mask = rand_or_unmask
else:
unmask_prob = self.leave_unmasked_prob / rand_or_unmask_prob
decision = np.random.rand(sz) < unmask_prob
unmask = rand_or_unmask & decision
rand_mask = rand_or_unmask & (~decision)
else:
unmask = rand_mask = None
if unmask is not None:
mask = mask ^ unmask
if self.mask_whole_words is not None:
mask = np.repeat(mask, word_lens)
new_item = np.copy(item)
new_item[mask] = self.mask_idx
if rand_mask is not None:
num_rand = rand_mask.sum()
if num_rand > 0:
if self.mask_whole_words is not None:
rand_mask = np.repeat(rand_mask, word_lens)
num_rand = rand_mask.sum()
new_item[rand_mask] = np.random.choice(
len(self.vocab),
num_rand,
p=self.weights,
)
return torch.from_numpy(new_item)
| data2vec_vision-main | deltalm/src/fairseq/data/mask_tokens_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from functools import lru_cache
from . import BaseWrapperDataset
class LRUCacheDataset(BaseWrapperDataset):
def __init__(self, dataset, token=None):
super().__init__(dataset)
@lru_cache(maxsize=8)
def __getitem__(self, index):
return self.dataset[index]
@lru_cache(maxsize=8)
def collater(self, samples):
return self.dataset.collater(samples)
| data2vec_vision-main | deltalm/src/fairseq/data/lru_cache_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
from . import FairseqDataset, data_utils
def collate(
samples,
pad_idx,
eos_idx,
vocab,
left_pad_source=False,
left_pad_target=False,
input_feeding=True,
pad_to_length=None,
):
assert input_feeding
if len(samples) == 0:
return {}
def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx=None, # use eos_idx of each sample instead of vocab.eos()
left_pad=left_pad,
move_eos_to_beginning=move_eos_to_beginning,
pad_to_length=pad_to_length,
)
id = torch.LongTensor([s["id"] for s in samples])
src_tokens = merge(
"source",
left_pad=left_pad_source,
pad_to_length=pad_to_length["source"] if pad_to_length is not None else None,
)
# sort by descending source length
src_lengths = torch.LongTensor([s["source"].numel() for s in samples])
src_lengths, sort_order = src_lengths.sort(descending=True)
id = id.index_select(0, sort_order)
src_tokens = src_tokens.index_select(0, sort_order)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge(
"target",
left_pad=left_pad_target,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
target = target.index_select(0, sort_order)
ntokens = sum(len(s["target"]) for s in samples)
if input_feeding:
# we create a shifted version of targets for feeding the
# previous output token(s) into the next decoder step
prev_output_tokens = merge(
"target",
left_pad=left_pad_target,
move_eos_to_beginning=True,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
prev_output_tokens = prev_output_tokens.index_select(0, sort_order)
else:
ntokens = sum(len(s["source"]) for s in samples)
batch = {
"id": id,
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
"target": target,
"nsentences": samples[0]["source"].size(0),
"sort_order": sort_order,
}
if prev_output_tokens is not None:
batch["net_input"]["prev_output_tokens"] = prev_output_tokens
return batch
class DenoisingDataset(FairseqDataset):
"""
A wrapper around TokenBlockDataset for BART dataset.
Args:
dataset (TokenBlockDataset): dataset to wrap
sizes (List[int]): sentence lengths
vocab (~fairseq.data.Dictionary): vocabulary
mask_idx (int): dictionary index used for masked token
mask_whole_words: only mask whole words. This should be a byte mask
over vocab indices, indicating whether it is the beginning of a
word. We will extend any mask to encompass the whole word.
shuffle (bool, optional): shuffle the elements before batching.
Default: ``True``
seed: Seed for random number generator for reproducibility.
args: argparse arguments.
"""
def __init__(
self,
dataset,
sizes,
vocab,
mask_idx,
mask_whole_words,
shuffle,
seed,
args,
eos=None,
item_transform_func=None,
):
self.dataset = dataset
self.sizes = sizes
self.vocab = vocab
self.shuffle = shuffle
self.seed = seed
self.mask_idx = mask_idx
self.mask_whole_word = mask_whole_words
self.mask_ratio = args.mask
self.random_ratio = args.mask_random
self.insert_ratio = args.insert
self.rotate_ratio = args.rotate
self.permute_sentence_ratio = args.permute_sentences
self.eos = eos if eos is not None else vocab.eos()
self.item_transform_func = item_transform_func
if args.bpe != "gpt2":
self.full_stop_index = self.vocab.eos()
else:
assert args.bpe == "gpt2"
self.full_stop_index = self.vocab.index("13")
self.replace_length = args.replace_length
if self.replace_length not in [-1, 0, 1]:
raise ValueError(f"invalid arg: replace_length={self.replace_length}")
if args.mask_length not in ["subword", "word", "span-poisson"]:
raise ValueError(f"invalid arg: mask-length={args.mask_length}")
if args.mask_length == "subword" and args.replace_length not in [0, 1]:
raise ValueError(f"if using subwords, use replace-length=1 or 0")
self.mask_span_distribution = None
if args.mask_length == "span-poisson":
_lambda = args.poisson_lambda
lambda_to_the_k = 1
e_to_the_minus_lambda = math.exp(-_lambda)
k_factorial = 1
ps = []
for k in range(0, 128):
ps.append(e_to_the_minus_lambda * lambda_to_the_k / k_factorial)
lambda_to_the_k *= _lambda
k_factorial *= k + 1
if ps[-1] < 0.0000001:
break
ps = torch.FloatTensor(ps)
self.mask_span_distribution = torch.distributions.Categorical(ps)
self.epoch = 0
@property
def can_reuse_epoch_itr_across_epochs(self):
return True # only the noise changes, not item sizes
def set_epoch(self, epoch, **unused):
self.epoch = epoch
def __getitem__(self, index):
with data_utils.numpy_seed(self.seed, self.epoch, index):
tokens = self.dataset[index]
assert tokens[-1] == self.eos
source, target = tokens, tokens.clone()
if self.permute_sentence_ratio > 0.0:
source = self.permute_sentences(source, self.permute_sentence_ratio)
if self.mask_ratio > 0:
source = self.add_whole_word_mask(source, self.mask_ratio)
if self.insert_ratio > 0:
source = self.add_insertion_noise(source, self.insert_ratio)
if self.rotate_ratio > 0.0 and np.random.random() < self.rotate_ratio:
source = self.add_rolling_noise(source)
# there can additional changes to make:
if self.item_transform_func is not None:
source, target = self.item_transform_func(source, target)
assert (source >= 0).all()
assert (source[1:-1] >= 1).all()
assert (source <= len(self.vocab)).all()
assert source[0] == self.vocab.bos()
assert source[-1] == self.eos
return {
"id": index,
"source": source,
"target": target,
}
def __len__(self):
return len(self.dataset)
def permute_sentences(self, source, p=1.0):
full_stops = source == self.full_stop_index
# Pretend it ends with a full stop so last span is a sentence
full_stops[-2] = 1
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
result = source.clone()
num_sentences = sentence_ends.size(0)
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
substitutions = torch.randperm(num_sentences)[:num_to_permute]
ordering = torch.arange(0, num_sentences)
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]
# Ignore <bos> at start
index = 1
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 1) : sentence_ends[i]]
result[index : index + sentence.size(0)] = sentence
index += sentence.size(0)
return result
def word_starts(self, source):
if self.mask_whole_word is not None:
is_word_start = self.mask_whole_word.gather(0, source)
else:
is_word_start = torch.ones(source.size())
is_word_start[0] = 0
is_word_start[-1] = 0
return is_word_start
def add_whole_word_mask(self, source, p):
is_word_start = self.word_starts(source)
num_to_mask = int(math.ceil(is_word_start.float().sum() * p))
num_inserts = 0
if num_to_mask == 0:
return source
if self.mask_span_distribution is not None:
lengths = self.mask_span_distribution.sample(sample_shape=(num_to_mask,))
# Make sure we have enough to mask
cum_length = torch.cumsum(lengths, 0)
while cum_length[-1] < num_to_mask:
lengths = torch.cat(
[
lengths,
self.mask_span_distribution.sample(sample_shape=(num_to_mask,)),
],
dim=0,
)
cum_length = torch.cumsum(lengths, 0)
# Trim to masking budget
i = 0
while cum_length[i] < num_to_mask:
i += 1
lengths[i] = num_to_mask - (0 if i == 0 else cum_length[i - 1])
num_to_mask = i + 1
lengths = lengths[:num_to_mask]
# Handle 0-length mask (inserts) separately
lengths = lengths[lengths > 0]
num_inserts = num_to_mask - lengths.size(0)
num_to_mask -= num_inserts
if num_to_mask == 0:
return self.add_insertion_noise(source, num_inserts / source.size(0))
assert (lengths > 0).all()
else:
lengths = torch.ones((num_to_mask,)).long()
assert is_word_start[-1] == 0
word_starts = is_word_start.nonzero(as_tuple=False)
indices = word_starts[
torch.randperm(word_starts.size(0))[:num_to_mask]
].squeeze(1)
mask_random = torch.FloatTensor(num_to_mask).uniform_() < self.random_ratio
source_length = source.size(0)
assert source_length - 1 not in indices
to_keep = torch.ones(source_length, dtype=torch.bool)
is_word_start[
-1
] = 255 # acts as a long length, so spans don't go over the end of doc
if self.replace_length == 0:
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
if self.mask_span_distribution is not None:
assert len(lengths.size()) == 1
assert lengths.size() == indices.size()
lengths -= 1
while indices.size(0) > 0:
assert lengths.size() == indices.size()
lengths -= is_word_start[indices + 1].long()
uncompleted = lengths >= 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
lengths = lengths[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
else:
# A bit faster when all lengths are 1
while indices.size(0) > 0:
uncompleted = is_word_start[indices + 1] == 0
indices = indices[uncompleted] + 1
mask_random = mask_random[uncompleted]
if self.replace_length != -1:
# delete token
to_keep[indices] = 0
else:
# keep index, but replace it with [MASK]
source[indices] = self.mask_idx
source[indices[mask_random]] = torch.randint(
1, len(self.vocab), size=(mask_random.sum(),)
)
assert source_length - 1 not in indices
source = source[to_keep]
if num_inserts > 0:
source = self.add_insertion_noise(source, num_inserts / source.size(0))
return source
def add_permuted_noise(self, tokens, p):
num_words = len(tokens)
num_to_permute = math.ceil(((num_words * 2) * p) / 2.0)
substitutions = torch.randperm(num_words - 2)[:num_to_permute] + 1
tokens[substitutions] = tokens[substitutions[torch.randperm(num_to_permute)]]
return tokens
def add_rolling_noise(self, tokens):
offset = np.random.randint(1, max(1, tokens.size(-1) - 1) + 1)
tokens = torch.cat(
(tokens[0:1], tokens[offset:-1], tokens[1:offset], tokens[-1:]),
dim=0,
)
return tokens
def add_insertion_noise(self, tokens, p):
if p == 0.0:
return tokens
num_tokens = len(tokens)
n = int(math.ceil(num_tokens * p))
noise_indices = torch.randperm(num_tokens + n - 2)[:n] + 1
noise_mask = torch.zeros(size=(num_tokens + n,), dtype=torch.bool)
noise_mask[noise_indices] = 1
result = torch.LongTensor(n + len(tokens)).fill_(-1)
num_random = int(math.ceil(n * self.random_ratio))
result[noise_indices[num_random:]] = self.mask_idx
result[noise_indices[:num_random]] = torch.randint(
low=1, high=len(self.vocab), size=(num_random,)
)
result[~noise_mask] = tokens
assert (result >= 0).all()
return result
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch of data
"""
return collate(
samples, self.vocab.pad(), self.eos, self.vocab, pad_to_length=pad_to_length
)
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return self.sizes[index]
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return self.sizes[index]
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self))
else:
indices = np.arange(len(self))
return indices[np.argsort(self.sizes[indices], kind="mergesort")]
def prefetch(self, indices):
self.src.prefetch(indices)
self.tgt.prefetch(indices)
@property
def supports_prefetch(self):
return (
hasattr(self.src, "supports_prefetch")
and self.src.supports_prefetch
and hasattr(self.tgt, "supports_prefetch")
and self.tgt.supports_prefetch
)
| data2vec_vision-main | deltalm/src/fairseq/data/denoising_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class StripTokenDataset(BaseWrapperDataset):
def __init__(self, dataset, id_to_strip):
super().__init__(dataset)
self.id_to_strip = id_to_strip
def __getitem__(self, index):
item = self.dataset[index]
while len(item) > 0 and item[-1] == self.id_to_strip:
item = item[:-1]
while len(item) > 0 and item[0] == self.id_to_strip:
item = item[1:]
return item
| data2vec_vision-main | deltalm/src/fairseq/data/strip_token_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
try:
from collections.abc import Iterable
except ImportError:
from collections import Iterable
import contextlib
import itertools
import logging
import os
import warnings
from typing import Optional, Tuple
import numpy as np
import torch
logger = logging.getLogger(__name__)
def infer_language_pair(path):
"""Infer language pair from filename: <split>.<lang1>-<lang2>.(...).idx"""
src, dst = None, None
for filename in os.listdir(path):
parts = filename.split(".")
if len(parts) >= 3 and len(parts[1].split("-")) == 2:
return parts[1].split("-")
return src, dst
def collate_tokens(
values,
pad_idx,
eos_idx=None,
left_pad=False,
move_eos_to_beginning=False,
pad_to_length=None,
pad_to_multiple=1,
):
"""Convert a list of 1d tensors into a padded 2d tensor."""
size = max(v.size(0) for v in values)
size = size if pad_to_length is None else max(size, pad_to_length)
if pad_to_multiple != 1 and size % pad_to_multiple != 0:
size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple)
res = values[0].new(len(values), size).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if move_eos_to_beginning:
if eos_idx is None:
# if no eos_idx is specified, then use the last token in src
dst[0] = src[-1]
else:
dst[0] = eos_idx
dst[1:] = src[:-1]
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)])
return res
def load_indexed_dataset(
path, dictionary=None, dataset_impl=None, combine=False, default="cached"
):
"""A helper function for loading indexed datasets.
Args:
path (str): path to indexed dataset (e.g., 'data-bin/train')
dictionary (~fairseq.data.Dictionary): data dictionary
dataset_impl (str, optional): which dataset implementation to use. If
not provided, it will be inferred automatically. For legacy indexed
data we use the 'cached' implementation by default.
combine (bool, optional): automatically load and combine multiple
datasets. For example, if *path* is 'data-bin/train', then we will
combine 'data-bin/train', 'data-bin/train1', ... and return a
single ConcatDataset instance.
"""
from fairseq.data.concat_dataset import ConcatDataset
import fairseq.data.indexed_dataset as indexed_dataset
datasets = []
for k in itertools.count():
path_k = path + (str(k) if k > 0 else "")
path_k = indexed_dataset.get_indexed_dataset_to_local(path_k)
dataset_impl_k = dataset_impl
if dataset_impl_k is None:
dataset_impl_k = indexed_dataset.infer_dataset_impl(path_k)
dataset = indexed_dataset.make_dataset(
path_k,
impl=dataset_impl_k or default,
fix_lua_indexing=True,
dictionary=dictionary,
)
if dataset is None:
break
logger.info("loaded {} examples from: {}".format(len(dataset), path_k))
datasets.append(dataset)
if not combine:
break
if len(datasets) == 0:
return None
elif len(datasets) == 1:
return datasets[0]
else:
return ConcatDataset(datasets)
@contextlib.contextmanager
def numpy_seed(seed, *addl_seeds):
"""Context manager which seeds the NumPy PRNG with the specified seed and
restores the state afterward"""
if seed is None:
yield
return
if len(addl_seeds) > 0:
seed = int(hash((seed, *addl_seeds)) % 1e6)
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
def collect_filtered(function, iterable, filtered):
"""
Similar to :func:`filter` but collects filtered elements in ``filtered``.
Args:
function (callable): function that returns ``False`` for elements that
should be filtered
iterable (iterable): iterable to filter
filtered (list): list to store filtered elements
"""
for el in iterable:
if function(el):
yield el
else:
filtered.append(el)
def _filter_by_size_dynamic(indices, size_fn, max_positions, raise_exception=False):
def compare_leq(a, b):
return a <= b if not isinstance(a, tuple) else max(a) <= b
def check_size(idx):
if isinstance(max_positions, float) or isinstance(max_positions, int):
return size_fn(idx) <= max_positions
elif isinstance(max_positions, dict):
idx_size = size_fn(idx)
assert isinstance(idx_size, dict)
intersect_keys = set(max_positions.keys()) & set(idx_size.keys())
return all(
all(
a is None or b is None or a <= b
for a, b in zip(idx_size[key], max_positions[key])
)
for key in intersect_keys
)
else:
# Hacky as heck, for the specific case of multilingual training with RoundRobin.
if isinstance(size_fn(idx), dict) and isinstance(max_positions, tuple):
return all(
a is None or b is None or compare_leq(a, b)
for a, b in zip(size_fn(idx).values(), max_positions)
)
# For MultiCorpusSampledDataset, will generalize it later
if not isinstance(size_fn(idx), Iterable):
return all(size_fn(idx) <= b for b in max_positions)
return all(
a is None or b is None or a <= b
for a, b in zip(size_fn(idx), max_positions)
)
ignored = []
itr = collect_filtered(check_size, indices, ignored)
indices = np.fromiter(itr, dtype=np.int64, count=-1)
return indices, ignored
def filter_by_size(indices, dataset, max_positions, raise_exception=False):
"""
[deprecated] Filter indices based on their size.
Use `FairseqDataset::filter_indices_by_size` instead.
Args:
indices (List[int]): ordered list of dataset indices
dataset (FairseqDataset): fairseq dataset instance
max_positions (tuple): filter elements larger than this size.
Comparisons are done component-wise.
raise_exception (bool, optional): if ``True``, raise an exception if
any elements are filtered (default: False).
"""
warnings.warn(
"data_utils.filter_by_size is deprecated. "
"Use `FairseqDataset::filter_indices_by_size` instead.",
stacklevel=2,
)
if isinstance(max_positions, float) or isinstance(max_positions, int):
if hasattr(dataset, "sizes") and isinstance(dataset.sizes, np.ndarray):
ignored = indices[dataset.sizes[indices] > max_positions].tolist()
indices = indices[dataset.sizes[indices] <= max_positions]
elif (
hasattr(dataset, "sizes")
and isinstance(dataset.sizes, list)
and len(dataset.sizes) == 1
):
ignored = indices[dataset.sizes[0][indices] > max_positions].tolist()
indices = indices[dataset.sizes[0][indices] <= max_positions]
else:
indices, ignored = _filter_by_size_dynamic(
indices, dataset.size, max_positions
)
else:
indices, ignored = _filter_by_size_dynamic(indices, dataset.size, max_positions)
if len(ignored) > 0 and raise_exception:
raise Exception(
(
"Size of sample #{} is invalid (={}) since max_positions={}, "
"skip this example with --skip-invalid-size-inputs-valid-test"
).format(ignored[0], dataset.size(ignored[0]), max_positions)
)
if len(ignored) > 0:
logger.warning(
(
"{} samples have invalid sizes and will be skipped, "
"max_positions={}, first few sample ids={}"
).format(len(ignored), max_positions, ignored[:10])
)
return indices
def filter_paired_dataset_indices_by_size(src_sizes, tgt_sizes, indices, max_sizes):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
if max_sizes is None:
return indices, []
if type(max_sizes) in (int, float):
max_src_size, max_tgt_size = max_sizes, max_sizes
else:
max_src_size, max_tgt_size = max_sizes
if tgt_sizes is None:
ignored = indices[src_sizes[indices] > max_src_size]
else:
ignored = indices[
(src_sizes[indices] > max_src_size) | (tgt_sizes[indices] > max_tgt_size)
]
if len(ignored) > 0:
if tgt_sizes is None:
indices = indices[src_sizes[indices] <= max_src_size]
else:
indices = indices[
(src_sizes[indices] <= max_src_size)
& (tgt_sizes[indices] <= max_tgt_size)
]
return indices, ignored.tolist()
def batch_by_size(
indices,
num_tokens_fn,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
fixed_shapes=None,
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_tokens_fn (callable): function that returns the number of tokens at
a given index
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
required_batch_size_multiple (int, optional): require batch size to
be less than N or a multiple of N (default: 1).
fixed_shapes (List[Tuple[int, int]], optional): if given, batches will
only be created with the given shapes. *max_sentences* and
*required_batch_size_multiple* will be ignored (default: None).
"""
try:
from fairseq.data.data_utils_fast import (
batch_by_size_fast,
batch_fixed_shapes_fast,
)
except ImportError:
raise ImportError(
"Please build Cython components with: `pip install --editable .` "
"or `python setup.py build_ext --inplace`"
)
max_tokens = max_tokens if max_tokens is not None else -1
max_sentences = max_sentences if max_sentences is not None else -1
bsz_mult = required_batch_size_multiple
if not isinstance(indices, np.ndarray):
indices = np.fromiter(indices, dtype=np.int64, count=-1)
if fixed_shapes is None:
return batch_by_size_fast(
indices,
num_tokens_fn,
max_tokens,
max_sentences,
bsz_mult,
)
else:
fixed_shapes = np.array(fixed_shapes, dtype=np.int64)
sort_order = np.lexsort(
[
fixed_shapes[:, 1].argsort(), # length
fixed_shapes[:, 0].argsort(), # bsz
]
)
fixed_shapes_sorted = fixed_shapes[sort_order]
return batch_fixed_shapes_fast(indices, num_tokens_fn, fixed_shapes_sorted)
def post_process(sentence: str, symbol: str):
if symbol == "sentencepiece":
sentence = sentence.replace(" ", "").replace("\u2581", " ").strip()
elif symbol == "wordpiece":
sentence = sentence.replace(" ", "").replace("_", " ").strip()
elif symbol == "letter":
sentence = sentence.replace(" ", "").replace("|", " ").strip()
elif symbol == "_EOW":
sentence = sentence.replace(" ", "").replace("_EOW", " ").strip()
elif symbol is not None and symbol != "none":
sentence = (sentence + " ").replace(symbol, "").rstrip()
return sentence
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[torch.Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = np.random.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = np.random.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = np.random.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len:
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
mask[i, mask_idc] = True
return mask
def get_mem_usage():
try:
import psutil
mb = 1024 * 1024
return f"used={psutil.virtual_memory().used / mb}Mb; avail={psutil.virtual_memory().available / mb}Mb"
except ImportError:
return "N/A"
def lengths_to_padding_mask(lens: torch.LongTensor) -> torch.BoolTensor:
bsz, max_lens = lens.size(0), torch.max(lens).item()
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
return mask
def lengths_to_mask(lens: torch.LongTensor) -> torch.BoolTensor:
return ~lengths_to_padding_mask(lens)
| data2vec_vision-main | deltalm/src/fairseq/data/data_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import BaseWrapperDataset
class PrependTokenDataset(BaseWrapperDataset):
def __init__(self, dataset, token=None):
super().__init__(dataset)
self.token = token
if token is not None:
self._sizes = np.array(dataset.sizes) + 1
else:
self._sizes = dataset.sizes
def __getitem__(self, idx):
item = self.dataset[idx]
if self.token is not None:
item = torch.cat([item.new([self.token]), item])
return item
@property
def sizes(self):
return self._sizes
def num_tokens(self, index):
n = self.dataset.num_tokens(index)
if self.token is not None:
n += 1
return n
def size(self, index):
n = self.dataset.size(index)
if self.token is not None:
n += 1
return n
| data2vec_vision-main | deltalm/src/fairseq/data/prepend_token_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class TransformEosDataset(FairseqDataset):
"""A :class:`~fairseq.data.FairseqDataset` wrapper that appends/prepends/strips EOS.
Note that the transformation is applied in :func:`collater`.
Args:
dataset (~fairseq.data.FairseqDataset): dataset to wrap
eos (int): index of the end-of-sentence symbol
append_eos_to_src (bool, optional): append EOS to the end of src
remove_eos_from_src (bool, optional): remove EOS from the end of src
append_eos_to_tgt (bool, optional): append EOS to the end of tgt
remove_eos_from_tgt (bool, optional): remove EOS from the end of tgt
"""
def __init__(
self,
dataset,
eos,
append_eos_to_src=False,
remove_eos_from_src=False,
append_eos_to_tgt=False,
remove_eos_from_tgt=False,
has_target=True,
):
if not isinstance(dataset, FairseqDataset):
raise ValueError("dataset must be an instance of FairseqDataset")
if append_eos_to_src and remove_eos_from_src:
raise ValueError("cannot combine append_eos_to_src and remove_eos_from_src")
if append_eos_to_tgt and remove_eos_from_tgt:
raise ValueError("cannot combine append_eos_to_tgt and remove_eos_from_tgt")
self.dataset = dataset
self.eos = torch.LongTensor([eos])
self.append_eos_to_src = append_eos_to_src
self.remove_eos_from_src = remove_eos_from_src
self.append_eos_to_tgt = append_eos_to_tgt
self.remove_eos_from_tgt = remove_eos_from_tgt
self.has_target = has_target
# precompute how we should adjust the reported sizes
self._src_delta = 0
self._src_delta += 1 if append_eos_to_src else 0
self._src_delta -= 1 if remove_eos_from_src else 0
self._tgt_delta = 0
self._tgt_delta += 1 if append_eos_to_tgt else 0
self._tgt_delta -= 1 if remove_eos_from_tgt else 0
self._checked_src = False
self._checked_tgt = False
def _check_src(self, src, expect_eos):
if not self._checked_src:
assert (src[-1] == self.eos[0]) == expect_eos
self._checked_src = True
def _check_tgt(self, tgt, expect_eos):
if self.has_target and not self._checked_tgt:
assert (tgt[-1] == self.eos[0]) == expect_eos
self._checked_tgt = True
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
def collater(self, samples):
def transform(item):
if self.append_eos_to_src:
self.eos = self.eos.to(device=item["source"].device)
self._check_src(item["source"], expect_eos=False)
item["source"] = torch.cat([item["source"], self.eos])
if self.remove_eos_from_src:
self.eos = self.eos.to(device=item["source"].device)
self._check_src(item["source"], expect_eos=True)
item["source"] = item["source"][:-1]
if self.append_eos_to_tgt:
self.eos = self.eos.to(device=item["target"].device)
self._check_tgt(item["target"], expect_eos=False)
item["target"] = torch.cat([item["target"], self.eos])
if self.remove_eos_from_tgt:
self.eos = self.eos.to(device=item["target"].device)
self._check_tgt(item["target"], expect_eos=True)
item["target"] = item["target"][:-1]
return item
samples = list(map(transform, samples))
return self.dataset.collater(samples)
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
if self.has_target:
src_len, tgt_len = self.dataset.size(index)
return (src_len + self._src_delta, tgt_len + self._tgt_delta)
else:
return self.dataset.size(index)
def ordered_indices(self):
# NOTE: we assume that the ordering does not change based on the
# addition or removal of eos
return self.dataset.ordered_indices()
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/transform_eos_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import BaseWrapperDataset
class ColorizeDataset(BaseWrapperDataset):
""" Adds 'colors' property to net input that is obtained from the provided color getter for use by models """
def __init__(self, dataset, color_getter):
super().__init__(dataset)
self.color_getter = color_getter
def collater(self, samples):
base_collate = super().collater(samples)
if len(base_collate) > 0:
base_collate["net_input"]["colors"] = torch.tensor(
list(self.color_getter(self.dataset, s["id"]) for s in samples),
dtype=torch.long,
)
return base_collate
| data2vec_vision-main | deltalm/src/fairseq/data/colorize_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class RawLabelDataset(FairseqDataset):
def __init__(self, labels):
super().__init__()
self.labels = labels
def __getitem__(self, index):
return self.labels[index]
def __len__(self):
return len(self.labels)
def collater(self, samples):
return torch.tensor(samples)
| data2vec_vision-main | deltalm/src/fairseq/data/raw_label_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from . import BaseWrapperDataset
class ListDataset(BaseWrapperDataset):
def __init__(self, dataset, sizes=None):
super().__init__(dataset)
self._sizes = sizes
def __iter__(self):
for x in self.dataset:
yield x
def collater(self, samples):
return samples
@property
def sizes(self):
return self._sizes
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
def set_epoch(self, epoch):
pass
| data2vec_vision-main | deltalm/src/fairseq/data/list_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
import numpy as np
from . import FairseqDataset
class RoundRobinZipDatasets(FairseqDataset):
"""Zip multiple :class:`~fairseq.data.FairseqDataset` instances together.
Shorter datasets are repeated in a round-robin fashion to match the length
of the longest one.
Args:
datasets (Dict[~fairseq.data.FairseqDataset]): a dictionary of
:class:`~fairseq.data.FairseqDataset` instances.
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
"""
def __init__(self, datasets, eval_key=None):
super().__init__()
assert isinstance(datasets, OrderedDict)
self.datasets = datasets
self.eval_key = eval_key
self.longest_dataset = None
self.longest_dataset_key = None
for key, dataset in datasets.items():
assert isinstance(dataset, FairseqDataset)
if self.longest_dataset is None or len(dataset) > len(self.longest_dataset):
self.longest_dataset = dataset
self.longest_dataset_key = key
self._ordered_indices = None
def _map_index(self, key, index):
assert (
self._ordered_indices is not None
), "Must call RoundRobinZipDatasets.ordered_indices() first"
return self._ordered_indices[key][index % len(self.datasets[key])]
def __getitem__(self, index):
if self.eval_key is None:
return OrderedDict(
[
(key, dataset[self._map_index(key, index)])
for key, dataset in self.datasets.items()
]
)
else:
# at evaluation time it's useful to pass-through batches from a single key
return self.datasets[self.eval_key][self._map_index(self.eval_key, index)]
def __len__(self):
return len(self.longest_dataset)
def collater(self, samples):
"""Merge a list of samples to form a mini-batch."""
if len(samples) == 0:
return None
if self.eval_key is None:
return OrderedDict(
[
(key, dataset.collater([sample[key] for sample in samples]))
for key, dataset in self.datasets.items()
]
)
else:
# at evaluation time it's useful to pass-through batches from a single key
return self.datasets[self.eval_key].collater(samples)
def num_tokens(self, index):
"""Return an example's length (number of tokens), used for batching."""
# TODO make it configurable whether to use max() or sum() here
return max(
dataset.num_tokens(self._map_index(key, index))
for key, dataset in self.datasets.items()
)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return {
key: dataset.size(self._map_index(key, index))
for key, dataset in self.datasets.items()
}
def ordered_indices(self):
"""Ordered indices for batching."""
if self._ordered_indices is None:
# Call the underlying dataset's ordered_indices() here, so that we
# get the same random ordering as we would have from using the
# underlying dataset directly.
self._ordered_indices = OrderedDict(
[
(key, dataset.ordered_indices())
for key, dataset in self.datasets.items()
]
)
return np.arange(len(self))
@property
def supports_prefetch(self):
return all(
getattr(dataset, "supports_prefetch", False)
for dataset in self.datasets.values()
)
def prefetch(self, indices):
for key, dataset in self.datasets.items():
dataset.prefetch([self._map_index(key, index) for index in indices])
| data2vec_vision-main | deltalm/src/fairseq/data/round_robin_zip_datasets.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import math
import operator
import os
import queue
import time
from threading import Thread
import numpy as np
import torch
from fairseq.data import data_utils
logger = logging.getLogger(__name__)
# Object used by _background_consumer to signal the source is exhausted
# to the main thread.
_sentinel = object()
class CountingIterator(object):
"""Wrapper around an iterable that maintains the iteration count.
Args:
iterable (iterable): iterable to wrap
start (int): starting iteration count. Note that this doesn't
actually advance the iterator.
total (int): override the iterator length returned by
``__len__``. This can be used to truncate *iterator*.
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, start=None, total=None):
self.iterable = iterable
self.itr = iter(self)
if start is None:
self.n = getattr(iterable, "n", 0)
else:
self.n = start
if total is None:
self.total = self.n + len(iterable)
else:
self.total = total
def __len__(self):
return self.total
def __iter__(self):
for x in self.iterable:
if self.n >= self.total:
raise RuntimeError(
"Mismatch between actual and expected iterable length. "
"This may be caused by resuming training from a checkpoint using "
"a different number of GPUs, in which case you can try the "
"--reset-dataloader option. Alternatively you may have a train or "
"validation set that is smaller than the number of GPUs. If none "
"of these apply, please report this to the fairseq developers."
)
self.n += 1
yield x
def __next__(self):
return next(self.itr)
def has_next(self):
"""Whether the iterator has been exhausted."""
return self.n < len(self)
def skip(self, num_to_skip):
"""Fast-forward the iterator by skipping *num_to_skip* elements."""
next(itertools.islice(self.itr, num_to_skip, num_to_skip), None)
return self
def take(self, n):
"""
Truncates the iterator to n elements at most.
"""
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
# Only take after what we have already consumed (i.e. after restarting
# from checkpoint mid epoch, we have to subtract self.n which is the
# starting point)
#
# This to maintain the invariant self.total = self.n + len(iterable),
# before calling __next__ or __iter__
propagated_take = max(n - self.n, 0)
if hasattr(self.iterable, "take"):
self.iterable.take(propagated_take)
else:
self.iterable = itertools.islice(self.iterable, propagated_take)
class EpochBatchIterating(object):
def __len__(self) -> int:
raise NotImplementedError
@property
def next_epoch_idx(self):
raise NotImplementedError
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus: ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
"""
raise NotImplementedError
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
raise NotImplementedError
@property
def iterations_in_epoch(self) -> int:
"""The number of consumed batches in the current epoch."""
raise NotImplementedError
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
raise NotImplementedError
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
raise NotImplementedError
@property
def first_batch(self):
return "DUMMY"
class StreamingEpochBatchIterator(EpochBatchIterating):
def __init__(
self,
dataset,
epoch=1,
num_shards=1,
shard_id=0,
):
assert isinstance(dataset, torch.utils.data.IterableDataset)
self.dataset = dataset
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self._current_epoch_iterator = None
self.num_shards = num_shards
self.shard_id = shard_id
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._current_epoch_iterator is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
self.epoch = self.next_epoch_idx
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
self._current_epoch_iterator = CountingIterator(
iterable=ShardedIterator(
iterable=self.dataset,
num_shards=self.num_shards,
shard_id=self.shard_id,
),
)
return self._current_epoch_iterator
def end_of_epoch(self) -> bool:
return not self._current_epoch_iterator.has_next()
@property
def iterations_in_epoch(self) -> int:
if self._current_epoch_iterator is not None:
return self._current_epoch_iterator.n
return 0
def state_dict(self):
return {
"epoch": self.epoch,
}
def load_state_dict(self, state_dict):
self.epoch = state_dict["epoch"]
class EpochBatchIterator(EpochBatchIterating):
"""A multi-epoch iterator over a :class:`torch.utils.data.Dataset`.
Compared to :class:`torch.utils.data.DataLoader`, this iterator:
- can be reused across multiple epochs with the :func:`next_epoch_itr`
method (optionally shuffled between epochs)
- can be serialized/deserialized with the :func:`state_dict` and
:func:`load_state_dict` methods
- supports sharding with the *num_shards* and *shard_id* arguments
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
collate_fn (callable): merges a list of samples to form a mini-batch
batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of
indices, or a callable to create such an iterator (~torch.utils.data.Sampler).
A callable batch_sampler will be called for each epoch to enable per epoch dynamic
batch iterators defined by this callable batch_sampler.
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
disable_shuffling (bool, optional): force disable shuffling
(default: ``False``).
"""
def __init__(
self,
dataset,
collate_fn,
batch_sampler,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
buffer_size=0,
timeout=0,
disable_shuffling=False,
):
assert isinstance(dataset, torch.utils.data.Dataset)
self.dataset = dataset
self.collate_fn = collate_fn
self.batch_sampler = batch_sampler
self._frozen_batches = (
tuple(batch_sampler) if not callable(batch_sampler) else None
)
self.seed = seed
self.num_shards = num_shards
self.shard_id = shard_id
self.num_workers = num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self.buffer_size = min(buffer_size, 20)
self.timeout = timeout
self.disable_shuffling = disable_shuffling
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self.shuffle = not disable_shuffling
self._cur_epoch_itr = None
self._next_epoch_itr = None
self._supports_prefetch = getattr(dataset, "supports_prefetch", False)
@property
def frozen_batches(self):
if self._frozen_batches is None:
self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch))
return self._frozen_batches
@property
def first_batch(self):
if len(self.frozen_batches) == 0:
raise Exception(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if getattr(self.dataset, "supports_fetch_outside_dataloader", True):
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]])
else:
return "DUMMY"
def __len__(self):
return int(math.ceil(len(self.frozen_batches) / float(self.num_shards)))
@property
def n(self):
return self.iterations_in_epoch
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._next_epoch_itr is not None:
return self.epoch
elif self._cur_epoch_itr is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus: ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
"""
if self.disable_shuffling:
shuffle = False
self.epoch = self.next_epoch_idx
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
if self._next_epoch_itr is not None:
self._cur_epoch_itr = self._next_epoch_itr
self._next_epoch_itr = None
else:
if callable(self.batch_sampler):
# reset _frozen_batches to refresh the next epoch
self._frozen_batches = None
self._cur_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle,
fix_batches_to_gpus=fix_batches_to_gpus,
)
self.shuffle = shuffle
return self._cur_epoch_itr
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
return not self._cur_epoch_itr.has_next()
@property
def iterations_in_epoch(self):
"""The number of consumed batches in the current epoch."""
if self._cur_epoch_itr is not None:
return self._cur_epoch_itr.n
elif self._next_epoch_itr is not None:
return self._next_epoch_itr.n
return 0
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
if self.end_of_epoch():
epoch = self.epoch + 1
iter_in_epoch = 0
else:
epoch = self.epoch
iter_in_epoch = self.iterations_in_epoch
return {
"version": 2,
"epoch": epoch,
"iterations_in_epoch": iter_in_epoch,
"shuffle": self.shuffle,
}
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
self.epoch = state_dict["epoch"]
itr_pos = state_dict.get("iterations_in_epoch", 0)
version = state_dict.get("version", 1)
if itr_pos > 0:
# fast-forward epoch iterator
self._next_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle=state_dict.get("shuffle", True),
offset=itr_pos,
)
if self._next_epoch_itr is None:
if version == 1:
# legacy behavior: we finished the epoch, increment epoch counter
self.epoch += 1
else:
raise RuntimeError(
"Cannot resume training due to dataloader mismatch, please "
"report this to the fairseq developers. You can relaunch "
"training with `--reset-dataloader` and it should work."
)
else:
self._next_epoch_itr = None
def _get_iterator_for_epoch(
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0
):
def shuffle_batches(batches, seed):
with data_utils.numpy_seed(seed):
np.random.shuffle(batches)
return batches
if self._supports_prefetch:
batches = self.frozen_batches
if shuffle and not fix_batches_to_gpus:
batches = shuffle_batches(list(batches), self.seed + epoch)
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
self.dataset.prefetch([i for s in batches for i in s])
if shuffle and fix_batches_to_gpus:
batches = shuffle_batches(batches, self.seed + epoch + self.shard_id)
else:
if shuffle:
batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch)
else:
batches = self.frozen_batches
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
if offset > 0 and offset >= len(batches):
return None
if self.num_workers > 0:
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning"
# Create data loader
itr = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_sampler=batches[offset:],
num_workers=self.num_workers,
timeout=self.timeout,
)
# Wrap with a BufferedIterator if needed
if self.buffer_size > 0:
itr = BufferedIterator(self.buffer_size, itr)
# Wrap with CoutingIterator
itr = CountingIterator(itr, start=offset)
return itr
class GroupedIterator(CountingIterator):
"""Wrapper around an iterable that returns groups (chunks) of items.
Args:
iterable (iterable): iterable to wrap
chunk_size (int): size of each chunk
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, chunk_size):
itr = _chunk_iterator(iterable, chunk_size)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))),
total=int(math.ceil(len(iterable) / float(chunk_size))),
)
self.chunk_size = chunk_size
def _chunk_iterator(itr, chunk_size):
chunk = []
for x in itr:
chunk.append(x)
if len(chunk) == chunk_size:
yield chunk
chunk = []
if len(chunk) > 0:
yield chunk
class ShardedIterator(CountingIterator):
"""A sharded wrapper around an iterable, padded to length.
Args:
iterable (iterable): iterable to wrap
num_shards (int): number of shards to split the iterable into
shard_id (int): which shard to iterator over
fill_value (Any, optional): padding value when the iterable doesn't
evenly divide *num_shards* (default: None).
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, num_shards, shard_id, fill_value=None):
if shard_id < 0 or shard_id >= num_shards:
raise ValueError("shard_id must be between 0 and num_shards")
sharded_len = int(math.ceil(len(iterable) / float(num_shards)))
itr = map(
operator.itemgetter(1),
itertools.zip_longest(
range(sharded_len),
itertools.islice(iterable, shard_id, len(iterable), num_shards),
fillvalue=fill_value,
),
)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))),
total=sharded_len,
)
class BackgroundConsumer(Thread):
def __init__(self, queue, source, max_len):
Thread.__init__(self)
self._queue = queue
self._source = source
self._max_len = max_len
self.count = 0
def run(self):
try:
for item in self._source:
self._queue.put(item)
# Stop if we reached the maximum length
self.count += 1
if self._max_len is not None and self.count >= self._max_len:
break
# Signal the consumer we are done.
self._queue.put(_sentinel)
except Exception as e:
self._queue.put(e)
class BufferedIterator(object):
def __init__(self, size, iterable):
self._queue = queue.Queue(size)
self._iterable = iterable
self._consumer = None
self.start_time = time.time()
self.warning_time = None
self.total = len(iterable)
def _create_consumer(self):
self._consumer = BackgroundConsumer(
self._queue,
self._iterable,
self.total,
)
self._consumer.daemon = True
self._consumer.start()
def __iter__(self):
return self
def __len__(self):
return self.total
def take(self, n):
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
if hasattr(self._iterable, "take"):
self._iterable.take(n)
def __next__(self):
# Create consumer if not created yet
if self._consumer is None:
self._create_consumer()
# Notify the user if there is a data loading bottleneck
if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)):
if time.time() - self.start_time > 5 * 60:
if (
self.warning_time is None
or time.time() - self.warning_time > 15 * 60
):
logger.debug(
"Data loading buffer is empty or nearly empty. This may "
"indicate a data loading bottleneck, and increasing the "
"number of workers (--num-workers) may help."
)
self.warning_time = time.time()
# Get next example
item = self._queue.get(True)
if isinstance(item, Exception):
raise item
if item is _sentinel:
raise StopIteration()
return item
| data2vec_vision-main | deltalm/src/fairseq/data/iterators.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import subprocess
import tempfile
class PlasmaArray(object):
"""
Wrapper around numpy arrays that automatically moves the data to shared
memory upon serialization. This is particularly helpful when passing numpy
arrays through multiprocessing, so that data is not unnecessarily
duplicated or pickled.
"""
def __init__(self, array):
super().__init__()
self.array = array
self.disable = array.nbytes < 134217728 # disable for arrays <128MB
self.object_id = None
self.path = None
# variables with underscores shouldn't be pickled
self._client = None
self._server = None
self._server_tmp = None
self._plasma = None
@property
def plasma(self):
if self._plasma is None and not self.disable:
try:
import pyarrow.plasma as plasma
self._plasma = plasma
except ImportError:
self._plasma = None
return self._plasma
def start_server(self):
if self.plasma is None or self._server is not None:
return
assert self.object_id is None
assert self.path is None
self._server_tmp = tempfile.NamedTemporaryFile()
self.path = self._server_tmp.name
self._server = subprocess.Popen(
[
"plasma_store",
"-m",
str(int(1.05 * self.array.nbytes)),
"-s",
self.path,
]
)
@property
def client(self):
if self._client is None:
assert self.path is not None
self._client = self.plasma.connect(self.path, num_retries=200)
return self._client
def __getstate__(self):
if self.plasma is None:
return self.__dict__
if self.object_id is None:
self.start_server()
self.object_id = self.client.put(self.array)
state = self.__dict__.copy()
del state["array"]
state["_client"] = None
state["_server"] = None
state["_server_tmp"] = None
state["_plasma"] = None
return state
def __setstate__(self, state):
self.__dict__.update(state)
if self.plasma is None:
return
self.array = self.client.get(self.object_id)
def __del__(self):
if self._server is not None:
self._server.kill()
self._server = None
self._server_tmp.close()
self._server_tmp = None
| data2vec_vision-main | deltalm/src/fairseq/data/plasma_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
from fairseq.data import BaseWrapperDataset, plasma_utils
logger = logging.getLogger(__name__)
class ResamplingDataset(BaseWrapperDataset):
"""Randomly samples from a given dataset at each epoch.
Sampling is done with or without replacement, depending on the "replace"
parameter.
Optionally, the epoch size can be rescaled. This is potentially desirable
to increase per-epoch coverage of the base dataset (since sampling with
replacement means that many items in the dataset will be left out). In the
case of sampling without replacement, size_ratio should be strictly less
than 1.
Args:
dataset (~torch.utils.data.Dataset): dataset on which to sample.
weights (List[float]): list of probability weights
(default: None, which corresponds to uniform sampling).
replace (bool): sampling mode; True for "with replacement", or False
for "without replacement" (default: True)
size_ratio (float): the ratio to subsample to; must be positive
(default: 1.0).
batch_by_size (bool): whether or not to batch by sequence length
(default: True).
seed (int): RNG seed to use (default: 0).
epoch (int): starting epoch number (default: 1).
"""
def __init__(
self,
dataset,
weights=None,
replace=True,
size_ratio=1.0,
batch_by_size=True,
seed=0,
epoch=1,
):
super().__init__(dataset)
if weights is None:
self.weights = None
else:
assert len(weights) == len(dataset)
weights_arr = np.array(weights, dtype=np.float64)
weights_arr /= weights_arr.sum()
self.weights = plasma_utils.PlasmaArray(weights_arr)
self.replace = replace
assert size_ratio > 0.0
if not self.replace:
assert size_ratio < 1.0
self.size_ratio = float(size_ratio)
self.actual_size = np.ceil(len(dataset) * self.size_ratio).astype(int)
self.batch_by_size = batch_by_size
self.seed = seed
self._cur_epoch = None
self._cur_indices = None
self.set_epoch(epoch)
def __getitem__(self, index):
return self.dataset[self._cur_indices.array[index]]
def __len__(self):
return self.actual_size
@property
def sizes(self):
if isinstance(self.dataset.sizes, list):
return [s[self._cur_indices.array] for s in self.dataset.sizes]
return self.dataset.sizes[self._cur_indices.array]
def num_tokens(self, index):
return self.dataset.num_tokens(self._cur_indices.array[index])
def size(self, index):
return self.dataset.size(self._cur_indices.array[index])
def ordered_indices(self):
if self.batch_by_size:
order = [
np.arange(len(self)),
self.sizes,
] # No need to handle `self.shuffle == True`
return np.lexsort(order)
else:
return np.arange(len(self))
def prefetch(self, indices):
self.dataset.prefetch(self._cur_indices.array[indices])
@property
def can_reuse_epoch_itr_across_epochs(self):
return False
def set_epoch(self, epoch):
logger.debug("ResamplingDataset.set_epoch: {}".format(epoch))
super().set_epoch(epoch)
if epoch == self._cur_epoch:
return
self._cur_epoch = epoch
# Generate a weighted sample of indices as a function of the
# random seed and the current epoch.
rng = np.random.RandomState(
[
42, # magic number
self.seed % (2 ** 32), # global seed
self._cur_epoch, # epoch index
]
)
self._cur_indices = plasma_utils.PlasmaArray(
rng.choice(
len(self.dataset),
self.actual_size,
replace=self.replace,
p=(None if self.weights is None else self.weights.array),
)
)
| data2vec_vision-main | deltalm/src/fairseq/data/resampling_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import FairseqDataset, data_utils
logger = logging.getLogger(__name__)
def collate(
samples,
pad_idx,
eos_idx,
left_pad_source=True,
left_pad_target=False,
input_feeding=True,
pad_to_length=None,
pad_to_multiple=1,
):
if len(samples) == 0:
return {}
def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx,
left_pad,
move_eos_to_beginning,
pad_to_length=pad_to_length,
pad_to_multiple=pad_to_multiple,
)
def check_alignment(alignment, src_len, tgt_len):
if alignment is None or len(alignment) == 0:
return False
if (
alignment[:, 0].max().item() >= src_len - 1
or alignment[:, 1].max().item() >= tgt_len - 1
):
logger.warning("alignment size mismatch found, skipping alignment!")
return False
return True
def compute_alignment_weights(alignments):
"""
Given a tensor of shape [:, 2] containing the source-target indices
corresponding to the alignments, a weight vector containing the
inverse frequency of each target index is computed.
For e.g. if alignments = [[5, 7], [2, 3], [1, 3], [4, 2]], then
a tensor containing [1., 0.5, 0.5, 1] should be returned (since target
index 3 is repeated twice)
"""
align_tgt = alignments[:, 1]
_, align_tgt_i, align_tgt_c = torch.unique(
align_tgt, return_inverse=True, return_counts=True
)
align_weights = align_tgt_c[align_tgt_i[np.arange(len(align_tgt))]]
return 1.0 / align_weights.float()
id = torch.LongTensor([s["id"] for s in samples])
src_tokens = merge(
"source",
left_pad=left_pad_source,
pad_to_length=pad_to_length["source"] if pad_to_length is not None else None,
)
# sort by descending source length
src_lengths = torch.LongTensor(
[s["source"].ne(pad_idx).long().sum() for s in samples]
)
src_lengths, sort_order = src_lengths.sort(descending=True)
id = id.index_select(0, sort_order)
src_tokens = src_tokens.index_select(0, sort_order)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge(
"target",
left_pad=left_pad_target,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
target = target.index_select(0, sort_order)
if pad_to_length is not None and 'prepend_target' in pad_to_length.keys():
preprend_target = merge(
"prepend_target",
left_pad=left_pad_source,
pad_to_length=pad_to_length["prepend_target"] if pad_to_length is not None else None,
)
preprend_target = preprend_target.index_select(0, sort_order)
tgt_lengths = torch.LongTensor(
[s["target"].ne(pad_idx).long().sum() for s in samples]
).index_select(0, sort_order)
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens", left_pad=left_pad_target)
elif input_feeding:
# we create a shifted version of targets for feeding the
# previous output token(s) into the next decoder step
prev_output_tokens = merge(
"target",
left_pad=left_pad_target,
move_eos_to_beginning=True,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
else:
ntokens = src_lengths.sum().item()
tgt_lengths=None
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
"target": target,
"tgt_lengths": tgt_lengths
}
if pad_to_length is not None and "prepend_target" in pad_to_length.keys():
batch["net_input"]["prepend_target"] = preprend_target
if prev_output_tokens is not None:
batch["net_input"]["prev_output_tokens"] = prev_output_tokens.index_select(
0, sort_order
)
if samples[0].get("alignment", None) is not None:
alignments = [
alignment
for align_idx, src_len, tgt_len in zip(
sort_order, src_lengths, tgt_lengths
)
for alignment in [samples[align_idx]["alignment"].view(-1, 2)]
if check_alignment(alignment, src_len, tgt_len)
]
batch["alignments"] = alignments
# bsz, tgt_sz = batch["target"].shape
# src_sz = batch["net_input"]["src_tokens"].shape[1]
#
# offsets = torch.zeros((len(sort_order), 2), dtype=torch.long)
# offsets[:, 1] += torch.arange(len(sort_order), dtype=torch.long) * tgt_sz
# if left_pad_source:
# offsets[:, 0] += src_sz - src_lengths
# if left_pad_target:
# offsets[:, 1] += tgt_sz - tgt_lengths
#
# alignments = [
# alignment + offset
# for align_idx, offset, src_len, tgt_len in zip(
# sort_order, offsets, src_lengths, tgt_lengths
# )
# for alignment in [samples[align_idx]["alignment"].view(-1, 2)]
# if check_alignment(alignment, src_len, tgt_len)
# ]
#
# if len(alignments) > 0:
# alignments = torch.cat(alignments, dim=0)
# align_weights = compute_alignment_weights(alignments)
#
# batch["alignments"] = alignments
# batch["align_weights"] = align_weights
if samples[0].get("constraints", None) is not None:
# Collate the packed constraints across the samples, padding to
# the length of the longest sample.
lens = [sample.get("constraints").size(0) for sample in samples]
max_len = max(lens)
constraints = torch.zeros((len(samples), max(lens))).long()
for i, sample in enumerate(samples):
constraints[i, 0 : lens[i]] = samples[i].get("constraints")
batch["constraints"] = constraints
return batch
class LanguagePairDataset(FairseqDataset):
"""
A pair of torch.utils.data.Datasets.
Args:
src (torch.utils.data.Dataset): source dataset to wrap
src_sizes (List[int]): source sentence lengths
src_dict (~fairseq.data.Dictionary): source vocabulary
tgt (torch.utils.data.Dataset, optional): target dataset to wrap
tgt_sizes (List[int], optional): target sentence lengths
tgt_dict (~fairseq.data.Dictionary, optional): target vocabulary
left_pad_source (bool, optional): pad source tensors on the left side
(default: True).
left_pad_target (bool, optional): pad target tensors on the left side
(default: False).
shuffle (bool, optional): shuffle dataset elements before batching
(default: True).
input_feeding (bool, optional): create a shifted version of the targets
to be passed into the model for teacher forcing (default: True).
remove_eos_from_source (bool, optional): if set, removes eos from end
of source if it's present (default: False).
append_eos_to_target (bool, optional): if set, appends eos to end of
target if it's absent (default: False).
align_dataset (torch.utils.data.Dataset, optional): dataset
containing alignments.
constraints (Tensor, optional): 2d tensor with a concatenated, zero-
delimited list of constraints for each sentence.
append_bos (bool, optional): if set, appends bos to the beginning of
source/target sentence.
num_buckets (int, optional): if set to a value greater than 0, then
batches will be bucketed into the given number of batch shapes.
src_lang_id (int, optional): source language ID, if set, the collated batch
will contain a field 'src_lang_id' in 'net_input' which indicates the
source language of the samples.
tgt_lang_id (int, optional): target language ID, if set, the collated batch
will contain a field 'tgt_lang_id' which indicates the target language
of the samples.
"""
def __init__(
self,
src,
src_sizes,
src_dict,
tgt=None,
tgt_sizes=None,
tgt_dict=None,
left_pad_source=True,
left_pad_target=False,
shuffle=True,
input_feeding=True,
remove_eos_from_source=False,
append_eos_to_target=False,
align_dataset=None,
constraints=None,
append_bos=False,
eos=None,
num_buckets=0,
src_lang_id=None,
tgt_lang_id=None,
pad_to_multiple=1,
):
if tgt_dict is not None:
assert src_dict.pad() == tgt_dict.pad()
assert src_dict.eos() == tgt_dict.eos()
assert src_dict.unk() == tgt_dict.unk()
if tgt is not None:
assert len(src) == len(
tgt
), "Source and target must contain the same number of examples {} | {} {}".format(tgt._path, len(src), len(tgt))
self.src = src
self.tgt = tgt
self.src_sizes = np.array(src_sizes)
self.tgt_sizes = np.array(tgt_sizes) if tgt_sizes is not None else None
self.sizes = (
np.vstack((self.src_sizes, self.tgt_sizes)).T
if self.tgt_sizes is not None
else self.src_sizes
)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.left_pad_source = left_pad_source
self.left_pad_target = left_pad_target
self.shuffle = shuffle
self.input_feeding = input_feeding
self.remove_eos_from_source = remove_eos_from_source
self.append_eos_to_target = append_eos_to_target
self.align_dataset = align_dataset
if self.align_dataset is not None:
assert (
self.tgt_sizes is not None
), "Both source and target needed when alignments are provided"
self.constraints = constraints
self.append_bos = append_bos
self.eos = eos if eos is not None else src_dict.eos()
self.src_lang_id = src_lang_id
self.tgt_lang_id = tgt_lang_id
if num_buckets > 0:
from fairseq.data import BucketPadLengthDataset
self.src = BucketPadLengthDataset(
self.src,
sizes=self.src_sizes,
num_buckets=num_buckets,
pad_idx=self.src_dict.pad(),
left_pad=self.left_pad_source,
)
self.src_sizes = self.src.sizes
logger.info("bucketing source lengths: {}".format(list(self.src.buckets)))
if self.tgt is not None:
self.tgt = BucketPadLengthDataset(
self.tgt,
sizes=self.tgt_sizes,
num_buckets=num_buckets,
pad_idx=self.tgt_dict.pad(),
left_pad=self.left_pad_target,
)
self.tgt_sizes = self.tgt.sizes
logger.info(
"bucketing target lengths: {}".format(list(self.tgt.buckets))
)
# determine bucket sizes using self.num_tokens, which will return
# the padded lengths (thanks to BucketPadLengthDataset)
num_tokens = np.vectorize(self.num_tokens, otypes=[np.long])
self.bucketed_num_tokens = num_tokens(np.arange(len(self.src)))
self.buckets = [
(None, num_tokens) for num_tokens in np.unique(self.bucketed_num_tokens)
]
else:
self.buckets = None
self.pad_to_multiple = pad_to_multiple
def get_batch_shapes(self):
return self.buckets
def __getitem__(self, index):
tgt_item = self.tgt[index] if self.tgt is not None else None
src_item = self.src[index]
# Append EOS to end of tgt sentence if it does not have an EOS and remove
# EOS from end of src sentence if it exists. This is useful when we use
# use existing datasets for opposite directions i.e., when we want to
# use tgt_dataset as src_dataset and vice versa
if self.append_eos_to_target:
eos = self.tgt_dict.eos() if self.tgt_dict else self.src_dict.eos()
if self.tgt and self.tgt[index][-1] != eos:
tgt_item = torch.cat([self.tgt[index], torch.LongTensor([eos])])
if self.append_bos:
bos = self.tgt_dict.bos() if self.tgt_dict else self.src_dict.bos()
if self.tgt and self.tgt[index][0] != bos:
tgt_item = torch.cat([torch.LongTensor([bos]), self.tgt[index]])
bos = self.src_dict.bos()
if self.src[index][0] != bos:
src_item = torch.cat([torch.LongTensor([bos]), self.src[index]])
if self.remove_eos_from_source:
eos = self.src_dict.eos()
if self.src[index][-1] == eos:
src_item = self.src[index][:-1]
example = {
"id": index,
"source": src_item,
"target": tgt_item,
}
if self.align_dataset is not None:
example["alignment"] = self.align_dataset[index]
if self.align_dataset.reverse_direction:
example["alignment"] = torch.flip(self.align_dataset[index], dims=[0])
if self.constraints is not None:
example["constraints"] = self.constraints[index]
return example
def __len__(self):
return len(self.src)
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
pad_to_length (dict, optional): a dictionary of
{'source': source_pad_to_length, 'target': target_pad_to_length}
to indicate the max length to pad to in source and target respectively.
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the left if *left_pad_source* is ``True``.
- `src_lengths` (LongTensor): 1D Tensor of the unpadded
lengths of each source sentence of shape `(bsz)`
- `prev_output_tokens` (LongTensor): a padded 2D Tensor of
tokens in the target sentence, shifted right by one
position for teacher forcing, of shape `(bsz, tgt_len)`.
This key will not be present if *input_feeding* is
``False``. Padding will appear on the left if
*left_pad_target* is ``True``.
- `src_lang_id` (LongTensor): a long Tensor which contains source
language IDs of each sample in the batch
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the left if *left_pad_target* is ``True``.
- `tgt_lang_id` (LongTensor): a long Tensor which contains target language
IDs of each sample in the batch
"""
res = collate(
samples,
pad_idx=self.src_dict.pad(),
eos_idx=self.eos,
left_pad_source=self.left_pad_source,
left_pad_target=self.left_pad_target,
input_feeding=self.input_feeding,
pad_to_length=pad_to_length,
pad_to_multiple=self.pad_to_multiple,
)
if self.src_lang_id is not None or self.tgt_lang_id is not None:
src_tokens = res["net_input"]["src_tokens"]
bsz = src_tokens.size(0)
if self.src_lang_id is not None:
res["net_input"]["src_lang_id"] = (
torch.LongTensor([[self.src_lang_id]]).expand(bsz, 1).to(src_tokens)
)
if self.tgt_lang_id is not None:
res["tgt_lang_id"] = (
torch.LongTensor([[self.tgt_lang_id]]).expand(bsz, 1).to(src_tokens)
)
#res["net_input"]["tgt_lang_id"] = res["tgt_lang_id"]
return res
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return max(
self.src_sizes[index],
self.tgt_sizes[index] if self.tgt_sizes is not None else 0,
)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return (
self.src_sizes[index],
self.tgt_sizes[index] if self.tgt_sizes is not None else 0,
)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self)).astype(np.int64)
else:
indices = np.arange(len(self), dtype=np.int64)
if self.buckets is None:
# sort by target length, then source length
if self.tgt_sizes is not None:
indices = indices[np.argsort(self.tgt_sizes[indices], kind="mergesort")]
return indices[np.argsort(self.src_sizes[indices], kind="mergesort")]
else:
# sort by bucketed_num_tokens, which is:
# max(padded_src_len, padded_tgt_len)
return indices[
np.argsort(self.bucketed_num_tokens[indices], kind="mergesort")
]
@property
def supports_prefetch(self):
return getattr(self.src, "supports_prefetch", False) and (
getattr(self.tgt, "supports_prefetch", False) or self.tgt is None
)
def prefetch(self, indices):
self.src.prefetch(indices)
if self.tgt is not None:
self.tgt.prefetch(indices)
if self.align_dataset is not None:
self.align_dataset.prefetch(indices)
def filter_indices_by_size(self, indices, max_sizes):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
return data_utils.filter_paired_dataset_indices_by_size(
self.src_sizes,
self.tgt_sizes,
indices,
max_sizes,
)
| data2vec_vision-main | deltalm/src/fairseq/data/language_pair_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from . import BaseWrapperDataset
class AppendTokenDataset(BaseWrapperDataset):
def __init__(self, dataset, token=None):
super().__init__(dataset)
self.token = token
if token is not None:
self._sizes = np.array(dataset.sizes) + 1
else:
self._sizes = dataset.sizes
def __getitem__(self, idx):
item = self.dataset[idx]
if self.token is not None:
item = torch.cat([item, item.new([self.token])])
return item
@property
def sizes(self):
return self._sizes
def num_tokens(self, index):
n = self.dataset.num_tokens(index)
if self.token is not None:
n += 1
return n
def size(self, index):
n = self.dataset.size(index)
if self.token is not None:
n += 1
return n
| data2vec_vision-main | deltalm/src/fairseq/data/append_token_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data import data_utils
from . import BaseWrapperDataset
class PadDataset(BaseWrapperDataset):
def __init__(self, dataset, pad_idx, left_pad):
super().__init__(dataset)
self.pad_idx = pad_idx
self.left_pad = left_pad
def collater(self, samples):
return data_utils.collate_tokens(samples, self.pad_idx, left_pad=self.left_pad)
class LeftPadDataset(PadDataset):
def __init__(self, dataset, pad_idx):
super().__init__(dataset, pad_idx, left_pad=True)
class RightPadDataset(PadDataset):
def __init__(self, dataset, pad_idx):
super().__init__(dataset, pad_idx, left_pad=False)
| data2vec_vision-main | deltalm/src/fairseq/data/pad_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import shutil
import struct
from functools import lru_cache
import numpy as np
import torch
from fairseq.dataclass.constants import DATASET_IMPL_CHOICES
from fairseq.data.fasta_dataset import FastaDataset
from fairseq.file_io import PathManager
from . import FairseqDataset
def __best_fitting_dtype(vocab_size=None):
if vocab_size is not None and vocab_size < 65500:
return np.uint16
else:
return np.int32
def get_available_dataset_impl():
return list(map(str, DATASET_IMPL_CHOICES))
def infer_dataset_impl(path):
if IndexedRawTextDataset.exists(path):
return "raw"
elif IndexedDataset.exists(path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
if magic == IndexedDataset._HDR_MAGIC:
return "cached"
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
return "mmap"
else:
return None
elif FastaDataset.exists(path):
return "fasta"
else:
return None
def make_builder(out_file, impl, vocab_size=None):
if impl == "mmap":
return MMapIndexedDatasetBuilder(
out_file, dtype=__best_fitting_dtype(vocab_size)
)
elif impl == "fasta":
raise NotImplementedError
else:
return IndexedDatasetBuilder(out_file)
def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None):
if impl == "raw" and IndexedRawTextDataset.exists(path):
assert dictionary is not None
return IndexedRawTextDataset(path, dictionary)
elif impl == "lazy" and IndexedDataset.exists(path):
return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "cached" and IndexedDataset.exists(path):
return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "mmap" and MMapIndexedDataset.exists(path):
return MMapIndexedDataset(path)
elif impl == "fasta" and FastaDataset.exists(path):
from fairseq.data.fasta_dataset import EncodedFastaDataset
return EncodedFastaDataset(path, dictionary)
return None
def dataset_exists(path, impl):
if impl == "raw":
return IndexedRawTextDataset.exists(path)
elif impl == "mmap":
return MMapIndexedDataset.exists(path)
else:
return IndexedDataset.exists(path)
def read_longs(f, n):
a = np.empty(n, dtype=np.int64)
f.readinto(a)
return a
def write_longs(f, a):
f.write(np.array(a, dtype=np.int64))
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: np.float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class IndexedDataset(FairseqDataset):
"""Loader for TorchNet IndexedDataset"""
_HDR_MAGIC = b"TNTIDX\x00\x00"
def __init__(self, path, fix_lua_indexing=False):
super().__init__()
self.path = path
self.fix_lua_indexing = fix_lua_indexing
self.data_file = None
self.read_index(path)
def read_index(self, path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
assert magic == self._HDR_MAGIC, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly. | {} | {}".format(path, magic)
)
version = f.read(8)
assert struct.unpack("<Q", version) == (1,)
code, self.element_size = struct.unpack("<QQ", f.read(16))
self.dtype = dtypes[code]
self._len, self.s = struct.unpack("<QQ", f.read(16))
self.dim_offsets = read_longs(f, self._len + 1)
self.data_offsets = read_longs(f, self._len + 1)
self.sizes = read_longs(f, self.s)
def read_data(self, path):
self.data_file = open(data_file_path(path), "rb", buffering=0)
def check_index(self, i):
if i < 0 or i >= self._len:
raise IndexError("index out of range")
def __del__(self):
if self.data_file:
self.data_file.close()
@lru_cache(maxsize=8)
def __getitem__(self, i):
if not self.data_file:
self.read_data(self.path)
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
def __len__(self):
return self._len
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
@property
def supports_prefetch(self):
return False # avoid prefetching to save memory
class IndexedCachedDataset(IndexedDataset):
def __init__(self, path, fix_lua_indexing=False):
super().__init__(path, fix_lua_indexing=fix_lua_indexing)
self.cache = None
self.cache_index = {}
@property
def supports_prefetch(self):
return True
def prefetch(self, indices):
if all(i in self.cache_index for i in indices):
return
if not self.data_file:
self.read_data(self.path)
indices = sorted(set(indices))
total_size = 0
for i in indices:
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
self.cache = np.empty(total_size, dtype=self.dtype)
ptx = 0
self.cache_index.clear()
for i in indices:
self.cache_index[i] = ptx
size = self.data_offsets[i + 1] - self.data_offsets[i]
a = self.cache[ptx : ptx + size]
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
ptx += size
if self.data_file:
# close and delete data file after prefetch so we can pickle
self.data_file.close()
self.data_file = None
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
ptx = self.cache_index[i]
np.copyto(a, self.cache[ptx : ptx + a.size])
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
class IndexedRawTextDataset(FairseqDataset):
"""Takes a text file as input and binarizes it in memory at instantiation.
Original lines are also kept in memory"""
def __init__(self, path, dictionary, append_eos=True, reverse_order=False):
self.tokens_list = []
self.lines = []
self.sizes = []
self.append_eos = append_eos
self.reverse_order = reverse_order
self.read_data(path, dictionary)
self.size = len(self.tokens_list)
def read_data(self, path, dictionary):
with open(path, "r", encoding="utf-8") as f:
for line in f:
self.lines.append(line.strip("\n"))
tokens = dictionary.encode_line(
line,
add_if_not_exist=False,
append_eos=self.append_eos,
reverse_order=self.reverse_order,
).long()
self.tokens_list.append(tokens)
self.sizes.append(len(tokens))
self.sizes = np.array(self.sizes)
def check_index(self, i):
if i < 0 or i >= self.size:
raise IndexError("index out of range")
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
return self.tokens_list[i]
def get_original_text(self, i):
self.check_index(i)
return self.lines[i]
def __del__(self):
pass
def __len__(self):
return self.size
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(path)
class IndexedDatasetBuilder(object):
element_sizes = {
np.uint8: 1,
np.int8: 1,
np.int16: 2,
np.int32: 4,
np.int64: 8,
np.float: 4,
np.double: 8,
}
def __init__(self, out_file, dtype=np.int32):
self.out_file = open(out_file, "wb")
self.dtype = dtype
self.data_offsets = [0]
self.dim_offsets = [0]
self.sizes = []
self.element_size = self.element_sizes[self.dtype]
def add_item(self, tensor):
# +1 for Lua compatibility
bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype))
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
for s in tensor.size():
self.sizes.append(s)
self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))
def merge_file_(self, another_file):
index = IndexedDataset(another_file)
assert index.dtype == self.dtype
begin = self.data_offsets[-1]
for offset in index.data_offsets[1:]:
self.data_offsets.append(begin + offset)
self.sizes.extend(index.sizes)
begin = self.dim_offsets[-1]
for dim_offset in index.dim_offsets[1:]:
self.dim_offsets.append(begin + dim_offset)
with open(data_file_path(another_file), "rb") as f:
while True:
data = f.read(1024)
if data:
self.out_file.write(data)
else:
break
def finalize(self, index_file):
self.out_file.close()
index = open(index_file, "wb")
index.write(b"TNTIDX\x00\x00")
index.write(struct.pack("<Q", 1))
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
write_longs(index, self.dim_offsets)
write_longs(index, self.data_offsets)
write_longs(index, self.sizes)
index.close()
def _warmup_mmap_file(path):
with open(path, "rb") as stream:
while stream.read(100 * 1024 * 1024):
pass
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
self._file.write(cls._HDR_MAGIC)
self._file.write(struct.pack("<Q", 1))
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes):
pointers = self._get_pointers(sizes)
self._file.write(struct.pack("<Q", len(sizes)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly. | {} | {}".format(path, magic_test)
)
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self.reverse_direction = False
self._do_init(path)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path):
try:
self._path = path
self._index = self.Index(index_file_path(self._path))
_warmup_mmap_file(data_file_path(self._path))
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
self._bin_buffer = memoryview(self._bin_buffer_mmap)
except:
print("{}".format(self._path))
exit()
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
@lru_cache(maxsize=8)
def __getitem__(self, i):
ptr, size = self._index[i]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
if self._index.dtype != np.int64:
np_array = np_array.astype(np.int64)
return torch.from_numpy(np_array)
@property
def sizes(self):
return self._index.sizes
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
def get_indexed_dataset_to_local(path):
local_index_path = PathManager.get_local_path(index_file_path(path))
local_data_path = PathManager.get_local_path(data_file_path(path))
assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), (
"PathManager.get_local_path does not return files with expected patterns: "
f"{local_index_path} and {local_data_path}"
)
local_path = local_data_path[:-4] # stripping surfix ".bin"
assert local_path == local_index_path[:-4] # stripping surfix ".idx"
return local_path
class MMapIndexedDatasetBuilder(object):
def __init__(self, out_file, dtype=np.int64):
self._data_file = open(out_file, "wb")
self._dtype = dtype
self._sizes = []
def add_item(self, tensor):
np_array = np.array(tensor.numpy(), dtype=self._dtype)
self._data_file.write(np_array.tobytes(order="C"))
self._sizes.append(np_array.size)
def merge_file_(self, another_file):
# Concatenate index
index = MMapIndexedDataset.Index(index_file_path(another_file))
assert index.dtype == self._dtype
for size in index.sizes:
self._sizes.append(size)
# Concatenate data
with open(data_file_path(another_file), "rb") as f:
shutil.copyfileobj(f, self._data_file)
def finalize(self, index_file):
self._data_file.close()
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
index.write(self._sizes)
| data2vec_vision-main | deltalm/src/fairseq/data/indexed_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import BaseWrapperDataset
class RollDataset(BaseWrapperDataset):
def __init__(self, dataset, shifts):
super().__init__(dataset)
self.shifts = shifts
def __getitem__(self, index):
item = self.dataset[index]
return torch.roll(item, self.shifts)
| data2vec_vision-main | deltalm/src/fairseq/data/roll_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from collections import Counter
from multiprocessing import Pool
import torch
from fairseq import utils
from fairseq.binarizer import safe_readline
from fairseq.data import data_utils
from fairseq.file_io import PathManager
from fairseq.tokenizer import tokenize_line
class Dictionary(object):
"""A mapping from symbols to consecutive integers"""
def __init__(
self,
*, # begin keyword-only arguments
bos="<s>",
pad="<pad>",
eos="</s>",
unk="<unk>",
extra_special_symbols=None,
):
self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
self.symbols = []
self.count = []
self.indices = {}
self.bos_index = self.add_symbol(bos)
self.pad_index = self.add_symbol(pad)
self.eos_index = self.add_symbol(eos)
self.unk_index = self.add_symbol(unk)
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(s)
self.nspecial = len(self.symbols)
def __eq__(self, other):
return self.indices == other.indices
def __getitem__(self, idx):
if idx < len(self.symbols):
return self.symbols[idx]
return self.unk_word
def __len__(self):
"""Returns the number of symbols in the dictionary"""
return len(self.symbols)
def __contains__(self, sym):
return sym in self.indices
def index(self, sym):
"""Returns the index of the specified symbol"""
assert isinstance(sym, str)
if sym in self.indices:
return self.indices[sym]
return self.unk_index
def string(
self,
tensor,
bpe_symbol=None,
escape_unk=False,
extra_symbols_to_ignore=None,
unk_string=None,
include_eos=False,
):
"""Helper for converting a tensor of token indices to a string.
Can optionally remove BPE symbols or escape <unk> words.
"""
if torch.is_tensor(tensor) and tensor.dim() == 2:
return "\n".join(
self.string(t, bpe_symbol, escape_unk, extra_symbols_to_ignore, include_eos=include_eos)
for t in tensor
)
extra_symbols_to_ignore = set(extra_symbols_to_ignore or [])
extra_symbols_to_ignore.add(self.eos())
def token_string(i):
if i == self.unk():
if unk_string is not None:
return unk_string
else:
return self.unk_string(escape_unk)
else:
return self[i]
if hasattr(self, "bos_index"):
extra_symbols_to_ignore.add(self.bos())
sent = " ".join(
token_string(i)
for i in tensor
if utils.item(i) not in extra_symbols_to_ignore
)
return data_utils.post_process(sent, bpe_symbol)
def unk_string(self, escape=False):
"""Return unknown string, optionally escaped as: <<unk>>"""
if escape:
return "<{}>".format(self.unk_word)
else:
return self.unk_word
def add_symbol(self, word, n=1, overwrite=False):
"""Adds a word to the dictionary"""
if word in self.indices and not overwrite:
idx = self.indices[word]
self.count[idx] = self.count[idx] + n
return idx
else:
idx = len(self.symbols)
self.indices[word] = idx
self.symbols.append(word)
self.count.append(n)
return idx
def update(self, new_dict):
"""Updates counts from new dictionary."""
for word in new_dict.symbols:
idx2 = new_dict.indices[word]
if word in self.indices:
idx = self.indices[word]
self.count[idx] = self.count[idx] + new_dict.count[idx2]
else:
idx = len(self.symbols)
self.indices[word] = idx
self.symbols.append(word)
self.count.append(new_dict.count[idx2])
def finalize(self, threshold=-1, nwords=-1, padding_factor=8):
"""Sort symbols by frequency in descending order, ignoring special ones.
Args:
- threshold defines the minimum word count
- nwords defines the total number of words in the final dictionary,
including special symbols
- padding_factor can be used to pad the dictionary size to be a
multiple of 8, which is important on some hardware (e.g., Nvidia
Tensor Cores).
"""
if nwords <= 0:
nwords = len(self)
new_indices = dict(zip(self.symbols[: self.nspecial], range(self.nspecial)))
new_symbols = self.symbols[: self.nspecial]
new_count = self.count[: self.nspecial]
c = Counter(
dict(
sorted(zip(self.symbols[self.nspecial :], self.count[self.nspecial :]))
)
)
for symbol, count in c.most_common(nwords - self.nspecial):
if count >= threshold:
new_indices[symbol] = len(new_symbols)
new_symbols.append(symbol)
new_count.append(count)
else:
break
assert len(new_symbols) == len(new_indices)
self.count = list(new_count)
self.symbols = list(new_symbols)
self.indices = new_indices
self.pad_to_multiple_(padding_factor)
def pad_to_multiple_(self, padding_factor):
"""Pad Dictionary size to be a multiple of *padding_factor*."""
if padding_factor > 1:
i = 0
while len(self) % padding_factor != 0:
symbol = "madeupword{:04d}".format(i)
self.add_symbol(symbol, n=0)
i += 1
def bos(self):
"""Helper to get index of beginning-of-sentence symbol"""
return self.bos_index
def pad(self):
"""Helper to get index of pad symbol"""
return self.pad_index
def eos(self):
"""Helper to get index of end-of-sentence symbol"""
return self.eos_index
def unk(self):
"""Helper to get index of unk symbol"""
return self.unk_index
@classmethod
def load(cls, f):
"""Loads the dictionary from a text file with the format:
```
<symbol0> <count0>
<symbol1> <count1>
...
```
"""
d = cls()
d.add_from_file(f)
return d
def add_from_file(self, f):
"""
Loads a pre-existing dictionary from a text file and adds its symbols
to this instance.
"""
if isinstance(f, str):
try:
with open(PathManager.get_local_path(f), "r", encoding="utf-8") as fd:
self.add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(
"Incorrect encoding detected in {}, please "
"rebuild the dataset".format(f)
)
return
lines = f.readlines()
indices_start_line = self._load_meta(lines)
for line in lines[indices_start_line:]:
try:
line, field = line.rstrip().rsplit(" ", 1)
if field == "#fairseq:overwrite":
overwrite = True
line, field = line.rsplit(" ", 1)
else:
overwrite = False
count = int(field)
word = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(word)
)
self.add_symbol(word, n=count, overwrite=overwrite)
except ValueError:
raise ValueError(
"Incorrect dictionary format, expected '<token> <cnt> [flags]'"
)
def _save(self, f, kv_iterator):
if isinstance(f, str):
PathManager.mkdirs(os.path.dirname(f))
with PathManager.open(f, "w", encoding="utf-8") as fd:
return self.save(fd)
for k, v in kv_iterator:
print("{} {}".format(k, v), file=f)
def _get_meta(self):
return [], []
def _load_meta(self, lines):
return 0
def save(self, f):
"""Stores dictionary into a text file"""
ex_keys, ex_vals = self._get_meta()
self._save(
f,
zip(
ex_keys + self.symbols[self.nspecial :],
ex_vals + self.count[self.nspecial :],
),
)
def dummy_sentence(self, length):
t = torch.Tensor(length).uniform_(self.nspecial + 1, len(self)).long()
t[-1] = self.eos()
return t
def encode_line(
self,
line,
line_tokenizer=tokenize_line,
add_if_not_exist=True,
consumer=None,
append_eos=True,
reverse_order=False,
):
words = line_tokenizer(line)
if reverse_order:
words = list(reversed(words))
nwords = len(words)
ids = torch.IntTensor(nwords + 1 if append_eos else nwords)
for i, word in enumerate(words):
if add_if_not_exist:
idx = self.add_symbol(word)
else:
idx = self.index(word)
if consumer is not None:
consumer(word, idx)
ids[i] = idx
if append_eos:
ids[nwords] = self.eos_index
return ids
@staticmethod
def _add_file_to_dictionary_single_worker(
filename, tokenize, eos_word, worker_id=0, num_workers=1
):
counter = Counter()
with open(PathManager.get_local_path(filename), "r", encoding="utf-8") as f:
size = os.fstat(f.fileno()).st_size
chunk_size = size // num_workers
offset = worker_id * chunk_size
end = offset + chunk_size
f.seek(offset)
if offset > 0:
safe_readline(f) # drop first incomplete line
line = f.readline()
while line:
for word in tokenize(line):
counter.update([word])
counter.update([eos_word])
if f.tell() > end:
break
line = f.readline()
return counter
@staticmethod
def add_file_to_dictionary(filename, dict, tokenize, num_workers):
def merge_result(counter):
for w, c in sorted(counter.items()):
dict.add_symbol(w, c)
if num_workers > 1:
pool = Pool(processes=num_workers)
results = []
for worker_id in range(num_workers):
results.append(
pool.apply_async(
Dictionary._add_file_to_dictionary_single_worker,
(filename, tokenize, dict.eos_word, worker_id, num_workers),
)
)
pool.close()
pool.join()
for r in results:
merge_result(r.get())
else:
merge_result(
Dictionary._add_file_to_dictionary_single_worker(
filename, tokenize, dict.eos_word
)
)
class TruncatedDictionary(object):
def __init__(self, wrapped_dict, length):
self.__class__ = type(
wrapped_dict.__class__.__name__,
(self.__class__, wrapped_dict.__class__),
{},
)
self.__dict__ = wrapped_dict.__dict__
self.wrapped_dict = wrapped_dict
self.length = min(len(self.wrapped_dict), length)
def __len__(self):
return self.length
def __getitem__(self, i):
if i < self.length:
return self.wrapped_dict[i]
return self.wrapped_dict.unk()
| data2vec_vision-main | deltalm/src/fairseq/data/dictionary.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch.utils.data
from fairseq.data import data_utils
class EpochListening:
"""Mixin for receiving updates whenever the epoch increments."""
@property
def can_reuse_epoch_itr_across_epochs(self):
"""
Whether we can reuse the :class:`fairseq.data.EpochBatchIterator` for
this dataset across epochs.
This needs to return ``False`` if the sample sizes can change across
epochs, in which case we may need to regenerate batches at each epoch.
If your dataset relies in ``set_epoch`` then you should consider setting
this to ``False``.
"""
return True
def set_epoch(self, epoch):
"""Will receive the updated epoch number at the beginning of the epoch."""
pass
class FairseqDataset(torch.utils.data.Dataset, EpochListening):
"""A dataset that provides helpers for batching."""
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
raise NotImplementedError
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
raise NotImplementedError
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
raise NotImplementedError
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
return np.arange(len(self), dtype=np.int64)
@property
def supports_prefetch(self):
"""Whether this dataset supports prefetching."""
return False
def attr(self, attr: str, index: int):
return getattr(self, attr, None)
def prefetch(self, indices):
"""Prefetch the data required for this epoch."""
raise NotImplementedError
def get_batch_shapes(self):
"""
Return a list of valid batch shapes, for example::
[(8, 512), (16, 256), (32, 128)]
The first dimension of each tuple is the batch size and can be ``None``
to automatically infer the max batch size based on ``--max-tokens``.
The second dimension of each tuple is the max supported length as given
by :func:`fairseq.data.FairseqDataset.num_tokens`.
This will be used by :func:`fairseq.data.FairseqDataset.batch_by_size`
to restrict batch shapes. This is useful on TPUs to avoid too many
dynamic shapes (and recompilations).
"""
return None
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
"""
Given an ordered set of indices, return batches according to
*max_tokens*, *max_sentences* and *required_batch_size_multiple*.
"""
from fairseq.data import data_utils
fixed_shapes = self.get_batch_shapes()
if fixed_shapes is not None:
def adjust_bsz(bsz, num_tokens):
if bsz is None:
assert max_tokens is not None, "Must specify --max-tokens"
bsz = max_tokens // num_tokens
if max_sentences is not None:
bsz = min(bsz, max_sentences)
elif (
bsz >= required_batch_size_multiple
and bsz % required_batch_size_multiple != 0
):
bsz -= bsz % required_batch_size_multiple
return bsz
fixed_shapes = np.array(
[
[adjust_bsz(bsz, num_tokens), num_tokens]
for (bsz, num_tokens) in fixed_shapes
]
)
return data_utils.batch_by_size(
indices,
num_tokens_fn=self.num_tokens,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
fixed_shapes=fixed_shapes,
)
def filter_indices_by_size(self, indices, max_sizes):
"""
Filter a list of sample indices. Remove those that are longer than
specified in *max_sizes*.
WARNING: don't update, override method in child classes
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
if isinstance(max_sizes, float) or isinstance(max_sizes, int):
if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray):
ignored = indices[self.sizes[indices] > max_sizes].tolist()
indices = indices[self.sizes[indices] <= max_sizes]
elif (
hasattr(self, "sizes")
and isinstance(self.sizes, list)
and len(self.sizes) == 1
):
ignored = indices[self.sizes[0][indices] > max_sizes].tolist()
indices = indices[self.sizes[0][indices] <= max_sizes]
else:
indices, ignored = data_utils._filter_by_size_dynamic(
indices, self.size, max_sizes
)
else:
indices, ignored = data_utils._filter_by_size_dynamic(
indices, self.size, max_sizes
)
return indices, ignored
@property
def supports_fetch_outside_dataloader(self):
"""Whether this dataset supports fetching outside the workers of the dataloader."""
return True
class FairseqIterableDataset(torch.utils.data.IterableDataset, EpochListening):
"""
For datasets that need to be read sequentially, usually because the data is
being streamed or otherwise can't be manipulated on a single machine.
"""
def __iter__(self):
raise NotImplementedError
| data2vec_vision-main | deltalm/src/fairseq/data/fairseq_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from fairseq.data.monolingual_dataset import MonolingualDataset
from . import FairseqDataset
class LMContextWindowDataset(FairseqDataset):
"""Wraps a MonolingualDataset and provides more context for evaluation."""
def __init__(self, dataset, tokens_per_sample, context_window, pad_idx):
assert isinstance(dataset, MonolingualDataset)
assert context_window > 0
self.dataset = dataset
self.tokens_per_sample = tokens_per_sample
self.context_window = context_window
self.pad_idx = pad_idx
self.prev_tokens = np.empty([0])
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
def collater(self, samples):
sample = self.dataset.collater(samples)
pad = self.pad_idx
max_sample_len = self.tokens_per_sample + self.context_window
bsz, tsz = sample["net_input"]["src_tokens"].shape
start_idxs = [0] * bsz
toks = sample["net_input"]["src_tokens"]
lengths = sample["net_input"]["src_lengths"]
tgt = sample["target"]
new_toks = np.empty([bsz, tsz + self.context_window], dtype=np.int64)
new_tgt = np.full([bsz, tsz + self.context_window], pad, dtype=np.int64)
sample_lens = toks.ne(pad).long().sum(dim=1).cpu()
for i in range(bsz):
sample_len = sample_lens[i]
extra = len(self.prev_tokens) + sample_len - max_sample_len
if extra > 0:
self.prev_tokens = self.prev_tokens[extra:]
pads = np.full(self.context_window - len(self.prev_tokens), pad)
new_toks[i] = np.concatenate([self.prev_tokens, toks[i].numpy(), pads])
new_tgt[
i, len(self.prev_tokens) : len(self.prev_tokens) + len(tgt[i])
] = tgt[i]
start_idxs[i] = len(self.prev_tokens)
lengths[i] += len(self.prev_tokens)
self.prev_tokens = new_toks[i][new_toks[i] != pad][-self.context_window :]
sample["net_input"]["src_tokens"] = torch.from_numpy(new_toks)
sample["target"] = torch.from_numpy(new_tgt)
sample["start_indices"] = start_idxs
return sample
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
return self.dataset.size(index)
def ordered_indices(self):
# NOTE we don't shuffle the data to retain access to the previous dataset elements
return np.arange(len(self.dataset))
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/lm_context_window_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch.nn.functional as F
from fairseq.data import BaseWrapperDataset
class BucketPadLengthDataset(BaseWrapperDataset):
"""
Bucket and pad item lengths to the nearest bucket size. This can be used to
reduce the number of unique batch shapes, which is important on TPUs since
each new batch shape requires a recompilation.
Args:
dataset (FairseqDatset): dataset to bucket
sizes (List[int]): all item sizes
num_buckets (int): number of buckets to create
pad_idx (int): padding symbol
left_pad (bool): if True, pad on the left; otherwise right pad
"""
def __init__(
self,
dataset,
sizes,
num_buckets,
pad_idx,
left_pad,
):
super().__init__(dataset)
self.pad_idx = pad_idx
self.left_pad = left_pad
assert num_buckets > 0
self.buckets = np.unique(
np.percentile(
sizes,
np.linspace(0, 100, num_buckets + 1),
interpolation="lower",
)[1:]
)
def get_bucketed_sizes(orig_sizes, buckets):
sizes = np.copy(orig_sizes)
assert np.min(sizes) >= 0
start_val = -1
for end_val in buckets:
mask = (sizes > start_val) & (sizes <= end_val)
sizes[mask] = end_val
start_val = end_val
return sizes
self._bucketed_sizes = get_bucketed_sizes(sizes, self.buckets)
def __getitem__(self, index):
item = self.dataset[index]
bucket_size = self._bucketed_sizes[index]
num_pad = bucket_size - item.size(-1)
return F.pad(
item,
(num_pad if self.left_pad else 0, 0 if self.left_pad else num_pad),
value=self.pad_idx,
)
@property
def sizes(self):
return self._bucketed_sizes
def num_tokens(self, index):
return self._bucketed_sizes[index]
def size(self, index):
return self._bucketed_sizes[index]
| data2vec_vision-main | deltalm/src/fairseq/data/bucket_pad_length_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
from fairseq.data import FairseqDataset, plasma_utils
class TokenBlockDataset(FairseqDataset):
"""Break a Dataset of tokens into blocks.
Args:
dataset (~torch.utils.data.Dataset): dataset to break into blocks
sizes (List[int]): sentence lengths (required for 'complete' and 'eos')
block_size (int): maximum block size (ignored in 'eos' break mode)
break_mode (str, optional): Mode used for breaking tokens. Values can
be one of:
- 'none': break tokens into equally sized blocks (up to block_size)
- 'complete': break tokens into blocks (up to block_size) such that
blocks contains complete sentences, although block_size may be
exceeded if some sentences exceed block_size
- 'complete_doc': similar to 'complete' mode, but do not
cross document boundaries
- 'eos': each block contains one sentence (block_size is ignored)
include_targets (bool, optional): return next tokens as targets
(default: False).
document_sep_len (int, optional): document separator size (required for
'complete_doc' break mode). Typically 1 if the sentences have eos
and 0 otherwise.
"""
def __init__(
self,
dataset,
sizes,
block_size,
pad,
eos,
break_mode=None,
include_targets=False,
document_sep_len=1,
):
try:
from fairseq.data.token_block_utils_fast import (
_get_slice_indices_fast,
_get_block_to_dataset_index_fast,
)
except ImportError:
raise ImportError(
"Please build Cython components with: `pip install --editable .` "
"or `python setup.py build_ext --inplace`"
)
super().__init__()
self.dataset = dataset
self.pad = pad
self.eos = eos
self.include_targets = include_targets
assert len(dataset) == len(sizes)
assert len(dataset) > 0
if isinstance(sizes, list):
sizes = np.array(sizes, dtype=np.int64)
else:
if torch.is_tensor(sizes):
sizes = sizes.numpy()
sizes = sizes.astype(np.int64)
break_mode = break_mode if break_mode is not None else "none"
# For "eos" break-mode, block_size is not required parameters.
if break_mode == "eos" and block_size is None:
block_size = 0
slice_indices = _get_slice_indices_fast(
sizes, str(break_mode), block_size, document_sep_len
)
self._sizes = slice_indices[:, 1] - slice_indices[:, 0]
# build index mapping block indices to the underlying dataset indices
if break_mode == "eos":
# much faster version for eos break mode
block_to_dataset_index = np.stack(
[
np.arange(len(sizes)), # starting index in dataset
np.zeros(
len(sizes), dtype=np.long
), # starting offset within starting index
np.arange(len(sizes)), # ending index in dataset
],
1,
)
else:
block_to_dataset_index = _get_block_to_dataset_index_fast(
sizes,
slice_indices,
)
self._slice_indices = plasma_utils.PlasmaArray(slice_indices)
self._sizes = plasma_utils.PlasmaArray(self._sizes)
self._block_to_dataset_index = plasma_utils.PlasmaArray(block_to_dataset_index)
@property
def slice_indices(self):
return self._slice_indices.array
@property
def sizes(self):
return self._sizes.array
@property
def block_to_dataset_index(self):
return self._block_to_dataset_index.array
def attr(self, attr: str, index: int):
start_ds_idx, _, _ = self.block_to_dataset_index[index]
return self.dataset.attr(attr, start_ds_idx)
def __getitem__(self, index):
start_ds_idx, start_offset, end_ds_idx = self.block_to_dataset_index[index]
buffer = torch.cat(
[self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)]
)
slice_s, slice_e = self.slice_indices[index]
length = slice_e - slice_s
s, e = start_offset, start_offset + length
item = buffer[s:e]
if self.include_targets:
# *target* is the original sentence (=item)
# *source* is shifted right by 1 (maybe left-padded with eos)
# *past_target* is shifted right by 2 (left-padded as needed)
if s == 0:
source = torch.cat([item.new([self.eos]), buffer[0 : e - 1]])
past_target = torch.cat(
[item.new([self.pad, self.eos]), buffer[0 : e - 2]]
)
else:
source = buffer[s - 1 : e - 1]
if s == 1:
past_target = torch.cat([item.new([self.eos]), buffer[0 : e - 2]])
else:
past_target = buffer[s - 2 : e - 2]
return source, item, past_target
return item
def __len__(self):
return len(self.slice_indices)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
self.dataset.prefetch(
{
ds_idx
for index in indices
for start_ds_idx, _, end_ds_idx in [self.block_to_dataset_index[index]]
for ds_idx in range(start_ds_idx, end_ds_idx + 1)
}
)
| data2vec_vision-main | deltalm/src/fairseq/data/token_block_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Optional
import torch
from . import FairseqDataset
class TransformEosLangPairDataset(FairseqDataset):
"""A :class:`~fairseq.data.FairseqDataset` wrapper that transform bos on
collated samples of language pair dataset.
Note that the transformation is applied in :func:`collater`.
Args:
dataset (~fairseq.data.FairseqDataset): dataset that collates sample into
LanguagePairDataset schema
src_eos (int): original source end-of-sentence symbol index to be replaced
new_src_eos (int, optional): new end-of-sentence symbol index to replace source eos symbol
tgt_bos (int, optional): original target beginning-of-sentence symbol index to be replaced
new_tgt_bos (int, optional): new beginning-of-sentence symbol index to replace at the
beginning of 'prev_output_tokens'
"""
def __init__(
self,
dataset: FairseqDataset,
src_eos: int,
new_src_eos: Optional[int] = None,
tgt_bos: Optional[int] = None,
new_tgt_bos: Optional[int] = None,
):
self.dataset = dataset
self.src_eos = src_eos
self.new_src_eos = new_src_eos
self.tgt_bos = tgt_bos
self.new_tgt_bos = new_tgt_bos
def __getitem__(self, index):
return self.dataset[index]
def __len__(self):
return len(self.dataset)
def collater(self, samples, **extra_args):
samples = self.dataset.collater(samples, **extra_args)
if self.new_src_eos is not None:
if self.dataset.left_pad_source:
assert (
samples["net_input"]["src_tokens"][:, -1] != self.src_eos
).sum() == 0
samples["net_input"]["src_tokens"][:, -1] = self.new_src_eos
else:
eos_idx = samples["net_input"]["src_lengths"] - 1
assert (
samples["net_input"]["src_tokens"][
torch.arange(eos_idx.size(0)), eos_idx
]
!= self.src_eos
).sum() == 0
eos_idx = eos_idx.resize_(len(samples["net_input"]["src_lengths"]), 1)
samples["net_input"]["src_tokens"].scatter_(
1, eos_idx, self.new_src_eos
)
if (
self.new_tgt_bos is not None
and "prev_output_tokens" in samples["net_input"]
):
if self.dataset.left_pad_target:
# TODO: support different padding direction on target side
raise NotImplementedError(
"TransformEosLangPairDataset does not implement --left-pad-target True option"
)
else:
assert (
samples["net_input"]["prev_output_tokens"][:, 0] != self.tgt_bos
).sum() == 0
samples["net_input"]["prev_output_tokens"][:, 0] = self.new_tgt_bos
return samples
def num_tokens(self, index):
return self.dataset.num_tokens(index)
def size(self, index):
return self.dataset.size(index)
@property
def sizes(self):
# dataset.sizes can be a dynamically computed sizes:
return self.dataset.sizes
def ordered_indices(self):
return self.dataset.ordered_indices()
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
return self.dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/transform_eos_lang_pair_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import BaseWrapperDataset, data_utils
class AddTargetDataset(BaseWrapperDataset):
def __init__(
self,
dataset,
labels,
pad,
eos,
batch_targets,
process_label=None,
add_to_input=False,
):
super().__init__(dataset)
self.labels = labels
self.batch_targets = batch_targets
self.pad = pad
self.eos = eos
self.process_label = process_label
self.add_to_input = add_to_input
def get_label(self, index):
return (
self.labels[index]
if self.process_label is None
else self.process_label(self.labels[index])
)
def __getitem__(self, index):
item = self.dataset[index]
item["label"] = self.get_label(index)
return item
def size(self, index):
sz = self.dataset.size(index)
own_sz = len(self.get_label(index))
return (sz, own_sz)
def collater(self, samples):
collated = self.dataset.collater(samples)
if len(collated) == 0:
return collated
indices = set(collated["id"].tolist())
target = [s["label"] for s in samples if s["id"] in indices]
if self.batch_targets:
collated["target_lengths"] = torch.LongTensor([len(t) for t in target])
target = data_utils.collate_tokens(target, pad_idx=self.pad, left_pad=False)
collated["ntokens"] = collated["target_lengths"].sum().item()
else:
collated["ntokens"] = sum([len(t) for t in target])
collated["target"] = target
if self.add_to_input:
eos = target.new_full((target.size(0), 1), self.eos)
collated["target"] = torch.cat([target, eos], dim=-1).long()
collated["net_input"]["prev_output_tokens"] = torch.cat(
[eos, target], dim=-1
).long()
collated["ntokens"] += target.size(0)
return collated
| data2vec_vision-main | deltalm/src/fairseq/data/add_target_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data import Dictionary
class MaskedLMDictionary(Dictionary):
"""
Dictionary for Masked Language Modelling tasks. This extends Dictionary by
adding the mask symbol.
"""
def __init__(
self,
pad="<pad>",
eos="</s>",
unk="<unk>",
mask="<mask>",
):
super().__init__(pad=pad, eos=eos, unk=unk)
self.mask_word = mask
self.mask_index = self.add_symbol(mask)
self.nspecial = len(self.symbols)
def mask(self):
"""Helper to get index of mask symbol"""
return self.mask_index
class BertDictionary(MaskedLMDictionary):
"""
Dictionary for BERT task. This extends MaskedLMDictionary by adding support
for cls and sep symbols.
"""
def __init__(
self,
pad="<pad>",
eos="</s>",
unk="<unk>",
mask="<mask>",
cls="<cls>",
sep="<sep>",
):
super().__init__(pad=pad, eos=eos, unk=unk, mask=mask)
self.cls_word = cls
self.sep_word = sep
self.cls_index = self.add_symbol(cls)
self.sep_index = self.add_symbol(sep)
self.nspecial = len(self.symbols)
def cls(self):
"""Helper to get index of cls symbol"""
return self.cls_index
def sep(self):
"""Helper to get index of sep symbol"""
return self.sep_index
| data2vec_vision-main | deltalm/src/fairseq/data/legacy/masked_lm_dictionary.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
from fairseq.data import FairseqDataset
class BlockPairDataset(FairseqDataset):
"""Break a Dataset of tokens into sentence pair blocks for next sentence
prediction as well as masked language model.
High-level logics are:
1. break input tensor to tensor blocks
2. pair the blocks with 50% next sentence and 50% random sentence
3. return paired blocks as well as related segment labels
Args:
dataset (~torch.utils.data.Dataset): dataset to break into blocks
sizes: array of sentence lengths
dictionary: dictionary for the task
block_size: maximum block size
break_mode: mode for breaking copurs into block pairs. currently we support
2 modes
doc: respect document boundaries and each part of the pair should belong to on document
none: don't respect any boundary and cut tokens evenly
short_seq_prob: probability for generating shorter block pairs
doc_break_size: Size for empty line separating documents. Typically 1 if
the sentences have eos, 0 otherwise.
"""
def __init__(
self,
dataset,
dictionary,
sizes,
block_size,
break_mode="doc",
short_seq_prob=0.1,
doc_break_size=1,
):
super().__init__()
self.dataset = dataset
self.pad = dictionary.pad()
self.eos = dictionary.eos()
self.cls = dictionary.cls()
self.mask = dictionary.mask()
self.sep = dictionary.sep()
self.break_mode = break_mode
self.dictionary = dictionary
self.short_seq_prob = short_seq_prob
self.block_indices = []
assert len(dataset) == len(sizes)
if break_mode == "doc":
cur_doc = []
for sent_id, sz in enumerate(sizes):
assert doc_break_size == 0 or sz != 0, (
"when doc_break_size is non-zero, we expect documents to be"
"separated by a blank line with a single eos."
)
# empty line as document separator
if sz == doc_break_size:
if len(cur_doc) == 0:
continue
self.block_indices.append(cur_doc)
cur_doc = []
else:
cur_doc.append(sent_id)
max_num_tokens = block_size - 3 # Account for [CLS], [SEP], [SEP]
self.sent_pairs = []
self.sizes = []
for doc_id, doc in enumerate(self.block_indices):
self._generate_sentence_pair(doc, doc_id, max_num_tokens, sizes)
elif break_mode is None or break_mode == "none":
# each block should have half of the block size since we are constructing block pair
sent_length = (block_size - 3) // 2
total_len = sum(dataset.sizes)
length = math.ceil(total_len / sent_length)
def block_at(i):
start = i * sent_length
end = min(start + sent_length, total_len)
return (start, end)
sent_indices = np.array([block_at(i) for i in range(length)])
sent_sizes = np.array([e - s for s, e in sent_indices])
dataset_index = self._sent_to_dataset_index(sent_sizes)
# pair sentences
self._pair_sentences(dataset_index)
else:
raise ValueError("Invalid break_mode: " + break_mode)
def _pair_sentences(self, dataset_index):
"""
Give a list of evenly cut blocks/sentences, pair these sentences with 50%
consecutive sentences and 50% random sentences.
This is used for none break mode
"""
# pair sentences
for sent_id, sent in enumerate(dataset_index):
next_sent_label = (
1 if np.random.rand() > 0.5 and sent_id != len(dataset_index) - 1 else 0
)
if next_sent_label:
next_sent = dataset_index[sent_id + 1]
else:
next_sent = dataset_index[
self._skip_sampling(len(dataset_index), [sent_id, sent_id + 1])
]
self.sent_pairs.append((sent, next_sent, next_sent_label))
# The current blocks don't include the special tokens but the
# sizes already account for this
self.sizes.append(3 + sent[3] + next_sent[3])
def _sent_to_dataset_index(self, sent_sizes):
"""
Build index mapping block indices to the underlying dataset indices
"""
dataset_index = []
ds_idx, ds_remaining = -1, 0
for to_consume in sent_sizes:
sent_size = to_consume
if ds_remaining == 0:
ds_idx += 1
ds_remaining = sent_sizes[ds_idx]
start_ds_idx = ds_idx
start_offset = sent_sizes[ds_idx] - ds_remaining
while to_consume > ds_remaining:
to_consume -= ds_remaining
ds_idx += 1
ds_remaining = sent_sizes[ds_idx]
ds_remaining -= to_consume
dataset_index.append(
(
start_ds_idx, # starting index in dataset
start_offset, # starting offset within starting index
ds_idx, # ending index in dataset
sent_size, # sentence length
)
)
assert ds_remaining == 0
assert ds_idx == len(self.dataset) - 1
return dataset_index
def _generate_sentence_pair(self, doc, doc_id, max_num_tokens, sizes):
"""
Go through a single document and genrate sentence paris from it
"""
current_chunk = []
current_length = 0
curr = 0
# To provide more randomness, we decrease target seq length for parts of
# samples (10% by default). Note that max_num_tokens is the hard threshold
# for batching and will never be changed.
target_seq_length = max_num_tokens
if np.random.random() < self.short_seq_prob:
target_seq_length = np.random.randint(2, max_num_tokens)
# loop through all sentences in document
while curr < len(doc):
sent_id = doc[curr]
current_chunk.append(sent_id)
current_length = sum(sizes[current_chunk])
# split chunk and generate pair when exceed target_seq_length or
# finish the loop
if curr == len(doc) - 1 or current_length >= target_seq_length:
# split the chunk into 2 parts
a_end = 1
if len(current_chunk) > 2:
a_end = np.random.randint(1, len(current_chunk) - 1)
sent_a = current_chunk[:a_end]
len_a = sum(sizes[sent_a])
# generate next sentence label, note that if there is only 1 sentence
# in current chunk, label is always 0
next_sent_label = (
1 if np.random.rand() > 0.5 and len(current_chunk) != 1 else 0
)
if not next_sent_label:
# if next sentence label is 0, sample sent_b from a random doc
target_b_length = target_seq_length - len_a
rand_doc_id = self._skip_sampling(len(self.block_indices), [doc_id])
random_doc = self.block_indices[rand_doc_id]
random_start = np.random.randint(0, len(random_doc))
sent_b = []
len_b = 0
for j in range(random_start, len(random_doc)):
sent_b.append(random_doc[j])
len_b = sum(sizes[sent_b])
if len_b >= target_b_length:
break
# return the second part of the chunk since it's not used
num_unused_segments = len(current_chunk) - a_end
curr -= num_unused_segments
else:
# if next sentence label is 1, use the second part of chunk as sent_B
sent_b = current_chunk[a_end:]
len_b = sum(sizes[sent_b])
# currently sent_a and sent_B may be longer than max_num_tokens,
# truncate them and return block idx and offsets for them
sent_a, sent_b = self._truncate_sentences(
sent_a, sent_b, max_num_tokens
)
self.sent_pairs.append((sent_a, sent_b, next_sent_label))
self.sizes.append(3 + sent_a[3] + sent_b[3])
current_chunk = []
curr += 1
def _skip_sampling(self, total, skip_ids):
"""
Generate a random integer which is not in skip_ids. Sample range is [0, total)
TODO: ids in skip_ids should be consecutive, we can extend it to more generic version later
"""
rand_id = np.random.randint(total - len(skip_ids))
return rand_id if rand_id < min(skip_ids) else rand_id + len(skip_ids)
def _truncate_sentences(self, sent_a, sent_b, max_num_tokens):
"""
Trancate a pair of sentence to limit total length under max_num_tokens
Logics:
1. Truncate longer sentence
2. Tokens to be truncated could be at the beginning or the end of the sentnce
Returns:
Truncated sentences represented by dataset idx
"""
len_a, len_b = sum(self.dataset.sizes[sent_a]), sum(self.dataset.sizes[sent_b])
front_cut_a = front_cut_b = end_cut_a = end_cut_b = 0
while True:
total_length = (
len_a + len_b - front_cut_a - front_cut_b - end_cut_a - end_cut_b
)
if total_length <= max_num_tokens:
break
if len_a - front_cut_a - end_cut_a > len_b - front_cut_b - end_cut_b:
if np.random.rand() < 0.5:
front_cut_a += 1
else:
end_cut_a += 1
else:
if np.random.rand() < 0.5:
front_cut_b += 1
else:
end_cut_b += 1
# calculate ds indices as well as offsets and return
truncated_sent_a = self._cut_sentence(sent_a, front_cut_a, end_cut_a)
truncated_sent_b = self._cut_sentence(sent_b, front_cut_b, end_cut_b)
return truncated_sent_a, truncated_sent_b
def _cut_sentence(self, sent, front_cut, end_cut):
"""
Cut a sentence based on the numbers of tokens to be cut from beginning and end
Represent the sentence as dataset idx and return
"""
start_ds_idx, end_ds_idx, offset = sent[0], sent[-1], 0
target_len = sum(self.dataset.sizes[sent]) - front_cut - end_cut
while front_cut > 0:
if self.dataset.sizes[start_ds_idx] > front_cut:
offset += front_cut
break
else:
front_cut -= self.dataset.sizes[start_ds_idx]
start_ds_idx += 1
while end_cut > 0:
if self.dataset.sizes[end_ds_idx] > end_cut:
break
else:
end_cut -= self.dataset.sizes[end_ds_idx]
end_ds_idx -= 1
return start_ds_idx, offset, end_ds_idx, target_len
def _fetch_block(self, start_ds_idx, offset, end_ds_idx, length):
"""
Fetch a block of tokens based on its dataset idx
"""
buffer = torch.cat(
[self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)]
)
s, e = offset, offset + length
return buffer[s:e]
def __getitem__(self, index):
block1, block2, next_sent_label = self.sent_pairs[index]
block1 = self._fetch_block(*block1)
block2 = self._fetch_block(*block2)
return block1, block2, next_sent_label
def __len__(self):
return len(self.sizes)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
prefetch_idx = set()
for index in indices:
for block1, block2, _ in [self.sent_pairs[index]]:
for ds_idx in range(block1[0], block1[2] + 1):
prefetch_idx.add(ds_idx)
for ds_idx in range(block2[0], block2[2] + 1):
prefetch_idx.add(ds_idx)
self.dataset.prefetch(prefetch_idx)
| data2vec_vision-main | deltalm/src/fairseq/data/legacy/block_pair_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .block_pair_dataset import BlockPairDataset
from .masked_lm_dataset import MaskedLMDataset
from .masked_lm_dictionary import BertDictionary, MaskedLMDictionary
__all__ = [
"BertDictionary",
"BlockPairDataset",
"MaskedLMDataset",
"MaskedLMDictionary",
]
| data2vec_vision-main | deltalm/src/fairseq/data/legacy/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Tuple
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset, data_utils
from fairseq.data.concat_dataset import ConcatDataset
from fairseq.data.legacy.block_pair_dataset import BlockPairDataset
from fairseq.data.token_block_dataset import TokenBlockDataset
class MaskedLMDataset(FairseqDataset):
"""
A wrapper Dataset for masked language modelling. The dataset
wraps around TokenBlockDataset or BlockedPairDataset and creates a batch
where the input blocks are masked according to the specified masking
probability. Additionally the batch can also contain sentence level targets
if this is specified.
Args:
dataset: Dataset which generates blocks of data. Only BlockPairDataset
and TokenBlockDataset are supported.
sizes: Sentence lengths
vocab: Dictionary with the vocabulary and special tokens.
pad_idx: Id of padding token in dictionary
mask_idx: Id of mask token in dictionary
classif_token_idx: Id of classification token in dictionary. This is the
token associated with the sentence embedding (Eg: CLS for BERT)
sep_token_idx: Id of separator token in dictionary
(Eg: SEP in BERT)
seed: Seed for random number generator for reproducibility.
shuffle: Shuffle the elements before batching.
has_pairs: Specifies whether the underlying dataset
generates a pair of blocks along with a sentence_target or not.
Setting it to True assumes that the underlying dataset generates a
label for the pair of sentences which is surfaced as
sentence_target. The default value assumes a single block with no
sentence target.
segment_id: An optional segment id for filling in the segment labels
when we are in the single block setting (Eg: XLM). Default is 0.
masking_ratio: specifies what percentage of the blocks should be masked.
masking_prob: specifies the probability of a given token being
replaced with the "MASK" token.
random_token_prob: specifies the probability of a given token being
replaced by a random token from the vocabulary.
"""
def __init__(
self,
dataset: FairseqDataset,
sizes: np.ndarray,
vocab: Dictionary,
pad_idx: int,
mask_idx: int,
classif_token_idx: int,
sep_token_idx: int,
seed: int = 1,
shuffle: bool = True,
has_pairs: bool = True,
segment_id: int = 0,
masking_ratio: float = 0.15,
masking_prob: float = 0.8,
random_token_prob: float = 0.1,
):
# Make sure the input datasets are the ones supported
assert (
isinstance(dataset, TokenBlockDataset)
or isinstance(dataset, BlockPairDataset)
or isinstance(dataset, ConcatDataset)
), (
"MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or "
"ConcatDataset"
)
self.dataset = dataset
self.sizes = np.array(sizes)
self.vocab = vocab
self.pad_idx = pad_idx
self.mask_idx = mask_idx
self.classif_token_idx = classif_token_idx
self.sep_token_idx = sep_token_idx
self.shuffle = shuffle
self.seed = seed
self.has_pairs = has_pairs
self.segment_id = segment_id
self.masking_ratio = masking_ratio
self.masking_prob = masking_prob
self.random_token_prob = random_token_prob
# If we have only one block then sizes needs to be updated to include
# the classification token
if not has_pairs:
self.sizes = self.sizes + 1
def __getitem__(self, index: int):
# if has_pairs, then expect 2 blocks and a sentence target
if self.has_pairs:
(block_one, block_two, sentence_target) = self.dataset[index]
else:
block_one = self.dataset[index]
return {
"id": index,
"block_one": block_one,
"block_two": block_two if self.has_pairs else None,
"sentence_target": sentence_target if self.has_pairs else None,
}
def __len__(self):
return len(self.dataset)
def _mask_block(
self,
sentence: np.ndarray,
mask_idx: int,
pad_idx: int,
dictionary_token_range: Tuple,
):
"""
Mask tokens for Masked Language Model training
Samples mask_ratio tokens that will be predicted by LM.
Note:This function may not be efficient enough since we had multiple
conversions between np and torch, we can replace them with torch
operators later.
Args:
sentence: 1d tensor to be masked
mask_idx: index to use for masking the sentence
pad_idx: index to use for masking the target for tokens we aren't
predicting
dictionary_token_range: range of indices in dictionary which can
be used for random word replacement
(e.g. without special characters)
Return:
masked_sent: masked sentence
target: target with words which we are not predicting replaced
by pad_idx
"""
masked_sent = np.copy(sentence)
sent_length = len(sentence)
mask_num = math.ceil(sent_length * self.masking_ratio)
mask = np.random.choice(sent_length, mask_num, replace=False)
target = np.copy(sentence)
for i in range(sent_length):
if i in mask:
rand = np.random.random()
# replace with mask if probability is less than masking_prob
# (Eg: 0.8)
if rand < self.masking_prob:
masked_sent[i] = mask_idx
# replace with random token if probability is less than
# masking_prob + random_token_prob (Eg: 0.9)
elif rand < (self.masking_prob + self.random_token_prob):
# sample random token from dictionary
masked_sent[i] = np.random.randint(
dictionary_token_range[0], dictionary_token_range[1]
)
else:
target[i] = pad_idx
return masked_sent, target
def _collate(self, samples: List[Dict], pad_idx: int, eos_idx: int):
"""
Does the heavy lifting for creating a batch from the input list of
examples. The logic is as follows:
1. Mask the input blocks. In case has_pair is True then we have 2
blocks to mask.
2. Prepend the first masked block tensor with the special token
used as sentence embedding. Eg: CLS in BERT. This happens
irrespective of the value of has_pair.
3. If has_pair is True, then append the first masked block with the
special separator token (eg: SEP for BERT) and compute segment
label accordingly. In this case, also append the second masked
block with this special separator token and compute its segment
label.
4. For the targets tensor, prepend and append with padding index
accordingly.
5. Concatenate all tensors.
"""
if len(samples) == 0:
return {}
# To ensure determinism, we reset the state of the PRNG after every
# batch based on the seed and the first id of the batch. This ensures
# that across epochs we get the same mask for the same example. This
# is needed for reproducibility and is how BERT does masking
# TODO: Can we add deteminism without this constraint?
with data_utils.numpy_seed(self.seed + samples[0]["id"]):
for s in samples:
# token range is needed for replacing with random token during
# masking
token_range = (self.vocab.nspecial, len(self.vocab))
# mask according to specified probabilities.
masked_blk_one, masked_tgt_one = self._mask_block(
s["block_one"],
self.mask_idx,
self.pad_idx,
token_range,
)
tokens = np.concatenate([[self.classif_token_idx], masked_blk_one])
targets = np.concatenate([[self.pad_idx], masked_tgt_one])
segments = np.ones(len(tokens)) * self.segment_id
# if has_pairs is True then we need to add the SEP token to both
# the blocks after masking and re-compute segments based on the new
# lengths.
if self.has_pairs:
tokens_one = np.concatenate([tokens, [self.sep_token_idx]])
targets_one = np.concatenate([targets, [self.pad_idx]])
masked_blk_two, masked_tgt_two = self._mask_block(
s["block_two"], self.mask_idx, self.pad_idx, token_range
)
tokens_two = np.concatenate([masked_blk_two, [self.sep_token_idx]])
targets_two = np.concatenate([masked_tgt_two, [self.pad_idx]])
# block + 1 sep + 1 special (CLS)
segments_one = np.zeros(len(tokens_one))
# block + 1 sep
segments_two = np.ones(len(tokens_two))
tokens = np.concatenate([tokens_one, tokens_two])
targets = np.concatenate([targets_one, targets_two])
segments = np.concatenate([segments_one, segments_two])
s["source"] = torch.LongTensor(tokens)
s["segment_labels"] = torch.LongTensor(segments)
s["lm_target"] = torch.LongTensor(targets)
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples], pad_idx, eos_idx, left_pad=False
)
return {
"id": torch.LongTensor([s["id"] for s in samples]),
"ntokens": sum(len(s["source"]) for s in samples),
"net_input": {
"src_tokens": merge("source"),
"segment_labels": merge("segment_labels"),
},
"lm_target": merge("lm_target"),
"sentence_target": torch.LongTensor([s["sentence_target"] for s in samples])
if self.has_pairs
else None,
"nsentences": len(samples),
}
def collater(self, samples: List[Dict]):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch of data
"""
return self._collate(samples, self.vocab.pad(), self.vocab.eos())
def num_tokens(self, index: int):
"""
Return the number of tokens in a sample. This value is used to
enforce max-tokens during batching.
"""
return self.sizes[index]
def size(self, index: int):
"""
Return an example's size as a float or tuple. This value is used when
filtering a dataset with max-positions.
"""
return self.sizes[index]
def ordered_indices(self):
"""
Return an ordered list of indices. Batches will be constructed based
on this order.
"""
if self.shuffle:
return np.random.permutation(len(self))
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
self.dataset.prefetch(indices)
| data2vec_vision-main | deltalm/src/fairseq/data/legacy/masked_lm_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
import logging
import math
import numpy as np
from fairseq.data import SampledMultiDataset
from .sampled_multi_dataset import CollateFormat, default_virtual_size_func
logger = logging.getLogger(__name__)
class SampledMultiEpochDataset(SampledMultiDataset):
"""Samples from multiple sub-datasets according to sampling ratios
using virtual epoch sizes to speed up dataloading.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
virtual_epoch_size (int): virtual epoch size, the dataset will go through the data by
this virtual epoch size one by one to speed up data loading, e.g. indicing and filtering
can be performed whenever a virtual epoch is loaded without waiting for the whole dataset to be loaded.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shard_epoch (int): the real epoch number for shard selection.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def __init__(
self,
datasets,
sampling_ratios=None,
sampling_ratios_list=None,
seed=2,
epoch=1,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=default_virtual_size_func,
split="",
virtual_epoch_size=None,
shared_collater=False,
shard_epoch=1,
shuffle=True,
):
self.virtual_epoch_size = virtual_epoch_size
self._current_epoch_start_index = None
self._random_global_indices = None
self.shard_epoch = shard_epoch if shard_epoch is not None else 1
self.load_next_shard = None
self._epoch_sizes = None
super().__init__(
datasets=datasets,
sampling_ratios=sampling_ratios,
sampling_ratios_list=sampling_ratios_list,
seed=seed,
epoch=epoch,
eval_key=eval_key,
collate_format=collate_format,
virtual_size=virtual_size,
split=split,
shared_collater=shared_collater,
shuffle=shuffle,
)
def _setup(self, epoch):
self.virtual_epoch_size = (
self.virtual_epoch_size
if self.virtual_epoch_size is not None
else self.virtual_size
)
if self.virtual_epoch_size > self.virtual_size:
logger.warning(
f"virtual epoch size {self.virtual_epoch_size} "
f"is greater than virtual dataset size {self.virtual_size}"
)
self.virtual_epoch_size = self.virtual_size
self.num_virtual_epochs = math.ceil(self.virtual_size / self.virtual_epoch_size)
self._current_epoch_start_index = self._get_epoch_start_index(epoch)
logger.info(
f"virtual epoch size {self.virtual_epoch_size}; virtual dataset size {self.virtual_size}"
)
def _map_epoch_index_to_global(self, index):
index = self._current_epoch_start_index + index
# add randomness
return self._random_global_indices[index]
@property
def sizes(self):
if self._epoch_sizes is not None:
return self._epoch_sizes
_sizes = super().sizes
indices = self._random_global_indices[
self._current_epoch_start_index : self._current_epoch_start_index
+ len(self)
]
self._epoch_sizes = _sizes[indices]
# del super()._sizes to save memory
del self._sizes
self._sizes = None
return self._epoch_sizes
def _get_dataset_and_index(self, index):
i = self._map_epoch_index_to_global(index)
return super()._get_dataset_and_index(i)
def __len__(self):
return (
self.virtual_epoch_size
if self._current_epoch_start_index + self.virtual_epoch_size
< self.virtual_size
else self.virtual_size - self._current_epoch_start_index
)
def set_epoch(self, epoch):
if self._current_epoch_start_index is None:
# initializing epoch idnices of a virtual dataset
self._setup(epoch)
self._next_virtual_epoch(epoch)
else:
# working on already intialized epoch indices
if epoch == self._cur_epoch:
# re-enter so return
return
self._next_virtual_epoch(epoch)
def _get_epoch_start_index(self, epoch):
assert epoch >= 1 # fairseq is using 1-based epoch everywhere
return ((epoch - 1) % self.num_virtual_epochs) * self.virtual_epoch_size
def _next_global_indices(self, epoch):
rng = np.random.RandomState(
[
int(
hashlib.sha1(
str(self.__class__.__name__).encode("utf-8")
).hexdigest(),
16,
)
% (2 ** 32),
self.seed % (2 ** 32), # global seed
epoch, # epoch index,
]
)
del self._random_global_indices
self._random_global_indices = rng.choice(
self.virtual_size, self.virtual_size, replace=False
)
if self.load_next_shard is None:
self.load_next_shard = False
else:
# increase shard epoch for next loading
self.shard_epoch += 1
self.load_next_shard = True
logger.info(
"to load next epoch/shard in next load_dataset: "
f"epoch={epoch}/shard_epoch={self.shard_epoch}"
)
def _next_virtual_epoch(self, epoch):
index = self._get_epoch_start_index(epoch)
if index == 0 or self._random_global_indices is None:
# need to start from the beginning,
# so call super().set_epoch(epoch) to establish the global virtual indices
self._next_global_indices(epoch)
logger.info(
"establishing a new set of global virtual indices for "
f"epoch={epoch}/shard_epoch={self.shard_epoch}"
)
super().set_epoch(epoch, self.shard_epoch)
else:
self._cur_epoch = epoch
# reset cache sizes and ordered_indices for the epoch after moving to a new epoch
self._clean_if_not_none(
[
self._epoch_sizes,
]
)
self._epoch_sizes = None
self._current_epoch_start_index = index
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/sampled_multi_epoch_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/__init__.py |
from enum import Enum
from typing import Dict, List, Optional, Sequence
import torch
from fairseq.data import Dictionary
class EncoderLangtok(Enum):
"""
Prepend to the beginning of source sentence either the
source or target language token. (src/tgt).
"""
src = "src"
tgt = "tgt"
class LangTokSpec(Enum):
main = "main"
mono_dae = "mono_dae"
class LangTokStyle(Enum):
multilingual = "multilingual"
mbart = "mbart"
@torch.jit.export
def get_lang_tok(
lang: str, lang_tok_style: str, spec: str = LangTokSpec.main.value
) -> str:
# TOKEN_STYLES can't be defined outside this fn since it needs to be
# TorchScriptable.
TOKEN_STYLES: Dict[str, str] = {
LangTokStyle.mbart.value: "[{}]",
LangTokStyle.multilingual.value: "__{}__",
}
if spec.endswith("dae"):
lang = f"{lang}_dae"
elif spec.endswith("mined"):
lang = f"{lang}_mined"
style = TOKEN_STYLES[lang_tok_style]
return style.format(lang)
def augment_dictionary(
dictionary: Dictionary,
language_list: List[str],
lang_tok_style: str,
langtoks_specs: Sequence[str] = (LangTokSpec.main.value,),
extra_data: Optional[Dict[str, str]] = None,
) -> None:
for spec in langtoks_specs:
for language in language_list:
dictionary.add_symbol(
get_lang_tok(lang=language, lang_tok_style=lang_tok_style, spec=spec)
)
if lang_tok_style == LangTokStyle.mbart.value or (
extra_data is not None and LangTokSpec.mono_dae.value in extra_data
):
dictionary.add_symbol("<mask>")
dictionary.pad_to_multiple_(8)
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/multilingual_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from typing import List
logger = logging.getLogger(__name__)
def uniform(dataset_sizes: List[int], epoch: int=1):
return [1.0] * len(dataset_sizes)
def temperature_sampling(dataset_sizes, temp):
total_size = sum(dataset_sizes)
return [(size / total_size) ** (1.0 / temp) for size in dataset_sizes]
def make_temperature_sampling(temp=1.0):
def sampling_func(dataset_sizes, epoch: int=1):
return temperature_sampling(dataset_sizes, temp)
return sampling_func
def make_linear_temperature_sampling(temp=5.0, min_temp=1.0, warmup=5):
def sampling_func(dataset_sizes, epoch: int=1):
t = min((temp - min_temp) * (epoch - 1) / warmup + min_temp, temp)
if t == 0:
t = 1
return temperature_sampling(dataset_sizes, t)
return sampling_func
def make_ratio_sampling(ratios):
def sampling_func(dataset_sizes, epoch: int=1):
return ratios
return sampling_func
class SamplingMethod:
@staticmethod
def add_arguments(parser):
parser.add_argument(
"--sampling-method",
choices=[
"uniform",
"temperature",
"concat",
"RoundRobin",
"linear",
],
type=str,
default="concat",
help="The method to sample data per language pairs",
)
parser.add_argument(
"--sampling-temperature",
default=1.5,
type=float,
help="only work with --sampling-method temperature",
)
parser.add_argument(
"--min-sampling-temperature",
default=1.0,
type=float,
help="only work with --sampling-method linear",
)
parser.add_argument(
"--warmup-epoch",
default=5,
type=int,
help="only work with --sampling-method linear",
)
@staticmethod
def build_sampler(args, task):
return SamplingMethod(args, task)
def __init__(self, args, task):
self.args = args
self.task = task
def is_adaptive(self):
return False
def sampling_method_selector(self):
args = self.args
# logger.info(f"selected sampler: {args.sampling_method}")
if args.sampling_method == "uniform":
return uniform
elif args.sampling_method == "temperature" or self.is_adaptive():
return make_temperature_sampling(float(args.sampling_temperature))
elif args.sampling_method == "linear":
return make_linear_temperature_sampling(float(args.sampling_temperature), float(args.min_sampling_temperature), int(args.warmup_epoch))
else:
# default to concating all data set together
return None
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/sampling_method.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import hashlib
import logging
import time
from bisect import bisect_right
from collections import OrderedDict, defaultdict
from enum import Enum
from typing import List
import numpy as np
import torch
from fairseq import distributed_utils
from fairseq.data import FairseqDataset, data_utils
def get_time_gap(s, e):
return (
datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s)
).__str__()
logger = logging.getLogger(__name__)
def default_virtual_size_func(datasets, ratios, max_scale_up=1.5):
sizes = [len(d) for d in datasets]
if ratios is None:
return sum(sizes)
largest_idx = np.argmax(sizes)
largest_r = ratios[largest_idx]
largest_s = sizes[largest_idx]
# set virtual sizes relative to the largest dataset
virtual_sizes = [(r / largest_r) * largest_s for r in ratios]
vsize = sum(virtual_sizes)
max_size = sum(sizes) * max_scale_up
return int(vsize if vsize < max_size else max_size)
class CollateFormat(Enum):
single = 1
ordered_dict = 2
class SampledMultiDataset(FairseqDataset):
"""Samples from multiple sub-datasets according to given sampling ratios.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concatenating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def __init__(
self,
datasets,
sampling_ratios=None,
sampling_ratios_list=None,
seed=2,
epoch=1,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=default_virtual_size_func,
split="",
shared_collater=False,
shuffle=True,
):
super().__init__()
self.shared_collater = shared_collater
self.shuffle = shuffle
if isinstance(datasets, OrderedDict):
self.keys = list(datasets.keys())
datasets = list(datasets.values())
elif isinstance(datasets, List):
self.keys = list(range(len(datasets)))
else:
raise AssertionError()
self.datasets = datasets
self.split = split
self.eval_key = eval_key
if self.eval_key is not None:
self.collate_format = CollateFormat.single
else:
self.collate_format = collate_format
self.seed = seed
self._cur_epoch = None
self.cumulated_sizes = None
# self.datasets[k][self._cur_indices[i]] is the data item i in this sampled dataset
# namely, data item i is sampled from the kth sub-dataset self.datasets[k]
# where self.cumulated_sizes[k-1] <= i < self.cumulated_sizes[k]
self._cur_indices = None
self._sizes = None
self.virtual_size_per_dataset = None
# caching properties
self._reset_cached_properties()
self.setup_sampling(sampling_ratios, virtual_size)
self.sampling_ratios_list = sampling_ratios_list
self.set_epoch(epoch)
def _clean_if_not_none(self, var_list):
for v in var_list:
if v is not None:
del v
def _reset_cached_properties(self):
self._clean_if_not_none([self._sizes, self._cur_indices])
self._sizes = None
self._cur_indices = None
def setup_sampling(self, sample_ratios, virtual_size):
sizes = [len(d) for d in self.datasets]
if sample_ratios is None:
# default back to concating datasets
self.sample_ratios = None
self.virtual_size = sum(sizes)
else:
if not isinstance(sample_ratios, np.ndarray):
sample_ratios = np.array(sample_ratios)
self.sample_ratios = sample_ratios
virtual_size = (
default_virtual_size_func if virtual_size is None else virtual_size
)
self.virtual_size = (
virtual_size(self.datasets, self.sample_ratios)
if callable(virtual_size)
else virtual_size
)
def adjust_sampling(self, epoch, sampling_ratios, virtual_size):
if sampling_ratios is not None:
sampling_ratios = self._sync_sample_ratios(sampling_ratios)
self.setup_sampling(sampling_ratios, virtual_size)
def _sync_sample_ratios(self, ratios):
# in case the ratios are not precisely the same across processes
# also to ensure every procresses update the ratios in the same pace
ratios = torch.DoubleTensor(ratios)
if torch.distributed.is_initialized():
if torch.cuda.is_available():
distributed_utils.all_reduce(
ratios.cuda(), group=distributed_utils.get_data_parallel_group()
)
else:
distributed_utils.all_reduce(
ratios, group=distributed_utils.get_data_parallel_group()
)
ret = ratios.cpu()
ret = ret.numpy()
return ret
def random_choice_in_dataset(self, rng, dataset, choice_size):
if hasattr(dataset, "random_choice_in_dataset"):
return dataset.random_choice_in_dataset(rng, choice_size)
dataset_size = len(dataset)
return rng.choice(
dataset_size, choice_size, replace=(choice_size > dataset_size)
)
def get_virtual_indices(self, rng, datasets, sample_ratios, virtual_size):
def get_counts(sample_ratios):
counts = np.array([virtual_size * r for r in sample_ratios], dtype=np.int64)
diff = virtual_size - counts.sum()
assert diff >= 0
# due to round-offs, the size might not match the desired sizes
if diff > 0:
dataset_indices = rng.choice(
len(sample_ratios), size=diff, p=sample_ratios
)
for i in dataset_indices:
counts[i] += 1
return counts
def get_in_dataset_indices(datasets, sizes, sample_ratios):
counts = get_counts(sample_ratios)
# uniformally sample desired counts for each dataset
# if the desired counts are large, sample with replacement:
indices = [
self.random_choice_in_dataset(rng, d, c)
for c, d in zip(counts, datasets)
]
return indices
sizes = [len(d) for d in datasets]
if sample_ratios is None:
# default back to concating datasets
in_dataset_indices = [list(range(s)) for s in sizes]
virtual_sizes_per_dataset = sizes
else:
ratios = sample_ratios / sample_ratios.sum()
in_dataset_indices = get_in_dataset_indices(datasets, sizes, ratios)
virtual_sizes_per_dataset = [len(d) for d in in_dataset_indices]
virtual_sizes_per_dataset = np.array(virtual_sizes_per_dataset, np.int64)
cumulative_sizes = np.cumsum(virtual_sizes_per_dataset)
assert sum(virtual_sizes_per_dataset) == virtual_size, "{} | {}".format(sum(virtual_sizes_per_dataset), virtual_size)
assert cumulative_sizes[-1] == virtual_size
if virtual_size < sum(sizes):
logger.warning(
f"virtual data size ({virtual_size}) is less than real data size ({sum(sizes)})."
" If virtual size << real data size, there could be data coverage issue."
)
in_dataset_indices = np.hstack(in_dataset_indices)
return in_dataset_indices, cumulative_sizes, virtual_sizes_per_dataset
def _get_dataset_and_index(self, index):
i = bisect_right(self.cumulated_sizes, index)
return i, self._cur_indices[index]
def __getitem__(self, index):
# self.__getitem__(index) returns self.datasets[k][self._cur_indices[index]]
# where k satisfies self.cumulated_sizes[k - 1] <= k < self.cumulated_sizes[k]
ds_idx, ds_sample_idx = self._get_dataset_and_index(index)
ret = (ds_idx, self.datasets[ds_idx][ds_sample_idx])
return ret
def num_tokens(self, index):
return self.sizes[index].max()
def size(self, index):
return self.sizes[index]
def __len__(self):
return self.virtual_size
def collater(self, samples, **extra_args):
"""Merge a list of samples to form a mini-batch."""
if len(samples) == 0:
return None
if self.collate_format == "ordered_dict":
collect_samples = [[] for _ in range(len(self.datasets))]
for (i, sample) in samples:
collect_samples[i].append(sample)
batch = OrderedDict(
[
(self.keys[i], dataset.collater(collect_samples[i]))
for i, (key, dataset) in enumerate(zip(self.keys, self.datasets))
if len(collect_samples[i]) > 0
]
)
elif self.shared_collater:
batch = self.datasets[0].collater([s for _, s in samples])
else:
samples_dict = defaultdict(list)
pad_to_length = (
defaultdict(int)
if "pad_to_length" not in extra_args
else extra_args["pad_to_length"]
)
for ds_idx, s in samples:
pad_to_length["source"] = max(
pad_to_length["source"], s["source"].size(0)
)
if s["target"] is not None:
pad_to_length["target"] = max(
pad_to_length["target"], s["target"].size(0)
)
samples_dict[ds_idx].append(s)
batches = [
self.datasets[i].collater(samples_dict[i], pad_to_length=pad_to_length)
for i in range(len(self.datasets))
if len(samples_dict[i]) > 0
]
def straight_data(tensors):
batch = torch.cat(tensors, dim=0)
return batch
src_lengths = straight_data(
[b["net_input"]["src_lengths"] for b in batches]
)
src_lengths, sort_order = src_lengths.sort(descending=True)
def straight_order(tensors):
batch = straight_data(tensors)
return batch.index_select(0, sort_order)
batch = {
"id": straight_order([b["id"] for b in batches]),
"nsentences": sum(b["nsentences"] for b in batches),
"ntokens": sum(b["ntokens"] for b in batches),
"net_input": {
"src_tokens": straight_order(
[b["net_input"]["src_tokens"] for b in batches]
),
"src_lengths": src_lengths,
},
"target": straight_order([b["target"] for b in batches])
if batches[0]["target"] is not None
else None,
}
if "prev_output_tokens" in batches[0]["net_input"]:
batch["net_input"]["prev_output_tokens"] = straight_order(
[b["net_input"]["prev_output_tokens"] for b in batches]
)
if "src_lang_id" in batches[0]["net_input"]:
batch["net_input"]["src_lang_id"] = straight_order(
[b["net_input"]["src_lang_id"] for b in batches]
)
if "tgt_lang_id" in batches[0]:
batch["tgt_lang_id"] = straight_order(
[b["tgt_lang_id"] for b in batches]
)
return batch
@property
def sizes(self):
if self._sizes is not None:
return self._sizes
start_time = time.time()
in_sub_dataset_indices = [
self._cur_indices[
0 if i == 0 else self.cumulated_sizes[i - 1] : self.cumulated_sizes[i]
]
for i in range(len(self.datasets))
]
sub_dataset_sizes = [
d.sizes[indices]
for d, indices in zip(self.datasets, in_sub_dataset_indices)
]
self._sizes = np.vstack(sub_dataset_sizes)
logger.info(f"sizes() calling time: {get_time_gap(start_time, time.time())}")
return self._sizes
def ordered_indices(self):
if self.shuffle:
indices = np.random.permutation(len(self))
else:
indices = np.arange(len(self))
sizes = self.sizes
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
# sort by target length, then source length
# if tgt_sizes is not None:
# indices = indices[np.argsort(tgt_sizes[indices], kind="mergesort")]
# sort_indices = indices[np.argsort(src_sizes[indices], kind="mergesort")]
if tgt_sizes is not None:
sort_indices = indices[np.argsort(np.maximum(src_sizes[indices], tgt_sizes[indices]), kind="mergesort")]
else:
sort_indices = indices[np.argsort(src_sizes[indices], kind="mergesort")]
return sort_indices
def prefetch(self, indices):
prefetch_indices = [[] for _ in range(len(self.datasets))]
for i in indices:
ds_idx, ds_sample_idx = self._get_dataset_and_index(i)
prefetch_indices[ds_idx].append(ds_sample_idx)
for i in range(len(prefetch_indices)):
self.datasets[i].prefetch(prefetch_indices[i])
@property
def can_reuse_epoch_itr_across_epochs(self):
return False
def set_epoch(self, epoch, shard_epoch=None):
super().set_epoch(epoch)
if epoch == self._cur_epoch:
# re-enter so return
return
for d in self.datasets:
if hasattr(d, "set_epoch"):
d.set_epoch(epoch)
self._cur_epoch = epoch
if self.sampling_ratios_list is not None:
if shard_epoch is not None:
self.setup_sampling(self.sampling_ratios_list[shard_epoch], self.virtual_size)
else:
self.setup_sampling(self.sampling_ratios_list[epoch], self.virtual_size)
self._establish_virtual_datasets()
def _establish_virtual_datasets(self):
if self.sample_ratios is None and self._cur_indices is not None:
# not a samping dataset, no need to resample if indices are already established
return
self._reset_cached_properties()
start_time = time.time()
# Generate a weighted sample of indices as a function of the
# random seed and the current epoch.
rng = np.random.RandomState(
[
int(
hashlib.sha1(
str(self.__class__.__name__).encode("utf-8")
).hexdigest(),
16,
)
% (2 ** 32),
self.seed % (2 ** 32), # global seed
self._cur_epoch, # epoch index,
]
)
self._clean_if_not_none(
[self.cumulated_sizes, self.virtual_size_per_dataset, self._sizes]
)
self._sizes = None
indices, cumulated_sizes, virtual_size_per_dataset = self.get_virtual_indices(
rng, self.datasets, self.sample_ratios, self.virtual_size
)
self._cur_indices = indices
self.cumulated_sizes = cumulated_sizes
self.virtual_size_per_dataset = virtual_size_per_dataset
raw_sizes = [len(d) for d in self.datasets]
sampled_sizes = self.virtual_size_per_dataset
logger.info(
f"[{self.split}] Raw sizes: {str(dict(zip(self.keys, raw_sizes)))}; "
f"raw total size: {sum(raw_sizes)}"
)
logger.info(
f"[{self.split}] Resampled sizes: {str(dict(zip(self.keys, sampled_sizes)))}; "
f"resampled total size: {sum(sampled_sizes)}"
)
if self.sample_ratios is not None:
logger.info(
f"[{self.split}] Upsampling ratios: {str(dict(zip(self.keys, self.sample_ratios)))}"
)
else:
logger.info(f"[{self.split}] A concat dataset")
logger.info(
f"[{self.split}] virtual dataset established time: {get_time_gap(start_time, time.time())}"
)
def filter_indices_by_size(self, indices, max_sizes):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
sizes = self.sizes
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
return data_utils.filter_paired_dataset_indices_by_size(
src_sizes, tgt_sizes, indices, max_sizes
)
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/sampled_multi_dataset.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import json
import logging
import math
import os
from collections import OrderedDict, defaultdict
from fairseq import utils
from fairseq.data import (
AppendTokenDataset,
ConcatDataset,
Dictionary,
LanguagePairDataset,
PrependTokenDataset,
SampledMultiDataset,
SampledMultiEpochDataset,
SampledMultiLangDataset,
StripTokenDataset,
TransformEosLangPairDataset,
TruncateDataset,
ContextCropDataset,
RandomCropDataset,
data_utils,
indexed_dataset,
)
from fairseq.data.multilingual.multilingual_utils import (
EncoderLangtok,
LangTokSpec,
LangTokStyle,
augment_dictionary,
get_lang_tok,
)
from fairseq.data.multilingual.sampled_multi_dataset import CollateFormat
from fairseq.file_io import PathManager
from fairseq.utils import FileContentsAction, csv_str_list, eval_str_dict
logger = logging.getLogger(__name__)
def _lang_id(dic: Dictionary, lang: str):
"""Return language ID index."""
idx = dic.index(lang)
assert idx != dic.unk_index, "cannot find language ID for lang {}".format(lang)
return idx
def load_sampling_weights(from_file):
with open(from_file) as f:
weights = json.load(f)
return weights
class MultilingualDatasetManager(object):
def __init__(self, args, lang_pairs, langs, dicts, sampling_method, truncate_source=False, truncate_target=False):
super().__init__()
self.args = args
self.seed = args.seed
self.lang_pairs = lang_pairs
self.langs = langs
self.dicts = dicts
self.lang_dict = self.create_lang_dictionary(self.langs)
self.sampling_method = sampling_method
self.sampling_scheduler = None
self._has_sharded_data = False
self._num_shards_dict = {}
self._training_data_sizes = defaultdict(lambda: {})
self.lang_id = {}
self.train_parallel_bt = {}
self.valid_parallel_bt = {}
if hasattr(self.args, "langs"):
for lang in self.args.langs:
langtok = get_lang_tok(lang=lang, lang_tok_style=self.args.lang_tok_style, spec='tgt')
self.lang_id[lang] = self.get_langtok_index(langtok, self.dicts[list(self.dicts.keys())[0]])
elif hasattr(self.args, "high_langs"):
for lang in self.args.high_langs.split(','):
langtok = get_lang_tok(lang=lang, lang_tok_style=self.args.lang_tok_style, spec='tgt')
self.lang_id[lang] = self.get_langtok_index(langtok, self.dicts[list(self.dicts.keys())[0]])
@classmethod
def setup_data_manager(cls, args, lang_pairs, langs, dicts, sampling_method):
return MultilingualDatasetManager(
args, lang_pairs, langs, dicts, sampling_method
)
@staticmethod
def add_args(parser):
parser.add_argument(
"data",
help="colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner",
action=FileContentsAction,
)
parser.add_argument(
"--langs",
default=None,
type=csv_str_list,
help="a list of languages comma sperated languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs",
)
parser.add_argument(
"--lang-dict",
default=None,
type=str,
help="an external file which contains a list of "
"languages which can appear in lang-pairs; "
"note that the ordering determines language token IDs; "
"--langs and --lang-dict are two exclusive options",
)
parser.add_argument(
"--lang-tok-style",
default=LangTokStyle.multilingual.value,
type=str,
choices=[LangTokStyle.multilingual.value, LangTokStyle.mbart.value],
help="language token styles",
)
parser.add_argument(
"--load-alignments",
action="store_true",
help="load the binarized alignments",
)
parser.add_argument(
"--left-pad-source",
default="False",
type=str,
metavar="BOOL",
help="pad the source on the left",
)
parser.add_argument(
"--left-pad-target",
default="False",
type=str,
metavar="BOOL",
help="pad the target on the left",
)
parser.add_argument(
"--max-source-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the source sequence",
)
parser.add_argument(
"--max-target-positions",
default=1024,
type=int,
metavar="N",
help="max number of tokens in the target sequence",
)
parser.add_argument(
"--upsample-primary",
default=1,
type=int,
help="amount to upsample primary dataset",
)
parser.add_argument(
"--truncate-source",
action="store_true",
default=False,
help="truncate source to max-source-positions",
)
parser.add_argument(
"--encoder-langtok",
default=None,
type=str,
choices=[EncoderLangtok.src.value, EncoderLangtok.tgt.value],
metavar="SRCTGT",
help="prepend to the beginning of source sentence the source or target "
"language token. (src/tgt)",
)
parser.add_argument(
"--decoder-langtok",
action="store_true",
help="prepend to the beginning of target sentence the target language token",
)
parser.add_argument(
"--lang-tok-replacing-bos-eos", action="store_true", default=False
)
parser.add_argument(
"--enable-lang-ids",
default=False,
action="store_true",
help="whether to include language IDs in samples",
)
parser.add_argument(
"--enable-reservsed-directions-shared-datasets",
default=False,
action="store_true",
help="whether to allow datasets be used in reversed directions",
)
parser.add_argument(
"--same-lang-per-batch",
default=False,
action="store_true",
help="whether to force a batch in the same language",
)
parser.add_argument(
"--extra-data",
help='a dictionary of data name to this path, \
e.g. {"mined", path_to_mined_data, "denoised": path_to_denoised_data}',
type=lambda uf: eval_str_dict(uf, type=str),
default=None,
)
parser.add_argument(
"--extra-lang-pairs",
help='a dictionary of data name to the language pairs they serve, \
e.g. {"mined": comma-separated-lang-pairs, "denoised": comma-separated-lang-pairs}',
type=lambda uf: eval_str_dict(uf, type=str),
default=None,
)
parser.add_argument(
"--fixed-dictionary",
help="Fixed dictionary to use with model path",
default=None,
type=str,
)
parser.add_argument(
"--langtoks-specs",
help='a list of comma separated data types that a set of language tokens to be specialized for, \
e.g. "main,dae,mined". There will be a set of language tokens added to the vocab to \
distinguish languages in different training data types. If not specified, default language \
tokens per languages will be added',
default=LangTokSpec.main.value,
type=csv_str_list,
)
parser.add_argument(
"--langtoks",
help='a dictionary of how to add language tokens, \
e.g. {"mined": (None, "tgt"), "mono_dae": ("src.dae", "tgt"), "main": \
("src", "tgt")}, or {"mined": ("src.mined", "tgt")}',
default=None,
type=lambda uf: eval_str_dict(uf, type=str),
)
parser.add_argument(
"--sampling-weights-from-file",
help='a file contain a python dictionary of how to sample data sets, \
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
default=None,
type=str,
)
parser.add_argument(
"--sampling-weights",
help='a dictionary of how to sample data sets, \
e.g. { "main:en_XX-es_XX": 0.2, "mined:en_XX-pt_XX": 0.5, \
"mono_dae:es_XX-es_XX: 0.3, "main:en_xx-fr_XX": 0.8 }',
default=None,
type=lambda uf: eval_str_dict(uf, type=str),
)
parser.add_argument(
"--virtual-epoch-size",
default=None,
type=int,
help="virtual epoch size to speed up data loading",
)
parser.add_argument(
"--virtual-data-size",
default=None,
type=int,
help="virtual data size of the whole joint dataset to speed"
"up data loading and have specific dynamic sampling strategy interval",
)
parser.add_argument(
"--data-param-list-sampling-ratios",
default=None,
type=lambda uf: eval_str_dict(uf, type=str),
help="virtual data size of the whole joint dataset to speed"
)
@classmethod
def load_langs(cls, args, **kwargs):
if args.lang_dict and args.langs:
raise ValueError("--langs and --lang-dict can not both be specified")
if args.lang_dict is None and args.langs is None:
logger.warning(
"External language dictionary is not provided; "
"use lang-pairs to infer the set of supported languages. "
"The language ordering is not stable which might cause "
"misalignment in pretraining and finetuning."
)
# infer from lang_pairs as it is
langs = list(
{x for lang_pair in args.lang_pairs for x in lang_pair.split("-")}
)
langs = sorted(langs)
logger.info(f"inferred language list: {langs}")
elif args.lang_dict:
with open(
PathManager.get_local_path(args.lang_dict), "r", encoding="utf-8"
) as f:
langs = [lang.strip() for lang in f.readlines() if lang.strip()]
logger.info(
f"loaded language list from {args.lang_dict} as they are ordered in file"
)
elif args.langs:
langs = args.langs
logger.info(
f"parsed the language list as they are ordered in the option: {langs}"
)
return langs
def has_sharded_data(self, split):
return self._has_sharded_data and split == getattr(
self.args, "train_subset", None
)
def _shared_collater(self):
return not (self.args.extra_data and "mono_dae" in self.args.extra_data) and (
not self.args.lang_tok_replacing_bos_eos
) and not self.args.enable_lang_ids
def estimate_global_pass_epoch(self, epoch):
if self.args.virtual_epoch_size is None or self.args.virtual_data_size is None:
return None
# one epoch more for remaining data in each shard
virtual_epochs_per_shard = math.ceil(
self.args.virtual_data_size / self.args.virtual_epoch_size
)
# note that fairseq epoch / shard_epoch starts from 1
shard_epoch = (epoch - 1) // virtual_epochs_per_shard + 1
return shard_epoch
@classmethod
def prepare(cls, load_dictionary, args, **kargs):
args.left_pad_source = utils.eval_bool(args.left_pad_source)
args.left_pad_target = utils.eval_bool(args.left_pad_target)
if not hasattr(args, "shuffle_instance"):
args.shuffle_instance = False
if args.langtoks is None:
args.langtoks = {}
# if "main" not in args.langtoks:
# src_langtok_spec = args.encoder_langtok if args.encoder_langtok else None
# tgt_langtok_spec = "tgt" if args.decoder_langtok else None
# args.langtoks["main"] = (src_langtok_spec, tgt_langtok_spec)
def check_langs(langs, pairs):
messages = []
for src, tgt in pairs:
if src not in langs or tgt not in langs:
messages.append(
f"language pair {src}-{tgt} contains languages "
"that are not in the language dictionary"
)
if len(messages) > 0:
raise ValueError(" ".join(messages) + f"; langs: {langs}")
if args.lang_pairs is None:
raise ValueError(
"--lang-pairs is required. List all the language pairs in the training objective."
)
if isinstance(args.lang_pairs, str):
args.lang_pairs = args.lang_pairs.split(",")
if args.source_lang is not None or args.target_lang is not None:
training = False
else:
training = True
language_list = cls.load_langs(args, **kargs)
check_langs(
language_list,
(
[p.split("-") for p in args.lang_pairs]
if training
else [(args.source_lang, args.target_lang)]
),
)
# load dictionaries
if training:
if args.extra_lang_pairs:
args.extra_lang_pairs = {k: open(v, "r", encoding="utf-8").read().strip() if os.path.exists(v) else v for k, v in args.extra_lang_pairs.items()}
extra_lang_pairs = (
list(
{p for _, v in args.extra_lang_pairs.items() for p in v.split(",")}
)
if args.extra_lang_pairs
else []
)
langs_to_load_dicts = sorted(
{x for p in args.lang_pairs + extra_lang_pairs for x in p.split("-")}
)
else:
langs_to_load_dicts = sorted([args.source_lang, args.target_lang])
logger.info("Loading Dictionary: {}".format(langs_to_load_dicts))
dicts = OrderedDict()
paths = utils.split_paths(args.data)
assert len(paths) > 0
for lang in langs_to_load_dicts:
if args.fixed_dictionary is not None:
if len(dicts) > 0: #Accelerate the dictionary load
dicts[lang] = list(dicts.values())[0]
else:
dicts[lang] = load_dictionary(args.fixed_dictionary)
else:
dicts[lang] = load_dictionary(
os.path.join(paths[0], "dict.{}.txt".format(lang))
)
augment_dictionary(
dictionary=dicts[lang],
language_list=language_list,
lang_tok_style=args.lang_tok_style,
langtoks_specs=args.langtoks_specs,
extra_data=args.extra_data,
)
if len(dicts) > 0:
assert dicts[lang].pad() == dicts[langs_to_load_dicts[0]].pad()
assert dicts[lang].eos() == dicts[langs_to_load_dicts[0]].eos()
assert dicts[lang].unk() == dicts[langs_to_load_dicts[0]].unk()
logger.info("[{}] dictionary: {} types".format(lang, len(dicts[lang])))
return language_list, dicts, training
@classmethod
def create_lang_dictionary(cls, langs):
unk = "<unk>"
# hack to remove symbols other than unk as they are not needed by lang dict
lang_dict = Dictionary(pad=unk, eos=unk, unk=unk, bos=unk)
for lang in langs:
lang_dict.add_symbol(lang)
return lang_dict
@classmethod
def get_langtok_index(cls, lang_tok, dic):
idx = dic.index(lang_tok)
assert (
idx != dic.unk_index
), "cannot find language token {} in the dictionary".format(lang_tok)
return idx
def get_encoder_langtok(self, src_lang, tgt_lang, spec=None):
if spec is None:
return None
if spec and spec.startswith("src"):
if src_lang is None:
return None
langtok = get_lang_tok(
lang=src_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
else:
if tgt_lang is None:
return None
langtok = get_lang_tok(
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
return self.get_langtok_index(
langtok, self.dicts[src_lang if src_lang else tgt_lang]
)
def get_decoder_langtok(self, tgt_lang, spec=None):
if spec is None:
return None
langtok = get_lang_tok(
lang=tgt_lang, lang_tok_style=self.args.lang_tok_style, spec=spec
)
return self.get_langtok_index(langtok, self.dicts[tgt_lang])
@classmethod
def load_data(cls, path, vdict, impl):
dataset = data_utils.load_indexed_dataset(path, vdict, impl)
return dataset
@classmethod
def split_exists(cls, split, src, tgt, lang, data_path, dataset_impl):
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
return indexed_dataset.dataset_exists(filename, impl=dataset_impl)
def load_lang_dataset(
self,
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
max_source_positions,
prepend_bos=False,
load_alignments=False,
truncate_source=False,
):
src_datasets = []
tgt_datasets = []
for k in itertools.count():
split_k = split + (str(k) if k > 0 else "")
# infer langcode
prefix_src = ""
prefix_tgt = ""
if self.split_exists(split_k, src, tgt, src, data_path, dataset_impl):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
elif self.split_exists(split_k, tgt, src, src, data_path, dataset_impl):
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
elif split_k == split and (f"{src}-None" in self.train_parallel_bt or f"{tgt}-None" in self.train_parallel_bt or self.split_exists(split_k, src, "None", src, data_path, dataset_impl)):#
prefix_src = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, "None"))
prefix_tgt = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, "None"))
else:
if k > 0:
break
else:
logger.error(
f"Dataset not found: {data_path}, {split_k}, {src}, {tgt}"
)
raise FileNotFoundError(
"Dataset not found: {} ({})".format(split, data_path)
)
if f"{src}-None" in prefix_src: #Parallel Bt
if split == "valid":
if f"{src}-None" in self.valid_parallel_bt:
src_dataset = self.valid_parallel_bt[f"{src}-None"]
logger.info("loaded {} from cached parallel bt".format(src))
else:
src_dataset = self.load_data(prefix_src + src, src_dict, dataset_impl)
self.valid_parallel_bt[f"{src}-None"] = src_dataset
elif split == "train":
if f"{src}-None" in self.train_parallel_bt:
src_dataset = self.train_parallel_bt[f"{src}-None"]
logger.info("loaded {} from cached parallel bt".format(src))
else:
src_dataset = self.load_data(prefix_src + src, src_dict, dataset_impl)
self.train_parallel_bt[f"{src}-None"] = src_dataset
else:
print("Have not consider this situation !")
exit()
else:
src_dataset = self.load_data(prefix + src, src_dict, dataset_impl)
if truncate_source:
if split == "train":
src_dataset = AppendTokenDataset(
RandomCropDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 2, # Compatible with {main: (src,tgt)} and {main: (tgt,None)}
),
src_dict.eos(),
)
else:
src_dataset = AppendTokenDataset(
TruncateDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 2,
),
src_dict.eos(),
)
src_datasets.append(src_dataset)
#Load tgt dataset
if src == tgt:
tgt_datasets.append(src_dataset)
else:
if f"{tgt}-None" in prefix_tgt: # Parallel Bt
if split == "valid":
if f"{tgt}-None" in self.valid_parallel_bt:
tgt_dataset = self.valid_parallel_bt[f"{tgt}-None"]
logger.info("loaded {} from cached parallel bt".format(tgt))
else:
tgt_dataset = self.load_data(prefix_tgt + tgt, src_dict, dataset_impl)
self.valid_parallel_bt[f"{tgt}-None"] = src_dataset
elif split == "train":
if f"{tgt}-None" in self.train_parallel_bt:
tgt_dataset = self.train_parallel_bt[f"{tgt}-None"]
logger.info("loaded {} from cached parallel bt".format(tgt))
else:
tgt_dataset = self.load_data(prefix_tgt + tgt, src_dict, dataset_impl)
self.train_parallel_bt[f"{tgt}-None"] = tgt_dataset
else:
print("Have not consider this situation !")
exit()
else:
tgt_dataset = self.load_data(prefix + tgt, tgt_dict, dataset_impl)
tgt_datasets.append(tgt_dataset)
logger.info(
"{} {} {}-{} {} examples".format(
data_path, split_k, src, tgt, len(src_datasets[-1])
)
)
if not combine:
break
assert len(src_datasets) == len(tgt_datasets)
if len(src_datasets) == 1:
src_dataset, tgt_dataset = src_datasets[0], tgt_datasets[0]
else:
sample_ratios = [1] * len(src_datasets)
sample_ratios[0] = upsample_primary
src_dataset = ConcatDataset(src_datasets, sample_ratios)
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
if prepend_bos:
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())
align_dataset = None
if load_alignments:
reverse_direction = False
if indexed_dataset.dataset_exists(os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)), impl=dataset_impl):
align_path = os.path.join(
data_path, "{}.align.{}-{}".format(split, src, tgt)
)
elif indexed_dataset.dataset_exists(os.path.join(data_path, "{}.align.{}-{}".format(split, tgt, src)), impl=dataset_impl):
align_path = os.path.join(
data_path, "{}.align.{}-{}".format(split, tgt, src)
)
reverse_direction = True
else:
align_path = ""
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
align_dataset = data_utils.load_indexed_dataset(
align_path, None, dataset_impl
)
align_dataset.reverse_direction = reverse_direction
return src_dataset, tgt_dataset, align_dataset
def load_langpair_dataset(
self,
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
left_pad_source,
left_pad_target,
max_source_positions,
max_target_positions,
prepend_bos=False,
load_alignments=False,
truncate_source=False,
src_dataset_transform_func=lambda dataset: dataset,
tgt_dataset_transform_func=lambda dataset: dataset,
src_lang_id=None,
tgt_lang_id=None,
langpairs_sharing_datasets=None,
):
norm_direction = "-".join(sorted([src, tgt]))
if langpairs_sharing_datasets is not None:
if "parallel_bt" in data_path:
src_dataset = langpairs_sharing_datasets.get(
(data_path, split, src), "NotInCache"
)
tgt_dataset = langpairs_sharing_datasets.get(
(data_path, split, tgt), "NotInCache"
)
align_dataset = langpairs_sharing_datasets.get(
(data_path, split, src, "align"), "NotInCache"
)
else:
src_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, src), "NotInCache"
)
tgt_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, tgt), "NotInCache"
)
align_dataset = langpairs_sharing_datasets.get(
(data_path, split, norm_direction, src, tgt), "NotInCache"
)
# a hack: any one is not in cache, we need to reload them
if (
langpairs_sharing_datasets is None
or src_dataset == "NotInCache"
or tgt_dataset == "NotInCache"
or align_dataset == "NotInCache"
or split != getattr(self.args, "train_subset", None)
):
# source and target datasets can be reused in reversed directions to save memory
# reversed directions of valid and test data will not share source and target datasets
src_dataset, tgt_dataset, align_dataset = self.load_lang_dataset(
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
max_source_positions=max_source_positions,
prepend_bos=prepend_bos,
load_alignments=load_alignments,
truncate_source=truncate_source,
)
src_dataset = src_dataset_transform_func(src_dataset)
tgt_dataset = tgt_dataset_transform_func(tgt_dataset)
if langpairs_sharing_datasets is not None:
if "parallel_bt" in data_path:
langpairs_sharing_datasets[
(data_path, split, src)
] = src_dataset
langpairs_sharing_datasets[
(data_path, split, tgt)
] = tgt_dataset
langpairs_sharing_datasets[
(data_path, split, src, "align")
] = align_dataset
if align_dataset is None:
# no align data so flag the reverse direction as well in sharing
langpairs_sharing_datasets[
(data_path, split, tgt, "align")
] = align_dataset
else:
langpairs_sharing_datasets[
(data_path, split, norm_direction, src)
] = src_dataset
langpairs_sharing_datasets[
(data_path, split, norm_direction, tgt)
] = tgt_dataset
langpairs_sharing_datasets[
(data_path, split, norm_direction, src, tgt)
] = align_dataset
if align_dataset is None:
# no align data so flag the reverse direction as well in sharing
langpairs_sharing_datasets[
(data_path, split, norm_direction, tgt, src)
] = align_dataset
else:
while not isinstance(src_dataset, indexed_dataset.MMapIndexedDataset): # Recover to the IndexDataset
src_dataset = src_dataset.dataset
while not isinstance(tgt_dataset, indexed_dataset.MMapIndexedDataset): # Recover to the IndexDataset
tgt_dataset = tgt_dataset.dataset
if truncate_source:
if split == "train":
src_dataset = AppendTokenDataset(
RandomCropDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 3,
),
src_dict.eos(),
)
else:
src_dataset = AppendTokenDataset(
TruncateDataset(
StripTokenDataset(src_dataset, src_dict.eos()),
max_source_positions - 3,
),
src_dict.eos(),
)
src_dataset = src_dataset_transform_func(src_dataset)
tgt_dataset = tgt_dataset_transform_func(tgt_dataset)
logger.info(
f"Reusing source and target datasets of [{split}] {tgt}-{src} for reversed direction: "
f"[{split}] {src}-{tgt}: src length={len(src_dataset)}; tgt length={len(tgt_dataset)}"
)
return LanguagePairDataset(
src_dataset,
src_dataset.sizes,
src_dict,
tgt_dataset,
tgt_dataset.sizes if tgt_dataset is not None else None,
tgt_dict,
left_pad_source=left_pad_source,
left_pad_target=left_pad_target,
align_dataset=align_dataset,
src_lang_id=src_lang_id,
tgt_lang_id=tgt_lang_id,
)
def src_dataset_tranform_func(self, src_lang, tgt_lang, dataset, spec=None):
if self.args.lang_tok_replacing_bos_eos:
# it is handled by self.alter_dataset_langtok
# TODO: Unifiy with alter_dataset_langtok
return dataset
if spec is None:
return dataset
tok = self.get_encoder_langtok(src_lang, tgt_lang, spec)
if tok:
return PrependTokenDataset(dataset, tok)
return dataset
def tgt_dataset_tranform_func(self, source_lang, target_lang, dataset, spec=None):
if dataset is None:
# note that target dataset can be None during inference time
return None
if self.args.lang_tok_replacing_bos_eos:
# TODO: Unifiy with alter_dataset_langtok
# It is handled by self.alter_dataset_langtok.
# The complication in self.alter_dataset_langtok
# makes a unified framework difficult.
return dataset
# if not self.args.decoder_langtok:
if not spec:
return dataset
tok = self.get_decoder_langtok(target_lang, spec)
if tok:
return PrependTokenDataset(dataset, tok)
return dataset
def alter_dataset_langtok(
self,
lang_pair_dataset,
src_eos=None,
src_lang=None,
tgt_eos=None,
tgt_lang=None,
src_langtok_spec=None,
tgt_langtok_spec=None,
):
if src_langtok_spec is None and tgt_langtok_spec is None:
return lang_pair_dataset
new_src_eos = None
if (
src_langtok_spec is not None
and src_eos is not None
and (src_lang is not None or tgt_lang is not None)
):
new_src_eos = self.get_encoder_langtok(src_lang, tgt_lang, src_langtok_spec)
else:
src_eos = None
new_tgt_bos = None
if tgt_langtok_spec and tgt_eos is not None and tgt_lang is not None:
new_tgt_bos = self.get_decoder_langtok(tgt_lang, tgt_langtok_spec)
else:
tgt_eos = None
return TransformEosLangPairDataset(
lang_pair_dataset,
src_eos=src_eos,
new_src_eos=new_src_eos,
tgt_bos=tgt_eos,
new_tgt_bos=new_tgt_bos,
)
def load_a_dataset(
self,
split,
data_path,
src,
src_dict,
tgt,
tgt_dict,
combine,
prepend_bos=False,
langpairs_sharing_datasets=None,
data_category=None,
**extra_kwargs,
):
dataset_impl = self.args.dataset_impl
upsample_primary = self.args.upsample_primary
left_pad_source = self.args.left_pad_source
left_pad_target = self.args.left_pad_target
max_source_positions = self.args.max_source_positions
max_target_positions = self.args.max_target_positions
load_alignments = self.args.load_alignments
truncate_source = self.args.truncate_source
src_dataset_transform_func = self.src_dataset_tranform_func
tgt_dataset_transform_func = self.tgt_dataset_tranform_func
enable_lang_ids = self.args.enable_lang_ids
lang_dictionary = self.lang_dict
src_langtok_spec, tgt_langtok_spec = extra_kwargs["langtok_spec"]
src_langtok = self.get_encoder_langtok(src, tgt, src_langtok_spec)
tgt_langtok = self.get_decoder_langtok(tgt, tgt_langtok_spec)
logger.info(
f"{data_category}:{src}-{tgt} src_langtok: {src_langtok}; tgt_langtok: {tgt_langtok}"
)
langpair_ds = self.load_langpair_dataset(
data_path,
split,
src,
src_dict,
tgt,
tgt_dict,
combine,
dataset_impl,
upsample_primary,
left_pad_source,
left_pad_target,
max_source_positions,
max_target_positions,
prepend_bos,
load_alignments,
truncate_source,
src_dataset_transform_func=lambda dataset: src_dataset_transform_func(
src, tgt, dataset, src_langtok_spec
),
tgt_dataset_transform_func=lambda dataset: tgt_dataset_transform_func(
src, tgt, dataset, tgt_langtok_spec
),
src_lang_id=_lang_id(lang_dictionary, src)
if enable_lang_ids and lang_dictionary is not None
else None,
tgt_lang_id=_lang_id(lang_dictionary, tgt)
if enable_lang_ids and lang_dictionary is not None
else None,
langpairs_sharing_datasets=langpairs_sharing_datasets,
)
# TODO: handle modified lang toks for mined data and dae data
if self.args.lang_tok_replacing_bos_eos:
ds = self.alter_dataset_langtok(
langpair_ds,
src_eos=self.dicts[src if src else tgt].eos(),
src_lang=src,
tgt_eos=self.dicts[tgt].eos(),
tgt_lang=tgt,
src_langtok_spec=src_langtok_spec,
tgt_langtok_spec=tgt_langtok_spec,
)
else:
ds = langpair_ds
return ds
def load_split_langpair_datasets(self, split, data_param_list):
datasets = []
langpairs_sharing_datasets = (
{} if self.args.enable_reservsed_directions_shared_datasets else None
)
for param in data_param_list:
ds = self.load_a_dataset(
split=split,
langpairs_sharing_datasets=langpairs_sharing_datasets,
**param,
)
datasets.append(ds)
return datasets
def get_data_paths_and_lang_pairs(self, split):
# datapaths = {list(self.args.langtoks.keys())[0]: self.args.data}
# lang_pairs = {list(self.args.langtoks.keys())[0]: self.lang_pairs}
datapaths = {"main": self.args.data}
lang_pairs = {"main": self.lang_pairs}
if split == getattr(self.args, "train_subset", None):
# only training data can have extra data and extra language pairs
if self.args.extra_data:
extra_datapaths = self.args.extra_data
datapaths.update(extra_datapaths)
if self.args.extra_lang_pairs:
extra_lang_pairs = {
k: v.split(",") for k, v in self.args.extra_lang_pairs.items()
}
lang_pairs.update(extra_lang_pairs)
return datapaths, lang_pairs
@classmethod
def get_dataset_key(cls, data_category, src, tgt):
return f"{data_category}:{src}-{tgt}"
@classmethod
def _get_shard_num_dict(cls, split, paths):
shards = defaultdict(int)
for path in paths:
files = PathManager.ls(path)
directions = set()
for f in files:
if f.startswith(split) and f.endswith(".idx"):
# idx files of the form "{split}.{src}-{tgt}.{lang}.idx"
direction = f.split(".")[-3]
directions.add(direction)
for direction in directions:
shards[direction] += 1
return shards
def get_split_num_data_shards(self, split):
if split in self._num_shards_dict:
return self._num_shards_dict[split]
num_shards_dict = {}
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)
for data_category, paths in data_paths.items():
if data_category not in lang_pairs:
continue
paths = utils.split_paths(paths)
shards_dict = self._get_shard_num_dict(split, paths)
lang_dirs = [
lang_pair.split("-") for lang_pair in lang_pairs[data_category]
]
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
for src, tgt in lang_dirs:
key = self.get_dataset_key(data_category, src, tgt)
if "mono_" in data_category:
# monolingual data requires tgt only
assert src is None or src == tgt, (
f"error: src={src}, "
"tgt={tgt} for data_category={data_category}"
)
num_shards_dict[key] = shards_dict[tgt]
else:
if f"{src}-{tgt}" in shards_dict:
num_shards_dict[key] = shards_dict[f"{src}-{tgt}"]
elif f"{tgt}-{src}" in shards_dict:
# follow the fairseq tradition to use reversed direction data if it is not available
num_shards_dict[key] = shards_dict[f"{tgt}-{src}"]
elif f"{src}-None" in shards_dict: #Parallel_bt
num_shards_dict[key] = shards_dict[f"{src}-None"]
self._num_shards_dict[split] = num_shards_dict
logger.info(f"[{split}] num of shards: {num_shards_dict}")
return num_shards_dict
@classmethod
def get_shard_id(cls, num_shards, epoch, shard_epoch=None):
shard = epoch if shard_epoch is None else shard_epoch
shard = (shard - 1) % num_shards
return shard
def get_split_data_path(self, paths, epoch, shard_epoch, num_shards):
path = paths[self.get_shard_id(num_shards, epoch, shard_epoch)]
return path
def get_split_data_param_list(self, split, epoch, shard_epoch=None):
# TODO: to extend with extra datasets and keys and loop over different shard data paths
param_list = []
data_paths, lang_pairs = self.get_data_paths_and_lang_pairs(split)
logger.info(f"langtoks settings: {self.args.langtoks}")
split_num_shards_dict = self.get_split_num_data_shards(split)
for data_category, paths in data_paths.items():
if data_category not in lang_pairs:
continue
paths = utils.split_paths(paths)
assert len(paths) > 0
if len(paths) > 1:
self._has_sharded_data = True
if split != getattr(self.args, "train_subset", None):
# if not training data set, use the first shard for valid and test
paths = paths[:1]
if data_category in self.args.langtoks:
lang_tok_spec = self.args.langtoks[data_category]
else:
# default to None
lang_tok_spec = (None, None)
# infer langcode
lang_dirs = [
lang_pair.split("-") for lang_pair in lang_pairs[data_category]
]
lang_dirs = [x if len(x) > 1 else (x[0], x[0]) for x in lang_dirs]
for src, tgt in lang_dirs:
assert src is not None or data_category == "mono_dae", (
f"error: src={src}, " "tgt={tgt} for data_category={data_category}"
)
# logger.info(f"preparing param for {data_category}: {src} - {tgt}")
key = self.get_dataset_key(data_category, src, tgt)
data_path = self.get_split_data_path(
paths, epoch, shard_epoch, split_num_shards_dict[key]
)
param_list.append(
{
"key": key,
"data_path": data_path,
"split": split,
"src": src,
"src_dict": self.dicts[src]
if src and data_category != "mono_dae"
else None,
"tgt": tgt,
"tgt_dict": self.dicts[tgt],
"data_category": data_category,
"langtok_spec": lang_tok_spec,
}
)
return param_list
def get_train_dataset_sizes(
self, data_param_list, datasets, epoch, shard_epoch=None
):
num_shards = [
self.get_split_num_data_shards(param["split"])[param["key"]]
for param in data_param_list
]
data_sizes = []
data_category_set = {}
for (key, d), num_shard in zip(datasets, num_shards):
my_data_sizes = self._training_data_sizes[key]
shard_ind = self.get_shard_id(num_shard, epoch, shard_epoch)
if shard_ind not in my_data_sizes:
my_data_sizes[shard_ind] = len(d)
known_size = max(my_data_sizes.values())
data_category = key.split(':')[0]
if data_category not in data_category_set:
data_category_set[data_category] = True
data_sizes.append([sum(my_data_sizes.get(i, known_size) for i in range(num_shard))])
else:
data_sizes[-1].append(sum(my_data_sizes.get(i, known_size) for i in range(num_shard)))
return data_sizes
# data_sizes.append(
# # If we don't know the data size of the shard yet,
# # use the the max known data size to approximate.
# # Note that we preprocess shards by a designated shard size
# # and put any remaining data at the end into the last shard so
# # the max shard size approximation is almost correct before loading
# # the last shard; after loading the last shard, it will have the
# # exact data sizes of the whole data size.
# (key, sum(my_data_sizes.get(i, known_size) for i in range(num_shard)))
# )
# logger.info(
# f"estimated total data sizes of all shards used in sampling ratios: {data_sizes}. "
# "Note that if the data a shard has not been loaded yet, use the max known data size to approximate"
# )
# return [s for _, s in data_sizes]
def get_train_sampling_ratios(
self, data_param_list, datasets, epoch=1, shard_epoch=None
):
data_sizes = self.get_train_dataset_sizes(
data_param_list, datasets, epoch, shard_epoch
)
sampling_func = self.sampling_method.sampling_method_selector()
sample_ratios = [sampling_func(_data_size, epoch) for _data_size in data_sizes] if sampling_func is not None else None
sample_ratios = [ratio / sum(ratios) / len(sample_ratios) for ratios in sample_ratios for ratio in ratios] if sample_ratios is not None else None
return sample_ratios
def get_sampling_ratios(self, data_param_list, datasets, epoch, shard_epoch=None):
if self.args.sampling_weights_from_file:
weights = load_sampling_weights(self.args.sampling_weights_from_file)
sample_ratios = [weights[k] for k, _ in datasets]
logger.info(
"| ignoring --sampling-weights when loadding sampling weights "
f"from file {self.args.sampling_weights_from_file}"
)
elif self.args.sampling_weights:
sample_ratios = [self.args.sampling_weights[k] for k, _ in datasets]
else:
sample_ratios = self.get_train_sampling_ratios(
data_param_list, datasets, epoch, shard_epoch
)
if sample_ratios is not None:
# logger.info(
# "| Upsample ratios: {}".format(
# list(zip(map(lambda x: x["key"], data_param_list), sample_ratios))
# )
# )
assert len(sample_ratios) == len(datasets)
return sample_ratios
def load_split_datasets(
self, split, training, epoch=1, combine=False, shard_epoch=None, **kwargs
):
data_param_list = self.get_split_data_param_list(
split, epoch, shard_epoch=shard_epoch
)
langpairs_sharing_datasets = (
{} if self.args.enable_reservsed_directions_shared_datasets else None
)
datasets = [
(
param["key"],
self.load_a_dataset(
combine=combine,
langpairs_sharing_datasets=langpairs_sharing_datasets,
**param,
),
)
for param in data_param_list
]
return datasets, data_param_list
def load_into_concat_dataset(self, split, datasets, data_param_list):
if self.args.lang_tok_replacing_bos_eos:
# TODO: to investigate why TransformEosLangPairDataset doesn't work with ConcatDataset
return SampledMultiDataset(
OrderedDict(datasets),
sampling_ratios=None,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=None,
split=split,
)
return ConcatDataset([d for _, d in datasets])
def load_sampled_multi_epoch_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
datasets, data_param_list = self.load_split_datasets(
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
)
if training and split == getattr(self.args, "train_subset", None):
# sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
sample_ratios_list = [self.get_sampling_ratios(data_param_list, datasets, i) for i in range(100)]
sample_ratios = sample_ratios_list[epoch]
if self.args.sampling_method == 'linear' and self.args.virtual_data_size is None:
self.args.virtual_data_size = sum([len(d) for d in OrderedDict(datasets).values()])
shard_epoch = self.estimate_global_pass_epoch(epoch)
return SampledMultiEpochDataset(
OrderedDict(datasets),
epoch=epoch,
shard_epoch=shard_epoch,
# valid and test datasets will be degenerate to concating datasets:
sampling_ratios=sample_ratios,
sampling_ratios_list=sample_ratios_list,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=self.args.virtual_data_size,
split=split,
virtual_epoch_size=self.args.virtual_epoch_size,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
)
else:
return self.load_into_concat_dataset(split, datasets, data_param_list)
def load_sampled_multi_lang_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
datasets, data_param_list = self.load_split_datasets(
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
)
if training and split == getattr(self.args, "train_subset", None):
# sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
sample_ratios_list = [self.get_sampling_ratios(data_param_list, datasets, i) for i in range(100)]
sample_ratios = sample_ratios_list[epoch]
if self.args.sampling_method == 'linear' and self.args.virtual_data_size is None:
self.args.virtual_data_size = sum([len(d) for d in OrderedDict(datasets).values()])
return SampledMultiLangDataset(
OrderedDict(datasets),
epoch=epoch,
# valid and test datasets will be degerate to concating datasets:
sampling_ratios=sample_ratios,
sampling_ratios_list=sample_ratios_list,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=self.args.virtual_data_size,
split=split,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
)
else:
return SampledMultiLangDataset(
OrderedDict(datasets),
epoch=epoch,
# valid and test datasets will be degerate to concating datasets:
split=split,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
shuffle=False
)
#return self.load_into_concat_dataset(split, datasets, data_param_list)
def load_sampled_multi_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
datasets, data_param_list = self.load_split_datasets(
split, training, epoch, combine, shard_epoch=shard_epoch, **kwargs
)
if training and split == getattr(self.args, "train_subset", None):
# sample_ratios = self.get_sampling_ratios(data_param_list, datasets, epoch)
sample_ratios_list = [self.get_sampling_ratios(data_param_list, datasets, i) for i in range(100)]
sample_ratios = sample_ratios_list[epoch]
if self.args.sampling_method == 'linear' and self.args.virtual_data_size is None:
self.args.virtual_data_size = sum([len(d) for d in OrderedDict(datasets).values()])
return SampledMultiDataset(
OrderedDict(datasets),
epoch=epoch,
# valid and test datasets will be degerate to concating datasets:
sampling_ratios=sample_ratios,
sampling_ratios_list=sample_ratios_list,
eval_key=None,
collate_format=CollateFormat.single,
virtual_size=self.args.virtual_data_size,
split=split,
# if not using lang_tok altering, simplified to use the same collater
shared_collater=self._shared_collater(),
)
else:
return self.load_into_concat_dataset(split, datasets, data_param_list)
def load_dataset(
self, split, training, epoch=0, combine=False, shard_epoch=None, **kwargs
):
if self.args.same_lang_per_batch:
return self.load_sampled_multi_lang_dataset(
split, training, epoch, combine, shard_epoch, **kwargs
)
elif self.args.virtual_epoch_size is None:
return self.load_sampled_multi_dataset(
split, training, epoch, combine, shard_epoch, **kwargs
)
else:
return self.load_sampled_multi_epoch_dataset(
split, training, epoch, combine, shard_epoch, **kwargs
)
| data2vec_vision-main | deltalm/src/fairseq/data/multilingual/multilingual_data_manager.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import datetime
import hashlib
import logging
import time
from bisect import bisect_right
from collections import OrderedDict, defaultdict
from enum import Enum
from typing import List
import numpy as np
import torch
from fairseq import distributed_utils
from fairseq.data import FairseqDataset, data_utils
from fairseq.data import SampledMultiDataset
def get_time_gap(s, e):
return (
datetime.datetime.fromtimestamp(e) - datetime.datetime.fromtimestamp(s)
).__str__()
logger = logging.getLogger(__name__)
class SampledMultiLangDataset(SampledMultiDataset):
"""Samples from multiple sub-datasets according to given sampling ratios.
Args:
datasets (
List[~torch.utils.data.Dataset]
or OrderedDict[str, ~torch.utils.data.Dataset]
): datasets
sampling_ratios (List[float]): list of probability of each dataset to be sampled
(default: None, which corresponds to concatenating all dataset together).
seed (int): RNG seed to use (default: 2).
epoch (int): starting epoch number (default: 1).
eval_key (str, optional): a key used at evaluation time that causes
this instance to pass-through batches from *datasets[eval_key]*.
collate_format (CollateFormat): collater output format, either CollateFormat.ordered_dict or
CollateFormat.single (default: CollateFormat.single) where CollateFormat.single configures
the collater to output batches of data mixed from all sub-datasets,
and CollateFormat.ordered_dict configures the collater to output a dictionary of batches indexed by keys
of sub-datasets.
Note that not all sub-datasets will present in a single batch in both formats.
virtual_size (int, or callable): the expected virtual size of the dataset (default: default_virtual_size_func).
split (str): the split of the data, e.g. 'train', 'valid' or 'test'.
shared_collater (bool): whether or not to all sub-datasets have the same collater.
shuffle (bool): whether or not to shuffle data (default: True).
"""
def ordered_indices(self):
multi_lang_sizes = self.sizes
multi_lang_sizes = [
multi_lang_sizes[
0 if i == 0 else self.cumulated_sizes[i - 1] : self.cumulated_sizes[i]
]
for i in range(len(self.datasets))
]
multi_lang_sort_indices = []
for i, sizes in enumerate(multi_lang_sizes):
if self.shuffle:
indices = np.random.permutation(len(sizes))
else:
indices = np.arange(len(sizes))
tgt_sizes = sizes[:, 1] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else None
src_sizes = (
sizes[:, 0] if len(sizes.shape) > 0 and sizes.shape[1] > 1 else sizes
)
if tgt_sizes is not None:
sort_indices = indices[np.argsort(np.maximum(src_sizes[indices], tgt_sizes[indices]), kind="mergesort")]
else:
sort_indices = indices[np.argsort(src_sizes[indices], kind="mergesort")]
multi_lang_sort_indices.append(sort_indices + (0 if i==0 else self.cumulated_sizes[i - 1]))
multi_lang_sort_indices = np.concatenate(multi_lang_sort_indices)
return multi_lang_sort_indices
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
multi_lang_sort_indices = [
indices[
0 if i == 0 else self.cumulated_sizes[i - 1] : self.cumulated_sizes[i]
]
for i in range(len(self.datasets))
]
batches = []
for single_lang_sort_indices in multi_lang_sort_indices:
batches += super().batch_by_size(
single_lang_sort_indices,
max_tokens,
max_sentences,
required_batch_size_multiple
)
return batches
def collater(self, samples, **extra_args):
"""Merge a list of samples to form a mini-batch."""
if len(samples) == 0:
return None
if self.collate_format == "ordered_dict":
collect_samples = [[] for _ in range(len(self.datasets))]
for (i, sample) in samples:
collect_samples[i].append(sample)
batch = OrderedDict(
[
(self.keys[i], dataset.collater(collect_samples[i]))
for i, (key, dataset) in enumerate(zip(self.keys, self.datasets))
if len(collect_samples[i]) > 0
]
)
elif self.shared_collater:
batch = self.datasets[0].collater([s for _, s in samples])
else:
samples_dict = defaultdict(list)
pad_to_length = (
defaultdict(int)
if "pad_to_length" not in extra_args
else extra_args["pad_to_length"]
)
for ds_idx, s in samples:
pad_to_length["source"] = max(
pad_to_length["source"], s["source"].size(0)
)
if s["target"] is not None:
pad_to_length["target"] = max(
pad_to_length["target"], s["target"].size(0)
)
s['prepend_target'] = torch.cat([s['source'][:1], s['target']])
pad_to_length["prepend_target"] = pad_to_length["target"] + 1
samples_dict[ds_idx].append(s)
batches = [
self.datasets[i].collater(samples_dict[i], pad_to_length=pad_to_length)
for i in range(len(self.datasets))
if len(samples_dict[i]) > 0
]
def straight_data(tensors):
batch = torch.cat(tensors, dim=0)
return batch
src_lengths = straight_data(
[b["net_input"]["src_lengths"] for b in batches]
)
src_lengths, sort_order = src_lengths.sort(descending=True)
def straight_order(tensors):
batch = straight_data(tensors)
return batch.index_select(0, sort_order)
batch = {
"id": straight_order([b["id"] for b in batches]),
"nsentences": sum(b["nsentences"] for b in batches),
"ntokens": sum(b["ntokens"] for b in batches),
"net_input": {
"src_tokens": straight_order(
[b["net_input"]["src_tokens"] for b in batches]
),
"src_lengths": src_lengths,
"prepend_target": straight_order([b["net_input"]["prepend_target"] for b in batches]),
},
"target": straight_order([b["target"] for b in batches])
if batches[0]["target"] is not None
else None,
"tgt_lengths": straight_order([b["tgt_lengths"] for b in batches])
if batches[0]["tgt_lengths"] is not None
else None
}
def check_alignment(alignment, src_len, tgt_len):
if alignment is None or len(alignment) == 0:
return False
if (
alignment[:, 0].max().item() >= src_len - 1
or alignment[:, 1].max().item() >= tgt_len - 1
):
logger.warning("alignment size mismatch found, skipping alignment!")
return False
return True
if "alignments" in batches[0].keys() and batches[0]["alignments"] is not None:
alignments = [b["alignments"][align_index] for b in batches for align_index in range(len(b["alignments"]))]
alignments = [alignments[align_index] for align_index in sort_order]
bsz, src_sz = batch["net_input"]["src_tokens"].shape
_, tgt_sz = batch["net_input"]["prepend_target"].shape
tgt_lengths=batch["tgt_lengths"] + 1 #prepend_target length
offsets = torch.zeros((len(sort_order), 2), dtype=torch.long)
offsets[:, 0] += torch.arange(len(sort_order), dtype=torch.long) * src_sz + 1
offsets[:, 1] += torch.arange(len(sort_order), dtype=torch.long) * tgt_sz + 1
offsets[:, 0] += src_sz - src_lengths #left pad source
offsets[:, 1] += tgt_sz - tgt_lengths #left pad prepend_target
alignments = [
alignment + offset
for align_idx, (offset, src_len, tgt_len) in enumerate(
zip(offsets, src_lengths, tgt_lengths)
)
for alignment in [alignments[align_idx].view(-1, 2)]
if check_alignment(alignment + 1, src_len, tgt_len)
]
batch["net_input"]["alignments"] = torch.cat(alignments)
if "prev_output_tokens" in batches[0]["net_input"]:
batch["net_input"]["prev_output_tokens"] = straight_order(
[b["net_input"]["prev_output_tokens"] for b in batches]
)
if "src_lang_id" in batches[0]["net_input"]:
batch["net_input"]["src_lang_id"] = straight_order(
[b["net_input"]["src_lang_id"] for b in batches]
)
if "tgt_lang_id" in batches[0]:
batch["net_input"]["tgt_lang_id"] = straight_order(
[b["tgt_lang_id"] for b in batches]
)
batch["tgt_lang_id"] = straight_order(
[b["tgt_lang_id"] for b in batches]
)
return batch | data2vec_vision-main | deltalm/src/fairseq/data/multilingual/sampled_multi_language_dataset.py |
data2vec_vision-main | deltalm/src/fairseq/data/audio/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import csv
import io
import logging
import os.path as op
import re
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from fairseq.data import (
ConcatDataset,
Dictionary,
FairseqDataset,
ResamplingDataset,
data_utils as fairseq_data_utils,
)
from fairseq.data.audio.audio_utils import get_fbank, get_waveform
from fairseq.data.audio.feature_transforms import CompositeAudioFeatureTransform
logger = logging.getLogger(__name__)
class S2TDataConfig(object):
"""Wrapper class for data config YAML"""
def __init__(self, yaml_path):
try:
import yaml
except ImportError:
print("Please install PyYAML to load YAML files for " "S2T data config")
self.config = {}
if op.isfile(yaml_path):
try:
with open(yaml_path) as f:
self.config = yaml.load(f, Loader=yaml.FullLoader)
except Exception as e:
logger.info(f"Failed to load config from {yaml_path}: {e}")
else:
logger.info(f"Cannot find {yaml_path}")
@property
def vocab_filename(self):
"""fairseq vocabulary file under data root"""
return self.config.get("vocab_filename", "dict.txt")
@property
def shuffle(self) -> bool:
"""Shuffle dataset samples before batching"""
return self.config.get("shuffle", False)
@property
def pre_tokenizer(self) -> Dict:
"""Pre-tokenizer to apply before subword tokenization. Returning
a dictionary with `tokenizer` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
return self.config.get("pre_tokenizer", {"tokenizer": None})
@property
def bpe_tokenizer(self) -> Dict:
"""Subword tokenizer to apply after pre-tokenization. Returning
a dictionary with `bpe` providing the tokenizer name and
the other items providing the tokenizer-specific arguments.
Tokenizers are defined in `fairseq.data.encoders.*`"""
return self.config.get("bpe_tokenizer", {"bpe": None})
@property
def prepend_tgt_lang_tag(self) -> bool:
"""Prepend target lang ID token as the target BOS (e.g. for to-many
multilingual setting). During inference, this requires `--prefix-size 1`
to force BOS to be lang ID token."""
return self.config.get("prepend_tgt_lang_tag", False)
@property
def input_feat_per_channel(self):
"""The dimension of input features (per audio channel)"""
return self.config.get("input_feat_per_channel", 80)
@property
def input_channels(self):
"""The number of channels in the input audio"""
return self.config.get("input_channels", 1)
@property
def sampling_alpha(self):
"""Hyper-parameter alpha = 1/T for temperature-based resampling.
(alpha = 1 for no resampling)"""
return self.config.get("sampling_alpha", 1.0)
@property
def use_audio_input(self):
"""Needed by the dataset loader to see if the model requires
raw audio as inputs."""
return self.config.get("use_audio_input", False)
@property
def audio_root(self):
"""Audio paths in the manifest TSV can be relative and this provides
the root path. Set this to empty string when using absolute paths."""
return self.config.get("audio_root", "")
def get_feature_transforms(self, split, is_train):
"""Split-specific feature transforms. Allowing train set wildcard `_train`,
evaluation set wildcard `_eval` and general wildcard `*` for matching."""
from copy import deepcopy
cfg = deepcopy(self.config)
_cur = cfg.get("transforms", {})
cur = _cur.get(split)
cur = _cur.get("_train") if cur is None and is_train else cur
cur = _cur.get("_eval") if cur is None and not is_train else cur
cur = _cur.get("*") if cur is None else cur
cfg["transforms"] = cur
return cfg
def is_npy_data(data: bytes) -> bool:
return data[0] == 147 and data[1] == 78
def is_flac_or_wav_data(data: bytes) -> bool:
is_flac = data[0] == 102 and data[1] == 76
is_wav = data[0] == 82 and data[1] == 73
return is_flac or is_wav
def read_from_uncompressed_zip(file_path, offset, file_size) -> bytes:
with open(file_path, "rb") as f:
f.seek(offset)
data = f.read(file_size)
return data
def get_features_from_npy_or_audio(path):
ext = op.splitext(op.basename(path))[1]
if ext not in {".npy", ".flac", ".wav"}:
raise ValueError(f'Unsupported file format for "{path}"')
return np.load(path) if ext == ".npy" else get_fbank(path)
def get_features_or_waveform_from_uncompressed_zip(
path, byte_offset, byte_size, need_waveform=False
):
assert path.endswith(".zip")
data = read_from_uncompressed_zip(path, byte_offset, byte_size)
f = io.BytesIO(data)
if is_npy_data(data):
features_or_waveform = np.load(f)
elif is_flac_or_wav_data(data):
features_or_waveform = get_waveform(f)[0] if need_waveform else get_fbank(f)
else:
raise ValueError(f'Unknown file format for "{path}"')
return features_or_waveform
def get_features_or_waveform(path: str, need_waveform=False):
"""Get speech features from .npy file or waveform from .wav/.flac file.
The file may be inside an uncompressed ZIP file and is accessed via byte
offset and length.
Args:
path (str): File path in the format of "<.npy/.wav/.flac path>" or
"<zip path>:<byte offset>:<byte length>".
need_waveform (bool): return waveform instead of features.
Returns:
features_or_waveform (numpy.ndarray): speech features or waveform.
"""
_path, *extra = path.split(":")
if not op.exists(_path):
raise FileNotFoundError(f"File not found: {_path}")
if len(extra) == 0:
if need_waveform:
return get_waveform(_path)
return get_features_from_npy_or_audio(_path)
elif len(extra) == 2:
extra = [int(i) for i in extra]
features_or_waveform = get_features_or_waveform_from_uncompressed_zip(
_path, extra[0], extra[1], need_waveform=need_waveform
)
else:
raise ValueError(f"Invalid path: {path}")
return features_or_waveform
def _collate_frames(
frames: List[torch.Tensor], is_audio_input: bool = False
) -> torch.Tensor:
"""
Convert a list of 2D frames into a padded 3D tensor
Args:
frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is
length of i-th frame and f_dim is static dimension of features
Returns:
3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i]
"""
max_len = max(frame.size(0) for frame in frames)
if is_audio_input:
out = frames[0].new_zeros((len(frames), max_len))
else:
out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1)))
for i, v in enumerate(frames):
out[i, : v.size(0)] = v
return out
class SpeechToTextDataset(FairseqDataset):
LANG_TAG_TEMPLATE = "<lang:{}>"
def __init__(
self,
split: str,
is_train_split: bool,
data_cfg: S2TDataConfig,
audio_paths: List[str],
n_frames: List[int],
src_texts: Optional[List[str]] = None,
tgt_texts: Optional[List[str]] = None,
speakers: Optional[List[str]] = None,
src_langs: Optional[List[str]] = None,
tgt_langs: Optional[List[str]] = None,
ids: Optional[List[str]] = None,
tgt_dict: Optional[Dictionary] = None,
pre_tokenizer=None,
bpe_tokenizer=None,
):
self.split, self.is_train_split = split, is_train_split
self.data_cfg = data_cfg
self.audio_paths, self.n_frames = audio_paths, n_frames
self.n_samples = len(audio_paths)
assert len(n_frames) == self.n_samples > 0
assert src_texts is None or len(src_texts) == self.n_samples
assert tgt_texts is None or len(tgt_texts) == self.n_samples
assert speakers is None or len(speakers) == self.n_samples
assert src_langs is None or len(src_langs) == self.n_samples
assert tgt_langs is None or len(tgt_langs) == self.n_samples
assert ids is None or len(ids) == self.n_samples
assert (tgt_dict is None and tgt_texts is None) or (
tgt_dict is not None and tgt_texts is not None
)
self.src_texts, self.tgt_texts = src_texts, tgt_texts
self.src_langs, self.tgt_langs = src_langs, tgt_langs
self.tgt_dict = tgt_dict
self.check_tgt_lang_tag()
self.ids = ids
self.shuffle = data_cfg.shuffle if is_train_split else False
self.feature_transforms = CompositeAudioFeatureTransform.from_config_dict(
self.data_cfg.get_feature_transforms(split, is_train_split)
)
self.pre_tokenizer = pre_tokenizer
self.bpe_tokenizer = bpe_tokenizer
logger.info(self.__repr__())
def __repr__(self):
return (
self.__class__.__name__
+ f'(split="{self.split}", n_samples={self.n_samples}, '
f"prepend_tgt_lang_tag={self.data_cfg.prepend_tgt_lang_tag}, "
f"shuffle={self.shuffle}, transforms={self.feature_transforms})"
)
@classmethod
def is_lang_tag(cls, token):
pattern = cls.LANG_TAG_TEMPLATE.replace("{}", "(.*)")
return re.match(pattern, token)
def check_tgt_lang_tag(self):
if self.data_cfg.prepend_tgt_lang_tag:
assert self.tgt_langs is not None and self.tgt_dict is not None
tgt_lang_tags = [
self.LANG_TAG_TEMPLATE.format(t) for t in set(self.tgt_langs)
]
assert all(t in self.tgt_dict for t in tgt_lang_tags)
def tokenize_text(self, text: str):
if self.pre_tokenizer is not None:
text = self.pre_tokenizer.encode(text)
if self.bpe_tokenizer is not None:
text = self.bpe_tokenizer.encode(text)
return text
def __getitem__(
self, index: int
) -> Tuple[int, torch.Tensor, Optional[torch.Tensor]]:
source = get_features_or_waveform(
self.audio_paths[index], need_waveform=self.data_cfg.use_audio_input
)
if self.feature_transforms is not None:
assert not self.data_cfg.use_audio_input
source = self.feature_transforms(source)
source = torch.from_numpy(source).float()
target = None
if self.tgt_texts is not None:
tokenized = self.tokenize_text(self.tgt_texts[index])
target = self.tgt_dict.encode_line(
tokenized, add_if_not_exist=False, append_eos=True
).long()
if self.data_cfg.prepend_tgt_lang_tag:
lang_tag = self.LANG_TAG_TEMPLATE.format(self.tgt_langs[index])
lang_tag_idx = self.tgt_dict.index(lang_tag)
target = torch.cat((torch.LongTensor([lang_tag_idx]), target), 0)
return index, source, target
def __len__(self):
return self.n_samples
def collater(self, samples: List[Tuple[int, torch.Tensor, torch.Tensor]]) -> Dict:
if len(samples) == 0:
return {}
indices = torch.tensor([i for i, _, _ in samples], dtype=torch.long)
frames = _collate_frames(
[s for _, s, _ in samples], self.data_cfg.use_audio_input
)
# sort samples by descending number of frames
n_frames = torch.tensor([s.size(0) for _, s, _ in samples], dtype=torch.long)
n_frames, order = n_frames.sort(descending=True)
indices = indices.index_select(0, order)
frames = frames.index_select(0, order)
target, target_lengths = None, None
prev_output_tokens = None
ntokens = None
if self.tgt_texts is not None:
target = fairseq_data_utils.collate_tokens(
[t for _, _, t in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=False,
)
target = target.index_select(0, order)
target_lengths = torch.tensor(
[t.size(0) for _, _, t in samples], dtype=torch.long
).index_select(0, order)
prev_output_tokens = fairseq_data_utils.collate_tokens(
[t for _, _, t in samples],
self.tgt_dict.pad(),
self.tgt_dict.eos(),
left_pad=False,
move_eos_to_beginning=True,
)
prev_output_tokens = prev_output_tokens.index_select(0, order)
ntokens = sum(t.size(0) for _, _, t in samples)
out = {
"id": indices,
"net_input": {
"src_tokens": frames,
"src_lengths": n_frames,
"prev_output_tokens": prev_output_tokens,
},
"target": target,
"target_lengths": target_lengths,
"ntokens": ntokens,
"nsentences": len(samples),
}
return out
def num_tokens(self, index):
return self.n_frames[index]
def size(self, index):
t_len = 0
if self.tgt_texts is not None:
tokenized = self.tokenize_text(self.tgt_texts[index])
t_len = len(tokenized.split(" "))
return self.n_frames[index], t_len
@property
def sizes(self):
return np.array(self.n_frames)
@property
def can_reuse_epoch_itr_across_epochs(self):
return True
def ordered_indices(self):
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
# first by descending order of # of frames then by original/random order
order.append([-n for n in self.n_frames])
return np.lexsort(order)
def prefetch(self, indices):
raise False
class SpeechToTextDatasetCreator(object):
# mandatory columns
KEY_ID, KEY_AUDIO, KEY_N_FRAMES = "id", "audio", "n_frames"
KEY_TGT_TEXT = "tgt_text"
# optional columns
KEY_SPEAKER, KEY_SRC_TEXT = "speaker", "src_text"
KEY_SRC_LANG, KEY_TGT_LANG = "src_lang", "tgt_lang"
# default values
DEFAULT_SPEAKER = DEFAULT_SRC_TEXT = DEFAULT_LANG = ""
@classmethod
def _from_list(
cls,
split_name: str,
is_train_split,
samples: List[List[Dict]],
data_cfg: S2TDataConfig,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
) -> SpeechToTextDataset:
audio_paths, n_frames, src_texts, tgt_texts, ids = [], [], [], [], []
speakers, src_langs, tgt_langs = [], [], []
for s in samples:
ids.extend([ss[cls.KEY_ID] for ss in s])
audio_paths.extend(
[op.join(data_cfg.audio_root, ss[cls.KEY_AUDIO]) for ss in s]
)
n_frames.extend([int(ss[cls.KEY_N_FRAMES]) for ss in s])
tgt_texts.extend([ss[cls.KEY_TGT_TEXT] for ss in s])
src_texts.extend(
[ss.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for ss in s]
)
speakers.extend([ss.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for ss in s])
src_langs.extend([ss.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for ss in s])
tgt_langs.extend([ss.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for ss in s])
return SpeechToTextDataset(
split_name,
is_train_split,
data_cfg,
audio_paths,
n_frames,
src_texts,
tgt_texts,
speakers,
src_langs,
tgt_langs,
ids,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
)
@classmethod
def _get_size_ratios(cls, ids: List[str], sizes: List[int], alpha: float = 1.0):
"""Size ratios for temperature-based sampling
(https://arxiv.org/abs/1907.05019)"""
_sizes = np.array(sizes)
prob = _sizes / _sizes.sum()
smoothed_prob = prob ** alpha
smoothed_prob = smoothed_prob / smoothed_prob.sum()
size_ratio = (smoothed_prob * _sizes.sum()) / _sizes
o_str = str({_i: f"{prob[i]:.3f}" for i, _i in enumerate(ids)})
logger.info(f"original sampling probability: {o_str}")
p_str = str({_i: f"{smoothed_prob[i]:.3f}" for i, _i in enumerate(ids)})
logger.info(f"balanced sampling probability: {p_str}")
sr_str = str({_id: f"{size_ratio[i]:.3f}" for i, _id in enumerate(ids)})
logger.info(f"balanced sampling size ratio: {sr_str}")
return size_ratio.tolist()
@classmethod
def from_tsv(
cls,
root: str,
data_cfg: S2TDataConfig,
splits: str,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
is_train_split: bool,
epoch: int,
seed: int,
) -> SpeechToTextDataset:
samples = []
_splits = splits.split(",")
for split in _splits:
tsv_path = op.join(root, f"{split}.tsv")
if not op.isfile(tsv_path):
raise FileNotFoundError(f"Dataset not found: {tsv_path}")
with open(tsv_path) as f:
reader = csv.DictReader(
f,
delimiter="\t",
quotechar=None,
doublequote=False,
lineterminator="\n",
quoting=csv.QUOTE_NONE,
)
samples.append([dict(e) for e in reader])
assert len(samples) > 0
datasets = [
cls._from_list(
name,
is_train_split,
[s],
data_cfg,
tgt_dict,
pre_tokenizer,
bpe_tokenizer,
)
for name, s in zip(_splits, samples)
]
if is_train_split and len(_splits) > 1 and data_cfg.sampling_alpha != 1.0:
# temperature-based sampling
size_ratios = cls._get_size_ratios(
_splits, [len(s) for s in samples], alpha=data_cfg.sampling_alpha
)
datasets = [
ResamplingDataset(
d, size_ratio=r, seed=seed, epoch=epoch, replace=(r >= 1.0)
)
for d, r in zip(datasets, size_ratios)
]
return ConcatDataset(datasets)
| data2vec_vision-main | deltalm/src/fairseq/data/audio/speech_to_text_dataset.py |
import os.path as op
from typing import BinaryIO, Optional, Tuple, Union
import numpy as np
def get_waveform(
path_or_fp: Union[str, BinaryIO], normalization=True
) -> Tuple[np.ndarray, int]:
"""Get the waveform and sample rate of a 16-bit mono-channel WAV or FLAC.
Args:
path_or_fp (str or BinaryIO): the path or file-like object
normalization (bool): Normalize values to [-1, 1] (Default: True)
"""
if isinstance(path_or_fp, str):
ext = op.splitext(op.basename(path_or_fp))[1]
if ext not in {".flac", ".wav"}:
raise ValueError(f"Unsupported audio format: {ext}")
try:
import soundfile as sf
except ImportError:
raise ImportError("Please install soundfile to load WAV/FLAC file")
waveform, sample_rate = sf.read(path_or_fp, dtype="float32")
if not normalization:
waveform *= 2 ** 15 # denormalized to 16-bit signed integers
return waveform, sample_rate
def _get_kaldi_fbank(waveform, sample_rate, n_bins=80) -> Optional[np.ndarray]:
"""Get mel-filter bank features via PyKaldi."""
try:
from kaldi.feat.mel import MelBanksOptions
from kaldi.feat.fbank import FbankOptions, Fbank
from kaldi.feat.window import FrameExtractionOptions
from kaldi.matrix import Vector
mel_opts = MelBanksOptions()
mel_opts.num_bins = n_bins
frame_opts = FrameExtractionOptions()
frame_opts.samp_freq = sample_rate
opts = FbankOptions()
opts.mel_opts = mel_opts
opts.frame_opts = frame_opts
fbank = Fbank(opts=opts)
features = fbank.compute(Vector(waveform), 1.0).numpy()
return features
except ImportError:
return None
def _get_torchaudio_fbank(waveform, sample_rate, n_bins=80) -> Optional[np.ndarray]:
"""Get mel-filter bank features via TorchAudio."""
try:
import torch
import torchaudio.compliance.kaldi as ta_kaldi
waveform = torch.from_numpy(waveform).unsqueeze(0)
features = ta_kaldi.fbank(
waveform, num_mel_bins=n_bins, sample_frequency=sample_rate
)
return features.numpy()
except ImportError:
return None
def get_fbank(path_or_fp: Union[str, BinaryIO], n_bins=80) -> np.ndarray:
"""Get mel-filter bank features via PyKaldi or TorchAudio. Prefer PyKaldi
(faster CPP implementation) to TorchAudio (Python implementation). Note that
Kaldi/TorchAudio requires 16-bit signed integers as inputs and hence the
waveform should not be normalized."""
sound, sample_rate = get_waveform(path_or_fp, normalization=False)
features = _get_kaldi_fbank(sound, sample_rate, n_bins)
if features is None:
features = _get_torchaudio_fbank(sound, sample_rate, n_bins)
if features is None:
raise ImportError(
"Please install pyKaldi or torchaudio to enable "
"online filterbank feature extraction"
)
return features
| data2vec_vision-main | deltalm/src/fairseq/data/audio/audio_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os
import sys
import numpy as np
import torch
import torch.nn.functional as F
from .. import FairseqDataset
logger = logging.getLogger(__name__)
class RawAudioDataset(FairseqDataset):
def __init__(
self,
sample_rate,
max_sample_size=None,
min_sample_size=None,
shuffle=True,
min_length=0,
pad=False,
normalize=False,
):
super().__init__()
self.sample_rate = sample_rate
self.sizes = []
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.min_sample_size = min_sample_size
self.min_length = min_length
self.pad = pad
self.shuffle = shuffle
self.normalize = normalize
def __getitem__(self, index):
raise NotImplementedError()
def __len__(self):
return len(self.sizes)
def postprocess(self, feats, curr_sample_rate):
if feats.dim() == 2:
feats = feats.mean(-1)
if curr_sample_rate != self.sample_rate:
raise Exception(f"sample rate: {curr_sample_rate}, need {self.sample_rate}")
assert feats.dim() == 1, feats.dim()
if self.normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
return feats
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end]
def collater(self, samples):
samples = [s for s in samples if s["source"] is not None]
if len(samples) == 0:
return {}
sources = [s["source"] for s in samples]
sizes = [len(s) for s in sources]
if self.pad:
target_size = min(max(sizes), self.max_sample_size)
else:
target_size = min(min(sizes), self.max_sample_size)
collated_sources = sources[0].new_zeros(len(sources), target_size)
padding_mask = (
torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None
)
for i, (source, size) in enumerate(zip(sources, sizes)):
diff = size - target_size
if diff == 0:
collated_sources[i] = source
elif diff < 0:
assert self.pad
collated_sources[i] = torch.cat(
[source, source.new_full((-diff,), 0.0)]
)
padding_mask[i, diff:] = True
else:
collated_sources[i] = self.crop_to_max_size(source, target_size)
input = {"source": collated_sources}
if self.pad:
input["padding_mask"] = padding_mask
return {"id": torch.LongTensor([s["id"] for s in samples]), "net_input": input}
def num_tokens(self, index):
return self.size(index)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
if self.pad:
return self.sizes[index]
return min(self.sizes[index], self.max_sample_size)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
order = [np.random.permutation(len(self))]
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)[::-1]
class FileAudioDataset(RawAudioDataset):
def __init__(
self,
manifest_path,
sample_rate,
max_sample_size=None,
min_sample_size=None,
shuffle=True,
min_length=0,
pad=False,
normalize=False,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
min_length=min_length,
pad=pad,
normalize=normalize,
)
self.fnames = []
skipped = 0
with open(manifest_path, "r") as f:
self.root_dir = f.readline().strip()
for line in f:
items = line.strip().split("\t")
assert len(items) == 2, line
sz = int(items[1])
if min_length is not None and sz < min_length:
skipped += 1
continue
self.fnames.append(items[0])
self.sizes.append(sz)
logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples")
def __getitem__(self, index):
import soundfile as sf
fname = os.path.join(self.root_dir, self.fnames[index])
wav, curr_sample_rate = sf.read(fname)
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}
| data2vec_vision-main | deltalm/src/fairseq/data/audio/raw_audio_dataset.py |
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("global_cmvn")
class GlobalCMVN(AudioFeatureTransform):
"""Global CMVN (cepstral mean and variance normalization). The global mean
and variance need to be pre-computed and stored in NumPy format (.npz)."""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return GlobalCMVN(_config.get("stats_npz_path"))
def __init__(self, stats_npz_path):
stats = np.load(stats_npz_path)
self.mean, self.std = stats["mean"], stats["std"]
def __call__(self, x):
x = np.subtract(x, self.mean)
x = np.divide(x, self.std)
return x
| data2vec_vision-main | deltalm/src/fairseq/data/audio/feature_transforms/global_cmvn.py |
import importlib
import os
from abc import ABC, abstractmethod
from typing import Dict, Optional
class AudioFeatureTransform(ABC):
@classmethod
@abstractmethod
def from_config_dict(cls, config: Optional[Dict] = None):
pass
AUDIO_FEATURE_TRANSFORM_REGISTRY = {}
AUDIO_FEATURE_TRANSFORM_CLASS_NAMES = set()
def register_audio_feature_transform(name):
def register_audio_feature_transform_cls(cls):
if name in AUDIO_FEATURE_TRANSFORM_REGISTRY:
raise ValueError(f"Cannot register duplicate transform ({name})")
if not issubclass(cls, AudioFeatureTransform):
raise ValueError(
f"Transform ({name}: {cls.__name__}) must extend "
"AudioFeatureTransform"
)
if cls.__name__ in AUDIO_FEATURE_TRANSFORM_CLASS_NAMES:
raise ValueError(
f"Cannot register audio feature transform with duplicate "
f"class name ({cls.__name__})"
)
AUDIO_FEATURE_TRANSFORM_REGISTRY[name] = cls
AUDIO_FEATURE_TRANSFORM_CLASS_NAMES.add(cls.__name__)
return cls
return register_audio_feature_transform_cls
def get_audio_feature_transform(name):
return AUDIO_FEATURE_TRANSFORM_REGISTRY[name]
transforms_dir = os.path.dirname(__file__)
for file in os.listdir(transforms_dir):
path = os.path.join(transforms_dir, file)
if (
not file.startswith("_")
and not file.startswith(".")
and (file.endswith(".py") or os.path.isdir(path))
):
name = file[: file.find(".py")] if file.endswith(".py") else file
importlib.import_module("fairseq.data.audio.feature_transforms." + name)
class CompositeAudioFeatureTransform(AudioFeatureTransform):
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
_transforms = _config.get("transforms")
if _transforms is None:
return None
transforms = [
get_audio_feature_transform(_t).from_config_dict(_config.get(_t))
for _t in _transforms
]
return CompositeAudioFeatureTransform(transforms)
def __init__(self, transforms):
self.transforms = [t for t in transforms if t is not None]
def __call__(self, x):
for t in self.transforms:
x = t(x)
return x
def __repr__(self):
format_string = (
[self.__class__.__name__ + "("]
+ [f" {t.__repr__()}" for t in self.transforms]
+ [")"]
)
return "\n".join(format_string)
| data2vec_vision-main | deltalm/src/fairseq/data/audio/feature_transforms/__init__.py |
import math
import numbers
from typing import Optional
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("specaugment")
class SpecAugmentTransform(AudioFeatureTransform):
"""SpecAugment (https://arxiv.org/abs/1904.08779)"""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return SpecAugmentTransform(
_config.get("time_warp_W", 0),
_config.get("freq_mask_N", 0),
_config.get("freq_mask_F", 0),
_config.get("time_mask_N", 0),
_config.get("time_mask_T", 0),
_config.get("time_mask_p", 0.0),
_config.get("mask_value", None),
)
def __init__(
self,
time_warp_w: int = 0,
freq_mask_n: int = 0,
freq_mask_f: int = 0,
time_mask_n: int = 0,
time_mask_t: int = 0,
time_mask_p: float = 0.0,
mask_value: Optional[float] = 0.0,
):
# Sanity checks
assert mask_value is None or isinstance(
mask_value, numbers.Number
), f"mask_value (type: {type(mask_value)}) must be None or a number"
if freq_mask_n > 0:
assert freq_mask_f > 0, (
f"freq_mask_F ({freq_mask_f}) "
f"must be larger than 0 when doing freq masking."
)
if time_mask_n > 0:
assert time_mask_t > 0, (
f"time_mask_T ({time_mask_t}) must be larger than 0 when "
f"doing time masking."
)
self.time_warp_w = time_warp_w
self.freq_mask_n = freq_mask_n
self.freq_mask_f = freq_mask_f
self.time_mask_n = time_mask_n
self.time_mask_t = time_mask_t
self.time_mask_p = time_mask_p
self.mask_value = mask_value
def __repr__(self):
return (
self.__class__.__name__
+ "("
+ ", ".join(
[
f"time_warp_w={self.time_warp_w}",
f"freq_mask_n={self.freq_mask_n}",
f"freq_mask_f={self.freq_mask_f}",
f"time_mask_n={self.time_mask_n}",
f"time_mask_t={self.time_mask_t}",
f"time_mask_p={self.time_mask_p}",
]
)
+ ")"
)
def __call__(self, spectrogram):
assert len(spectrogram.shape) == 2, "spectrogram must be a 2-D tensor."
distorted = spectrogram.copy() # make a copy of input spectrogram.
num_frames = spectrogram.shape[0] # or 'tau' in the paper.
num_freqs = spectrogram.shape[1] # or 'miu' in the paper.
mask_value = self.mask_value
if mask_value is None: # if no value was specified, use local mean.
mask_value = spectrogram.mean()
if num_frames == 0:
return spectrogram
if num_freqs < self.freq_mask_f:
return spectrogram
if self.time_warp_w > 0:
if 2 * self.time_warp_w < num_frames:
import cv2
w0 = np.random.randint(self.time_warp_w, num_frames - self.time_warp_w)
w = np.random.randint(0, self.time_warp_w)
upper, lower = distorted[:w0, :], distorted[w0:, :]
upper = cv2.resize(
upper, dsize=(num_freqs, w0 + w), interpolation=cv2.INTER_LINEAR
)
lower = cv2.resize(
lower,
dsize=(num_freqs, num_frames - w0 - w),
interpolation=cv2.INTER_LINEAR,
)
distorted = np.concatenate((upper, lower), axis=0)
for _i in range(self.freq_mask_n):
f = np.random.randint(0, self.freq_mask_f)
f0 = np.random.randint(0, num_freqs - f)
if f != 0:
distorted[:, f0 : f0 + f] = mask_value
max_time_mask_t = min(
self.time_mask_t, math.floor(num_frames * self.time_mask_p)
)
if max_time_mask_t < 1:
return distorted
for _i in range(self.time_mask_n):
t = np.random.randint(0, max_time_mask_t)
t0 = np.random.randint(0, num_frames - t)
if t != 0:
distorted[t0 : t0 + t, :] = mask_value
return distorted
| data2vec_vision-main | deltalm/src/fairseq/data/audio/feature_transforms/specaugment.py |
import numpy as np
from fairseq.data.audio.feature_transforms import (
AudioFeatureTransform,
register_audio_feature_transform,
)
@register_audio_feature_transform("utterance_cmvn")
class UtteranceCMVN(AudioFeatureTransform):
"""Utterance-level CMVN (cepstral mean and variance normalization)"""
@classmethod
def from_config_dict(cls, config=None):
_config = {} if config is None else config
return UtteranceCMVN(
_config.get("norm_means", True),
_config.get("norm_vars", True),
)
def __init__(self, norm_means=True, norm_vars=True):
self.norm_means, self.norm_vars = norm_means, norm_vars
def __repr__(self):
return (
self.__class__.__name__
+ f"(norm_means={self.norm_means}, norm_vars={self.norm_vars})"
)
def __call__(self, x):
mean = x.mean(axis=0)
square_sums = (x ** 2).sum(axis=0)
if self.norm_means:
x = np.subtract(x, mean)
if self.norm_vars:
var = square_sums / x.shape[0] - mean ** 2
std = np.sqrt(np.maximum(var, 1e-10))
x = np.divide(x, std)
return x
| data2vec_vision-main | deltalm/src/fairseq/data/audio/feature_transforms/utterance_cmvn.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class SentencepieceConfig(FairseqDataclass):
sentencepiece_model: str = field(
default="???", metadata={"help": "path to sentencepiece model"}
)
@register_bpe("sentencepiece", dataclass=SentencepieceConfig)
class SentencepieceBPE(object):
def __init__(self, cfg):
sentencepiece_model = file_utils.cached_path(cfg.sentencepiece_model)
try:
import sentencepiece as spm
self.sp = spm.SentencePieceProcessor()
self.sp.Load(sentencepiece_model)
except ImportError:
raise ImportError(
"Please install sentencepiece with: pip install sentencepiece"
)
def encode(self, x: str) -> str:
return " ".join(self.sp.EncodeAsPieces(x))
def decode(self, x: str) -> str:
return x.replace(" ", "").replace("\u2581", " ").strip()
def is_beginning_of_word(self, x: str) -> bool:
if x in ["<unk>", "<s>", "</s>", "<pad>"]:
# special elements are always considered beginnings
# HACK: this logic is already present in fairseq/tasks/masked_lm.py
# but these special tokens are also contained in the sentencepiece
# vocabulary which causes duplicate special tokens. This hack makes
# sure that they are all taken into account.
return True
return x.startswith("\u2581")
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/sentencepiece_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class fastBPEConfig(FairseqDataclass):
bpe_codes: str = field(default="???", metadata={"help": "path to fastBPE BPE"})
@register_bpe("fastbpe", dataclass=fastBPEConfig)
class fastBPE(object):
def __init__(self, cfg):
if cfg.bpe_codes is None:
raise ValueError("--bpe-codes is required for --bpe=fastbpe")
codes = file_utils.cached_path(cfg.bpe_codes)
try:
import fastBPE
self.bpe = fastBPE.fastBPE(codes)
self.bpe_symbol = "@@ "
except ImportError:
raise ImportError("Please install fastBPE with: pip install fastBPE")
def encode(self, x: str) -> str:
return self.bpe.apply([x])[0]
def decode(self, x: str) -> str:
return (x + " ").replace(self.bpe_symbol, "").rstrip()
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/fastbpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_tokenizer
@register_tokenizer("nltk")
class NLTKTokenizer(object):
def __init__(self, *unused):
try:
from nltk.tokenize import word_tokenize
self.word_tokenize = word_tokenize
except ImportError:
raise ImportError("Please install nltk with: pip install nltk")
def encode(self, x: str) -> str:
return " ".join(self.word_tokenize(x))
def decode(self, x: str) -> str:
return x
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/nltk_tokenizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
from .gpt2_bpe_utils import get_encoder
DEFAULT_ENCODER_JSON = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json"
DEFAULT_VOCAB_BPE = "https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe"
@dataclass
class GPT2BPEConfig(FairseqDataclass):
gpt2_encoder_json: str = field(
default=DEFAULT_ENCODER_JSON, metadata={"help": "path to encoder.json"}
)
gpt2_vocab_bpe: str = field(
default=DEFAULT_VOCAB_BPE, metadata={"help": "path to vocab.bpe"}
)
@register_bpe("gpt2", dataclass=GPT2BPEConfig)
class GPT2BPE(object):
def __init__(self, cfg):
encoder_json = file_utils.cached_path(cfg.gpt2_encoder_json)
vocab_bpe = file_utils.cached_path(cfg.gpt2_vocab_bpe)
self.bpe = get_encoder(encoder_json, vocab_bpe)
def encode(self, x: str) -> str:
return " ".join(map(str, self.bpe.encode(x)))
def decode(self, x: str) -> str:
return self.bpe.decode(
[int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()]
)
def is_beginning_of_word(self, x: str) -> bool:
return self.decode(x).startswith(" ")
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/gpt2_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class SubwordNMTBPEConfig(FairseqDataclass):
bpe_codes: str = field(default="???", metadata={"help": "path to subword NMT BPE"})
bpe_separator: str = field(default="@@", metadata={"help": "BPE separator"})
@register_bpe("subword_nmt", dataclass=SubwordNMTBPEConfig)
class SubwordNMTBPE(object):
def __init__(self, cfg):
if cfg.bpe_codes is None:
raise ValueError("--bpe-codes is required for --bpe=subword_nmt")
codes = file_utils.cached_path(cfg.bpe_codes)
try:
from subword_nmt import apply_bpe
bpe_parser = apply_bpe.create_parser()
bpe_args = bpe_parser.parse_args(
[
"--codes",
codes,
"--separator",
cfg.bpe_separator,
]
)
self.bpe = apply_bpe.BPE(
bpe_args.codes,
bpe_args.merges,
bpe_args.separator,
None,
bpe_args.glossaries,
)
self.bpe_symbol = bpe_args.separator + " "
except ImportError:
raise ImportError(
"Please install subword_nmt with: pip install subword-nmt"
)
def encode(self, x: str) -> str:
return self.bpe.process_line(x)
def decode(self, x: str) -> str:
return (x + " ").replace(self.bpe_symbol, "").rstrip()
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/subword_nmt_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class HuggingFaceByteLevelBPEConfig(FairseqDataclass):
bpe_merges: str = field(default="???", metadata={"help": "path to merges.txt"})
bpe_vocab: str = field(default="???", metadata={"help": "path to vocab.json"})
bpe_add_prefix_space: bool = field(
default=False, metadata={"help": "add prefix space before encoding"}
)
@register_bpe("hf_byte_bpe", dataclass=HuggingFaceByteLevelBPEConfig)
class HuggingFaceByteLevelBPE(object):
def __init__(self, cfg):
try:
from tokenizers import ByteLevelBPETokenizer
except ImportError:
raise ImportError(
"Please install huggingface/tokenizers with: " "pip install tokenizers"
)
self.bpe = ByteLevelBPETokenizer(
cfg.bpe_vocab,
cfg.bpe_merges,
add_prefix_space=cfg.bpe_add_prefix_space,
)
def encode(self, x: str) -> str:
return " ".join(map(str, self.bpe.encode(x).ids))
def decode(self, x: str) -> str:
return self.bpe.decode(
[int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()]
)
def is_beginning_of_word(self, x: str) -> bool:
return self.decode(x).startswith(" ")
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/hf_byte_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import importlib
import os
from fairseq import registry
build_tokenizer, register_tokenizer, TOKENIZER_REGISTRY, _ = registry.setup_registry(
"--tokenizer",
default=None,
)
build_bpe, register_bpe, BPE_REGISTRY, _ = registry.setup_registry(
"--bpe",
default=None,
)
# automatically import any Python files in the encoders/ directory
for file in os.listdir(os.path.dirname(__file__)):
if file.endswith(".py") and not file.startswith("_"):
module = file[: file.find(".py")]
importlib.import_module("fairseq.data.encoders." + module)
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from typing import Optional
from fairseq.data.encoders import register_bpe
from fairseq.dataclass import FairseqDataclass
@dataclass
class BertBPEConfig(FairseqDataclass):
bpe_cased: bool = field(default=False, metadata={"help": "set for cased BPE"})
bpe_vocab_file: Optional[str] = field(
default=None, metadata={"help": "bpe vocab file"}
)
@register_bpe("bert", dataclass=BertBPEConfig)
class BertBPE(object):
def __init__(self, cfg):
try:
from transformers import BertTokenizer
except ImportError:
raise ImportError(
"Please install transformers with: pip install transformers"
)
if cfg.bpe_vocab_file:
self.bert_tokenizer = BertTokenizer(
cfg.bpe_vocab_file, do_lower_case=not cfg.bpe_cased
)
else:
vocab_file_name = (
"bert-base-cased" if cfg.bpe_cased else "bert-base-uncased"
)
self.bert_tokenizer = BertTokenizer.from_pretrained(vocab_file_name)
def encode(self, x: str) -> str:
return " ".join(self.bert_tokenizer.tokenize(x))
def decode(self, x: str) -> str:
return self.bert_tokenizer.clean_up_tokenization(
self.bert_tokenizer.convert_tokens_to_string(x.split(" "))
)
def is_beginning_of_word(self, x: str) -> bool:
return not x.startswith("##")
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/hf_bert_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
from fairseq.data.encoders.byte_utils import (
SPACE,
SPACE_ESCAPE,
byte_encode,
smart_byte_decode,
)
from fairseq.dataclass import FairseqDataclass
@dataclass
class ByteBpeConfig(FairseqDataclass):
sentencepiece_model_path: str = field(
default="???", metadata={"help": "path to sentencepiece model"}
)
@register_bpe("byte_bpe", dataclass=ByteBpeConfig)
class ByteBPE(object):
def __init__(self, cfg):
vocab = file_utils.cached_path(cfg.sentencepiece_model_path)
try:
import sentencepiece as spm
self.sp = spm.SentencePieceProcessor()
self.sp.Load(vocab)
except ImportError:
raise ImportError(
"Please install sentencepiece with: pip install sentencepiece"
)
def encode(self, x: str) -> str:
byte_encoded = byte_encode(x)
return SPACE.join(self.sp.EncodeAsPieces(byte_encoded))
@staticmethod
def decode(x: str) -> str:
unescaped = x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
return smart_byte_decode(unescaped)
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/byte_bpe.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.data import encoders
def get_whole_word_mask(args, dictionary):
bpe = encoders.build_bpe(args)
if bpe is not None:
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
return mask_whole_words
return None
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
from fairseq.data.encoders import register_tokenizer
@register_tokenizer("space")
class SpaceTokenizer(object):
def __init__(self, *unused):
self.space_tok = re.compile(r"\s+")
def encode(self, x: str) -> str:
return self.space_tok.sub(" ", x)
def decode(self, x: str) -> str:
return x
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/space_tokenizer.py |
"""
Byte pair encoding utilities from GPT-2.
Original source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
Original license: MIT
"""
import json
from functools import lru_cache
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
class Encoder:
def __init__(self, encoder, bpe_merges, errors="replace"):
self.encoder = encoder
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
try:
import regex as re
self.re = re
except ImportError:
raise ImportError("Please install regex with: pip install regex")
# Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = self.re.compile(
r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
for token in self.re.findall(self.pat, text):
token = "".join(self.byte_encoder[b] for b in token.encode("utf-8"))
bpe_tokens.extend(
self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")
)
return bpe_tokens
def decode(self, tokens):
text = "".join([self.decoder.get(token, token) for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode(
"utf-8", errors=self.errors
)
return text
def get_encoder(encoder_json_path, vocab_bpe_path):
with open(encoder_json_path, "r") as f:
encoder = json.load(f)
with open(vocab_bpe_path, "r", encoding="utf-8") as f:
bpe_data = f.read()
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split("\n")[1:-1]]
return Encoder(
encoder=encoder,
bpe_merges=bpe_merges,
)
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/gpt2_bpe_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass, field
from fairseq.data.encoders import register_tokenizer
from fairseq.dataclass import FairseqDataclass
@dataclass
class MosesTokenizerConfig(FairseqDataclass):
source_lang: str = field(default="en", metadata={"help": "source language"})
target_lang: str = field(default="en", metadata={"help": "target language"})
moses_no_dash_splits: bool = field(
default=False, metadata={"help": "don't apply dash split rules"}
)
moses_no_escape: bool = field(
default=False,
metadata={"help": "don't perform HTML escaping on apostrophe, quotes, etc."},
)
@register_tokenizer("moses", dataclass=MosesTokenizerConfig)
class MosesTokenizer(object):
def __init__(self, cfg: MosesTokenizerConfig):
self.cfg = cfg
try:
from sacremoses import MosesTokenizer, MosesDetokenizer
self.tok = MosesTokenizer(cfg.source_lang)
self.detok = MosesDetokenizer(cfg.target_lang)
except ImportError:
raise ImportError(
"Please install Moses tokenizer with: pip install sacremoses"
)
def encode(self, x: str) -> str:
return self.tok.tokenize(
x,
aggressive_dash_splits=(not self.cfg.moses_no_dash_splits),
return_str=True,
escape=(not self.cfg.moses_no_escape),
)
def decode(self, x: str) -> str:
return self.detok.detokenize(x.split())
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/moses_tokenizer.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_bpe
SPACE = chr(32)
SPACE_ESCAPE = chr(9601)
@register_bpe("characters")
class Characters(object):
def __init__(self, *unused):
pass
@staticmethod
def add_args(parser):
pass
@staticmethod
def encode(x: str) -> str:
escaped = x.replace(SPACE, SPACE_ESCAPE)
return SPACE.join(list(escaped))
@staticmethod
def decode(x: str) -> str:
return x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/characters.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_bpe
from fairseq.data.encoders.byte_utils import (
SPACE,
SPACE_ESCAPE,
byte_encode,
smart_byte_decode,
)
@register_bpe("bytes")
class Bytes(object):
def __init__(self, *unused):
pass
@staticmethod
def add_args(parser):
pass
@staticmethod
def encode(x: str) -> str:
encoded = byte_encode(x)
escaped = encoded.replace(SPACE, SPACE_ESCAPE)
return SPACE.join(list(escaped))
@staticmethod
def decode(x: str) -> str:
unescaped = x.replace(SPACE, "").replace(SPACE_ESCAPE, SPACE)
return smart_byte_decode(unescaped)
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/bytes.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
WHITESPACE_NORMALIZER = re.compile(r"\s+")
SPACE = chr(32)
SPACE_ESCAPE = chr(9601)
# excluding non-breaking space (160) here
PRINTABLE_LATIN = set(
list(range(32, 126 + 1)) + list(range(161, 172 + 1)) + list(range(174, 255 + 1))
)
BYTE_TO_BCHAR = {
b: chr(b) if b in PRINTABLE_LATIN else chr(256 + b) for b in range(256)
}
BCHAR_TO_BYTE = {bc: b for b, bc in BYTE_TO_BCHAR.items()}
def byte_encode(x: str) -> str:
normalized = WHITESPACE_NORMALIZER.sub(SPACE, x)
return "".join([BYTE_TO_BCHAR[b] for b in normalized.encode("utf-8")])
def byte_decode(x: str) -> str:
try:
return bytes([BCHAR_TO_BYTE[bc] for bc in x]).decode("utf-8")
except ValueError:
return ""
def smart_byte_decode(x: str) -> str:
output = byte_decode(x)
if output == "":
# DP the best recovery (max valid chars) if it's broken
n_bytes = len(x)
f = [0 for _ in range(n_bytes + 1)]
pt = [0 for _ in range(n_bytes + 1)]
for i in range(1, n_bytes + 1):
f[i], pt[i] = f[i - 1], i - 1
for j in range(1, min(4, i) + 1):
if f[i - j] + 1 > f[i] and len(byte_decode(x[i - j : i])) > 0:
f[i], pt[i] = f[i - j] + 1, i - j
cur_pt = n_bytes
while cur_pt > 0:
if f[cur_pt] == f[pt[cur_pt]] + 1:
output = byte_decode(x[pt[cur_pt] : cur_pt]) + output
cur_pt = pt[cur_pt]
return output
| data2vec_vision-main | deltalm/src/fairseq/data/encoders/byte_utils.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
A standalone module for aggregating metrics.
Metrics can be logged from anywhere using the `log_*` functions defined
in this module. The logged values will be aggregated dynamically based
on the aggregation context in which the logging occurs. See the
:func:`aggregate` context manager for more details.
"""
import contextlib
import time
import uuid
from collections import OrderedDict, defaultdict
from typing import Callable, Dict, List, Optional
from .meters import *
# Aggregation contexts are considered "active" when inside the scope
# created by the :func:`aggregate` context manager.
_aggregators = OrderedDict()
_active_aggregators = OrderedDict()
_active_aggregators_cnt = defaultdict(lambda: 0)
def reset() -> None:
"""Reset all metrics aggregators."""
_aggregators.clear()
_active_aggregators.clear()
_active_aggregators_cnt.clear()
# The "default" aggregator observes all logged values.
_aggregators["default"] = MetersDict()
_active_aggregators["default"] = _aggregators["default"]
_active_aggregators_cnt["default"] = 1
reset()
@contextlib.contextmanager
def aggregate(name: Optional[str] = None, new_root: bool = False):
"""Context manager to aggregate metrics under a given name.
Aggregations can be nested. If *new_root* is ``False``, then logged
metrics will be recorded along the entire stack of nested
aggregators, including a global "default" aggregator. If *new_root*
is ``True``, then this aggregator will be the root of a new
aggregation stack, thus bypassing any parent aggregators.
Note that aggregation contexts are uniquely identified by their
*name* (e.g., train, valid). Creating a context with an existing
name will reuse the corresponding :class:`MetersDict` instance.
If no name is given, then a temporary aggregator will be created.
Usage::
with metrics.aggregate("train"):
for step, batch in enumerate(epoch):
with metrics.aggregate("train_inner") as agg:
metrics.log_scalar("loss", get_loss(batch))
if step % log_interval == 0:
print(agg.get_smoothed_value("loss"))
agg.reset()
print(metrics.get_smoothed_values("train")["loss"])
Args:
name (str): name of the aggregation. Defaults to a
random/temporary name if not given explicitly.
new_root (bool): make this aggregation the root of a new
aggregation stack.
"""
if name is None:
# generate a temporary name
name = str(uuid.uuid4())
assert name not in _aggregators
agg = MetersDict()
else:
assert name != "default"
agg = _aggregators.setdefault(name, MetersDict())
if new_root:
backup_aggregators = _active_aggregators.copy()
_active_aggregators.clear()
backup_aggregators_cnt = _active_aggregators_cnt.copy()
_active_aggregators_cnt.clear()
_active_aggregators[name] = agg
_active_aggregators_cnt[name] += 1
yield agg
_active_aggregators_cnt[name] -= 1
if _active_aggregators_cnt[name] == 0 and name in _active_aggregators:
del _active_aggregators[name]
if new_root:
_active_aggregators.clear()
_active_aggregators.update(backup_aggregators)
_active_aggregators_cnt.clear()
_active_aggregators_cnt.update(backup_aggregators_cnt)
def get_active_aggregators() -> List[MetersDict]:
return list(_active_aggregators.values())
def log_scalar(
key: str,
value: float,
weight: float = 1,
priority: int = 10,
round: Optional[int] = None,
):
"""Log a scalar value.
Args:
key (str): name of the field to log
value (float): value to log
weight (float): weight that this value contributes to the average.
A weight of 0 will always log the latest value.
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, AverageMeter(round=round), priority)
agg[key].update(value, weight)
def log_derived(key: str, fn: Callable[[MetersDict], float], priority: int = 20):
"""Log a scalar value derived from other meters.
Args:
key (str): name of the field to log
fn (Callable[[MetersDict], float]): function that takes a single
argument *meters* and returns the derived value
priority (int): smaller values are logged earlier in the output
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, MetersDict._DerivedMeter(fn), priority)
def log_speed(
key: str,
value: float,
priority: int = 30,
round: Optional[int] = None,
):
"""Log the rate of some quantity per second.
Args:
key (str): name of the field to log
value (float): value to log
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, TimeMeter(round=round), priority)
agg[key].reset() # reset meter on the first call
else:
agg[key].update(value)
def log_start_time(key: str, priority: int = 40, round: Optional[int] = None):
"""Log the duration of some event in seconds.
The duration will be computed once :func:`log_stop_time` is called.
Args:
key (str): name of the field to log
priority (int): smaller values are logged earlier in the output
round (Optional[int]): number of digits to round to when displaying
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, StopwatchMeter(round=round), priority)
agg[key].start()
def log_stop_time(key: str, weight: float = 0.0, prehook=None):
"""Log the duration of some event in seconds.
The duration will be computed since :func:`log_start_time` was called.
Set weight > 0 to report the average time instead of the sum.
Args:
key (str): name of the field to log
weight (float): weight that this time contributes to the average
prehook (function, no arguments): will be called before the timer
is stopped. For example, use prehook=torch.cuda.synchronize to
make sure all gpu operations are done before timer is stopped.
"""
for agg in get_active_aggregators():
if key in agg:
agg[key].stop(weight, prehook)
def log_custom(
new_meter_fn: Callable[[], Meter],
key: str,
*args,
priority: int = 50,
**kwargs,
):
"""Log using a custom Meter.
Any extra *args* or *kwargs* will be passed through to the Meter's
*update* method.
Args:
new_meter_fn (Callable[[], Meter]): function that returns a new
Meter instance
key (str): name of the field to log
priority (int): smaller values are logged earlier in the output
"""
for agg in get_active_aggregators():
if key not in agg:
agg.add_meter(key, new_meter_fn(), priority)
agg[key].update(*args, **kwargs)
def reset_meter(name: str, key: str) -> None:
"""Reset Meter instance aggregated under a given *name* and *key*."""
meter = get_meter(name, key)
if meter is not None:
meter.reset()
def reset_meters(name: str) -> None:
"""Reset Meter instances aggregated under a given *name*."""
meters = get_meters(name)
if meters is not None:
meters.reset()
def get_meter(name: str, key: str) -> Meter:
"""Get a single Meter instance aggregated under *name* and *key*.
Returns:
Meter or None if no metrics have been logged under *name* and *key*.
"""
if name not in _aggregators:
return None
return _aggregators[name].get(key, None)
def get_meters(name: str) -> MetersDict:
"""Get Meter instances aggregated under a given *name*.
Returns:
MetersDict or None if no metrics have been logged under *name*.
"""
return _aggregators.get(name, None)
def get_smoothed_value(name: str, key: str) -> float:
"""Get a single smoothed value.
Raises:
KeyError: if no metrics have been logged under *name* and *key*.
"""
return _aggregators[name].get_smoothed_value(key)
def get_smoothed_values(name: str) -> Dict[str, float]:
"""Get smoothed values aggregated under a given *name*.
Raises:
KeyError: if no metrics have been logged under *name*.
"""
return _aggregators[name].get_smoothed_values()
def state_dict():
return OrderedDict([(name, agg.state_dict()) for name, agg in _aggregators.items()])
def load_state_dict(state_dict):
for name, agg_state in state_dict.items():
_aggregators[name] = MetersDict()
_aggregators[name].load_state_dict(agg_state)
| data2vec_vision-main | deltalm/src/fairseq/logging/metrics.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import bisect
import time
from collections import OrderedDict
from typing import Dict, Optional
try:
import torch
def type_as(a, b):
if torch.is_tensor(a) and torch.is_tensor(b):
return a.to(b)
else:
return a
except ImportError:
torch = None
def type_as(a, b):
return a
try:
import numpy as np
except ImportError:
np = None
class Meter(object):
"""Base class for Meters."""
def __init__(self):
pass
def state_dict(self):
return {}
def load_state_dict(self, state_dict):
pass
def reset(self):
raise NotImplementedError
@property
def smoothed_value(self) -> float:
"""Smoothed value used for logging."""
raise NotImplementedError
def safe_round(number, ndigits):
if hasattr(number, "__round__"):
return round(number, ndigits)
elif torch is not None and torch.is_tensor(number) and number.numel() == 1:
return safe_round(number.item(), ndigits)
elif np is not None and np.ndim(number) == 0 and hasattr(number, "item"):
return safe_round(number.item(), ndigits)
else:
return number
class AverageMeter(Meter):
"""Computes and stores the average and current value"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.reset()
def reset(self):
self.val = None # most recent update
self.sum = 0 # sum from all updates
self.count = 0 # total n from all updates
def update(self, val, n=1):
if val is not None:
self.val = val
if n > 0:
self.sum = type_as(self.sum, val) + (val * n)
self.count = type_as(self.count, n) + n
def state_dict(self):
return {
"val": self.val,
"sum": self.sum,
"count": self.count,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.val = state_dict["val"]
self.sum = state_dict["sum"]
self.count = state_dict["count"]
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.count if self.count > 0 else self.val
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class TimeMeter(Meter):
"""Computes the average occurrence of some event per second"""
def __init__(
self,
init: int = 0,
n: int = 0,
round: Optional[int] = None,
):
self.round = round
self.reset(init, n)
def reset(self, init=0, n=0):
self.init = init
self.start = time.perf_counter()
self.n = n
self.i = 0
def update(self, val=1):
self.n = type_as(self.n, val) + val
self.i += 1
def state_dict(self):
return {
"init": self.elapsed_time,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
if "start" in state_dict:
# backwards compatibility for old state_dicts
self.reset(init=state_dict["init"])
else:
self.reset(init=state_dict["init"], n=state_dict["n"])
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.n / self.elapsed_time
@property
def elapsed_time(self):
return self.init + (time.perf_counter() - self.start)
@property
def smoothed_value(self) -> float:
val = self.avg
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class StopwatchMeter(Meter):
"""Computes the sum/avg duration of some event in seconds"""
def __init__(self, round: Optional[int] = None):
self.round = round
self.sum = 0
self.n = 0
self.start_time = None
def start(self):
self.start_time = time.perf_counter()
def stop(self, n=1, prehook=None):
if self.start_time is not None:
if prehook is not None:
prehook()
delta = time.perf_counter() - self.start_time
self.sum = self.sum + delta
self.n = type_as(self.n, n) + n
def reset(self):
self.sum = 0 # cumulative time during which stopwatch was active
self.n = 0 # total n across all start/stop
self.start()
def state_dict(self):
return {
"sum": self.sum,
"n": self.n,
"round": self.round,
}
def load_state_dict(self, state_dict):
self.sum = state_dict["sum"]
self.n = state_dict["n"]
self.start_time = None
self.round = state_dict.get("round", None)
@property
def avg(self):
return self.sum / self.n if self.n > 0 else self.sum
@property
def elapsed_time(self):
if self.start_time is None:
return 0.0
return time.perf_counter() - self.start_time
@property
def smoothed_value(self) -> float:
val = self.avg if self.sum > 0 else self.elapsed_time
if self.round is not None and val is not None:
val = safe_round(val, self.round)
return val
class MetersDict(OrderedDict):
"""A sorted dictionary of :class:`Meters`.
Meters are sorted according to a priority that is given when the
meter is first added to the dictionary.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.priorities = []
def __setitem__(self, key, value):
assert key not in self, "MetersDict doesn't support reassignment"
priority, value = value
bisect.insort(self.priorities, (priority, len(self.priorities), key))
super().__setitem__(key, value)
for _, _, key in self.priorities: # reorder dict to match priorities
self.move_to_end(key)
def add_meter(self, key, meter, priority):
self.__setitem__(key, (priority, meter))
def state_dict(self):
return [
(pri, key, self[key].__class__.__name__, self[key].state_dict())
for pri, _, key in self.priorities
# can't serialize DerivedMeter instances
if not isinstance(self[key], MetersDict._DerivedMeter)
]
def load_state_dict(self, state_dict):
self.clear()
self.priorities.clear()
for pri, key, meter_cls, meter_state in state_dict:
meter = globals()[meter_cls]()
meter.load_state_dict(meter_state)
self.add_meter(key, meter, pri)
def get_smoothed_value(self, key: str) -> float:
"""Get a single smoothed value."""
meter = self[key]
if isinstance(meter, MetersDict._DerivedMeter):
return meter.fn(self)
else:
return meter.smoothed_value
def get_smoothed_values(self) -> Dict[str, float]:
"""Get all smoothed values."""
return OrderedDict(
[
(key, self.get_smoothed_value(key))
for key in self.keys()
if not key.startswith("_")
]
)
def reset(self):
"""Reset Meter instances."""
for meter in self.values():
if isinstance(meter, MetersDict._DerivedMeter):
continue
meter.reset()
class _DerivedMeter(Meter):
"""A Meter whose values are derived from other Meters."""
def __init__(self, fn):
self.fn = fn
def reset(self):
pass
| data2vec_vision-main | deltalm/src/fairseq/logging/meters.py |
data2vec_vision-main | deltalm/src/fairseq/logging/__init__.py |
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Wrapper around various loggers and progress bars (e.g., tqdm).
"""
import atexit
import json
import logging
import os
import sys
from collections import OrderedDict
from contextlib import contextmanager
from numbers import Number
from typing import Optional
import torch
from .meters import AverageMeter, StopwatchMeter, TimeMeter
logger = logging.getLogger(__name__)
def progress_bar(
iterator,
log_format: Optional[str] = None,
log_interval: int = 100,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
tensorboard_logdir: Optional[str] = None,
default_log_format: str = "tqdm",
wandb_project: Optional[str] = None,
):
if log_format is None:
log_format = default_log_format
if log_format == "tqdm" and not sys.stderr.isatty():
log_format = "simple"
if log_format == "json":
bar = JsonProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "none":
bar = NoopProgressBar(iterator, epoch, prefix)
elif log_format == "simple":
bar = SimpleProgressBar(iterator, epoch, prefix, log_interval)
elif log_format == "tqdm":
bar = TqdmProgressBar(iterator, epoch, prefix)
else:
raise ValueError("Unknown log format: {}".format(log_format))
if tensorboard_logdir:
try:
# [FB only] custom wrapper for TensorBoard
import palaas # noqa
from .fb_tbmf_wrapper import FbTbmfWrapper
bar = FbTbmfWrapper(bar, log_interval)
except ImportError:
bar = TensorboardProgressBarWrapper(bar, tensorboard_logdir)
if wandb_project:
bar = WandBProgressBarWrapper(bar, wandb_project)
return bar
def build_progress_bar(
args,
iterator,
epoch: Optional[int] = None,
prefix: Optional[str] = None,
default: str = "tqdm",
no_progress_bar: str = "none",
):
"""Legacy wrapper that takes an argparse.Namespace."""
if getattr(args, "no_progress_bar", False):
default = no_progress_bar
if getattr(args, "distributed_rank", 0) == 0:
tensorboard_logdir = getattr(args, "tensorboard_logdir", None)
else:
tensorboard_logdir = None
return progress_bar(
iterator,
log_format=args.log_format,
log_interval=args.log_interval,
epoch=epoch,
prefix=prefix,
tensorboard_logdir=tensorboard_logdir,
default_log_format=default,
)
def format_stat(stat):
if isinstance(stat, Number):
stat = "{:g}".format(stat)
elif isinstance(stat, AverageMeter):
stat = "{:.3f}".format(stat.avg)
elif isinstance(stat, TimeMeter):
stat = "{:g}".format(round(stat.avg))
elif isinstance(stat, StopwatchMeter):
stat = "{:g}".format(round(stat.sum))
elif torch.is_tensor(stat):
stat = stat.tolist()
return stat
class BaseProgressBar(object):
"""Abstract class for progress bars."""
def __init__(self, iterable, epoch=None, prefix=None):
self.iterable = iterable
self.n = getattr(iterable, "n", 0)
self.epoch = epoch
self.prefix = ""
if epoch is not None:
self.prefix += "epoch {:03d}".format(epoch)
if prefix is not None:
self.prefix += " | {}".format(prefix)
def __len__(self):
return len(self.iterable)
def __enter__(self):
return self
def __exit__(self, *exc):
return False
def __iter__(self):
raise NotImplementedError
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
raise NotImplementedError
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
raise NotImplementedError
def _str_commas(self, stats):
return ", ".join(key + "=" + stats[key].strip() for key in stats.keys())
def _str_pipes(self, stats):
return " | ".join(key + " " + stats[key].strip() for key in stats.keys())
def _format_stats(self, stats):
postfix = OrderedDict(stats)
# Preprocess stats according to datatype
for key in postfix.keys():
postfix[key] = str(format_stat(postfix[key]))
return postfix
@contextmanager
def rename_logger(logger, new_name):
old_name = logger.name
if new_name is not None:
logger.name = new_name
yield logger
logger.name = old_name
class JsonProgressBar(BaseProgressBar):
"""Log output in JSON format."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
update = (
self.epoch - 1 + (self.i + 1) / float(self.size)
if self.epoch is not None
else None
)
stats = self._format_stats(stats, epoch=self.epoch, update=update)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self.stats = stats
if tag is not None:
self.stats = OrderedDict(
[(tag + "_" + k, v) for k, v in self.stats.items()]
)
stats = self._format_stats(self.stats, epoch=self.epoch)
with rename_logger(logger, tag):
logger.info(json.dumps(stats))
def _format_stats(self, stats, epoch=None, update=None):
postfix = OrderedDict()
if epoch is not None:
postfix["epoch"] = epoch
if update is not None:
postfix["update"] = round(update, 3)
# Preprocess stats according to datatype
for key in stats.keys():
postfix[key] = format_stat(stats[key])
return postfix
class NoopProgressBar(BaseProgressBar):
"""No logging."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
def __iter__(self):
for obj in self.iterable:
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
pass
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
pass
class SimpleProgressBar(BaseProgressBar):
"""A minimal logger for non-TTY environments."""
def __init__(self, iterable, epoch=None, prefix=None, log_interval=1000):
super().__init__(iterable, epoch, prefix)
self.log_interval = log_interval
self.i = None
self.size = None
def __iter__(self):
self.size = len(self.iterable)
for i, obj in enumerate(self.iterable, start=self.n):
self.i = i
yield obj
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
step = step or self.i or 0
if step > 0 and self.log_interval is not None and step % self.log_interval == 0:
stats = self._format_stats(stats)
postfix = self._str_commas(stats)
with rename_logger(logger, tag):
logger.info(
"{}: {:5d} / {:d} {}".format(
self.prefix, self.i + 1, self.size, postfix
)
)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
class TqdmProgressBar(BaseProgressBar):
"""Log to tqdm."""
def __init__(self, iterable, epoch=None, prefix=None):
super().__init__(iterable, epoch, prefix)
from tqdm import tqdm
self.tqdm = tqdm(
iterable,
self.prefix,
leave=False,
disable=(logger.getEffectiveLevel() > logging.INFO),
)
def __iter__(self):
return iter(self.tqdm)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats according to log_interval."""
self.tqdm.set_postfix(self._format_stats(stats), refresh=False)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
postfix = self._str_pipes(self._format_stats(stats))
with rename_logger(logger, tag):
logger.info("{} | {}".format(self.prefix, postfix))
try:
_tensorboard_writers = {}
from tensorboardX import SummaryWriter
except ImportError:
SummaryWriter = None
def _close_writers():
for w in _tensorboard_writers.values():
w.close()
atexit.register(_close_writers)
class TensorboardProgressBarWrapper(BaseProgressBar):
"""Log to tensorboard."""
def __init__(self, wrapped_bar, tensorboard_logdir):
self.wrapped_bar = wrapped_bar
self.tensorboard_logdir = tensorboard_logdir
if SummaryWriter is None:
logger.warning(
"tensorboard not found, please install with: pip install tensorboardX"
)
def _writer(self, key):
if SummaryWriter is None:
return None
_writers = _tensorboard_writers
if key not in _writers:
_writers[key] = SummaryWriter(os.path.join(self.tensorboard_logdir, key))
_writers[key].add_text("sys.argv", " ".join(sys.argv))
return _writers[key]
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_tensorboard(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def _log_to_tensorboard(self, stats, tag=None, step=None):
writer = self._writer(tag or "")
if writer is None:
return
if step is None:
step = stats["num_updates"]
for key in stats.keys() - {"num_updates"}:
if isinstance(stats[key], AverageMeter):
writer.add_scalar(key, stats[key].val, step)
elif isinstance(stats[key], Number):
writer.add_scalar(key, stats[key], step)
elif torch.is_tensor(stats[key]) and stats[key].numel() == 1:
writer.add_scalar(key, stats[key].item(), step)
writer.flush()
try:
import wandb
except ImportError:
wandb = None
class WandBProgressBarWrapper(BaseProgressBar):
"""Log to Weights & Biases."""
def __init__(self, wrapped_bar, wandb_project):
self.wrapped_bar = wrapped_bar
if wandb is None:
logger.warning('wandb not found, pip install wandb')
return
# reinit=False to ensure if wandb.init() is called multiple times
# within one process it still references the same run
wandb.init(project=wandb_project, reinit=False)
def __iter__(self):
return iter(self.wrapped_bar)
def log(self, stats, tag=None, step=None):
"""Log intermediate stats to tensorboard."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.log(stats, tag=tag, step=step)
def print(self, stats, tag=None, step=None):
"""Print end-of-epoch stats."""
self._log_to_wandb(stats, tag, step)
self.wrapped_bar.print(stats, tag=tag, step=step)
def _log_to_wandb(self, stats, tag=None, step=None):
if wandb is None:
return
if step is None:
step = stats['num_updates']
prefix = '' if tag is None else tag + '/'
for key in stats.keys() - {'num_updates'}:
if isinstance(stats[key], AverageMeter):
wandb.log({prefix + key: stats[key].val}, step=step)
elif isinstance(stats[key], Number):
wandb.log({prefix + key: stats[key]}, step=step)
| data2vec_vision-main | deltalm/src/fairseq/logging/progress_bar.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import inspect
from typing import Any, Dict, List
from fairseq import metrics, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import gen_parser_from_dataclass
from torch.nn.modules.loss import _Loss
class FairseqCriterion(_Loss):
def __init__(self, task):
super().__init__()
self.task = task
if hasattr(task, "target_dictionary"):
tgt_dict = task.target_dictionary
self.padding_idx = tgt_dict.pad() if tgt_dict is not None else -100
@classmethod
def add_args(cls, parser):
"""Add criterion-specific arguments to the parser."""
dc = getattr(cls, "__dataclass", None)
if dc is not None:
gen_parser_from_dataclass(parser, dc())
@classmethod
def build_criterion(cls, cfg: FairseqDataclass, task):
"""Construct a criterion from command-line args."""
# arguments in the __init__.
init_args = {}
for p in inspect.signature(cls).parameters.values():
if (
p.kind == p.POSITIONAL_ONLY
or p.kind == p.VAR_POSITIONAL
or p.kind == p.VAR_KEYWORD
):
# we haven't implemented inference for these argument types,
# but PRs welcome :)
raise NotImplementedError("{} not supported".format(p.kind))
assert p.kind in {p.POSITIONAL_OR_KEYWORD, p.KEYWORD_ONLY}
if p.name == "task":
init_args["task"] = task
elif p.name == "cfg":
init_args["cfg"] = cfg
elif hasattr(cfg, p.name):
init_args[p.name] = getattr(cfg, p.name)
elif p.default != p.empty:
pass # we'll use the default value
else:
raise NotImplementedError(
"Unable to infer Criterion arguments, please implement "
"{}.build_criterion".format(cls.__name__)
)
return cls(**init_args)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
raise NotImplementedError
@staticmethod
def aggregate_logging_outputs(
logging_outputs: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""Aggregate logging outputs from data parallel training."""
utils.deprecation_warning(
"The aggregate_logging_outputs API is deprecated. "
"Please use the reduce_metrics API instead."
)
raise NotImplementedError
@classmethod
def reduce_metrics(cls, logging_outputs: List[Dict[str, Any]]) -> None:
"""Aggregate logging outputs from data parallel training."""
utils.deprecation_warning(
"Criterions should implement the reduce_metrics API. "
"Falling back to deprecated aggregate_logging_outputs API."
)
agg_logging_outputs = cls.aggregate_logging_outputs(logging_outputs)
for k, v in agg_logging_outputs.items():
if k in {"nsentences", "ntokens", "sample_size"}:
continue
metrics.log_scalar(k, v)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
class LegacyFairseqCriterion(FairseqCriterion):
def __init__(self, args, task):
super().__init__(task=task)
self.args = args
utils.deprecation_warning(
"Criterions should take explicit arguments instead of an "
"argparse.Namespace object, please update your criterion by "
"extending FairseqCriterion instead of LegacyFairseqCriterion."
)
@classmethod
def build_criterion(cls, args, task):
"""Construct a criterion from command-line args."""
return cls(args, task)
| data2vec_vision-main | deltalm/src/fairseq/criterions/fairseq_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from omegaconf import II
@dataclass
class CrossEntropyCriterionConfig(FairseqDataclass):
sentence_avg: bool = II("optimization.sentence_avg")
@register_criterion("cross_entropy", dataclass=CrossEntropyCriterionConfig)
class CrossEntropyCriterion(FairseqCriterion):
def __init__(self, task, sentence_avg):
super().__init__(task)
self.sentence_avg = sentence_avg
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
loss, _ = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
}
return loss, sample_size, logging_output
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
lprobs = lprobs.view(-1, lprobs.size(-1))
target = model.get_targets(sample, net_output).view(-1)
loss = F.nll_loss(
lprobs,
target,
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
return loss, loss
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
# we divide by log(2) to convert the loss from base e to base 2
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/cross_entropy.py |
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import math
from argparse import Namespace
from dataclasses import dataclass, field
from omegaconf import II
from typing import Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.data.data_utils import post_process
from fairseq.tasks import FairseqTask
from fairseq.logging.meters import safe_round
@dataclass
class CtcCriterionConfig(FairseqDataclass):
zero_infinity: bool = field(
default=False,
metadata={"help": "zero inf loss when source length <= target length"},
)
sentence_avg: bool = II("optimization.sentence_avg")
post_process: str = field(
default="letter",
metadata={
"help": "how to post process predictions into words. can be letter, "
"wordpiece, BPE symbols, etc. "
"See fairseq.data.data_utils.post_process() for full list of options"
},
)
wer_kenlm_model: Optional[str] = field(
default=None,
metadata={
"help": "if this is provided, use kenlm to compute wer (along with other wer_* args)"
},
)
wer_lexicon: Optional[str] = field(
default=None,
metadata={"help": "lexicon to use with wer_kenlm_model"},
)
wer_lm_weight: float = field(
default=2.0,
metadata={"help": "lm weight to use with wer_kenlm_model"},
)
wer_word_score: float = field(
default=-1.0,
metadata={"help": "lm word score to use with wer_kenlm_model"},
)
wer_args: Optional[str] = field(
default=None,
metadata={
"help": "DEPRECATED: tuple of (wer_kenlm_model, wer_lexicon, wer_lm_weight, wer_word_score)"
},
)
@register_criterion("ctc", dataclass=CtcCriterionConfig)
class CtcCriterion(FairseqCriterion):
def __init__(self, cfg: CtcCriterionConfig, task: FairseqTask):
super().__init__(task)
self.blank_idx = task.target_dictionary.index(task.blank_symbol)
self.pad_idx = task.target_dictionary.pad()
self.eos_idx = task.target_dictionary.eos()
self.post_process = cfg.post_process
if cfg.wer_args is not None:
(
cfg.wer_kenlm_model,
cfg.wer_lexicon,
cfg.wer_lm_weight,
cfg.wer_word_score,
) = eval(cfg.wer_args)
if cfg.wer_kenlm_model is not None:
from examples.speech_recognition.w2l_decoder import W2lKenLMDecoder
dec_args = Namespace()
dec_args.nbest = 1
dec_args.criterion = "ctc"
dec_args.kenlm_model = cfg.wer_kenlm_model
dec_args.lexicon = cfg.wer_lexicon
dec_args.beam = 50
dec_args.beam_size_token = min(50, len(task.target_dictionary))
dec_args.beam_threshold = min(50, len(task.target_dictionary))
dec_args.lm_weight = cfg.wer_lm_weight
dec_args.word_score = cfg.wer_word_score
dec_args.unk_weight = -math.inf
dec_args.sil_weight = 0
self.w2l_decoder = W2lKenLMDecoder(dec_args, task.target_dictionary)
else:
self.w2l_decoder = None
self.zero_infinity = cfg.zero_infinity
self.sentence_avg = cfg.sentence_avg
def forward(self, model, sample, reduce=True):
net_output = model(**sample["net_input"])
lprobs = model.get_normalized_probs(
net_output, log_probs=True
).contiguous() # (T, B, C) from the encoder
if "src_lengths" in sample["net_input"]:
input_lengths = sample["net_input"]["src_lengths"]
else:
non_padding_mask = ~net_output["padding_mask"]
input_lengths = non_padding_mask.long().sum(-1)
pad_mask = (sample["target"] != self.pad_idx) & (
sample["target"] != self.eos_idx
)
targets_flat = sample["target"].masked_select(pad_mask)
if "target_lengths" in sample:
target_lengths = sample["target_lengths"]
else:
target_lengths = pad_mask.sum(-1)
with torch.backends.cudnn.flags(enabled=False):
loss = F.ctc_loss(
lprobs,
targets_flat,
input_lengths,
target_lengths,
blank=self.blank_idx,
reduction="sum",
zero_infinity=self.zero_infinity,
)
ntokens = (
sample["ntokens"] if "ntokens" in sample else target_lengths.sum().item()
)
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens
logging_output = {
"loss": utils.item(loss.data), # * sample['ntokens'],
"ntokens": ntokens,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
}
if not model.training:
import editdistance
with torch.no_grad():
lprobs_t = lprobs.transpose(0, 1).float().contiguous().cpu()
c_err = 0
c_len = 0
w_errs = 0
w_len = 0
wv_errs = 0
for lp, t, inp_l in zip(
lprobs_t,
sample["target_label"]
if "target_label" in sample
else sample["target"],
input_lengths,
):
lp = lp[:inp_l].unsqueeze(0)
decoded = None
if self.w2l_decoder is not None:
decoded = self.w2l_decoder.decode(lp)
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
if len(decoded) < 1:
decoded = None
else:
decoded = decoded[0]
p = (t != self.task.target_dictionary.pad()) & (
t != self.task.target_dictionary.eos()
)
targ = t[p]
targ_units = self.task.target_dictionary.string(targ)
targ_units_arr = targ.tolist()
toks = lp.argmax(dim=-1).unique_consecutive()
pred_units_arr = toks[toks != self.blank_idx].tolist()
c_err += editdistance.eval(pred_units_arr, targ_units_arr)
c_len += len(targ_units_arr)
targ_words = post_process(targ_units, self.post_process).split()
pred_units = self.task.target_dictionary.string(pred_units_arr)
pred_words_raw = post_process(pred_units, self.post_process).split()
if decoded is not None and "words" in decoded:
pred_words = decoded["words"]
w_errs += editdistance.eval(pred_words, targ_words)
wv_errs += editdistance.eval(pred_words_raw, targ_words)
else:
dist = editdistance.eval(pred_words_raw, targ_words)
w_errs += dist
wv_errs += dist
w_len += len(targ_words)
logging_output["wv_errors"] = wv_errs
logging_output["w_errors"] = w_errs
logging_output["w_total"] = w_len
logging_output["c_errors"] = c_err
logging_output["c_total"] = c_len
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
c_errors = sum(log.get("c_errors", 0) for log in logging_outputs)
metrics.log_scalar("_c_errors", c_errors)
c_total = sum(log.get("c_total", 0) for log in logging_outputs)
metrics.log_scalar("_c_total", c_total)
w_errors = sum(log.get("w_errors", 0) for log in logging_outputs)
metrics.log_scalar("_w_errors", w_errors)
wv_errors = sum(log.get("wv_errors", 0) for log in logging_outputs)
metrics.log_scalar("_wv_errors", wv_errors)
w_total = sum(log.get("w_total", 0) for log in logging_outputs)
metrics.log_scalar("_w_total", w_total)
if c_total > 0:
metrics.log_derived(
"uer",
lambda meters: safe_round(
meters["_c_errors"].sum * 100.0 / meters["_c_total"].sum, 3
)
if meters["_c_total"].sum > 0
else float("nan"),
)
if w_total > 0:
metrics.log_derived(
"wer",
lambda meters: safe_round(
meters["_w_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
metrics.log_derived(
"raw_wer",
lambda meters: safe_round(
meters["_wv_errors"].sum * 100.0 / meters["_w_total"].sum, 3
)
if meters["_w_total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/ctc.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.constants import DDP_BACKEND_CHOICES
from omegaconf import II
@dataclass
class AdaptiveLossConfig(FairseqDataclass):
sentence_avg: bool = II("optimization.sentence_avg")
ddp_backend: DDP_BACKEND_CHOICES = II("distributed_training.ddp_backend")
@register_criterion("adaptive_loss", dataclass=AdaptiveLossConfig)
class AdaptiveLoss(FairseqCriterion):
"""This is an implementation of the loss function accompanying the adaptive softmax approximation for
graphical processing units (GPU), described in the paper "Efficient softmax approximation for GPUs"
(http://arxiv.org/abs/1609.04309)."""
def __init__(self, task, sentence_avg):
super().__init__(task)
self.sentence_avg = sentence_avg
@classmethod
def build_criterion(cls, cfg: AdaptiveLossConfig, task):
if cfg.ddp_backend == "c10d":
raise Exception(
"AdaptiveLoss is not compatible with the c10d "
"version of DistributedDataParallel. Please use "
"`--ddp-backend=no_c10d` instead."
)
return cls(task, cfg.sentence_avg)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
assert (
hasattr(model.decoder, "adaptive_softmax")
and model.decoder.adaptive_softmax is not None
)
adaptive_softmax = model.decoder.adaptive_softmax
net_output = model(**sample["net_input"])
orig_target = model.get_targets(sample, net_output)
nsentences = orig_target.size(0)
orig_target = orig_target.view(-1)
bsz = orig_target.size(0)
logits, target = adaptive_softmax(net_output[0], orig_target)
assert len(target) == len(logits)
loss = net_output[0].new(1 if reduce else bsz).zero_()
for i in range(len(target)):
if target[i] is not None:
assert target[i].min() >= 0 and target[i].max() <= logits[i].size(1)
loss += F.cross_entropy(
logits[i],
target[i],
ignore_index=self.padding_idx,
reduction="sum" if reduce else "none",
)
orig = utils.strip_pad(orig_target, self.padding_idx)
ntokens = orig.numel()
sample_size = sample["target"].size(0) if self.sentence_avg else ntokens
logging_output = {
"loss": loss.data,
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
if sample_size != ntokens:
metrics.log_scalar(
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
else:
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/adaptive_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
from dataclasses import dataclass, field
from typing import Dict, List
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
logger = logging.getLogger(__name__)
@dataclass
class ModelCriterionConfig(FairseqDataclass):
loss_weights: Dict[str, float] = field(
default_factory=dict,
metadata={"help": "weights for the loss terms"},
)
log_keys: List[str] = field(
default_factory=list,
metadata={"help": "additional output keys to log"},
)
@register_criterion("model", dataclass=ModelCriterionConfig)
class ModelCriterion(FairseqCriterion):
"""
This criterion relies on the model to supply losses.
The losses should be a dictionary of name -> scalar returned by
the model either by including it in the net_output dict or by
implementing a get_losses(net_output, sample) method. The final loss is
a scaled sum of all losses according to weights in loss_weights.
If no weights are provided, then all losses are scaled by 1.0.
The losses will be automatically logged. Additional keys from
net_output dict can be logged via the log_keys parameter.
"""
def __init__(self, task, loss_weights=None, log_keys=None):
super().__init__(task)
self.loss_weights = loss_weights
self.log_keys = log_keys
def forward(self, model, sample, reduce=True):
net_output = model(**sample["net_input"])
sample_size = net_output["sample_size"]
scaled_losses = {}
if hasattr(model, "get_losses"):
losses = model.get_losses(net_output, sample)
elif isinstance(net_output, dict) and "losses" in net_output:
losses = net_output["losses"]
else:
raise Exception("Could not retrieve losses")
for lk, p in losses.items():
try:
coef = 1.0 if len(self.loss_weights) == 0 else self.loss_weights[lk]
except KeyError:
logger.error(
f"weight for loss {lk} is not in loss_weights ({self.loss_weights})"
)
raise
if coef != 0 and p is not None:
scaled_losses[lk] = coef * p.float()
loss = sum(scaled_losses.values())
if reduce and loss.numel() > 1:
loss = loss.sum()
logging_output = {
"loss": loss.data,
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
"_world_size": 1,
}
for lk in self.log_keys:
if lk in net_output:
logging_output[lk] = float(net_output[lk])
if len(scaled_losses) > 1:
for lk, l in scaled_losses.items():
logging_output[f"loss_{lk}"] = l.item()
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar("loss", loss_sum / sample_size, sample_size, round=3)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
builtin_keys = {
"loss",
"ntokens",
"nsentences",
"sample_size",
"_world_size",
}
world_size = utils.item(
sum(log.get("_world_size", 0) for log in logging_outputs)
)
for k in logging_outputs[0]:
if k not in builtin_keys:
val = sum(log.get(k, 0) for log in logging_outputs)
if k.startswith("loss_"):
metrics.log_scalar(k, val / sample_size, sample_size, round=3)
else:
metrics.log_scalar(k, val / world_size, round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/model_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from dataclasses import dataclass, field
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from fairseq.dataclass import FairseqDataclass
from fairseq.logging.meters import safe_round
@dataclass
class Wav2VecCriterionConfig(FairseqDataclass):
infonce: bool = field(
default=False,
metadata={
"help": "if set, uses cross entropy instead of binary cross entropy (i.e. InfoNCE loss)"
},
)
loss_weights: Optional[List[float]] = field(
default=None,
metadata={"help": "weights for additional loss terms (not first one)"},
)
log_keys: List[str] = field(
default_factory=lambda: [],
metadata={"help": "output keys to log"},
)
@register_criterion("wav2vec", dataclass=Wav2VecCriterionConfig)
class Wav2vecCriterion(FairseqCriterion):
def __init__(self, task, infonce=False, loss_weights=None, log_keys=None):
super().__init__(task)
self.infonce = infonce
self.loss_weights = loss_weights
self.log_keys = [] if log_keys is None else log_keys
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"])
logits = model.get_logits(net_output).float()
target = model.get_targets(sample, net_output)
weights = None
if hasattr(model, "get_target_weights") and not self.infonce:
weights = model.get_target_weights(target, net_output)
if torch.is_tensor(weights):
weights = weights.float()
losses = []
if self.infonce:
loss = F.cross_entropy(
logits,
target,
reduction="sum" if reduce else "none",
)
else:
loss = F.binary_cross_entropy_with_logits(
logits,
target.float(),
weights,
reduction="sum" if reduce else "none",
)
sample_size = target.numel() if self.infonce else target.long().sum().item()
losses.append(loss.detach().clone())
if self.loss_weights is not None:
assert hasattr(model, "get_extra_losses")
extra_losses = model.get_extra_losses(net_output)
if torch.is_tensor(extra_losses):
extra_losses = [extra_losses]
if len(self.loss_weights) == 1 and len(extra_losses) != 1:
self.loss_weights = [self.loss_weights[0]] * len(extra_losses)
assert len(extra_losses) == len(
self.loss_weights
), f"{len(extra_losses)}, {len(self.loss_weights)}"
for p, coef in zip(extra_losses, self.loss_weights):
if coef != 0 and p is not None:
p = coef * p.float() * sample_size
loss += p
losses.append(p)
logging_output = {
"loss": loss.item() if reduce else loss,
"ntokens": sample_size,
"nsentences": sample["id"].numel(),
"sample_size": sample_size,
}
for lk in self.log_keys:
if lk in net_output:
logging_output[lk] = float((net_output[lk]))
if len(losses) > 1:
for i, l in enumerate(losses):
logging_output[f"loss_{i}"] = l.item()
if self.infonce:
with torch.no_grad():
if logits.numel() == 0:
corr = 0
count = 0
else:
assert logits.dim() > 1, logits.shape
max = logits.argmax(-1) == 0
min = logits.argmin(-1) == 0
both = max & min
corr = max.long().sum().item() - both.long().sum().item()
count = max.numel()
logging_output["correct"] = corr
logging_output["count"] = count
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
ntokens = utils.item(sum(log.get("ntokens", 0) for log in logging_outputs))
nsentences = utils.item(
sum(log.get("nsentences", 0) for log in logging_outputs)
)
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar("ntokens", ntokens)
metrics.log_scalar("nsentences", nsentences)
correct = sum(log.get("correct", 0) for log in logging_outputs)
metrics.log_scalar("_correct", correct)
total = sum(log.get("count", 0) for log in logging_outputs)
metrics.log_scalar("_total", total)
if total > 0:
metrics.log_derived(
"accuracy",
lambda meters: safe_round(
meters["_correct"].sum / meters["_total"].sum, 5
)
if meters["_total"].sum > 0
else float("nan"),
)
builtin_keys = {
"loss",
"ntokens",
"nsentences",
"sample_size",
"correct",
"count",
}
for k in logging_outputs[0]:
if k not in builtin_keys:
val = sum(log.get(k, 0) for log in logging_outputs)
if k.startswith("loss"):
metrics.log_scalar(
k, val / sample_size / math.log(2), sample_size, round=3
)
else:
metrics.log_scalar(k, val / len(logging_outputs), round=3)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return False
| data2vec_vision-main | deltalm/src/fairseq/criterions/wav2vec_criterion.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
def compute_cross_entropy_loss(logits, targets, ignore_index=-100):
"""
Function to compute the cross entropy loss. The default value of
ignore_index is the same as the default value for F.cross_entropy in
pytorch.
"""
assert logits.size(0) == targets.size(
-1
), "Logits and Targets tensor shapes don't match up"
loss = F.nll_loss(
F.log_softmax(logits, -1, dtype=torch.float32),
targets,
reduction="sum",
ignore_index=ignore_index,
)
return loss
@register_criterion("legacy_masked_lm_loss")
class LegacyMaskedLmLoss(FairseqCriterion):
"""
Implementation for the loss used in masked language model (MLM) training.
This optionally also computes the next sentence prediction (NSP) loss and
adds it to the overall loss based on the specified args. There are three
cases to consider:
1) Generic MLM training without NSP loss. In this case sentence_targets
and sentence_logits are both None.
2) BERT training without NSP loss. In this case sentence_targets is
not None but sentence_logits is None and we should not be computing
a sentence level loss.
3) BERT training with NSP loss. In this case both sentence_targets and
sentence_logits are not None and we should be computing a sentence
level loss. The weight of the sentence level loss is specified as
an argument.
"""
def __init__(self, task, masked_lm_only, nsp_loss_weight):
super().__init__(task)
self.masked_lm_only = masked_lm_only
self.nsp_loss_weight = nsp_loss_weight
@staticmethod
def add_args(parser):
"""Args for MaskedLM Loss"""
# Default for masked_lm_only is False so as to not break BERT training
parser.add_argument(
"--masked-lm-only",
default=False,
action="store_true",
help="compute MLM loss only",
)
parser.add_argument(
"--nsp-loss-weight",
default=1.0,
type=float,
help="weight for next sentence prediction" " loss (default 1)",
)
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
lm_logits, output_metadata = model(**sample["net_input"])
# reshape lm_logits from (N,T,C) to (N*T,C)
lm_logits = lm_logits.view(-1, lm_logits.size(-1))
lm_targets = sample["lm_target"].view(-1)
lm_loss = compute_cross_entropy_loss(lm_logits, lm_targets, self.padding_idx)
# compute the number of tokens for which loss is computed. This is used
# to normalize the loss
ntokens = utils.strip_pad(lm_targets, self.padding_idx).numel()
loss = lm_loss / ntokens
nsentences = sample["nsentences"]
# nsentences = 0
# Compute sentence loss if masked_lm_only is False
sentence_loss = None
if not self.masked_lm_only:
sentence_logits = output_metadata["sentence_logits"]
sentence_targets = sample["sentence_target"].view(-1)
# This needs to be recomputed due to some differences between
# TokenBlock and BlockPair dataset. This can be resolved with a
# refactor of BERTModel which we will do in the future.
# TODO: Remove this after refactor of BERTModel
nsentences = sentence_targets.size(0)
# Check for logits being none which can happen when remove_heads
# is set to true in the BERT model. Ideally we should set
# masked_lm_only to true in this case, but that requires some
# refactor in the BERT model.
if sentence_logits is not None:
sentence_loss = compute_cross_entropy_loss(
sentence_logits, sentence_targets
)
loss += self.nsp_loss_weight * (sentence_loss / nsentences)
# NOTE: as we are summing up per token mlm loss and per sentence nsp loss
# we don't need to use sample_size as denominator for the gradient
# here sample_size is just used for logging
sample_size = 1
logging_output = {
"loss": utils.item(loss.data) if reduce else loss.data,
"lm_loss": utils.item(lm_loss.data) if reduce else lm_loss.data,
# sentence loss is not always computed
"sentence_loss": (
(utils.item(sentence_loss.data) if reduce else sentence_loss.data)
if sentence_loss is not None
else 0.0
),
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
lm_loss_sum = sum(log.get("lm_loss", 0) for log in logging_outputs)
sentence_loss_sum = sum(log.get("sentence_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
agg_loss = sum(log.get("loss", 0) for log in logging_outputs)
metrics.log_scalar(
"loss",
agg_loss / sample_size / math.log(2) if sample_size > 0 else 0.0,
sample_size,
round=3,
)
metrics.log_scalar(
"lm_loss",
lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0,
ntokens,
round=3,
)
metrics.log_scalar(
"sentence_loss",
sentence_loss_sum / nsentences / math.log(2) if nsentences > 0 else 0.0,
nsentences,
round=3,
)
metrics.log_scalar(
"nll_loss",
lm_loss_sum / ntokens / math.log(2) if ntokens > 0 else 0.0,
ntokens,
round=3,
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/legacy_masked_lm.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn.functional as F
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
from torch import Tensor
@register_criterion("nat_loss")
class LabelSmoothedDualImitationCriterion(FairseqCriterion):
def __init__(self, task, label_smoothing):
super().__init__(task)
self.label_smoothing = label_smoothing
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
parser.add_argument(
"--label-smoothing",
default=0.0,
type=float,
metavar="D",
help="epsilon for label smoothing, 0 means no label smoothing",
)
def _compute_loss(
self, outputs, targets, masks=None, label_smoothing=0.0, name="loss", factor=1.0
):
"""
outputs: batch x len x d_model
targets: batch x len
masks: batch x len
policy_logprob: if there is some policy
depends on the likelihood score as rewards.
"""
def mean_ds(x: Tensor, dim=None) -> Tensor:
return (
x.float().mean().type_as(x)
if dim is None
else x.float().mean(dim).type_as(x)
)
if masks is not None:
outputs, targets = outputs[masks], targets[masks]
if masks is not None and not masks.any():
nll_loss = torch.tensor(0)
loss = nll_loss
else:
logits = F.log_softmax(outputs, dim=-1)
if targets.dim() == 1:
losses = F.nll_loss(logits, targets.to(logits.device), reduction="none")
else: # soft-labels
losses = F.kl_div(logits, targets.to(logits.device), reduction="none")
losses = losses.sum(-1)
nll_loss = mean_ds(losses)
if label_smoothing > 0:
loss = (
nll_loss * (1 - label_smoothing) - mean_ds(logits) * label_smoothing
)
else:
loss = nll_loss
loss = loss * factor
return {"name": name, "loss": loss, "nll_loss": nll_loss, "factor": factor}
def _custom_loss(self, loss, name="loss", factor=1.0):
return {"name": name, "loss": loss, "factor": factor}
def forward(self, model, sample, reduce=True):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
nsentences, ntokens = sample["nsentences"], sample["ntokens"]
# B x T
src_tokens, src_lengths = (
sample["net_input"]["src_tokens"],
sample["net_input"]["src_lengths"],
)
tgt_tokens, prev_output_tokens = sample["target"], sample["prev_target"]
outputs = model(src_tokens, src_lengths, prev_output_tokens, tgt_tokens)
losses, nll_loss = [], []
for obj in outputs:
if outputs[obj].get("loss", None) is None:
_losses = self._compute_loss(
outputs[obj].get("out"),
outputs[obj].get("tgt"),
outputs[obj].get("mask", None),
outputs[obj].get("ls", 0.0),
name=obj + "-loss",
factor=outputs[obj].get("factor", 1.0),
)
else:
_losses = self._custom_loss(
outputs[obj].get("loss"),
name=obj + "-loss",
factor=outputs[obj].get("factor", 1.0),
)
losses += [_losses]
if outputs[obj].get("nll_loss", False):
nll_loss += [_losses.get("nll_loss", 0.0)]
loss = sum(l["loss"] for l in losses)
nll_loss = sum(l for l in nll_loss) if len(nll_loss) > 0 else loss.new_tensor(0)
# NOTE:
# we don't need to use sample_size as denominator for the gradient
# here sample_size is just used for logging
sample_size = 1
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": ntokens,
"nsentences": nsentences,
"sample_size": sample_size,
}
for l in losses:
logging_output[l["name"]] = (
utils.item(l["loss"].data / l["factor"])
if reduce
else l[["loss"]].data / l["factor"]
)
return loss, sample_size, logging_output
@staticmethod
def reduce_metrics(logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
sample_size = utils.item(
sum(log.get("sample_size", 0) for log in logging_outputs)
)
loss = utils.item(sum(log.get("loss", 0) for log in logging_outputs))
nll_loss = utils.item(sum(log.get("nll_loss", 0) for log in logging_outputs))
metrics.log_scalar(
"loss", loss / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss / sample_size / math.log(2), sample_size, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg)
)
for key in logging_outputs[0]:
if key[-5:] == "-loss":
val = sum(log.get(key, 0) for log in logging_outputs)
metrics.log_scalar(
key[:-5],
val / sample_size / math.log(2) if sample_size > 0 else 0.0,
sample_size,
round=3,
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/nat_loss.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""isort:skip_file"""
import importlib
import os
from fairseq import registry
from fairseq.criterions.fairseq_criterion import ( # noqa
FairseqCriterion,
LegacyFairseqCriterion,
)
from omegaconf import DictConfig
(
build_criterion_,
register_criterion,
CRITERION_REGISTRY,
CRITERION_DATACLASS_REGISTRY,
) = registry.setup_registry(
"--criterion", base_class=FairseqCriterion, default="cross_entropy"
)
def build_criterion(cfg: DictConfig, task):
return build_criterion_(cfg, task)
# automatically import any Python files in the criterions/ directory
for file in os.listdir(os.path.dirname(__file__)):
if file.endswith(".py") and not file.startswith("_"):
file_name = file[: file.find(".py")]
importlib.import_module("fairseq.criterions." + file_name)
| data2vec_vision-main | deltalm/src/fairseq/criterions/__init__.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
from fairseq import metrics, utils
from fairseq.criterions import FairseqCriterion, register_criterion
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=None, reduce=True):
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
if reduce:
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss, nll_loss
@register_criterion("label_smoothed_cross_entropy")
class LabelSmoothedCrossEntropyCriterion(FairseqCriterion):
def __init__(
self,
task,
sentence_avg,
label_smoothing,
ignore_prefix_size=0,
report_accuracy=False,
):
super().__init__(task)
self.sentence_avg = sentence_avg
self.eps = label_smoothing
self.ignore_prefix_size = ignore_prefix_size
self.report_accuracy = report_accuracy
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
# fmt: off
parser.add_argument('--label-smoothing', default=0., type=float, metavar='D',
help='epsilon for label smoothing, 0 means no label smoothing')
parser.add_argument('--report-accuracy', action='store_true',
help='report accuracy metric')
parser.add_argument('--ignore-prefix-size', default=0, type=int,
help='Ignore first N tokens')
# fmt: on
def forward(self, model, sample, reduce=True, epoch=1):
"""Compute the loss for the given sample.
Returns a tuple with three elements:
1) the loss
2) the sample size, which is used as the denominator for the gradient
3) logging outputs to display while training
"""
net_output = model(**sample["net_input"], epoch=epoch)
loss, nll_loss = self.compute_loss(model, net_output, sample, reduce=reduce)
sample_size = (
sample["target"].size(0) if self.sentence_avg else sample["ntokens"]
)
logging_output = {
"loss": loss.data,
"nll_loss": nll_loss.data,
"ntokens": sample["ntokens"],
"nsentences": sample["target"].size(0),
"sample_size": sample_size,
"src_lang_id": int(sample["net_input"]["src_lang_id"][0].cpu()) if "src_lang_id" in sample["net_input"].keys() else 0,
"tgt_lang_id": int(sample["net_input"]["tgt_lang_id"][0].cpu()) if "tgt_lang_id" in sample["net_input"].keys() else 0,
}
if self.report_accuracy:
n_correct, total = self.compute_accuracy(model, net_output, sample)
logging_output["n_correct"] = utils.item(n_correct.data)
logging_output["total"] = utils.item(total.data)
return loss, sample_size, logging_output
def get_lprobs_and_target(self, model, net_output, sample):
lprobs = model.get_normalized_probs(net_output, log_probs=True)
target = model.get_targets(sample, net_output)
if self.ignore_prefix_size > 0:
if getattr(lprobs, "batch_first", False):
lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
target = target[:, self.ignore_prefix_size :].contiguous()
else:
lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
target = target[self.ignore_prefix_size :, :].contiguous()
return lprobs.view(-1, lprobs.size(-1)), target.view(-1)
def compute_loss(self, model, net_output, sample, reduce=True):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
loss, nll_loss = label_smoothed_nll_loss(
lprobs,
target,
self.eps,
ignore_index=self.padding_idx,
reduce=reduce,
)
return loss, nll_loss
def compute_accuracy(self, model, net_output, sample):
lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
mask = target.ne(self.padding_idx)
n_correct = torch.sum(
lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
)
total = torch.sum(mask)
return n_correct, total
@classmethod
def reduce_metrics(cls, logging_outputs) -> None:
"""Aggregate logging outputs from data parallel training."""
loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
metrics.log_scalar(
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3
)
metrics.log_scalar(
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3
)
metrics.log_derived(
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
)
total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
if total > 0:
metrics.log_scalar("total", total)
n_correct = utils.item(
sum(log.get("n_correct", 0) for log in logging_outputs)
)
metrics.log_scalar("n_correct", n_correct)
metrics.log_derived(
"accuracy",
lambda meters: round(
meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
)
if meters["total"].sum > 0
else float("nan"),
)
@staticmethod
def logging_outputs_can_be_summed() -> bool:
"""
Whether the logging outputs returned by `forward` can be summed
across workers prior to calling `reduce_metrics`. Setting this
to True will improves distributed training speed.
"""
return True
| data2vec_vision-main | deltalm/src/fairseq/criterions/label_smoothed_cross_entropy.py |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import utils
from fairseq.criterions import LegacyFairseqCriterion, register_criterion
from torch import nn
@register_criterion("composite_loss")
class CompositeLoss(LegacyFairseqCriterion):
"""This is a composite loss that, given a list of model outputs and a list of targets,
computes an average of losses for each output-target pair"""
def __init__(self, args, task):
super().__init__(args, task)
self.underlying_criterion = args.underlying_criterion
@staticmethod
def add_args(parser):
"""Add criterion-specific arguments to the parser."""
# fmt: off
parser.add_argument('--underlying-criterion', type=str, metavar='VAL', required=True,
help='underlying criterion to use for the composite loss')
# fmt: on
@staticmethod
def build_underlying_criterion(args, task):
saved_criterion = args.criterion
args.criterion = args.underlying_criterion
assert saved_criterion != args.underlying_criterion
underlying_criterion = task.build_criterion(args)
args.criterion = saved_criterion
return underlying_criterion
@classmethod
def build_criterion(cls, args, task):
underlying_criterion = CompositeLoss.build_underlying_criterion(args, task)
class FakeModel(nn.Module):
def __init__(self, model, net_out, target):
super().__init__()
self.model = model
self.net_out = net_out
self.target = target
def forward(self, **unused):
return self.net_out
def get_normalized_probs(self, net_output, log_probs, sample=None):
return self.model.get_normalized_probs(
net_output, log_probs, sample=sample
)
def get_targets(self, *unused):
return self.target
@property
def decoder(self):
return self.model.decoder
class _CompositeLoss(LegacyFairseqCriterion):
def __init__(self, args, task, underlying_criterion):
super().__init__(args, task)
self.underlying_criterion = underlying_criterion
def forward(self, model, sample, reduce=True):
net_outputs = model(**sample["net_input"])
targets = sample["target"]
bsz = targets[0].size(0)
loss = net_outputs[0][0].new(1 if reduce else bsz).float().zero_()
sample_size = 0
logging_output = {}
for o, t in zip(net_outputs[0], targets):
m = FakeModel(model, (o, net_outputs[1]), t)
sample["target"] = t
l, ss, logging_output = self.underlying_criterion(m, sample, reduce)
loss += l
sample_size += ss
loss.div_(len(targets))
sample_size /= len(targets)
logging_output["loss"] = utils.item(loss.data) if reduce else loss.data
return loss, sample_size, logging_output
@staticmethod
def aggregate_logging_outputs(logging_outputs):
return underlying_criterion.__class__.aggregate_logging_outputs(
logging_outputs
)
@staticmethod
def reduce_metrics(logging_outputs) -> None:
underlying_criterion.__class__.reduce_metrics(logging_outputs)
return _CompositeLoss(args, task, underlying_criterion)
| data2vec_vision-main | deltalm/src/fairseq/criterions/composite_loss.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.