python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """IVA MakeNet root module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/__init__.py
"""makenet docker entrypoint.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from maglev_sdk.docker_container.entrypoint import main if __name__ == '__main__': main('makenet', 'nvidia_tao_tf1/cv/makenet/scripts')
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/docker/makenet.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_tf1/cv/makenet/proto/optimizer_config.proto\"S\n\x12SgdOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x02 \x01(\x02\x12\x10\n\x08momentum\x18\x03 \x01(\x02\x12\x10\n\x08nesterov\x18\x04 \x01(\x08\"a\n\x13\x41\x64\x61mOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\x0e\n\x06\x62\x65ta_1\x18\x02 \x01(\x02\x12\x0e\n\x06\x62\x65ta_2\x18\x03 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x04 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x05 \x01(\x02\"Q\n\x16RmspropOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\x0b\n\x03rho\x18\x02 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x03 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x04 \x01(\x02\"\x90\x01\n\x0fOptimizerConfig\x12\"\n\x03sgd\x18\x01 \x01(\x0b\x32\x13.SgdOptimizerConfigH\x00\x12$\n\x04\x61\x64\x61m\x18\x02 \x01(\x0b\x32\x14.AdamOptimizerConfigH\x00\x12*\n\x07rmsprop\x18\x03 \x01(\x0b\x32\x17.RmspropOptimizerConfigH\x00\x42\x07\n\x05optimb\x06proto3') ) _SGDOPTIMIZERCONFIG = _descriptor.Descriptor( name='SgdOptimizerConfig', full_name='SgdOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='SgdOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='SgdOptimizerConfig.decay', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='SgdOptimizerConfig.momentum', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nesterov', full_name='SgdOptimizerConfig.nesterov', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=58, serialized_end=141, ) _ADAMOPTIMIZERCONFIG = _descriptor.Descriptor( name='AdamOptimizerConfig', full_name='AdamOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='AdamOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta_1', full_name='AdamOptimizerConfig.beta_1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta_2', full_name='AdamOptimizerConfig.beta_2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='AdamOptimizerConfig.epsilon', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='AdamOptimizerConfig.decay', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=143, serialized_end=240, ) _RMSPROPOPTIMIZERCONFIG = _descriptor.Descriptor( name='RmspropOptimizerConfig', full_name='RmspropOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='RmspropOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rho', full_name='RmspropOptimizerConfig.rho', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='RmspropOptimizerConfig.epsilon', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='RmspropOptimizerConfig.decay', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=242, serialized_end=323, ) _OPTIMIZERCONFIG = _descriptor.Descriptor( name='OptimizerConfig', full_name='OptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sgd', full_name='OptimizerConfig.sgd', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='adam', full_name='OptimizerConfig.adam', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rmsprop', full_name='OptimizerConfig.rmsprop', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='optim', full_name='OptimizerConfig.optim', index=0, containing_type=None, fields=[]), ], serialized_start=326, serialized_end=470, ) _OPTIMIZERCONFIG.fields_by_name['sgd'].message_type = _SGDOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['adam'].message_type = _ADAMOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['rmsprop'].message_type = _RMSPROPOPTIMIZERCONFIG _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['sgd']) _OPTIMIZERCONFIG.fields_by_name['sgd'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['adam']) _OPTIMIZERCONFIG.fields_by_name['adam'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['rmsprop']) _OPTIMIZERCONFIG.fields_by_name['rmsprop'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] DESCRIPTOR.message_types_by_name['SgdOptimizerConfig'] = _SGDOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['AdamOptimizerConfig'] = _ADAMOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['RmspropOptimizerConfig'] = _RMSPROPOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['OptimizerConfig'] = _OPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SgdOptimizerConfig = _reflection.GeneratedProtocolMessageType('SgdOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _SGDOPTIMIZERCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:SgdOptimizerConfig) )) _sym_db.RegisterMessage(SgdOptimizerConfig) AdamOptimizerConfig = _reflection.GeneratedProtocolMessageType('AdamOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _ADAMOPTIMIZERCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:AdamOptimizerConfig) )) _sym_db.RegisterMessage(AdamOptimizerConfig) RmspropOptimizerConfig = _reflection.GeneratedProtocolMessageType('RmspropOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _RMSPROPOPTIMIZERCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:RmspropOptimizerConfig) )) _sym_db.RegisterMessage(RmspropOptimizerConfig) OptimizerConfig = _reflection.GeneratedProtocolMessageType('OptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZERCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:OptimizerConfig) )) _sym_db.RegisterMessage(OptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_tf1.cv.common.proto import visualizer_config_pb2 as nvidia__tao__tf1_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2 from nvidia_tao_tf1.cv.makenet.proto import lr_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_lr__config__pb2 from nvidia_tao_tf1.cv.makenet.proto import optimizer_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_tf1.cv.makenet.proto import regularizer_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_regularizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n5nvidia_tao_tf1/cv/makenet/proto/training_config.proto\x1a\x36nvidia_tao_tf1/cv/common/proto/visualizer_config.proto\x1a/nvidia_tao_tf1/cv/makenet/proto/lr_config.proto\x1a\x36nvidia_tao_tf1/cv/makenet/proto/optimizer_config.proto\x1a\x38nvidia_tao_tf1/cv/makenet/proto/regularizer_config.proto\"\x83\x05\n\x0bTrainConfig\x12\x1a\n\x12train_dataset_path\x18\x01 \x01(\t\x12\x18\n\x10val_dataset_path\x18\x02 \x01(\t\x12\x1d\n\x15pretrained_model_path\x18\x03 \x01(\t\x12#\n\toptimizer\x18\x04 \x01(\x0b\x32\x10.OptimizerConfig\x12\x1a\n\x12\x62\x61tch_size_per_gpu\x18\x05 \x01(\r\x12\x10\n\x08n_epochs\x18\x06 \x01(\r\x12\x11\n\tn_workers\x18\x07 \x01(\r\x12\x1e\n\nreg_config\x18\x08 \x01(\x0b\x32\n.RegConfig\x12\x1c\n\tlr_config\x18\t \x01(\x0b\x32\t.LRConfig\x12\x13\n\x0brandom_seed\x18\n \x01(\r\x12\x1a\n\x12\x65nable_random_crop\x18\x0b \x01(\x08\x12\x1a\n\x12\x65nable_center_crop\x18\x0e \x01(\x08\x12!\n\x19\x65nable_color_augmentation\x18\x0f \x01(\x08\x12\x17\n\x0flabel_smoothing\x18\x0c \x01(\x02\x12\x17\n\x0fpreprocess_mode\x18\r \x01(\t\x12\x13\n\x0bmixup_alpha\x18\x10 \x01(\x02\x12\x19\n\x11model_parallelism\x18\x11 \x03(\x02\x12/\n\nimage_mean\x18\x12 \x03(\x0b\x32\x1b.TrainConfig.ImageMeanEntry\x12\x1f\n\x17\x64isable_horizontal_flip\x18\x13 \x01(\x08\x12%\n\nvisualizer\x18\x14 \x01(\x0b\x32\x11.VisualizerConfig\x1a\x30\n\x0eImageMeanEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') , dependencies=[nvidia__tao__tf1_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2.DESCRIPTOR,nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_lr__config__pb2.DESCRIPTOR,nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,]) _TRAINCONFIG_IMAGEMEANENTRY = _descriptor.Descriptor( name='ImageMeanEntry', full_name='TrainConfig.ImageMeanEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='TrainConfig.ImageMeanEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='TrainConfig.ImageMeanEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=872, serialized_end=920, ) _TRAINCONFIG = _descriptor.Descriptor( name='TrainConfig', full_name='TrainConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='train_dataset_path', full_name='TrainConfig.train_dataset_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_dataset_path', full_name='TrainConfig.val_dataset_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pretrained_model_path', full_name='TrainConfig.pretrained_model_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainConfig.optimizer', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size_per_gpu', full_name='TrainConfig.batch_size_per_gpu', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_epochs', full_name='TrainConfig.n_epochs', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='TrainConfig.n_workers', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reg_config', full_name='TrainConfig.reg_config', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_config', full_name='TrainConfig.lr_config', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='TrainConfig.random_seed', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_random_crop', full_name='TrainConfig.enable_random_crop', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_center_crop', full_name='TrainConfig.enable_center_crop', index=11, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_color_augmentation', full_name='TrainConfig.enable_color_augmentation', index=12, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label_smoothing', full_name='TrainConfig.label_smoothing', index=13, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='preprocess_mode', full_name='TrainConfig.preprocess_mode', index=14, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mixup_alpha', full_name='TrainConfig.mixup_alpha', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_parallelism', full_name='TrainConfig.model_parallelism', index=16, number=17, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_mean', full_name='TrainConfig.image_mean', index=17, number=18, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='disable_horizontal_flip', full_name='TrainConfig.disable_horizontal_flip', index=18, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualizer', full_name='TrainConfig.visualizer', index=19, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TRAINCONFIG_IMAGEMEANENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=277, serialized_end=920, ) _TRAINCONFIG_IMAGEMEANENTRY.containing_type = _TRAINCONFIG _TRAINCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAINCONFIG.fields_by_name['reg_config'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_regularizer__config__pb2._REGCONFIG _TRAINCONFIG.fields_by_name['lr_config'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_lr__config__pb2._LRCONFIG _TRAINCONFIG.fields_by_name['image_mean'].message_type = _TRAINCONFIG_IMAGEMEANENTRY _TRAINCONFIG.fields_by_name['visualizer'].message_type = nvidia__tao__tf1_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2._VISUALIZERCONFIG DESCRIPTOR.message_types_by_name['TrainConfig'] = _TRAINCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainConfig = _reflection.GeneratedProtocolMessageType('TrainConfig', (_message.Message,), dict( ImageMeanEntry = _reflection.GeneratedProtocolMessageType('ImageMeanEntry', (_message.Message,), dict( DESCRIPTOR = _TRAINCONFIG_IMAGEMEANENTRY, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainConfig.ImageMeanEntry) )) , DESCRIPTOR = _TRAINCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainConfig) )) _sym_db.RegisterMessage(TrainConfig) _sym_db.RegisterMessage(TrainConfig.ImageMeanEntry) _TRAINCONFIG_IMAGEMEANENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/training_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/regularizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/regularizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_tf1/cv/makenet/proto/regularizer_config.proto\">\n\tRegConfig\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\r\n\x05scope\x18\x02 \x01(\t\x12\x14\n\x0cweight_decay\x18\x03 \x01(\x02\x62\x06proto3') ) _REGCONFIG = _descriptor.Descriptor( name='RegConfig', full_name='RegConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='RegConfig.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scope', full_name='RegConfig.scope', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='RegConfig.weight_decay', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=122, ) DESCRIPTOR.message_types_by_name['RegConfig'] = _REGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RegConfig = _reflection.GeneratedProtocolMessageType('RegConfig', (_message.Message,), dict( DESCRIPTOR = _REGCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.regularizer_config_pb2' # @@protoc_insertion_point(class_scope:RegConfig) )) _sym_db.RegisterMessage(RegConfig) # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/regularizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/lr_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/lr_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n/nvidia_tao_tf1/cv/makenet/proto/lr_config.proto\"G\n\x0cStepLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x11\n\tstep_size\x18\x02 \x01(\r\x12\r\n\x05gamma\x18\x03 \x01(\x02\"t\n\x12SoftAnnealLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x12\n\nsoft_start\x18\x02 \x01(\x02\x12\x19\n\x11\x61nnealing_divider\x18\x03 \x01(\x02\x12\x18\n\x10\x61nnealing_points\x18\x07 \x03(\x02\"Q\n\x0e\x43osineLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x14\n\x0cmin_lr_ratio\x18\x02 \x01(\x02\x12\x12\n\nsoft_start\x18\x03 \x01(\x02\"\x88\x01\n\x08LRConfig\x12\x1d\n\x04step\x18\x01 \x01(\x0b\x32\r.StepLrConfigH\x00\x12*\n\x0bsoft_anneal\x18\x02 \x01(\x0b\x32\x13.SoftAnnealLrConfigH\x00\x12!\n\x06\x63osine\x18\x03 \x01(\x0b\x32\x0f.CosineLrConfigH\x00\x42\x0e\n\x0clr_schedulerb\x06proto3') ) _STEPLRCONFIG = _descriptor.Descriptor( name='StepLrConfig', full_name='StepLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='StepLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='step_size', full_name='StepLrConfig.step_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gamma', full_name='StepLrConfig.gamma', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=51, serialized_end=122, ) _SOFTANNEALLRCONFIG = _descriptor.Descriptor( name='SoftAnnealLrConfig', full_name='SoftAnnealLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='SoftAnnealLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='SoftAnnealLrConfig.soft_start', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing_divider', full_name='SoftAnnealLrConfig.annealing_divider', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing_points', full_name='SoftAnnealLrConfig.annealing_points', index=3, number=7, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=124, serialized_end=240, ) _COSINELRCONFIG = _descriptor.Descriptor( name='CosineLrConfig', full_name='CosineLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='CosineLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_lr_ratio', full_name='CosineLrConfig.min_lr_ratio', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='CosineLrConfig.soft_start', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=242, serialized_end=323, ) _LRCONFIG = _descriptor.Descriptor( name='LRConfig', full_name='LRConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='step', full_name='LRConfig.step', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_anneal', full_name='LRConfig.soft_anneal', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cosine', full_name='LRConfig.cosine', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='lr_scheduler', full_name='LRConfig.lr_scheduler', index=0, containing_type=None, fields=[]), ], serialized_start=326, serialized_end=462, ) _LRCONFIG.fields_by_name['step'].message_type = _STEPLRCONFIG _LRCONFIG.fields_by_name['soft_anneal'].message_type = _SOFTANNEALLRCONFIG _LRCONFIG.fields_by_name['cosine'].message_type = _COSINELRCONFIG _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['step']) _LRCONFIG.fields_by_name['step'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['soft_anneal']) _LRCONFIG.fields_by_name['soft_anneal'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['cosine']) _LRCONFIG.fields_by_name['cosine'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] DESCRIPTOR.message_types_by_name['StepLrConfig'] = _STEPLRCONFIG DESCRIPTOR.message_types_by_name['SoftAnnealLrConfig'] = _SOFTANNEALLRCONFIG DESCRIPTOR.message_types_by_name['CosineLrConfig'] = _COSINELRCONFIG DESCRIPTOR.message_types_by_name['LRConfig'] = _LRCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) StepLrConfig = _reflection.GeneratedProtocolMessageType('StepLrConfig', (_message.Message,), dict( DESCRIPTOR = _STEPLRCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:StepLrConfig) )) _sym_db.RegisterMessage(StepLrConfig) SoftAnnealLrConfig = _reflection.GeneratedProtocolMessageType('SoftAnnealLrConfig', (_message.Message,), dict( DESCRIPTOR = _SOFTANNEALLRCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:SoftAnnealLrConfig) )) _sym_db.RegisterMessage(SoftAnnealLrConfig) CosineLrConfig = _reflection.GeneratedProtocolMessageType('CosineLrConfig', (_message.Message,), dict( DESCRIPTOR = _COSINELRCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:CosineLrConfig) )) _sym_db.RegisterMessage(CosineLrConfig) LRConfig = _reflection.GeneratedProtocolMessageType('LRConfig', (_message.Message,), dict( DESCRIPTOR = _LRCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:LRConfig) )) _sym_db.RegisterMessage(LRConfig) # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/lr_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Store protobuf definitions for MakeNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_tf1.cv.makenet.proto import model_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_model__config__pb2 from nvidia_tao_tf1.cv.makenet.proto import training_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_training__config__pb2 from nvidia_tao_tf1.cv.makenet.proto import eval_config_pb2 as nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_eval__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n0nvidia_tao_tf1/cv/makenet/proto/experiment.proto\x1a\x32nvidia_tao_tf1/cv/makenet/proto/model_config.proto\x1a\x35nvidia_tao_tf1/cv/makenet/proto/training_config.proto\x1a\x31nvidia_tao_tf1/cv/makenet/proto/eval_config.proto\"v\n\nExperiment\x12 \n\x0b\x65val_config\x18\x01 \x01(\x0b\x32\x0b.EvalConfig\x12\"\n\x0cmodel_config\x18\x02 \x01(\x0b\x32\x0c.ModelConfig\x12\"\n\x0ctrain_config\x18\x03 \x01(\x0b\x32\x0c.TrainConfigb\x06proto3') , dependencies=[nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_eval__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_config', full_name='Experiment.train_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=210, serialized_end=328, ) _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_model__config__pb2._MODELCONFIG _EXPERIMENT.fields_by_name['train_config'].message_type = nvidia__tao__tf1_dot_cv_dot_makenet_dot_proto_dot_training__config__pb2._TRAINCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/experiment_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n1nvidia_tao_tf1/cv/makenet/proto/eval_config.proto\"\x8d\x01\n\nEvalConfig\x12\r\n\x05top_k\x18\x01 \x01(\r\x12\x19\n\x11\x65val_dataset_path\x18\x02 \x01(\t\x12\x12\n\nmodel_path\x18\x03 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x11\n\tn_workers\x18\x05 \x01(\r\x12\x1a\n\x12\x65nable_center_crop\x18\x06 \x01(\x08\x62\x06proto3') ) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='top_k', full_name='EvalConfig.top_k', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_dataset_path', full_name='EvalConfig.eval_dataset_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_path', full_name='EvalConfig.model_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='EvalConfig.batch_size', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='EvalConfig.n_workers', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_center_crop', full_name='EvalConfig.enable_center_crop', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=54, serialized_end=195, ) DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/eval_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_tf1/cv/makenet/proto/model_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_tf1/cv/makenet/proto/model_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n2nvidia_tao_tf1/cv/makenet/proto/model_config.proto\"4\n\x0f\x42\x61tchNormConfig\x12\x10\n\x08momentum\x18\x01 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x02 \x01(\x02\"\xa8\x01\n\nActivation\x12\x17\n\x0f\x61\x63tivation_type\x18\x01 \x01(\t\x12\x44\n\x15\x61\x63tivation_parameters\x18\x02 \x03(\x0b\x32%.Activation.ActivationParametersEntry\x1a;\n\x19\x41\x63tivationParametersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\"\x8c\x03\n\x0bModelConfig\x12\x0c\n\x04\x61rch\x18\x01 \x01(\t\x12\x18\n\x10input_image_size\x18\x02 \x01(\t\x12\x39\n\x1bresize_interpolation_method\x18\x0c \x01(\x0e\x32\x14.InterpolationMethod\x12\x10\n\x08n_layers\x18\x03 \x01(\r\x12\x13\n\x0bretain_head\x18\x04 \x01(\x08\x12\x16\n\x0euse_batch_norm\x18\x05 \x01(\x08\x12\x10\n\x08use_bias\x18\x06 \x01(\x08\x12\x13\n\x0buse_pooling\x18\x07 \x01(\x08\x12\x17\n\x0f\x61ll_projections\x18\x08 \x01(\x08\x12\x11\n\tfreeze_bn\x18\t \x01(\x08\x12\x15\n\rfreeze_blocks\x18\n \x03(\r\x12\x0f\n\x07\x64ropout\x18\x0b \x01(\x02\x12+\n\x11\x62\x61tch_norm_config\x18\r \x01(\x0b\x32\x10.BatchNormConfig\x12\x1f\n\nactivation\x18\x0e \x01(\x0b\x32\x0b.Activation\x12\x12\n\nbyom_model\x18\x0f \x01(\t*0\n\x13InterpolationMethod\x12\x0c\n\x08\x42ILINEAR\x10\x00\x12\x0b\n\x07\x42ICUBIC\x10\x01\x62\x06proto3') ) _INTERPOLATIONMETHOD = _descriptor.EnumDescriptor( name='InterpolationMethod', full_name='InterpolationMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='BILINEAR', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BICUBIC', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=678, serialized_end=726, ) _sym_db.RegisterEnumDescriptor(_INTERPOLATIONMETHOD) InterpolationMethod = enum_type_wrapper.EnumTypeWrapper(_INTERPOLATIONMETHOD) BILINEAR = 0 BICUBIC = 1 _BATCHNORMCONFIG = _descriptor.Descriptor( name='BatchNormConfig', full_name='BatchNormConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='momentum', full_name='BatchNormConfig.momentum', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='BatchNormConfig.epsilon', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=54, serialized_end=106, ) _ACTIVATION_ACTIVATIONPARAMETERSENTRY = _descriptor.Descriptor( name='ActivationParametersEntry', full_name='Activation.ActivationParametersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='Activation.ActivationParametersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='Activation.ActivationParametersEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=218, serialized_end=277, ) _ACTIVATION = _descriptor.Descriptor( name='Activation', full_name='Activation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='activation_type', full_name='Activation.activation_type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation_parameters', full_name='Activation.activation_parameters', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_ACTIVATION_ACTIVATIONPARAMETERSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=109, serialized_end=277, ) _MODELCONFIG = _descriptor.Descriptor( name='ModelConfig', full_name='ModelConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='arch', full_name='ModelConfig.arch', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_image_size', full_name='ModelConfig.input_image_size', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resize_interpolation_method', full_name='ModelConfig.resize_interpolation_method', index=2, number=12, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_layers', full_name='ModelConfig.n_layers', index=3, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retain_head', full_name='ModelConfig.retain_head', index=4, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_batch_norm', full_name='ModelConfig.use_batch_norm', index=5, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_bias', full_name='ModelConfig.use_bias', index=6, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_pooling', full_name='ModelConfig.use_pooling', index=7, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_projections', full_name='ModelConfig.all_projections', index=8, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='ModelConfig.freeze_bn', index=9, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='ModelConfig.freeze_blocks', index=10, number=10, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout', full_name='ModelConfig.dropout', index=11, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_norm_config', full_name='ModelConfig.batch_norm_config', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation', full_name='ModelConfig.activation', index=13, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='byom_model', full_name='ModelConfig.byom_model', index=14, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=280, serialized_end=676, ) _ACTIVATION_ACTIVATIONPARAMETERSENTRY.containing_type = _ACTIVATION _ACTIVATION.fields_by_name['activation_parameters'].message_type = _ACTIVATION_ACTIVATIONPARAMETERSENTRY _MODELCONFIG.fields_by_name['resize_interpolation_method'].enum_type = _INTERPOLATIONMETHOD _MODELCONFIG.fields_by_name['batch_norm_config'].message_type = _BATCHNORMCONFIG _MODELCONFIG.fields_by_name['activation'].message_type = _ACTIVATION DESCRIPTOR.message_types_by_name['BatchNormConfig'] = _BATCHNORMCONFIG DESCRIPTOR.message_types_by_name['Activation'] = _ACTIVATION DESCRIPTOR.message_types_by_name['ModelConfig'] = _MODELCONFIG DESCRIPTOR.enum_types_by_name['InterpolationMethod'] = _INTERPOLATIONMETHOD _sym_db.RegisterFileDescriptor(DESCRIPTOR) BatchNormConfig = _reflection.GeneratedProtocolMessageType('BatchNormConfig', (_message.Message,), dict( DESCRIPTOR = _BATCHNORMCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:BatchNormConfig) )) _sym_db.RegisterMessage(BatchNormConfig) Activation = _reflection.GeneratedProtocolMessageType('Activation', (_message.Message,), dict( ActivationParametersEntry = _reflection.GeneratedProtocolMessageType('ActivationParametersEntry', (_message.Message,), dict( DESCRIPTOR = _ACTIVATION_ACTIVATIONPARAMETERSENTRY, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:Activation.ActivationParametersEntry) )) , DESCRIPTOR = _ACTIVATION, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:Activation) )) _sym_db.RegisterMessage(Activation) _sym_db.RegisterMessage(Activation.ActivationParametersEntry) ModelConfig = _reflection.GeneratedProtocolMessageType('ModelConfig', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG, __module__ = 'nvidia_tao_tf1.cv.makenet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig) )) _sym_db.RegisterMessage(ModelConfig) _ACTIVATION_ACTIVATIONPARAMETERSENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/proto/model_config_pb2.py
"""Utilities for ImageNet data preprocessing & prediction decoding.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from keras import backend as K import numpy as np logger = logging.getLogger(__name__) CLASS_INDEX = None CLASS_INDEX_PATH = ('https://storage.googleapis.com/download.tensorflow.org/' 'data/imagenet_class_index.json') # Global tensor of imagenet mean for preprocessing symbolic inputs _IMAGENET_MEAN = None # Keras constants. _KERAS_BACKEND = K _KERAS_LAYERS = None _KERAS_MODELS = None _KERAS_UTILS = None def get_submodules_from_kwargs(kwargs): """Simple function to extract submodules from kwargs.""" backend = kwargs.get('backend', _KERAS_BACKEND) layers = kwargs.get('layers', _KERAS_LAYERS) models = kwargs.get('models', _KERAS_MODELS) utils = kwargs.get('utils', _KERAS_UTILS) for key in list(kwargs.keys()): if key not in ['backend', 'layers', 'models', 'utils']: raise TypeError('Invalid keyword argument: {}'.format(key)) return backend, layers, models, utils def _preprocess_numpy_input(x, data_format, mode, color_mode, img_mean, **kwargs): """Preprocesses a Numpy array encoding a batch of images. # Arguments x: Input array, 3D or 4D. data_format: Data format of the image array. mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. # Returns Preprocessed Numpy array. """ backend, _, _, _ = get_submodules_from_kwargs(kwargs) if not issubclass(x.dtype.type, np.floating): x = x.astype(backend.floatx(), copy=False) if mode == 'tf': if img_mean and len(img_mean) > 0: logger.debug("image_mean is ignored in tf mode.") x /= 127.5 x -= 1. return x if mode == 'torch': if img_mean and len(img_mean) > 0: logger.debug("image_mean is ignored in torch mode.") x /= 255. if color_mode == "rgb": mean = [0.485, 0.456, 0.406] std = [0.224, 0.224, 0.224] elif color_mode == "grayscale": mean = [0.449] std = [0.224] else: raise NotImplementedError("Invalid color mode: {}".format(color_mode)) else: if color_mode == "rgb": if data_format == 'channels_first': # 'RGB'->'BGR' if x.ndim == 3: x = x[::-1, ...] else: x = x[:, ::-1, ...] else: # 'RGB'->'BGR' x = x[..., ::-1] if not img_mean: mean = [103.939, 116.779, 123.68] else: assert len(img_mean) == 3, "image_mean must be a list of 3 values \ for RGB input." mean = img_mean std = None else: if not img_mean: mean = [117.3786] else: assert len(img_mean) == 1, "image_mean must be a list of a single value \ for gray image input." mean = img_mean std = None # Zero-center by mean pixel if data_format == 'channels_first': for idx in range(len(mean)): if x.ndim == 3: x[idx, :, :] -= mean[idx] if std is not None: x[idx, :, :] /= std[idx] else: x[:, idx, :, :] -= mean[idx] if std is not None: x[:, idx, :, :] /= std[idx] else: for idx in range(len(mean)): x[..., idx] -= mean[idx] if std is not None: x[..., idx] /= std[idx] return x def _preprocess_symbolic_input(x, data_format, mode, color_mode, img_mean, **kwargs): """Preprocesses a tensor encoding a batch of images. # Arguments x: Input tensor, 3D or 4D. data_format: Data format of the image tensor. mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. # Returns Preprocessed tensor. """ global _IMAGENET_MEAN # noqa pylint: disable=global-statement backend, _, _, _ = get_submodules_from_kwargs(kwargs) if mode == 'tf': if img_mean and len(img_mean) > 0: logger.debug("image_mean is ignored in tf mode.") x /= 127.5 x -= 1. return x if mode == 'torch': if img_mean and len(img_mean) > 0: logger.debug("image_mean is ignored in torch mode.") x /= 255. if color_mode == "rgb": mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] elif color_mode == "grayscale": mean = [0.449] std = [0.226] else: raise NotImplementedError("Invalid color mode: {}".format(color_mode)) else: if color_mode == "rgb": if data_format == 'channels_first': # 'RGB'->'BGR' if backend.ndim(x) == 3: x = x[::-1, ...] else: x = x[:, ::-1, ...] else: # 'RGB'->'BGR' x = x[..., ::-1] if not img_mean: mean = [103.939, 116.779, 123.68] else: assert len(img_mean) == 3, "image_mean must be a list of 3 values \ for RGB input." mean = img_mean std = None else: if not img_mean: mean = [117.3786] else: assert len(img_mean) == 1, "image_mean must be a list of a single value \ for gray image input." mean = img_mean std = None if _IMAGENET_MEAN is None: _IMAGENET_MEAN = backend.constant(-np.array(mean)) # Zero-center by mean pixel if backend.dtype(x) != backend.dtype(_IMAGENET_MEAN): x = backend.bias_add( x, backend.cast(_IMAGENET_MEAN, backend.dtype(x)), data_format=data_format) else: x = backend.bias_add(x, _IMAGENET_MEAN, data_format) if std is not None: x /= std return x def preprocess_input(x, data_format=None, mode='caffe', color_mode="rgb", img_mean=None, **kwargs): """Preprocesses a tensor or Numpy array encoding a batch of images. # Arguments x: Input Numpy or symbolic tensor, 3D or 4D. The preprocessed data is written over the input data if the data types are compatible. To avoid this behaviour, `numpy.copy(x)` can be used. data_format: Data format of the image tensor/array. mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. # Returns Preprocessed tensor or Numpy array. # Raises ValueError: In case of unknown `data_format` argument. """ backend, _, _, _ = get_submodules_from_kwargs(kwargs) if data_format is None: data_format = backend.image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) if isinstance(x, np.ndarray): return _preprocess_numpy_input(x, data_format=data_format, mode=mode, color_mode=color_mode, img_mean=img_mean, **kwargs) return _preprocess_symbolic_input(x, data_format=data_format, mode=mode, color_mode=color_mode, img_mean=img_mean, **kwargs)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/preprocess_input.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilitiy module for MakeNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Patch keras_preprocessing.image.utils.load_img() with cropping support.""" import random import keras_preprocessing.image from nvidia_tao_tf1.cv.makenet.utils.helper import color_augmentation # padding size. # We firstly resize to (target_width + CROP_PADDING, target_height + CROP_PADDING) # , then crop to (target_width, target_height). # for standard ImageNet size: 224x224 the ratio is 0.875(224 / (224 + 32)). # but for EfficientNet B1-B7, larger resolution is used, hence this ratio # is no longer 0.875 # ref: # https://github.com/tensorflow/tpu/blob/r1.15/models/official/efficientnet/preprocessing.py#L110 CROP_PADDING = 32 COLOR_AUGMENTATION = False def _set_color_augmentation(flag): global COLOR_AUGMENTATION # pylint: disable=global-statement COLOR_AUGMENTATION = flag def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None, interpolation='nearest'): """Wraps keras_preprocessing.image.utils.load_img() and adds cropping. Cropping method enumarated in interpolation # Arguments path: Path to image file. color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb". The desired image format. target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. interpolation: Interpolation and crop methods used to resample and crop the image if the target size is different from that of the loaded image. Methods are delimited by ":" where first part is interpolation and second is crop e.g. "lanczos:random". Supported interpolation methods are "nearest", "bilinear", "bicubic", "lanczos", "box", "hamming" By default, "nearest" is used. Supported crop methods are "none", "center", "random". # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if interpolation method is not supported. """ # Decode interpolation string. Allowed Crop methods: none, center, random interpolation, crop = interpolation.split(":") \ if ":" in interpolation else (interpolation, "none") if crop == "none": return keras_preprocessing.image.utils.load_img( path, grayscale=grayscale, color_mode=color_mode, target_size=target_size, interpolation=interpolation) # Load original size image using Keras img = keras_preprocessing.image.utils.load_img( path, grayscale=grayscale, color_mode=color_mode, target_size=None, interpolation=interpolation) # Crop fraction of total image target_width = target_size[1] target_height = target_size[0] if target_size is not None: if img.size != (target_width, target_height): if crop not in ["center", "random"]: raise ValueError('Invalid crop method %s specified.' % crop) if interpolation not in keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS: raise ValueError( 'Invalid interpolation method {} specified. Supported ' 'methods are {}'.format( interpolation, ", ".join( keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS.keys()))) resample = keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS[interpolation] width, height = img.size if crop == 'random': # Resize keeping aspect ratio # result should be no smaller than the targer size, include crop fraction overhead crop_fraction = random.uniform(0.45, 1.0) target_size_before_crop = ( target_width / crop_fraction, target_height / crop_fraction ) ratio = max( target_size_before_crop[0] / width, target_size_before_crop[1] / height ) target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio) img = img.resize(target_size_before_crop_keep_ratio, resample=resample) if crop == 'center': # Resize keeping aspect ratio # result should be no smaller than the targer size, include crop fraction overhead target_size_before_crop = ( target_width + CROP_PADDING, target_height + CROP_PADDING ) ratio = max( target_size_before_crop[0] / width, target_size_before_crop[1] / height ) target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio) img = img.resize(target_size_before_crop_keep_ratio, resample=resample) width, height = img.size if crop == "center": left_corner = int(round(width/2)) - int(round(target_width/2)) top_corner = int(round(height/2)) - int(round(target_height/2)) return img.crop( (left_corner, top_corner, left_corner + target_width, top_corner + target_height)) if crop == "random": # random crop left_shift = random.randint(0, int((width - target_width))) down_shift = random.randint(0, int((height - target_height))) img = img.crop( (left_shift, down_shift, target_width + left_shift, target_height + down_shift)) # color augmentation if COLOR_AUGMENTATION and img.mode == "RGB": return color_augmentation(img) return img raise ValueError("Crop mode not supported.") return img # Monkey patch keras_preprocessing.image.iterator.load_img = load_and_crop_img
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/preprocess_crop.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mixup augmentation.""" import numpy as np class MixupImageDataGenerator(): """Mixup image generator.""" def __init__( self, generator, directory, batch_size, img_height, img_width, color_mode="rgb", interpolation="bilinear", alpha=0.2, classes=None ): """Constructor for mixup image data generator. Arguments: generator (object): An instance of Keras ImageDataGenerator. directory (str): Image directory. batch_size (int): Batch size. img_height (int): Image height in pixels. img_width (int): Image width in pixels. color_mode (string): Color mode of images. interpolation (string): Interpolation method for resize. alpha (float): Mixup beta distribution alpha parameter. (default: {0.2}) `generator` (ImageDataGenerator).(default: {None}) classes (list): List of input classes """ self.batch_index = 0 self.batch_size = batch_size self.alpha = alpha # First iterator yielding tuples of (x, y) self.generator = generator.flow_from_directory( directory, target_size=(img_height, img_width), color_mode=color_mode, batch_size=self.batch_size, interpolation=interpolation, shuffle=True, class_mode='categorical', classes=classes ) # Number of images across all classes in image directory. self.num_samples = self.generator.samples self.class_list = classes def reset_index(self): """Reset the generator indexes array.""" self.generator._set_index_array() def on_epoch_end(self): """reset index on epoch end.""" self.reset_index() def reset(self): """reset.""" self.batch_index = 0 def __len__(self): """length.""" return (self.num_samples + self.batch_size - 1) // self.batch_size def get_steps_per_epoch(self): """Get number of steps per epoch.""" return self.num_samples // self.batch_size def __next__(self): """Get next batch input/output pair. Returns: tuple -- batch of input/output pair, (inputs, outputs). """ if self.batch_index == 0: self.reset_index() current_index = (self.batch_index * self.batch_size) % self.num_samples if self.num_samples > current_index + self.batch_size: self.batch_index += 1 else: self.batch_index = 0 # random sample the lambda value from beta distribution. if self.alpha > 0: # Get a pair of inputs and outputs from the batch and its reversed batch. X1, y1 = self.generator.next() # in case the dataset has some garbage, the real batch size # might be smaller than self.batch_size _l = np.random.beta(self.alpha, self.alpha, X1.shape[0]) _l = np.maximum(_l, 1.0 - _l) X_l = _l.reshape(X1.shape[0], 1, 1, 1) y_l = _l.reshape(X1.shape[0], 1) X2, y2 = np.flip(X1, 0), np.flip(y1, 0) # Perform the mixup. X = X1 * X_l + X2 * (1 - X_l) y = y1 * y_l + y2 * (1 - y_l) else: # alpha == 0 essentially disable mixup X, y = self.generator.next() return X, y def __iter__(self): """iterator.""" while True: return next(self) @property def num_classes(self): """number of classes.""" return self.generator.num_classes @property def class_indices(self): """class indices.""" return self.generator.class_indices
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/mixup_generator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Callbacks: utilities called at certain points during model training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import warnings from keras.callbacks import ModelCheckpoint from nvidia_tao_tf1.cv.common.utils import encode_from_keras class AdvModelCheckpoint(ModelCheckpoint): """Save the encrypted model after every epoch. Attributes: ENC_KEY: API key to encrypt the model. epocs_since_last_save: Number of epochs since model was last saved. save_best_only: Flag to save model with best accuracy. best: saved instance of best model. verbose: Enable verbose messages. """ def __init__(self, filepath, key, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1): """Initialization with encryption key.""" super(AdvModelCheckpoint, self).__init__(filepath) self._ENC_KEY = key self.epochs_since_last_save = 0 def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch.""" logs = logs or {} self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 filepath = self.filepath.format(epoch=epoch + 1, **logs) if self.save_best_only: current = logs.get(self.monitor) if current is None: warnings.warn('Can save best model only with %s available,' ' skipping.' % (self.monitor), RuntimeWarning) else: if self.monitor_op(current, self.best): if self.verbose > 0: print('\nEpoch %05d: %s improved from %0.5f to ' '%0.5f, saving model to %s' % (epoch + 1, self.monitor, self.best, current, filepath)) self.best = current if filepath.endswith(".hdf5"): self.model.save(filepath, overwrite=True) else: encode_from_keras(self.model, filepath, self._ENC_KEY) else: if self.verbose > 0: print('\nEpoch %05d: %s did not improve from %0.5f' % (epoch + 1, self.monitor, self.best)) else: if self.verbose > 0: print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath)) if str(filepath).endswith(".hdf5"): self.model.save(str(filepath), overwrite=True) else: encode_from_keras(self.model, str(filepath), self._ENC_KEY)
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/callbacks.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Collection of helper functions.""" import os import cv2 import keras from keras.utils.generic_utils import CustomObjectScope from numba import jit, njit import numpy as np from PIL import Image from nvidia_tao_tf1.cv.common.utils import ( CUSTOM_OBJS, decode_to_keras, MultiGPULearningRateScheduler, restore_eff, SoftStartCosineAnnealingScheduler, StepLRScheduler ) opt_dict = { 'sgd': keras.optimizers.SGD, 'adam': keras.optimizers.Adam, 'rmsprop': keras.optimizers.RMSprop } scope_dict = {'dense': keras.layers.Dense, 'conv2d': keras.layers.Conv2D} regularizer_dict = {'l1': keras.regularizers.l1, 'l2': keras.regularizers.l2} def build_optimizer(optimizer_config): """build optimizer with the optimizer config.""" if optimizer_config.WhichOneof("optim") == "sgd": return opt_dict["sgd"]( lr=optimizer_config.sgd.lr, momentum=optimizer_config.sgd.momentum, decay=optimizer_config.sgd.decay, nesterov=optimizer_config.sgd.nesterov ) if optimizer_config.WhichOneof("optim") == "adam": return opt_dict["adam"]( lr=optimizer_config.adam.lr, beta_1=optimizer_config.adam.beta_1, beta_2=optimizer_config.adam.beta_2, epsilon=optimizer_config.adam.epsilon, decay=optimizer_config.adam.decay ) if optimizer_config.WhichOneof("optim") == "rmsprop": return opt_dict["rmsprop"]( lr=optimizer_config.rmsprop.lr, rho=optimizer_config.rmsprop.rho, epsilon=optimizer_config.rmsprop.epsilon, decay=optimizer_config.rmsprop.decay ) raise ValueError("Unsupported Optimizer: {}".format(optimizer_config.WhichOneof("optim"))) def build_lr_scheduler(lr_config, hvd_size, max_iterations): """Build a learning rate scheduler from config.""" # Set up the learning rate callback. It will modulate learning rate # based on iteration progress to reach max_iterations. if lr_config.WhichOneof("lr_scheduler") == 'step': lrscheduler = StepLRScheduler( base_lr=lr_config.step.learning_rate * hvd_size, gamma=lr_config.step.gamma, step_size=lr_config.step.step_size, max_iterations=max_iterations ) elif lr_config.WhichOneof("lr_scheduler") == 'soft_anneal': lrscheduler = MultiGPULearningRateScheduler( base_lr=lr_config.soft_anneal.learning_rate * hvd_size, soft_start=lr_config.soft_anneal.soft_start, annealing_points=lr_config.soft_anneal.annealing_points, annealing_divider=lr_config.soft_anneal.annealing_divider, max_iterations=max_iterations ) elif lr_config.WhichOneof("lr_scheduler") == 'cosine': lrscheduler = SoftStartCosineAnnealingScheduler( base_lr=lr_config.cosine.learning_rate * hvd_size, min_lr_ratio=lr_config.cosine.min_lr_ratio, soft_start=lr_config.cosine.soft_start, max_iterations=max_iterations ) else: raise ValueError( "Only `step`, `cosine` and `soft_anneal` ", "LR scheduler are supported." ) return lrscheduler def get_input_shape(model): """Obtain input shape from a Keras model.""" data_format = model.layers[1].data_format # Computing shape of input tensor image_shape = model.layers[0].input_shape[1:4] # Setting input shape if data_format == "channels_first": nchannels, image_height, image_width = image_shape[0:3] else: image_height, image_width, nchannels = image_shape[0:3] return image_height, image_width, nchannels def model_io(model_path, enc_key=None, custom_objs=None): """Simple utility to handle model file based on file extensions. Args: pretrained_model_file (str): Path to the model file. enc_key (str): Key to load tlt file. custom_objects (dict): Custom objects for serialization and deserialization. Returns: model (keras.models.Model): Loaded keras model. """ assert os.path.exists(model_path), "Pretrained model not found at {}".format(model_path) if model_path.endswith('.tlt'): assert enc_key is not None, "Key must be provided to load the model." return decode_to_keras(str(model_path), enc_key.encode(), custom_objects=custom_objs) if model_path.endswith('.hdf5'): return keras.models.load_model(str(model_path), compile=False) raise NotImplementedError("Invalid model file extension. {}".format(model_path)) @njit def randu(low, high): """standard uniform distribution.""" return np.random.random()*(high-low) + low @jit def random_hue(img, max_delta=10.0): """ Rotates the hue channel. Args: img: input image in float32 max_delta: Max number of degrees to rotate the hue channel """ # Rotates the hue channel by delta degrees delta = randu(-max_delta, max_delta) hsv = cv2.cvtColor(img.astype(np.float32), cv2.COLOR_BGR2HSV) hchannel = hsv[:, :, 0] hchannel = delta + hchannel # hue should always be within [0,360] idx = np.where(hchannel > 360) hchannel[idx] = hchannel[idx] - 360 idx = np.where(hchannel < 0) hchannel[idx] = hchannel[idx] + 360 hsv[:, :, 0] = hchannel return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) @jit def random_saturation(img, max_shift): """random saturation data augmentation.""" hsv = cv2.cvtColor(img.astype(np.float32), cv2.COLOR_BGR2HSV) shift = randu(-max_shift, max_shift) # saturation should always be within [0,1.0] hsv[:, :, 1] = np.clip(hsv[:, :, 1]+shift, 0.0, 1.0) return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) @jit def random_contrast(img, center, max_contrast_scale): """random contrast data augmentation.""" new_img = (img-center)*(1.0 + randu(-max_contrast_scale, max_contrast_scale)) \ + center new_img = np.clip(new_img, 0., 1.) return new_img @jit def random_shift(x_img, shift_stddev): """random shift data augmentation.""" shift = np.random.randn()*shift_stddev new_img = np.clip(x_img + shift, 0.0, 1.0) return new_img def color_augmentation( x_img, color_shift_stddev=0.0, hue_rotation_max=25.0, saturation_shift_max=0.2, contrast_center=0.5, contrast_scale_max=0.1 ): """color augmentation for images.""" # convert PIL Image to numpy array x_img = np.array(x_img, dtype=np.float32) # normalize the image to (0, 1) x_img /= 255.0 x_img = random_shift(x_img, color_shift_stddev) x_img = random_hue(x_img, max_delta=hue_rotation_max) x_img = random_saturation(x_img, saturation_shift_max) x_img = random_contrast( x_img, contrast_center, contrast_scale_max ) # convert back to PIL Image x_img *= 255.0 return Image.fromarray(x_img.astype(np.uint8), "RGB") def setup_config(model, reg_config, freeze_bn=False, bn_config=None, custom_objs=None): """Wrapper for setting up BN and regularizer. Args: model (keras Model): a Keras model reg_config: reg_config from the Proto file freeze_bn(bool): Flag to freeze BN layers in this model bn_config(proto): config to override BatchNormalization parameters custom_objects (dict): Custom objects for serialization and deserialization. Return: A new model with overriden config. """ # set training=False for BN layers if freeze_bn=True # otherwise the freeze_bn flag in model builder will be ineffective def compose_call(prev_call_method): def call(self, inputs, training=False): return prev_call_method(self, inputs, training) return call prev_batchnorm_call = keras.layers.normalization.BatchNormalization.call if freeze_bn: keras.layers.normalization.BatchNormalization.call = compose_call( prev_batchnorm_call ) if bn_config is not None: bn_momentum = bn_config.momentum bn_epsilon = bn_config.epsilon else: bn_momentum = 0.9 bn_epsilon = 1e-5 # Obtain the current configuration from model mconfig = model.get_config() # Obtain type and scope of the regularizer reg_type = reg_config.type.lower() scope_list = reg_config.scope.split(',') layer_list = [scope_dict[i.lower()] for i in scope_list if i.lower() in scope_dict] for layer, layer_config in zip(model.layers, mconfig['layers']): # BN settings if type(layer) == keras.layers.BatchNormalization: layer_config['config']['momentum'] = bn_momentum layer_config['config']['epsilon'] = bn_epsilon # Regularizer settings if reg_type: if type(layer) in layer_list and \ hasattr(layer, 'kernel_regularizer'): assert reg_type in ['l1', 'l2', 'none'], \ "Regularizer can only be either L1, L2 or None." if reg_type in ['l1', 'l2']: assert 0 < reg_config.weight_decay < 1, \ "Weight decay should be no less than 0 and less than 1" regularizer = regularizer_dict[reg_type]( reg_config.weight_decay) layer_config['config']['kernel_regularizer'] = \ {'class_name': regularizer.__class__.__name__, 'config': regularizer.get_config()} if reg_type == 'none': layer_config['config']['kernel_regularizer'] = None if custom_objs: CUSTOM_OBJS.update(custom_objs) with CustomObjectScope(CUSTOM_OBJS): updated_model = keras.models.Model.from_config(mconfig) updated_model.set_weights(model.get_weights()) # restore the BN call method before return if freeze_bn: keras.layers.normalization.BatchNormalization.call = prev_batchnorm_call return updated_model
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/utils/helper.py
"""Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Export a classification model.""" # import build_command_line_parser as this is needed by entrypoint from nvidia_tao_tf1.cv.common.export.app import build_command_line_parser as global_parser # noqa pylint: disable=W0611 from nvidia_tao_tf1.cv.common.export.app import run_export import nvidia_tao_tf1.cv.common.logging.logging as status_logging from nvidia_tao_tf1.cv.makenet.export.classification_exporter import ClassificationExporter \ as Exporter def build_command_line_parser(parser=None): """Simple function to build the command line parser.""" args_parser = global_parser(parser=parser) args_parser.add_argument( "--classmap_json", help="UNIX path to classmap.json file generated during classification <train>", default=None, type=str, ) return args_parser def parse_command_line(args=None): """Parse command line arguments.""" parser = build_command_line_parser(parser=None) return vars(parser.parse_known_args(args)[0]) def main(args=None): """Run export for classification.""" try: args = parse_command_line(args=args) # Forcing export to ONNX by default. backend = 'onnx' run_export(Exporter, args=args, backend=backend) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Export finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Export was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/export.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dump training samples for INT8 inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from functools import partial import logging import os import sys from keras.preprocessing.image import ImageDataGenerator from tqdm import trange from nvidia_tao_tf1.core.export import TensorFile from nvidia_tao_tf1.cv.makenet.spec_handling.spec_loader import load_experiment_spec from nvidia_tao_tf1.cv.makenet.utils import preprocess_crop # noqa pylint: disable=unused-import from nvidia_tao_tf1.cv.makenet.utils.preprocess_input import preprocess_input # Defining multiple image extensions. SUPPORTED_IMAGE_EXTENSIONS = [".jpg", ".png", ".jpeg"] logger = logging.getLogger(__name__) def build_command_line_parser(parser=None): """Function to build command line parser.""" if parser is None: parser = argparse.ArgumentParser( description="Dump training samples for INT8") parser.add_argument("-o", "--output", type=str, required=True, help="Path to the output TensorFile", default=None) parser.add_argument("-e", "--experiment_spec", type=str, required=True, help="Path to the experiment spec file.", default=None) parser.add_argument("-m", "--max_batches", type=int, help="Number of batches", default=1) parser.add_argument("-v", "--verbose", action='store_true', help='Set the verbosity of the log.') parser.add_argument("--use_validation_set", action='store_true', help="Set to use only validation set.") return parser def parse_command_line(args=None): """Parse command line arguments for dumping image samples for INT8 calibration.""" parser = build_command_line_parser(parser=None) arguments = vars(parser.parse_args(args)) return arguments def dump_samples(output_path, config_file=None, n_batches=1, verbosity=False, use_validation_set=False): """Main wrapper function for dumping image samples. Args: output_path (str): Directory the output tensorfile should be written. config_file (str): Path to experiment config file. n_batches (int): Number of batches to be dumped. verbosity (bool): Enable verbose logs. use_validation_set (bool): Flag to use training or validation set. """ # Configure the logger. logging.basicConfig( format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level='DEBUG' if verbosity else 'INFO') if config_file is not None: # Create an experiment_pb2.Experiment object from the input file. assert os.path.exists(config_file), "Config file not found at {}".format(config_file) logger.info("Loading experiment spec at {}".format(config_file)) # The spec file in the config path has to be complete. # Default spec is not merged into es. es = load_experiment_spec(config_file, merge_from_default=False) else: logger.info("Loading the default experiment spec file.") es = load_experiment_spec() # Extract the training config. train_config = es.train_config model_config = es.model_config # Define data dimensions. image_shape = model_config.input_image_size.split(',') n_channel = int(image_shape[0]) image_height = int(image_shape[1]) image_width = int(image_shape[2]) assert n_channel in [1, 3], "Invalid input image dimension." assert image_height >= 16, "Image height should be greater than 15 pixels." assert image_width >= 16, "Image width should be greater than 15 pixels." img_mean = es.train_config.image_mean if n_channel == 3: if img_mean: assert all(c in img_mean for c in ['r', 'g', 'b']) , ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: assert 'l' in img_mean, ( "'l' should be present in image_mean for images " "with 1 channel." ) img_mean = [img_mean['l']] else: img_mean = [117.3786] # Define path to dataset. train_data = train_config.train_dataset_path if use_validation_set: train_data = train_config.val_dataset_path batch_size = train_config.batch_size_per_gpu # Setting dataloader color_mode. color_mode = "rgb" if n_channel == 1: color_mode = "grayscale" preprocessing_func = partial( preprocess_input, data_format="channels_first", mode=train_config.preprocess_mode, color_mode=color_mode, img_mean=img_mean) # Initialize the data generator. logger.info("Setting up input generator.") train_datagen = ImageDataGenerator(preprocessing_function=preprocessing_func, horizontal_flip=False, featurewise_center=False) logger.debug("Setting up iterator.") train_iterator = train_datagen.flow_from_directory(train_data, target_size=(image_height, image_width), batch_size=batch_size, class_mode='categorical', color_mode=color_mode) # Total_num_samples. num_samples = train_iterator.n num_avail_batches = int(num_samples / batch_size) assert n_batches <= num_avail_batches, "n_batches <= num_available_batches, n_batches={}, " \ "num_available_batches={}".format(n_batches, num_avail_batches) # Make the output directory. dir_path = os.path.dirname(output_path) if not os.path.exists(dir_path): logger.info("Output directory not found. Creating at {}".format(dir_path)) os.makedirs(dir_path) # Write data per batch. if os.path.exists(output_path): raise ValueError("A previously generated tensorfile already exists in the output path. " "Please delete this file before writing a new one.") tensorfile = TensorFile(os.path.join(output_path), 'w') # Setting tqdm iterator. tr = trange(n_batches, file=sys.stdout) tr.set_description("Writing calibration tensorfile") for _ in tr: image, _ = next(train_iterator) tensorfile.write(image) tensorfile.close() logger.info("Calibration tensorfile written.") def main(cl_args=None): """Main function for the trt calibration samples.""" args = parse_command_line(args=cl_args) dump_samples(args["output"], args["experiment_spec"], args["max_batches"], args['verbose'], args['use_validation_set']) if __name__ == '__main__': main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/calibration_tensorfile.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Makenet training script with protobuf configuration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from functools import partial import json import logging import os import sys from keras import backend as K from keras.preprocessing.image import ImageDataGenerator from PIL import ImageFile import six import tensorflow as tf from nvidia_tao_tf1.core.utils import set_random_seed from nvidia_tao_tf1.cv.common.callbacks.loggers import TAOStatusLogger import nvidia_tao_tf1.cv.common.logging.logging as status_logging from nvidia_tao_tf1.cv.common.mlops.clearml import get_clearml_task from nvidia_tao_tf1.cv.common.model_parallelism.parallelize_model import model_parallelism from nvidia_tao_tf1.cv.common.utils import check_tf_oom, hvd_keras, restore_eff from nvidia_tao_tf1.cv.common.utils import OneIndexedCSVLogger as CSVLogger from nvidia_tao_tf1.cv.common.utils import TensorBoard from nvidia_tao_tf1.cv.makenet.model.model_builder import get_model from nvidia_tao_tf1.cv.makenet.spec_handling.spec_loader import load_experiment_spec from nvidia_tao_tf1.cv.makenet.utils import preprocess_crop # noqa pylint: disable=unused-import from nvidia_tao_tf1.cv.makenet.utils.callbacks import AdvModelCheckpoint from nvidia_tao_tf1.cv.makenet.utils.helper import ( build_lr_scheduler, build_optimizer, model_io, setup_config ) from nvidia_tao_tf1.cv.makenet.utils.mixup_generator import MixupImageDataGenerator from nvidia_tao_tf1.cv.makenet.utils.preprocess_input import preprocess_input ImageFile.LOAD_TRUNCATED_IMAGES = True FLAGS = tf.app.flags.FLAGS logger = logging.getLogger(__name__) verbose = 0 hvd = None def eval_str(s): """If s is a string, return the eval results. Else return itself.""" if isinstance(s, six.string_types): if len(s) > 0: return eval(s) return None return s def build_command_line_parser(parser=None): '''Parse command line arguments.''' if parser is None: parser = argparse.ArgumentParser(prog='train', description='Train a classification model.') parser.add_argument( '-e', '--experiment_spec_file', type=str, required=True, help='Path to the experiment spec file.') parser.add_argument( '-r', '--results_dir', required=True, type=str, help='Path to a folder where experiment outputs should be written.' ) parser.add_argument( '-k', '--key', required=False, default="", type=str, help='Key to save or load a .tlt model.' ) parser.add_argument( '--init_epoch', default=1, type=int, help='Set resume epoch.' ) parser.add_argument( '-v', '--verbose', action='store_true', help='Include this flag in command line invocation for verbose logs.' ) parser.add_argument( '-c', '--classmap', help="Class map file to set the class indices of the model.", type=str, default=None ) return parser def parse_command_line(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) def setup_callbacks(model_name, results_dir, lr_config, init_epoch, iters_per_epoch, max_epoch, key, hvd, weight_histograms=False): """Setup callbacks: tensorboard, checkpointer, lrscheduler, csvlogger. Args: model_name (str): name of the model used. results_dir (str): Path to a folder where various training outputs will be written. lr_config: config derived from the Proto config file init_epoch (int): The number of epoch to resume training. key: encryption key hvd: horovod instance weight_histograms (bool): Enabled weight histograms in the tensorboard callback. Returns: callbacks (list of keras.callbacks): list of callbacks. """ callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0), hvd.callbacks.MetricAverageCallback()] max_iterations = iters_per_epoch * max_epoch lrscheduler = build_lr_scheduler(lr_config, hvd.size(), max_iterations) init_step = (init_epoch - 1) * iters_per_epoch lrscheduler.reset(init_step) callbacks.append(lrscheduler) if hvd.rank() == 0: # Set up the checkpointer. save_weights_dir = os.path.join(results_dir, 'weights') if not os.path.exists(save_weights_dir): os.makedirs(save_weights_dir) # Save encrypted models weight_filename = os.path.join(save_weights_dir, '%s_{epoch:03d}.hdf5' % model_name) checkpointer = AdvModelCheckpoint(weight_filename, key, verbose=1) callbacks.append(checkpointer) # Set up the custom TensorBoard callback. It will log the loss # after every step, and some images and user-set summaries only on # the first step of every epoch. Align this with other keras # networks. tensorboard_dir = os.path.join(results_dir, "events") if not os.path.exists(tensorboard_dir): os.makedirs(tensorboard_dir) tensorboard = TensorBoard( log_dir=tensorboard_dir, weight_hist=weight_histograms ) callbacks.append(tensorboard) # Set up the CSV logger, logging statistics after every epoch. csvfilename = os.path.join(results_dir, 'training.csv') csvlogger = CSVLogger(csvfilename, separator=',', append=False) callbacks.append(csvlogger) status_logger = TAOStatusLogger( results_dir, append=True, num_epochs=max_epoch, is_master=hvd.rank() == 0, ) callbacks.append(status_logger) return callbacks def verify_dataset_classes(dataset_path, classes): """Verify whether classes are in the dataset. Args: dataset_path (str): Path to the dataset. classes (list): List of classes. Returns: No explicit returns. """ dataset_classlist = [ item for item in os.listdir(dataset_path) if os.path.isdir(os.path.join(dataset_path, item)) ] missed_classes = [] for class_name in classes: if class_name not in dataset_classlist: missed_classes.append(class_name) assert not missed_classes, ( "Some classes mentioned in the classmap file were " f"missing in the dataset at {dataset_path}. " f"\n Missed classes are {missed_classes}" ) def categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0): """Ported tf.keras categorical_crossentropy.""" y_pred = K.constant(y_pred) if not K.is_tensor(y_pred) else y_pred y_true = K.cast(y_true, y_pred.dtype) if label_smoothing == 0: smoothing = K.cast_to_floatx(label_smoothing) def _smooth_labels(): num_classes = K.cast(K.shape(y_true)[1], y_pred.dtype) return y_true * (1.0 - smoothing) + (smoothing / num_classes) y_true = K.switch(K.greater(smoothing, 0), _smooth_labels, lambda: y_true) return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits) def load_data(train_data, val_data, preprocessing_func, image_height, image_width, batch_size, enable_random_crop=False, enable_center_crop=False, enable_color_augmentation=False, interpolation=0, color_mode="rgb", mixup_alpha=0.0, no_horizontal_flip=False, classmap=None): """Load training and validation data with default data augmentation. Args: train_data (str): path to the training data. val_data (str): path to the validation data. preprocessing_func: function to process an image. image_height (int): Height of the input image tensor. image_width (int): Width of the input image tensor. batch_size (int): Number of image tensors per batch. enable_random_crop (bool): Flag to enable random cropping in load_img. enable_center_crop (bool): Flag to enable center cropping for val. enable_color_augmentation(bool): Flag to enable color augmentation. interpolation(int): Interpolation method for image resize. 0 means bilinear, while 1 means bicubic. color_mode (str): Input image read mode as either `rgb` or `grayscale`. mixup_alpha (float): mixup alpha. no_horizontal_flip(bool): Flag to disable horizontal flip for direction-aware datasets. classmap (str): Path to classmap file. Return: train/val Iterators and number of classes in the dataset. """ interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation = interpolation_map[interpolation] classes = None if classmap is not None: classes = get_classes_from_classmap(classmap) verify_dataset_classes(train_data, classes) verify_dataset_classes(val_data, classes) # set color augmentation properly for train. # this global var will not affect validation dataset because # the crop method is either "none" or "center" for val dataset, # while this color augmentation is only possible for "random" crop. if enable_color_augmentation: preprocess_crop._set_color_augmentation(True) # Initializing data generator : Train train_datagen = ImageDataGenerator( preprocessing_function=preprocessing_func, horizontal_flip=not no_horizontal_flip, featurewise_center=False) train_iterator = MixupImageDataGenerator( train_datagen, train_data, batch_size, image_height, image_width, color_mode=color_mode, interpolation=interpolation + ':random' if enable_random_crop else interpolation, alpha=mixup_alpha, classes=classes ) logger.info('Processing dataset (train): {}'.format(train_data)) # Initializing data generator: Val val_datagen = ImageDataGenerator( preprocessing_function=preprocessing_func, horizontal_flip=False) # Initializing data iterator: Val val_iterator = val_datagen.flow_from_directory( val_data, target_size=(image_height, image_width), color_mode=color_mode, batch_size=batch_size, interpolation=interpolation + ':center' if enable_center_crop else interpolation, shuffle=False, classes=classes, class_mode='categorical') logger.info('Processing dataset (validation): {}'.format(val_data)) # Check if the number of classes is > 1 assert train_iterator.num_classes > 1, \ "Number of classes should be greater than 1. Consider adding a background class." # Check if the number of classes is consistent assert train_iterator.num_classes == val_iterator.num_classes, \ "Number of classes in train and val don't match." return train_iterator, val_iterator, train_iterator.num_classes def get_classes_from_classmap(classmap_path): """Get list of classes from classmap file. Args: classmap_path (str): Path to the classmap file. Returns: classes (list): List of classes """ if not os.path.exists(classmap_path): raise FileNotFoundError( f"Class map file wasn't found at {classmap_path}" ) with open(classmap_path, "r") as cmap_file: try: data = json.load(cmap_file) except json.decoder.JSONDecodeError as e: print(f"Loading the {classmap_path} failed with error\n{e}") sys.exit(-1) except Exception as e: if e.output is not None: print(f"Classification exporter failed with error {e.output}") sys.exit(-1) if not data: return [] classes = [""] * len(list(data.keys())) if not all([isinstance(value, int) for value in data.values()]): raise RuntimeError( "The values in the classmap file should be int." "Please verify the contents of the classmap file." ) if not all([class_index < len(classes) and isinstance(class_index, int) for class_index in data.values()]): raise RuntimeError( "Invalid data in the json file. The class index must " "be < number of classes and an integer value.") for classname, class_index in data.items(): classes[class_index] = classname return classes def run_experiment(config_path=None, results_dir=None, key=None, init_epoch=1, verbosity=False, classmap=None): """Launch experiment that trains the model. NOTE: Do not change the argument names without verifying that cluster submission works. Args: config_path (str): Path to a text file containing a complete experiment configuration. results_dir (str): Path to a folder where various training outputs will be written. If the folder does not already exist, it will be created. init_epoch (int): The number of epoch to resume training. classmap (str): Path to the classmap file. """ # Horovod: initialize Horovod. hvd = hvd_keras() hvd.init() # Load experiment spec. if config_path is not None: # Create an experiment_pb2.Experiment object from the input file. logger.info("Loading experiment spec at %s.", config_path) # The spec in config_path has to be complete. # Default spec is not merged into es. es = load_experiment_spec(config_path, merge_from_default=False) else: logger.info("Loading the default experiment spec.") es = load_experiment_spec() model_config = es.model_config train_config = es.train_config # Horovod: pin GPU to be used to process local rank (one GPU per process) config = tf.ConfigProto() config.gpu_options.allow_growth = True # check if model parallelism is enabled or not if train_config.model_parallelism: world_size = len(train_config.model_parallelism) else: world_size = 1 gpus = list(range(hvd.local_rank() * world_size, (hvd.local_rank() + 1) * world_size)) config.gpu_options.visible_device_list = ','.join([str(x) for x in gpus]) K.set_session(tf.Session(config=config)) verbose = 1 if hvd.rank() == 0 else 0 K.set_image_data_format('channels_first') # Configure the logger. logging.basicConfig( format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level='DEBUG' if verbosity else 'INFO') # Set random seed. logger.debug("Random seed is set to {}".format(train_config.random_seed)) set_random_seed(train_config.random_seed + hvd.local_rank()) is_master = hvd.rank() == 0 if is_master and not os.path.exists(results_dir): os.makedirs(results_dir) status_file = os.path.join(results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, is_master=is_master, verbosity=logger.getEffectiveLevel(), append=True ) ) # Configure tf logger verbosity. tf.logging.set_verbosity(tf.logging.INFO) weight_histograms = False if hvd.rank() == 0: if train_config.HasField("visualizer"): weight_histograms = train_config.visualizer.weight_histograms if train_config.visualizer.HasField("clearml_config"): clearml_config = train_config.visualizer.clearml_config _ = get_clearml_task(clearml_config, "classification") # get channel, height and width of the input image nchannels, image_height, image_width = map(int, model_config.input_image_size.split(',')) assert nchannels in [1, 3], "Invalid input image dimension." assert image_height >= 16, "Image height should be greater than 15 pixels." assert image_width >= 16, "Image width should be greater than 15 pixels." if nchannels == 3: color_mode = "rgb" else: color_mode = "grayscale" img_mean = train_config.image_mean if train_config.preprocess_mode in ['tf', 'torch'] and img_mean: logger.info("Custom image mean is only supported in `caffe` mode.") logger.info("Custom image mean will be ignored.") if train_config.preprocess_mode == 'caffe': mode_txt = 'Custom' if nchannels == 3: if img_mean: assert all(c in img_mean for c in ['r', 'g', 'b']) , ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: mode_txt = 'Default' img_mean = [103.939, 116.779, 123.68] else: if img_mean: assert 'l' in img_mean, ( "'l' should be present in image_mean for images " "with 1 channel." ) img_mean = [img_mean['l']] else: mode_txt = 'Default' img_mean = [117.3786] logger.info("{} image mean {} will be used.".format(mode_txt, img_mean)) # Load augmented data train_iterator, val_iterator, nclasses = \ load_data(train_config.train_dataset_path, train_config.val_dataset_path, partial(preprocess_input, data_format='channels_first', mode=train_config.preprocess_mode, img_mean=img_mean, color_mode=color_mode), image_height, image_width, train_config.batch_size_per_gpu, train_config.enable_random_crop, train_config.enable_center_crop, train_config.enable_color_augmentation, model_config.resize_interpolation_method, color_mode=color_mode, mixup_alpha=train_config.mixup_alpha, no_horizontal_flip=train_config.disable_horizontal_flip, classmap=classmap) # Creating model ka = dict() ka['nlayers'] = model_config.n_layers if model_config.n_layers else 18 ka['use_batch_norm'] = model_config.use_batch_norm ka['use_pooling'] = model_config.use_pooling ka['freeze_bn'] = model_config.freeze_bn ka['use_bias'] = model_config.use_bias ka['all_projections'] = model_config.all_projections ka['dropout'] = model_config.dropout if model_config.dropout else 0.0 ka['activation'] = model_config.activation freeze_blocks = model_config.freeze_blocks if model_config.freeze_blocks else None ka['passphrase'] = key final_model = get_model(arch=model_config.arch if model_config.arch else "resnet", input_shape=(nchannels, image_height, image_width), data_format='channels_first', nclasses=nclasses, retain_head=model_config.retain_head, freeze_blocks=freeze_blocks, **ka) # Set up BN and regularizer config if model_config.HasField("batch_norm_config"): bn_config = model_config.batch_norm_config else: bn_config = None final_model = setup_config( final_model, train_config.reg_config, freeze_bn=model_config.freeze_bn, bn_config=bn_config, custom_objs={} ) if train_config.pretrained_model_path: # Decrypt and load pretrained model pretrained_model = model_io(train_config.pretrained_model_path, enc_key=key) strict_mode = True for layer in pretrained_model.layers[1:]: # The layer must match up to ssd layers. if layer.name == 'predictions': strict_mode = False try: l_return = final_model.get_layer(layer.name) except ValueError: # Some layers are not there continue try: l_return.set_weights(layer.get_weights()) except ValueError: if strict_mode: # This is a pruned model final_model = setup_config( pretrained_model, train_config.reg_config, bn_config=bn_config ) # model parallelism, keep the freeze_bn config untouched when building # a new parallilized model if train_config.model_parallelism: final_model = model_parallelism( final_model, tuple(train_config.model_parallelism), model_config.freeze_bn ) # Printing model summary final_model.summary() if init_epoch > 1 and not train_config.pretrained_model_path: raise ValueError("Make sure to load the correct model when setting initial epoch > 1.") if train_config.pretrained_model_path and init_epoch > 1: opt = pretrained_model.optimizer else: # Defining optimizer opt = build_optimizer(train_config.optimizer) # Add Horovod Distributed Optimizer opt = hvd.DistributedOptimizer(opt) # Compiling model cc = partial(categorical_crossentropy, label_smoothing=train_config.label_smoothing) cc.__name__ = "categorical_crossentropy" final_model.compile(loss=cc, metrics=['accuracy'], optimizer=opt) callbacks = setup_callbacks(model_config.arch, results_dir, train_config.lr_config, init_epoch, len(train_iterator) // hvd.size(), train_config.n_epochs, key, hvd, weight_histograms=weight_histograms) # Writing out class-map file for inference mapping if hvd.rank() == 0: with open(os.path.join(results_dir, "classmap.json"), "w") \ as classdump: json.dump(train_iterator.class_indices, classdump) # Commencing Training final_model.fit_generator( train_iterator, steps_per_epoch=len(train_iterator) // hvd.size(), epochs=train_config.n_epochs, verbose=verbose, workers=train_config.n_workers, validation_data=val_iterator, validation_steps=len(val_iterator), callbacks=callbacks, initial_epoch=init_epoch - 1) # Evaluate the model on the full data set. status_logging.get_status_logger().write(message="Final model evaluation in progress.") score = hvd.allreduce( final_model.evaluate_generator(val_iterator, len(val_iterator), workers=train_config.n_workers)) kpi_data = { "validation_loss": float(score[0]), "validation_accuracy": float(score[1]) } status_logging.get_status_logger().kpi = kpi_data status_logging.get_status_logger().write(message="Model evaluation is complete.") if verbose: logger.info('Total Val Loss: {}'.format(score[0])) logger.info('Total Val accuracy: {}'.format(score[1])) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Training finished successfully." ) @check_tf_oom def main(args=None): """Wrapper function for continuous training of MakeNet application. Args: Dictionary arguments containing parameters defined by command line parameters. """ # parse command line args = parse_command_line(args) try: run_experiment(config_path=args.experiment_spec_file, results_dir=args.results_dir, key=args.key, init_epoch=args.init_epoch, verbosity=args.verbose, classmap=args.classmap) logger.info("Training finished successfully.") except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Training was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) logger.info("Training was interrupted.") except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == '__main__': main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/train.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to prune the classification TLT model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import nvidia_tao_tf1.cv.common.logging.logging as status_logging from nvidia_tao_tf1.cv.common.magnet_prune import ( # noqa pylint: disable=unused-import build_command_line_parser, main, ) if __name__ == "__main__": try: main(sys.argv[1:]) status_logging.get_status_logger().write( status_level=status_logging.Status.SUCCESS, message="Pruning finished successfully." ) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Pruning was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/prune.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference and metrics computation code using a loaded model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import logging import os import numpy as np import pandas as pd import nvidia_tao_tf1.cv.common.logging.logging as status_logging from nvidia_tao_tf1.cv.common.utils import check_tf_oom, restore_eff from nvidia_tao_tf1.cv.makenet.spec_handling.spec_loader import load_experiment_spec from nvidia_tao_tf1.cv.makenet.utils.helper import get_input_shape, model_io, setup_config from nvidia_tao_tf1.cv.makenet.utils.preprocess_crop import load_and_crop_img from nvidia_tao_tf1.cv.makenet.utils.preprocess_input import preprocess_input logger = logging.getLogger(__name__) VALID_IMAGE_EXT = ['.jpg', '.jpeg', '.png'] def build_command_line_parser(parser=None): '''Parse command line arguments.''' if parser is None: parser = argparse.ArgumentParser( description="Standalone classification inference tool") parser.add_argument('-m', '--model_path', type=str, help="Path to the pretrained model (.tlt).", required=True) parser.add_argument('-k', '--key', required=False, default="", type=str, help='Key to load a .tlt model.') parser.add_argument('-i', '--image', type=str, help="Path to the inference image.") parser.add_argument('-d', '--image_dir', type=str, help="Path to the inference image directory.") parser.add_argument('-e', '--experiment_spec', required=True, type=str, help='Path to the experiment spec file.') parser.add_argument('-b', '--batch_size', type=int, default=1, help="Inference batch size.") parser.add_argument('-cm', '--classmap', type=str, help="Path to the classmap file generated from training.", default=None, required=True) parser.add_argument('-v', '--verbose', action='store_true', help='Include this flag in command line invocation for\ verbose logs.') parser.add_argument('-r', "--results_dir", type=str, default=None, help=argparse.SUPPRESS) return parser def parse_command_line(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) def batch_generator(iterable, batch_size=1): """Load a list of image paths in batches. Args: iterable: a list of image paths n: batch size """ total_len = len(iterable) for ndx in range(0, total_len, batch_size): yield iterable[ndx:min(ndx + batch_size, total_len)] def preprocess(imgpath, image_height, image_width, nchannels=3, mode='caffe', img_mean=None, interpolation='nearest', data_format='channels_first'): """Preprocess a single image. It includes resizing, normalization based on imagenet """ # Open image and preprocessing color_mode = 'rgb' if nchannels == 3 else 'grayscale' image = load_and_crop_img( imgpath, grayscale=False, color_mode=color_mode, target_size=(image_height, image_width), interpolation=interpolation, ) image = np.array(image).astype(np.float32) return preprocess_input(image.transpose((2, 0, 1)), mode=mode, color_mode=color_mode, img_mean=img_mean, data_format=data_format) def load_image_batch(batch, image_height, image_width, nchannels=3, mode='caffe', img_mean=None, interpolation='nearest', data_format='channels_first'): """Group the preprocessed images in a batch.""" ph = np.zeros( (len(batch), nchannels, image_height, image_width), dtype=np.float32) for i, imgpath in enumerate(batch): ph[i, :, :, :] = preprocess(imgpath, image_height, image_width, nchannels=nchannels, mode=mode, img_mean=img_mean, interpolation=interpolation, data_format=data_format) return ph def inference(args=None): """Inference on an image/directory using a pretrained model file. Args: args: Dictionary arguments containing parameters defined by command line parameters. Log: Image Mode: print classifier output Directory Mode: write out a .csv file to store all the predictions """ # Set up status logging if args.results_dir: if not os.path.exists(args.results_dir): os.makedirs(args.results_dir) status_file = os.path.join(args.results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, is_master=True, verbosity=1, append=True ) ) s_logger = status_logging.get_status_logger() s_logger.write( status_level=status_logging.Status.STARTED, message="Starting inference." ) # Set up logger verbosity. verbosity = 'INFO' if args.verbose: verbosity = 'DEBUG' if not (args.image or args.image_dir): s_logger.write( status_level=status_logging.Status.FAILURE, message="Provide either image file or a directory of images." ) return # Configure the logger. logging.basicConfig( format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level=verbosity) # Load experiment spec. if args.experiment_spec is not None: # Create an experiment_pb2.Experiment object from the input file. logger.info("Loading experiment spec at %s.", args.experiment_spec) # The spec in config_path has to be complete. # Default spec is not merged into es. es = load_experiment_spec(args.experiment_spec, merge_from_default=False, validation_schema="validation") else: logger.info("Loading the default experiment spec.") es = load_experiment_spec(validation_schema="validation") # override BN config if es.model_config.HasField("batch_norm_config"): bn_config = es.model_config.batch_norm_config else: bn_config = None custom_objs = {} # Decrypt and load the pretrained model model = model_io(args.model_path, enc_key=args.key, custom_objs=custom_objs) # reg_config and freeze_bn are actually not useful, just use bn_config # so the BN layer's output produces correct result. # of course, only the BN epsilon matters in evaluation. model = setup_config( model, es.train_config.reg_config, freeze_bn=es.model_config.freeze_bn, bn_config=bn_config, custom_objs=custom_objs ) # Printing summary of retrieved model model.summary() # Get input shape image_height, image_width, nchannels = get_input_shape(model) with open(args.classmap, "r") as cm: class_dict = json.load(cm) interpolation = es.model_config.resize_interpolation_method interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation = interpolation_map[interpolation] if es.eval_config.enable_center_crop: interpolation += ":center" img_mean = es.train_config.image_mean if nchannels == 3: if img_mean: assert all(c in img_mean for c in ['r', 'g', 'b']) , ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: assert 'l' in img_mean, ( "'l' should be present in image_mean for images " "with 1 channel." ) img_mean = [img_mean['l']] else: img_mean = [117.3786] if args.image: logger.info("Processing {}...".format(args.image)) # Load and preprocess image infer_input = preprocess(args.image, image_height, image_width, nchannels=nchannels, mode=es.train_config.preprocess_mode, img_mean=img_mean, interpolation=interpolation) infer_input.shape = (1, ) + infer_input.shape # Keras inference raw_predictions = model.predict(infer_input, batch_size=1) logger.debug("Raw prediction: \n{}".format(raw_predictions)) # Class output from softmax layer class_index = np.argmax(raw_predictions) print("Current predictions: {}".format(raw_predictions)) print("Class label = {}".format(class_index)) # Label Name class_name = list(class_dict.keys())[list(class_dict.values()).index(class_index)] print("Class name = {}".format(class_name)) if args.image_dir: logger.info("Processing {}...".format(args.image_dir)) # Preparing list of inference files. result_csv_path = os.path.join(args.image_dir, 'result.csv') if args.results_dir: result_csv_path = os.path.join(args.results_dir, 'result.csv') csv_f = open(result_csv_path, 'w') imgpath_list = [os.path.join(root, filename) for root, subdirs, files in os.walk(args.image_dir) for filename in files if os.path.splitext(filename)[1].lower() in VALID_IMAGE_EXT ] if not imgpath_list: s_logger.write( status_level=status_logging.Status.FAILURE, message="Image directory doesn't contain files with valid extensions" + "Valid extensions are " + str(VALID_IMAGE_EXT) ) return # Generator in batch mode for img_batch in batch_generator(imgpath_list, args.batch_size): # Load images in batch infer_batch = load_image_batch(img_batch, image_height, image_width, nchannels=nchannels, interpolation=interpolation, img_mean=img_mean, mode=es.train_config.preprocess_mode) # Run inference raw_predictions = model.predict(infer_batch, batch_size=args.batch_size) logger.debug("Raw prediction: \n{}".format(raw_predictions)) # Class output from softmax layer class_indices = np.argmax(raw_predictions, axis=1) # Map label index to label name class_labels = map(lambda i: list(class_dict.keys()) [list(class_dict.values()).index(i)], class_indices) conf = np.max(raw_predictions, axis=1) # Write predictions to file df = pd.DataFrame(zip(list(img_batch), class_labels, conf)) df.to_csv(csv_f, header=False, index=False) logger.info("Inference complete. Result is saved at {}".format( result_csv_path)) if args.results_dir: s_logger.write( status_level=status_logging.Status.SUCCESS, message="Inference finished successfully." ) csv_f.close() @check_tf_oom def main(args=None): """Run inference on a single image or collection of images. Args: args: Dictionary arguments containing parameters defined by command line parameters. """ try: # parse command line args = parse_command_line(args) inference(args) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Inference convert was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == "__main__": main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Perform Makenet Evaluation on IVA car make dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from functools import partial import json import logging import os import sys import keras from keras import backend as K from keras.preprocessing.image import ImageDataGenerator import numpy as np from PIL import ImageFile from sklearn.metrics import classification_report, confusion_matrix import tensorflow as tf import nvidia_tao_tf1.cv.common.logging.logging as status_logging from nvidia_tao_tf1.cv.common.utils import check_tf_oom, restore_eff from nvidia_tao_tf1.cv.makenet.spec_handling.spec_loader import load_experiment_spec from nvidia_tao_tf1.cv.makenet.utils.helper import get_input_shape, model_io, setup_config from nvidia_tao_tf1.cv.makenet.utils import preprocess_crop # noqa pylint: disable=unused-import from nvidia_tao_tf1.cv.makenet.utils.preprocess_input import preprocess_input ImageFile.LOAD_TRUNCATED_IMAGES = True config = tf.ConfigProto() config.gpu_options.allow_growth = True K.set_session(tf.Session(config=config)) K.set_image_data_format('channels_first') logger = logging.getLogger(__name__) def build_command_line_parser(parser=None): '''Parse command line arguments.''' if parser is None: parser = argparse.ArgumentParser(description='Evaluate a classification model.') parser.add_argument( '-e', '--experiment_spec', required=True, type=str, help='Path to the experiment spec file.' ) parser.add_argument( '-k', '--key', required=False, default="", type=str, help='Key to load a .tlt model.' ) parser.add_argument( '-r', "--results_dir", type=str, default=None, help=argparse.SUPPRESS ) parser.add_argument( '-cm', '--classmap', type=str, help="Path to the classmap file.", default=None ) # Dummy args for deploy parser.add_argument( '-m', '--model_path', type=str, required=False, default=None, help=argparse.SUPPRESS ) parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help=argparse.SUPPRESS ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help=argparse.SUPPRESS ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help=argparse.SUPPRESS ) return parser def parse_command_line(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) def run_evaluate(args=None): """Wrapper function to run evaluation of MakeNet model. Args: Dictionary arguments containing parameters parsed in the main function. """ # Set up status logging if args.results_dir: if not os.path.exists(args.results_dir): os.makedirs(args.results_dir) status_file = os.path.join(args.results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, is_master=True, verbosity=1, append=True ) ) s_logger = status_logging.get_status_logger() s_logger.write( status_level=status_logging.Status.STARTED, message="Starting evaluation." ) # Set up logger verbosity. verbosity = 'INFO' # Configure the logger. logging.basicConfig( format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level=verbosity) # Configure tf logger verbosity. tf.logging.set_verbosity(tf.logging.INFO) # Load experiment spec. if args.experiment_spec is not None: # Create an experiment_pb2.Experiment object from the input file. logger.info("Loading experiment spec at %s.", args.experiment_spec) # The spec in config_path has to be complete. # Default spec is not merged into es. es = load_experiment_spec(args.experiment_spec, merge_from_default=False, validation_schema="validation") else: logger.info("Loading the default experiment spec.") es = load_experiment_spec(validation_schema="validation") custom_objs = {} # Decrypt and load the pretrained model final_model = model_io(es.eval_config.model_path, enc_key=args.key, custom_objs=custom_objs) # override BN config if es.model_config.HasField("batch_norm_config"): bn_config = es.model_config.batch_norm_config else: bn_config = None # reg_config and freeze_bn are actually not useful, just use bn_config # so the BN layer's output produces correct result. # of course, only the BN epsilon matters in evaluation. final_model = setup_config( final_model, es.train_config.reg_config, freeze_bn=es.model_config.freeze_bn, bn_config=bn_config, custom_objs=custom_objs ) # Defining optimizer opt = keras.optimizers.SGD(lr=0, decay=1e-6, momentum=0.9, nesterov=False) # Define precision/recall and F score metrics topk_acc = partial(keras.metrics.top_k_categorical_accuracy, k=es.eval_config.top_k) topk_acc.__name__ = 'topk_acc' # Compile model final_model.compile(loss='categorical_crossentropy', metrics=[topk_acc], optimizer=opt) # print model summary final_model.summary() # Get input shape image_height, image_width, nchannels = get_input_shape(final_model) assert nchannels in [1, 3], ( "Unsupported channel count {} for evaluation".format(nchannels) ) color_mode = "rgb" if nchannels == 1: color_mode = "grayscale" interpolation = es.model_config.resize_interpolation_method interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation = interpolation_map[interpolation] if es.eval_config.enable_center_crop: interpolation += ":center" img_mean = es.train_config.image_mean if nchannels == 3: if img_mean: assert all(c in img_mean for c in ['r', 'g', 'b']) , ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: assert 'l' in img_mean, ( "'l' should be present in image_mean for images " "with 1 channel." ) img_mean = [img_mean['l']] else: img_mean = [117.3786] # Initializing data generator target_datagen = ImageDataGenerator( preprocessing_function=partial(preprocess_input, data_format='channels_first', mode=es.train_config.preprocess_mode, img_mean=img_mean, color_mode=color_mode), horizontal_flip=False) if args.classmap: # If classmap is provided, then we explicitly set it in ImageDataGenerator with open(args.classmap, "r") as cmap_file: try: data = json.load(cmap_file) except json.decoder.JSONDecodeError as e: print(f"Loading the {args.classmap} failed with error\n{e}") sys.exit(-1) except Exception as e: if e.output is not None: print(f"Evaluation failed with error {e.output}") sys.exit(-1) if not data: class_names = None else: class_names = [""] * len(list(data.keys())) if not all([class_index < len(class_names) and isinstance(class_index, int) for class_index in data.values()]): raise RuntimeError( "Invalid data in the json file. The class index must " "be < number of classes and an integer value.") for class_name, class_index in data.items(): class_names[class_index] = class_name print("Class name = {}".format(class_names)) else: class_names = None # Initializing data iterator target_iterator = target_datagen.flow_from_directory( es.eval_config.eval_dataset_path, target_size=(image_height, image_width), color_mode=color_mode, batch_size=es.eval_config.batch_size, classes=class_names, class_mode='categorical', interpolation=interpolation, shuffle=False) logger.info('Processing dataset (evaluation): {}'.format(es.eval_config.eval_dataset_path)) nclasses = target_iterator.num_classes assert nclasses > 1, "Invalid number of classes in the evaluation dataset." # If number of classes does not match the new data assert nclasses == final_model.output.get_shape().as_list()[-1], \ "The number of classes of the loaded model doesn't match the \ number of classes in the evaluation dataset." # Evaluate the model on the full data set. score = final_model.evaluate_generator(target_iterator, len(target_iterator), workers=es.eval_config.n_workers, use_multiprocessing=False) print('Evaluation Loss: {}'.format(score[0])) print('Evaluation Top K accuracy: {}'.format(score[1])) # Re-initializing data iterator target_iterator = target_datagen.flow_from_directory( es.eval_config.eval_dataset_path, target_size=(image_height, image_width), batch_size=es.eval_config.batch_size, color_mode=color_mode, class_mode='categorical', interpolation=interpolation, shuffle=False) logger.info("Calculating per-class P/R and confusion matrix. It may take a while...") Y_pred = final_model.predict_generator(target_iterator, len(target_iterator), workers=1) y_pred = np.argmax(Y_pred, axis=1) print('Confusion Matrix') print(confusion_matrix(target_iterator.classes, y_pred)) print('Classification Report') class_dict = target_iterator.class_indices target_labels = [c[1] for c in sorted(class_dict.items(), key=lambda x:x[1])] target_names = [c[0] for c in sorted(class_dict.items(), key=lambda x:x[1])] print(classification_report(target_iterator.classes, y_pred, labels=target_labels, target_names=target_names)) if args.results_dir: s_logger.kpi.update({'top_k_accuracy': float(score[1])}) s_logger.write( status_level=status_logging.Status.SUCCESS, message="Evaluation finished successfully." ) @check_tf_oom def main(args=None): """Wrapper function for evaluating MakeNet application. Args: args: Dictionary arguments containing parameters defined by command line parameters. """ # parse command line try: args = parse_command_line(args) run_evaluate(args) except (KeyboardInterrupt, SystemExit): status_logging.get_status_logger().write( message="Evaluation was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e if __name__ == '__main__': main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/evaluate.py
"""Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import keras from keras.layers import BatchNormalization import numpy as np import pytest from nvidia_tao_tf1.cv.makenet.model.model_builder import get_model from nvidia_tao_tf1.cv.makenet.scripts.train import setup_config class RegConfig(): """Class for reg config.""" def __init__(self, reg_type, scope, weight_decay): self.type = reg_type self.scope = scope self.weight_decay = weight_decay bn_config = (False, True) @pytest.mark.parametrize("freeze_bn", bn_config) def test_freeze_bn(freeze_bn): keras.backend.clear_session() model = get_model( "vgg", input_shape=(3, 224, 224), data_format="channels_first", freeze_bn=freeze_bn, nlayers=16, use_batch_norm=True, use_pooling=False, dropout=0.0, use_bias=False, ) reg_config = RegConfig("L2", "Conv2D,Dense", 1e-5) model = setup_config( model, reg_config, freeze_bn=freeze_bn ) model.compile( loss="mse", metrics=['accuracy'], optimizer="sgd" ) if freeze_bn: assert check_freeze_bn(model), ( "BN layers not frozen, expected frozen." ) else: assert not check_freeze_bn(model), ( "BN layers frozen, expected not frozen." ) def check_freeze_bn(model): """Check if the BN layers in a model is frozen or not.""" bn_weights = [] for l in model.layers: if type(l) == BatchNormalization: # only check for moving mean and moving variance bn_weights.append(l.get_weights()[2:]) rand_input = np.random.random((1, 3, 224, 224)) # do training several times out_shape = model.outputs[0].get_shape()[1:] out_label = np.random.random((1,) + out_shape) model.train_on_batch(rand_input, out_label) model.train_on_batch(rand_input, out_label) model.train_on_batch(rand_input, out_label) # do prediction several times model.predict(rand_input) model.predict(rand_input) model.predict(rand_input) # finally, check BN weights new_bn_weights = [] for l in model.layers: if type(l) == BatchNormalization: # only check for moving mean and moving variance new_bn_weights.append(l.get_weights()[2:]) # check the bn weights for old_w, new_w in zip(bn_weights, new_bn_weights): if not np.array_equal(old_w, new_w): return False return True
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/scripts/tests/test_freeze_bn.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. """TLT command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_tf1.cv.common.entrypoint.entrypoint import launch_job import nvidia_tao_tf1.cv.makenet.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_tf1.cv.makenet.scripts, "classification", sys.argv[1:]) if __name__ == "__main__": main()
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/entrypoint/makenet.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. """TLT MakeNet entrypoint.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """IVA MakeNet model construction wrapper functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras.layers import AveragePooling2D, Dense, Flatten from keras.layers import Input from keras.models import Model from nvidia_tao_tf1.core.templates.alexnet import AlexNet from nvidia_tao_tf1.core.templates.cspdarknet import CSPDarkNet from nvidia_tao_tf1.core.templates.cspdarknet_tiny import CSPDarkNetTiny from nvidia_tao_tf1.core.templates.darknet import DarkNet from nvidia_tao_tf1.core.templates.efficientnet import ( EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7 ) from nvidia_tao_tf1.core.templates.googlenet import GoogLeNet from nvidia_tao_tf1.core.templates.mobilenet import MobileNet, MobileNetV2 from nvidia_tao_tf1.core.templates.resnet import ResNet from nvidia_tao_tf1.core.templates.squeezenet import SqueezeNet from nvidia_tao_tf1.core.templates.vgg import VggNet from nvidia_tao_tf1.cv.makenet.utils.helper import model_io SUPPORTED_ARCHS = [ "resnet", "vgg", "alexnet", "googlenet", "mobilenet_v1", "mobilenet_v2", "squeezenet", "darknet", "efficientnet_b0", "efficientnet_b1", "efficientnet_b2", "efficientnet_b3", "efficientnet_b4", "efficientnet_b5", "efficientnet_b6", "efficientnet_b7", "cspdarknet", "cspdarknet_tiny" ] def add_dense_head(nclasses, base_model, data_format, kernel_regularizer, bias_regularizer): """Wrapper to add dense head to the backbone structure.""" output = base_model.output output_shape = output.get_shape().as_list() if data_format == 'channels_first': pool_size = (output_shape[-2], output_shape[-1]) else: pool_size = (output_shape[-3], output_shape[-2]) output = AveragePooling2D(pool_size=pool_size, name='avg_pool', data_format=data_format, padding='valid')(output) output = Flatten(name='flatten')(output) output = Dense(nclasses, activation='softmax', name='predictions', kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer)(output) final_model = Model(inputs=base_model.input, outputs=output, name=base_model.name) return final_model def get_googlenet(input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, kernel_regularizer=None, bias_regularizer=None, use_batch_norm=True, retain_head=False, use_bias=True, freeze_bn=False, freeze_blocks=None): """Wrapper to get GoogLeNet model from IVA templates.""" input_image = Input(shape=input_shape) final_model = GoogLeNet(inputs=input_image, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, activation_type='relu', add_head=retain_head, nclasses=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, use_bias=use_bias) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_alexnet(input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_blocks=None): """Wrapper to get AlexNet model from Maglev templates.""" final_model = AlexNet(input_shape=input_shape, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, add_head=retain_head, nclasses=nclasses, freeze_blocks=freeze_blocks) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_resnet(nlayers=18, input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, kernel_regularizer=None, bias_regularizer=None, all_projections=True, use_batch_norm=True, use_pooling=False, retain_head=False, use_bias=True, freeze_bn=False, freeze_blocks=None): """Wrapper to get ResNet model from Maglev templates.""" input_image = Input(shape=input_shape) final_model = ResNet(nlayers=nlayers, input_tensor=input_image, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, activation_type='relu', all_projections=all_projections, use_pooling=use_pooling, add_head=retain_head, nclasses=nclasses, freeze_blocks=freeze_blocks, freeze_bn=freeze_bn, use_bias=use_bias) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_darknet(nlayers=19, input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, alpha=0.1, kernel_regularizer=None, bias_regularizer=None, use_batch_norm=True, retain_head=False, use_bias=False, freeze_bn=False, freeze_blocks=None): """Wrapper to get DarkNet model.""" input_image = Input(shape=input_shape) final_model = DarkNet(nlayers=nlayers, input_tensor=input_image, data_format=data_format, alpha=alpha, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, add_head=retain_head, nclasses=nclasses, freeze_blocks=freeze_blocks, freeze_bn=freeze_bn, use_bias=use_bias) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_cspdarknet(nlayers=19, input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, kernel_regularizer=None, bias_regularizer=None, use_batch_norm=True, retain_head=False, use_bias=False, freeze_bn=False, freeze_blocks=None, activation="leaky_relu"): """Wrapper to get CSPDarkNet model.""" input_image = Input(shape=input_shape) final_model = CSPDarkNet(nlayers=nlayers, input_tensor=input_image, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, add_head=retain_head, nclasses=nclasses, freeze_blocks=freeze_blocks, freeze_bn=freeze_bn, use_bias=use_bias, activation=activation) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_cspdarknet_tiny( input_shape=(3, 224, 224), data_format='channels_first', nclasses=1000, kernel_regularizer=None, bias_regularizer=None, use_batch_norm=True, retain_head=False, use_bias=False, freeze_bn=False, freeze_blocks=None, activation="leaky_relu", ): """Wrapper to get CSPDarkNetTiny model.""" input_image = Input(shape=input_shape) final_model = CSPDarkNetTiny( input_tensor=input_image, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, add_head=retain_head, nclasses=nclasses, freeze_blocks=freeze_blocks, freeze_bn=freeze_bn, use_bias=use_bias, activation=activation ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_vgg(nlayers=16, input_shape=(3, 224, 224), data_format="channels_first", nclasses=1000, kernel_regularizer=None, bias_regularizer=None, use_batch_norm=True, use_pooling=False, retain_head=False, use_bias=True, freeze_bn=False, freeze_blocks=None, dropout=0.5): """Wrapper to get VGG model from IVA templates.""" input_image = Input(shape=input_shape) final_model = VggNet(nlayers=nlayers, inputs=input_image, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, use_batch_norm=use_batch_norm, activation_type='relu', use_pooling=use_pooling, add_head=retain_head, nclasses=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, use_bias=use_bias, dropout=dropout) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_mobilenet(input_shape=None, data_format='channels_first', nclasses=1000, use_batch_norm=None, kernel_regularizer=None, bias_regularizer=None, retain_head=False, use_bias=True, freeze_bn=False, freeze_blocks=None, stride=32): """Wrapper to get MobileNet model from IVA templates.""" input_image = Input(shape=input_shape) final_model = MobileNet(inputs=input_image, input_shape=input_shape, dropout=0.0, add_head=retain_head, stride=stride, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, nclasses=nclasses, use_batch_norm=use_batch_norm, use_bias=use_bias, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_mobilenet_v2(input_shape=None, data_format='channels_first', nclasses=1000, use_batch_norm=None, kernel_regularizer=None, bias_regularizer=None, retain_head=False, all_projections=False, use_bias=True, freeze_bn=False, freeze_blocks=None, stride=32): """Wrapper to get MobileNet V2 model from IVA templates.""" input_image = Input(shape=input_shape) final_model = MobileNetV2(inputs=input_image, input_shape=input_shape, add_head=retain_head, stride=stride, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, all_projections=all_projections, nclasses=nclasses, use_batch_norm=use_batch_norm, use_bias=use_bias, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_squeezenet(input_shape=None, data_format='channels_first', nclasses=1000, dropout=1e-3, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_blocks=None): """Wrapper to get SqueezeNet model from IVA templates.""" input_image = Input(shape=input_shape) final_model = SqueezeNet(inputs=input_image, input_shape=input_shape, dropout=1e-3, add_head=retain_head, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, nclasses=nclasses, freeze_blocks=freeze_blocks) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b0( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B0 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB0( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b1( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B1 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB1( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b2( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B2 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB2( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b3( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B3 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB3( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b4( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B4 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB4( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b5( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B5 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB5( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b6( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B6 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB6( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model def get_efficientnet_b7( input_shape=None, data_format='channels_first', nclasses=1000, use_bias=False, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_bn=False, freeze_blocks=None, stride16=False, activation_type=None ): """Get an EfficientNet B7 model.""" input_image = Input(shape=input_shape) final_model = EfficientNetB7( input_tensor=input_image, input_shape=input_shape, add_head=retain_head, data_format=data_format, use_bias=use_bias, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, classes=nclasses, freeze_bn=freeze_bn, freeze_blocks=freeze_blocks, stride16=stride16, activation_type=activation_type ) if not retain_head: final_model = add_dense_head(nclasses, final_model, data_format, kernel_regularizer, bias_regularizer) return final_model # defining model dictionary model_choose = {"resnet": get_resnet, "darknet": get_darknet, "cspdarknet": get_cspdarknet, "cspdarknet_tiny": get_cspdarknet_tiny, "vgg": get_vgg, "googlenet": get_googlenet, "alexnet": get_alexnet, "mobilenet_v1": get_mobilenet, "mobilenet_v2": get_mobilenet_v2, "squeezenet": get_squeezenet, "efficientnet_b0": get_efficientnet_b0, "efficientnet_b1": get_efficientnet_b1, "efficientnet_b2": get_efficientnet_b2, "efficientnet_b3": get_efficientnet_b3, "efficientnet_b4": get_efficientnet_b4, "efficientnet_b5": get_efficientnet_b5, "efficientnet_b6": get_efficientnet_b6, "efficientnet_b7": get_efficientnet_b7} def get_model(arch="resnet", input_shape=(3, 224, 224), data_format=None, nclasses=1000, kernel_regularizer=None, bias_regularizer=None, retain_head=False, freeze_blocks=None, **kwargs): """Wrapper to chose model defined in iva templates.""" kwa = dict() if arch == 'googlenet': kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] elif arch == 'alexnet': pass elif arch == 'resnet': kwa['nlayers'] = kwargs['nlayers'] kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa['use_pooling'] = kwargs['use_pooling'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['use_bias'] = kwargs['use_bias'] kwa['all_projections'] = kwargs['all_projections'] elif arch in ['darknet', 'cspdarknet']: kwa['nlayers'] = kwargs['nlayers'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['use_bias'] = kwargs['use_bias'] kwa['use_batch_norm'] = kwargs['use_batch_norm'] if arch == "cspdarknet": kwa["activation"] = kwargs["activation"].activation_type elif arch in ["cspdarknet_tiny"]: kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['use_bias'] = kwargs['use_bias'] kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa["activation"] = kwargs["activation"].activation_type elif arch == 'vgg': kwa['nlayers'] = kwargs['nlayers'] kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa['use_pooling'] = kwargs['use_pooling'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['use_bias'] = kwargs['use_bias'] kwa['dropout'] = kwargs['dropout'] elif arch == 'mobilenet_v1': kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] elif arch == 'mobilenet_v2': kwa['use_batch_norm'] = kwargs['use_batch_norm'] kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['all_projections'] = kwargs['all_projections'] elif arch == 'squeezenet': kwa['dropout'] = kwargs['dropout'] elif arch == "efficientnet_b0": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b1": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b2": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b3": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b4": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b5": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b6": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type elif arch == "efficientnet_b7": kwa['use_bias'] = kwargs['use_bias'] kwa['freeze_bn'] = kwargs['freeze_bn'] kwa['activation_type'] = kwargs['activation'].activation_type else: raise ValueError('Unsupported architecture: {}'.format(arch)) model = model_choose[arch](input_shape=input_shape, nclasses=nclasses, data_format=data_format, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, retain_head=retain_head, freeze_blocks=freeze_blocks, **kwa) return model
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/model/model_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Build models for MakeNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/model/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """File containing constants for the spec handling.""" from nvidia_tao_tf1.cv.common.spec_validator import ValueChecker TRAINVAL_OPTIONAL_CHECK_DICT = { # model config optional parameters. "n_layers": [ValueChecker(">", 0)], "freeze_blocks": [ValueChecker(">=", 0)], } TRAINVAL_VALUE_CHECK_DICT = { # model config parameters. "arch": [ValueChecker("!=", ""), ValueChecker("in", ["resnet", "vgg", "alexnet", "googlenet", "mobilenet_v1", "mobilenet_v2", "squeezenet", "darknet", "efficientnet_b0", "efficientnet_b1", "efficientnet_b2", "efficientnet_b3", "efficientnet_b4", "efficientnet_b5", "efficientnet_b6", "efficientnet_b7", "cspdarknet", "cspdarknet_tiny"])], "input_image_size": [ValueChecker("!=", "")], "activation_type": [ValueChecker("!=", "")], # training config "n_workers": [ValueChecker(">", 0)], "label_smoothing": [ValueChecker(">=", 0.0)], "mixup_alpha": [ValueChecker(">=", 0.0)], "train_dataset_path": [ValueChecker("!=", "")], "val_dataset_path": [ValueChecker("!=", "")], "n_epochs": [ValueChecker(">", 0)], "batch_size_per_gpu": [ValueChecker(">", 0)], "preprocess_mode": [ValueChecker("in", ["tf", "caffe", "torch"])], # evaluation config required parameters. "eval_dataset_path": [ValueChecker("!=", "")], # Learning rate scheduler config. "learning_rate": [ValueChecker(">", 0.0)], # optimizer config. "momentum": [ValueChecker(">=", 0)], "epsilon": [ValueChecker(">=", 0)], "rho": [ValueChecker(">=", 0)], "beta_1": [ValueChecker(">=", 0)], "beta_2": [ValueChecker(">=", 0)], "decay": [ValueChecker(">=", 0)], "dropout": [ValueChecker(">=", 0.0)], "step_size": [ValueChecker(">=", 0)], "gamma": [ValueChecker(">=", 0.0)], "soft_start": [ValueChecker(">=", 0)], "annealing_divider": [ValueChecker(">=", 0)], "annealing_points": [ValueChecker(">=", 0)], "min_lr_ratio": [ValueChecker(">=", 0.0)], "lr": [ValueChecker(">", 0.0)], # regularizer config "type": [ValueChecker("!=", ""), ValueChecker("in", ["L1", "L2", "None"])], "scope": [ValueChecker("!=", "")], "weight_decay": [ValueChecker(">", 0.0)], } TRAINVAL_EXP_REQUIRED_MSG = ["model_config", "train_config"] VALIDATION_EXP_REQUIRED_MSG = TRAINVAL_EXP_REQUIRED_MSG + ["eval_config"] TRAINVAL_REQUIRED_MSG_DICT = { "model_config": ["arch", "input_image_size"], "eval_config": ["top_k", "eval_dataset_path", "model_path", "batch_size"], "train_config": [ "train_dataset_path", "val_dataset_path", "optimizer", "batch_size_per_gpu", "n_epochs", "reg_config", "lr_config" ], "reg_config": ["type", "scope", "weight_decay"] }
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/spec_handling/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Spec Handling for MakeNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/spec_handling/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Load MakeNet experiment spec .txt files and return an experiment_pb2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_tf1.cv.common.spec_validator import SpecValidator import nvidia_tao_tf1.cv.makenet.proto.experiment_pb2 as experiment_pb2 from nvidia_tao_tf1.cv.makenet.spec_handling.constants import ( TRAINVAL_EXP_REQUIRED_MSG, TRAINVAL_OPTIONAL_CHECK_DICT, TRAINVAL_REQUIRED_MSG_DICT, TRAINVAL_VALUE_CHECK_DICT, VALIDATION_EXP_REQUIRED_MSG ) VALIDATION_SCHEMA = { "train_val": { "required_msg_dict": TRAINVAL_REQUIRED_MSG_DICT, "value_checker_dict": TRAINVAL_VALUE_CHECK_DICT, "required_msg": TRAINVAL_EXP_REQUIRED_MSG, "optional_check_dict": TRAINVAL_OPTIONAL_CHECK_DICT, "proto": experiment_pb2.Experiment(), "default_spec": "experiment_specs/default_spec.txt" }, "validation": { "required_msg_dict": TRAINVAL_REQUIRED_MSG_DICT, "value_checker_dict": TRAINVAL_VALUE_CHECK_DICT, "required_msg": VALIDATION_EXP_REQUIRED_MSG, "optional_check_dict": TRAINVAL_OPTIONAL_CHECK_DICT, "proto": experiment_pb2.Experiment(), "default_spec": "experiment_specs/default_spec.txt" } } logger = logging.getLogger(__name__) def validate_spec(spec, validation_schema="train_val"): """Validate the loaded experiment spec file.""" assert validation_schema in list(VALIDATION_SCHEMA.keys()), ( "Invalidation specification file schema: {}".format(validation_schema) ) schema = VALIDATION_SCHEMA[validation_schema] if schema["required_msg"] is None: schema["required_msg"] = [] spec_validator = SpecValidator(required_msg_dict=schema["required_msg_dict"], value_checker_dict=schema["value_checker_dict"]) spec_validator.validate(spec, schema["required_msg"]) def load_proto(spec_path, proto_buffer, default_spec_path, merge_from_default=True): """Load spec from file and merge with given proto_buffer instance. Args: spec_path (str): location of a file containing the custom spec proto. proto_buffer(pb2): protocal buffer instance to be loaded. default_spec_path(str): location of default spec to use if merge_from_default is True. merge_from_default (bool): disable default spec, if False, spec_path must be set. Returns: proto_buffer(pb2): protocol buffer instance updated with spec. """ def _load_from_file(filename, pb2): with open(filename, "r") as f: merge_text_proto(f.read(), pb2) # Setting this flag false prevents concatenating repeated-fields if merge_from_default: assert default_spec_path, \ "default spec path has to be defined if" \ "merge_from_default is enabled" # Load the default spec _load_from_file(default_spec_path, proto_buffer) else: assert spec_path, "spec_path has to be defined," \ "if merge_from_default is disabled" # Merge a custom proto on top of the default spec, if given if spec_path: _load_from_file(spec_path, proto_buffer) return proto_buffer def load_experiment_spec(spec_path=None, merge_from_default=True, validation_schema="train_val"): """Load experiment spec from a .txt file. Args: spec_path (str): location of a file containing the custom experiment spec proto. merge_from_default (bool): disable default spec, if False, spec_path must be set. Returns: experiment_spec: protocol buffer instance of type experiment_pb2.Experiment. """ experiment_spec = VALIDATION_SCHEMA[validation_schema]["proto"] file_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) default_spec_path = os.path.join(file_path, VALIDATION_SCHEMA[validation_schema]["default_spec"]) experiment_spec = load_proto(spec_path, experiment_spec, default_spec_path, merge_from_default) validate_spec(experiment_spec, validation_schema=validation_schema) return experiment_spec
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/spec_handling/spec_loader.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. """Module containing sample spec files."""
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/experiment_specs/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to export a trained SSD model to an ETLT file for deployment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/export/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DetectNet_v2 calibrator class for TensorRT INT8 Calibration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from functools import partial import logging import keras from keras.preprocessing.image import ImageDataGenerator import numpy as np import pycuda.autoinit # noqa pylint: disable=unused-import import pycuda.driver as cuda import tensorflow as tf # Simple helper class for calibration. from nvidia_tao_tf1.cv.common.export.base_calibrator import BaseCalibrator # Building the classification dataloader. from nvidia_tao_tf1.cv.makenet.utils import preprocess_crop # noqa pylint: disable=unused-import from nvidia_tao_tf1.cv.makenet.utils.preprocess_input import preprocess_input logger = logging.getLogger(__name__) class ClassificationCalibrator(BaseCalibrator): """Detectnet_v2 calibrator class.""" def __init__(self, experiment_spec, cache_filename, n_batches, batch_size, *args, **kwargs): """Init routine. This inherits from ``iva.common.export.base_calibrator.BaseCalibrator`` to implement the calibration interface that TensorRT needs to calibrate the INT8 quantization factors. The data source here is assumed to be the data tensors that are yielded from the DetectNet_v2 dataloader. Args: data_filename (str): ``TensorFile`` data file to use. cache_filename (str): name of calibration file to read/write to. n_batches (int): number of batches for calibrate for. batch_size (int): batch size to use for calibration (this must be smaller or equal to the batch size of the provided data). """ super(ClassificationCalibrator, self).__init__( cache_filename, n_batches, batch_size, *args, **kwargs ) self._data_source = None # Instantiate the dataloader. self.instantiate_data_source(experiment_spec) # Configure tensorflow before running tensorrt. self.set_session() def set_session(self): """Simple function to set the tensorflow session.""" # Setting this to minimize the default allocation at import. gpu_options = tf.compat.v1.GPUOptions( per_process_gpu_memory_fraction=0.33, allow_growth=True) # Configuring tensorflow to use CPU so that is doesn't interfere # with tensorrt. device_count = {'GPU': 0, 'CPU': 1} session_config = tf.compat.v1.ConfigProto( gpu_options=gpu_options, device_count=device_count ) tf_session = tf.compat.v1.Session( config=session_config, graph=tf.get_default_graph() ) # Setting the keras session. keras.backend.set_session(tf_session) self.session = keras.backend.get_session() def instantiate_data_source(self, experiment_spec): """Simple function to instantiate the data_source of the dataloader. Args: experiment_spec (iva.detectnet_v2.proto.experiment_pb2): Detectnet_v2 experiment spec proto object. Returns: No explicit returns. """ if not (hasattr(experiment_spec, 'train_config') or hasattr(experiment_spec, 'model_config')): raise ValueError( "Experiment spec doesnt' have train_config or " "model_config. Please make sure the train_config " "and model_config are both present in the experiment_spec " "file provided.") model_config = experiment_spec.model_config image_shape = model_config.input_image_size.split(",") n_channel = int(image_shape[0]) image_height = int(image_shape[1]) image_width = int(image_shape[2]) assert n_channel in [1, 3], "Invalid input image dimension." assert image_height >= 16, "Image height should be greater than 15 pixels." assert image_width >= 16, "Image width should be greater than 15 pixels." img_mean = experiment_spec.train_config.image_mean if n_channel == 3: if img_mean: assert all(c in img_mean for c in ['r', 'g', 'b']) , ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: assert 'l' in img_mean, ( "'l' should be present in image_mean for images " "with 1 channel." ) img_mean = [img_mean['l']] else: img_mean = [117.3786] # Define path to dataset. train_data = experiment_spec.train_config.train_dataset_path # Setting dataloader color_mode. color_mode = "rgb" if n_channel == 1: color_mode = "grayscale" preprocessing_func = partial( preprocess_input, data_format="channels_first", mode=experiment_spec.train_config.preprocess_mode, color_mode=color_mode, img_mean=img_mean ) # Initialize the data generator. logger.info("Setting up input generator.") train_datagen = ImageDataGenerator( preprocessing_function=preprocessing_func, horizontal_flip=False, featurewise_center=False ) logger.debug("Setting up iterator.") train_iterator = train_datagen.flow_from_directory( train_data, target_size=( image_height, image_width ), batch_size=self.batch_size, class_mode='categorical', color_mode=color_mode ) logger.info("Number of samples from the dataloader: {}".format(train_iterator.n)) num_available_batches = int(train_iterator.num_samples / self.batch_size) assert self._n_batches <= num_available_batches, ( f"n_batches <= num_available_batches, n_batches={self._n_batches}, " f"num_available_batches={num_available_batches}" ) self._data_source = train_iterator def get_data_from_source(self): """Simple function to get data from the defined data_source.""" batch, _ = next(self._data_source) if batch is None: raise ValueError( "Batch wasn't yielded from the data source. You may have run " "out of batches. Please set the num batches accordingly") return batch def get_batch(self, names): """Return one batch. Args: names (list): list of memory bindings names. """ if self._batch_count < self._n_batches: batch = self.get_data_from_source() if batch is not None: if self._data_mem is None: # 4 bytes per float32. self._data_mem = cuda.mem_alloc(batch.size * 4) self._batch_count += 1 # Transfer input data to device. cuda.memcpy_htod(self._data_mem, np.ascontiguousarray( batch, dtype=np.float32)) return [int(self._data_mem)] if self._batch_count >= self._n_batches: self.session.close() tf.reset_default_graph() if self._data_mem is not None: self._data_mem.free() return None
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/export/classification_calibrator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class to export trained .tlt models to etlt file.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import logging import os import sys import tempfile import keras from numba import cuda import tensorflow as tf from nvidia_tao_tf1.core.export._onnx import keras_to_onnx # Import quantization layer processing. from nvidia_tao_tf1.core.export._quantized import ( check_for_quantized_layers, ) from nvidia_tao_tf1.core.export._uff import keras_to_pb, keras_to_uff from nvidia_tao_tf1.core.export.app import get_model_input_dtype from nvidia_tao_tf1.cv.common.export.keras_exporter import KerasExporter as Exporter from nvidia_tao_tf1.cv.common.export.keras_exporter import SUPPORTED_ONNX_ROUTES from nvidia_tao_tf1.cv.common.export.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_tf1.cv.common.export.utils import pb_to_onnx from nvidia_tao_tf1.cv.common.types.base_ds_config import BaseDSConfig from nvidia_tao_tf1.cv.common.utils import CUSTOM_OBJS, get_decoded_filename, model_io from nvidia_tao_tf1.cv.makenet.export.classification_calibrator import ClassificationCalibrator from nvidia_tao_tf1.cv.makenet.spec_handling.spec_loader import load_experiment_spec logger = logging.getLogger(__name__) class ClassificationExporter(Exporter): """Define an exporter for classification models.""" def __init__(self, model_path=None, key=None, data_type="fp32", strict_type=False, backend="uff", classmap_file=None, experiment_spec_path="", onnx_route="keras2onnx", **kwargs): """Initialize the classification exporter. Args: model_path (str): Path to the model file. key (str): Key to load the model. data_type (str): Path to the TensorRT backend data type. strict_type(bool): Apply TensorRT strict_type_constraints or not for INT8 mode. backend (str): TensorRT parser to be used. classmap_file (str): Path to classmap.json file. experiment_spec_path (str): Path to MakeNet experiment spec file. onnx_route (str): Package to be used to convert the keras model to ONNX. Returns: None. """ super(ClassificationExporter, self).__init__(model_path=model_path, key=key, data_type=data_type, strict_type=strict_type, backend=backend, **kwargs) self.classmap_file = classmap_file self.onnx_route = onnx_route assert self.onnx_route in SUPPORTED_ONNX_ROUTES, ( f"Invaid onnx route {self.onnx_route} requested." ) logger.info("Setting the onnx export rote to {}".format( self.onnx_route )) # Load experiment spec if available. if os.path.exists(experiment_spec_path): self.experiment_spec = load_experiment_spec( experiment_spec_path, merge_from_default=False, validation_schema="train_val" ) self.eff_custom_objs = None def set_keras_backend_dtype(self): """Set the keras backend data type.""" keras.backend.set_learning_phase(0) tmp_keras_file_name = get_decoded_filename(self.model_path, self.key, self.eff_custom_objs) model_input_dtype = get_model_input_dtype(tmp_keras_file_name) keras.backend.set_floatx(model_input_dtype) def load_model(self, backend="uff"): """Simple function to get the keras model.""" keras.backend.clear_session() keras.backend.set_learning_phase(0) model = model_io(self.model_path, enc_key=self.key, custom_objects=self.eff_custom_objs) if check_for_quantized_layers(model): model, self.tensor_scale_dict = self.extract_tensor_scale(model, backend) return model def set_input_output_node_names(self): """Set input output node names.""" self.output_node_names = ["predictions/Softmax"] self.input_node_names = ["input_1"] def load_classmap_file(self): """Load the classmap json.""" data = None with open(self.classmap_file, "r") as cmap_file: try: data = json.load(cmap_file) except json.decoder.JSONDecodeError as e: print(f"Loading the {self.classmap_file} failed with error\n{e}") sys.exit(-1) except Exception as e: if e.output is not None: print(f"Classification exporter failed with error {e.output}") sys.exit(-1) return data def get_class_labels(self): """Get list of class labels to serialize to a labels.txt file.""" if not os.path.exists(self.classmap_file): raise FileNotFoundError( f"Classmap json file not found: {self.classmap_file}") data = self.load_classmap_file() if not data: return [] labels = [""] * len(list(data.keys())) if not all([class_index < len(labels) and isinstance(class_index, int) for class_index in data.values()]): raise RuntimeError( "Invalid data in the json file. The class index must " "be < number of classes and an integer value.") for class_name, class_index in data.items(): labels[class_index] = class_name return labels def generate_ds_config(self, input_dims, num_classes=None): """Generate Deepstream config element for the exported model.""" channel_index = 0 if self.data_format == "channels_first" else -1 if input_dims[channel_index] == 1: color_format = "l" else: color_format = "bgr" if self.preprocessing_arguments["flip_channel"] else "rgb" kwargs = { "data_format": self.data_format, "backend": self.backend, # Setting this to 1 for classification "network_type": 1 } if num_classes: kwargs["num_classes"] = num_classes if self.backend == "uff": kwargs.update({ "input_names": self.input_node_names, "output_names": self.output_node_names }) ds_config = BaseDSConfig( self.preprocessing_arguments["scale"], self.preprocessing_arguments["means"], input_dims, color_format, self.key, **kwargs ) return ds_config def save_exported_file(self, model, output_file_name): """Save the exported model file. This routine converts a keras model to onnx/uff model based on the backend the exporter was initialized with. Args: model (keras.models.Model): Keras model to be saved. output_file_name (str): Path to the output etlt file. Returns: tmp_file_name (str): Path to the temporary uff file. """ logger.debug("Saving etlt model file at: {}.".format(output_file_name)) input_tensor_names = "" # @vpraveen: commented out the preprocessor kwarg from keras_to_uff. # todo: @vpraveen and @zhimeng, if required modify modulus code to add # this. if self.backend == "uff": input_tensor_names, _, _ = keras_to_uff( model, output_file_name, output_node_names=self.output_node_names, custom_objects=CUSTOM_OBJS) elif self.backend == "onnx": if self.onnx_route == "keras2onnx": keras_to_onnx( model, output_file_name, custom_objects=CUSTOM_OBJS, target_opset=self.target_opset ) else: os_handle, tmp_pb_file = tempfile.mkstemp( suffix=".pb" ) os.close(os_handle) input_tensor_names, out_tensor_names, _ = keras_to_pb( model, tmp_pb_file, self.output_node_names, custom_objects=CUSTOM_OBJS ) if self.output_node_names is None: self.output_node_names = out_tensor_names logger.info("Model graph serialized to pb file.") input_tensor_names, out_tensor_names = pb_to_onnx( tmp_pb_file, output_file_name, input_tensor_names, self.output_node_names, self.target_opset, verbose=False ) input_tensor_names = "" else: raise NotImplementedError("Incompatible backend.") return output_file_name def clear_gpus(self): """Clear GPU memory before TRT engine building.""" tf.reset_default_graph() def get_calibrator(self, calibration_cache, data_file_name, n_batches, batch_size, input_dims, calibration_images_dir=None, image_mean=None): """Simple function to get an int8 calibrator. Args: calibration_cache (str): Path to store the int8 calibration cache file. data_file_name (str): Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calibration_images_dir of dimensions (batch_size,) + (input_dims) n_batches (int): Number of batches to calibrate the model over. batch_size (int): Number of input tensors per batch. input_dims (tuple): Tuple of input tensor dimensions in CHW order. calibration_images_dir (str): Path to a directory of images to generate the data_file from. image_mean (tuple): Pixel mean for channel-wise mean subtraction. Returns: calibrator (nvidia_tao_tf1.cv.common.export.base_calibrator.TensorfileCalibrator): TRTEntropyCalibrator2 instance to calibrate the TensorRT engine. """ if self.experiment_spec is not None: # Get calibrator based on the detectnet dataloader. calibrator = ClassificationCalibrator( self.experiment_spec, calibration_cache, n_batches, batch_size) else: if not os.path.exists(data_file_name): self.generate_tensor_file(data_file_name, calibration_images_dir, input_dims, n_batches=n_batches, batch_size=batch_size) calibrator = TensorfileCalibrator(data_file_name, calibration_cache, n_batches, batch_size) return calibrator
tao_tensorflow1_backend-main
nvidia_tao_tf1/cv/makenet/export/classification_exporter.py
tao_tensorflow1_backend-main
third_party/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test configuration.""" from __future__ import absolute_import import logging import logging.config import pytest """Root logger for tests.""" logger = logging.getLogger(__name__) DEFAULT_SEED = 42 @pytest.fixture(scope="function", autouse=True) def clear_session(): """Clear the Keras session at the end of a test.""" import keras import tensorflow as tf import random import numpy as np import third_party.keras.tensorflow_backend third_party.keras.tensorflow_backend.limit_tensorflow_GPU_mem(gpu_fraction=0.9) random.seed(DEFAULT_SEED) np.random.seed(DEFAULT_SEED) tf.compat.v1.set_random_seed(DEFAULT_SEED) # Yield and let test run to completion. yield # Clear session. keras.backend.clear_session() tf.compat.v1.reset_default_graph() def pytest_addoption(parser): """ Verbosity options. This adds two command-line flags: --vv for INFO verbosity, --vvv for DEBUG verbosity. Example: pytest -s -v --vv modulus Default logging verbosity is WARNING. """ parser.addoption( "--vv", action="store_true", default=False, help="log INFO messages." ) parser.addoption( "--vvv", action="store_true", default=False, help="log DEBUG messages." ) def pytest_configure(config): """ Pytest configuration. This is executed after parsing the command line. """ if config.getoption("--vvv"): verbosity = "DEBUG" elif config.getoption("--vv"): verbosity = "INFO" else: verbosity = "WARNING" logging.basicConfig( format="%(asctime)s [%(levelname)s] %(name)s: %(message)s", level=verbosity )
tao_tensorflow1_backend-main
third_party/keras/conftest.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Modulus Keras-extensions for mixed-precision training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import keras from keras import backend as K from keras import initializers from keras.engine import InputSpec from keras.legacy import interfaces from keras.regularizers import Regularizer from keras.utils import conv_utils """Logger for Keras tensorflow backend.""" logger = logging.getLogger(__name__) @interfaces.legacy_add_weight_support def _layer_add_weight( self, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, constraint=None, ): """Add a weight variable to the layer. # Arguments name: String, the name for the weight variable. shape: The shape tuple of the weight. dtype: The dtype of the weight. initializer: An Initializer instance (callable). regularizer: An optional Regularizer instance. trainable: A boolean, whether the weight should be trained via backprop or not (assuming that the layer itself is also trainable). constraint: An optional Constraint instance. # Returns The created weight variable. """ initializer = initializers.get(initializer) # If dtype is given, use it directly. if dtype: variable_dtype = output_dtype = dtype # In mixed precision training, by default, variables are created fp32 and cast to fp16. elif not dtype and K.floatx() == "float16": variable_dtype = "float32" output_dtype = "float16" # If dtype is not given, use the global default. else: variable_dtype = output_dtype = K.floatx() weight = K.variable( initializer(shape, dtype=variable_dtype), dtype=variable_dtype, name=name, constraint=constraint, ) if regularizer is not None: self.add_loss(regularizer(weight)) if trainable: self._trainable_weights.append(weight) else: self._non_trainable_weights.append(weight) # For mixed-precision training, return a cast version of the variable. if output_dtype != variable_dtype: return K.cast(weight, output_dtype) return weight def _batch_normalization_build(self, input_shape): dim = input_shape[self.axis] if dim is None: raise ValueError( "Axis " + str(self.axis) + " of " "input tensor should have a defined dimension " "but the layer received an input with shape " + str(input_shape) + "." ) self.input_spec = InputSpec(ndim=len(input_shape), axes={self.axis: dim}) shape = (dim,) # For mixed-precision training, BN variables have to be created as float32. if K.floatx() == "float16": dtype_for_bn_variables = "float32" else: dtype_for_bn_variables = None if self.scale: self.gamma = self.add_weight( shape=shape, name="gamma", initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, dtype=dtype_for_bn_variables, ) else: self.gamma = None if self.center: self.beta = self.add_weight( shape=shape, name="beta", initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, dtype=dtype_for_bn_variables, ) else: self.beta = None self.moving_mean = self.add_weight( shape=shape, name="moving_mean", initializer=self.moving_mean_initializer, trainable=False, dtype=dtype_for_bn_variables, ) self.moving_variance = self.add_weight( shape=shape, name="moving_variance", initializer=self.moving_variance_initializer, trainable=False, dtype=dtype_for_bn_variables, ) self.built = True def _batch_normalization_call(self, inputs, training=None): input_shape = K.int_shape(inputs) # Prepare broadcasting shape. ndim = len(input_shape) reduction_axes = list(range(len(input_shape))) del reduction_axes[self.axis] broadcast_shape = [1] * len(input_shape) broadcast_shape[self.axis] = input_shape[self.axis] # Determines whether broadcasting is needed. needs_broadcasting = sorted(reduction_axes) != list(range(ndim))[:-1] def normalize_inference(): if needs_broadcasting: # In this case we must explicitly broadcast all parameters. broadcast_moving_mean = K.reshape(self.moving_mean, broadcast_shape) broadcast_moving_variance = K.reshape(self.moving_variance, broadcast_shape) if self.center: broadcast_beta = K.reshape(self.beta, broadcast_shape) else: broadcast_beta = None if self.scale: broadcast_gamma = K.reshape(self.gamma, broadcast_shape) else: broadcast_gamma = None return K.batch_normalization( inputs, K.cast(broadcast_moving_mean, inputs.dtype), K.cast(broadcast_moving_variance, inputs.dtype), K.cast(broadcast_beta, inputs.dtype), K.cast(broadcast_gamma, inputs.dtype), axis=self.axis, epsilon=self.epsilon, ) else: return K.batch_normalization( inputs, K.cast(self.moving_mean, inputs.dtype), K.cast(self.moving_variance, inputs.dtype), K.cast(self.beta, inputs.dtype), K.cast(self.gamma, inputs.dtype), axis=self.axis, epsilon=self.epsilon, ) # If the learning phase is *static* and set to inference: if training in {0, False}: return normalize_inference() # If the learning is either dynamic, or set to training: normed_training, mean, variance = K.normalize_batch_in_training( inputs, self.gamma, self.beta, reduction_axes, epsilon=self.epsilon ) # if K.backend() != 'cntk': # sample_size = K.prod([K.shape(inputs)[axis] # for axis in reduction_axes]) # sample_size = K.cast(sample_size, dtype=K.dtype(variance)) # # sample variance - unbiased estimator of population variance # variance *= sample_size / (sample_size - (1.0 + self.epsilon)) self.add_update( [ K.moving_average_update(self.moving_mean, mean, self.momentum), K.moving_average_update(self.moving_variance, variance, self.momentum), ], inputs, ) # Pick the normalized form corresponding to the training phase. return K.in_train_phase(normed_training, normalize_inference, training=training) class _RegularizerL1L2(Regularizer): """Regularizer for L1 and L2 regularization. # Arguments l1: Float; L1 regularization factor. l2: Float; L2 regularization factor. """ def __init__(self, l1=0.0, l2=0.0): self.l1 = l1 self.l2 = l2 def __call__(self, x): regularization = 0.0 if self.l1: regularization += K.sum(K.cast(self.l1, x.dtype) * K.abs(x)) if self.l2: regularization += K.sum(K.cast(self.l2, x.dtype) * K.square(x)) return regularization def get_config(self): return {"l1": float(self.l1), "l2": float(self.l2)} def _conv2dtranspose_call(self, inputs): input_shape = K.shape(inputs) batch_size = input_shape[0] if self.data_format == "channels_first": h_axis, w_axis = 2, 3 else: h_axis, w_axis = 1, 2 height, width = input_shape[h_axis], input_shape[w_axis] kernel_h, kernel_w = self.kernel_size stride_h, stride_w = self.strides if self.output_padding is None: out_pad_h = out_pad_w = None else: out_pad_h, out_pad_w = self.output_padding # Infer the dynamic output shape: out_height = conv_utils.deconv_length( height, stride_h, kernel_h, self.padding, out_pad_h, self.dilation_rate[0] ) out_width = conv_utils.deconv_length( width, stride_w, kernel_w, self.padding, out_pad_w, self.dilation_rate[1] ) if self.data_format == "channels_first": output_shape = (batch_size, self.filters, out_height, out_width) else: output_shape = (batch_size, out_height, out_width, self.filters) outputs = K.conv2d_transpose( inputs, self.kernel, output_shape, self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate, ) if self.use_bias: outputs = K.bias_add(outputs, self.bias, data_format=self.data_format) if self.activation is not None: return self.activation(outputs) return outputs def patch(): """Apply the patches to the module.""" _layer_add_weight.__name__ = "add_weight" keras.engine.Layer.add_weight = _layer_add_weight _batch_normalization_build.__name__ = "build" keras.layers.BatchNormalization.build = _batch_normalization_build _batch_normalization_call.__name__ = "call" keras.layers.BatchNormalization.call = _batch_normalization_call _RegularizerL1L2.__name__ = "L1L2" keras.regularizers.L1L2 = _RegularizerL1L2 _conv2dtranspose_call.__name__ = "call" keras.layers.Conv2DTranspose.call = _conv2dtranspose_call
tao_tensorflow1_backend-main
third_party/keras/mixed_precision.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the Keras backend changes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import keras from keras import backend as K import numpy as np from numpy.testing import assert_allclose import pytest import tensorflow as tf import third_party.keras.tensorflow_backend FILTERS = 5 conv2d_tests = [ # channels_last, valid and same, and with different striding. ((1, 4, 4, 3), (1, 4, 4, FILTERS), (3, 3), (1, 1), "same", "channels_last"), ((1, 4, 4, 3), (1, 2, 2, FILTERS), (3, 3), (2, 2), "same", "channels_last"), ((1, 4, 4, 3), (1, 2, 2, FILTERS), (3, 3), (1, 1), "valid", "channels_last"), ((1, 4, 4, 3), (1, 1, 1, FILTERS), (3, 3), (2, 2), "valid", "channels_last"), # channels_first, valid and same, and with different striding. ((1, 3, 4, 4), (1, FILTERS, 4, 4), (3, 3), (1, 1), "same", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 2, 2), (3, 3), (2, 2), "same", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 2, 2), (3, 3), (1, 1), "valid", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 1, 1), (3, 3), (2, 2), "valid", "channels_first"), ] @pytest.mark.parametrize( "shape,expected_shape,kernel,strides,padding,data_format", conv2d_tests ) def test_conv2d(shape, expected_shape, kernel, strides, padding, data_format): """Test the conv2d padding and data-format compatibility and shapes. These checks are needed, as we have patched it to use explicit symmetric padding. """ inputs = tf.placeholder(shape=shape, dtype=tf.float32) x = keras.layers.Conv2D( filters=FILTERS, kernel_size=kernel, strides=strides, padding=padding, data_format=data_format, )(inputs) sess = keras.backend.get_session() out = sess.run(x, feed_dict={inputs: np.zeros(shape)}) output_shape = out.shape assert output_shape == expected_shape conv2d_transpose_tests = [ # channels_last, valid and same, and with different striding. ((1, 4, 4, 3), (1, 4, 4, FILTERS), (3, 3), (1, 1), "same", "channels_last"), ((1, 4, 4, 3), (1, 8, 8, FILTERS), (3, 3), (2, 2), "same", "channels_last"), ((1, 4, 4, 3), (1, 6, 6, FILTERS), (3, 3), (1, 1), "valid", "channels_last"), ((1, 4, 4, 3), (1, 9, 9, FILTERS), (3, 3), (2, 2), "valid", "channels_last"), # channels_first, valid and same, and with different striding. ((1, 3, 4, 4), (1, FILTERS, 4, 4), (3, 3), (1, 1), "same", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 8, 8), (3, 3), (2, 2), "same", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 6, 6), (3, 3), (1, 1), "valid", "channels_first"), ((1, 3, 4, 4), (1, FILTERS, 9, 9), (3, 3), (2, 2), "valid", "channels_first"), ] @pytest.mark.parametrize( "shape,expected_shape,kernel,strides,padding,data_format", conv2d_transpose_tests ) def test_conv2d_transpose(shape, expected_shape, kernel, strides, padding, data_format): inputs = tf.placeholder(shape=shape, dtype=tf.float32) x = keras.layers.Conv2DTranspose( filters=FILTERS, kernel_size=kernel, strides=strides, padding=padding, data_format=data_format, )(inputs) sess = keras.backend.get_session() out = sess.run(x, feed_dict={inputs: np.zeros(shape)}) output_shape = out.shape assert output_shape == expected_shape bias_tests = [ ((1, 3, 4, 4), (3), "channels_first"), ((1, 4, 4, 3), (3), "channels_last"), ] @pytest.mark.parametrize("input_shape,bias_shape,data_format", bias_tests) def test_bias(input_shape, bias_shape, data_format): """Test the bias_add improvements. These improvements allow for native usage of NCHW format without transposing or reshaping. The bias will never change the output size, so we only check if this function does not fail. """ inputs = tf.placeholder(shape=input_shape, dtype=tf.float32) bias = tf.placeholder(shape=bias_shape, dtype=tf.float32) x = keras.backend.bias_add(inputs, bias, data_format=data_format) sess = keras.backend.get_session() sess.run(x, feed_dict={inputs: np.zeros(input_shape), bias: np.zeros(bias_shape)}) batch_norm_tests = [ # All reduction ((1024, 3, 4, 4), -1), # NCHW reduction ((1024, 3, 2, 2), 1), # NHWC reduction ((1024, 2, 2, 3), 3), ] @pytest.mark.parametrize("input_shape,axis", batch_norm_tests) @pytest.mark.parametrize("is_training", [True]) def test_batchnorm_correctness(mocker, input_shape, axis, is_training): """Test batchnorm by training it on a normal distributed that is offset and scaled.""" mocker.spy(tf.nn, "fused_batch_norm") inputs = keras.layers.Input(shape=input_shape[1:]) bn_layer = keras.layers.normalization.BatchNormalization(axis=axis, momentum=0.8) bn = bn_layer(inputs) model = keras.models.Model(inputs=inputs, outputs=bn) model.compile(loss="mse", optimizer="sgd") mean, var = 5, 10 x = np.random.normal(loc=mean, scale=var, size=input_shape) model.fit(x, x, epochs=50, verbose=0) beta = K.eval(bn_layer.beta) gamma = K.eval(bn_layer.gamma) nchannels = input_shape[axis] beta_expected = np.array([mean] * nchannels, dtype=np.float32) gamma_expected = np.array([var] * nchannels, dtype=np.float32) # Test if batchnorm has learned the correct mean and variance assert_allclose(beta, beta_expected, atol=5e-1) assert_allclose(gamma, gamma_expected, atol=5e-1) if axis == 1 and not third_party.keras.tensorflow_backend._has_nchw_support(): pytest.skip("Fused batchnorm with NCHW only supported on GPU.") # Test that the fused batch norm was actually called. It's called twice: training or not. assert tf.nn.fused_batch_norm.call_count == 1 def test_data_format(): assert keras.backend.image_data_format() == "channels_first" pool2d_tests = [ # channels_last, valid and same, and with different striding. ((1, 4, 4, 3), (1, 4, 4, 3), (3, 3), (1, 1), "same", "channels_last", "max"), ((1, 4, 4, 3), (1, 2, 2, 3), (3, 3), (2, 2), "same", "channels_last", "average"), ((1, 4, 4, 3), (1, 2, 2, 3), (3, 3), (1, 1), "valid", "channels_last", "max"), ((1, 4, 4, 3), (1, 1, 1, 3), (3, 3), (2, 2), "valid", "channels_last", "average"), # channels_first, valid and same, and with different striding. ((1, 3, 4, 4), (1, 3, 4, 4), (3, 3), (1, 1), "same", "channels_first", "max"), ((1, 3, 4, 4), (1, 3, 2, 2), (3, 3), (2, 2), "same", "channels_first", "average"), ((1, 3, 4, 4), (1, 3, 2, 2), (3, 3), (1, 1), "valid", "channels_first", "max"), ((1, 3, 4, 4), (1, 3, 1, 1), (3, 3), (2, 2), "valid", "channels_first", "average"), ] @pytest.mark.parametrize( "shape,expected_shape,pool_size,strides,padding,data_format," "pooling_type", pool2d_tests, ) def test_pool2d( shape, expected_shape, pool_size, strides, padding, data_format, pooling_type ): """Test the pooling padding and data-format compatibility and shapes. These checks are needed, as we have patched it to use explicit symmetric padding. """ if pooling_type == "max": layer_class = keras.layers.MaxPooling2D elif pooling_type == "average": layer_class = keras.layers.AveragePooling2D else: raise ValueError("Unknown pooling type: %s" % pooling_type) inputs = tf.placeholder(shape=shape, dtype=tf.float32) x = layer_class( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format )(inputs) sess = keras.backend.get_session() out = sess.run(x, feed_dict={inputs: np.zeros(shape)}) output_shape = out.shape assert output_shape == expected_shape def test_patch_dataset_map(): class _RandomSeedRecorder: def __init__(self): self.random_seed = None def __call__(self, elt): self.random_seed = tf.get_default_graph().seed return elt seed = 37 tf.set_random_seed(seed) recorder = _RandomSeedRecorder() ds = tf.data.Dataset.from_generator(lambda: (yield (0)), (tf.int64)) # Patch is already applied at this point, but if you comment it out and uncomment below code you # can verify that this bug still exists and needs to be patched. If the test fails it may be # that TF fixed this and we can remove the patch. Talk to @ehall # ds.map(recorder) # assert recorder.random_seed is None # # third_party.keras.tensorflow_backend._patch_dataset_map() # Test that existing dataset got patched. ds.map(recorder) assert recorder.random_seed == seed # Test that new dataset also gets patched. recorder = _RandomSeedRecorder() ds = tf.data.Dataset.from_generator(lambda: (yield (0)), (tf.int64)) ds.map(recorder) assert recorder.random_seed == seed def test_reproducible_mapping(): def test(): tf.reset_default_graph() np.random.seed(42) tf.set_random_seed(42) images = np.random.rand(100, 64, 64, 3).astype(np.float32) def mapfn(p): return tf.image.random_hue(p, 0.04) dataset = tf.data.Dataset.from_tensor_slices(images) dataset = dataset.map(mapfn) dataset = dataset.batch(32) x = dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: return sess.run(x) assert np.allclose(test(), test()), "num_parallel_calls=1 undeterministic"
tao_tensorflow1_backend-main
third_party/keras/test_tensorflow_backend.py
tao_tensorflow1_backend-main
third_party/keras/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Modulus Keras-specific Extensions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import keras from keras.backend import image_data_format from keras.backend.tensorflow_backend import _preprocess_padding import tensorflow as tf from tensorflow.python.training import moving_averages """Logger for Keras tensorflow backend.""" logger = logging.getLogger(__name__) DATA_FORMAT_MAP = {"channels_first": "NCHW", "channels_last": "NHWC"} def _has_nchw_support(): """Check whether the current scope supports NCHW ops. Tensorflow does not support NCHW on CPU. Therefore we check if we are not explicitly put on CPU, and have GPUs available. In this case there will be soft-placing on the GPU device. Returns: bool: if the current scope device placement would support nchw. """ # TODO:@subha This will be removed in the future when UNET completely moves to # Tf.keras. Since unet uses estimator.train it internally converts the mdoel # to tf.keras though model was built with pure keras. The _is_current_explicit_device # has a function `_TfDeviceCaptureOp` that does not have attribute `_set_device_from_string` # This is an error of keras backend: https://github.com/tensorflow/tensorflow/issues/30728 # Hence I catch the error and import from tensorflow.python.keras.backend # that has the implementation for `_set_device_from_string`. try: from keras.backend.tensorflow_backend import _is_current_explicit_device explicitly_on_cpu = _is_current_explicit_device("CPU") except AttributeError: # If tf.keras is used from tensorflow.python.keras.backend import _is_current_explicit_device explicitly_on_cpu = _is_current_explicit_device("CPU") gpus_available = True # We always assume there is a GPU available. return not explicitly_on_cpu and gpus_available def conv2d( x, kernel, strides=(1, 1), padding="valid", data_format=None, dilation_rate=(1, 1) ): """2D convolution. Arguments: x: Tensor or variable. kernel: kernel tensor. strides: strides tuple. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. dilation_rate: tuple of 2 integers. Returns: A tensor, result of 2D convolution. Raises: ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ if data_format is None: data_format = image_data_format() if data_format not in DATA_FORMAT_MAP: raise ValueError("Unknown data_format " + str(data_format)) tf_data_format = DATA_FORMAT_MAP[data_format] # Avoid Tensorflow's implicit assymetric padding by explicit symmetric padding # See https://stackoverflow.com/questions/42924324/tensorflows-asymmetric-padding-assumptions if padding == "same": filter_shape = kernel.get_shape() width_padding = ((filter_shape[0].value - 1) * dilation_rate[0] + 1) // 2 height_padding = ((filter_shape[1].value - 1) * dilation_rate[1] + 1) // 2 if tf_data_format == "NCHW": padding_pattern = [ [0, 0], [0, 0], [width_padding, width_padding], [height_padding, height_padding], ] else: # 'NHWC' padding_pattern = [ [0, 0], [width_padding, width_padding], [height_padding, height_padding], [0, 0], ] x = tf.pad(x, padding_pattern, mode="CONSTANT") padding = "valid" nhwc_roundtrip = not _has_nchw_support() and tf_data_format == "NCHW" if nhwc_roundtrip: tf_data_format = "NHWC" x = tf.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC padding = _preprocess_padding(padding) x = tf.nn.convolution( input=x, filter=kernel, dilation_rate=dilation_rate, strides=strides, padding=padding, data_format=tf_data_format, ) if nhwc_roundtrip: x = tf.transpose(x, (0, 3, 1, 2)) # NCHW -> NHWC return x def pool2d( x, pool_size, strides=(1, 1), padding="valid", data_format=None, pool_mode="max" ): """2D Pooling. # Arguments x: Tensor or variable. pool_size: tuple of 2 integers. strides: tuple of 2 integers. padding: string, `"same"` or `"valid"`. data_format: string, `"channels_last"` or `"channels_first"`. pool_mode: string, `"max"` or `"avg"`. # Returns A tensor, result of 2D pooling. # Raises ValueError: if `data_format` is neither `"channels_last"` or `"channels_first"`. ValueError: if `pool_mode` is neither `"max"` or `"avg"`. """ if data_format is None: data_format = image_data_format() if data_format not in DATA_FORMAT_MAP: raise ValueError("Unknown data_format " + str(data_format)) tf_data_format = DATA_FORMAT_MAP[data_format] # Avoid Tensorflow's implicit assymetric padding by explicit symmetric padding if padding == "same": width_padding = ((pool_size[0] - 1)) // 2 height_padding = ((pool_size[1] - 1)) // 2 if tf_data_format == "NCHW": padding_pattern = [ [0, 0], [0, 0], [width_padding, width_padding], [height_padding, height_padding], ] else: # 'NHWC' padding_pattern = [ [0, 0], [width_padding, width_padding], [height_padding, height_padding], [0, 0], ] x = tf.pad(x, padding_pattern, mode="CONSTANT") padding = "valid" nhwc_roundtrip = not _has_nchw_support() and tf_data_format == "NCHW" if nhwc_roundtrip: tf_data_format = "NHWC" x = tf.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC if nhwc_roundtrip or tf_data_format == "NHWC": strides = (1,) + strides + (1,) pool_size = (1,) + pool_size + (1,) else: strides = (1, 1) + strides pool_size = (1, 1) + pool_size padding = _preprocess_padding(padding) if pool_mode == "max": x = tf.nn.max_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format ) elif pool_mode == "avg": x = tf.nn.avg_pool( x, pool_size, strides, padding=padding, data_format=tf_data_format ) else: raise ValueError("Invalid pooling mode:", pool_mode) if nhwc_roundtrip: x = tf.transpose(x, (0, 3, 1, 2)) # NCHW -> NHWC return x def moving_average_update(x, value, momentum): """Compute the moving average of a variable. # Arguments x: A `Variable`. value: A tensor with the same shape as `x`. momentum: The moving average momentum. # Returns An operation to update the variable. """ # See: https://github.com/keras-team/keras/commit/3ce40705a7235cabe81cfaa2ab9b9d56f225af52 return moving_averages.assign_moving_average( x, value, momentum, zero_debias=False ) # A zero_debias==True creates unwanted tf variables. def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3): """Applies batch normalization on x given mean, var, beta and gamma. I.e. returns: `output = (x - mean) / sqrt(var + epsilon) * gamma + beta` # Arguments x: Input tensor or variable. mean: Mean of batch. var: Variance of batch. beta: Tensor with which to center the input. gamma: Tensor by which to scale the input. axis: Integer, the axis that should be normalized. (typically the features axis). epsilon: Fuzz factor. # Returns A tensor. TODO(xiangbok): Fixes a bug in keras v2.2.4, this function is adapted from #1df4052. """ # if ndim(x) == 4: # # The CPU implementation of FusedBatchNorm only support NHWC # if axis == 1 or axis == -3: # tf_data_format = 'NCHW' # elif axis == 3 or axis == -1: # tf_data_format = 'NHWC' # else: # tf_data_format = None # if (x.dtype != tf.float16 and # fused bn doesn't support fp16. # (tf_data_format == 'NHWC' or (tf_data_format == 'NCHW' and _has_nchw_support()))): # # The mean / var / beta / gamma may be processed by broadcast # # so it may have extra axes with 1, # # it is not needed and should be removed # if ndim(mean) > 1: # mean = tf.reshape(mean, [-1]) # if ndim(var) > 1: # var = tf.reshape(var, [-1]) # if beta is None: # beta = zeros_like(mean) # elif ndim(beta) > 1: # beta = tf.reshape(beta, [-1]) # if gamma is None: # gamma = ones_like(mean) # elif ndim(gamma) > 1: # gamma = tf.reshape(gamma, [-1]) # y, _, _ = tf.nn.fused_batch_norm( # x, # gamma, # beta, # epsilon=epsilon, # mean=mean, # variance=var, # data_format=tf_data_format, # is_training=False # ) # return y # default return tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon) def softmax(x, axis=-1): """Softmax activation function. Patched to allow use of the backend's `softmax` regardless of the cardinality of the input dimensions. # Arguments x: Input tensor. axis: Integer, axis along which the softmax normalization is applied. # Returns Tensor, output of softmax transformation. # Raises ValueError: In case `dim(x) == 1`. """ ndim = keras.backend.ndim(x) if ndim == 4 and axis == 1: # Nvbug 2356150: in the "channels_first" case tf.nn.softmax adds a channel swap # roundtrip to perform the softmax in "channels_last" order. The channel swap is done # through tensor shape manipulations, which TensorRT cannot handle (TensorRT needs # the permutation vector to be a constant). Below is a workaround for the NCHW softmax. # Transpose to "channels_last" order. x = tf.transpose(x, perm=[0, 2, 3, 1]) # Do the softmax in "channels_last" order (do not necessitate transpose). x = tf.nn.softmax(x, axis=-1) # Tranpose back to "channels_first". x = tf.transpose(x, perm=[0, 3, 1, 2]) return x if ndim >= 2: return tf.nn.softmax(x, axis=axis) raise ValueError( "Cannot apply softmax to a tensor that is 1D. " "Received input: %s" % x ) def flatten_call(self, inputs): """call method of Flatten layer.""" # Overrides the suboptimal change added to keras that makes Flatten layers' channels_first # to be export incompatible (reverts https://github.com/keras-team/keras/pull/9696). return keras.backend.batch_flatten(inputs) def _patch_backend_function(f): """Patch keras backend functionality. The patch is applied to both the general keras backend and the framework specific backend. Args: f (func): a function with the same name as exists in the keras backend. """ name = f.__name__ logger.debug("Patching %s" % name) keras.backend.__setattr__(name, f) keras.backend.tensorflow_backend.__setattr__(name, f) def _patch_dataset_map(): """ Patches `tf.data.Dataset.map` function which properly sets the random seeds. Patches with a wrapped version of the original method which properly sets the random seeds in in the context of the subgraph created by the map operation. This patch addresses the problem that the random seed is not set in the graph used by the augmentations and other functions which are applied via the map operation. This issue was seen in TF v13.1. """ # See https://github.com/tensorflow/tensorflow/issues/29101 old_map = tf.data.Dataset.map def new_map(self, map_func, num_parallel_calls=None): seed = tf.get_default_graph().seed def _map_func_set_random_wrapper(*args, **kwargs): tf.set_random_seed(seed) return map_func(*args, **kwargs) return old_map( self, _map_func_set_random_wrapper, num_parallel_calls=num_parallel_calls ) tf.data.Dataset.map = new_map def patch(): """Apply the patches to the module.""" _patch_backend_function(conv2d) _patch_backend_function(pool2d) _patch_backend_function(moving_average_update) _patch_backend_function(batch_normalization) _patch_backend_function(_has_nchw_support) _patch_dataset_map() keras.layers.activations.__setattr__("softmax", softmax) keras.layers.Flatten.call = flatten_call keras.backend.set_image_data_format("channels_first") def limit_tensorflow_GPU_mem(gpu_fraction=0.33): """Limit TensorFlow memory usage. Configure TensorFlow to grow its memory pool up to specified limit instead of greedily allocating all available GPU memory. Args: gpu_fraction (float): maximum fraction of GPU memory in TensorFlow pool """ def get_session(gpu_fraction): gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_fraction, allow_growth=True ) return tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) keras.backend.set_session(get_session(gpu_fraction=gpu_fraction))
tao_tensorflow1_backend-main
third_party/keras/tensorflow_backend.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the Keras backend changes related to mixed-precision implementation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from keras import backend as K from keras.engine import Layer from keras.layers import BatchNormalization from keras.layers import Conv2D from keras.layers import Input from keras.models import Model from keras.regularizers import l1 from keras.regularizers import l2 import numpy as np from numpy.testing import assert_allclose import pytest import tensorflow as tf WEIGHT_SHAPE = (3, 3, 3) DATA_SHAPE = (24, 3, 16, 32) BATCH_NORM_VARIABLE_NAMES = ("beta", "gamma", "moving_mean", "moving_variance") def _get_tf_weight_by_name(name): """Get Tensorflow variable based on a partial variable name.""" candidates = [ var for var in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if name in var.name ] assert len(candidates) == 1, "Use unique variable names." return candidates[0] @pytest.mark.usefixtures("clear_session") def test_layer_add_weight_fp32(): """Test that keras.engine.Layer.add_weight is correctly patched for fp32 mode.""" K.set_floatx("float32") # Create a layer and a weight. fp32_layer = Layer() keras_weight = fp32_layer.add_weight( name="fp32_mode_weight", shape=WEIGHT_SHAPE, initializer="ones" ) # For fp32, returned weight has to match the backend variable. backend_variable = _get_tf_weight_by_name("fp32_mode_weight") assert backend_variable == keras_weight, "add_weight returned an unknown tensor." # Get the values and verify data type and shape. sess = K.get_session() np_keras_weight = sess.run(keras_weight) assert np_keras_weight.dtype == np.float32 assert_allclose(np_keras_weight, np.ones(WEIGHT_SHAPE, dtype=np.float32)) @pytest.mark.usefixtures("clear_session") def test_layer_add_weight_fp16(): """Test that keras.engine.Layer.add_weight is correctly patched for fp16 mode.""" K.set_floatx("float16") # Create a layer and a weight. fp16_layer = Layer() keras_weight = fp16_layer.add_weight( name="fp16_mode_weight", shape=WEIGHT_SHAPE, initializer="ones" ) # For fp16, returned weight shall not match the backend variable. backend_variable = _get_tf_weight_by_name("fp16_mode_weight") assert backend_variable != keras_weight, "add_weight returned a raw variable." # Get the values and verify data type and shape. sess = K.get_session() np_keras_weight = sess.run(keras_weight) np_backend_variable = sess.run(backend_variable) assert np_keras_weight.dtype == np.float16 assert_allclose(np_keras_weight, np.ones(WEIGHT_SHAPE, dtype=np.float16)) # In mixed-precision training, backend variables are created in float32. assert np_backend_variable.dtype == np.float32 assert_allclose(np_backend_variable, np.ones(WEIGHT_SHAPE, dtype=np.float32)) @pytest.mark.usefixtures("clear_session") @pytest.mark.parametrize("data_type", ["float16", "float32"]) def test_batch_normalization(data_type): """Test that patched build and call are in use in BatchNormalization layer.""" # Set backend precision. K.set_floatx(data_type) # Create dummy data. np_ones = np.ones(DATA_SHAPE, dtype=data_type) # Build the training graph. K.set_learning_phase(1) # Placeholder for input data. train_input = tf.placeholder(dtype=data_type, shape=DATA_SHAPE, name="train_data") input_layer = Input(tensor=train_input, name="train_input_layer") # Add one batch normalization layer. bn_out = BatchNormalization(axis=1, name="batchnorm_layer")(input_layer) # Get the model and its output. model = Model(inputs=input_layer, outputs=bn_out, name="dummy_model") train_output = model(train_input) # Build inference graph. K.set_learning_phase(0) infer_input = tf.placeholder(dtype=data_type, shape=DATA_SHAPE, name="infer_data") infer_output = model(infer_input) # Verify that all backend variables were created as float32_ref. for variable_name in BATCH_NORM_VARIABLE_NAMES: # Get backend variable by name var = _get_tf_weight_by_name(variable_name) # tf.float32_ref object does not exist, serialize and text compare. assert "float32_ref" in str( var.dtype ), "BatchNormalization created wrong variable dtype." # Verify that training and inference outputs follow Keras floatx setting. assert bn_out.dtype == data_type, "Wrong training output data type." assert infer_output.dtype == data_type, "Wrong inference output data type." # Infer with BN initial moving mean and variance (shall not modify the input). sess = K.get_session() net_out = sess.run(infer_output, feed_dict={infer_input: np_ones}) assert_allclose(net_out, np_ones, atol=1e-3) # Build cost and optimizer. K.set_learning_phase(1) cost = tf.reduce_sum(train_output) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.0) train_op = optimizer.minimize(loss=cost) # Run one step of training. _, net_out = sess.run([train_op, train_output], feed_dict={train_input: np_ones}) # Verify that BN removed mean -> all outputs should be zeros. assert_allclose(net_out, np.zeros_like(net_out, dtype=data_type), atol=1e-4) @pytest.mark.usefixtures("clear_session") @pytest.mark.parametrize("data_type", ["float16", "float32"]) def test_regularizers(data_type): # Set backend precision. K.set_floatx(data_type) # Use very small weights (will round to zero in non-patched fp16 implementation). l1_regularizer = l1(1e-9) l2_regularizer = l2(1e-9) # Create a convolutional model. K.set_learning_phase(1) train_input = tf.placeholder(dtype=data_type, shape=DATA_SHAPE, name="train_data") input_layer = Input(tensor=train_input, name="train_input_layer") conv1_out = Conv2D( 1, (3, 3), data_format="channels_first", kernel_regularizer=l1_regularizer, name="convolutional_layer_1", )(input_layer) conv2_out = Conv2D( 1, (3, 3), data_format="channels_first", kernel_regularizer=l2_regularizer, name="convolutional_layer_2", )(conv1_out) # Get the model and regularization losses. model = Model(inputs=input_layer, outputs=conv2_out, name="dummy_model") reg_losses = model.losses # Get the regularization losses with dummy input. np_ones = np.ones(DATA_SHAPE, dtype=data_type) sess = K.get_session() loss_values = sess.run(reg_losses, feed_dict={train_input: np_ones}) # Verify regularization loss data types. assert [loss.dtype for loss in loss_values] == [ np.float32, np.float32, ], "Regularization loss dtype shall match backend variable dtype (always float32)." # Verify that regularization loss is not zero. assert np.all(np.array(loss_values) > 1e-10), "Regularization loss is zero."
tao_tensorflow1_backend-main
third_party/keras/test_mixed_precision.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pybind Test.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy import pytest import sys def test_import_and_use(): import third_party.pybind11.py_bind_test_lib as py_bind_test_lib assert 3 == py_bind_test_lib.add(5, -2) if __name__ == "__main__": sys.exit(pytest.main([__file__]))
tao_tensorflow1_backend-main
third_party/pybind11/py_bind_test.py
"""Smoke tests for the built horovod wheel.""" import horovod def test_built_horovod_version(): """Test horovod available in ai-infra at the correct version.""" assert horovod.__version__ == "0.22.1" def test_lazy_horovod_init(): """Test horovod with tensorflow lazy initialization.""" import horovod.tensorflow as hvd hvd.init()
tao_tensorflow1_backend-main
third_party/horovod/test_horovod.py
import subprocess import os subprocess.call( "{}/third_party/horovod/build_horovod.sh".format(os.getcwd()), shell=True )
tao_tensorflow1_backend-main
third_party/horovod/build_horovod.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Some helpers for using jsonnet within ai-infra.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import _jsonnet from google.protobuf import json_format from google.protobuf import text_format _PROTO_EXTENSIONS = [".txt", ".prototxt"] def _import_callback(proto_constructor=None): def callback(owning_directory, path): """Reads a file from disk. Args: unused (?): Not used, but required to pass the callback to jsonnet. path (str): The path that is being imported. Returns: (str, str): The full path and contents of the file. """ # This enables both relative and absolute pathing. First, check to see if the absolute # path exists, at least relative to the working directory. If it doesn't, then prepend # the path of the directory of the currently executing file if not os.path.exists(path): path = os.path.join(owning_directory, path) with open(path, "r") as infile: data = infile.read() if proto_constructor and any( path.endswith(ext) for ext in _PROTO_EXTENSIONS ): proto = proto_constructor() text_format.Merge(data, proto) data = json_format.MessageToJson(proto) return path, data return callback def evaluate_file(path, ext_vars=None, proto_constructor=None): """Evaluates a jsonnet file. If a proto_constructor is given, then any `import` statements in the jsonnet file can import text protos; and the returned value will be an object of that proto type. Args: path (str): Path to the jsonnet file, relative to ai-infra root. ext_vars (dict): Variables to pass to the jsonnet script. proto_constructor (callable): Callable used for converting to protos. Returns: (str|protobuf): If a proto constructor is provided, the jsonnet file is evaluated as a text proto; otherwise it is evaluated as a JSON string. """ data = _jsonnet.evaluate_file( path, ext_vars=ext_vars, import_callback=_import_callback(proto_constructor) ) if proto_constructor: proto = proto_constructor() json_format.Parse(data, proto) return proto return data
tao_tensorflow1_backend-main
third_party/jsonnet/jsonnet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Some helpers for using jsonnet within ai-infra.""" from third_party.jsonnet.jsonnet import evaluate_file # noqa __all__ = "evaluate_file"
tao_tensorflow1_backend-main
third_party/jsonnet/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for jsonnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json from third_party import jsonnet from third_party.jsonnet import fake_pb2 def test_jsonnet(): result = jsonnet.evaluate_file("third_party/jsonnet/testdata/template.jsonnet") assert json.loads(result)["foo"] == "bar" def test_relative_import(): result = jsonnet.evaluate_file( "third_party/jsonnet/testdata/relimport_template.jsonnet" ) assert json.loads(result)["foo"] == "bar" def test_jsonnet_with_proto(): result = jsonnet.evaluate_file( "third_party/jsonnet/testdata/template.jsonnet", proto_constructor=fake_pb2.FakeMessage, ) assert result.foo == "bar" def test_external_variable(): result = jsonnet.evaluate_file( "third_party/jsonnet/testdata/ext_var.jsonnet", ext_vars={"external_value": "hello world"}, ) assert json.loads(result)["the_val"] == "hello world"
tao_tensorflow1_backend-main
third_party/jsonnet/jsonnet_test.py
#!/usr/bin/env python # coding: utf-8 import json import numpy as np from PIL import Image from tqdm import tqdm # [ymin, ymax, xmin, xmax] to [x, y, w, h] def box_transform(box): x = box[2] y = box[0] w = box[3] - box[2] + 1 h = box[1] - box[0] + 1 return [x, y, w, h] def convert_anno(split): with open('data/vrd/new_annotations_' + split + '.json', 'r') as f: vrd_anns = json.load(f) print(len(vrd_anns)) img_dir = 'data/vrd/' + split + '_images/' new_imgs = [] new_anns = [] ann_id = 1 for f, anns in tqdm(vrd_anns.items()): im_w, im_h = Image.open(img_dir + f).size image_id = int(f.split('.')[0]) new_imgs.append(dict(file_name=f, height=im_h, width=im_w, id=image_id)) # used for duplicate checking bbox_set = set() for ann in anns: # "area" in COCO is the area of segmentation mask, while here it's the area of bbox # also need to fake a 'iscrowd' which is always 0 s_box = ann['subject']['bbox'] bbox = box_transform(s_box) if not tuple(bbox) in bbox_set: bbox_set.add(tuple(bbox)) area = bbox[2] * bbox[3] cat = ann['subject']['category'] new_anns.append(dict(area=area, bbox=bbox, category_id=cat, id=ann_id, image_id=image_id, iscrowd=0)) ann_id += 1 o_box = ann['object']['bbox'] bbox = box_transform(o_box) if not tuple(bbox) in bbox_set: bbox_set.add(tuple(bbox)) area = bbox[2] * bbox[3] cat = ann['object']['category'] new_anns.append(dict(area=area, bbox=bbox, category_id=cat, id=ann_id, image_id=image_id, iscrowd=0)) ann_id += 1 with open('data/vrd/objects.json', 'r') as f: vrd_objs = json.load(f) new_objs = [] for i, obj in enumerate(vrd_objs): new_objs.append(dict(id=i, name=obj, supercategory=obj)) new_data = dict(images=new_imgs, annotations=new_anns, categories=new_objs) with open('data/vrd/detections_' + split + '.json', 'w') as outfile: json.dump(new_data, outfile) if __name__ == '__main__': convert_anno('train') convert_anno('val')
ContrastiveLosses4VRD-master
tools/convert_vrd_anno_to_coco_format.py
# Adapted by Ji Zhang, 2019 # # Based on Detectron.pytorch/tools/test_net.py Written by Roy Tseng """Perform inference on one or more datasets.""" import argparse import cv2 import os import pprint import sys import time from six.moves import cPickle as pickle import torch import _init_paths # pylint: disable=unused-import from core.config import cfg, merge_cfg_from_file, merge_cfg_from_list, assert_and_infer_cfg from core.test_engine_rel import run_inference import utils.logging from datasets_rel import task_evaluation_sg as task_evaluation_sg from datasets_rel import task_evaluation_vg_and_vrd as task_evaluation_vg_and_vrd # OpenCL may be enabled by default in OpenCV3; disable it because it's not # thread safe and causes unwanted GPU memory allocations. cv2.ocl.setUseOpenCL(False) def parse_args(): """Parse in command line arguments""" parser = argparse.ArgumentParser(description='Test a Fast R-CNN network') parser.add_argument( '--dataset', help='training dataset') parser.add_argument( '--cfg', dest='cfg_file', required=True, help='optional config file') parser.add_argument( '--load_ckpt', help='path of checkpoint to load') parser.add_argument( '--load_detectron', help='path to the detectron weight pickle file') parser.add_argument( '--output_dir', help='output directory to save the testing results. If not provided, ' 'defaults to [args.load_ckpt|args.load_detectron]/../test.') parser.add_argument( '--set', dest='set_cfgs', help='set config keys, will overwrite config in the cfg_file.' ' See lib/core/config.py for all options', default=[], nargs='*') parser.add_argument( '--range', help='start (inclusive) and end (exclusive) indices', type=int, nargs=2) parser.add_argument( '--multi-gpu-testing', help='using multiple gpus for inference', action='store_true') parser.add_argument( '--do_val', dest='do_val', help='do evaluation', action='store_true') parser.add_argument( '--do_vis', dest='do_vis', help='visualize the last layer of conv_body', action='store_true') parser.add_argument( '--do_special', dest='do_special', help='visualize the last layer of conv_body', action='store_true') parser.add_argument( '--use_gt_boxes', dest='use_gt_boxes', help='use gt boxes for sgcls/prdcls', action='store_true') parser.add_argument( '--use_gt_labels', dest='use_gt_labels', help='use gt boxes for sgcls/prdcls', action='store_true') return parser.parse_args() if __name__ == '__main__': if not torch.cuda.is_available(): sys.exit("Need a CUDA device to run the code.") logger = utils.logging.setup_logging(__name__) args = parse_args() logger.info('Called with args:') logger.info(args) assert (torch.cuda.device_count() == 1) ^ bool(args.multi_gpu_testing) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.set_cfgs is not None: merge_cfg_from_file(args.cfg_file) if args.dataset == "oi_rel": cfg.TEST.DATASETS = ('oi_rel_val',) cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "oi_rel_mini": cfg.TEST.DATASETS = ('oi_rel_val_mini',) cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "oi_all_rel_train": cfg.TEST.DATASETS = ('oi_all_rel_train',) cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "oi_all_rel": cfg.TEST.DATASETS = ('oi_all_rel_val',) cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "oi_kaggle": cfg.TEST.DATASETS = ('oi_kaggle_rel_test',) cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "vg_mini": cfg.TEST.DATASETS = ('vg_val_mini',) cfg.MODEL.NUM_CLASSES = 151 cfg.MODEL.NUM_PRD_CLASSES = 50 # exclude background elif args.dataset == "vg": cfg.TEST.DATASETS = ('vg_val',) cfg.MODEL.NUM_CLASSES = 151 cfg.MODEL.NUM_PRD_CLASSES = 50 # exclude background elif args.dataset == "vrd_train": cfg.TEST.DATASETS = ('vrd_train',) cfg.MODEL.NUM_CLASSES = 101 cfg.MODEL.NUM_PRD_CLASSES = 70 # exclude background elif args.dataset == "vrd": cfg.TEST.DATASETS = ('vrd_val',) cfg.MODEL.NUM_CLASSES = 101 cfg.MODEL.NUM_PRD_CLASSES = 70 # exclude background else: # For subprocess call assert cfg.TEST.DATASETS, 'cfg.TEST.DATASETS shouldn\'t be empty' assert_and_infer_cfg() if not cfg.MODEL.RUN_BASELINE: assert bool(args.load_ckpt) ^ bool(args.load_detectron), \ 'Exactly one of --load_ckpt and --load_detectron should be specified.' if args.output_dir is None: ckpt_path = args.load_ckpt if args.load_ckpt else args.load_detectron args.output_dir = os.path.join( os.path.dirname(os.path.dirname(ckpt_path)), 'test') logger.info('Automatically set output directory to %s', args.output_dir) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) logger.info('Testing with config:') logger.info(pprint.pformat(cfg)) # For test_engine.multi_gpu_test_net_on_dataset args.test_net_file, _ = os.path.splitext(__file__) # manually set args.cuda args.cuda = True if args.use_gt_boxes: if args.use_gt_labels: det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_prdcls.pkl') else: det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_sgcls.pkl') else: det_file = os.path.join(args.output_dir, 'rel_detections.pkl') if os.path.exists(det_file): logger.info('Loading results from {}'.format(det_file)) with open(det_file, 'rb') as f: all_results = pickle.load(f) logger.info('Starting evaluation now...') if args.dataset.find('vg') >= 0 or args.dataset.find('vrd') >= 0: task_evaluation_vg_and_vrd.eval_rel_results(all_results, args.output_dir, args.do_val) else: task_evaluation_sg.eval_rel_results(all_results, args.output_dir, args.do_val, args.do_vis, args.do_special) else: run_inference( args, ind_range=args.range, multi_gpu_testing=args.multi_gpu_testing, check_expected_results=True)
ContrastiveLosses4VRD-master
tools/test_net_rel.py
# Based on Detectron.pytorch/tools/_init_paths.py by Roy Tseng # modified for this project by Ji Zhang """Add {PROJECT_ROOT}/lib. to PYTHONPATH Usage: import this module before import any modules under lib/ e.g import _init_paths from core.config import cfg """ import os.path as osp import sys def add_path(path): if path not in sys.path: sys.path.insert(0, path) this_dir = osp.abspath(osp.dirname(osp.dirname(__file__))) # add Detectron.PyTorch/lib detectron_path = osp.join(this_dir, 'Detectron_pytorch', 'lib') add_path(detectron_path) # Add lib to PYTHONPATH lib_path = osp.join(this_dir, 'lib') add_path(lib_path)
ContrastiveLosses4VRD-master
tools/_init_paths.py
#!/usr/bin/env python # coding: utf-8 # In[23]: import json import numpy as np import os from PIL import Image from tqdm import tqdm import copy from shutil import copyfile # take the images from the sg_dataset folder and rename them # Also converts the gif and png images into jpg def process_vrd_split(in_split, out_split): vrd_dir = 'data/vrd/sg_dataset/sg_' + in_split + '_images/' new_dir = 'data/vrd/'+ out_split + '_images/' os.mkdir(new_dir) cnt = 1 name_map = {} for f in tqdm(sorted(os.listdir(vrd_dir))): # for f in os.listdir(vrd_dir): ext = f.split('.')[1] if ext.find('png') >= 0 or ext.find('gif') >= 0: img = Image.open(vrd_dir + f).convert('RGB') else: copyfile(vrd_dir + f, new_dir + '{:012d}'.format(cnt) + '.jpg') if ext.find('gif') >= 0: img.save(new_dir + '{:012d}'.format(cnt) + '.jpg') elif ext.find('png') >= 0: img.save(new_dir + '{:012d}'.format(cnt) + '.jpg') name_map[f] = cnt cnt += 1 print(len(name_map)) # store the filename mappings here name_map_fname = 'data/vrd/%s_fname_mapping.json' %(out_split) with open(name_map_fname, 'w') as f: json.dump(name_map, f, sort_keys=True, indent=4) f.close() # load the original annotations with open('data/vrd/annotations_' + in_split + '.json', 'r') as f: vrd_anns = json.load(f) f.close() new_anns = {} for k, v in tqdm(vrd_anns.items()): # apparently this gif file has been renamed in the original annotations if k == '4392556686_44d71ff5a0_o.jpg': k = '4392556686_44d71ff5a0_o.gif' new_k = '{:012d}'.format(name_map[k]) + '.jpg' new_anns[new_k] = v # create the new annotations with open('data/vrd/new_annotations_' + out_split + '.json', 'w') as outfile: json.dump(new_anns, outfile) if __name__ == '__main__': # using the test split as our val. We won't have a true test split for VRD process_vrd_split('test', 'val') process_vrd_split('train', 'train')
ContrastiveLosses4VRD-master
tools/rename_vrd_with_numbers.py
# Adapted by Ji Zhang, 2019 # # Based on Detectron.pytorch/tools/train_net.py Written by Roy Tseng """ Training script for steps_with_decay policy""" import argparse import os import sys import pickle import resource import traceback import logging from collections import defaultdict import numpy as np import yaml import torch from torch.autograd import Variable import torch.nn as nn import cv2 cv2.setNumThreads(0) # pytorch issue 1355: possible deadlock in dataloader import _init_paths # pylint: disable=unused-import import nn as mynn import utils_rel.net_rel as net_utils_rel import utils.misc as misc_utils from core.config import cfg, cfg_from_file, cfg_from_list, assert_and_infer_cfg from datasets_rel.roidb_rel import combined_roidb_for_training from roi_data_rel.loader_rel import RoiDataLoader, MinibatchSampler, BatchSampler, collate_minibatch from modeling_rel.model_builder_rel import Generalized_RCNN from utils.detectron_weight_helper import load_detectron_weight from utils.logging import setup_logging from utils.timer import Timer from utils_rel.training_stats_rel import TrainingStats # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('roi_data.loader').setLevel(logging.INFO) # RuntimeError: received 0 items of ancdata. Issue: pytorch/pytorch#973 rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) def parse_args(): """Parse input arguments""" parser = argparse.ArgumentParser(description='Train a X-RCNN network') parser.add_argument( '--dataset', dest='dataset', required=True, help='Dataset to use') parser.add_argument( '--cfg', dest='cfg_file', required=True, help='Config file for training (and optionally testing)') parser.add_argument( '--set', dest='set_cfgs', help='Set config keys. Key value sequence seperate by whitespace.' 'e.g. [key] [value] [key] [value]', default=[], nargs='+') parser.add_argument( '--disp_interval', help='Display training info every N iterations', default=20, type=int) parser.add_argument( '--no_cuda', dest='cuda', help='Do not use CUDA device', action='store_false') # Optimization # These options has the highest prioity and can overwrite the values in config file # or values set by set_cfgs. `None` means do not overwrite. parser.add_argument( '--bs', dest='batch_size', help='Explicitly specify to overwrite the value comed from cfg_file.', type=int) parser.add_argument( '--nw', dest='num_workers', help='Explicitly specify to overwrite number of workers to load data. Defaults to 4', type=int) parser.add_argument( '--iter_size', help='Update once every iter_size steps, as in Caffe.', default=1, type=int) parser.add_argument( '--o', dest='optimizer', help='Training optimizer.', default=None) parser.add_argument( '--lr', help='Base learning rate.', default=None, type=float) parser.add_argument( '--lr_decay_gamma', help='Learning rate decay rate.', default=None, type=float) # Epoch parser.add_argument( '--start_step', help='Starting step count for training epoch. 0-indexed.', default=0, type=int) # Resume training: requires same iterations per epoch parser.add_argument( '--resume', help='resume to training on a checkpoint', action='store_true') parser.add_argument( '--no_save', help='do not save anything', action='store_true') parser.add_argument( '--load_ckpt', help='checkpoint path to load') parser.add_argument( '--load_detectron', help='path to the detectron weight pickle file') parser.add_argument( '--use_tfboard', help='Use tensorflow tensorboard to log training info', action='store_true') return parser.parse_args() def save_ckpt(output_dir, args, step, train_size, model, optimizer): """Save checkpoint""" if args.no_save: return ckpt_dir = os.path.join(output_dir, 'ckpt') if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir) save_name = os.path.join(ckpt_dir, 'model_step{}.pth'.format(step)) if isinstance(model, mynn.DataParallel): model = model.module model_state_dict = model.state_dict() torch.save({ 'step': step, 'train_size': train_size, 'batch_size': args.batch_size, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}, save_name) logger.info('save model: %s', save_name) def main(): """Main function""" args = parse_args() print('Called with args:') print(args) if not torch.cuda.is_available(): sys.exit("Need a CUDA device to run the code.") if args.cuda or cfg.NUM_GPUS > 0: cfg.CUDA = True else: raise ValueError("Need Cuda device to run !") if args.dataset == "vrd": cfg.TRAIN.DATASETS = ('vrd_train',) cfg.MODEL.NUM_CLASSES = 101 cfg.MODEL.NUM_PRD_CLASSES = 70 # exclude background elif args.dataset == "vg_mini": cfg.TRAIN.DATASETS = ('vg_train_mini',) cfg.MODEL.NUM_CLASSES = 151 cfg.MODEL.NUM_PRD_CLASSES = 50 # exclude background elif args.dataset == "vg": cfg.TRAIN.DATASETS = ('vg_train',) cfg.MODEL.NUM_CLASSES = 151 cfg.MODEL.NUM_PRD_CLASSES = 50 # exclude background elif args.dataset == "oi_rel": cfg.TRAIN.DATASETS = ('oi_rel_train',) # cfg.MODEL.NUM_CLASSES = 62 cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background elif args.dataset == "oi_rel_mini": cfg.TRAIN.DATASETS = ('oi_rel_train_mini',) # cfg.MODEL.NUM_CLASSES = 62 cfg.MODEL.NUM_CLASSES = 58 cfg.MODEL.NUM_PRD_CLASSES = 9 # rel, exclude background else: raise ValueError("Unexpected args.dataset: {}".format(args.dataset)) cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) ### Adaptively adjust some configs ### cfg.NUM_GPUS = torch.cuda.device_count() original_batch_size = cfg.NUM_GPUS * cfg.TRAIN.IMS_PER_BATCH original_ims_per_batch = cfg.TRAIN.IMS_PER_BATCH original_num_gpus = cfg.NUM_GPUS if args.batch_size is None: args.batch_size = original_batch_size assert (args.batch_size % cfg.NUM_GPUS) == 0, \ 'batch_size: %d, NUM_GPUS: %d' % (args.batch_size, cfg.NUM_GPUS) cfg.TRAIN.IMS_PER_BATCH = args.batch_size // cfg.NUM_GPUS effective_batch_size = args.iter_size * args.batch_size print('effective_batch_size = batch_size * iter_size = %d * %d' % (args.batch_size, args.iter_size)) print('Adaptive config changes:') print(' effective_batch_size: %d --> %d' % (original_batch_size, effective_batch_size)) print(' NUM_GPUS: %d --> %d' % (original_num_gpus, cfg.NUM_GPUS)) print(' IMS_PER_BATCH: %d --> %d' % (original_ims_per_batch, cfg.TRAIN.IMS_PER_BATCH)) ### Adjust learning based on batch size change linearly # For iter_size > 1, gradients are `accumulated`, so lr is scaled based # on batch_size instead of effective_batch_size old_base_lr = cfg.SOLVER.BASE_LR cfg.SOLVER.BASE_LR *= args.batch_size / original_batch_size print('Adjust BASE_LR linearly according to batch_size change:\n' ' BASE_LR: {} --> {}'.format(old_base_lr, cfg.SOLVER.BASE_LR)) ### Adjust solver steps step_scale = original_batch_size / effective_batch_size old_solver_steps = cfg.SOLVER.STEPS old_max_iter = cfg.SOLVER.MAX_ITER cfg.SOLVER.STEPS = list(map(lambda x: int(x * step_scale + 0.5), cfg.SOLVER.STEPS)) cfg.SOLVER.MAX_ITER = int(cfg.SOLVER.MAX_ITER * step_scale + 0.5) print('Adjust SOLVER.STEPS and SOLVER.MAX_ITER linearly based on effective_batch_size change:\n' ' SOLVER.STEPS: {} --> {}\n' ' SOLVER.MAX_ITER: {} --> {}'.format(old_solver_steps, cfg.SOLVER.STEPS, old_max_iter, cfg.SOLVER.MAX_ITER)) # Scale FPN rpn_proposals collect size (post_nms_topN) in `collect` function # of `collect_and_distribute_fpn_rpn_proposals.py` # # post_nms_topN = int(cfg[cfg_key].RPN_POST_NMS_TOP_N * cfg.FPN.RPN_COLLECT_SCALE + 0.5) if cfg.FPN.FPN_ON and cfg.MODEL.FASTER_RCNN: cfg.FPN.RPN_COLLECT_SCALE = cfg.TRAIN.IMS_PER_BATCH / original_ims_per_batch print('Scale FPN rpn_proposals collect size directly propotional to the change of IMS_PER_BATCH:\n' ' cfg.FPN.RPN_COLLECT_SCALE: {}'.format(cfg.FPN.RPN_COLLECT_SCALE)) if args.num_workers is not None: cfg.DATA_LOADER.NUM_THREADS = args.num_workers print('Number of data loading threads: %d' % cfg.DATA_LOADER.NUM_THREADS) ### Overwrite some solver settings from command line arguments if args.optimizer is not None: cfg.SOLVER.TYPE = args.optimizer if args.lr is not None: cfg.SOLVER.BASE_LR = args.lr if args.lr_decay_gamma is not None: cfg.SOLVER.GAMMA = args.lr_decay_gamma assert_and_infer_cfg() timers = defaultdict(Timer) ### Dataset ### timers['roidb'].tic() roidb, ratio_list, ratio_index = combined_roidb_for_training( cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES) timers['roidb'].toc() roidb_size = len(roidb) logger.info('{:d} roidb entries'.format(roidb_size)) logger.info('Takes %.2f sec(s) to construct roidb', timers['roidb'].average_time) # Effective training sample size for one epoch train_size = roidb_size // args.batch_size * args.batch_size batchSampler = BatchSampler( sampler=MinibatchSampler(ratio_list, ratio_index), batch_size=args.batch_size, drop_last=True ) dataset = RoiDataLoader( roidb, cfg.MODEL.NUM_CLASSES, training=True) dataloader = torch.utils.data.DataLoader( dataset, batch_sampler=batchSampler, num_workers=cfg.DATA_LOADER.NUM_THREADS, collate_fn=collate_minibatch) dataiterator = iter(dataloader) ### Model ### maskRCNN = Generalized_RCNN() if cfg.CUDA: maskRCNN.cuda() ### Optimizer ### # record backbone params, i.e., conv_body and box_head params gn_params = [] backbone_bias_params = [] backbone_bias_param_names = [] prd_branch_bias_params = [] prd_branch_bias_param_names = [] backbone_nonbias_params = [] backbone_nonbias_param_names = [] prd_branch_nonbias_params = [] prd_branch_nonbias_param_names = [] for key, value in dict(maskRCNN.named_parameters()).items(): if value.requires_grad: if 'gn' in key: gn_params.append(value) elif 'Conv_Body' in key or 'Box_Head' in key or 'Box_Outs' in key or 'RPN' in key: if 'bias' in key: backbone_bias_params.append(value) backbone_bias_param_names.append(key) else: backbone_nonbias_params.append(value) backbone_nonbias_param_names.append(key) else: if 'bias' in key: prd_branch_bias_params.append(value) prd_branch_bias_param_names.append(key) else: prd_branch_nonbias_params.append(value) prd_branch_nonbias_param_names.append(key) # Learning rate of 0 is a dummy value to be set properly at the start of training params = [ {'params': backbone_nonbias_params, 'lr': 0, 'weight_decay': cfg.SOLVER.WEIGHT_DECAY}, {'params': backbone_bias_params, 'lr': 0 * (cfg.SOLVER.BIAS_DOUBLE_LR + 1), 'weight_decay': cfg.SOLVER.WEIGHT_DECAY if cfg.SOLVER.BIAS_WEIGHT_DECAY else 0}, {'params': prd_branch_nonbias_params, 'lr': 0, 'weight_decay': cfg.SOLVER.WEIGHT_DECAY}, {'params': prd_branch_bias_params, 'lr': 0 * (cfg.SOLVER.BIAS_DOUBLE_LR + 1), 'weight_decay': cfg.SOLVER.WEIGHT_DECAY if cfg.SOLVER.BIAS_WEIGHT_DECAY else 0}, {'params': gn_params, 'lr': 0, 'weight_decay': cfg.SOLVER.WEIGHT_DECAY_GN} ] if cfg.SOLVER.TYPE == "SGD": optimizer = torch.optim.SGD(params, momentum=cfg.SOLVER.MOMENTUM) elif cfg.SOLVER.TYPE == "Adam": optimizer = torch.optim.Adam(params) ### Load checkpoint if args.load_ckpt: load_name = args.load_ckpt logging.info("loading checkpoint %s", load_name) checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage) net_utils_rel.load_ckpt_rel(maskRCNN, checkpoint['model']) if args.resume: args.start_step = checkpoint['step'] + 1 if 'train_size' in checkpoint: # For backward compatibility if checkpoint['train_size'] != train_size: print('train_size value: %d different from the one in checkpoint: %d' % (train_size, checkpoint['train_size'])) # reorder the params in optimizer checkpoint's params_groups if needed # misc_utils.ensure_optimizer_ckpt_params_order(param_names, checkpoint) # There is a bug in optimizer.load_state_dict on Pytorch 0.3.1. # However it's fixed on master. # optimizer.load_state_dict(checkpoint['optimizer']) misc_utils.load_optimizer_state_dict(optimizer, checkpoint['optimizer']) del checkpoint torch.cuda.empty_cache() if args.load_detectron: #TODO resume for detectron weights (load sgd momentum values) logging.info("loading Detectron weights %s", args.load_detectron) load_detectron_weight(maskRCNN, args.load_detectron) # lr = optimizer.param_groups[0]['lr'] # lr of non-bias parameters, for commmand line outputs. lr = optimizer.param_groups[2]['lr'] # lr of non-backbone parameters, for commmand line outputs. backbone_lr = optimizer.param_groups[0]['lr'] # lr of backbone parameters, for commmand line outputs. maskRCNN = mynn.DataParallel(maskRCNN, cpu_keywords=['im_info', 'roidb'], minibatch=True) ### Training Setups ### args.run_name = misc_utils.get_run_name() + '_step_with_prd_cls_v' + str(cfg.MODEL.SUBTYPE) output_dir = misc_utils.get_output_dir(args, args.run_name) args.cfg_filename = os.path.basename(args.cfg_file) if not args.no_save: if not os.path.exists(output_dir): os.makedirs(output_dir) blob = {'cfg': yaml.dump(cfg), 'args': args} with open(os.path.join(output_dir, 'config_and_args.pkl'), 'wb') as f: pickle.dump(blob, f, pickle.HIGHEST_PROTOCOL) if args.use_tfboard: from tensorboardX import SummaryWriter # Set the Tensorboard logger tblogger = SummaryWriter(output_dir) ### Training Loop ### maskRCNN.train() # CHECKPOINT_PERIOD = int(cfg.TRAIN.SNAPSHOT_ITERS / cfg.NUM_GPUS) CHECKPOINT_PERIOD = cfg.SOLVER.MAX_ITER / cfg.TRAIN.SNAPSHOT_FREQ # Set index for decay steps decay_steps_ind = None for i in range(1, len(cfg.SOLVER.STEPS)): if cfg.SOLVER.STEPS[i] >= args.start_step: decay_steps_ind = i break if decay_steps_ind is None: decay_steps_ind = len(cfg.SOLVER.STEPS) training_stats = TrainingStats( args, args.disp_interval, tblogger if args.use_tfboard and not args.no_save else None) try: logger.info('Training starts !') step = args.start_step for step in range(args.start_step, cfg.SOLVER.MAX_ITER): # Warm up if step < cfg.SOLVER.WARM_UP_ITERS: method = cfg.SOLVER.WARM_UP_METHOD if method == 'constant': warmup_factor = cfg.SOLVER.WARM_UP_FACTOR elif method == 'linear': alpha = step / cfg.SOLVER.WARM_UP_ITERS warmup_factor = cfg.SOLVER.WARM_UP_FACTOR * (1 - alpha) + alpha else: raise KeyError('Unknown SOLVER.WARM_UP_METHOD: {}'.format(method)) lr_new = cfg.SOLVER.BASE_LR * warmup_factor net_utils_rel.update_learning_rate_rel(optimizer, lr, lr_new) # lr = optimizer.param_groups[0]['lr'] lr = optimizer.param_groups[2]['lr'] backbone_lr = optimizer.param_groups[0]['lr'] assert lr == lr_new elif step == cfg.SOLVER.WARM_UP_ITERS: net_utils_rel.update_learning_rate_rel(optimizer, lr, cfg.SOLVER.BASE_LR) # lr = optimizer.param_groups[0]['lr'] lr = optimizer.param_groups[2]['lr'] backbone_lr = optimizer.param_groups[0]['lr'] assert lr == cfg.SOLVER.BASE_LR # Learning rate decay if decay_steps_ind < len(cfg.SOLVER.STEPS) and \ step == cfg.SOLVER.STEPS[decay_steps_ind]: logger.info('Decay the learning on step %d', step) lr_new = lr * cfg.SOLVER.GAMMA net_utils_rel.update_learning_rate_rel(optimizer, lr, lr_new) # lr = optimizer.param_groups[0]['lr'] lr = optimizer.param_groups[2]['lr'] backbone_lr = optimizer.param_groups[0]['lr'] assert lr == lr_new decay_steps_ind += 1 training_stats.IterTic() optimizer.zero_grad() for inner_iter in range(args.iter_size): try: input_data = next(dataiterator) except StopIteration: dataiterator = iter(dataloader) input_data = next(dataiterator) for key in input_data: if key != 'roidb': # roidb is a list of ndarrays with inconsistent length input_data[key] = list(map(Variable, input_data[key])) net_outputs = maskRCNN(**input_data) training_stats.UpdateIterStats(net_outputs, inner_iter) loss = net_outputs['total_loss'] loss.backward() optimizer.step() training_stats.IterToc() training_stats.LogIterStats(step, lr, backbone_lr) if (step+1) % CHECKPOINT_PERIOD == 0: save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) # ---- Training ends ---- # Save last checkpoint save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) except (RuntimeError, KeyboardInterrupt): del dataiterator logger.info('Save ckpt on exception ...') save_ckpt(output_dir, args, step, train_size, maskRCNN, optimizer) logger.info('Save ckpt done.') stack_trace = traceback.format_exc() print(stack_trace) finally: if args.use_tfboard and not args.no_save: tblogger.close() if __name__ == '__main__': main()
ContrastiveLosses4VRD-master
tools/train_net_step_rel.py
# Based on: # Detectron.pytorch/lib/setup.py # and modified for this project # Original source license text: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- from __future__ import print_function from Cython.Build import cythonize from Cython.Distutils import build_ext from setuptools import Extension from setuptools import setup import numpy as np # Obtain the numpy include directory. This logic works across numpy versions. try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() ext_modules = [ Extension( name='utils_rel.cython_bbox_rel', sources=['utils_rel/cython_bbox_rel.pyx'], extra_compile_args=['-Wno-cpp'], include_dirs=[numpy_include] ) ] setup( name='mask_rcnn_rel', ext_modules=cythonize(ext_modules) )
ContrastiveLosses4VRD-master
lib/setup.py
# Adapted by Ji Zhang, 2019 # from Detectron.pytorch/lib/core/test_engine.py # Original license text below # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Test a Detectron network on an imdb (image database).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import cv2 import datetime import logging import numpy as np from numpy import linalg as la import os import yaml import json from six.moves import cPickle as pickle import torch import nn as mynn from torch.autograd import Variable from core.config import cfg from core.test_rel import im_detect_rels from datasets_rel import task_evaluation_sg as task_evaluation_sg from datasets_rel import task_evaluation_vg_and_vrd as task_evaluation_vg_and_vrd from datasets_rel.json_dataset_rel import JsonDatasetRel from modeling_rel import model_builder_rel from utils.detectron_weight_helper import load_detectron_weight import utils.env as envu import utils_rel.net_rel as net_utils_rel import utils_rel.subprocess_rel as subprocess_utils import utils.vis as vis_utils from utils.io import save_object from utils.timer import Timer logger = logging.getLogger(__name__) def get_eval_functions(): # Determine which parent or child function should handle inference # Generic case that handles all network types other than RPN-only nets # and RetinaNet child_func = test_net parent_func = test_net_on_dataset return parent_func, child_func def get_inference_dataset(index, is_parent=True): assert is_parent or len(cfg.TEST.DATASETS) == 1, \ 'The child inference process can only work on a single dataset' dataset_name = cfg.TEST.DATASETS[index] proposal_file = None return dataset_name, proposal_file def run_inference( args, ind_range=None, multi_gpu_testing=False, gpu_id=0, check_expected_results=False): parent_func, child_func = get_eval_functions() is_parent = ind_range is None def result_getter(): if is_parent: # Parent case: # In this case we're either running inference on the entire dataset in a # single process or (if multi_gpu_testing is True) using this process to # launch subprocesses that each run inference on a range of the dataset all_results = [] for i in range(len(cfg.TEST.DATASETS)): dataset_name, proposal_file = get_inference_dataset(i) output_dir = args.output_dir results = parent_func( args, dataset_name, proposal_file, output_dir, multi_gpu=multi_gpu_testing ) all_results.append(results) return all_results else: # Subprocess child case: # In this case test_net was called via subprocess.Popen to execute on a # range of inputs on a single dataset dataset_name, proposal_file = get_inference_dataset(0, is_parent=False) output_dir = args.output_dir return child_func( args, dataset_name, proposal_file, output_dir, ind_range=ind_range, gpu_id=gpu_id ) all_results = result_getter() return all_results def test_net_on_dataset( args, dataset_name, proposal_file, output_dir, multi_gpu=False, gpu_id=0): """Run inference on a dataset.""" dataset = JsonDatasetRel(dataset_name) test_timer = Timer() test_timer.tic() if multi_gpu: num_images = len(dataset.get_roidb(gt=args.do_val)) all_results = multi_gpu_test_net_on_dataset( args, dataset_name, proposal_file, num_images, output_dir ) else: all_results = test_net( args, dataset_name, proposal_file, output_dir, gpu_id=gpu_id ) test_timer.toc() logger.info('Total inference time: {:.3f}s'.format(test_timer.average_time)) logger.info('Starting evaluation now...') if dataset_name.find('vg') >= 0 or dataset_name.find('vrd') >= 0: task_evaluation_vg_and_vrd.eval_rel_results(all_results, output_dir, args.do_val) else: task_evaluation_sg.eval_rel_results(all_results, output_dir, args.do_val, args.do_vis, args.do_special) return all_results def multi_gpu_test_net_on_dataset( args, dataset_name, proposal_file, num_images, output_dir): """Multi-gpu inference on a dataset.""" binary_dir = envu.get_runtime_dir() binary_ext = envu.get_py_bin_ext() binary = os.path.join(binary_dir, args.test_net_file + binary_ext) assert os.path.exists(binary), 'Binary \'{}\' not found'.format(binary) # Pass the target dataset and proposal file (if any) via the command line opts = ['TEST.DATASETS', '("{}",)'.format(dataset_name)] if proposal_file: opts += ['TEST.PROPOSAL_FILES', '("{}",)'.format(proposal_file)] if args.do_val: opts += ['--do_val'] if args.do_vis: opts += ['--do_vis'] if args.do_special: opts += ['--do_special'] if args.use_gt_boxes: opts += ['--use_gt_boxes'] if args.use_gt_labels: opts += ['--use_gt_labels'] # Run inference in parallel in subprocesses # Outputs will be a list of outputs from each subprocess, where the output # of each subprocess is the dictionary saved by test_net(). outputs = subprocess_utils.process_in_parallel( 'rel_detection', num_images, binary, output_dir, args.load_ckpt, args.load_detectron, opts ) # Collate the results from each subprocess all_results = [] for det_data in outputs: all_results += det_data if args.use_gt_boxes: if args.use_gt_labels: det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_prdcls.pkl') else: det_file = os.path.join(args.output_dir, 'rel_detections_gt_boxes_sgcls.pkl') else: det_file = os.path.join(args.output_dir, 'rel_detections.pkl') save_object(all_results, det_file) logger.info('Wrote rel_detections to: {}'.format(os.path.abspath(det_file))) return all_results def test_net( args, dataset_name, proposal_file, output_dir, ind_range=None, gpu_id=0): """Run inference on all images in a dataset or over an index range of images in a dataset using a single GPU. """ assert not cfg.MODEL.RPN_ONLY, \ 'Use rpn_generate to generate proposals from RPN-only models' roidb, dataset, start_ind, end_ind, total_num_images = get_roidb_and_dataset( dataset_name, proposal_file, ind_range, args.do_val ) model = initialize_model_from_cfg(args, gpu_id=gpu_id) num_images = len(roidb) all_results = [None for _ in range(num_images)] timers = defaultdict(Timer) for i, entry in enumerate(roidb): box_proposals = None im = cv2.imread(entry['image']) if args.use_gt_boxes: im_results = im_detect_rels(model, im, dataset_name, box_proposals, args.do_vis, timers, entry, args.use_gt_labels) else: im_results = im_detect_rels(model, im, dataset_name, box_proposals, args.do_vis, timers) im_results.update(dict(image=entry['image'])) # add gt if args.do_val: im_results.update( dict(gt_sbj_boxes=entry['sbj_gt_boxes'], gt_sbj_labels=entry['sbj_gt_classes'], gt_obj_boxes=entry['obj_gt_boxes'], gt_obj_labels=entry['obj_gt_classes'], gt_prd_labels=entry['prd_gt_classes'])) all_results[i] = im_results if i % 10 == 0: # Reduce log file size ave_total_time = np.sum([t.average_time for t in timers.values()]) eta_seconds = ave_total_time * (num_images - i - 1) eta = str(datetime.timedelta(seconds=int(eta_seconds))) det_time = (timers['im_detect_rels'].average_time) logger.info(( 'im_detect: range [{:d}, {:d}] of {:d}: ' '{:d}/{:d} {:.3f}s (eta: {})').format( start_ind + 1, end_ind, total_num_images, start_ind + i + 1, start_ind + num_images, det_time, eta)) cfg_yaml = yaml.dump(cfg) if ind_range is not None: det_name = 'rel_detection_range_%s_%s.pkl' % tuple(ind_range) else: if args.use_gt_boxes: if args.use_gt_labels: det_name = 'rel_detections_gt_boxes_prdcls.pkl' else: det_name = 'rel_detections_gt_boxes_sgcls.pkl' else: det_name = 'rel_detections.pkl' det_file = os.path.join(output_dir, det_name) save_object(all_results, det_file) logger.info('Wrote rel_detections to: {}'.format(os.path.abspath(det_file))) return all_results def initialize_model_from_cfg(args, gpu_id=0): """Initialize a model from the global cfg. Loads test-time weights and set to evaluation mode. """ model = model_builder_rel.Generalized_RCNN() model.eval() if args.cuda: model.cuda() if args.load_ckpt: load_name = args.load_ckpt logger.info("loading checkpoint %s", load_name) checkpoint = torch.load(load_name, map_location=lambda storage, loc: storage) net_utils_rel.load_ckpt_rel(model, checkpoint['model']) if args.load_detectron: logger.info("loading detectron weights %s", args.load_detectron) load_detectron_weight(model, args.load_detectron) model = mynn.DataParallel(model, cpu_keywords=['im_info', 'roidb'], minibatch=True) return model def get_roidb_and_dataset(dataset_name, proposal_file, ind_range, do_val=True): """Get the roidb for the dataset specified in the global cfg. Optionally restrict it to a range of indices if ind_range is a pair of integers. """ dataset = JsonDatasetRel(dataset_name) roidb = dataset.get_roidb(gt=do_val) if ind_range is not None: total_num_images = len(roidb) start, end = ind_range roidb = roidb[start:end] else: start = 0 end = len(roidb) total_num_images = end return roidb, dataset, start, end, total_num_images
ContrastiveLosses4VRD-master
lib/core/test_engine_rel.py
# Based on Detectron.pytorch/lib/core/config.py # -------------------------------------------------------- # Detectron.pytorch # Licensed under The MIT License [see LICENSE for details] # Written by roytseng-tw # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import six import os import os.path as osp import copy from ast import literal_eval import numpy as np from packaging import version import torch import torch.nn as nn from torch.nn import init import yaml import _init_paths import nn as mynn from utils.collections import AttrDict __C = AttrDict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C # Random note: avoid using '.ON' as a config key since yaml converts it to True; # prefer 'ENABLED' instead # ---------------------------------------------------------------------------- # # Training options # ---------------------------------------------------------------------------- # __C.TRAIN = AttrDict() # Datasets to train on # Available dataset list: datasets.dataset_catalog.DATASETS.keys() # If multiple datasets are listed, the model is trained on their union __C.TRAIN.DATASETS = () # Scales to use during training # Each scale is the pixel size of an image's shortest side # If multiple scales are listed, then one is selected uniformly at random for # each training image (i.e., scale jitter data augmentation) __C.TRAIN.SCALES = (600, ) # Max pixel size of the longest side of a scaled input image __C.TRAIN.MAX_SIZE = 1000 # Images *per GPU* in the training minibatch # Total images per minibatch = TRAIN.IMS_PER_BATCH * NUM_GPUS __C.TRAIN.IMS_PER_BATCH = 2 # RoI minibatch size *per image* (number of regions of interest [ROIs]) # Total number of RoIs per training minibatch = # TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH * NUM_GPUS # E.g., a common configuration is: 512 * 2 * 8 = 8192 __C.TRAIN.BATCH_SIZE_PER_IM = 64 __C.TRAIN.FG_REL_SIZE_PER_IM = 512 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 __C.TRAIN.FG_REL_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.0 # Use horizontally-flipped images during training? __C.TRAIN.USE_FLIPPED = True # Overlap required between a ROI and ground-truth box in order for that ROI to # be used as a bounding-box regression training example __C.TRAIN.BBOX_THRESH = 0.5 # Train using these proposals # During training, all proposals specified in the file are used (no limit is # applied) # Proposal files must be in correspondence with the datasets listed in # TRAIN.DATASETS __C.TRAIN.PROPOSAL_FILES = () # Snapshot (model checkpoint) period # Divide by NUM_GPUS to determine actual period (e.g., 20000/8 => 2500 iters) # to allow for linear training schedule scaling __C.TRAIN.SNAPSHOT_ITERS = 20000 __C.TRAIN.SNAPSHOT_FREQ = 1 # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) (legacy) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = False __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # Make minibatches from images that have similar aspect ratios (i.e. both # tall and thin or both short and wide) # This feature is critical for saving memory (and makes training slightly # faster) __C.TRAIN.ASPECT_GROUPING = True # Crop images that have too small or too large aspect ratio __C.TRAIN.ASPECT_CROPPING = False __C.TRAIN.ASPECT_HI = 2 __C.TRAIN.ASPECT_LO = 0.5 # ---------------------------------------------------------------------------- # # RPN training options # ---------------------------------------------------------------------------- # # Minimum overlap required between an anchor and ground-truth box for the # (anchor, gt box) pair to be a positive example (IOU >= thresh ==> positive RPN # example) __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # Maximum overlap allowed between an anchor and ground-truth box for the # (anchor, gt box) pair to be a negative examples (IOU < thresh ==> negative RPN # example) __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # Target fraction of foreground (positive) examples per RPN minibatch __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of RPN examples per image __C.TRAIN.RPN_BATCH_SIZE_PER_IM = 256 # NMS threshold used on RPN proposals (used during end-to-end training with RPN) __C.TRAIN.RPN_NMS_THRESH = 0.7 # Number of top scoring RPN proposals to keep before applying NMS (per image) # When FPN is used, this is *per FPN level* (not total) __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring RPN proposals to keep after applying NMS (per image) # This is the total number of RPN proposals produced (for both FPN and non-FPN # cases) __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels # Set to -1 or a large value, e.g. 100000, to disable pruning anchors __C.TRAIN.RPN_STRADDLE_THRESH = 0 # Proposal height and width both need to be greater than RPN_MIN_SIZE # (at orig image scale; not scale used during training or inference) __C.TRAIN.RPN_MIN_SIZE = 0 # Filter proposals that are inside of crowd regions by CROWD_FILTER_THRESH # "Inside" is measured as: proposal-with-crowd intersection area divided by # proposal area __C.TRAIN.CROWD_FILTER_THRESH = 0.7 # Ignore ground-truth objects with area < this threshold __C.TRAIN.GT_MIN_AREA = -1 # Freeze the backbone architecture during training if set to True __C.TRAIN.FREEZE_CONV_BODY = False __C.TRAIN.FREEZE_PRD_CONV_BODY = False __C.TRAIN.FREEZE_PRD_BOX_HEAD = False # ---------------------------------------------------------------------------- # # Data loader options # ---------------------------------------------------------------------------- # __C.DATA_LOADER = AttrDict() # Number of Python threads to use for the data loader (warning: using too many # threads can cause GIL-based interference with Python Ops leading to *slower* # training; 4 seems to be the sweet spot in our experience) __C.DATA_LOADER.NUM_THREADS = 4 # ---------------------------------------------------------------------------- # # Inference ('test') options # ---------------------------------------------------------------------------- # __C.TEST = AttrDict() # Datasets to test on # Available dataset list: datasets.dataset_catalog.DATASETS.keys() # If multiple datasets are listed, testing is performed on each one sequentially __C.TEST.DATASETS = () # Scale to use during testing (can NOT list multiple scales) # The scale is the pixel size of an image's shortest side __C.TEST.SCALE = 600 # Max pixel size of the longest side of a scaled input image __C.TEST.MAX_SIZE = 1000 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.3 # Apply Fast R-CNN style bounding-box regression if True __C.TEST.BBOX_REG = True # Test using these proposal files (must correspond with TEST.DATASETS) __C.TEST.PROPOSAL_FILES = () # Limit on the number of proposals per image used during inference __C.TEST.PROPOSAL_LIMIT = 2000 ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 # Number of top scoring RPN proposals to keep before applying NMS # When FPN is used, this is *per FPN level* (not total) __C.TEST.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring RPN proposals to keep after applying NMS # This is the total number of RPN proposals produced (for both FPN and non-FPN # cases) __C.TEST.RPN_POST_NMS_TOP_N = 2000 # Proposal height and width both need to be greater than RPN_MIN_SIZE # (at orig image scale; not scale used during training or inference) __C.TEST.RPN_MIN_SIZE = 0 # Maximum number of detections to return per image (100 is based on the limit # established for the COCO dataset) __C.TEST.DETECTIONS_PER_IM = 100 # Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to # balance obtaining high recall with not having too many low precision # detections that will slow down inference post processing steps (like NMS) __C.TEST.SCORE_THRESH = 0.05 # Used to filter out bad relationships __C.TEST.SPO_SCORE_THRESH = 0.00001 # __C.TEST.SPO_SCORE_THRESH = 0 __C.TEST.PRD_Ks = (1, 10, 70) # Save detection results files if True # If false, results files are cleaned up (they can be large) after local # evaluation __C.TEST.COMPETITION_MODE = True # Evaluate detections with the COCO json dataset eval code even if it's not the # evaluation code for the dataset (e.g. evaluate PASCAL VOC results using the # COCO API to get COCO style AP on PASCAL VOC) __C.TEST.FORCE_JSON_DATASET_EVAL = False # [Inferred value; do not set directly in a config] # Indicates if precomputed proposals are used at test time # Not set for 1-stage models and 2-stage models with RPN subnetwork enabled __C.TEST.PRECOMPUTED_PROPOSALS = True # ---------------------------------------------------------------------------- # # Test-time augmentations for bounding box detection # See configs/test_time_aug/e2e_mask_rcnn_R-50-FPN_2x.yaml for an example # ---------------------------------------------------------------------------- # __C.TEST.BBOX_AUG = AttrDict() # Enable test-time augmentation for bounding box detection if True __C.TEST.BBOX_AUG.ENABLED = False # Heuristic used to combine predicted box scores # Valid options: ('ID', 'AVG', 'UNION') __C.TEST.BBOX_AUG.SCORE_HEUR = 'UNION' # Heuristic used to combine predicted box coordinates # Valid options: ('ID', 'AVG', 'UNION') __C.TEST.BBOX_AUG.COORD_HEUR = 'UNION' # Horizontal flip at the original scale (id transform) __C.TEST.BBOX_AUG.H_FLIP = False # Each scale is the pixel size of an image's shortest side __C.TEST.BBOX_AUG.SCALES = () # Max pixel size of the longer side __C.TEST.BBOX_AUG.MAX_SIZE = 4000 # Horizontal flip at each scale __C.TEST.BBOX_AUG.SCALE_H_FLIP = False # Apply scaling based on object size __C.TEST.BBOX_AUG.SCALE_SIZE_DEP = False __C.TEST.BBOX_AUG.AREA_TH_LO = 50**2 __C.TEST.BBOX_AUG.AREA_TH_HI = 180**2 # Each aspect ratio is relative to image width __C.TEST.BBOX_AUG.ASPECT_RATIOS = () # Horizontal flip at each aspect ratio __C.TEST.BBOX_AUG.ASPECT_RATIO_H_FLIP = False # ---------------------------------------------------------------------------- # # Test-time augmentations for mask detection # See configs/test_time_aug/e2e_mask_rcnn_R-50-FPN_2x.yaml for an example # ---------------------------------------------------------------------------- # __C.TEST.MASK_AUG = AttrDict() # Enable test-time augmentation for instance mask detection if True __C.TEST.MASK_AUG.ENABLED = False # Heuristic used to combine mask predictions # SOFT prefix indicates that the computation is performed on soft masks # Valid options: ('SOFT_AVG', 'SOFT_MAX', 'LOGIT_AVG') __C.TEST.MASK_AUG.HEUR = 'SOFT_AVG' # Horizontal flip at the original scale (id transform) __C.TEST.MASK_AUG.H_FLIP = False # Each scale is the pixel size of an image's shortest side __C.TEST.MASK_AUG.SCALES = () # Max pixel size of the longer side __C.TEST.MASK_AUG.MAX_SIZE = 4000 # Horizontal flip at each scale __C.TEST.MASK_AUG.SCALE_H_FLIP = False # Apply scaling based on object size __C.TEST.MASK_AUG.SCALE_SIZE_DEP = False __C.TEST.MASK_AUG.AREA_TH = 180**2 # Each aspect ratio is relative to image width __C.TEST.MASK_AUG.ASPECT_RATIOS = () # Horizontal flip at each aspect ratio __C.TEST.MASK_AUG.ASPECT_RATIO_H_FLIP = False # ---------------------------------------------------------------------------- # # Test-augmentations for keypoints detection # configs/test_time_aug/keypoint_rcnn_R-50-FPN_1x.yaml # ---------------------------------------------------------------------------- # __C.TEST.KPS_AUG = AttrDict() # Enable test-time augmentation for keypoint detection if True __C.TEST.KPS_AUG.ENABLED = False # Heuristic used to combine keypoint predictions # Valid options: ('HM_AVG', 'HM_MAX') __C.TEST.KPS_AUG.HEUR = 'HM_AVG' # Horizontal flip at the original scale (id transform) __C.TEST.KPS_AUG.H_FLIP = False # Each scale is the pixel size of an image's shortest side __C.TEST.KPS_AUG.SCALES = () # Max pixel size of the longer side __C.TEST.KPS_AUG.MAX_SIZE = 4000 # Horizontal flip at each scale __C.TEST.KPS_AUG.SCALE_H_FLIP = False # Apply scaling based on object size __C.TEST.KPS_AUG.SCALE_SIZE_DEP = False __C.TEST.KPS_AUG.AREA_TH = 180**2 # Eeach aspect ratio is realtive to image width __C.TEST.KPS_AUG.ASPECT_RATIOS = () # Horizontal flip at each aspect ratio __C.TEST.KPS_AUG.ASPECT_RATIO_H_FLIP = False # ---------------------------------------------------------------------------- # # Soft NMS # ---------------------------------------------------------------------------- # __C.TEST.SOFT_NMS = AttrDict() # Use soft NMS instead of standard NMS if set to True __C.TEST.SOFT_NMS.ENABLED = False # See soft NMS paper for definition of these options __C.TEST.SOFT_NMS.METHOD = 'linear' __C.TEST.SOFT_NMS.SIGMA = 0.5 # For the soft NMS overlap threshold, we simply use TEST.NMS # ---------------------------------------------------------------------------- # # Bounding box voting (from the Multi-Region CNN paper) # ---------------------------------------------------------------------------- # __C.TEST.BBOX_VOTE = AttrDict() # Use box voting if set to True __C.TEST.BBOX_VOTE.ENABLED = False # We use TEST.NMS threshold for the NMS step. VOTE_TH overlap threshold # is used to select voting boxes (IoU >= VOTE_TH) for each box that survives NMS __C.TEST.BBOX_VOTE.VOTE_TH = 0.8 # The method used to combine scores when doing bounding box voting # Valid options include ('ID', 'AVG', 'IOU_AVG', 'GENERALIZED_AVG', 'QUASI_SUM') __C.TEST.BBOX_VOTE.SCORING_METHOD = 'ID' # Hyperparameter used by the scoring method (it has different meanings for # different methods) __C.TEST.BBOX_VOTE.SCORING_METHOD_BETA = 1.0 __C.TEST.USE_GT_BOXES = False # ---------------------------------------------------------------------------- # # Model options # ---------------------------------------------------------------------------- # __C.MODEL = AttrDict() # The type of model to use # The string must match a function in the modeling.model_builder module # (e.g., 'generalized_rcnn', 'mask_rcnn', ...) __C.MODEL.TYPE = '' __C.MODEL.SUBTYPE = 1 __C.MODEL.RUN_BASELINE = False __C.MODEL.FEAT_LEVEL = 7 __C.MODEL.NO_FC7_RELU = False __C.MODEL.USE_FREQ_BIAS = False __C.MODEL.USE_OVLP_FILTER = False __C.MODEL.USE_SPATIAL_FEAT = False __C.MODEL.USE_SEM_FEAT = False __C.MODEL.USE_SIMPLE_P = False __C.MODEL.ADD_SCORES_ALL = False __C.MODEL.ADD_SO_SCORES = False __C.MODEL.USE_BG = False __C.MODEL.UNFREEZE_DET = False # The backbone conv body to use __C.MODEL.CONV_BODY = '' __C.MODEL.USE_REL_PYRAMID = False __C.MODEL.USE_NODE_CONTRASTIVE_LOSS = False __C.MODEL.NODE_CONTRASTIVE_MARGIN = 0.2 __C.MODEL.NODE_CONTRASTIVE_WEIGHT = 1.0 __C.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS = False __C.MODEL.NODE_CONTRASTIVE_SO_AWARE_MARGIN = 0.2 __C.MODEL.NODE_CONTRASTIVE_SO_AWARE_WEIGHT = 1.0 __C.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS = False __C.MODEL.NODE_CONTRASTIVE_P_AWARE_MARGIN = 0.2 __C.MODEL.NODE_CONTRASTIVE_P_AWARE_WEIGHT = 1.0 __C.MODEL.NODE_SAMPLE_SIZE = 128 __C.MODEL.USE_SPO_AGNOSTIC_COMPENSATION = False # Number of classes in the dataset; must be set # E.g., 81 for COCO (80 foreground + 1 background) __C.MODEL.NUM_CLASSES = -1 __C.MODEL.NUM_PRD_CLASSES = -1 # Use a class agnostic bounding box regressor instead of the default per-class # regressor __C.MODEL.CLS_AGNOSTIC_BBOX_REG = False # Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets # These are empirically chosen to approximately lead to unit variance targets # # In older versions, the weights were set such that the regression deltas # would have unit standard deviation on the training dataset. Presently, rather # than computing these statistics exactly, we use a fixed set of weights # (10., 10., 5., 5.) by default. These are approximately the weights one would # get from COCO using the previous unit stdev heuristic. __C.MODEL.BBOX_REG_WEIGHTS = (10., 10., 5., 5.) # The meaning of FASTER_RCNN depends on the context (training vs. inference): # 1) During training, FASTER_RCNN = True means that end-to-end training will be # used to jointly train the RPN subnetwork and the Fast R-CNN subnetwork # (Faster R-CNN = RPN + Fast R-CNN). # 2) During inference, FASTER_RCNN = True means that the model's RPN subnetwork # will be used to generate proposals rather than relying on precomputed # proposals. Note that FASTER_RCNN = True can be used at inference time even # if the Faster R-CNN model was trained with stagewise training (which # consists of alternating between RPN and Fast R-CNN training in a way that # finally leads to a single network). __C.MODEL.FASTER_RCNN = False # Indicates the model makes instance mask predictions (as in Mask R-CNN) __C.MODEL.MASK_ON = False # Indicates the model makes keypoint predictions (as in Mask R-CNN for # keypoints) __C.MODEL.KEYPOINTS_ON = False # Indicates the model's computation terminates with the production of RPN # proposals (i.e., it outputs proposals ONLY, no actual object detections) __C.MODEL.RPN_ONLY = False # [Inferred value; do not set directly in a config] # Indicate whether the res5 stage weights and training forward computation # are shared from box head or not. __C.MODEL.SHARE_RES5 = False # Whether to load imagenet pretrained weights # If True, path to the weight file must be specified. # See: __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS = False __C.MODEL.LOAD_COCO_PRETRAINED_WEIGHTS = False __C.MODEL.LOAD_VRD_PRETRAINED_WEIGHTS = False # ---------------------------------------------------------------------------- # # Unsupervise Pose # ---------------------------------------------------------------------------- # __C.MODEL.UNSUPERVISED_POSE = False # ---------------------------------------------------------------------------- # # RetinaNet options # ---------------------------------------------------------------------------- # __C.RETINANET = AttrDict() # RetinaNet is used (instead of Fast/er/Mask R-CNN/R-FCN/RPN) if True __C.RETINANET.RETINANET_ON = False # Anchor aspect ratios to use __C.RETINANET.ASPECT_RATIOS = (0.5, 1.0, 2.0) # Anchor scales per octave __C.RETINANET.SCALES_PER_OCTAVE = 3 # At each FPN level, we generate anchors based on their scale, aspect_ratio, # stride of the level, and we multiply the resulting anchor by ANCHOR_SCALE __C.RETINANET.ANCHOR_SCALE = 4 # Convolutions to use in the cls and bbox tower # NOTE: this doesn't include the last conv for logits __C.RETINANET.NUM_CONVS = 4 # Weight for bbox_regression loss __C.RETINANET.BBOX_REG_WEIGHT = 1.0 # Smooth L1 loss beta for bbox regression __C.RETINANET.BBOX_REG_BETA = 0.11 # During inference, #locs to select based on cls score before NMS is performed # per FPN level __C.RETINANET.PRE_NMS_TOP_N = 1000 # IoU overlap ratio for labeling an anchor as positive # Anchors with >= iou overlap are labeled positive __C.RETINANET.POSITIVE_OVERLAP = 0.5 # IoU overlap ratio for labeling an anchor as negative # Anchors with < iou overlap are labeled negative __C.RETINANET.NEGATIVE_OVERLAP = 0.4 # Focal loss parameter: alpha __C.RETINANET.LOSS_ALPHA = 0.25 # Focal loss parameter: gamma __C.RETINANET.LOSS_GAMMA = 2.0 # Prior prob for the positives at the beginning of training. This is used to set # the bias init for the logits layer __C.RETINANET.PRIOR_PROB = 0.01 # Whether classification and bbox branch tower should be shared or not __C.RETINANET.SHARE_CLS_BBOX_TOWER = False # Use class specific bounding box regression instead of the default class # agnostic regression __C.RETINANET.CLASS_SPECIFIC_BBOX = False # Whether softmax should be used in classification branch training __C.RETINANET.SOFTMAX = False # Inference cls score threshold, anchors with score > INFERENCE_TH are # considered for inference __C.RETINANET.INFERENCE_TH = 0.05 # ---------------------------------------------------------------------------- # # Solver options # Note: all solver options are used exactly as specified; the implication is # that if you switch from training on 1 GPU to N GPUs, you MUST adjust the # solver configuration accordingly. We suggest using gradual warmup and the # linear learning rate scaling rule as described in # "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour" Goyal et al. # https://arxiv.org/abs/1706.02677 # ---------------------------------------------------------------------------- # __C.SOLVER = AttrDict() # e.g 'SGD', 'Adam' __C.SOLVER.TYPE = 'SGD' # Base learning rate for the specified schedule __C.SOLVER.BASE_LR = 0.001 __C.SOLVER.BACKBONE_LR_SCALAR = 0.1 # Schedule type (see functions in utils.lr_policy for options) # E.g., 'step', 'steps_with_decay', ... __C.SOLVER.LR_POLICY = 'step' # Some LR Policies (by example): # 'step' # lr = SOLVER.BASE_LR * SOLVER.GAMMA ** (cur_iter // SOLVER.STEP_SIZE) # 'steps_with_decay' # SOLVER.STEPS = [0, 60000, 80000] # SOLVER.GAMMA = 0.1 # lr = SOLVER.BASE_LR * SOLVER.GAMMA ** current_step # iters [0, 59999] are in current_step = 0, iters [60000, 79999] are in # current_step = 1, and so on # 'steps_with_lrs' # SOLVER.STEPS = [0, 60000, 80000] # SOLVER.LRS = [0.02, 0.002, 0.0002] # lr = LRS[current_step] # Hyperparameter used by the specified policy # For 'step', the current LR is multiplied by SOLVER.GAMMA at each step __C.SOLVER.GAMMA = 0.1 # Uniform step size for 'steps' policy __C.SOLVER.STEP_SIZE = 30000 # Non-uniform step iterations for 'steps_with_decay' or 'steps_with_lrs' # policies __C.SOLVER.STEPS = [] # Learning rates to use with 'steps_with_lrs' policy __C.SOLVER.LRS = [] # Maximum number of SGD iterations __C.SOLVER.MAX_ITER = 40000 # Momentum to use with SGD __C.SOLVER.MOMENTUM = 0.9 # L2 regularization hyperparameter __C.SOLVER.WEIGHT_DECAY = 0.0005 # L2 regularization hyperparameter for GroupNorm's parameters __C.SOLVER.WEIGHT_DECAY_GN = 0.0 # Whether to double the learning rate for bias __C.SOLVER.BIAS_DOUBLE_LR = True # Whether to have weight decay on bias as well __C.SOLVER.BIAS_WEIGHT_DECAY = False # Warm up to SOLVER.BASE_LR over this number of SGD iterations __C.SOLVER.WARM_UP_ITERS = 500 # Start the warm up from SOLVER.BASE_LR * SOLVER.WARM_UP_FACTOR __C.SOLVER.WARM_UP_FACTOR = 1.0 / 3.0 # WARM_UP_METHOD can be either 'constant' or 'linear' (i.e., gradual) __C.SOLVER.WARM_UP_METHOD = 'linear' # Scale the momentum update history by new_lr / old_lr when updating the # learning rate (this is correct given MomentumSGDUpdateOp) __C.SOLVER.SCALE_MOMENTUM = True # Only apply the correction if the relative LR change exceeds this threshold # (prevents ever change in linear warm up from scaling the momentum by a tiny # amount; momentum scaling is only important if the LR change is large) __C.SOLVER.SCALE_MOMENTUM_THRESHOLD = 1.1 # Suppress logging of changes to LR unless the relative change exceeds this # threshold (prevents linear warm up from spamming the training log) __C.SOLVER.LOG_LR_CHANGE_THRESHOLD = 1.1 # ---------------------------------------------------------------------------- # # Fast R-CNN options # ---------------------------------------------------------------------------- # __C.FAST_RCNN = AttrDict() # The type of RoI head to use for bounding box classification and regression # The string must match a function this is imported in modeling.model_builder # (e.g., 'head_builder.add_roi_2mlp_head' to specify a two hidden layer MLP) __C.FAST_RCNN.ROI_BOX_HEAD = '' __C.FAST_RCNN.PRD_HEAD = '' # Hidden layer dimension when using an MLP for the RoI box head __C.FAST_RCNN.MLP_HEAD_DIM = 1024 # Hidden Conv layer dimension when using Convs for the RoI box head __C.FAST_RCNN.CONV_HEAD_DIM = 256 # Number of stacked Conv layers in the RoI box head __C.FAST_RCNN.NUM_STACKED_CONVS = 4 # RoI transformation function (e.g., RoIPool or RoIAlign) # (RoIPoolF is the same as RoIPool; ignore the trailing 'F') __C.FAST_RCNN.ROI_XFORM_METHOD = 'RoIPoolF' # Number of grid sampling points in RoIAlign (usually use 2) # Only applies to RoIAlign __C.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO = 0 # RoI transform output resolution # Note: some models may have constraints on what they can use, e.g. they use # pretrained FC layers like in VGG16, and will ignore this option __C.FAST_RCNN.ROI_XFORM_RESOLUTION = 14 # ---------------------------------------------------------------------------- # # RPN options # ---------------------------------------------------------------------------- # __C.RPN = AttrDict() # [Infered value; do not set directly in a config] # Indicates that the model contains an RPN subnetwork __C.RPN.RPN_ON = False # `True` for Detectron implementation. `False` for jwyang's implementation. __C.RPN.OUT_DIM_AS_IN_DIM = True # Output dim of conv2d. Ignored if `__C.RPN.OUT_DIM_AS_IN_DIM` is True. # 512 is the fixed value in jwyang's implementation. __C.RPN.OUT_DIM = 512 # 'sigmoid' or 'softmax'. Detectron use 'sigmoid'. jwyang use 'softmax' # This will affect the conv2d output dim for classifying the bg/fg rois __C.RPN.CLS_ACTIVATION = 'sigmoid' # RPN anchor sizes given in absolute pixels w.r.t. the scaled network input # Note: these options are *not* used by FPN RPN; see FPN.RPN* options __C.RPN.SIZES = (64, 128, 256, 512) # Stride of the feature map that RPN is attached __C.RPN.STRIDE = 16 # RPN anchor aspect ratios __C.RPN.ASPECT_RATIOS = (0.5, 1, 2) # ---------------------------------------------------------------------------- # # FPN options # ---------------------------------------------------------------------------- # __C.FPN = AttrDict() # FPN is enabled if True __C.FPN.FPN_ON = False # Channel dimension of the FPN feature levels __C.FPN.DIM = 256 # Initialize the lateral connections to output zero if True __C.FPN.ZERO_INIT_LATERAL = False # Stride of the coarsest FPN level # This is needed so the input can be padded properly __C.FPN.COARSEST_STRIDE = 32 # # FPN may be used for just RPN, just object detection, or both # # Use FPN for RoI transform for object detection if True __C.FPN.MULTILEVEL_ROIS = False # Hyperparameters for the RoI-to-FPN level mapping heuristic __C.FPN.ROI_CANONICAL_SCALE = 224 # s0 __C.FPN.ROI_CANONICAL_LEVEL = 4 # k0: where s0 maps to # Coarsest level of the FPN pyramid __C.FPN.ROI_MAX_LEVEL = 5 # Finest level of the FPN pyramid __C.FPN.ROI_MIN_LEVEL = 2 # Use FPN for RPN if True __C.FPN.MULTILEVEL_RPN = False # Coarsest level of the FPN pyramid __C.FPN.RPN_MAX_LEVEL = 6 # Finest level of the FPN pyramid __C.FPN.RPN_MIN_LEVEL = 2 # FPN RPN anchor aspect ratios __C.FPN.RPN_ASPECT_RATIOS = (0.5, 1, 2) # RPN anchors start at this size on RPN_MIN_LEVEL # The anchor size doubled each level after that # With a default of 32 and levels 2 to 6, we get anchor sizes of 32 to 512 __C.FPN.RPN_ANCHOR_START_SIZE = 32 # [Infered Value] Scale for RPN_POST_NMS_TOP_N. # Automatically infered in training, fixed to 1 in testing. __C.FPN.RPN_COLLECT_SCALE = 1 # Use extra FPN levels, as done in the RetinaNet paper __C.FPN.EXTRA_CONV_LEVELS = False # Use GroupNorm in the FPN-specific layers (lateral, etc.) __C.FPN.USE_GN = False # ---------------------------------------------------------------------------- # # Mask R-CNN options ("MRCNN" means Mask R-CNN) # ---------------------------------------------------------------------------- # __C.MRCNN = AttrDict() # The type of RoI head to use for instance mask prediction # The string must match a function this is imported in modeling.model_builder # (e.g., 'mask_rcnn_heads.ResNet_mask_rcnn_fcn_head_v1up4convs') __C.MRCNN.ROI_MASK_HEAD = '' # Resolution of mask predictions __C.MRCNN.RESOLUTION = 14 # RoI transformation function and associated options __C.MRCNN.ROI_XFORM_METHOD = 'RoIAlign' # RoI transformation function (e.g., RoIPool or RoIAlign) __C.MRCNN.ROI_XFORM_RESOLUTION = 7 # Number of grid sampling points in RoIAlign (usually use 2) # Only applies to RoIAlign __C.MRCNN.ROI_XFORM_SAMPLING_RATIO = 0 # Number of channels in the mask head __C.MRCNN.DIM_REDUCED = 256 # Use dilated convolution in the mask head __C.MRCNN.DILATION = 2 # Upsample the predicted masks by this factor __C.MRCNN.UPSAMPLE_RATIO = 1 # Use a fully-connected layer to predict the final masks instead of a conv layer __C.MRCNN.USE_FC_OUTPUT = False # Weight initialization method for the mask head and mask output layers. ['GaussianFill', 'MSRAFill'] __C.MRCNN.CONV_INIT = 'GaussianFill' # Use class specific mask predictions if True (otherwise use class agnostic mask # predictions) __C.MRCNN.CLS_SPECIFIC_MASK = True # Multi-task loss weight for masks __C.MRCNN.WEIGHT_LOSS_MASK = 1.0 # Binarization threshold for converting soft masks to hard masks __C.MRCNN.THRESH_BINARIZE = 0.5 __C.MRCNN.MEMORY_EFFICIENT_LOSS = True # TODO # ---------------------------------------------------------------------------- # # Keyoint Mask R-CNN options ("KRCNN" = Mask R-CNN with Keypoint support) # ---------------------------------------------------------------------------- # __C.KRCNN = AttrDict() # The type of RoI head to use for instance keypoint prediction # The string must match a function this is imported in modeling.model_builder # (e.g., 'keypoint_rcnn_heads.add_roi_pose_head_v1convX') __C.KRCNN.ROI_KEYPOINTS_HEAD = '' # Output size (and size loss is computed on), e.g., 56x56 __C.KRCNN.HEATMAP_SIZE = -1 # Use bilinear interpolation to upsample the final heatmap by this factor __C.KRCNN.UP_SCALE = -1 # Apply a ConvTranspose layer to the hidden representation computed by the # keypoint head prior to predicting the per-keypoint heatmaps __C.KRCNN.USE_DECONV = False # Channel dimension of the hidden representation produced by the ConvTranspose __C.KRCNN.DECONV_DIM = 256 # Use a ConvTranspose layer to predict the per-keypoint heatmaps __C.KRCNN.USE_DECONV_OUTPUT = False # Use dilation in the keypoint head __C.KRCNN.DILATION = 1 # Size of the kernels to use in all ConvTranspose operations __C.KRCNN.DECONV_KERNEL = 4 # Number of keypoints in the dataset (e.g., 17 for COCO) __C.KRCNN.NUM_KEYPOINTS = -1 # Number of stacked Conv layers in keypoint head __C.KRCNN.NUM_STACKED_CONVS = 8 # Dimension of the hidden representation output by the keypoint head __C.KRCNN.CONV_HEAD_DIM = 256 # Conv kernel size used in the keypoint head __C.KRCNN.CONV_HEAD_KERNEL = 3 # Conv kernel weight filling function __C.KRCNN.CONV_INIT = 'GaussianFill' # Use NMS based on OKS if True __C.KRCNN.NMS_OKS = False # Source of keypoint confidence # Valid options: ('bbox', 'logit', 'prob') __C.KRCNN.KEYPOINT_CONFIDENCE = 'bbox' # Standard ROI XFORM options (see FAST_RCNN or MRCNN options) __C.KRCNN.ROI_XFORM_METHOD = 'RoIAlign' __C.KRCNN.ROI_XFORM_RESOLUTION = 7 __C.KRCNN.ROI_XFORM_SAMPLING_RATIO = 0 # Minimum number of labeled keypoints that must exist in a minibatch (otherwise # the minibatch is discarded) __C.KRCNN.MIN_KEYPOINT_COUNT_FOR_VALID_MINIBATCH = 20 # When infering the keypoint locations from the heatmap, don't scale the heatmap # below this minimum size __C.KRCNN.INFERENCE_MIN_SIZE = 0 # Multi-task loss weight to use for keypoints # Recommended values: # - use 1.0 if KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS is True # - use 4.0 if KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS is False __C.KRCNN.LOSS_WEIGHT = 1.0 # Normalize by the total number of visible keypoints in the minibatch if True. # Otherwise, normalize by the total number of keypoints that could ever exist # in the minibatch. See comments in modeling.model_builder.add_keypoint_losses # for detailed discussion. __C.KRCNN.NORMALIZE_BY_VISIBLE_KEYPOINTS = True # ---------------------------------------------------------------------------- # # R-FCN options # ---------------------------------------------------------------------------- # __C.RFCN = AttrDict() # Position-sensitive RoI pooling output grid size (height and width) __C.RFCN.PS_GRID_SIZE = 3 # ---------------------------------------------------------------------------- # # ResNets options ("ResNets" = ResNet and ResNeXt) # ---------------------------------------------------------------------------- # __C.RESNETS = AttrDict() # Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt __C.RESNETS.NUM_GROUPS = 1 # Baseline width of each group __C.RESNETS.WIDTH_PER_GROUP = 64 # Place the stride 2 conv on the 1x1 filter # Use True only for the original MSRA ResNet; use False for C2 and Torch models __C.RESNETS.STRIDE_1X1 = True # Residual transformation function __C.RESNETS.TRANS_FUNC = 'bottleneck_transformation' # ResNet's stem function (conv1 and pool1) __C.RESNETS.STEM_FUNC = 'basic_bn_stem' # ResNet's shortcut function __C.RESNETS.SHORTCUT_FUNC = 'basic_bn_shortcut' # Apply dilation in stage "res5" __C.RESNETS.RES5_DILATION = 1 # Freeze model weights before and including which block. # Choices: [0, 2, 3, 4, 5]. O means not fixed. First conv and bn are defaults to # be fixed. __C.RESNETS.FREEZE_AT = 2 # Path to pretrained resnet weights on ImageNet. # If start with '/', then it is treated as a absolute path. # Otherwise, treat as a relative path to __C.ROOT_DIR __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS = '' __C.RESNETS.COCO_PRETRAINED_WEIGHTS = '' __C.RESNETS.OI_PRETRAINED_WEIGHTS = '' __C.RESNETS.OI_REL_PRETRAINED_WEIGHTS = '' __C.RESNETS.OI_REL_PRD_PRETRAINED_WEIGHTS = '' __C.RESNETS.VRD_PRETRAINED_WEIGHTS = '' __C.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS = '' __C.RESNETS.VG_PRETRAINED_WEIGHTS = '' __C.RESNETS.VG_PRD_PRETRAINED_WEIGHTS = '' __C.RESNETS.TO_BE_FINETUNED_WEIGHTS = '' __C.RESNETS.REL_PRETRAINED_WEIGHTS = '' # Use GroupNorm instead of BatchNorm __C.RESNETS.USE_GN = False __C.VGG16 = AttrDict() __C.VGG16.IMAGENET_PRETRAINED_WEIGHTS = '' __C.VGG16.COCO_PRETRAINED_WEIGHTS = '' __C.VGG16.OI_PRETRAINED_WEIGHTS = '' __C.VGG16.OI_REL_PRETRAINED_WEIGHTS = '' __C.VGG16.OI_REL_PRD_PRETRAINED_WEIGHTS = '' __C.VGG16.VRD_PRETRAINED_WEIGHTS = '' __C.VGG16.VRD_PRD_PRETRAINED_WEIGHTS = '' __C.VGG16.VG_PRETRAINED_WEIGHTS = '' __C.VGG16.VG_PRD_PRETRAINED_WEIGHTS = '' __C.VGG16.TO_BE_FINETUNED_WEIGHTS = '' # ---------------------------------------------------------------------------- # # GroupNorm options # ---------------------------------------------------------------------------- # __C.GROUP_NORM = AttrDict() # Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS) __C.GROUP_NORM.DIM_PER_GP = -1 # Number of groups in GroupNorm (-1 if using DIM_PER_GP) __C.GROUP_NORM.NUM_GROUPS = 32 # GroupNorm's small constant in the denominator __C.GROUP_NORM.EPSILON = 1e-5 # ---------------------------------------------------------------------------- # # MISC options # ---------------------------------------------------------------------------- # # Number of GPUs to use (applies to both training and testing) __C.NUM_GPUS = 1 # The mapping from image coordinates to feature map coordinates might cause # some boxes that are distinct in image space to become identical in feature # coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor # for identifying duplicate boxes. # 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16 __C.DEDUP_BOXES = 1. / 16. # Clip bounding box transformation predictions to prevent np.exp from # overflowing # Heuristic choice based on that would scale a 16 pixel anchor up to 1000 pixels __C.BBOX_XFORM_CLIP = np.log(1000. / 16.) # Pixel mean values (BGR order) as a (1, 1, 3) array # We use the same pixel mean for all networks even though it's not exactly what # they were trained with # "Fun" fact: the history of where these values comes from is lost (From Detectron lol) __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) # For reproducibility __C.RNG_SEED = 3 # A small number that's used many times __C.EPS = 1e-14 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Output basedir __C.OUTPUT_DIR = 'Outputs' # Name (or path to) the matlab executable __C.MATLAB = 'matlab' # Dump detection visualizations __C.VIS = False # Score threshold for visualization __C.VIS_TH = 0.9 # Expected results should take the form of a list of expectations, each # specified by four elements (dataset, task, metric, expected value). For # example: [['coco_2014_minival', 'box_proposal', 'AR@1000', 0.387]] __C.EXPECTED_RESULTS = [] # Absolute and relative tolerance to use when comparing to EXPECTED_RESULTS __C.EXPECTED_RESULTS_RTOL = 0.1 __C.EXPECTED_RESULTS_ATOL = 0.005 # Set to send email in case of an EXPECTED_RESULTS failure __C.EXPECTED_RESULTS_EMAIL = '' # ------------------------------ # Data directory __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data')) # [Deprecate] __C.POOLING_MODE = 'crop' # [Deprecate] Size of the pooled region after RoI pooling __C.POOLING_SIZE = 7 __C.CROP_RESIZE_WITH_MAX_POOL = True # [Infered value] __C.CUDA = False __C.DEBUG = False # [Infered value] __C.PYTORCH_VERSION_LESS_THAN_040 = False # ---------------------------------------------------------------------------- # # mask heads or keypoint heads that share res5 stage weights and # training forward computation with box head. # ---------------------------------------------------------------------------- # _SHARE_RES5_HEADS = set( [ 'mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare', ] ) def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS or __C.VGG16.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True) def merge_cfg_from_file(cfg_filename): """Load a yaml config file and merge it into the global config.""" with open(cfg_filename, 'r') as f: yaml_cfg = AttrDict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) cfg_from_file = merge_cfg_from_file def merge_cfg_from_cfg(cfg_other): """Merge `cfg_other` into the global config.""" _merge_a_into_b(cfg_other, __C) def merge_cfg_from_list(cfg_list): """Merge config keys, values in a list (e.g., from command line) into the global config. For example, `cfg_list = ['TEST.NMS', 0.5]`. """ assert len(cfg_list) % 2 == 0 for full_key, v in zip(cfg_list[0::2], cfg_list[1::2]): # if _key_is_deprecated(full_key): # continue # if _key_is_renamed(full_key): # _raise_key_rename_error(full_key) key_list = full_key.split('.') d = __C for subkey in key_list[:-1]: assert subkey in d, 'Non-existent key: {}'.format(full_key) d = d[subkey] subkey = key_list[-1] assert subkey in d, 'Non-existent key: {}'.format(full_key) value = _decode_cfg_value(v) value = _check_and_coerce_cfg_value_type( value, d[subkey], subkey, full_key ) d[subkey] = value cfg_from_list = merge_cfg_from_list def _merge_a_into_b(a, b, stack=None): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ assert isinstance(a, AttrDict), 'Argument `a` must be an AttrDict' assert isinstance(b, AttrDict), 'Argument `b` must be an AttrDict' for k, v_ in a.items(): full_key = '.'.join(stack) + '.' + k if stack is not None else k # a must specify keys that are in b if k not in b: # if _key_is_deprecated(full_key): # continue # elif _key_is_renamed(full_key): # _raise_key_rename_error(full_key) # else: raise KeyError('Non-existent config key: {}'.format(full_key)) v = copy.deepcopy(v_) v = _decode_cfg_value(v) v = _check_and_coerce_cfg_value_type(v, b[k], k, full_key) # Recursively merge dicts if isinstance(v, AttrDict): try: stack_push = [k] if stack is None else stack + [k] _merge_a_into_b(v, b[k], stack=stack_push) except BaseException: raise else: b[k] = v def _decode_cfg_value(v): """Decodes a raw config value (e.g., from a yaml config files or command line argument) into a Python object. """ # Configs parsed from raw yaml will contain dictionary keys that need to be # converted to AttrDict objects if isinstance(v, dict): return AttrDict(v) # All remaining processing is only applied to strings if not isinstance(v, six.string_types): return v # Try to interpret `v` as a: # string, number, tuple, list, dict, boolean, or None try: v = literal_eval(v) # The following two excepts allow v to pass through when it represents a # string. # # Longer explanation: # The type of v is always a string (before calling literal_eval), but # sometimes it *represents* a string and other times a data structure, like # a list. In the case that v represents a string, what we got back from the # yaml parser is 'foo' *without quotes* (so, not '"foo"'). literal_eval is # ok with '"foo"', but will raise a ValueError if given 'foo'. In other # cases, like paths (v = 'foo/bar' and not v = '"foo/bar"'), literal_eval # will raise a SyntaxError. except ValueError: pass except SyntaxError: pass return v def _check_and_coerce_cfg_value_type(value_a, value_b, key, full_key): """Checks that `value_a`, which is intended to replace `value_b` is of the right type. The type is correct if it matches exactly or is one of a few cases in which the type can be easily coerced. """ # The types must match (with some exceptions) type_b = type(value_b) type_a = type(value_a) if type_a is type_b: return value_a # Exceptions: numpy arrays, strings, tuple<->list if isinstance(value_b, np.ndarray): value_a = np.array(value_a, dtype=value_b.dtype) elif isinstance(value_b, six.string_types): value_a = str(value_a) elif isinstance(value_a, tuple) and isinstance(value_b, list): value_a = list(value_a) elif isinstance(value_a, list) and isinstance(value_b, tuple): value_a = tuple(value_a) else: raise ValueError( 'Type mismatch ({} vs. {}) with values ({} vs. {}) for config ' 'key: {}'.format(type_b, type_a, value_b, value_a, full_key) ) return value_a
ContrastiveLosses4VRD-master
lib/core/config.py
ContrastiveLosses4VRD-master
lib/core/__init__.py
# Adapted by Ji Zhang in 2019 # From Detectron.pytorch/lib/core/test.py # Original license text below # -------------------------------------------------------- # Written by Roy Tseng # # Based on: # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict from six.moves import cPickle as pickle import cv2 import logging import numpy as np from torch.autograd import Variable import torch from core.config import cfg from utils.timer import Timer import utils.blob as blob_utils import utils.fpn as fpn_utils import utils.image as image_utils logger = logging.getLogger(__name__) def im_detect_rels(model, im, dataset_name, box_proposals, do_vis=False, timers=None, roidb=None, use_gt_labels=False): if timers is None: timers = defaultdict(Timer) timers['im_detect_rels'].tic() rel_results = im_get_det_rels(model, im, dataset_name, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals, do_vis, roidb, use_gt_labels) timers['im_detect_rels'].toc() return rel_results def im_get_det_rels(model, im, dataset_name, target_scale, target_max_size, boxes=None, do_vis=False, roidb=None, use_gt_labels=False): """Prepare the bbox for testing""" inputs, im_scale = _get_blobs(im, boxes, target_scale, target_max_size) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(inputs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique( hashes, return_index=True, return_inverse=True ) inputs['rois'] = inputs['rois'][index, :] boxes = boxes[index, :] # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS and not cfg.MODEL.FASTER_RCNN: _add_multilevel_rois_for_test(inputs, 'rois') if cfg.PYTORCH_VERSION_LESS_THAN_040: inputs['data'] = [Variable(torch.from_numpy(inputs['data']), volatile=True)] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']), volatile=True)] else: inputs['data'] = [torch.from_numpy(inputs['data'])] inputs['im_info'] = [torch.from_numpy(inputs['im_info'])] if dataset_name is not None: inputs['dataset_name'] = [blob_utils.serialize(dataset_name)] inputs['do_vis'] = [do_vis] if roidb is not None: inputs['roidb'] = [roidb] if use_gt_labels: inputs['use_gt_labels'] = [use_gt_labels] return_dict = model(**inputs) return_dict2 = {} if return_dict['sbj_rois'] is not None: sbj_boxes = return_dict['sbj_rois'].data.cpu().numpy()[:, 1:5] / im_scale sbj_labels = return_dict['sbj_labels'].data.cpu().numpy() - 1 sbj_scores = return_dict['sbj_scores'].data.cpu().numpy() obj_boxes = return_dict['obj_rois'].data.cpu().numpy()[:, 1:5] / im_scale obj_labels = return_dict['obj_labels'].data.cpu().numpy() - 1 obj_scores = return_dict['obj_scores'].data.cpu().numpy() prd_scores = return_dict['prd_scores'].data.cpu().numpy() if cfg.MODEL.USE_FREQ_BIAS: prd_scores_bias = return_dict['prd_scores_bias'].data.cpu().numpy() if cfg.MODEL.USE_SPATIAL_FEAT: prd_scores_spt = return_dict['prd_scores_spt'].data.cpu().numpy() if cfg.MODEL.ADD_SCORES_ALL: prd_scores_ttl = return_dict['prd_ttl_scores'].data.cpu().numpy() return_dict2 = dict(sbj_boxes=sbj_boxes, sbj_labels=sbj_labels.astype(np.int32, copy=False), sbj_scores=sbj_scores, obj_boxes=obj_boxes, obj_labels=obj_labels.astype(np.int32, copy=False), obj_scores=obj_scores, prd_scores=prd_scores) if cfg.MODEL.ADD_SCORES_ALL: return_dict2['prd_scores_ttl'] = prd_scores_ttl if cfg.MODEL.USE_FREQ_BIAS: return_dict2['prd_scores_bias'] = prd_scores_bias if cfg.MODEL.USE_SPATIAL_FEAT: return_dict2['prd_scores_spt'] = prd_scores_spt if do_vis: if isinstance(return_dict['blob_conv'], list): blob_conv = [b.data.cpu().numpy().squeeze() for b in return_dict['blob_conv']] blob_conv_prd = [b.data.cpu().numpy().squeeze() for b in return_dict['blob_conv_prd']] blob_conv = [b.mean(axis=0) for b in blob_conv] blob_conv_prd = [b.mean(axis=0) for b in blob_conv_prd] return_dict2['blob_conv'] = blob_conv return_dict2['blob_conv_prd'] = blob_conv_prd else: blob_conv = return_dict['blob_conv'].data.cpu().numpy().squeeze() blob_conv_prd = return_dict['blob_conv_prd'].data.cpu().numpy().squeeze() blob_conv = blob_conv.mean(axis=0) blob_conv_prd = blob_conv_prd.mean(axis=0) return_dict2['blob_conv'] = blob_conv return_dict2['blob_conv_prd'] = blob_conv_prd else: return_dict2 = dict(sbj_boxes=None, sbj_labels=None, sbj_scores=None, obj_boxes=None, obj_labels=None, obj_scores=None, prd_scores=None) return return_dict2 def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ rois, levels = _project_im_rois(im_rois, im_scale) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (ndarray): image pyramid levels used by each projected RoI """ rois = im_rois.astype(np.float, copy=False) * scales levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) return rois, levels def _add_multilevel_rois_for_test(blobs, name): """Distributes a set of RoIs across FPN pyramid levels by creating new level specific RoI blobs. Arguments: blobs (dict): dictionary of blobs name (str): a key in 'blobs' identifying the source RoI blob Returns: [by ref] blobs (dict): new keys named by `name + 'fpn' + level` are added to dict each with a value that's an R_level x 5 ndarray of RoIs (see _get_rois_blob for format) """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn_utils.map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max) fpn_utils.add_multilevel_roi_blobs( blobs, name, blobs[name], lvls, lvl_min, lvl_max ) def _get_blobs(im, rois, target_scale, target_max_size): """Convert an image and RoIs within that image into network inputs.""" blobs = {} blobs['data'], im_scale, blobs['im_info'] = \ blob_utils.get_image_blob(im, target_scale, target_max_size) if rois is not None: blobs['rois'] = _get_rois_blob(rois, im_scale) return blobs, im_scale
ContrastiveLosses4VRD-master
lib/core/test_rel.py
# Adapted from Detectron.pytorch/lib/modeling/fast_rcnn_heads.py # for this project by Ji Zhang, 2019 import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init from torch.autograd import Variable from core.config import cfg import nn as mynn import utils.net as net_utils class fast_rcnn_outputs(nn.Module): def __init__(self, dim_in): super().__init__() self.cls_score = nn.Linear(dim_in, cfg.MODEL.NUM_CLASSES) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: # bg and fg self.bbox_pred = nn.Linear(dim_in, 4 * 2) else: self.bbox_pred = nn.Linear(dim_in, 4 * cfg.MODEL.NUM_CLASSES) self._init_weights() def _init_weights(self): init.normal_(self.cls_score.weight, std=0.01) init.constant_(self.cls_score.bias, 0) init.normal_(self.bbox_pred.weight, std=0.001) init.constant_(self.bbox_pred.bias, 0) def detectron_weight_mapping(self): detectron_weight_mapping = { 'cls_score.weight': 'cls_score_w', 'cls_score.bias': 'cls_score_b', 'bbox_pred.weight': 'bbox_pred_w', 'bbox_pred.bias': 'bbox_pred_b' } orphan_in_detectron = [] return detectron_weight_mapping, orphan_in_detectron def forward(self, x): if x.dim() == 4: x = x.squeeze(3).squeeze(2) cls_score = self.cls_score(x) if not self.training: cls_score = F.softmax(cls_score, dim=1) bbox_pred = self.bbox_pred(x) return cls_score, bbox_pred def fast_rcnn_losses(cls_score, bbox_pred, label_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights): device_id = cls_score.get_device() rois_label = Variable(torch.from_numpy(label_int32.astype('int64'))).cuda(device_id) loss_cls = F.cross_entropy(cls_score, rois_label) bbox_targets = Variable(torch.from_numpy(bbox_targets)).cuda(device_id) bbox_inside_weights = Variable(torch.from_numpy(bbox_inside_weights)).cuda(device_id) bbox_outside_weights = Variable(torch.from_numpy(bbox_outside_weights)).cuda(device_id) loss_bbox = net_utils.smooth_l1_loss( bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights) # class accuracy cls_preds = cls_score.max(dim=1)[1].type_as(rois_label) accuracy_cls = cls_preds.eq(rois_label).float().mean(dim=0) return loss_cls, loss_bbox, accuracy_cls # ---------------------------------------------------------------------------- # # Box heads # ---------------------------------------------------------------------------- # class roi_2mlp_head(nn.Module): """Add a ReLU MLP with two hidden layers.""" def __init__(self, dim_in, roi_xform_func, spatial_scale): super().__init__() self.dim_in = dim_in self.roi_xform = roi_xform_func self.spatial_scale = spatial_scale self.dim_out = hidden_dim = cfg.FAST_RCNN.MLP_HEAD_DIM roi_size = cfg.FAST_RCNN.ROI_XFORM_RESOLUTION self.fc1 = nn.Linear(dim_in * roi_size**2, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self._init_weights() def _init_weights(self): mynn.init.XavierFill(self.fc1.weight) init.constant_(self.fc1.bias, 0) mynn.init.XavierFill(self.fc2.weight) init.constant_(self.fc2.bias, 0) def detectron_weight_mapping(self): detectron_weight_mapping = { 'fc1.weight': 'fc6_w', 'fc1.bias': 'fc6_b', 'fc2.weight': 'fc7_w', 'fc2.bias': 'fc7_b' } return detectron_weight_mapping, [] def forward(self, x, rpn_ret, rois_name='rois', use_relu=True): x = self.roi_xform( x, rpn_ret, blob_rois=rois_name, method=cfg.FAST_RCNN.ROI_XFORM_METHOD, resolution=cfg.FAST_RCNN.ROI_XFORM_RESOLUTION, spatial_scale=self.spatial_scale, sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO ) batch_size = x.size(0) x = F.relu(self.fc1(x.view(batch_size, -1)), inplace=True) if use_relu: x = F.relu(self.fc2(x), inplace=True) else: x = self.fc2(x) return x class roi_Xconv1fc_head(nn.Module): """Add a X conv + 1fc head, as a reference if not using GroupNorm""" def __init__(self, dim_in, roi_xform_func, spatial_scale): super().__init__() self.dim_in = dim_in self.roi_xform = roi_xform_func self.spatial_scale = spatial_scale hidden_dim = cfg.FAST_RCNN.CONV_HEAD_DIM module_list = [] for i in range(cfg.FAST_RCNN.NUM_STACKED_CONVS): module_list.extend([ nn.Conv2d(dim_in, hidden_dim, 3, 1, 1), nn.ReLU(inplace=True) ]) dim_in = hidden_dim self.convs = nn.Sequential(*module_list) self.dim_out = fc_dim = cfg.FAST_RCNN.MLP_HEAD_DIM roi_size = cfg.FAST_RCNN.ROI_XFORM_RESOLUTION self.fc = nn.Linear(dim_in * roi_size * roi_size, fc_dim) self._init_weights() def _init_weights(self): def _init(m): if isinstance(m, nn.Conv2d): mynn.init.MSRAFill(m.weight) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): mynn.init.XavierFill(m.weight) init.constant_(m.bias, 0) self.apply(_init) def detectron_weight_mapping(self): mapping = {} for i in range(cfg.FAST_RCNN.NUM_STACKED_CONVS): mapping.update({ 'convs.%d.weight' % (i*2): 'head_conv%d_w' % (i+1), 'convs.%d.bias' % (i*2): 'head_conv%d_b' % (i+1) }) mapping.update({ 'fc.weight': 'fc6_w', 'fc.bias': 'fc6_b' }) return mapping, [] def forward(self, x, rpn_ret): x = self.roi_xform( x, rpn_ret, blob_rois='rois', method=cfg.FAST_RCNN.ROI_XFORM_METHOD, resolution=cfg.FAST_RCNN.ROI_XFORM_RESOLUTION, spatial_scale=self.spatial_scale, sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO ) batch_size = x.size(0) x = self.convs(x) x = F.relu(self.fc(x.view(batch_size, -1)), inplace=True) return x class roi_Xconv1fc_gn_head(nn.Module): """Add a X conv + 1fc head, with GroupNorm""" def __init__(self, dim_in, roi_xform_func, spatial_scale): super().__init__() self.dim_in = dim_in self.roi_xform = roi_xform_func self.spatial_scale = spatial_scale hidden_dim = cfg.FAST_RCNN.CONV_HEAD_DIM module_list = [] for i in range(cfg.FAST_RCNN.NUM_STACKED_CONVS): module_list.extend([ nn.Conv2d(dim_in, hidden_dim, 3, 1, 1, bias=False), nn.GroupNorm(net_utils.get_group_gn(hidden_dim), hidden_dim, eps=cfg.GROUP_NORM.EPSILON), nn.ReLU(inplace=True) ]) dim_in = hidden_dim self.convs = nn.Sequential(*module_list) self.dim_out = fc_dim = cfg.FAST_RCNN.MLP_HEAD_DIM roi_size = cfg.FAST_RCNN.ROI_XFORM_RESOLUTION self.fc = nn.Linear(dim_in * roi_size * roi_size, fc_dim) self._init_weights() def _init_weights(self): def _init(m): if isinstance(m, nn.Conv2d): mynn.init.MSRAFill(m.weight) elif isinstance(m, nn.Linear): mynn.init.XavierFill(m.weight) init.constant_(m.bias, 0) self.apply(_init) def detectron_weight_mapping(self): mapping = {} for i in range(cfg.FAST_RCNN.NUM_STACKED_CONVS): mapping.update({ 'convs.%d.weight' % (i*3): 'head_conv%d_w' % (i+1), 'convs.%d.weight' % (i*3+1): 'head_conv%d_gn_s' % (i+1), 'convs.%d.bias' % (i*3+1): 'head_conv%d_gn_b' % (i+1) }) mapping.update({ 'fc.weight': 'fc6_w', 'fc.bias': 'fc6_b' }) return mapping, [] def forward(self, x, rpn_ret): x = self.roi_xform( x, rpn_ret, blob_rois='rois', method=cfg.FAST_RCNN.ROI_XFORM_METHOD, resolution=cfg.FAST_RCNN.ROI_XFORM_RESOLUTION, spatial_scale=self.spatial_scale, sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO ) batch_size = x.size(0) x = self.convs(x) x = F.relu(self.fc(x.view(batch_size, -1)), inplace=True) return x
ContrastiveLosses4VRD-master
lib/modeling_rel/fast_rcnn_heads.py
""" Some functions are adapted from Rowan Zellers: https://github.com/rowanz/neural-motifs """ import os import torch.nn as nn import torch from torch.autograd import Variable import numpy as np import logging from six.moves import cPickle as pickle from core.config import cfg from modeling_rel.get_dataset_counts_rel import get_rel_counts logger = logging.getLogger(__name__) # This module is adapted from Rowan Zellers: # https://github.com/rowanz/neural-motifs/blob/master/lib/sparse_targets.py # Modified for this project class FrequencyBias(nn.Module): """ The goal of this is to provide a simplified way of computing P(predicate | obj1, obj2, img). """ def __init__(self, ds_name, eps=1e-3): super(FrequencyBias, self).__init__() if ds_name.find('vg') >= 0: ds_name = 'vg' elif ds_name.find('oi') >= 0: ds_name = 'oi' elif ds_name.find('vrd') >= 0: ds_name = 'vrd' else: raise NotImplementedError if cfg.MODEL.USE_OVLP_FILTER: must_overlap = True else: must_overlap = False fg_matrix, bg_matrix = get_rel_counts(ds_name, must_overlap=must_overlap) bg_matrix += 1 fg_matrix[:, :, 0] = bg_matrix pred_dist = np.log(fg_matrix / (fg_matrix.sum(2)[:, :, None] + 1e-08) + eps) self.num_objs = pred_dist.shape[0] pred_dist = torch.FloatTensor(pred_dist).view(-1, pred_dist.shape[2]) self.rel_baseline = nn.Embedding(pred_dist.size(0), pred_dist.size(1)) self.rel_baseline.weight.data = pred_dist logger.info('Frequency bias tables loaded.') def rel_index_with_labels(self, labels): """ :param labels: [batch_size, 2] :return: """ return self.rel_baseline(labels[:, 0] * self.num_objs + labels[:, 1])
ContrastiveLosses4VRD-master
lib/modeling_rel/sparse_targets_rel.py
# Written by Ji Zhang in 2019 import collections import numpy as np import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from core.config import cfg import utils.net as net_utils import modeling.ResNet as ResNet from modeling.generate_anchors import generate_anchors from modeling.generate_proposals import GenerateProposalsOp from modeling.collect_and_distribute_fpn_rpn_proposals import CollectAndDistributeFpnRpnProposalsOp import nn as mynn logger = logging.getLogger(__name__) class rel_pyramid_module(nn.Module): def __init__(self, num_backbone_stages): super().__init__() fpn_dim = cfg.FPN.DIM self.num_backbone_stages = num_backbone_stages self.prd_conv_lateral = nn.ModuleList() for i in range(self.num_backbone_stages): if cfg.FPN.USE_GN: self.prd_conv_lateral.append(nn.Sequential( nn.Conv2d(fpn_dim, fpn_dim, 1, 1, 0, bias=False), nn.GroupNorm(net_utils.get_group_gn(fpn_dim), fpn_dim, eps=cfg.GROUP_NORM.EPSILON))) else: self.prd_conv_lateral.append(nn.Conv2d(fpn_dim, fpn_dim, 1, 1, 0)) self.posthoc_modules = nn.ModuleList() for i in range(self.num_backbone_stages): if cfg.FPN.USE_GN: self.posthoc_modules.append(nn.Sequential( nn.Conv2d(fpn_dim, fpn_dim, 3, 1, 1, bias=False), nn.GroupNorm(net_utils.get_group_gn(fpn_dim), fpn_dim, eps=cfg.GROUP_NORM.EPSILON))) else: self.posthoc_modules.append(nn.Conv2d(fpn_dim, fpn_dim, 3, 1, 1)) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): mynn.init.XavierFill(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, blob_conv): # blob_conv is in the order (P5, P4, P3, P2) rel_lateral_inner_blob = None rel_lateral_output_blobs = [] for i in range(self.num_backbone_stages): if rel_lateral_inner_blob is not None: bu = F.max_pool2d(rel_lateral_inner_blob, 2, stride=2) rel_lateral_inner_blob = \ self.prd_conv_lateral[i](blob_conv[-1 - i]) + bu else: rel_lateral_inner_blob = \ self.prd_conv_lateral[i](blob_conv[-1 - i]) rel_lateral_output_blobs.append(self.posthoc_modules[i](rel_lateral_inner_blob)) # the output is in the order of (P2, P3, P4, P5), we need to recover it back to (P5, P4, P3, P2) rel_lateral_output_blobs.reverse() return rel_lateral_output_blobs
ContrastiveLosses4VRD-master
lib/modeling_rel/rel_pyramid_module.py
# Adapted from Detectron.pytorch/lib/modeling/generate_proposal_labels.py # for this project by Ji Zhang, 2019 from torch import nn from core.config import cfg from datasets_rel import json_dataset_rel from roi_data_rel.fast_rcnn_rel import add_rel_blobs class GenerateRelProposalLabelsOp(nn.Module): def __init__(self): super().__init__() def forward(self, sbj_rois, obj_rois, det_rois, roidb, im_info): im_scales = im_info.data.numpy()[:, 2] # For historical consistency with the original Faster R-CNN # implementation we are *not* filtering crowd proposals. # This choice should be investigated in the future (it likely does # not matter). # Note: crowd_thresh=0 will ignore _filter_crowd_proposals json_dataset_rel.add_rel_proposals(roidb, sbj_rois, obj_rois, det_rois, im_scales) output_blob_names = ['sbj_rois', 'obj_rois', 'rel_rois', 'fg_prd_labels_int32', 'all_prd_labels_int32', 'fg_size'] if cfg.MODEL.USE_SPATIAL_FEAT: output_blob_names += ['spt_feat'] if cfg.MODEL.USE_FREQ_BIAS: output_blob_names += ['all_sbj_labels_int32'] output_blob_names += ['all_obj_labels_int32'] if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: output_blob_names += ['binary_labels_sbj_pos_int32', 'sbj_rois_sbj_pos', 'obj_rois_sbj_pos', 'rel_rois_sbj_pos', 'spt_feat_sbj_pos', 'sbj_labels_sbj_pos_int32', 'obj_labels_sbj_pos_int32', 'prd_labels_sbj_pos_int32', 'sbj_labels_sbj_pos_fg_int32', 'obj_labels_sbj_pos_fg_int32', 'inds_unique_sbj_pos', 'inds_reverse_sbj_pos', 'binary_labels_obj_pos_int32', 'sbj_rois_obj_pos', 'obj_rois_obj_pos', 'rel_rois_obj_pos', 'spt_feat_obj_pos', 'sbj_labels_obj_pos_int32', 'obj_labels_obj_pos_int32', 'prd_labels_obj_pos_int32', 'sbj_labels_obj_pos_fg_int32', 'obj_labels_obj_pos_fg_int32', 'inds_unique_obj_pos', 'inds_reverse_obj_pos'] blobs = {k: [] for k in output_blob_names} add_rel_blobs(blobs, im_scales, roidb) return blobs
ContrastiveLosses4VRD-master
lib/modeling_rel/generate_rel_proposal_labels.py
ContrastiveLosses4VRD-master
lib/modeling_rel/__init__.py
# Written by Ji Zhang in 2019 import numpy as np from numpy import linalg as la import json import logging from torch import nn from torch.nn import init import torch.nn.functional as F from core.config import cfg from modeling_rel.generate_rel_proposal_labels import GenerateRelProposalLabelsOp import modeling.FPN as FPN import utils_rel.boxes_rel as box_utils_rel import utils.fpn as fpn_utils logger = logging.getLogger(__name__) def generic_relpn_outputs(): return single_scale_relpn_outputs() class single_scale_relpn_outputs(nn.Module): """Add RelPN outputs to a single scale model (i.e., no FPN).""" def __init__(self): super().__init__() self.RelPN_GenerateProposalLabels = GenerateRelProposalLabelsOp() ds_name = cfg.TRAIN.DATASETS[0] if len(cfg.TRAIN.DATASETS) else cfg.TEST.DATASETS[0] def get_roi_inds(self, det_labels, lbls): lbl_set = np.array(lbls) inds = np.where(np.isin(det_labels, lbl_set))[0] return inds def remove_self_pairs(self, det_size, sbj_inds, obj_inds): mask = np.ones(sbj_inds.shape[0], dtype=bool) for i in range(det_size): mask[i + det_size * i] = False keeps = np.where(mask)[0] sbj_inds = sbj_inds[keeps] obj_inds = obj_inds[keeps] return sbj_inds, obj_inds def forward(self, det_rois, det_labels, det_scores, im_info, dataset_name, roidb=None): """ det_rois: feature maps from the backbone network. (Variable) im_info: (CPU Variable) roidb: (list of ndarray) """ # Get pairwise proposals first if roidb is not None: # we always feed one image per batch during training assert len(roidb) == 1 sbj_inds = np.repeat(np.arange(det_rois.shape[0]), det_rois.shape[0]) obj_inds = np.tile(np.arange(det_rois.shape[0]), det_rois.shape[0]) # remove self paired rois if det_rois.shape[0] > 1: # no pairs to remove when there is at most one detection sbj_inds, obj_inds = self.remove_self_pairs(det_rois.shape[0], sbj_inds, obj_inds) sbj_rois = det_rois[sbj_inds] obj_rois = det_rois[obj_inds] im_scale = im_info.data.numpy()[:, 2][0] sbj_boxes = sbj_rois[:, 1:] / im_scale obj_boxes = obj_rois[:, 1:] / im_scale # filters out those roi pairs whose boxes are not overlapping in the original scales if cfg.MODEL.USE_OVLP_FILTER: ovlp_so = box_utils_rel.bbox_pair_overlaps( sbj_boxes.astype(dtype=np.float32, copy=False), obj_boxes.astype(dtype=np.float32, copy=False)) ovlp_inds = np.where(ovlp_so > 0)[0] sbj_inds = sbj_inds[ovlp_inds] obj_inds = obj_inds[ovlp_inds] sbj_rois = sbj_rois[ovlp_inds] obj_rois = obj_rois[ovlp_inds] sbj_boxes = sbj_boxes[ovlp_inds] obj_boxes = obj_boxes[ovlp_inds] return_dict = {} if self.training: # Add binary relationships blobs_out = self.RelPN_GenerateProposalLabels(sbj_rois, obj_rois, det_rois, roidb, im_info) return_dict.update(blobs_out) else: sbj_labels = det_labels[sbj_inds] obj_labels = det_labels[obj_inds] sbj_scores = det_scores[sbj_inds] obj_scores = det_scores[obj_inds] rel_rois = box_utils_rel.rois_union(sbj_rois, obj_rois) return_dict['det_rois'] = det_rois return_dict['sbj_inds'] = sbj_inds return_dict['obj_inds'] = obj_inds return_dict['sbj_rois'] = sbj_rois return_dict['obj_rois'] = obj_rois return_dict['rel_rois'] = rel_rois return_dict['sbj_labels'] = sbj_labels return_dict['obj_labels'] = obj_labels return_dict['sbj_scores'] = sbj_scores return_dict['obj_scores'] = obj_scores return_dict['fg_size'] = np.array([sbj_rois.shape[0]], dtype=np.int32) im_scale = im_info.data.numpy()[:, 2][0] im_w = im_info.data.numpy()[:, 1][0] im_h = im_info.data.numpy()[:, 0][0] if cfg.MODEL.USE_SPATIAL_FEAT: spt_feat = box_utils_rel.get_spt_features(sbj_boxes, obj_boxes, im_w, im_h) return_dict['spt_feat'] = spt_feat if cfg.MODEL.USE_FREQ_BIAS or cfg.MODEL.RUN_BASELINE: return_dict['all_sbj_labels_int32'] = sbj_labels.astype(np.int32, copy=False) - 1 # det_labels start from 1 return_dict['all_obj_labels_int32'] = obj_labels.astype(np.int32, copy=False) - 1 # det_labels start from 1 if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_ROIS: lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL # when use min_rel_area, the same sbj/obj area could be mapped to different feature levels # when they are associated with different relationships # Thus we cannot get det_rois features then gather sbj/obj features # The only way is gather sbj/obj per relationship, thus need to return sbj_rois/obj_rois rois_blob_names = ['det_rois', 'rel_rois'] for rois_blob_name in rois_blob_names: # Add per FPN level roi blobs named like: <rois_blob_name>_fpn<lvl> target_lvls = fpn_utils.map_rois_to_fpn_levels( return_dict[rois_blob_name][:, 1:5], lvl_min, lvl_max) fpn_utils.add_multilevel_roi_blobs( return_dict, rois_blob_name, return_dict[rois_blob_name], target_lvls, lvl_min, lvl_max) return return_dict
ContrastiveLosses4VRD-master
lib/modeling_rel/relpn_heads.py
# Written by Ji Zhang in 2019 import os import numpy as np import logging from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from core.config import cfg import nn as mynn import torchvision.models as models logger = logging.getLogger(__name__) # ---------------------------------------------------------------------------- # # VGG16 architecture # ---------------------------------------------------------------------------- # vgg = models.vgg16() if cfg.VGG16.IMAGENET_PRETRAINED_WEIGHTS != '': logger.info("Loading imagenet pretrained weights from %s", cfg.VGG16.IMAGENET_PRETRAINED_WEIGHTS) state_dict = torch.load(cfg.VGG16.IMAGENET_PRETRAINED_WEIGHTS) vgg.load_state_dict({k:v for k, v in state_dict.items() if k in vgg.state_dict()}) class VGG16_conv_body(nn.Module): def __init__(self): super().__init__() self.num_layers = 16 self.spatial_scale = 1. / 16. # final feature scale wrt. original image scale self.dim_out = 512 self._init_modules() def _init_modules(self): # not using the last maxpool layer self.convs = nn.Sequential(*list(vgg.features._modules.values())[:-1]) for layer in range(10): for p in self.convs[layer].parameters(): p.requires_grad = False def forward(self, x): return self.convs(x) class VGG16_roi_conv5_head(nn.Module): def __init__(self, dim_in, roi_xform_func, spatial_scale): super().__init__() self.roi_xform = roi_xform_func self.spatial_scale = spatial_scale self.dim_out = 4096 self.dim_roi_out = dim_in # 512 self._init_modules() def _init_modules(self): self.heads = nn.Sequential(*list(vgg.classifier._modules.values())[:-1]) def forward(self, x, rpn_ret, rois_name='rois', use_relu=True): x = self.roi_xform( x, rpn_ret, blob_rois=rois_name, method=cfg.FAST_RCNN.ROI_XFORM_METHOD, resolution=7, spatial_scale=self.spatial_scale, sampling_ratio=cfg.FAST_RCNN.ROI_XFORM_SAMPLING_RATIO ) feat = x.view(x.size(0), -1) if use_relu: for layer in list(self.heads.children()): feat = layer(feat) else: # not use the last Drop-out and ReLU in fc7 (keep it the same with Rawan's paper) for layer in list(self.heads.children())[:-2]: feat = layer(feat) return feat
ContrastiveLosses4VRD-master
lib/modeling_rel/VGG16.py
# Written by Ji Zhang in 2019 import numpy as np from numpy import linalg as la import math import logging import json import torch from torch import nn from torch.nn import init import torch.nn.functional as F from torch.autograd import Variable import nn as mynn from core.config import cfg from modeling_rel.sparse_targets_rel import FrequencyBias logger = logging.getLogger(__name__) class reldn_head(nn.Module): def __init__(self, dim_in): super().__init__() dim_in_final = dim_in // 3 self.dim_in_final = dim_in_final if cfg.MODEL.USE_BG: num_prd_classes = cfg.MODEL.NUM_PRD_CLASSES + 1 else: num_prd_classes = cfg.MODEL.NUM_PRD_CLASSES if cfg.MODEL.RUN_BASELINE: # only run it on testing mode self.freq_bias = FrequencyBias(cfg.TEST.DATASETS[0]) return self.prd_cls_feats = nn.Sequential( nn.Linear(dim_in, dim_in // 2), nn.LeakyReLU(0.1), nn.Linear(dim_in // 2, dim_in_final), nn.LeakyReLU(0.1)) self.prd_cls_scores = nn.Linear(dim_in_final, num_prd_classes) if cfg.MODEL.USE_FREQ_BIAS: # Assume we are training/testing on only one dataset if len(cfg.TRAIN.DATASETS): self.freq_bias = FrequencyBias(cfg.TRAIN.DATASETS[0]) else: self.freq_bias = FrequencyBias(cfg.TEST.DATASETS[0]) if cfg.MODEL.USE_SPATIAL_FEAT: self.spt_cls_feats = nn.Sequential( nn.Linear(28, 64), nn.LeakyReLU(0.1), nn.Linear(64, 64), nn.LeakyReLU(0.1)) self.spt_cls_scores = nn.Linear(64, num_prd_classes) if cfg.MODEL.ADD_SO_SCORES: self.prd_sbj_scores = nn.Linear(dim_in_final, num_prd_classes) self.prd_obj_scores = nn.Linear(dim_in_final, num_prd_classes) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): # nn.init.kaiming_normal_(m.weight, mode='fan_out') mynn.init.XavierFill(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # spo_feat will be concatenation of SPO def forward(self, spo_feat, spt_feat=None, sbj_labels=None, obj_labels=None, sbj_feat=None, obj_feat=None): device_id = spo_feat.get_device() if sbj_labels is not None: sbj_labels = Variable(torch.from_numpy(sbj_labels.astype('int64'))).cuda(device_id) if obj_labels is not None: obj_labels = Variable(torch.from_numpy(obj_labels.astype('int64'))).cuda(device_id) if cfg.MODEL.RUN_BASELINE: assert sbj_labels is not None and obj_labels is not None prd_cls_scores = self.freq_bias.rel_index_with_labels(torch.stack((sbj_labels, obj_labels), 1)) prd_cls_scores = F.softmax(prd_cls_scores, dim=1) return prd_cls_scores, prd_cls_scores, None, prd_cls_scores, None, None if spo_feat.dim() == 4: spo_feat = spo_feat.squeeze(3).squeeze(2) prd_cls_feats = self.prd_cls_feats(spo_feat) prd_vis_scores = self.prd_cls_scores(prd_cls_feats) sbj_cls_scores = None obj_cls_scores = None if cfg.MODEL.USE_FREQ_BIAS: assert sbj_labels is not None and obj_labels is not None prd_bias_scores = self.freq_bias.rel_index_with_labels(torch.stack((sbj_labels, obj_labels), 1)) if cfg.MODEL.USE_SPATIAL_FEAT: assert spt_feat is not None device_id = spo_feat.get_device() spt_feat = Variable(torch.from_numpy(spt_feat.astype('float32'))).cuda(device_id) spt_cls_feats = self.spt_cls_feats(spt_feat) prd_spt_scores = self.spt_cls_scores(spt_cls_feats) else: prd_spt_scores = None if cfg.MODEL.ADD_SO_SCORES: prd_sbj_scores = self.prd_sbj_scores(sbj_feat) prd_obj_scores = self.prd_obj_scores(obj_feat) if cfg.MODEL.ADD_SCORES_ALL: ttl_cls_scores = torch.tensor(prd_vis_scores) if cfg.MODEL.USE_FREQ_BIAS: ttl_cls_scores += prd_bias_scores if cfg.MODEL.USE_SPATIAL_FEAT: ttl_cls_scores += prd_spt_scores if cfg.MODEL.ADD_SO_SCORES: ttl_cls_scores += prd_sbj_scores + prd_obj_scores else: ttl_cls_scores = None if not self.training: prd_vis_scores = F.softmax(prd_vis_scores, dim=1) if cfg.MODEL.USE_FREQ_BIAS: prd_bias_scores = F.softmax(prd_bias_scores, dim=1) if cfg.MODEL.USE_SPATIAL_FEAT: prd_spt_scores = F.softmax(prd_spt_scores, dim=1) if cfg.MODEL.ADD_SCORES_ALL: ttl_cls_scores = F.softmax(ttl_cls_scores, dim=1) return prd_vis_scores, prd_bias_scores, prd_spt_scores, ttl_cls_scores, sbj_cls_scores, obj_cls_scores def reldn_losses(prd_cls_scores, prd_labels_int32, fg_only=False): device_id = prd_cls_scores.get_device() prd_labels = Variable(torch.from_numpy(prd_labels_int32.astype('int64'))).cuda(device_id) loss_cls_prd = F.cross_entropy(prd_cls_scores, prd_labels) # class accuracy prd_cls_preds = prd_cls_scores.max(dim=1)[1].type_as(prd_labels) accuracy_cls_prd = prd_cls_preds.eq(prd_labels).float().mean(dim=0) return loss_cls_prd, accuracy_cls_prd def reldn_contrastive_losses(prd_scores_sbj_pos, prd_scores_obj_pos, rel_ret): # sbj prd_probs_sbj_pos = F.softmax(prd_scores_sbj_pos, dim=1) sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target = split_pos_neg_spo_agnostic( prd_probs_sbj_pos, rel_ret['binary_labels_sbj_pos_int32'], rel_ret['inds_unique_sbj_pos'], rel_ret['inds_reverse_sbj_pos']) sbj_contrastive_loss = F.margin_ranking_loss(sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_MARGIN) # obj prd_probs_obj_pos = F.softmax(prd_scores_obj_pos, dim=1) obj_pair_pos_batch, obj_pair_neg_batch, obj_target = split_pos_neg_spo_agnostic( prd_probs_obj_pos, rel_ret['binary_labels_obj_pos_int32'], rel_ret['inds_unique_obj_pos'], rel_ret['inds_reverse_obj_pos']) obj_contrastive_loss = F.margin_ranking_loss(obj_pair_pos_batch, obj_pair_neg_batch, obj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_MARGIN) return sbj_contrastive_loss, obj_contrastive_loss def reldn_so_contrastive_losses(prd_scores_sbj_pos, prd_scores_obj_pos, rel_ret): # sbj prd_probs_sbj_pos = F.softmax(prd_scores_sbj_pos, dim=1) sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target = split_pos_neg_so_aware( prd_probs_sbj_pos, rel_ret['binary_labels_sbj_pos_int32'], rel_ret['inds_unique_sbj_pos'], rel_ret['inds_reverse_sbj_pos'], rel_ret['sbj_labels_sbj_pos_int32'], rel_ret['obj_labels_sbj_pos_int32'], 's') sbj_so_contrastive_loss = F.margin_ranking_loss(sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_SO_AWARE_MARGIN) # obj prd_probs_obj_pos = F.softmax(prd_scores_obj_pos, dim=1) obj_pair_pos_batch, obj_pair_neg_batch, obj_target = split_pos_neg_so_aware( prd_probs_obj_pos, rel_ret['binary_labels_obj_pos_int32'], rel_ret['inds_unique_obj_pos'], rel_ret['inds_reverse_obj_pos'], rel_ret['sbj_labels_obj_pos_int32'], rel_ret['obj_labels_obj_pos_int32'], 'o') obj_so_contrastive_loss = F.margin_ranking_loss(obj_pair_pos_batch, obj_pair_neg_batch, obj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_SO_AWARE_MARGIN) return sbj_so_contrastive_loss, obj_so_contrastive_loss def reldn_p_contrastive_losses(prd_scores_sbj_pos, prd_scores_obj_pos, prd_bias_scores_sbj_pos, prd_bias_scores_obj_pos, rel_ret): # sbj prd_probs_sbj_pos = F.softmax(prd_scores_sbj_pos, dim=1) prd_bias_probs_sbj_pos = F.softmax(prd_bias_scores_sbj_pos, dim=1) sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target = split_pos_neg_p_aware( prd_probs_sbj_pos, prd_bias_probs_sbj_pos, rel_ret['binary_labels_sbj_pos_int32'], rel_ret['inds_unique_sbj_pos'], rel_ret['inds_reverse_sbj_pos'], rel_ret['prd_labels_sbj_pos_int32']) sbj_p_contrastive_loss = F.margin_ranking_loss(sbj_pair_pos_batch, sbj_pair_neg_batch, sbj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_P_AWARE_MARGIN) # obj prd_probs_obj_pos = F.softmax(prd_scores_obj_pos, dim=1) prd_bias_probs_obj_pos = F.softmax(prd_bias_scores_obj_pos, dim=1) obj_pair_pos_batch, obj_pair_neg_batch, obj_target = split_pos_neg_p_aware( prd_probs_obj_pos, prd_bias_probs_obj_pos, rel_ret['binary_labels_obj_pos_int32'], rel_ret['inds_unique_obj_pos'], rel_ret['inds_reverse_obj_pos'], rel_ret['prd_labels_obj_pos_int32']) obj_p_contrastive_loss = F.margin_ranking_loss(obj_pair_pos_batch, obj_pair_neg_batch, obj_target, margin=cfg.MODEL.NODE_CONTRASTIVE_P_AWARE_MARGIN) return sbj_p_contrastive_loss, obj_p_contrastive_loss def split_pos_neg_spo_agnostic(prd_probs, binary_labels_pos, inds_unique_pos, inds_reverse_pos): device_id = prd_probs.get_device() prd_pos_probs = 1 - prd_probs[:, 0] # shape is (#rels,) # loop over each group pair_pos_batch = torch.ones(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample pair_neg_batch = torch.zeros(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample for i in range(inds_unique_pos.shape[0]): inds = np.where(inds_reverse_pos == i)[0] prd_pos_probs_i = prd_pos_probs[inds] binary_labels_pos_i = binary_labels_pos[inds] pair_pos_inds = np.where(binary_labels_pos_i > 0)[0] pair_neg_inds = np.where(binary_labels_pos_i == 0)[0] if pair_pos_inds.size == 0 or pair_neg_inds.size == 0: # ignore this node if either pos or neg does not exist continue prd_pos_probs_i_pair_pos = prd_pos_probs_i[pair_pos_inds] prd_pos_probs_i_pair_neg = prd_pos_probs_i[pair_neg_inds] min_prd_pos_probs_i_pair_pos = torch.min(prd_pos_probs_i_pair_pos) max_prd_pos_probs_i_pair_neg = torch.max(prd_pos_probs_i_pair_neg) pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pair_pos.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_pair_neg.unsqueeze(0))) target = torch.ones_like(pair_pos_batch).cuda(device_id) return pair_pos_batch, pair_neg_batch, target def split_pos_neg_so_aware(prd_probs, binary_labels_pos, inds_unique_pos, inds_reverse_pos, sbj_labels_pos, obj_labels_pos, s_or_o): device_id = prd_probs.get_device() prd_pos_probs = 1 - prd_probs[:, 0] # shape is (#rels,) # loop over each group pair_pos_batch = torch.ones(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample pair_neg_batch = torch.zeros(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample for i in range(inds_unique_pos.shape[0]): inds = np.where(inds_reverse_pos == i)[0] prd_pos_probs_i = prd_pos_probs[inds] binary_labels_pos_i = binary_labels_pos[inds] sbj_labels_pos_i = sbj_labels_pos[inds] obj_labels_pos_i = obj_labels_pos[inds] pair_pos_inds = np.where(binary_labels_pos_i > 0)[0] pair_neg_inds = np.where(binary_labels_pos_i == 0)[0] if pair_pos_inds.size == 0 or pair_neg_inds.size == 0: # ignore this node if either pos or neg does not exist continue prd_pos_probs_i_pair_pos = prd_pos_probs_i[pair_pos_inds] prd_pos_probs_i_pair_neg = prd_pos_probs_i[pair_neg_inds] sbj_labels_i_pair_pos = sbj_labels_pos_i[pair_pos_inds] obj_labels_i_pair_pos = obj_labels_pos_i[pair_pos_inds] sbj_labels_i_pair_neg = sbj_labels_pos_i[pair_neg_inds] obj_labels_i_pair_neg = obj_labels_pos_i[pair_neg_inds] max_prd_pos_probs_i_pair_neg = torch.max(prd_pos_probs_i_pair_neg) # this is fixed for a given i if s_or_o == 's': # get all unique object labels unique_obj_labels, inds_unique_obj_labels, inds_reverse_obj_labels = np.unique( obj_labels_i_pair_pos, return_index=True, return_inverse=True, axis=0) for j in range(inds_unique_obj_labels.shape[0]): # get min pos inds_j = np.where(inds_reverse_obj_labels == j)[0] prd_pos_probs_i_pos_j = prd_pos_probs_i_pair_pos[inds_j] min_prd_pos_probs_i_pos_j = torch.min(prd_pos_probs_i_pos_j) # get max neg neg_j_inds = np.where(obj_labels_i_pair_neg == unique_obj_labels[j])[0] if neg_j_inds.size == 0: if cfg.MODEL.USE_SPO_AGNOSTIC_COMPENSATION: pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_pair_neg.unsqueeze(0))) continue prd_pos_probs_i_neg_j = prd_pos_probs_i_pair_neg[neg_j_inds] max_prd_pos_probs_i_neg_j = torch.max(prd_pos_probs_i_neg_j) pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_neg_j.unsqueeze(0))) else: # get all unique subject labels unique_sbj_labels, inds_unique_sbj_labels, inds_reverse_sbj_labels = np.unique( sbj_labels_i_pair_pos, return_index=True, return_inverse=True, axis=0) for j in range(inds_unique_sbj_labels.shape[0]): # get min pos inds_j = np.where(inds_reverse_sbj_labels == j)[0] prd_pos_probs_i_pos_j = prd_pos_probs_i_pair_pos[inds_j] min_prd_pos_probs_i_pos_j = torch.min(prd_pos_probs_i_pos_j) # get max neg neg_j_inds = np.where(sbj_labels_i_pair_neg == unique_sbj_labels[j])[0] if neg_j_inds.size == 0: if cfg.MODEL.USE_SPO_AGNOSTIC_COMPENSATION: pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_pair_neg.unsqueeze(0))) continue prd_pos_probs_i_neg_j = prd_pos_probs_i_pair_neg[neg_j_inds] max_prd_pos_probs_i_neg_j = torch.max(prd_pos_probs_i_neg_j) pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_neg_j.unsqueeze(0))) target = torch.ones_like(pair_pos_batch).cuda(device_id) return pair_pos_batch, pair_neg_batch, target def split_pos_neg_p_aware(prd_probs, prd_bias_probs, binary_labels_pos, inds_unique_pos, inds_reverse_pos, prd_labels_pos): device_id = prd_probs.get_device() prd_pos_probs = 1 - prd_probs[:, 0] # shape is (#rels,) prd_labels_det = prd_probs[:, 1:].argmax(dim=1).data.cpu().numpy() + 1 # prd_probs is a torch.tensor, exlucding background # loop over each group pair_pos_batch = torch.ones(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample pair_neg_batch = torch.zeros(1).cuda(device_id) # a dummy sample in the batch in case there is no real sample for i in range(inds_unique_pos.shape[0]): inds = np.where(inds_reverse_pos == i)[0] prd_pos_probs_i = prd_pos_probs[inds] prd_labels_pos_i = prd_labels_pos[inds] prd_labels_det_i = prd_labels_det[inds] binary_labels_pos_i = binary_labels_pos[inds] pair_pos_inds = np.where(binary_labels_pos_i > 0)[0] pair_neg_inds = np.where(binary_labels_pos_i == 0)[0] if pair_pos_inds.size == 0 or pair_neg_inds.size == 0: # ignore this node if either pos or neg does not exist continue prd_pos_probs_i_pair_pos = prd_pos_probs_i[pair_pos_inds] prd_pos_probs_i_pair_neg = prd_pos_probs_i[pair_neg_inds] prd_labels_i_pair_pos = prd_labels_pos_i[pair_pos_inds] prd_labels_i_pair_neg = prd_labels_det_i[pair_neg_inds] max_prd_pos_probs_i_pair_neg = torch.max(prd_pos_probs_i_pair_neg) # this is fixed for a given i unique_prd_labels, inds_unique_prd_labels, inds_reverse_prd_labels = np.unique( prd_labels_i_pair_pos, return_index=True, return_inverse=True, axis=0) for j in range(inds_unique_prd_labels.shape[0]): # get min pos inds_j = np.where(inds_reverse_prd_labels == j)[0] prd_pos_probs_i_pos_j = prd_pos_probs_i_pair_pos[inds_j] min_prd_pos_probs_i_pos_j = torch.min(prd_pos_probs_i_pos_j) # get max neg neg_j_inds = np.where(prd_labels_i_pair_neg == unique_prd_labels[j])[0] if neg_j_inds.size == 0: if cfg.MODEL.USE_SPO_AGNOSTIC_COMPENSATION: pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_pair_neg.unsqueeze(0))) continue prd_pos_probs_i_neg_j = prd_pos_probs_i_pair_neg[neg_j_inds] max_prd_pos_probs_i_neg_j = torch.max(prd_pos_probs_i_neg_j) pair_pos_batch = torch.cat((pair_pos_batch, min_prd_pos_probs_i_pos_j.unsqueeze(0))) pair_neg_batch = torch.cat((pair_neg_batch, max_prd_pos_probs_i_neg_j.unsqueeze(0))) target = torch.ones_like(pair_pos_batch).cuda(device_id) return pair_pos_batch, pair_neg_batch, target
ContrastiveLosses4VRD-master
lib/modeling_rel/reldn_heads.py
# Adapted from Detectron.pytorch/lib/modeling/model_builder.py # for this project by Ji Zhang, 2019 from functools import wraps import importlib import logging import numpy as np import copy import json import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from core.config import cfg from model.roi_pooling.functions.roi_pool import RoIPoolFunction from model.roi_crop.functions.roi_crop import RoICropFunction from modeling.roi_xfrom.roi_align.functions.roi_align import RoIAlignFunction import modeling.rpn_heads as rpn_heads import modeling_rel.fast_rcnn_heads as fast_rcnn_heads import modeling_rel.relpn_heads as relpn_heads import modeling_rel.reldn_heads as reldn_heads import modeling_rel.rel_pyramid_module as rel_pyramid_module import utils_rel.boxes_rel as box_utils_rel import utils.boxes as box_utils import utils.blob as blob_utils import utils_rel.net_rel as net_utils_rel from utils.timer import Timer import utils.resnet_weights_helper as resnet_utils import utils.fpn as fpn_utils logger = logging.getLogger(__name__) def get_func(func_name): """Helper to return a function object by name. func_name must identify a function in this module or the path to a function relative to the base 'modeling' module. """ if func_name == '': return None try: # these two keywords means we need to use the functions from the modeling_rel directory if func_name.find('VGG') >= 0 or func_name.find('roi_2mlp_head') >= 0: dir_name = 'modeling_rel.' else: dir_name = 'modeling.' parts = func_name.split('.') # Refers to a function in this module if len(parts) == 1: return globals()[parts[0]] # Otherwise, assume we're referencing a module under modeling module_name = dir_name + '.'.join(parts[:-1]) module = importlib.import_module(module_name) return getattr(module, parts[-1]) except Exception: logger.error('Failed to find function: %s', func_name) raise def check_inference(net_func): @wraps(net_func) def wrapper(self, *args, **kwargs): if not self.training: if cfg.PYTORCH_VERSION_LESS_THAN_040: return net_func(self, *args, **kwargs) else: with torch.no_grad(): return net_func(self, *args, **kwargs) else: raise ValueError('You should call this function only on inference.' 'Set the network in inference mode by net.eval().') return wrapper class Generalized_RCNN(nn.Module): def __init__(self): super().__init__() # For cache self.mapping_to_detectron = None self.orphans_in_detectron = None # Backbone for feature extraction self.Conv_Body = get_func(cfg.MODEL.CONV_BODY)() # Region Proposal Network if cfg.RPN.RPN_ON: self.RPN = rpn_heads.generic_rpn_outputs( self.Conv_Body.dim_out, self.Conv_Body.spatial_scale) if cfg.FPN.FPN_ON: # Only supports case when RPN and ROI min levels are the same assert cfg.FPN.RPN_MIN_LEVEL == cfg.FPN.ROI_MIN_LEVEL # RPN max level can be >= to ROI max level assert cfg.FPN.RPN_MAX_LEVEL >= cfg.FPN.ROI_MAX_LEVEL # FPN RPN max level might be > FPN ROI max level in which case we # need to discard some leading conv blobs (blobs are ordered from # max/coarsest level to min/finest level) self.num_roi_levels = cfg.FPN.ROI_MAX_LEVEL - cfg.FPN.ROI_MIN_LEVEL + 1 # Retain only the spatial scales that will be used for RoI heads. `Conv_Body.spatial_scale` # may include extra scales that are used for RPN proposals, but not for RoI heads. self.Conv_Body.spatial_scale = self.Conv_Body.spatial_scale[-self.num_roi_levels:] # BBOX Branch self.Box_Head = get_func(cfg.FAST_RCNN.ROI_BOX_HEAD)( self.RPN.dim_out, self.roi_feature_transform, self.Conv_Body.spatial_scale) self.Box_Outs = fast_rcnn_heads.fast_rcnn_outputs( self.Box_Head.dim_out) self.Prd_RCNN = copy.deepcopy(self) del self.Prd_RCNN.RPN del self.Prd_RCNN.Box_Outs # rel pyramid connection if cfg.MODEL.USE_REL_PYRAMID: assert cfg.FPN.FPN_ON self.RelPyramid = rel_pyramid_module.rel_pyramid_module(self.num_roi_levels) # RelPN self.RelPN = relpn_heads.generic_relpn_outputs() # RelDN self.RelDN = reldn_heads.reldn_head(self.Box_Head.dim_out * 3) self._init_modules() # initialize S/O branches AFTER init_weigths so that weights can be automatically copied if cfg.MODEL.ADD_SO_SCORES: self.S_Head = copy.deepcopy(self.Box_Head) self.O_Head = copy.deepcopy(self.Box_Head) for p in self.S_Head.parameters(): p.requires_grad = True for p in self.O_Head.parameters(): p.requires_grad = True def _init_modules(self): # VGG16 imagenet pretrained model is initialized in VGG16.py if cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS != '': logger.info("Loading pretrained weights from %s", cfg.RESNETS.IMAGENET_PRETRAINED_WEIGHTS) resnet_utils.load_pretrained_imagenet_weights(self) for p in self.Conv_Body.parameters(): p.requires_grad = False if cfg.RESNETS.VRD_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.RESNETS.VRD_PRETRAINED_WEIGHTS) if cfg.VGG16.VRD_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.VGG16.VRD_PRETRAINED_WEIGHTS) if cfg.RESNETS.VG_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.RESNETS.VG_PRETRAINED_WEIGHTS) if cfg.VGG16.VG_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.VGG16.VG_PRETRAINED_WEIGHTS) if cfg.RESNETS.OI_REL_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.RESNETS.OI_REL_PRETRAINED_WEIGHTS) if cfg.VGG16.OI_REL_PRETRAINED_WEIGHTS != '': self.load_detector_weights(cfg.VGG16.OI_REL_PRETRAINED_WEIGHTS) if cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS != '' or cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS != '' or \ cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS != '' or cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS != '' or \ cfg.RESNETS.OI_REL_PRD_PRETRAINED_WEIGHTS != '' or cfg.VGG16.OI_REL_PRD_PRETRAINED_WEIGHTS != '': if cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.RESNETS.VRD_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.VGG16.VRD_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.RESNETS.VG_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.VGG16.VG_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.RESNETS.OI_REL_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.RESNETS.OI_REL_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.RESNETS.OI_REL_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.VGG16.OI_REL_PRD_PRETRAINED_WEIGHTS != '': logger.info("loading prd pretrained weights from %s", cfg.VGG16.OI_REL_PRD_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.VGG16.OI_REL_PRD_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) # not using the last softmax layers del checkpoint['model']['Box_Outs.cls_score.weight'] del checkpoint['model']['Box_Outs.cls_score.bias'] del checkpoint['model']['Box_Outs.bbox_pred.weight'] del checkpoint['model']['Box_Outs.bbox_pred.bias'] net_utils_rel.load_ckpt_rel(self.Prd_RCNN, checkpoint['model']) if cfg.TRAIN.FREEZE_PRD_CONV_BODY: for p in self.Prd_RCNN.Conv_Body.parameters(): p.requires_grad = False if cfg.TRAIN.FREEZE_PRD_BOX_HEAD: for p in self.Prd_RCNN.Box_Head.parameters(): p.requires_grad = False if cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS != '' or cfg.VGG16.TO_BE_FINETUNED_WEIGHTS != '': if cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS != '': logger.info("loading trained and to be finetuned weights from %s", cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS) checkpoint = torch.load(cfg.RESNETS.TO_BE_FINETUNED_WEIGHTS, map_location=lambda storage, loc: storage) if cfg.VGG16.TO_BE_FINETUNED_WEIGHTS != '': logger.info("loading trained and to be finetuned weights from %s", cfg.VGG16.TO_BE_FINETUNED_WEIGHTS) checkpoint = torch.load(cfg.VGG16.TO_BE_FINETUNED_WEIGHTS, map_location=lambda storage, loc: storage) net_utils_rel.load_ckpt_rel(self, checkpoint['model']) for p in self.Conv_Body.parameters(): p.requires_grad = False for p in self.RPN.parameters(): p.requires_grad = False if not cfg.MODEL.UNFREEZE_DET: for p in self.Box_Head.parameters(): p.requires_grad = False for p in self.Box_Outs.parameters(): p.requires_grad = False if cfg.RESNETS.REL_PRETRAINED_WEIGHTS != '': logger.info("loading rel pretrained weights from %s", cfg.RESNETS.REL_PRETRAINED_WEIGHTS) checkpoint = torch.load(cfg.RESNETS.REL_PRETRAINED_WEIGHTS, map_location=lambda storage, loc: storage) prd_rcnn_state_dict = {} reldn_state_dict = {} for name in checkpoint['model']: if name.find('Prd_RCNN') >= 0: prd_rcnn_state_dict[name] = checkpoint['model'][name] if name.find('RelDN') >= 0: reldn_state_dict[name] = checkpoint['model'][name] net_utils_rel.load_ckpt_rel(self.Prd_RCNN, prd_rcnn_state_dict) if cfg.TRAIN.FREEZE_PRD_CONV_BODY: for p in self.Prd_RCNN.Conv_Body.parameters(): p.requires_grad = False if cfg.TRAIN.FREEZE_PRD_BOX_HEAD: for p in self.Prd_RCNN.Box_Head.parameters(): p.requires_grad = False del reldn_state_dict['RelDN.prd_cls_scores.weight'] del reldn_state_dict['RelDN.prd_cls_scores.bias'] if 'RelDN.prd_sbj_scores.weight' in reldn_state_dict: del reldn_state_dict['RelDN.prd_sbj_scores.weight'] if 'RelDN.prd_sbj_scores.bias' in reldn_state_dict: del reldn_state_dict['RelDN.prd_sbj_scores.bias'] if 'RelDN.prd_obj_scores.weight' in reldn_state_dict: del reldn_state_dict['RelDN.prd_obj_scores.weight'] if 'RelDN.prd_obj_scores.bias' in reldn_state_dict: del reldn_state_dict['RelDN.prd_obj_scores.bias'] if 'RelDN.spt_cls_scores.weight' in reldn_state_dict: del reldn_state_dict['RelDN.spt_cls_scores.weight'] if 'RelDN.spt_cls_scores.bias' in reldn_state_dict: del reldn_state_dict['RelDN.spt_cls_scores.bias'] net_utils_rel.load_ckpt_rel(self.RelDN, reldn_state_dict) def load_detector_weights(self, weight_name): logger.info("loading pretrained weights from %s", weight_name) checkpoint = torch.load(weight_name, map_location=lambda storage, loc: storage) net_utils_rel.load_ckpt_rel(self, checkpoint['model']) # freeze everything above the rel module for p in self.Conv_Body.parameters(): p.requires_grad = False for p in self.RPN.parameters(): p.requires_grad = False if not cfg.MODEL.UNFREEZE_DET: for p in self.Box_Head.parameters(): p.requires_grad = False for p in self.Box_Outs.parameters(): p.requires_grad = False def forward(self, data, im_info, do_vis=False, dataset_name=None, roidb=None, use_gt_labels=False, **rpn_kwargs): if cfg.PYTORCH_VERSION_LESS_THAN_040: return self._forward(data, im_info, do_vis, dataset_name, roidb, use_gt_labels, **rpn_kwargs) else: with torch.set_grad_enabled(self.training): return self._forward(data, im_info, do_vis, dataset_name, roidb, use_gt_labels, **rpn_kwargs) def _forward(self, data, im_info, do_vis=False, dataset_name=None, roidb=None, use_gt_labels=False, **rpn_kwargs): im_data = data if self.training: roidb = list(map(lambda x: blob_utils.deserialize(x)[0], roidb)) if dataset_name is not None: dataset_name = blob_utils.deserialize(dataset_name) else: dataset_name = cfg.TRAIN.DATASETS[0] if self.training else cfg.TEST.DATASETS[0] # assuming only one dataset per run device_id = im_data.get_device() return_dict = {} # A dict to collect return variables blob_conv = self.Conv_Body(im_data) if not cfg.MODEL.USE_REL_PYRAMID: blob_conv_prd = self.Prd_RCNN.Conv_Body(im_data) rpn_ret = self.RPN(blob_conv, im_info, roidb) if cfg.FPN.FPN_ON: # Retain only the blobs that will be used for RoI heads. `blob_conv` may include # extra blobs that are used for RPN proposals, but not for RoI heads. blob_conv = blob_conv[-self.num_roi_levels:] if not cfg.MODEL.USE_REL_PYRAMID: blob_conv_prd = blob_conv_prd[-self.num_roi_levels:] else: blob_conv_prd = self.RelPyramid(blob_conv) if cfg.MODEL.SHARE_RES5 and self.training: box_feat, res5_feat = self.Box_Head(blob_conv, rpn_ret, use_relu=True) else: box_feat = self.Box_Head(blob_conv, rpn_ret, use_relu=True) cls_score, bbox_pred = self.Box_Outs(box_feat) # now go through the predicate branch use_relu = False if cfg.MODEL.NO_FC7_RELU else True if self.training: fg_inds = np.where(rpn_ret['labels_int32'] > 0)[0] det_rois = rpn_ret['rois'][fg_inds] det_labels = rpn_ret['labels_int32'][fg_inds] det_scores = F.softmax(cls_score[fg_inds], dim=1) rel_ret = self.RelPN(det_rois, det_labels, det_scores, im_info, dataset_name, roidb) if cfg.MODEL.ADD_SO_SCORES: sbj_feat = self.S_Head(blob_conv, rel_ret, rois_name='sbj_rois', use_relu=use_relu) obj_feat = self.O_Head(blob_conv, rel_ret, rois_name='obj_rois', use_relu=use_relu) else: sbj_feat = self.Box_Head(blob_conv, rel_ret, rois_name='sbj_rois', use_relu=use_relu) obj_feat = self.Box_Head(blob_conv, rel_ret, rois_name='obj_rois', use_relu=use_relu) if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: if cfg.MODEL.ADD_SO_SCORES: # sbj sbj_feat_sbj_pos = self.S_Head(blob_conv, rel_ret, rois_name='sbj_rois_sbj_pos', use_relu=use_relu) obj_feat_sbj_pos = self.O_Head(blob_conv, rel_ret, rois_name='obj_rois_sbj_pos', use_relu=use_relu) # obj sbj_feat_obj_pos = self.S_Head(blob_conv, rel_ret, rois_name='sbj_rois_obj_pos', use_relu=use_relu) obj_feat_obj_pos = self.O_Head(blob_conv, rel_ret, rois_name='obj_rois_obj_pos', use_relu=use_relu) else: # sbj sbj_feat_sbj_pos = self.Box_Head(blob_conv, rel_ret, rois_name='sbj_rois_sbj_pos', use_relu=use_relu) obj_feat_sbj_pos = self.Box_Head(blob_conv, rel_ret, rois_name='obj_rois_sbj_pos', use_relu=use_relu) # obj sbj_feat_obj_pos = self.Box_Head(blob_conv, rel_ret, rois_name='sbj_rois_obj_pos', use_relu=use_relu) obj_feat_obj_pos = self.Box_Head(blob_conv, rel_ret, rois_name='obj_rois_obj_pos', use_relu=use_relu) else: if roidb is not None: im_scale = im_info.data.numpy()[:, 2][0] im_w = im_info.data.numpy()[:, 1][0] im_h = im_info.data.numpy()[:, 0][0] sbj_boxes = roidb['sbj_gt_boxes'] obj_boxes = roidb['obj_gt_boxes'] sbj_rois = sbj_boxes * im_scale obj_rois = obj_boxes * im_scale repeated_batch_idx = 0 * blob_utils.ones((sbj_rois.shape[0], 1)) sbj_rois = np.hstack((repeated_batch_idx, sbj_rois)) obj_rois = np.hstack((repeated_batch_idx, obj_rois)) rel_rois = box_utils_rel.rois_union(sbj_rois, obj_rois) rel_ret = {} rel_ret['sbj_rois'] = sbj_rois rel_ret['obj_rois'] = obj_rois rel_ret['rel_rois'] = rel_rois if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_ROIS: lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL rois_blob_names = ['sbj_rois', 'obj_rois', 'rel_rois'] for rois_blob_name in rois_blob_names: # Add per FPN level roi blobs named like: <rois_blob_name>_fpn<lvl> target_lvls = fpn_utils.map_rois_to_fpn_levels( rel_ret[rois_blob_name][:, 1:5], lvl_min, lvl_max) fpn_utils.add_multilevel_roi_blobs( rel_ret, rois_blob_name, rel_ret[rois_blob_name], target_lvls, lvl_min, lvl_max) sbj_det_feat = self.Box_Head(blob_conv, rel_ret, rois_name='sbj_rois', use_relu=True) sbj_cls_scores, _ = self.Box_Outs(sbj_det_feat) sbj_cls_scores = sbj_cls_scores.data.cpu().numpy() obj_det_feat = self.Box_Head(blob_conv, rel_ret, rois_name='obj_rois', use_relu=True) obj_cls_scores, _ = self.Box_Outs(obj_det_feat) obj_cls_scores = obj_cls_scores.data.cpu().numpy() if use_gt_labels: sbj_labels = roidb['sbj_gt_classes'] # start from 0 obj_labels = roidb['obj_gt_classes'] # start from 0 sbj_scores = np.ones_like(sbj_labels, dtype=np.float32) obj_scores = np.ones_like(obj_labels, dtype=np.float32) else: sbj_labels = np.argmax(sbj_cls_scores[:, 1:], axis=1) obj_labels = np.argmax(obj_cls_scores[:, 1:], axis=1) sbj_scores = np.amax(sbj_cls_scores[:, 1:], axis=1) obj_scores = np.amax(obj_cls_scores[:, 1:], axis=1) rel_ret['sbj_scores'] = sbj_scores.astype(np.float32, copy=False) rel_ret['obj_scores'] = obj_scores.astype(np.float32, copy=False) rel_ret['sbj_labels'] = sbj_labels.astype(np.int32, copy=False) + 1 # need to start from 1 rel_ret['obj_labels'] = obj_labels.astype(np.int32, copy=False) + 1 # need to start from 1 rel_ret['all_sbj_labels_int32'] = sbj_labels.astype(np.int32, copy=False) rel_ret['all_obj_labels_int32'] = obj_labels.astype(np.int32, copy=False) if cfg.MODEL.USE_SPATIAL_FEAT: spt_feat = box_utils_rel.get_spt_features(sbj_boxes, obj_boxes, im_w, im_h) rel_ret['spt_feat'] = spt_feat if cfg.MODEL.ADD_SO_SCORES: sbj_feat = self.S_Head(blob_conv, rel_ret, rois_name='sbj_rois', use_relu=use_relu) obj_feat = self.O_Head(blob_conv, rel_ret, rois_name='obj_rois', use_relu=use_relu) else: sbj_feat = self.Box_Head(blob_conv, rel_ret, rois_name='sbj_rois', use_relu=use_relu) obj_feat = self.Box_Head(blob_conv, rel_ret, rois_name='obj_rois', use_relu=use_relu) else: score_thresh = cfg.TEST.SCORE_THRESH while score_thresh >= -1e-06: # a negative value very close to 0.0 det_rois, det_labels, det_scores = \ self.prepare_det_rois(rpn_ret['rois'], cls_score, bbox_pred, im_info, score_thresh) rel_ret = self.RelPN(det_rois, det_labels, det_scores, im_info, dataset_name, roidb) valid_len = len(rel_ret['rel_rois']) if valid_len > 0: break logger.info('Got {} rel_rois when score_thresh={}, changing to {}'.format( valid_len, score_thresh, score_thresh - 0.01)) score_thresh -= 0.01 if cfg.MODEL.ADD_SO_SCORES: det_s_feat = self.S_Head(blob_conv, rel_ret, rois_name='det_rois', use_relu=use_relu) det_o_feat = self.O_Head(blob_conv, rel_ret, rois_name='det_rois', use_relu=use_relu) sbj_feat = det_s_feat[rel_ret['sbj_inds']] obj_feat = det_o_feat[rel_ret['obj_inds']] else: det_feat = self.Box_Head(blob_conv, rel_ret, rois_name='det_rois', use_relu=use_relu) sbj_feat = det_feat[rel_ret['sbj_inds']] obj_feat = det_feat[rel_ret['obj_inds']] rel_feat = self.Prd_RCNN.Box_Head(blob_conv_prd, rel_ret, rois_name='rel_rois', use_relu=use_relu) spo_feat = torch.cat((sbj_feat, rel_feat, obj_feat), dim=1) if cfg.MODEL.USE_SPATIAL_FEAT: spt_feat = rel_ret['spt_feat'] else: spt_feat = None if cfg.MODEL.USE_FREQ_BIAS or cfg.MODEL.RUN_BASELINE: sbj_labels = rel_ret['all_sbj_labels_int32'] obj_labels = rel_ret['all_obj_labels_int32'] else: sbj_labels = None obj_labels = None # prd_scores is the visual scores. See reldn_heads.py prd_scores, prd_bias_scores, prd_spt_scores, ttl_cls_scores, sbj_cls_scores, obj_cls_scores = \ self.RelDN(spo_feat, spt_feat, sbj_labels, obj_labels, sbj_feat, obj_feat) if self.training: return_dict['losses'] = {} return_dict['metrics'] = {} # rpn loss rpn_kwargs.update(dict( (k, rpn_ret[k]) for k in rpn_ret.keys() if (k.startswith('rpn_cls_logits') or k.startswith('rpn_bbox_pred')) )) loss_rpn_cls, loss_rpn_bbox = rpn_heads.generic_rpn_losses(**rpn_kwargs) if cfg.FPN.FPN_ON: for i, lvl in enumerate(range(cfg.FPN.RPN_MIN_LEVEL, cfg.FPN.RPN_MAX_LEVEL + 1)): return_dict['losses']['loss_rpn_cls_fpn%d' % lvl] = loss_rpn_cls[i] return_dict['losses']['loss_rpn_bbox_fpn%d' % lvl] = loss_rpn_bbox[i] else: return_dict['losses']['loss_rpn_cls'] = loss_rpn_cls return_dict['losses']['loss_rpn_bbox'] = loss_rpn_bbox # bbox loss loss_cls, loss_bbox, accuracy_cls = fast_rcnn_heads.fast_rcnn_losses( cls_score, bbox_pred, rpn_ret['labels_int32'], rpn_ret['bbox_targets'], rpn_ret['bbox_inside_weights'], rpn_ret['bbox_outside_weights']) return_dict['losses']['loss_cls'] = loss_cls return_dict['losses']['loss_bbox'] = loss_bbox return_dict['metrics']['accuracy_cls'] = accuracy_cls if cfg.MODEL.USE_FREQ_BIAS and not cfg.MODEL.ADD_SCORES_ALL: loss_cls_bias, accuracy_cls_bias = reldn_heads.reldn_losses( prd_bias_scores, rel_ret['all_prd_labels_int32']) return_dict['losses']['loss_cls_bias'] = loss_cls_bias return_dict['metrics']['accuracy_cls_bias'] = accuracy_cls_bias if cfg.MODEL.USE_SPATIAL_FEAT and not cfg.MODEL.ADD_SCORES_ALL: loss_cls_spt, accuracy_cls_spt = reldn_heads.reldn_losses( prd_spt_scores, rel_ret['all_prd_labels_int32']) return_dict['losses']['loss_cls_spt'] = loss_cls_spt return_dict['metrics']['accuracy_cls_spt'] = accuracy_cls_spt if cfg.MODEL.ADD_SCORES_ALL: loss_cls_ttl, accuracy_cls_ttl = reldn_heads.reldn_losses( ttl_cls_scores, rel_ret['all_prd_labels_int32']) return_dict['losses']['loss_cls_ttl'] = loss_cls_ttl return_dict['metrics']['accuracy_cls_ttl'] = accuracy_cls_ttl else: loss_cls_prd, accuracy_cls_prd = reldn_heads.reldn_losses( prd_scores, rel_ret['all_prd_labels_int32']) return_dict['losses']['loss_cls_prd'] = loss_cls_prd return_dict['metrics']['accuracy_cls_prd'] = accuracy_cls_prd if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: # sbj rel_feat_sbj_pos = self.Prd_RCNN.Box_Head(blob_conv_prd, rel_ret, rois_name='rel_rois_sbj_pos', use_relu=use_relu) spo_feat_sbj_pos = torch.cat((sbj_feat_sbj_pos, rel_feat_sbj_pos, obj_feat_sbj_pos), dim=1) if cfg.MODEL.USE_SPATIAL_FEAT: spt_feat_sbj_pos = rel_ret['spt_feat_sbj_pos'] else: spt_feat_sbj_pos = None if cfg.MODEL.USE_FREQ_BIAS or cfg.MODEL.RUN_BASELINE: sbj_labels_sbj_pos_fg = rel_ret['sbj_labels_sbj_pos_fg_int32'] obj_labels_sbj_pos_fg = rel_ret['obj_labels_sbj_pos_fg_int32'] else: sbj_labels_sbj_pos_fg = None obj_labels_sbj_pos_fg = None _, prd_bias_scores_sbj_pos, _, ttl_cls_scores_sbj_pos, _, _ = \ self.RelDN(spo_feat_sbj_pos, spt_feat_sbj_pos, sbj_labels_sbj_pos_fg, obj_labels_sbj_pos_fg, sbj_feat_sbj_pos, obj_feat_sbj_pos) # obj rel_feat_obj_pos = self.Prd_RCNN.Box_Head(blob_conv_prd, rel_ret, rois_name='rel_rois_obj_pos', use_relu=use_relu) spo_feat_obj_pos = torch.cat((sbj_feat_obj_pos, rel_feat_obj_pos, obj_feat_obj_pos), dim=1) if cfg.MODEL.USE_SPATIAL_FEAT: spt_feat_obj_pos = rel_ret['spt_feat_obj_pos'] else: spt_feat_obj_pos = None if cfg.MODEL.USE_FREQ_BIAS or cfg.MODEL.RUN_BASELINE: sbj_labels_obj_pos_fg = rel_ret['sbj_labels_obj_pos_fg_int32'] obj_labels_obj_pos_fg = rel_ret['obj_labels_obj_pos_fg_int32'] else: sbj_labels_obj_pos_fg = None obj_labels_obj_pos_fg = None _, prd_bias_scores_obj_pos, _, ttl_cls_scores_obj_pos, _, _ = \ self.RelDN(spo_feat_obj_pos, spt_feat_obj_pos, sbj_labels_obj_pos_fg, obj_labels_obj_pos_fg, sbj_feat_obj_pos, obj_feat_obj_pos) if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS: loss_contrastive_sbj, loss_contrastive_obj = reldn_heads.reldn_contrastive_losses( ttl_cls_scores_sbj_pos, ttl_cls_scores_obj_pos, rel_ret) return_dict['losses']['loss_contrastive_sbj'] = loss_contrastive_sbj * cfg.MODEL.NODE_CONTRASTIVE_WEIGHT return_dict['losses']['loss_contrastive_obj'] = loss_contrastive_obj * cfg.MODEL.NODE_CONTRASTIVE_WEIGHT if cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS: loss_so_contrastive_sbj, loss_so_contrastive_obj = reldn_heads.reldn_so_contrastive_losses( ttl_cls_scores_sbj_pos, ttl_cls_scores_obj_pos, rel_ret) return_dict['losses']['loss_so_contrastive_sbj'] = loss_so_contrastive_sbj * cfg.MODEL.NODE_CONTRASTIVE_SO_AWARE_WEIGHT return_dict['losses']['loss_so_contrastive_obj'] = loss_so_contrastive_obj * cfg.MODEL.NODE_CONTRASTIVE_SO_AWARE_WEIGHT if cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: loss_p_contrastive_sbj, loss_p_contrastive_obj = reldn_heads.reldn_p_contrastive_losses( ttl_cls_scores_sbj_pos, ttl_cls_scores_obj_pos, prd_bias_scores_sbj_pos, prd_bias_scores_obj_pos, rel_ret) return_dict['losses']['loss_p_contrastive_sbj'] = loss_p_contrastive_sbj * cfg.MODEL.NODE_CONTRASTIVE_P_AWARE_WEIGHT return_dict['losses']['loss_p_contrastive_obj'] = loss_p_contrastive_obj * cfg.MODEL.NODE_CONTRASTIVE_P_AWARE_WEIGHT # pytorch0.4 bug on gathering scalar(0-dim) tensors for k, v in return_dict['losses'].items(): return_dict['losses'][k] = v.unsqueeze(0) for k, v in return_dict['metrics'].items(): return_dict['metrics'][k] = v.unsqueeze(0) else: # Testing return_dict['sbj_rois'] = rel_ret['sbj_rois'] return_dict['obj_rois'] = rel_ret['obj_rois'] return_dict['sbj_labels'] = rel_ret['sbj_labels'] return_dict['obj_labels'] = rel_ret['obj_labels'] return_dict['sbj_scores'] = rel_ret['sbj_scores'] return_dict['obj_scores'] = rel_ret['obj_scores'] return_dict['prd_scores'] = prd_scores if cfg.MODEL.USE_FREQ_BIAS: return_dict['prd_scores_bias'] = prd_bias_scores if cfg.MODEL.USE_SPATIAL_FEAT: return_dict['prd_scores_spt'] = prd_spt_scores if cfg.MODEL.ADD_SCORES_ALL: return_dict['prd_ttl_scores'] = ttl_cls_scores if do_vis: return_dict['blob_conv'] = blob_conv return_dict['blob_conv_prd'] = blob_conv_prd return return_dict def get_roi_inds(self, det_labels, lbls): lbl_set = np.array(lbls) inds = np.where(np.isin(det_labels, lbl_set))[0] return inds def prepare_det_rois(self, rois, cls_scores, bbox_pred, im_info, score_thresh=cfg.TEST.SCORE_THRESH): im_info = im_info.data.cpu().numpy() # NOTE: 'rois' is numpy array while # 'cls_scores' and 'bbox_pred' are pytorch tensors scores = cls_scores.data.cpu().numpy().squeeze() # Apply bounding-box regression deltas box_deltas = bbox_pred.data.cpu().numpy().squeeze() assert rois.shape[0] == scores.shape[0] == box_deltas.shape[0] det_rois = np.empty((0, 5), dtype=np.float32) det_labels = np.empty((0), dtype=np.float32) det_scores = np.empty((0), dtype=np.float32) for im_i in range(cfg.TRAIN.IMS_PER_BATCH): # get all boxes that belong to this image inds = np.where(abs(rois[:, 0] - im_i) < 1e-06)[0] # unscale back to raw image space im_boxes = rois[inds, 1:5] / im_info[im_i, 2] im_scores = scores[inds] # In case there is 1 proposal im_scores = im_scores.reshape([-1, im_scores.shape[-1]]) # In case there is 1 proposal im_box_deltas = box_deltas[inds] im_box_deltas = im_box_deltas.reshape([-1, im_box_deltas[inds].shape[-1]]) im_scores, im_boxes = self.get_det_boxes(im_boxes, im_scores, im_box_deltas, im_info[im_i][:2] / im_info[im_i][2]) im_scores, im_boxes, im_labels = self.box_results_with_nms_and_limit(im_scores, im_boxes, score_thresh) batch_inds = im_i * np.ones( (im_boxes.shape[0], 1), dtype=np.float32) im_det_rois = np.hstack((batch_inds, im_boxes * im_info[im_i, 2])) det_rois = np.append(det_rois, im_det_rois, axis=0) det_labels = np.append(det_labels, im_labels, axis=0) det_scores = np.append(det_scores, im_scores, axis=0) return det_rois, det_labels, det_scores def get_det_boxes(self, boxes, scores, box_deltas, h_and_w): if cfg.TEST.BBOX_REG: if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: # Remove predictions for bg class (compat with MSRA code) box_deltas = box_deltas[:, -4:] if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # (legacy) Optionally normalize targets by a precomputed mean and stdev box_deltas = box_deltas.view(-1, 4) * cfg.TRAIN.BBOX_NORMALIZE_STDS \ + cfg.TRAIN.BBOX_NORMALIZE_MEANS pred_boxes = box_utils.bbox_transform(boxes, box_deltas, cfg.MODEL.BBOX_REG_WEIGHTS) pred_boxes = box_utils.clip_tiled_boxes(pred_boxes, h_and_w) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: pred_boxes = np.tile(pred_boxes, (1, scores.shape[1])) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] return scores, pred_boxes def box_results_with_nms_and_limit(self, scores, boxes, score_thresh=cfg.TEST.SCORE_THRESH): num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(num_classes)] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class for j in range(1, num_classes): inds = np.where(scores[:, j] > score_thresh)[0] scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4:(j + 1) * 4] dets_j = np.hstack((boxes_j, scores_j[:, np.newaxis])).astype(np.float32, copy=False) if cfg.TEST.SOFT_NMS.ENABLED: nms_dets, _ = box_utils.soft_nms( dets_j, sigma=cfg.TEST.SOFT_NMS.SIGMA, overlap_thresh=cfg.TEST.NMS, score_thresh=0.0001, method=cfg.TEST.SOFT_NMS.METHOD ) else: keep = box_utils.nms(dets_j, cfg.TEST.NMS) nms_dets = dets_j[keep, :] # add labels label_j = np.ones((nms_dets.shape[0], 1), dtype=np.float32) * j nms_dets = np.hstack((nms_dets, label_j)) # Refine the post-NMS boxes using bounding-box voting if cfg.TEST.BBOX_VOTE.ENABLED: nms_dets = box_utils.box_voting( nms_dets, dets_j, cfg.TEST.BBOX_VOTE.VOTE_TH, scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD ) cls_boxes[j] = nms_dets # Limit to max_per_image detections **over all classes** if cfg.TEST.DETECTIONS_PER_IM > 0: image_scores = np.hstack( [cls_boxes[j][:, -2] for j in range(1, num_classes)] ) if len(image_scores) > cfg.TEST.DETECTIONS_PER_IM: image_thresh = np.sort(image_scores)[-cfg.TEST.DETECTIONS_PER_IM] for j in range(1, num_classes): keep = np.where(cls_boxes[j][:, -2] >= image_thresh)[0] cls_boxes[j] = cls_boxes[j][keep, :] im_results = np.vstack([cls_boxes[j] for j in range(1, num_classes)]) boxes = im_results[:, :-2] scores = im_results[:, -2] labels = im_results[:, -1] return scores, boxes, labels def roi_feature_transform(self, blobs_in, rpn_ret, blob_rois='rois', method='RoIPoolF', resolution=7, spatial_scale=1. / 16., sampling_ratio=0): """Add the specified RoI pooling method. The sampling_ratio argument is supported for some, but not all, RoI transform methods. RoIFeatureTransform abstracts away: - Use of FPN or not - Specifics of the transform method """ assert method in {'RoIPoolF', 'RoICrop', 'RoIAlign'}, \ 'Unknown pooling method: {}'.format(method) if isinstance(blobs_in, list): # FPN case: add RoIFeatureTransform to each FPN level device_id = blobs_in[0].get_device() k_max = cfg.FPN.ROI_MAX_LEVEL # coarsest level of pyramid k_min = cfg.FPN.ROI_MIN_LEVEL # finest level of pyramid assert len(blobs_in) == k_max - k_min + 1 bl_out_list = [] for lvl in range(k_min, k_max + 1): bl_in = blobs_in[k_max - lvl] # blobs_in is in reversed order sc = spatial_scale[k_max - lvl] # in reversed order bl_rois = blob_rois + '_fpn' + str(lvl) if len(rpn_ret[bl_rois]): rois = Variable(torch.from_numpy(rpn_ret[bl_rois])).cuda(device_id) if method == 'RoIPoolF': # Warning!: Not check if implementation matches Detectron xform_out = RoIPoolFunction(resolution, resolution, sc)(bl_in, rois) elif method == 'RoICrop': # Warning!: Not check if implementation matches Detectron grid_xy = net_utils.affine_grid_gen( rois, bl_in.size()[2:], self.grid_size) grid_yx = torch.stack( [grid_xy.data[:, :, :, 1], grid_xy.data[:, :, :, 0]], 3).contiguous() xform_out = RoICropFunction()(bl_in, Variable(grid_yx).detach()) if cfg.CROP_RESIZE_WITH_MAX_POOL: xform_out = F.max_pool2d(xform_out, 2, 2) elif method == 'RoIAlign': xform_out = RoIAlignFunction( resolution, resolution, sc, sampling_ratio)(bl_in, rois) bl_out_list.append(xform_out) # The pooled features from all levels are concatenated along the # batch dimension into a single 4D tensor. xform_shuffled = torch.cat(bl_out_list, dim=0) # Unshuffle to match rois from dataloader device_id = xform_shuffled.get_device() restore_bl = rpn_ret[blob_rois + '_idx_restore_int32'] restore_bl = Variable( torch.from_numpy(restore_bl.astype('int64', copy=False))).cuda(device_id) xform_out = xform_shuffled[restore_bl] else: # Single feature level # rois: holds R regions of interest, each is a 5-tuple # (batch_idx, x1, y1, x2, y2) specifying an image batch index and a # rectangle (x1, y1, x2, y2) device_id = blobs_in.get_device() rois = Variable(torch.from_numpy(rpn_ret[blob_rois])).cuda(device_id) if method == 'RoIPoolF': xform_out = RoIPoolFunction(resolution, resolution, spatial_scale)(blobs_in, rois) elif method == 'RoICrop': grid_xy = net_utils.affine_grid_gen(rois, blobs_in.size()[2:], self.grid_size) grid_yx = torch.stack( [grid_xy.data[:, :, :, 1], grid_xy.data[:, :, :, 0]], 3).contiguous() xform_out = RoICropFunction()(blobs_in, Variable(grid_yx).detach()) if cfg.CROP_RESIZE_WITH_MAX_POOL: xform_out = F.max_pool2d(xform_out, 2, 2) elif method == 'RoIAlign': xform_out = RoIAlignFunction( resolution, resolution, spatial_scale, sampling_ratio)(blobs_in, rois) return xform_out @check_inference def convbody_net(self, data): """For inference. Run Conv Body only""" blob_conv = self.Conv_Body(data) if cfg.FPN.FPN_ON: # Retain only the blobs that will be used for RoI heads. `blob_conv` may include # extra blobs that are used for RPN proposals, but not for RoI heads. blob_conv = blob_conv[-self.num_roi_levels:] return blob_conv @property def detectron_weight_mapping(self): if self.mapping_to_detectron is None: d_wmap = {} # detectron_weight_mapping d_orphan = [] # detectron orphan weight list for name, m_child in self.named_children(): if list(m_child.parameters()): # if module has any parameter child_map, child_orphan = m_child.detectron_weight_mapping() d_orphan.extend(child_orphan) for key, value in child_map.items(): new_key = name + '.' + key d_wmap[new_key] = value self.mapping_to_detectron = d_wmap self.orphans_in_detectron = d_orphan return self.mapping_to_detectron, self.orphans_in_detectron def _add_loss(self, return_dict, key, value): """Add loss tensor to returned dictionary""" return_dict['losses'][key] = value
ContrastiveLosses4VRD-master
lib/modeling_rel/model_builder_rel.py
# Some functions are adapted from Rowan Zellers: # https://github.com/rowanz/neural-motifs # Get counts of all of the examples in the dataset. Used for creating the baseline # dictionary model from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import json import utils.boxes as box_utils import utils_rel.boxes_rel as box_utils_rel from core.config import cfg from datasets_rel.dataset_catalog_rel import ANN_FN2 from datasets_rel.dataset_catalog_rel import DATASETS # This function is adapted from Rowan Zellers: # https://github.com/rowanz/neural-motifs/blob/master/lib/get_dataset_counts.py # Modified for this project def get_rel_counts(ds_name, must_overlap=True): """ Get counts of all of the relations. Used for modeling directly P(rel | o1, o2) :param train_data: :param must_overlap: :return: """ if ds_name.find('vg') >= 0: with open(DATASETS['vg_train'][ANN_FN2]) as f: train_data = json.load(f) elif ds_name.find('oi') >= 0: with open(DATASETS['oi_rel_train'][ANN_FN2]) as f: train_data = json.load(f) elif ds_name.find('vrd') >= 0: with open(DATASETS['vrd_train'][ANN_FN2]) as f: train_data = json.load(f) else: raise NotImplementedError fg_matrix = np.zeros(( cfg.MODEL.NUM_CLASSES - 1, # not include background cfg.MODEL.NUM_CLASSES - 1, # not include background cfg.MODEL.NUM_PRD_CLASSES + 1, # include background ), dtype=np.int64) bg_matrix = np.zeros(( cfg.MODEL.NUM_CLASSES - 1, # not include background cfg.MODEL.NUM_CLASSES - 1, # not include background ), dtype=np.int64) for _, im_rels in train_data.items(): # get all object boxes gt_box_to_label = {} for i, rel in enumerate(im_rels): sbj_box = box_utils_rel.y1y2x1x2_to_x1y1x2y2(rel['subject']['bbox']) obj_box = box_utils_rel.y1y2x1x2_to_x1y1x2y2(rel['object']['bbox']) sbj_lbl = rel['subject']['category'] # not include background obj_lbl = rel['object']['category'] # not include background prd_lbl = rel['predicate'] # not include background if tuple(sbj_box) not in gt_box_to_label: gt_box_to_label[tuple(sbj_box)] = sbj_lbl if tuple(obj_box) not in gt_box_to_label: gt_box_to_label[tuple(obj_box)] = obj_lbl fg_matrix[sbj_lbl, obj_lbl, prd_lbl + 1] += 1 if cfg.MODEL.USE_OVLP_FILTER: if len(gt_box_to_label): gt_boxes = np.array(list(gt_box_to_label.keys()), dtype=np.int32) gt_classes = np.array(list(gt_box_to_label.values()), dtype=np.int32) o1o2_total = gt_classes[np.array( box_filter(gt_boxes, must_overlap=must_overlap), dtype=int)] for (o1, o2) in o1o2_total: bg_matrix[o1, o2] += 1 else: # consider all pairs of boxes, overlapped or non-overlapped for b1, l1 in gt_box_to_label.items(): for b2, l2 in gt_box_to_label.items(): if b1 == b2: continue bg_matrix[l1, l2] += 1 return fg_matrix, bg_matrix # This function is adapted from Rowan Zellers: # https://github.com/rowanz/neural-motifs/blob/master/lib/get_dataset_counts.py # Modified for this project def box_filter(boxes, must_overlap=False): """ Only include boxes that overlap as possible relations. If no overlapping boxes, use all of them.""" n_cands = boxes.shape[0] overlaps = box_utils.bbox_overlaps(boxes.astype(np.float32), boxes.astype(np.float32)) > 0 np.fill_diagonal(overlaps, 0) all_possib = np.ones_like(overlaps, dtype=np.bool) np.fill_diagonal(all_possib, 0) if must_overlap: possible_boxes = np.column_stack(np.where(overlaps)) if possible_boxes.size == 0: possible_boxes = np.column_stack(np.where(all_possib)) else: possible_boxes = np.column_stack(np.where(all_possib)) return possible_boxes
ContrastiveLosses4VRD-master
lib/modeling_rel/get_dataset_counts_rel.py
# Adapted by Ji Zhang in 2019 # # Based on Detectron.pytorch/lib/roi_data/minibatch.py written by Roy Tseng import numpy as np import cv2 from core.config import cfg import utils.blob as blob_utils import roi_data.rpn def get_minibatch_blob_names(is_training=True): """Return blob names in the order in which they are read by the data loader. """ # data blob: holds a batch of N images, each with 3 channels blob_names = ['data'] if cfg.RPN.RPN_ON: # RPN-only or end-to-end Faster R-CNN blob_names += roi_data.rpn.get_rpn_blob_names(is_training=is_training) elif cfg.RETINANET.RETINANET_ON: raise NotImplementedError else: # Fast R-CNN like models trained on precomputed proposals blob_names += roi_data.fast_rcnn.get_fast_rcnn_blob_names( is_training=is_training ) return blob_names def get_minibatch(roidb): """Given a roidb, construct a minibatch sampled from it.""" # We collect blobs from each image onto a list and then concat them into a # single tensor, hence we initialize each blob to an empty list blobs = {k: [] for k in get_minibatch_blob_names()} # Get the input image blob im_blob, im_scales = _get_image_blob(roidb) blobs['data'] = im_blob if cfg.RPN.RPN_ON: # RPN-only or end-to-end Faster/Mask R-CNN valid = roi_data.rpn.add_rpn_blobs(blobs, im_scales, roidb) elif cfg.RETINANET.RETINANET_ON: raise NotImplementedError else: # Fast R-CNN like models trained on precomputed proposals valid = roi_data.fast_rcnn.add_fast_rcnn_blobs(blobs, im_scales, roidb) # add relpn blobs add_relpn_blobs(blobs, im_scales, roidb) return blobs, valid def add_relpn_blobs(blobs, im_scales, roidb): assert 'roidb' in blobs valid_keys = ['dataset_name', 'sbj_gt_boxes', 'sbj_gt_classes', 'obj_gt_boxes', 'obj_gt_classes', 'prd_gt_classes', 'sbj_gt_overlaps', 'obj_gt_overlaps', 'prd_gt_overlaps', 'pair_to_gt_ind_map', 'width', 'height'] for i, e in enumerate(roidb): for k in valid_keys: if k in e: blobs['roidb'][i][k] = e[k] # Always return valid=True, since RPN minibatches are valid by design return True def _get_image_blob(roidb): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) # Sample random scales to use for each image in this batch scale_inds = np.random.randint( 0, high=len(cfg.TRAIN.SCALES), size=num_images) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) assert im is not None, \ 'Failed to read image \'{}\''.format(roidb[i]['image']) # If NOT using opencv to read in images, uncomment following lines # if len(im.shape) == 2: # im = im[:, :, np.newaxis] # im = np.concatenate((im, im, im), axis=2) # # flip the channel, since the original one using cv2 # # rgb -> bgr # im = im[:, :, ::-1] if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = blob_utils.prep_im_for_blob( im, cfg.PIXEL_MEANS, [target_size], cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale[0]) processed_ims.append(im[0]) # Create a blob to hold the input images [n, c, h, w] blob = blob_utils.im_list_to_blob(processed_ims) return blob, im_scales
ContrastiveLosses4VRD-master
lib/roi_data_rel/minibatch_rel.py
# Adapted by Ji Zhang, 2019 # # Based on Detectron.pytorch/lib/roi_data/fast_rcnn.py # Original license text: # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Construct minibatches for Fast R-CNN training. Handles the minibatch blobs that are specific to Fast R-CNN. Other blobs that are generic to RPN, etc. are handled by their respecitive roi_data modules. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import numpy.random as npr import logging from core.config import cfg import utils_rel.boxes_rel as box_utils_rel import utils.blob as blob_utils import utils.fpn as fpn_utils logger = logging.getLogger(__name__) def add_rel_blobs(blobs, im_scales, roidb): """Add blobs needed for training Fast R-CNN style models.""" # Sample training RoIs from each image and append them to the blob lists for im_i, entry in enumerate(roidb): frcn_blobs = _sample_pairs(entry, im_scales[im_i], im_i) for k, v in frcn_blobs.items(): blobs[k].append(v) # Concat the training blob lists into tensors for k, v in blobs.items(): if isinstance(v, list) and len(v) > 0: blobs[k] = np.concatenate(v) if cfg.FPN.FPN_ON and cfg.FPN.MULTILEVEL_ROIS: _add_rel_multilevel_rois(blobs) return True def _sample_pairs(roidb, im_scale, batch_idx): """Generate a random sample of RoIs comprising foreground and background examples. """ fg_pairs_per_image = cfg.TRAIN.FG_REL_SIZE_PER_IM pairs_per_image = int(cfg.TRAIN.FG_REL_SIZE_PER_IM / cfg.TRAIN.FG_REL_FRACTION) # need much more pairs since it's quadratic max_pair_overlaps = roidb['max_pair_overlaps'] gt_pair_inds = np.where(max_pair_overlaps > 1.0 - 1e-4)[0] fg_pair_inds = np.where((max_pair_overlaps >= cfg.TRAIN.FG_THRESH) & (max_pair_overlaps <= 1.0 - 1e-4))[0] fg_pairs_per_this_image = np.minimum(fg_pairs_per_image, gt_pair_inds.size + fg_pair_inds.size) # Sample foreground regions without replacement if fg_pair_inds.size > 0: fg_pair_inds = npr.choice( fg_pair_inds, size=(fg_pairs_per_this_image - gt_pair_inds.size), replace=False) fg_pair_inds = np.append(fg_pair_inds, gt_pair_inds) # Label is the class each RoI has max overlap with fg_prd_labels = roidb['max_prd_classes'][fg_pair_inds] blob_dict = dict( fg_prd_labels_int32=fg_prd_labels.astype(np.int32, copy=False)) if cfg.MODEL.USE_BG: bg_pair_inds = np.where((max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0] # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_pairs_per_this_image = pairs_per_image - fg_pairs_per_this_image bg_pairs_per_this_image = np.minimum(bg_pairs_per_this_image, bg_pair_inds.size) # Sample foreground regions without replacement if bg_pair_inds.size > 0: bg_pair_inds = npr.choice( bg_pair_inds, size=bg_pairs_per_this_image, replace=False) keep_pair_inds = np.append(fg_pair_inds, bg_pair_inds) all_prd_labels = np.zeros(keep_pair_inds.size, dtype=np.int32) all_prd_labels[:fg_pair_inds.size] = fg_prd_labels + 1 # class should start from 1 else: keep_pair_inds = fg_pair_inds all_prd_labels = fg_prd_labels blob_dict['all_prd_labels_int32'] = all_prd_labels.astype(np.int32, copy=False) blob_dict['fg_size'] = np.array([fg_pair_inds.size], dtype=np.int32) # this is used to check if there is at least one fg to learn sampled_sbj_boxes = roidb['sbj_boxes'][keep_pair_inds] sampled_obj_boxes = roidb['obj_boxes'][keep_pair_inds] # Scale rois and format as (batch_idx, x1, y1, x2, y2) sampled_sbj_rois = sampled_sbj_boxes * im_scale sampled_obj_rois = sampled_obj_boxes * im_scale repeated_batch_idx = batch_idx * blob_utils.ones((keep_pair_inds.shape[0], 1)) sampled_sbj_rois = np.hstack((repeated_batch_idx, sampled_sbj_rois)) sampled_obj_rois = np.hstack((repeated_batch_idx, sampled_obj_rois)) blob_dict['sbj_rois'] = sampled_sbj_rois blob_dict['obj_rois'] = sampled_obj_rois sampled_rel_rois = box_utils_rel.rois_union(sampled_sbj_rois, sampled_obj_rois) blob_dict['rel_rois'] = sampled_rel_rois if cfg.MODEL.USE_SPATIAL_FEAT: sampled_spt_feat = box_utils_rel.get_spt_features( sampled_sbj_boxes, sampled_obj_boxes, roidb['width'], roidb['height']) blob_dict['spt_feat'] = sampled_spt_feat if cfg.MODEL.USE_FREQ_BIAS: sbj_labels = roidb['max_sbj_classes'][keep_pair_inds] obj_labels = roidb['max_obj_classes'][keep_pair_inds] blob_dict['all_sbj_labels_int32'] = sbj_labels.astype(np.int32, copy=False) blob_dict['all_obj_labels_int32'] = obj_labels.astype(np.int32, copy=False) if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: nodes_per_image = cfg.MODEL.NODE_SAMPLE_SIZE max_sbj_overlaps = roidb['max_sbj_overlaps'] max_obj_overlaps = roidb['max_obj_overlaps'] # sbj # Here a naturally existing assumption is, each positive sbj should have at least one positive obj sbj_pos_pair_pos_inds = np.where((max_pair_overlaps >= cfg.TRAIN.FG_THRESH))[0] sbj_pos_obj_pos_pair_neg_inds = np.where((max_sbj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_obj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0] sbj_pos_obj_neg_pair_neg_inds = np.where((max_sbj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_obj_overlaps < cfg.TRAIN.FG_THRESH) & (max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0] if sbj_pos_pair_pos_inds.size > 0: sbj_pos_pair_pos_inds = npr.choice( sbj_pos_pair_pos_inds, size=int(min(nodes_per_image, sbj_pos_pair_pos_inds.size)), replace=False) if sbj_pos_obj_pos_pair_neg_inds.size > 0: sbj_pos_obj_pos_pair_neg_inds = npr.choice( sbj_pos_obj_pos_pair_neg_inds, size=int(min(nodes_per_image, sbj_pos_obj_pos_pair_neg_inds.size)), replace=False) sbj_pos_pair_neg_inds = sbj_pos_obj_pos_pair_neg_inds if nodes_per_image - sbj_pos_obj_pos_pair_neg_inds.size > 0 and sbj_pos_obj_neg_pair_neg_inds.size > 0: sbj_pos_obj_neg_pair_neg_inds = npr.choice( sbj_pos_obj_neg_pair_neg_inds, size=int(min(nodes_per_image - sbj_pos_obj_pos_pair_neg_inds.size, sbj_pos_obj_neg_pair_neg_inds.size)), replace=False) sbj_pos_pair_neg_inds = np.append(sbj_pos_pair_neg_inds, sbj_pos_obj_neg_pair_neg_inds) sbj_pos_inds = np.append(sbj_pos_pair_pos_inds, sbj_pos_pair_neg_inds) binary_labels_sbj_pos = np.zeros(sbj_pos_inds.size, dtype=np.int32) binary_labels_sbj_pos[:sbj_pos_pair_pos_inds.size] = 1 blob_dict['binary_labels_sbj_pos_int32'] = binary_labels_sbj_pos.astype(np.int32, copy=False) prd_pos_labels_sbj_pos = roidb['max_prd_classes'][sbj_pos_pair_pos_inds] prd_labels_sbj_pos = np.zeros(sbj_pos_inds.size, dtype=np.int32) prd_labels_sbj_pos[:sbj_pos_pair_pos_inds.size] = prd_pos_labels_sbj_pos + 1 blob_dict['prd_labels_sbj_pos_int32'] = prd_labels_sbj_pos.astype(np.int32, copy=False) sbj_labels_sbj_pos = roidb['max_sbj_classes'][sbj_pos_inds] + 1 # 1. set all obj labels > 0 obj_labels_sbj_pos = roidb['max_obj_classes'][sbj_pos_inds] + 1 # 2. find those negative obj max_obj_overlaps_sbj_pos = roidb['max_obj_overlaps'][sbj_pos_inds] obj_neg_inds_sbj_pos = np.where(max_obj_overlaps_sbj_pos < cfg.TRAIN.FG_THRESH)[0] obj_labels_sbj_pos[obj_neg_inds_sbj_pos] = 0 blob_dict['sbj_labels_sbj_pos_int32'] = sbj_labels_sbj_pos.astype(np.int32, copy=False) blob_dict['obj_labels_sbj_pos_int32'] = obj_labels_sbj_pos.astype(np.int32, copy=False) # this is for freq bias in RelDN blob_dict['sbj_labels_sbj_pos_fg_int32'] = roidb['max_sbj_classes'][sbj_pos_inds].astype(np.int32, copy=False) blob_dict['obj_labels_sbj_pos_fg_int32'] = roidb['max_obj_classes'][sbj_pos_inds].astype(np.int32, copy=False) sampled_sbj_boxes_sbj_pos = roidb['sbj_boxes'][sbj_pos_inds] sampled_obj_boxes_sbj_pos = roidb['obj_boxes'][sbj_pos_inds] # Scale rois and format as (batch_idx, x1, y1, x2, y2) sampled_sbj_rois_sbj_pos = sampled_sbj_boxes_sbj_pos * im_scale sampled_obj_rois_sbj_pos = sampled_obj_boxes_sbj_pos * im_scale repeated_batch_idx = batch_idx * blob_utils.ones((sbj_pos_inds.shape[0], 1)) sampled_sbj_rois_sbj_pos = np.hstack((repeated_batch_idx, sampled_sbj_rois_sbj_pos)) sampled_obj_rois_sbj_pos = np.hstack((repeated_batch_idx, sampled_obj_rois_sbj_pos)) blob_dict['sbj_rois_sbj_pos'] = sampled_sbj_rois_sbj_pos blob_dict['obj_rois_sbj_pos'] = sampled_obj_rois_sbj_pos sampled_rel_rois_sbj_pos = box_utils_rel.rois_union(sampled_sbj_rois_sbj_pos, sampled_obj_rois_sbj_pos) blob_dict['rel_rois_sbj_pos'] = sampled_rel_rois_sbj_pos _, inds_unique_sbj_pos, inds_reverse_sbj_pos = np.unique( sampled_sbj_rois_sbj_pos, return_index=True, return_inverse=True, axis=0) assert inds_reverse_sbj_pos.shape[0] == sampled_sbj_rois_sbj_pos.shape[0] blob_dict['inds_unique_sbj_pos'] = inds_unique_sbj_pos blob_dict['inds_reverse_sbj_pos'] = inds_reverse_sbj_pos if cfg.MODEL.USE_SPATIAL_FEAT: sampled_spt_feat_sbj_pos = box_utils_rel.get_spt_features( sampled_sbj_boxes_sbj_pos, sampled_obj_boxes_sbj_pos, roidb['width'], roidb['height']) blob_dict['spt_feat_sbj_pos'] = sampled_spt_feat_sbj_pos # obj # Here a naturally existing assumption is, each positive obj should have at least one positive sbj obj_pos_pair_pos_inds = np.where((max_pair_overlaps >= cfg.TRAIN.FG_THRESH))[0] obj_pos_sbj_pos_pair_neg_inds = np.where((max_obj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_sbj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0] obj_pos_sbj_neg_pair_neg_inds = np.where((max_obj_overlaps >= cfg.TRAIN.FG_THRESH) & (max_sbj_overlaps < cfg.TRAIN.FG_THRESH) & (max_pair_overlaps < cfg.TRAIN.BG_THRESH_HI))[0] if obj_pos_pair_pos_inds.size > 0: obj_pos_pair_pos_inds = npr.choice( obj_pos_pair_pos_inds, size=int(min(nodes_per_image, obj_pos_pair_pos_inds.size)), replace=False) if obj_pos_sbj_pos_pair_neg_inds.size > 0: obj_pos_sbj_pos_pair_neg_inds = npr.choice( obj_pos_sbj_pos_pair_neg_inds, size=int(min(nodes_per_image, obj_pos_sbj_pos_pair_neg_inds.size)), replace=False) obj_pos_pair_neg_inds = obj_pos_sbj_pos_pair_neg_inds if nodes_per_image - obj_pos_sbj_pos_pair_neg_inds.size > 0 and obj_pos_sbj_neg_pair_neg_inds.size: obj_pos_sbj_neg_pair_neg_inds = npr.choice( obj_pos_sbj_neg_pair_neg_inds, size=int(min(nodes_per_image - obj_pos_sbj_pos_pair_neg_inds.size, obj_pos_sbj_neg_pair_neg_inds.size)), replace=False) obj_pos_pair_neg_inds = np.append(obj_pos_pair_neg_inds, obj_pos_sbj_neg_pair_neg_inds) obj_pos_inds = np.append(obj_pos_pair_pos_inds, obj_pos_pair_neg_inds) binary_labels_obj_pos = np.zeros(obj_pos_inds.size, dtype=np.int32) binary_labels_obj_pos[:obj_pos_pair_pos_inds.size] = 1 blob_dict['binary_labels_obj_pos_int32'] = binary_labels_obj_pos.astype(np.int32, copy=False) prd_pos_labels_obj_pos = roidb['max_prd_classes'][obj_pos_pair_pos_inds] prd_labels_obj_pos = np.zeros(obj_pos_inds.size, dtype=np.int32) prd_labels_obj_pos[:obj_pos_pair_pos_inds.size] = prd_pos_labels_obj_pos + 1 blob_dict['prd_labels_obj_pos_int32'] = prd_labels_obj_pos.astype(np.int32, copy=False) obj_labels_obj_pos = roidb['max_obj_classes'][obj_pos_inds] + 1 # 1. set all sbj labels > 0 sbj_labels_obj_pos = roidb['max_sbj_classes'][obj_pos_inds] + 1 # 2. find those negative sbj max_sbj_overlaps_obj_pos = roidb['max_sbj_overlaps'][obj_pos_inds] sbj_neg_inds_obj_pos = np.where(max_sbj_overlaps_obj_pos < cfg.TRAIN.FG_THRESH)[0] sbj_labels_obj_pos[sbj_neg_inds_obj_pos] = 0 blob_dict['sbj_labels_obj_pos_int32'] = sbj_labels_obj_pos.astype(np.int32, copy=False) blob_dict['obj_labels_obj_pos_int32'] = obj_labels_obj_pos.astype(np.int32, copy=False) # this is for freq bias in RelDN blob_dict['sbj_labels_obj_pos_fg_int32'] = roidb['max_sbj_classes'][obj_pos_inds].astype(np.int32, copy=False) blob_dict['obj_labels_obj_pos_fg_int32'] = roidb['max_obj_classes'][obj_pos_inds].astype(np.int32, copy=False) sampled_sbj_boxes_obj_pos = roidb['sbj_boxes'][obj_pos_inds] sampled_obj_boxes_obj_pos = roidb['obj_boxes'][obj_pos_inds] # Scale rois and format as (batch_idx, x1, y1, x2, y2) sampled_sbj_rois_obj_pos = sampled_sbj_boxes_obj_pos * im_scale sampled_obj_rois_obj_pos = sampled_obj_boxes_obj_pos * im_scale repeated_batch_idx = batch_idx * blob_utils.ones((obj_pos_inds.shape[0], 1)) sampled_sbj_rois_obj_pos = np.hstack((repeated_batch_idx, sampled_sbj_rois_obj_pos)) sampled_obj_rois_obj_pos = np.hstack((repeated_batch_idx, sampled_obj_rois_obj_pos)) blob_dict['sbj_rois_obj_pos'] = sampled_sbj_rois_obj_pos blob_dict['obj_rois_obj_pos'] = sampled_obj_rois_obj_pos sampled_rel_rois_obj_pos = box_utils_rel.rois_union(sampled_sbj_rois_obj_pos, sampled_obj_rois_obj_pos) blob_dict['rel_rois_obj_pos'] = sampled_rel_rois_obj_pos _, inds_unique_obj_pos, inds_reverse_obj_pos = np.unique( sampled_obj_rois_obj_pos, return_index=True, return_inverse=True, axis=0) assert inds_reverse_obj_pos.shape[0] == sampled_obj_rois_obj_pos.shape[0] blob_dict['inds_unique_obj_pos'] = inds_unique_obj_pos blob_dict['inds_reverse_obj_pos'] = inds_reverse_obj_pos if cfg.MODEL.USE_SPATIAL_FEAT: sampled_spt_feat_obj_pos = box_utils_rel.get_spt_features( sampled_sbj_boxes_obj_pos, sampled_obj_boxes_obj_pos, roidb['width'], roidb['height']) blob_dict['spt_feat_obj_pos'] = sampled_spt_feat_obj_pos return blob_dict def _add_rel_multilevel_rois(blobs): """By default training RoIs are added for a single feature map level only. When using FPN, the RoIs must be distributed over different FPN levels according the level assignment heuristic (see: modeling.FPN. map_rois_to_fpn_levels). """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL def _distribute_rois_over_fpn_levels(rois_blob_names): """Distribute rois over the different FPN levels.""" # Get target level for each roi # Recall blob rois are in (batch_idx, x1, y1, x2, y2) format, hence take # the box coordinates from columns 1:5 lowest_target_lvls = None for rois_blob_name in rois_blob_names: target_lvls = fpn_utils.map_rois_to_fpn_levels( blobs[rois_blob_name][:, 1:5], lvl_min, lvl_max) if lowest_target_lvls is None: lowest_target_lvls = target_lvls else: lowest_target_lvls = np.minimum(lowest_target_lvls, target_lvls) for rois_blob_name in rois_blob_names: # Add per FPN level roi blobs named like: <rois_blob_name>_fpn<lvl> fpn_utils.add_multilevel_roi_blobs( blobs, rois_blob_name, blobs[rois_blob_name], lowest_target_lvls, lvl_min, lvl_max) _distribute_rois_over_fpn_levels(['sbj_rois']) _distribute_rois_over_fpn_levels(['obj_rois']) _distribute_rois_over_fpn_levels(['rel_rois']) if cfg.MODEL.USE_NODE_CONTRASTIVE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_SO_AWARE_LOSS or cfg.MODEL.USE_NODE_CONTRASTIVE_P_AWARE_LOSS: _distribute_rois_over_fpn_levels(['sbj_rois_sbj_pos']) _distribute_rois_over_fpn_levels(['obj_rois_sbj_pos']) _distribute_rois_over_fpn_levels(['rel_rois_sbj_pos']) _distribute_rois_over_fpn_levels(['sbj_rois_obj_pos']) _distribute_rois_over_fpn_levels(['obj_rois_obj_pos']) _distribute_rois_over_fpn_levels(['rel_rois_obj_pos'])
ContrastiveLosses4VRD-master
lib/roi_data_rel/fast_rcnn_rel.py
ContrastiveLosses4VRD-master
lib/roi_data_rel/__init__.py
# Adapted by Ji Zhang for this project in 2019 # # Based on Detectron.Pytorch/lib/roi/loader.py by Roy Tseng import math import numpy as np import numpy.random as npr import torch import torch.utils.data as data import torch.utils.data.sampler as torch_sampler from torch.utils.data.dataloader import default_collate from torch._six import int_classes as _int_classes from core.config import cfg from roi_data_rel.minibatch_rel import get_minibatch import utils.blob as blob_utils class RoiDataLoader(data.Dataset): def __init__(self, roidb, num_classes, training=True): self._roidb = roidb self._num_classes = num_classes self.training = training self.DATA_SIZE = len(self._roidb) def __getitem__(self, index_tuple): index, ratio = index_tuple single_db = [self._roidb[index]] blobs, valid = get_minibatch(single_db) #TODO: Check if minibatch is valid ? If not, abandon it. # Need to change _worker_loop in torch.utils.data.dataloader.py. # Squeeze batch dim for key in blobs: if key != 'roidb': blobs[key] = blobs[key].squeeze(axis=0) if self._roidb[index]['need_crop']: self.crop_data(blobs, ratio) # Check bounding box entry = blobs['roidb'][0] boxes = entry['boxes'] invalid = (boxes[:, 0] == boxes[:, 2]) | (boxes[:, 1] == boxes[:, 3]) valid_inds = np.nonzero(~ invalid)[0] if len(valid_inds) < len(boxes): for key in ['boxes', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd', 'box_to_gt_ind_map', 'gt_keypoints']: if key in entry: entry[key] = entry[key][valid_inds] entry['segms'] = [entry['segms'][ind] for ind in valid_inds] # for rel sanity check sbj_gt_boxes = entry['sbj_gt_boxes'] obj_gt_boxes = entry['obj_gt_boxes'] sbj_invalid = (sbj_gt_boxes[:, 0] == sbj_gt_boxes[:, 2]) | (sbj_gt_boxes[:, 1] == sbj_gt_boxes[:, 3]) obj_invalid = (obj_gt_boxes[:, 0] == obj_gt_boxes[:, 2]) | (obj_gt_boxes[:, 1] == obj_gt_boxes[:, 3]) rel_valid = sbj_invalid | obj_invalid rel_valid_inds = np.nonzero(~ rel_invalid)[0] if len(rel_valid_inds) < len(sbj_gt_boxes): for key in ['sbj_gt_boxes', 'sbj_gt_classes', 'obj_gt_boxes', 'obj_gt_classes', 'prd_gt_classes', 'sbj_gt_overlaps', 'obj_gt_overlaps', 'prd_gt_overlaps', 'pair_to_gt_ind_map', 'width', 'height']: if key in entry: entry[key] = entry[key][rel_valid_inds] blobs['roidb'] = blob_utils.serialize(blobs['roidb']) # CHECK: maybe we can serialize in collate_fn return blobs def crop_data(self, blobs, ratio): data_height, data_width = map(int, blobs['im_info'][:2]) boxes = blobs['roidb'][0]['boxes'] if ratio < 1: # width << height, crop height size_crop = math.ceil(data_width / ratio) # size after crop min_y = math.floor(np.min(boxes[:, 1])) max_y = math.floor(np.max(boxes[:, 3])) box_region = max_y - min_y + 1 if min_y == 0: y_s = 0 else: if (box_region - size_crop) < 0: y_s_min = max(max_y - size_crop, 0) y_s_max = min(min_y, data_height - size_crop) y_s = y_s_min if y_s_min == y_s_max else \ npr.choice(range(y_s_min, y_s_max + 1)) else: # CHECK: rethinking the mechnism for the case box_region > size_crop # Now, the crop is biased on the lower part of box_region caused by # // 2 for y_s_add y_s_add = (box_region - size_crop) // 2 y_s = min_y if y_s_add == 0 else \ npr.choice(range(min_y, min_y + y_s_add + 1)) # Crop the image blobs['data'] = blobs['data'][:, y_s:(y_s + size_crop), :,] # Update im_info blobs['im_info'][0] = size_crop # Shift and clamp boxes ground truth boxes[:, 1] -= y_s boxes[:, 3] -= y_s np.clip(boxes[:, 1], 0, size_crop - 1, out=boxes[:, 1]) np.clip(boxes[:, 3], 0, size_crop - 1, out=boxes[:, 3]) blobs['roidb'][0]['boxes'] = boxes else: # width >> height, crop width size_crop = math.ceil(data_height * ratio) min_x = math.floor(np.min(boxes[:, 0])) max_x = math.floor(np.max(boxes[:, 2])) box_region = max_x - min_x + 1 if min_x == 0: x_s = 0 else: if (box_region - size_crop) < 0: x_s_min = max(max_x - size_crop, 0) x_s_max = min(min_x, data_width - size_crop) x_s = x_s_min if x_s_min == x_s_max else \ npr.choice(range(x_s_min, x_s_max + 1)) else: x_s_add = (box_region - size_crop) // 2 x_s = min_x if x_s_add == 0 else \ npr.choice(range(min_x, min_x + x_s_add + 1)) # Crop the image blobs['data'] = blobs['data'][:, :, x_s:(x_s + size_crop)] # Update im_info blobs['im_info'][1] = size_crop # Shift and clamp boxes ground truth boxes[:, 0] -= x_s boxes[:, 2] -= x_s np.clip(boxes[:, 0], 0, size_crop - 1, out=boxes[:, 0]) np.clip(boxes[:, 2], 0, size_crop - 1, out=boxes[:, 2]) blobs['roidb'][0]['boxes'] = boxes def __len__(self): return self.DATA_SIZE def cal_minibatch_ratio(ratio_list): """Given the ratio_list, we want to make the RATIO same for each minibatch on each GPU. Note: this only work for 1) cfg.TRAIN.MAX_SIZE is ignored during `prep_im_for_blob` and 2) cfg.TRAIN.SCALES containing SINGLE scale. Since all prepared images will have same min side length of cfg.TRAIN.SCALES[0], we can pad and batch images base on that. """ DATA_SIZE = len(ratio_list) ratio_list_minibatch = np.empty((DATA_SIZE,)) num_minibatch = int(np.ceil(DATA_SIZE / cfg.TRAIN.IMS_PER_BATCH)) # Include leftovers for i in range(num_minibatch): left_idx = i * cfg.TRAIN.IMS_PER_BATCH right_idx = min((i+1) * cfg.TRAIN.IMS_PER_BATCH - 1, DATA_SIZE - 1) if ratio_list[right_idx] < 1: # for ratio < 1, we preserve the leftmost in each batch. target_ratio = ratio_list[left_idx] elif ratio_list[left_idx] > 1: # for ratio > 1, we preserve the rightmost in each batch. target_ratio = ratio_list[right_idx] else: # for ratio cross 1, we make it to be 1. target_ratio = 1 ratio_list_minibatch[left_idx:(right_idx+1)] = target_ratio return ratio_list_minibatch class MinibatchSampler(torch_sampler.Sampler): def __init__(self, ratio_list, ratio_index): self.ratio_list = ratio_list self.ratio_index = ratio_index self.num_data = len(ratio_list) if cfg.TRAIN.ASPECT_GROUPING: # Given the ratio_list, we want to make the ratio same # for each minibatch on each GPU. self.ratio_list_minibatch = cal_minibatch_ratio(ratio_list) def __iter__(self): if cfg.TRAIN.ASPECT_GROUPING: # indices for aspect grouping awared permutation n, rem = divmod(self.num_data, cfg.TRAIN.IMS_PER_BATCH) round_num_data = n * cfg.TRAIN.IMS_PER_BATCH indices = np.arange(round_num_data) npr.shuffle(indices.reshape(-1, cfg.TRAIN.IMS_PER_BATCH)) # inplace shuffle if rem != 0: indices = np.append(indices, np.arange(round_num_data, round_num_data + rem)) ratio_index = self.ratio_index[indices] ratio_list_minibatch = self.ratio_list_minibatch[indices] else: rand_perm = npr.permutation(self.num_data) ratio_list = self.ratio_list[rand_perm] ratio_index = self.ratio_index[rand_perm] # re-calculate minibatch ratio list ratio_list_minibatch = cal_minibatch_ratio(ratio_list) return iter(zip(ratio_index.tolist(), ratio_list_minibatch.tolist())) def __len__(self): return self.num_data class BatchSampler(torch_sampler.BatchSampler): r"""Wraps another sampler to yield a mini-batch of indices. Args: sampler (Sampler): Base sampler. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size`` Example: >>> list(BatchSampler(range(10), batch_size=3, drop_last=False)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(BatchSampler(range(10), batch_size=3, drop_last=True)) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] """ def __init__(self, sampler, batch_size, drop_last): if not isinstance(sampler, torch_sampler.Sampler): raise ValueError("sampler should be an instance of " "torch.utils.data.Sampler, but got sampler={}" .format(sampler)) if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \ batch_size <= 0: raise ValueError("batch_size should be a positive integeral value, " "but got batch_size={}".format(batch_size)) if not isinstance(drop_last, bool): raise ValueError("drop_last should be a boolean value, but got " "drop_last={}".format(drop_last)) self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last def __iter__(self): batch = [] for idx in self.sampler: batch.append(idx) # Difference: batch.append(int(idx)) if len(batch) == self.batch_size: yield batch batch = [] if len(batch) > 0 and not self.drop_last: yield batch def __len__(self): if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size def collate_minibatch(list_of_blobs): """Stack samples seperately and return a list of minibatches A batch contains NUM_GPUS minibatches and image size in different minibatch may be different. Hence, we need to stack smaples from each minibatch seperately. """ Batch = {key: [] for key in list_of_blobs[0]} # Because roidb consists of entries of variable length, it can't be batch into a tensor. # So we keep roidb in the type of "list of ndarray". list_of_roidb = [blobs.pop('roidb') for blobs in list_of_blobs] for i in range(0, len(list_of_blobs), cfg.TRAIN.IMS_PER_BATCH): mini_list = list_of_blobs[i:(i + cfg.TRAIN.IMS_PER_BATCH)] # Pad image data mini_list = pad_image_data(mini_list) minibatch = default_collate(mini_list) minibatch['roidb'] = list_of_roidb[i:(i + cfg.TRAIN.IMS_PER_BATCH)] for key in minibatch: Batch[key].append(minibatch[key]) return Batch def pad_image_data(list_of_blobs): max_shape = blob_utils.get_max_shape([blobs['data'].shape[1:] for blobs in list_of_blobs]) output_list = [] for blobs in list_of_blobs: data_padded = np.zeros((3, max_shape[0], max_shape[1]), dtype=np.float32) _, h, w = blobs['data'].shape data_padded[:, :h, :w] = blobs['data'] blobs['data'] = data_padded output_list.append(blobs) return output_list
ContrastiveLosses4VRD-master
lib/roi_data_rel/loader_rel.py
# Adapted by Ji Zhang in 2019 # # Based on Detectron.pytorch/lib/utils/net.py written by Roy Tseng import logging import os import numpy as np import torch import torch.nn.functional as F from torch.autograd import Variable from core.config import cfg from utils.net import _get_lr_change_ratio from utils.net import _CorrectMomentum logger = logging.getLogger(__name__) def update_learning_rate_att(optimizer, cur_lr, new_lr): """Update learning rate""" if cur_lr != new_lr: ratio = _get_lr_change_ratio(cur_lr, new_lr) if ratio > cfg.SOLVER.LOG_LR_CHANGE_THRESHOLD: logger.info('Changing learning rate %.6f -> %.6f', cur_lr, new_lr) # Update learning rate, note that different parameter may have different learning rate param_keys = [] for ind, param_group in enumerate(optimizer.param_groups): if (ind == 1 or ind == 3) and cfg.SOLVER.BIAS_DOUBLE_LR: # bias params param_group['lr'] = new_lr * 2 else: param_group['lr'] = new_lr if ind <= 1: # backbone params param_group['lr'] = cfg.SOLVER.BACKBONE_LR_SCALAR * param_group['lr'] # 0.1 * param_group['lr'] param_keys += param_group['params'] if cfg.SOLVER.TYPE in ['SGD'] and cfg.SOLVER.SCALE_MOMENTUM and cur_lr > 1e-7 and \ ratio > cfg.SOLVER.SCALE_MOMENTUM_THRESHOLD: _CorrectMomentum(optimizer, param_keys, new_lr / cur_lr) def update_learning_rate_rel(optimizer, cur_lr, new_lr): """Update learning rate""" if cur_lr != new_lr: ratio = _get_lr_change_ratio(cur_lr, new_lr) if ratio > cfg.SOLVER.LOG_LR_CHANGE_THRESHOLD: logger.info('Changing learning rate %.6f -> %.6f', cur_lr, new_lr) # Update learning rate, note that different parameter may have different learning rate param_keys = [] for ind, param_group in enumerate(optimizer.param_groups): if (ind == 1 or ind == 3) and cfg.SOLVER.BIAS_DOUBLE_LR: # bias params param_group['lr'] = new_lr * 2 else: param_group['lr'] = new_lr if ind <= 1: # backbone params param_group['lr'] = cfg.SOLVER.BACKBONE_LR_SCALAR * param_group['lr'] # 0.1 * param_group['lr'] param_keys += param_group['params'] if cfg.SOLVER.TYPE in ['SGD'] and cfg.SOLVER.SCALE_MOMENTUM and cur_lr > 1e-7 and \ ratio > cfg.SOLVER.SCALE_MOMENTUM_THRESHOLD: _CorrectMomentum(optimizer, param_keys, new_lr / cur_lr) def load_ckpt_rel(model, ckpt): """Load checkpoint""" model.load_state_dict(ckpt, strict=False)
ContrastiveLosses4VRD-master
lib/utils_rel/net_rel.py
ContrastiveLosses4VRD-master
lib/utils_rel/__init__.py
# Adapted by Ji Zhang in 2019 for thsi project # Based on Detectron.pytorch/lib/utils/training_stats.py # Original license text below: # ############################################################################## # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Utilities for training.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict, OrderedDict import datetime import numpy as np from core.config import cfg from utils_rel.logging_rel import log_stats from utils_rel.logging_rel import SmoothedValue from utils.timer import Timer import utils.net as nu class TrainingStats(object): """Track vital training statistics.""" def __init__(self, misc_args, log_period=20, tensorboard_logger=None): # Output logging period in SGD iterations self.misc_args = misc_args self.LOG_PERIOD = log_period self.tblogger = tensorboard_logger self.tb_ignored_keys = ['iter', 'eta'] self.iter_timer = Timer() # Window size for smoothing tracked values (with median filtering) self.WIN_SZ = 20 def create_smoothed_value(): return SmoothedValue(self.WIN_SZ) self.smoothed_losses = defaultdict(create_smoothed_value) self.smoothed_metrics = defaultdict(create_smoothed_value) self.smoothed_total_loss = SmoothedValue(self.WIN_SZ) # For the support of args.iter_size self.inner_total_loss = [] self.inner_losses = defaultdict(list) if cfg.FPN.FPN_ON: self.inner_loss_rpn_cls = [] self.inner_loss_rpn_bbox = [] self.inner_metrics = defaultdict(list) def IterTic(self): self.iter_timer.tic() def IterToc(self): return self.iter_timer.toc(average=False) def ResetIterTimer(self): self.iter_timer.reset() def UpdateIterStats(self, model_out, inner_iter=None): """Update tracked iteration statistics.""" if inner_iter is not None and self.misc_args.iter_size > 1: # For the case of using args.iter_size > 1 return self._UpdateIterStats_inner(model_out, inner_iter) # Following code is saved for compatability of train_net.py and iter_size==1 total_loss = 0 if cfg.FPN.FPN_ON: loss_rpn_cls_data = 0 loss_rpn_bbox_data = 0 for k, loss in model_out['losses'].items(): assert loss.shape[0] == cfg.NUM_GPUS loss = loss.mean(dim=0, keepdim=True) total_loss += loss loss_data = loss.data[0] model_out['losses'][k] = loss if cfg.FPN.FPN_ON: if k.startswith('loss_rpn_cls_'): loss_rpn_cls_data += loss_data elif k.startswith('loss_rpn_bbox_'): loss_rpn_bbox_data += loss_data self.smoothed_losses[k].AddValue(loss_data) model_out['total_loss'] = total_loss # Add the total loss for back propagation self.smoothed_total_loss.AddValue(total_loss.data[0]) if cfg.FPN.FPN_ON: self.smoothed_losses['loss_rpn_cls'].AddValue(loss_rpn_cls_data) self.smoothed_losses['loss_rpn_bbox'].AddValue(loss_rpn_bbox_data) for k, metric in model_out['metrics'].items(): metric = metric.mean(dim=0, keepdim=True) self.smoothed_metrics[k].AddValue(metric.data[0]) def _UpdateIterStats_inner(self, model_out, inner_iter): """Update tracked iteration statistics for the case of iter_size > 1""" assert inner_iter < self.misc_args.iter_size total_loss = 0 if cfg.FPN.FPN_ON: loss_rpn_cls_data = 0 loss_rpn_bbox_data = 0 if inner_iter == 0: self.inner_total_loss = [] for k in model_out['losses']: self.inner_losses[k] = [] if cfg.FPN.FPN_ON: self.inner_loss_rpn_cls = [] self.inner_loss_rpn_bbox = [] for k in model_out['metrics']: self.inner_metrics[k] = [] for k, loss in model_out['losses'].items(): assert loss.shape[0] == cfg.NUM_GPUS loss = loss.mean(dim=0, keepdim=True) total_loss += loss loss_data = loss.data[0] model_out['losses'][k] = loss if cfg.FPN.FPN_ON: if k.startswith('loss_rpn_cls_'): loss_rpn_cls_data += loss_data elif k.startswith('loss_rpn_bbox_'): loss_rpn_bbox_data += loss_data self.inner_losses[k].append(loss_data) if inner_iter == (self.misc_args.iter_size - 1): loss_data = self._mean_and_reset_inner_list('inner_losses', k) self.smoothed_losses[k].AddValue(loss_data) model_out['total_loss'] = total_loss # Add the total loss for back propagation total_loss_data = total_loss.data[0] self.inner_total_loss.append(total_loss_data) if cfg.FPN.FPN_ON: self.inner_loss_rpn_cls.append(loss_rpn_cls_data) self.inner_loss_rpn_bbox.append(loss_rpn_bbox_data) if inner_iter == (self.misc_args.iter_size - 1): total_loss_data = self._mean_and_reset_inner_list('inner_total_loss') self.smoothed_total_loss.AddValue(total_loss_data) if cfg.FPN.FPN_ON: loss_rpn_cls_data = self._mean_and_reset_inner_list('inner_loss_rpn_cls') loss_rpn_bbox_data = self._mean_and_reset_inner_list('inner_loss_rpn_bbox') self.smoothed_losses['loss_rpn_cls'].AddValue(loss_rpn_cls_data) self.smoothed_losses['loss_rpn_bbox'].AddValue(loss_rpn_bbox_data) for k, metric in model_out['metrics'].items(): metric = metric.mean(dim=0, keepdim=True) metric_data = metric.data[0] self.inner_metrics[k].append(metric_data) if inner_iter == (self.misc_args.iter_size - 1): metric_data = self._mean_and_reset_inner_list('inner_metrics', k) self.smoothed_metrics[k].AddValue(metric_data) def _mean_and_reset_inner_list(self, attr_name, key=None): """Take the mean and reset list empty""" if key: mean_val = sum(getattr(self, attr_name)[key]) / self.misc_args.iter_size getattr(self, attr_name)[key] = [] else: mean_val = sum(getattr(self, attr_name)) / self.misc_args.iter_size setattr(self, attr_name, []) return mean_val def LogIterStats(self, cur_iter, lr, backbone_lr): """Log the tracked statistics.""" if (cur_iter % self.LOG_PERIOD == 0 or cur_iter == cfg.SOLVER.MAX_ITER - 1): stats = self.GetStats(cur_iter, lr, backbone_lr) log_stats(stats, self.misc_args) if self.tblogger: self.tb_log_stats(stats, cur_iter) def tb_log_stats(self, stats, cur_iter): """Log the tracked statistics to tensorboard""" for k in stats: if k not in self.tb_ignored_keys: v = stats[k] if isinstance(v, dict): self.tb_log_stats(v, cur_iter) else: self.tblogger.add_scalar(k, v, cur_iter) def GetStats(self, cur_iter, lr, backbone_lr): eta_seconds = self.iter_timer.average_time * ( cfg.SOLVER.MAX_ITER - cur_iter ) eta = str(datetime.timedelta(seconds=int(eta_seconds))) stats = OrderedDict( iter=cur_iter + 1, # 1-indexed time=self.iter_timer.average_time, eta=eta, loss=self.smoothed_total_loss.GetMedianValue(), lr=lr, backbone_lr=backbone_lr ) stats['metrics'] = OrderedDict() for k in sorted(self.smoothed_metrics): stats['metrics'][k] = self.smoothed_metrics[k].GetMedianValue() head_losses = [] for k, v in self.smoothed_losses.items(): head_losses.append((k, v.GetMedianValue())) stats['head_losses'] = OrderedDict(head_losses) return stats
ContrastiveLosses4VRD-master
lib/utils_rel/training_stats_rel.py
# Adapted by Ji Zhang for this project in 2019 # Based on Detectron.pytorch/lib/utils/logging.py # Original license text below: # ############################################################################ # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Utilities for logging.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import deque from email.mime.text import MIMEText import json import logging import numpy as np import smtplib import sys from core.config import cfg # Print lower precision floating point values than default FLOAT_REPR # Note! Has no use for json encode with C speedups json.encoder.FLOAT_REPR = lambda o: format(o, '.6f') def log_json_stats(stats, sort_keys=True): print('json_stats: {:s}'.format(json.dumps(stats, sort_keys=sort_keys))) def log_stats(stats, misc_args): """Log training statistics to terminal""" if hasattr(misc_args, 'epoch'): lines = "[%s][%s][Epoch %d][Iter %d / %d]\n" % ( misc_args.run_name, misc_args.cfg_filename, misc_args.epoch, misc_args.step, misc_args.iters_per_epoch) else: lines = "[%s][%s][Step %d / %d]\n" % ( misc_args.run_name, misc_args.cfg_filename, stats['iter'], cfg.SOLVER.MAX_ITER) lines += "\t\tloss: %.6f, lr: %.6f backbone_lr: %.6f time: %.6f, eta: %s\n" % ( stats['loss'], stats['lr'], stats['backbone_lr'], stats['time'], stats['eta'] ) if stats['metrics']: lines += "\t\t" + ", ".join("%s: %.6f" % (k, v) for k, v in stats['metrics'].items()) + "\n" if stats['head_losses']: lines += "\t\t" + ", ".join("%s: %.6f" % (k, v) for k, v in stats['head_losses'].items()) + "\n" print(lines[:-1]) # remove last new line class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size): self.deque = deque(maxlen=window_size) self.series = [] self.total = 0.0 self.count = 0 def AddValue(self, value): self.deque.append(value) self.series.append(value) self.count += 1 self.total += value def GetMedianValue(self): return np.median(self.deque) def GetAverageValue(self): return np.mean(self.deque) def GetGlobalAverageValue(self): return self.total / self.count def send_email(subject, body, to): s = smtplib.SMTP('localhost') mime = MIMEText(body) mime['Subject'] = subject mime['To'] = to s.sendmail('detectron', to, mime.as_string()) def setup_logging(name): FORMAT = '%(levelname)s %(filename)s:%(lineno)4d: %(message)s' # Manually clear root loggers to prevent any module that may have called # logging.basicConfig() from blocking our logging setup logging.root.handlers = [] logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout) logger = logging.getLogger(name) return logger
ContrastiveLosses4VRD-master
lib/utils_rel/logging_rel.py
# Adapted by Ji Zhang in 2019 # Based on Detectron.pytorch/lib/utils/subprocess.py # Original license text below: # ############################################################################# # # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Primitives for running multiple single-GPU jobs in parallel over subranges of data. These are used for running multi-GPU inference. Subprocesses are used to avoid the GIL since inference may involve non-trivial amounts of Python code. """ from io import IOBase import logging import os import subprocess from six.moves import shlex_quote from six.moves import cPickle as pickle import yaml import numpy as np import torch from core.config import cfg logger = logging.getLogger(__name__) def process_in_parallel( tag, total_range_size, binary, output_dir, load_ckpt, load_detectron, opts=''): """Run the specified binary NUM_GPUS times in parallel, each time as a subprocess that uses one GPU. The binary must accept the command line arguments `--range {start} {end}` that specify a data processing range. """ # Snapshot the current cfg state in order to pass to the inference # subprocesses cfg_file = os.path.join(output_dir, '{}_range_config.yaml'.format(tag)) with open(cfg_file, 'w') as f: yaml.dump(cfg, stream=f) subprocess_env = os.environ.copy() processes = [] NUM_GPUS = torch.cuda.device_count() subinds = np.array_split(range(total_range_size), NUM_GPUS) # Determine GPUs to use cuda_visible_devices = os.environ.get('CUDA_VISIBLE_DEVICES') if cuda_visible_devices: gpu_inds = list(map(int, cuda_visible_devices.split(','))) assert -1 not in gpu_inds, \ 'Hiding GPU indices using the \'-1\' index is not supported' else: gpu_inds = range(cfg.NUM_GPUS) gpu_inds = list(gpu_inds) # Run the binary in cfg.NUM_GPUS subprocesses for i, gpu_ind in enumerate(gpu_inds): start = subinds[i][0] end = subinds[i][-1] + 1 subprocess_env['CUDA_VISIBLE_DEVICES'] = str(gpu_ind) cmd = ('python3 {binary} --range {start} {end} --cfg {cfg_file} --set {opts} ' '--output_dir {output_dir}') if load_ckpt is not None: cmd += ' --load_ckpt {load_ckpt}' elif load_detectron is not None: cmd += ' --load_detectron {load_detectron}' cmd = cmd.format( binary=shlex_quote(binary), start=int(start), end=int(end), cfg_file=shlex_quote(cfg_file), output_dir=output_dir, load_ckpt=load_ckpt, load_detectron=load_detectron, opts=' '.join([shlex_quote(opt) for opt in opts]) ) logger.info('{} range command {}: {}'.format(tag, i, cmd)) if i == 0: subprocess_stdout = subprocess.PIPE else: filename = os.path.join( output_dir, '%s_range_%s_%s.stdout' % (tag, start, end) ) subprocess_stdout = open(filename, 'w') p = subprocess.Popen( cmd, shell=True, env=subprocess_env, stdout=subprocess_stdout, stderr=subprocess.STDOUT, bufsize=1 ) processes.append((i, p, start, end, subprocess_stdout)) # Log output from inference processes and collate their results outputs = [] for i, p, start, end, subprocess_stdout in processes: log_subprocess_output(i, p, output_dir, tag, start, end) if isinstance(subprocess_stdout, IOBase): subprocess_stdout.close() range_file = os.path.join( output_dir, '%s_range_%s_%s.pkl' % (tag, start, end) ) range_data = pickle.load(open(range_file, 'rb')) outputs.append(range_data) return outputs def log_subprocess_output(i, p, output_dir, tag, start, end): """Capture the output of each subprocess and log it in the parent process. The first subprocess's output is logged in realtime. The output from the other subprocesses is buffered and then printed all at once (in order) when subprocesses finish. """ outfile = os.path.join( output_dir, '%s_range_%s_%s.stdout' % (tag, start, end) ) logger.info('# ' + '-' * 76 + ' #') logger.info( 'stdout of subprocess %s with range [%s, %s]' % (i, start + 1, end) ) logger.info('# ' + '-' * 76 + ' #') if i == 0: # Stream the piped stdout from the first subprocess in realtime with open(outfile, 'w') as f: for line in iter(p.stdout.readline, b''): print(line.rstrip().decode('ascii')) f.write(str(line, encoding='ascii')) p.stdout.close() ret = p.wait() else: # For subprocesses >= 1, wait and dump their log file ret = p.wait() with open(outfile, 'r') as f: print(''.join(f.readlines())) assert ret == 0, 'Range subprocess failed (exit code: {})'.format(ret)
ContrastiveLosses4VRD-master
lib/utils_rel/subprocess_rel.py
# Adapted by Ji Zhang in 2019 for this project # Based on Detectron.pytorch/lib/utils/boxes.py # # Original license text below: # ############################################################################# # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Box manipulation functions. The internal Detectron box format is [x1, y1, x2, y2] where (x1, y1) specify the top-left box corner and (x2, y2) specify the bottom-right box corner. Boxes from external sources, e.g., datasets, may be in other formats (such as [x, y, w, h]) and require conversion. This module uses a convention that may seem strange at first: the width of a box is computed as x2 - x1 + 1 (likewise for height). The "+ 1" dates back to old object detection days when the coordinates were integer pixel indices, rather than floating point coordinates in a subpixel coordinate frame. A box with x2 = x1 and y2 = y1 was taken to include a single pixel, having a width of 1, and hence requiring the "+ 1". Now, most datasets will likely provide boxes with floating point coordinates and the width should be more reasonably computed as x2 - x1. In practice, as long as a model is trained and tested with a consistent convention either decision seems to be ok (at least in our experience on COCO). Since we have a long history of training models with the "+ 1" convention, we are reluctant to change it even if our modern tastes prefer not to use it. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import warnings import numpy as np from core.config import cfg import utils_rel.cython_bbox_rel as cython_bbox_rel from utils.boxes import bbox_transform_inv bbox_pair_overlaps = cython_bbox_rel.bbox_pair_overlaps def get_spt_features(boxes1, boxes2, width, height): boxes_u = boxes_union(boxes1, boxes2) spt_feat_1 = get_box_feature(boxes1, width, height) spt_feat_2 = get_box_feature(boxes2, width, height) spt_feat_12 = get_pair_feature(boxes1, boxes2) spt_feat_1u = get_pair_feature(boxes1, boxes_u) spt_feat_u2 = get_pair_feature(boxes_u, boxes2) return np.hstack((spt_feat_12, spt_feat_1u, spt_feat_u2, spt_feat_1, spt_feat_2)) def get_pair_feature(boxes1, boxes2): delta_1 = bbox_transform_inv(boxes1, boxes2) delta_2 = bbox_transform_inv(boxes2, boxes1) spt_feat = np.hstack((delta_1, delta_2[:, :2])) return spt_feat def get_box_feature(boxes, width, height): f1 = boxes[:, 0] / width f2 = boxes[:, 1] / height f3 = boxes[:, 2] / width f4 = boxes[:, 3] / height f5 = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1) / (width * height) return np.vstack((f1, f2, f3, f4, f5)).transpose() def boxes_union(boxes1, boxes2): assert boxes1.shape == boxes2.shape xmin = np.minimum(boxes1[:, 0], boxes2[:, 0]) ymin = np.minimum(boxes1[:, 1], boxes2[:, 1]) xmax = np.maximum(boxes1[:, 2], boxes2[:, 2]) ymax = np.maximum(boxes1[:, 3], boxes2[:, 3]) return np.vstack((xmin, ymin, xmax, ymax)).transpose() def rois_union(rois1, rois2): assert (rois1[:, 0] == rois2[:, 0]).all() xmin = np.minimum(rois1[:, 1], rois2[:, 1]) ymin = np.minimum(rois1[:, 2], rois2[:, 2]) xmax = np.maximum(rois1[:, 3], rois2[:, 3]) ymax = np.maximum(rois1[:, 4], rois2[:, 4]) return np.vstack((rois1[:, 0], xmin, ymin, xmax, ymax)).transpose() def boxes_intersect(boxes1, boxes2): assert boxes1.shape == boxes2.shape xmin = np.maximum(boxes1[:, 0], boxes2[:, 0]) ymin = np.maximum(boxes1[:, 1], boxes2[:, 1]) xmax = np.minimum(boxes1[:, 2], boxes2[:, 2]) ymax = np.minimum(boxes1[:, 3], boxes2[:, 3]) return np.vstack((xmin, ymin, xmax, ymax)).transpose() def rois_intersect(rois1, rois2): assert (rois1[:, 0] == rois2[:, 0]).all() xmin = np.maximum(rois1[:, 1], rois2[:, 1]) ymin = np.maximum(rois1[:, 2], rois2[:, 2]) xmax = np.minimum(rois1[:, 3], rois2[:, 3]) ymax = np.minimum(rois1[:, 4], rois2[:, 4]) return np.vstack((rois1[:, 0], xmin, ymin, xmax, ymax)).transpose() def y1y2x1x2_to_x1y1x2y2(y1y2x1x2): x1 = y1y2x1x2[2] y1 = y1y2x1x2[0] x2 = y1y2x1x2[3] y2 = y1y2x1x2[1] return [x1, y1, x2, y2]
ContrastiveLosses4VRD-master
lib/utils_rel/boxes_rel.py
""" Written by Ji Zhang, 2019 Some functions are adapted from Rowan Zellers Original source: https://github.com/rowanz/neural-motifs/blob/master/lib/evaluation/sg_eval.py """ import os import numpy as np import logging from six.moves import cPickle as pickle import json import csv from tqdm import tqdm from core.config import cfg from functools import reduce from utils.boxes import bbox_overlaps from datasets_rel.ap_eval_rel import ap_eval, prepare_mAP_dets from .pytorch_misc import intersect_2d, argsort_desc np.set_printoptions(precision=3) logger = logging.getLogger(__name__) def eval_rel_results(all_results, output_dir, do_val=True, do_vis=False, do_special=False): topk = 100 if cfg.TEST.DATASETS[0].find('vg') >= 0: eval_per_img = True # eval_per_img = False prd_k = 1 else: eval_per_img = False prd_k = 2 if cfg.TEST.DATASETS[0].find('oi') >= 0: eval_ap = True else: eval_ap = False if eval_per_img: recalls = {1: [], 5: [], 10: [], 20: [], 50: [], 100: []} else: recalls = {1: 0, 5: 0, 10: 0, 20: 0, 50: 0, 100: 0} if do_val: all_gt_cnt = 0 if do_special: special_img_f = open("/home/jiz/projects/100_img_special_set.txt", "r") special_imgs = special_img_f.readlines() special_imgs = [img[:-1] for img in special_imgs] special_img_set = set(special_imgs) logger.info('Special images len: {}'.format(len(special_img_set))) topk_dets = [] for im_i, res in enumerate(tqdm(all_results)): if do_special: img_id = res['image'].split('/')[-1].split('.')[0] if img_id not in special_img_set: continue # in oi_all_rel some images have no dets if res['prd_scores'] is None: det_boxes_s_top = np.zeros((0, 4), dtype=np.float32) det_boxes_o_top = np.zeros((0, 4), dtype=np.float32) det_labels_s_top = np.zeros(0, dtype=np.int32) det_labels_p_top = np.zeros(0, dtype=np.int32) det_labels_o_top = np.zeros(0, dtype=np.int32) det_scores_top = np.zeros(0, dtype=np.float32) det_scores_top_vis = np.zeros(0, dtype=np.float32) if 'prd_scores_bias' in res: det_scores_top_bias = np.zeros(0, dtype=np.float32) if 'prd_scores_spt' in res: det_scores_top_spt = np.zeros(0, dtype=np.float32) else: det_boxes_sbj = res['sbj_boxes'] # (#num_rel, 4) det_boxes_obj = res['obj_boxes'] # (#num_rel, 4) det_labels_sbj = res['sbj_labels'] # (#num_rel,) det_labels_obj = res['obj_labels'] # (#num_rel,) det_scores_sbj = res['sbj_scores'] # (#num_rel,) det_scores_obj = res['obj_scores'] # (#num_rel,) if 'prd_scores_ttl' in res: det_scores_prd = res['prd_scores_ttl'][:, 1:] else: det_scores_prd = res['prd_scores'][:, 1:] det_labels_prd = np.argsort(-det_scores_prd, axis=1) det_scores_prd = -np.sort(-det_scores_prd, axis=1) det_scores_so = det_scores_sbj * det_scores_obj det_scores_spo = det_scores_so[:, None] * det_scores_prd[:, :prd_k] det_scores_inds = argsort_desc(det_scores_spo)[:topk] det_scores_top = det_scores_spo[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_boxes_so_top = np.hstack( (det_boxes_sbj[det_scores_inds[:, 0]], det_boxes_obj[det_scores_inds[:, 0]])) det_labels_p_top = det_labels_prd[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_labels_spo_top = np.vstack( (det_labels_sbj[det_scores_inds[:, 0]], det_labels_p_top, det_labels_obj[det_scores_inds[:, 0]])).transpose() # filter out bad relationships cand_inds = np.where(det_scores_top > cfg.TEST.SPO_SCORE_THRESH)[0] det_boxes_so_top = det_boxes_so_top[cand_inds] det_labels_spo_top = det_labels_spo_top[cand_inds] det_scores_top = det_scores_top[cand_inds] det_scores_vis = res['prd_scores'][:, 1:] for i in range(det_labels_prd.shape[0]): det_scores_vis[i] = det_scores_vis[i][det_labels_prd[i]] det_scores_vis = det_scores_vis[:, :prd_k] det_scores_top_vis = det_scores_vis[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_scores_top_vis = det_scores_top_vis[cand_inds] if 'prd_scores_bias' in res: det_scores_bias = res['prd_scores_bias'][:, 1:] for i in range(det_labels_prd.shape[0]): det_scores_bias[i] = det_scores_bias[i][det_labels_prd[i]] det_scores_bias = det_scores_bias[:, :prd_k] det_scores_top_bias = det_scores_bias[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_scores_top_bias = det_scores_top_bias[cand_inds] if 'prd_scores_spt' in res: det_scores_spt = res['prd_scores_spt'][:, 1:] for i in range(det_labels_prd.shape[0]): det_scores_spt[i] = det_scores_spt[i][det_labels_prd[i]] det_scores_spt = det_scores_spt[:, :prd_k] det_scores_top_spt = det_scores_spt[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_scores_top_spt = det_scores_top_spt[cand_inds] det_boxes_s_top = det_boxes_so_top[:, :4] det_boxes_o_top = det_boxes_so_top[:, 4:] det_labels_s_top = det_labels_spo_top[:, 0] det_labels_p_top = det_labels_spo_top[:, 1] det_labels_o_top = det_labels_spo_top[:, 2] topk_dets.append(dict(image=res['image'], det_boxes_s_top=det_boxes_s_top, det_boxes_o_top=det_boxes_o_top, det_labels_s_top=det_labels_s_top, det_labels_p_top=det_labels_p_top, det_labels_o_top=det_labels_o_top, det_scores_top=det_scores_top)) topk_dets[-1]['det_scores_top_vis'] = det_scores_top_vis if 'prd_scores_bias' in res: topk_dets[-1]['det_scores_top_bias'] = det_scores_top_bias if 'prd_scores_spt' in res: topk_dets[-1]['det_scores_top_spt'] = det_scores_top_spt if do_vis: topk_dets[-1].update(dict(blob_conv=res['blob_conv'], blob_conv_prd=res['blob_conv_prd'])) if do_val: gt_boxes_sbj = res['gt_sbj_boxes'] # (#num_gt, 4) gt_boxes_obj = res['gt_obj_boxes'] # (#num_gt, 4) gt_labels_sbj = res['gt_sbj_labels'] # (#num_gt,) gt_labels_obj = res['gt_obj_labels'] # (#num_gt,) gt_labels_prd = res['gt_prd_labels'] # (#num_gt,) gt_boxes_so = np.hstack((gt_boxes_sbj, gt_boxes_obj)) gt_labels_spo = np.vstack((gt_labels_sbj, gt_labels_prd, gt_labels_obj)).transpose() # Compute recall. It's most efficient to match once and then do recall after # det_boxes_so_top is (#num_rel, 8) # det_labels_spo_top is (#num_rel, 3) pred_to_gt = _compute_pred_matches( gt_labels_spo, det_labels_spo_top, gt_boxes_so, det_boxes_so_top) if eval_per_img: for k in recalls: if len(pred_to_gt): match = reduce(np.union1d, pred_to_gt[:k]) else: match = [] rec_i = float(len(match)) / float(gt_labels_spo.shape[0] + 1e-12) # in case there is no gt recalls[k].append(rec_i) else: all_gt_cnt += gt_labels_spo.shape[0] for k in recalls: if len(pred_to_gt): match = reduce(np.union1d, pred_to_gt[:k]) else: match = [] recalls[k] += len(match) topk_dets[-1].update(dict(gt_boxes_sbj=gt_boxes_sbj, gt_boxes_obj=gt_boxes_obj, gt_labels_sbj=gt_labels_sbj, gt_labels_obj=gt_labels_obj, gt_labels_prd=gt_labels_prd)) if do_val: if eval_per_img: for k, v in recalls.items(): recalls[k] = np.mean(v) else: for k in recalls: recalls[k] = float(recalls[k]) / (float(all_gt_cnt) + 1e-12) excel_str = print_stats(recalls) if eval_ap: # prepare dets for each class logger.info('Preparing dets for mAP...') cls_image_ids, cls_dets, cls_gts, npos = prepare_mAP_dets(topk_dets, 9) all_npos = sum(npos) with open(cfg.DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json') as f: rel_prd_cats = json.load(f) rel_mAP = 0. w_rel_mAP = 0. ap_str = '' for c in range(9): rec, prec, ap = ap_eval(cls_image_ids[c], cls_dets[c], cls_gts[c], npos[c], True) weighted_ap = ap * float(npos[c]) / float(all_npos) w_rel_mAP += weighted_ap rel_mAP += ap ap_str += '{:.2f}, '.format(100 * ap) print('rel AP for class {}: {:.2f} ({:.6f})'.format(rel_prd_cats[c], 100 * ap, float(npos[c]) / float(all_npos))) rel_mAP /= 9. print('weighted rel mAP: {:.2f}'.format(100 * w_rel_mAP)) excel_str += ap_str phr_mAP = 0. w_phr_mAP = 0. ap_str = '' for c in range(9): rec, prec, ap = ap_eval(cls_image_ids[c], cls_dets[c], cls_gts[c], npos[c], False) weighted_ap = ap * float(npos[c]) / float(all_npos) w_phr_mAP += weighted_ap phr_mAP += ap ap_str += '{:.2f}, '.format(100 * ap) print('phr AP for class {}: {:.2f} ({:.6f})'.format(rel_prd_cats[c], 100 * ap, float(npos[c]) / float(all_npos))) phr_mAP /= 9. print('weighted phr mAP: {:.2f}'.format(100 * w_phr_mAP)) excel_str += ap_str # total: 0.4 x rel_mAP + 0.2 x R@50 + 0.4 x phr_mAP final_score = 0.4 * rel_mAP + 0.2 * recalls[50] + 0.4 * phr_mAP # total: 0.4 x w_rel_mAP + 0.2 x R@50 + 0.4 x w_phr_mAP w_final_score = 0.4 * w_rel_mAP + 0.2 * recalls[50] + 0.4 * w_phr_mAP print('weighted final_score: {:.2f}'.format(100 * w_final_score)) # get excel friendly string # excel_str = '{:.2f}, {:.2f}, {:.2f}, {:.2f}, '.format(100 * recalls[50], 100 * w_rel_mAP, 100 * w_phr_mAP, 100 * w_final_score) + excel_str # print('Excel-friendly format:') # print(excel_str.strip()[:-1]) # print('Saving topk dets...') # topk_dets_f = os.path.join(output_dir, 'rel_detections_topk.pkl') # with open(topk_dets_f, 'wb') as f: # pickle.dump(topk_dets, f, pickle.HIGHEST_PROTOCOL) # logger.info('topk_dets size: {}'.format(len(topk_dets))) print('Done.') def print_stats(recalls): # print('====================== ' + 'sgdet' + ' ============================') k_str = '' for k in recalls.keys(): if k == 50: continue k_str += '{}\t'.format(k) v_str = '' for k, v in recalls.items(): print('R@%i: %.2f' % (k, 100 * v)) if k == 50: continue v_str += '{:.2f}, '.format(100 * v) return v_str # This function is adapted from Rowan Zellers' code: # https://github.com/rowanz/neural-motifs/blob/master/lib/evaluation/sg_eval.py # Modified for this project to work with PyTorch v0.4 def _compute_pred_matches(gt_triplets, pred_triplets, gt_boxes, pred_boxes, iou_thresh=0.5, phrdet=False): """ Given a set of predicted triplets, return the list of matching GT's for each of the given predictions :param gt_triplets: :param pred_triplets: :param gt_boxes: :param pred_boxes: :param iou_thresh: Do y :return: """ # This performs a matrix multiplication-esque thing between the two arrays # Instead of summing, we want the equality, so we reduce in that way # The rows correspond to GT triplets, columns to pred triplets keeps = intersect_2d(gt_triplets, pred_triplets) gt_has_match = keeps.any(1) pred_to_gt = [[] for x in range(pred_boxes.shape[0])] for gt_ind, gt_box, keep_inds in zip(np.where(gt_has_match)[0], gt_boxes[gt_has_match], keeps[gt_has_match], ): boxes = pred_boxes[keep_inds] if phrdet: # Evaluate where the union box > 0.5 gt_box_union = gt_box.reshape((2, 4)) gt_box_union = np.concatenate((gt_box_union.min(0)[:2], gt_box_union.max(0)[2:]), 0) box_union = boxes.reshape((-1, 2, 4)) box_union = np.concatenate((box_union.min(1)[:,:2], box_union.max(1)[:,2:]), 1) gt_box_union = gt_box_union.astype(dtype=np.float32, copy=False) box_union = box_union.astype(dtype=np.float32, copy=False) inds = bbox_overlaps(gt_box_union[None], box_union = box_union)[0] >= iou_thresh else: gt_box = gt_box.astype(dtype=np.float32, copy=False) boxes = boxes.astype(dtype=np.float32, copy=False) sub_iou = bbox_overlaps(gt_box[None,:4], boxes[:, :4])[0] obj_iou = bbox_overlaps(gt_box[None,4:], boxes[:, 4:])[0] inds = (sub_iou >= iou_thresh) & (obj_iou >= iou_thresh) for i in np.where(keep_inds)[0][inds]: pred_to_gt[i].append(int(gt_ind)) return pred_to_gt
ContrastiveLosses4VRD-master
lib/datasets_rel/task_evaluation_sg.py
# Adapted from Detectron.pytorch/lib/datasets/roidb.py # for this project by Ji Zhang, 2019 # # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Functions for common roidb manipulations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import six import logging import numpy as np import utils.boxes as box_utils import utils.blob as blob_utils from core.config import cfg from .json_dataset_rel import JsonDatasetRel logger = logging.getLogger(__name__) def combined_roidb_for_training(dataset_names, proposal_files): """Load and concatenate roidbs for one or more datasets, along with optional object proposals. The roidb entries are then prepared for use in training, which involves caching certain types of metadata for each roidb entry. """ def get_roidb(dataset_name, proposal_file): ds = JsonDatasetRel(dataset_name) roidb = ds.get_roidb( gt=True, proposal_file=proposal_file, crowd_filter_thresh=cfg.TRAIN.CROWD_FILTER_THRESH ) if cfg.TRAIN.USE_FLIPPED: logger.info('Appending horizontally-flipped training examples...') extend_with_flipped_entries(roidb, ds) logger.info('Loaded dataset: {:s}'.format(ds.name)) return roidb if isinstance(dataset_names, six.string_types): dataset_names = (dataset_names, ) if isinstance(proposal_files, six.string_types): proposal_files = (proposal_files, ) if len(proposal_files) == 0: proposal_files = (None, ) * len(dataset_names) assert len(dataset_names) == len(proposal_files) roidbs = [get_roidb(*args) for args in zip(dataset_names, proposal_files)] roidb = roidbs[0] for r in roidbs[1:]: roidb.extend(r) roidb = filter_for_training(roidb) if cfg.TRAIN.ASPECT_GROUPING or cfg.TRAIN.ASPECT_CROPPING: logger.info('Computing image aspect ratios and ordering the ratios...') ratio_list, ratio_index = rank_for_training(roidb) logger.info('done') else: ratio_list, ratio_index = None, None logger.info('Computing bounding-box regression targets...') add_bbox_regression_targets(roidb) logger.info('done') _compute_and_log_stats(roidb) return roidb, ratio_list, ratio_index def extend_with_flipped_entries(roidb, dataset): """Flip each entry in the given roidb and return a new roidb that is the concatenation of the original roidb and the flipped entries. "Flipping" an entry means that that image and associated metadata (e.g., ground truth boxes and object proposals) are horizontally flipped. """ flipped_roidb = [] for entry in roidb: width = entry['width'] boxes = entry['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = width - oldx2 - 1 boxes[:, 2] = width - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() # sbj sbj_gt_boxes = entry['sbj_gt_boxes'].copy() oldx1 = sbj_gt_boxes[:, 0].copy() oldx2 = sbj_gt_boxes[:, 2].copy() sbj_gt_boxes[:, 0] = width - oldx2 - 1 sbj_gt_boxes[:, 2] = width - oldx1 - 1 assert (sbj_gt_boxes[:, 2] >= sbj_gt_boxes[:, 0]).all() # obj obj_gt_boxes = entry['obj_gt_boxes'].copy() oldx1 = obj_gt_boxes[:, 0].copy() oldx2 = obj_gt_boxes[:, 2].copy() obj_gt_boxes[:, 0] = width - oldx2 - 1 obj_gt_boxes[:, 2] = width - oldx1 - 1 assert (obj_gt_boxes[:, 2] >= obj_gt_boxes[:, 0]).all() # now flip flipped_entry = {} dont_copy = ('boxes', 'sbj_gt_boxes', 'obj_gt_boxes', 'segms', 'gt_keypoints', 'flipped') for k, v in entry.items(): if k not in dont_copy: flipped_entry[k] = v flipped_entry['boxes'] = boxes flipped_entry['sbj_gt_boxes'] = sbj_gt_boxes flipped_entry['obj_gt_boxes'] = obj_gt_boxes flipped_entry['flipped'] = True flipped_roidb.append(flipped_entry) roidb.extend(flipped_roidb) def filter_for_training(roidb): """Remove roidb entries that have no usable RoIs based on config settings. """ def is_valid(entry): # Valid images have: # (1) At least one foreground RoI OR # (2) At least one background RoI overlaps = entry['max_overlaps'] # find boxes with sufficient overlap fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # image is only valid if such boxes exist valid = len(fg_inds) > 0 or len(bg_inds) > 0 if cfg.MODEL.KEYPOINTS_ON: # If we're training for keypoints, exclude images with no keypoints valid = valid and entry['has_visible_keypoints'] return valid num = len(roidb) filtered_roidb = [entry for entry in roidb if is_valid(entry)] num_after = len(filtered_roidb) logger.info('Filtered {} roidb entries: {} -> {}'. format(num - num_after, num, num_after)) return filtered_roidb def rank_for_training(roidb): """Rank the roidb entries according to image aspect ration and mark for cropping for efficient batching if image is too long. Returns: ratio_list: ndarray, list of aspect ratios from small to large ratio_index: ndarray, list of roidb entry indices correspond to the ratios """ RATIO_HI = cfg.TRAIN.ASPECT_HI # largest ratio to preserve. RATIO_LO = cfg.TRAIN.ASPECT_LO # smallest ratio to preserve. need_crop_cnt = 0 ratio_list = [] for entry in roidb: width = entry['width'] height = entry['height'] ratio = width / float(height) if cfg.TRAIN.ASPECT_CROPPING: if ratio > RATIO_HI: entry['need_crop'] = True ratio = RATIO_HI need_crop_cnt += 1 elif ratio < RATIO_LO: entry['need_crop'] = True ratio = RATIO_LO need_crop_cnt += 1 else: entry['need_crop'] = False else: entry['need_crop'] = False ratio_list.append(ratio) if cfg.TRAIN.ASPECT_CROPPING: logging.info('Number of entries that need to be cropped: %d. Ratio bound: [%.2f, %.2f]', need_crop_cnt, RATIO_LO, RATIO_HI) ratio_list = np.array(ratio_list) ratio_index = np.argsort(ratio_list) return ratio_list[ratio_index], ratio_index def add_bbox_regression_targets(roidb): """Add information needed to train bounding-box regressors.""" for entry in roidb: entry['bbox_targets'] = _compute_targets(entry) def _compute_targets(entry): """Compute bounding-box regression targets for an image.""" # Indices of ground-truth ROIs rois = entry['boxes'] overlaps = entry['max_overlaps'] labels = entry['max_classes'] gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] # Targets has format (class, tx, ty, tw, th) targets = np.zeros((rois.shape[0], 5), dtype=np.float32) if len(gt_inds) == 0: # Bail if the image has no ground-truth ROIs return targets # Indices of examples for which we try to make predictions ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0] # Get IoU overlap between each ex ROI and gt ROI ex_gt_overlaps = box_utils.bbox_overlaps( rois[ex_inds, :].astype(dtype=np.float32, copy=False), rois[gt_inds, :].astype(dtype=np.float32, copy=False)) # Find which gt ROI each ex ROI has max overlap with: # this will be the ex ROI's gt target gt_assignment = ex_gt_overlaps.argmax(axis=1) gt_rois = rois[gt_inds[gt_assignment], :] ex_rois = rois[ex_inds, :] # Use class "1" for all boxes if using class_agnostic_bbox_reg targets[ex_inds, 0] = ( 1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds]) targets[ex_inds, 1:] = box_utils.bbox_transform_inv( ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS) return targets def _compute_and_log_stats(roidb): classes = roidb[0]['dataset'].classes char_len = np.max([len(c) for c in classes]) hist_bins = np.arange(len(classes) + 1) # Histogram of ground-truth objects gt_hist = np.zeros((len(classes)), dtype=np.int) for entry in roidb: gt_inds = np.where( (entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0] gt_classes = entry['gt_classes'][gt_inds] gt_hist += np.histogram(gt_classes, bins=hist_bins)[0] logger.debug('Ground-truth class histogram:') for i, v in enumerate(gt_hist): logger.debug( '{:d}{:s}: {:d}'.format( i, classes[i].rjust(char_len), v)) logger.debug('-' * char_len) logger.debug( '{:s}: {:d}'.format( 'total'.rjust(char_len), np.sum(gt_hist)))
ContrastiveLosses4VRD-master
lib/datasets_rel/roidb_rel.py
""" Written by Ji Zhang, 2019 Some functions are adapted from Rowan Zellers Original source: https://github.com/rowanz/neural-motifs/blob/master/lib/evaluation/sg_eval.py """ import os import numpy as np import logging from six.moves import cPickle as pickle import json import csv from tqdm import tqdm from core.config import cfg from functools import reduce from utils.boxes import bbox_overlaps from utils_rel.boxes_rel import boxes_union from .pytorch_misc import intersect_2d, argsort_desc np.set_printoptions(precision=3) logger = logging.getLogger(__name__) topk = 100 def eval_rel_results(all_results, output_dir, do_val): if cfg.TEST.DATASETS[0].find('vg') >= 0: prd_k_set = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20) elif cfg.TEST.DATASETS[0].find('vrd') >= 0: prd_k_set = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 70) else: prd_k_set = (1, 2, 3, 4, 5, 6, 7, 8, 9) if cfg.TEST.DATASETS[0].find('vg') >= 0: eval_sets = (False,) else: eval_sets = (False, True) for phrdet in eval_sets: eval_metric = 'phrdet' if phrdet else 'reldet' print('================== {} =================='.format(eval_metric)) for prd_k in prd_k_set: print('prd_k = {}:'.format(prd_k)) recalls = {20: 0, 50: 0, 100: 0} if do_val: all_gt_cnt = 0 topk_dets = [] for im_i, res in enumerate(tqdm(all_results)): # in oi_all_rel some images have no dets if res['prd_scores'] is None: det_boxes_s_top = np.zeros((0, 4), dtype=np.float32) det_boxes_o_top = np.zeros((0, 4), dtype=np.float32) det_labels_s_top = np.zeros(0, dtype=np.int32) det_labels_p_top = np.zeros(0, dtype=np.int32) det_labels_o_top = np.zeros(0, dtype=np.int32) det_scores_top = np.zeros(0, dtype=np.float32) else: det_boxes_sbj = res['sbj_boxes'] # (#num_rel, 4) det_boxes_obj = res['obj_boxes'] # (#num_rel, 4) det_labels_sbj = res['sbj_labels'] # (#num_rel,) det_labels_obj = res['obj_labels'] # (#num_rel,) det_scores_sbj = res['sbj_scores'] # (#num_rel,) det_scores_obj = res['obj_scores'] # (#num_rel,) if 'prd_scores_ttl' in res: det_scores_prd = res['prd_scores_ttl'][:, 1:] else: det_scores_prd = res['prd_scores'][:, 1:] det_labels_prd = np.argsort(-det_scores_prd, axis=1) det_scores_prd = -np.sort(-det_scores_prd, axis=1) det_scores_so = det_scores_sbj * det_scores_obj det_scores_spo = det_scores_so[:, None] * det_scores_prd[:, :prd_k] det_scores_inds = argsort_desc(det_scores_spo)[:topk] det_scores_top = det_scores_spo[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_boxes_so_top = np.hstack( (det_boxes_sbj[det_scores_inds[:, 0]], det_boxes_obj[det_scores_inds[:, 0]])) det_labels_p_top = det_labels_prd[det_scores_inds[:, 0], det_scores_inds[:, 1]] det_labels_spo_top = np.vstack( (det_labels_sbj[det_scores_inds[:, 0]], det_labels_p_top, det_labels_obj[det_scores_inds[:, 0]])).transpose() det_boxes_s_top = det_boxes_so_top[:, :4] det_boxes_o_top = det_boxes_so_top[:, 4:] det_labels_s_top = det_labels_spo_top[:, 0] det_labels_p_top = det_labels_spo_top[:, 1] det_labels_o_top = det_labels_spo_top[:, 2] topk_dets.append(dict(image=res['image'], det_boxes_s_top=det_boxes_s_top, det_boxes_o_top=det_boxes_o_top, det_labels_s_top=det_labels_s_top, det_labels_p_top=det_labels_p_top, det_labels_o_top=det_labels_o_top, det_scores_top=det_scores_top)) if do_val: gt_boxes_sbj = res['gt_sbj_boxes'] # (#num_gt, 4) gt_boxes_obj = res['gt_obj_boxes'] # (#num_gt, 4) gt_labels_sbj = res['gt_sbj_labels'] # (#num_gt,) gt_labels_obj = res['gt_obj_labels'] # (#num_gt,) gt_labels_prd = res['gt_prd_labels'] # (#num_gt,) gt_boxes_so = np.hstack((gt_boxes_sbj, gt_boxes_obj)) gt_labels_spo = np.vstack((gt_labels_sbj, gt_labels_prd, gt_labels_obj)).transpose() # Compute recall. It's most efficient to match once and then do recall after # det_boxes_so_top is (#num_rel, 8) # det_labels_spo_top is (#num_rel, 3) if phrdet: det_boxes_r_top = boxes_union(det_boxes_s_top, det_boxes_o_top) gt_boxes_r = boxes_union(gt_boxes_sbj, gt_boxes_obj) pred_to_gt = _compute_pred_matches( gt_labels_spo, det_labels_spo_top, gt_boxes_r, det_boxes_r_top, phrdet=phrdet) else: pred_to_gt = _compute_pred_matches( gt_labels_spo, det_labels_spo_top, gt_boxes_so, det_boxes_so_top, phrdet=phrdet) all_gt_cnt += gt_labels_spo.shape[0] for k in recalls: if len(pred_to_gt): match = reduce(np.union1d, pred_to_gt[:k]) else: match = [] recalls[k] += len(match) topk_dets[-1].update(dict(gt_boxes_sbj=gt_boxes_sbj, gt_boxes_obj=gt_boxes_obj, gt_labels_sbj=gt_labels_sbj, gt_labels_obj=gt_labels_obj, gt_labels_prd=gt_labels_prd)) if do_val: for k in recalls: recalls[k] = float(recalls[k]) / (float(all_gt_cnt) + 1e-12) print_stats(recalls) def print_stats(recalls): # print('====================== ' + 'sgdet' + ' ============================') for k, v in recalls.items(): print('R@%i: %.2f' % (k, 100 * v)) # This function is adapted from Rowan Zellers' code: # https://github.com/rowanz/neural-motifs/blob/master/lib/evaluation/sg_eval.py # Modified for this project to work with PyTorch v0.4 def _compute_pred_matches(gt_triplets, pred_triplets, gt_boxes, pred_boxes, iou_thresh=0.5, phrdet=False): """ Given a set of predicted triplets, return the list of matching GT's for each of the given predictions :param gt_triplets: :param pred_triplets: :param gt_boxes: :param pred_boxes: :param iou_thresh: :return: """ # This performs a matrix multiplication-esque thing between the two arrays # Instead of summing, we want the equality, so we reduce in that way # The rows correspond to GT triplets, columns to pred triplets keeps = intersect_2d(gt_triplets, pred_triplets) gt_has_match = keeps.any(1) pred_to_gt = [[] for x in range(pred_boxes.shape[0])] for gt_ind, gt_box, keep_inds in zip(np.where(gt_has_match)[0], gt_boxes[gt_has_match], keeps[gt_has_match], ): boxes = pred_boxes[keep_inds] if phrdet: gt_box = gt_box.astype(dtype=np.float32, copy=False) boxes = boxes.astype(dtype=np.float32, copy=False) rel_iou = bbox_overlaps(gt_box[None, :], boxes)[0] inds = rel_iou >= iou_thresh else: gt_box = gt_box.astype(dtype=np.float32, copy=False) boxes = boxes.astype(dtype=np.float32, copy=False) sub_iou = bbox_overlaps(gt_box[None,:4], boxes[:, :4])[0] obj_iou = bbox_overlaps(gt_box[None,4:], boxes[:, 4:])[0] inds = (sub_iou >= iou_thresh) & (obj_iou >= iou_thresh) for i in np.where(keep_inds)[0][inds]: pred_to_gt[i].append(int(gt_ind)) return pred_to_gt
ContrastiveLosses4VRD-master
lib/datasets_rel/task_evaluation_vg_and_vrd.py
ContrastiveLosses4VRD-master
lib/datasets_rel/__init__.py
# Adapted from Detectron.pytorch/lib/datasets/dataset_catalog.py # for this project by Ji Zhang,2019 #----------------------------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Collection of available datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os from core.config import cfg # Path to data dir _DATA_DIR = cfg.DATA_DIR # Required dataset entry keys IM_DIR = 'image_directory' ANN_FN = 'annotation_file' ANN_FN2 = 'annotation_file2' ANN_FN3 = 'predicate_file' # Optional dataset entry keys IM_PREFIX = 'image_prefix' DEVKIT_DIR = 'devkit_directory' RAW_DIR = 'raw_dir' # Available datasets DATASETS = { # OpenImages_v4 rel dataset for relationship task 'oi_rel_train': { IM_DIR: _DATA_DIR + '/openimages_v4/train', ANN_FN: _DATA_DIR + '/openimages_v4/rel/detections_train.json', ANN_FN2: _DATA_DIR + '/openimages_v4/rel/rel_only_annotations_train.json', ANN_FN3: _DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json', }, 'oi_rel_train_mini': { IM_DIR: _DATA_DIR + '/openimages_v4/train', ANN_FN: _DATA_DIR + '/openimages_v4/rel/detections_train.json', ANN_FN2: _DATA_DIR + '/openimages_v4/rel/rel_only_annotations_train_mini.json', ANN_FN3: _DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json', }, 'oi_rel_val': { IM_DIR: _DATA_DIR + '/openimages_v4/train', ANN_FN: _DATA_DIR + '/openimages_v4/rel/detections_val.json', ANN_FN2: _DATA_DIR + '/openimages_v4/rel/rel_only_annotations_val.json', ANN_FN3: _DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json', }, 'oi_rel_val_mini': { IM_DIR: _DATA_DIR + '/openimages_v4/train', ANN_FN: _DATA_DIR + '/openimages_v4/rel/detections_val.json', ANN_FN2: _DATA_DIR + '/openimages_v4/rel/rel_only_annotations_val_mini.json', ANN_FN3: _DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json', }, # for Kaggle test 'oi_kaggle_rel_test': { IM_DIR: _DATA_DIR + '/openimages_v4/rel/kaggle_test_images/challenge2018_test', ANN_FN: # pseudo annotation _DATA_DIR + '/openimages_v4/rel/kaggle_test_images/detections_test.json', ANN_FN2: _DATA_DIR + '/openimages_v4/rel/kaggle_test_images/all_rel_only_annotations_test.json', ANN_FN3: _DATA_DIR + '/openimages_v4/rel/rel_9_predicates.json', }, # VG dataset 'vg_train': { IM_DIR: _DATA_DIR + '/vg/VG_100K', ANN_FN: _DATA_DIR + '/vg/detections_train.json', ANN_FN2: _DATA_DIR + '/vg/rel_annotations_train.json', ANN_FN3: _DATA_DIR + '/vg/predicates.json', }, 'vg_val': { IM_DIR: _DATA_DIR + '/vg/VG_100K', ANN_FN: _DATA_DIR + '/vg/detections_val.json', ANN_FN2: _DATA_DIR + '/vg/rel_annotations_val.json', ANN_FN3: _DATA_DIR + '/vg/predicates.json', }, # VRD dataset 'vrd_train': { IM_DIR: _DATA_DIR + '/vrd/train_images', ANN_FN: _DATA_DIR + '/vrd/detections_train.json', ANN_FN2: _DATA_DIR + '/vrd/new_annotations_train.json', ANN_FN3: _DATA_DIR + '/vrd/predicates.json', }, 'vrd_val': { IM_DIR: _DATA_DIR + '/vrd/val_images', ANN_FN: _DATA_DIR + '/vrd/detections_val.json', ANN_FN2: _DATA_DIR + '/vrd/new_annotations_val.json', ANN_FN3: _DATA_DIR + '/vrd/predicates.json', }, }
ContrastiveLosses4VRD-master
lib/datasets_rel/dataset_catalog_rel.py
# Adapted from Detectron.pytorch/lib/datasets/voc_eval.py for # this project by Ji Zhang, 2019 #----------------------------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Bharath Hariharan # -------------------------------------------------------- """relationship AP evaluation code.""" from six.moves import cPickle as pickle import logging import numpy as np import os from tqdm import tqdm from utils.boxes import bbox_overlaps from utils_rel.boxes_rel import boxes_union logger = logging.getLogger(__name__) def prepare_mAP_dets(topk_dets, cls_num): cls_image_ids = [[] for _ in range(cls_num)] cls_dets = [{'confidence': np.empty(0), 'BB_s': np.empty((0, 4)), 'BB_o': np.empty((0, 4)), 'BB_r': np.empty((0, 4)), 'LBL_s': np.empty(0), 'LBL_o': np.empty(0)} for _ in range(cls_num)] cls_gts = [{} for _ in range(cls_num)] npos = [0 for _ in range(cls_num)] for dets in tqdm(topk_dets): image_id = dets['image'].split('/')[-1].split('.')[0] sbj_boxes = dets['det_boxes_s_top'] obj_boxes = dets['det_boxes_o_top'] rel_boxes = boxes_union(sbj_boxes, obj_boxes) sbj_labels = dets['det_labels_s_top'] obj_labels = dets['det_labels_o_top'] prd_labels = dets['det_labels_p_top'] det_scores = dets['det_scores_top'] gt_boxes_sbj = dets['gt_boxes_sbj'] gt_boxes_obj = dets['gt_boxes_obj'] gt_boxes_rel = boxes_union(gt_boxes_sbj, gt_boxes_obj) gt_labels_sbj = dets['gt_labels_sbj'] gt_labels_prd = dets['gt_labels_prd'] gt_labels_obj = dets['gt_labels_obj'] for c in range(cls_num): cls_inds = np.where(prd_labels == c)[0] # logger.info(cls_inds) if len(cls_inds): cls_sbj_boxes = sbj_boxes[cls_inds] cls_obj_boxes = obj_boxes[cls_inds] cls_rel_boxes = rel_boxes[cls_inds] cls_sbj_labels = sbj_labels[cls_inds] cls_obj_labels = obj_labels[cls_inds] cls_det_scores = det_scores[cls_inds] cls_dets[c]['confidence'] = np.concatenate((cls_dets[c]['confidence'], cls_det_scores)) cls_dets[c]['BB_s'] = np.concatenate((cls_dets[c]['BB_s'], cls_sbj_boxes), 0) cls_dets[c]['BB_o'] = np.concatenate((cls_dets[c]['BB_o'], cls_obj_boxes), 0) cls_dets[c]['BB_r'] = np.concatenate((cls_dets[c]['BB_r'], cls_rel_boxes), 0) cls_dets[c]['LBL_s'] = np.concatenate((cls_dets[c]['LBL_s'], cls_sbj_labels)) cls_dets[c]['LBL_o'] = np.concatenate((cls_dets[c]['LBL_o'], cls_obj_labels)) cls_image_ids[c] += [image_id] * len(cls_inds) cls_gt_inds = np.where(gt_labels_prd == c)[0] cls_gt_boxes_sbj = gt_boxes_sbj[cls_gt_inds] cls_gt_boxes_obj = gt_boxes_obj[cls_gt_inds] cls_gt_boxes_rel = gt_boxes_rel[cls_gt_inds] cls_gt_labels_sbj = gt_labels_sbj[cls_gt_inds] cls_gt_labels_obj = gt_labels_obj[cls_gt_inds] cls_gt_num = len(cls_gt_inds) det = [False] * cls_gt_num npos[c] = npos[c] + cls_gt_num cls_gts[c][image_id] = {'gt_boxes_sbj': cls_gt_boxes_sbj, 'gt_boxes_obj': cls_gt_boxes_obj, 'gt_boxes_rel': cls_gt_boxes_rel, 'gt_labels_sbj': cls_gt_labels_sbj, 'gt_labels_obj': cls_gt_labels_obj, 'gt_num': cls_gt_num, 'det': det} return cls_image_ids, cls_dets, cls_gts, npos def get_ap(rec, prec): """Compute AP given precision and recall. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def ap_eval(image_ids, dets, gts, npos, rel_or_phr=True, ovthresh=0.5): """ Top level function that does the relationship AP evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) """ confidence = dets['confidence'] BB_s = dets['BB_s'] BB_o = dets['BB_o'] BB_r = dets['BB_r'] LBL_s = dets['LBL_s'] LBL_o = dets['LBL_o'] # sort by confidence sorted_ind = np.argsort(-confidence) BB_s = BB_s[sorted_ind, :] BB_o = BB_o[sorted_ind, :] BB_r = BB_r[sorted_ind, :] LBL_s = LBL_s[sorted_ind] LBL_o = LBL_o[sorted_ind] image_ids = [image_ids[x] for x in sorted_ind] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) gts_visited = {k: [False] * v['gt_num'] for k, v in gts.items()} for d in range(nd): R = gts[image_ids[d]] visited = gts_visited[image_ids[d]] bb_s = BB_s[d, :].astype(float) bb_o = BB_o[d, :].astype(float) bb_r = BB_r[d, :].astype(float) lbl_s = LBL_s[d] lbl_o = LBL_o[d] ovmax = -np.inf BBGT_s = R['gt_boxes_sbj'].astype(float) BBGT_o = R['gt_boxes_obj'].astype(float) BBGT_r = R['gt_boxes_rel'].astype(float) LBLGT_s = R['gt_labels_sbj'] LBLGT_o = R['gt_labels_obj'] if BBGT_s.size > 0: valid_mask = np.logical_and(LBLGT_s == lbl_s, LBLGT_o == lbl_o) if valid_mask.any(): if rel_or_phr: # means it is evaluating relationships overlaps_s = bbox_overlaps( bb_s[None, :].astype(dtype=np.float32, copy=False), BBGT_s.astype(dtype=np.float32, copy=False))[0] overlaps_o = bbox_overlaps( bb_o[None, :].astype(dtype=np.float32, copy=False), BBGT_o.astype(dtype=np.float32, copy=False))[0] overlaps = np.minimum(overlaps_s, overlaps_o) else: overlaps = bbox_overlaps( bb_r[None, :].astype(dtype=np.float32, copy=False), BBGT_r.astype(dtype=np.float32, copy=False))[0] overlaps *= valid_mask ovmax = np.max(overlaps) jmax = np.argmax(overlaps) else: ovmax = 0. jmax = -1 if ovmax > ovthresh: if not visited[jmax]: tp[d] = 1. visited[jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. # compute precision recall fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / (float(npos) + 1e-12) # ground truth prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = get_ap(rec, prec) return rec, prec, ap
ContrastiveLosses4VRD-master
lib/datasets_rel/ap_eval_rel.py
# This file is from https://github.com/rowanz/neural-motifs/blob/master/lib/pytorch_misc.py # Unused imports and functions are deleted """ Miscellaneous functions that might be useful for pytorch """ import numpy as np def intersect_2d(x1, x2): """ Given two arrays [m1, n], [m2,n], returns a [m1, m2] array where each entry is True if those rows match. :param x1: [m1, n] numpy array :param x2: [m2, n] numpy array :return: [m1, m2] bool array of the intersections """ if x1.shape[1] != x2.shape[1]: raise ValueError("Input arrays must have same #columns") # This performs a matrix multiplication-esque thing between the two arrays # Instead of summing, we want the equality, so we reduce in that way res = (x1[..., None] == x2.T[None, ...]).all(1) return res def argsort_desc(scores): """ Returns the indices that sort scores descending in a smart way :param scores: Numpy array of arbitrary size :return: an array of size [numel(scores), dim(scores)] where each row is the index you'd need to get the score. """ return np.column_stack(np.unravel_index(np.argsort(-scores.ravel()), scores.shape))
ContrastiveLosses4VRD-master
lib/datasets_rel/pytorch_misc.py
# Adapted from Detectron.pytorch/lib/datasets/json_dataset.py # for this project by Ji Zhang, 2019 #----------------------------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Representation of the standard COCO json dataset format. When working with a new dataset, we strongly suggest to convert the dataset into the COCO json format and use the existing code; it is not recommended to write code to support new dataset formats. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy from six.moves import cPickle as pickle import logging import numpy as np import os import scipy.sparse import json # Must happen before importing COCO API (which imports matplotlib) import utils.env as envu envu.set_up_matplotlib() # COCO API from pycocotools import mask as COCOmask from pycocotools.coco import COCO import utils.boxes as box_utils import utils_rel.boxes_rel as box_utils_rel from core.config import cfg from utils.timer import Timer from .dataset_catalog_rel import ANN_FN from .dataset_catalog_rel import ANN_FN2 from .dataset_catalog_rel import ANN_FN3 from .dataset_catalog_rel import DATASETS from .dataset_catalog_rel import IM_DIR from .dataset_catalog_rel import IM_PREFIX logger = logging.getLogger(__name__) class JsonDatasetRel(object): """A class representing a COCO json dataset.""" def __init__(self, name): assert name in DATASETS.keys(), \ 'Unknown dataset name: {}'.format(name) assert os.path.exists(DATASETS[name][IM_DIR]), \ 'Image directory \'{}\' not found'.format(DATASETS[name][IM_DIR]) assert os.path.exists(DATASETS[name][ANN_FN]), \ 'Annotation file \'{}\' not found'.format(DATASETS[name][ANN_FN]) logger.debug('Creating: {}'.format(name)) self.name = name self.image_directory = DATASETS[name][IM_DIR] self.image_prefix = ( '' if IM_PREFIX not in DATASETS[name] else DATASETS[name][IM_PREFIX] ) self.COCO = COCO(DATASETS[name][ANN_FN]) self.debug_timer = Timer() # Set up dataset classes category_ids = self.COCO.getCatIds() categories = [c['name'] for c in self.COCO.loadCats(category_ids)] self.category_to_id_map = dict(zip(categories, category_ids)) self.classes = ['__background__'] + categories self.num_classes = len(self.classes) self.json_category_id_to_contiguous_id = { v: i + 1 for i, v in enumerate(self.COCO.getCatIds()) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } self._init_keypoints() assert ANN_FN2 in DATASETS[name] and ANN_FN3 in DATASETS[name] with open(DATASETS[name][ANN_FN2]) as f: self.rel_anns = json.load(f) with open(DATASETS[name][ANN_FN3]) as f: prd_categories = json.load(f) self.obj_classes = self.classes[1:] # excludes background for now self.num_obj_classes = len(self.obj_classes) # self.prd_classes = ['__background__'] + prd_categories self.prd_classes = prd_categories # excludes background for now self.num_prd_classes = len(self.prd_classes) @property def cache_path(self): cache_path = os.path.abspath(os.path.join(cfg.DATA_DIR, 'cache')) if not os.path.exists(cache_path): os.makedirs(cache_path) return cache_path @property def valid_cached_keys(self): """ Can load following key-ed values from the cached roidb file 'image'(image path) and 'flipped' values are already filled on _prep_roidb_entry, so we don't need to overwrite it again. """ keys = ['dataset_name', 'boxes', 'segms', 'gt_classes', 'seg_areas', 'gt_overlaps', 'is_crowd', 'box_to_gt_ind_map', 'sbj_gt_boxes', 'sbj_gt_classes', 'obj_gt_boxes', 'obj_gt_classes', 'prd_gt_classes', 'sbj_gt_overlaps', 'obj_gt_overlaps', 'prd_gt_overlaps', 'pair_to_gt_ind_map'] if self.keypoints is not None: keys += ['gt_keypoints', 'has_visible_keypoints'] return keys def get_roidb( self, gt=False, proposal_file=None, min_proposal_size=2, proposal_limit=-1, crowd_filter_thresh=0 ): """Return an roidb corresponding to the json dataset. Optionally: - include ground truth boxes in the roidb - add proposals specified in a proposals file - filter proposals based on a minimum side length - filter proposals that intersect with crowd regions """ assert gt is True or crowd_filter_thresh == 0, \ 'Crowd filter threshold must be 0 if ground-truth annotations ' \ 'are not included.' image_ids = self.COCO.getImgIds() image_ids.sort() if cfg.DEBUG: roidb = copy.deepcopy(self.COCO.loadImgs(image_ids))[:100] else: roidb = copy.deepcopy(self.COCO.loadImgs(image_ids)) new_roidb = [] for entry in roidb: # In OpenImages_v4, the detection-annotated images are more than relationship # annotated images, hence the need to check if entry['file_name'] in self.rel_anns: self._prep_roidb_entry(entry) new_roidb.append(entry) roidb = new_roidb if gt: # Include ground-truth object annotations cache_filepath = os.path.join(self.cache_path, self.name + '_rel_gt_roidb.pkl') if os.path.exists(cache_filepath) and not cfg.DEBUG: self.debug_timer.tic() self._add_gt_from_cache(roidb, cache_filepath) logger.debug( '_add_gt_from_cache took {:.3f}s'. format(self.debug_timer.toc(average=False)) ) else: self.debug_timer.tic() for entry in roidb: self._add_gt_annotations(entry) logger.debug( '_add_gt_annotations took {:.3f}s'. format(self.debug_timer.toc(average=False)) ) if not cfg.DEBUG: with open(cache_filepath, 'wb') as fp: pickle.dump(roidb, fp, pickle.HIGHEST_PROTOCOL) logger.info('Cache ground truth roidb to %s', cache_filepath) if proposal_file is not None: # Include proposals from a file self.debug_timer.tic() self._add_proposals_from_file( roidb, proposal_file, min_proposal_size, proposal_limit, crowd_filter_thresh ) logger.debug( '_add_proposals_from_file took {:.3f}s'. format(self.debug_timer.toc(average=False)) ) _add_class_assignments(roidb) return roidb def _prep_roidb_entry(self, entry): """Adds empty metadata fields to an roidb entry.""" # Reference back to the parent dataset entry['dataset'] = self # Make file_name an abs path im_path = os.path.join( self.image_directory, self.image_prefix + entry['file_name'] ) assert os.path.exists(im_path), 'Image \'{}\' not found'.format(im_path) entry['image'] = im_path entry['flipped'] = False entry['has_visible_keypoints'] = False # Empty placeholders entry['boxes'] = np.empty((0, 4), dtype=np.float32) entry['segms'] = [] entry['gt_classes'] = np.empty((0), dtype=np.int32) entry['seg_areas'] = np.empty((0), dtype=np.float32) entry['gt_overlaps'] = scipy.sparse.csr_matrix( np.empty((0, self.num_classes), dtype=np.float32) ) entry['is_crowd'] = np.empty((0), dtype=np.bool) # 'box_to_gt_ind_map': Shape is (#rois). Maps from each roi to the index # in the list of rois that satisfy np.where(entry['gt_classes'] > 0) entry['box_to_gt_ind_map'] = np.empty((0), dtype=np.int32) if self.keypoints is not None: entry['gt_keypoints'] = np.empty( (0, 3, self.num_keypoints), dtype=np.int32 ) # Remove unwanted fields that come from the json file (if they exist) for k in ['date_captured', 'url', 'license']: if k in entry: del entry[k] entry['dataset_name'] = '' # add relationship annotations # sbj entry['sbj_gt_boxes'] = np.empty((0, 4), dtype=np.float32) entry['sbj_gt_classes'] = np.empty((0), dtype=np.int32) entry['sbj_gt_overlaps'] = scipy.sparse.csr_matrix( np.empty((0, self.num_obj_classes), dtype=np.float32) ) # entry['sbj_box_to_gt_ind_map'] = np.empty((0), dtype=np.int32) # obj entry['obj_gt_boxes'] = np.empty((0, 4), dtype=np.float32) entry['obj_gt_classes'] = np.empty((0), dtype=np.int32) entry['obj_gt_overlaps'] = scipy.sparse.csr_matrix( np.empty((0, self.num_obj_classes), dtype=np.float32) ) # entry['obj_box_to_gt_ind_map'] = np.empty((0), dtype=np.int32) # prd entry['prd_gt_classes'] = np.empty((0), dtype=np.int32) entry['prd_gt_overlaps'] = scipy.sparse.csr_matrix( np.empty((0, self.num_prd_classes), dtype=np.float32) ) entry['pair_to_gt_ind_map'] = np.empty((0), dtype=np.int32) def _add_gt_annotations(self, entry): """Add ground truth annotation metadata to an roidb entry.""" ann_ids = self.COCO.getAnnIds(imgIds=entry['id'], iscrowd=None) objs = self.COCO.loadAnns(ann_ids) # Sanitize bboxes -- some are invalid valid_objs = [] valid_segms = [] width = entry['width'] height = entry['height'] for obj in objs: if obj['area'] < cfg.TRAIN.GT_MIN_AREA: continue if 'ignore' in obj and obj['ignore'] == 1: continue # Convert form (x1, y1, w, h) to (x1, y1, x2, y2) x1, y1, x2, y2 = box_utils.xywh_to_xyxy(obj['bbox']) x1, y1, x2, y2 = box_utils.clip_xyxy_to_image( x1, y1, x2, y2, height, width ) # Require non-zero seg area and more than 1x1 box size if obj['area'] > 0 and x2 > x1 and y2 > y1: obj['clean_bbox'] = [x1, y1, x2, y2] valid_objs.append(obj) # valid_segms.append(obj['segmentation']) num_valid_objs = len(valid_objs) boxes = np.zeros((num_valid_objs, 4), dtype=entry['boxes'].dtype) gt_classes = np.zeros((num_valid_objs), dtype=entry['gt_classes'].dtype) gt_overlaps = np.zeros( (num_valid_objs, self.num_classes), dtype=entry['gt_overlaps'].dtype ) seg_areas = np.zeros((num_valid_objs), dtype=entry['seg_areas'].dtype) is_crowd = np.zeros((num_valid_objs), dtype=entry['is_crowd'].dtype) box_to_gt_ind_map = np.zeros( (num_valid_objs), dtype=entry['box_to_gt_ind_map'].dtype ) if self.keypoints is not None: gt_keypoints = np.zeros( (num_valid_objs, 3, self.num_keypoints), dtype=entry['gt_keypoints'].dtype ) im_has_visible_keypoints = False for ix, obj in enumerate(valid_objs): cls = self.json_category_id_to_contiguous_id[obj['category_id']] boxes[ix, :] = obj['clean_bbox'] gt_classes[ix] = cls seg_areas[ix] = obj['area'] is_crowd[ix] = obj['iscrowd'] box_to_gt_ind_map[ix] = ix if self.keypoints is not None: gt_keypoints[ix, :, :] = self._get_gt_keypoints(obj) if np.sum(gt_keypoints[ix, 2, :]) > 0: im_has_visible_keypoints = True if obj['iscrowd']: # Set overlap to -1 for all classes for crowd objects # so they will be excluded during training gt_overlaps[ix, :] = -1.0 else: gt_overlaps[ix, cls] = 1.0 entry['boxes'] = np.append(entry['boxes'], boxes, axis=0) entry['segms'].extend(valid_segms) entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes) entry['seg_areas'] = np.append(entry['seg_areas'], seg_areas) entry['gt_overlaps'] = np.append( entry['gt_overlaps'].toarray(), gt_overlaps, axis=0 ) entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps']) entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd) entry['box_to_gt_ind_map'] = np.append( entry['box_to_gt_ind_map'], box_to_gt_ind_map ) if self.keypoints is not None: entry['gt_keypoints'] = np.append( entry['gt_keypoints'], gt_keypoints, axis=0 ) entry['has_visible_keypoints'] = im_has_visible_keypoints entry['dataset_name'] = self.name # add relationship annotations im_rels = self.rel_anns[entry['file_name']] sbj_gt_boxes = np.zeros((len(im_rels), 4), dtype=entry['sbj_gt_boxes'].dtype) obj_gt_boxes = np.zeros((len(im_rels), 4), dtype=entry['obj_gt_boxes'].dtype) sbj_gt_classes = np.zeros(len(im_rels), dtype=entry['sbj_gt_classes'].dtype) obj_gt_classes = np.zeros(len(im_rels), dtype=entry['obj_gt_classes'].dtype) prd_gt_classes = np.zeros(len(im_rels), dtype=entry['prd_gt_classes'].dtype) for ix, rel in enumerate(im_rels): # sbj sbj_gt_box = box_utils_rel.y1y2x1x2_to_x1y1x2y2(rel['subject']['bbox']) sbj_gt_boxes[ix] = sbj_gt_box sbj_gt_classes[ix] = rel['subject']['category'] # excludes background # obj obj_gt_box = box_utils_rel.y1y2x1x2_to_x1y1x2y2(rel['object']['bbox']) obj_gt_boxes[ix] = obj_gt_box obj_gt_classes[ix] = rel['object']['category'] # excludes background # prd prd_gt_classes[ix] = rel['predicate'] # exclude background entry['sbj_gt_boxes'] = np.append(entry['sbj_gt_boxes'], sbj_gt_boxes, axis=0) entry['obj_gt_boxes'] = np.append(entry['obj_gt_boxes'], obj_gt_boxes, axis=0) entry['sbj_gt_classes'] = np.append(entry['sbj_gt_classes'], sbj_gt_classes) entry['obj_gt_classes'] = np.append(entry['obj_gt_classes'], obj_gt_classes) entry['prd_gt_classes'] = np.append(entry['prd_gt_classes'], prd_gt_classes) # misc sbj_gt_overlaps = np.zeros( (len(im_rels), self.num_obj_classes), dtype=entry['sbj_gt_overlaps'].dtype) for ix in range(len(im_rels)): sbj_cls = sbj_gt_classes[ix] sbj_gt_overlaps[ix, sbj_cls] = 1.0 entry['sbj_gt_overlaps'] = np.append( entry['sbj_gt_overlaps'].toarray(), sbj_gt_overlaps, axis=0) entry['sbj_gt_overlaps'] = scipy.sparse.csr_matrix(entry['sbj_gt_overlaps']) obj_gt_overlaps = np.zeros( (len(im_rels), self.num_obj_classes), dtype=entry['obj_gt_overlaps'].dtype) for ix in range(len(im_rels)): obj_cls = obj_gt_classes[ix] obj_gt_overlaps[ix, obj_cls] = 1.0 entry['obj_gt_overlaps'] = np.append( entry['obj_gt_overlaps'].toarray(), obj_gt_overlaps, axis=0) entry['obj_gt_overlaps'] = scipy.sparse.csr_matrix(entry['obj_gt_overlaps']) prd_gt_overlaps = np.zeros( (len(im_rels), self.num_prd_classes), dtype=entry['prd_gt_overlaps'].dtype) pair_to_gt_ind_map = np.zeros( (len(im_rels)), dtype=entry['pair_to_gt_ind_map'].dtype) for ix in range(len(im_rels)): prd_cls = prd_gt_classes[ix] prd_gt_overlaps[ix, prd_cls] = 1.0 pair_to_gt_ind_map[ix] = ix entry['prd_gt_overlaps'] = np.append( entry['prd_gt_overlaps'].toarray(), prd_gt_overlaps, axis=0) entry['prd_gt_overlaps'] = scipy.sparse.csr_matrix(entry['prd_gt_overlaps']) entry['pair_to_gt_ind_map'] = np.append( entry['pair_to_gt_ind_map'], pair_to_gt_ind_map) for k in ['file_name']: if k in entry: del entry[k] def _add_gt_from_cache(self, roidb, cache_filepath): """Add ground truth annotation metadata from cached file.""" logger.info('Loading cached gt_roidb from %s', cache_filepath) with open(cache_filepath, 'rb') as fp: cached_roidb = pickle.load(fp) assert len(roidb) == len(cached_roidb) for entry, cached_entry in zip(roidb, cached_roidb): values = [cached_entry[key] for key in self.valid_cached_keys] dataset_name, boxes, segms, gt_classes, seg_areas, gt_overlaps, is_crowd, box_to_gt_ind_map, \ sbj_gt_boxes, sbj_gt_classes, obj_gt_boxes, obj_gt_classes, prd_gt_classes, \ sbj_gt_overlaps, obj_gt_overlaps, prd_gt_overlaps, pair_to_gt_ind_map = values[:len(self.valid_cached_keys)] if self.keypoints is not None: gt_keypoints, has_visible_keypoints = values[len(self.valid_cached_keys):] entry['dataset_name'] = dataset_name entry['boxes'] = np.append(entry['boxes'], boxes, axis=0) entry['segms'].extend(segms) entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes) entry['seg_areas'] = np.append(entry['seg_areas'], seg_areas) entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps) entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd) entry['box_to_gt_ind_map'] = np.append( entry['box_to_gt_ind_map'], box_to_gt_ind_map ) if self.keypoints is not None: entry['gt_keypoints'] = np.append( entry['gt_keypoints'], gt_keypoints, axis=0 ) entry['has_visible_keypoints'] = has_visible_keypoints # add relationship annotations entry['sbj_gt_boxes'] = np.append(entry['sbj_gt_boxes'], sbj_gt_boxes, axis=0) entry['sbj_gt_classes'] = np.append(entry['sbj_gt_classes'], sbj_gt_classes) entry['sbj_gt_overlaps'] = scipy.sparse.csr_matrix(sbj_gt_overlaps) entry['obj_gt_boxes'] = np.append(entry['obj_gt_boxes'], obj_gt_boxes, axis=0) entry['obj_gt_classes'] = np.append(entry['obj_gt_classes'], obj_gt_classes) entry['obj_gt_overlaps'] = scipy.sparse.csr_matrix(obj_gt_overlaps) entry['prd_gt_classes'] = np.append(entry['prd_gt_classes'], prd_gt_classes) entry['prd_gt_overlaps'] = scipy.sparse.csr_matrix(prd_gt_overlaps) entry['pair_to_gt_ind_map'] = np.append( entry['pair_to_gt_ind_map'], pair_to_gt_ind_map) def _add_proposals_from_file( self, roidb, proposal_file, min_proposal_size, top_k, crowd_thresh ): """Add proposals from a proposals file to an roidb.""" logger.info('Loading proposals from: {}'.format(proposal_file)) with open(proposal_file, 'r') as f: proposals = pickle.load(f) id_field = 'indexes' if 'indexes' in proposals else 'ids' # compat fix _sort_proposals(proposals, id_field) box_list = [] for i, entry in enumerate(roidb): if i % 2500 == 0: logger.info(' {:d}/{:d}'.format(i + 1, len(roidb))) boxes = proposals['boxes'][i] # Sanity check that these boxes are for the correct image id assert entry['id'] == proposals[id_field][i] # Remove duplicate boxes and very small boxes and then take top k boxes = box_utils.clip_boxes_to_image( boxes, entry['height'], entry['width'] ) keep = box_utils.unique_boxes(boxes) boxes = boxes[keep, :] keep = box_utils.filter_small_boxes(boxes, min_proposal_size) boxes = boxes[keep, :] if top_k > 0: boxes = boxes[:top_k, :] box_list.append(boxes) _merge_proposal_boxes_into_roidb(roidb, box_list) if crowd_thresh > 0: _filter_crowd_proposals(roidb, crowd_thresh) def _init_keypoints(self): """Initialize COCO keypoint information.""" self.keypoints = None self.keypoint_flip_map = None self.keypoints_to_id_map = None self.num_keypoints = 0 # Thus far only the 'person' category has keypoints if 'person' in self.category_to_id_map: cat_info = self.COCO.loadCats([self.category_to_id_map['person']]) else: return # Check if the annotations contain keypoint data or not if 'keypoints' in cat_info[0]: keypoints = cat_info[0]['keypoints'] self.keypoints_to_id_map = dict( zip(keypoints, range(len(keypoints)))) self.keypoints = keypoints self.num_keypoints = len(keypoints) if cfg.KRCNN.NUM_KEYPOINTS != -1: assert cfg.KRCNN.NUM_KEYPOINTS == self.num_keypoints, \ "number of keypoints should equal when using multiple datasets" else: cfg.KRCNN.NUM_KEYPOINTS = self.num_keypoints self.keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle'} def _get_gt_keypoints(self, obj): """Return ground truth keypoints.""" if 'keypoints' not in obj: return None kp = np.array(obj['keypoints']) x = kp[0::3] # 0-indexed x coordinates y = kp[1::3] # 0-indexed y coordinates # 0: not labeled; 1: labeled, not inside mask; # 2: labeled and inside mask v = kp[2::3] num_keypoints = len(obj['keypoints']) / 3 assert num_keypoints == self.num_keypoints gt_kps = np.ones((3, self.num_keypoints), dtype=np.int32) for i in range(self.num_keypoints): gt_kps[0, i] = x[i] gt_kps[1, i] = y[i] gt_kps[2, i] = v[i] return gt_kps def add_rel_proposals(roidb, sbj_rois, obj_rois, det_rois, scales): """Add proposal boxes (rois) to an roidb that has ground-truth annotations but no proposals. If the proposals are not at the original image scale, specify the scale factor that separate them in scales. """ assert (sbj_rois[:, 0] == obj_rois[:, 0]).all() sbj_box_list = [] obj_box_list = [] for i, entry in enumerate(roidb): inv_im_scale = 1. / scales[i] idx = np.where(sbj_rois[:, 0] == i)[0] # include pairs where at least one box is gt det_idx = np.where(det_rois[:, 0] == i)[0] im_det_boxes = det_rois[det_idx, 1:] * inv_im_scale sbj_gt_boxes = entry['sbj_gt_boxes'] obj_gt_boxes = entry['obj_gt_boxes'] unique_sbj_gt_boxes = np.unique(sbj_gt_boxes, axis=0) unique_obj_gt_boxes = np.unique(obj_gt_boxes, axis=0) # sbj_gt w/ obj_det sbj_gt_boxes_paired_w_det = np.repeat(unique_sbj_gt_boxes, im_det_boxes.shape[0], axis=0) obj_det_boxes_paired_w_gt = np.tile(im_det_boxes, (unique_sbj_gt_boxes.shape[0], 1)) # sbj_det w/ obj_gt sbj_det_boxes_paired_w_gt = np.repeat(im_det_boxes, unique_obj_gt_boxes.shape[0], axis=0) obj_gt_boxes_paired_w_det = np.tile(unique_obj_gt_boxes, (im_det_boxes.shape[0], 1)) # sbj_gt w/ obj_gt sbj_gt_boxes_paired_w_gt = np.repeat(unique_sbj_gt_boxes, unique_obj_gt_boxes.shape[0], axis=0) obj_gt_boxes_paired_w_gt = np.tile(unique_obj_gt_boxes, (unique_sbj_gt_boxes.shape[0], 1)) # now concatenate them all sbj_box_list.append(np.concatenate( (sbj_rois[idx, 1:] * inv_im_scale, sbj_gt_boxes_paired_w_det, sbj_det_boxes_paired_w_gt, sbj_gt_boxes_paired_w_gt))) obj_box_list.append(np.concatenate( (obj_rois[idx, 1:] * inv_im_scale, obj_det_boxes_paired_w_gt, obj_gt_boxes_paired_w_det, obj_gt_boxes_paired_w_gt))) _merge_paired_boxes_into_roidb(roidb, sbj_box_list, obj_box_list) _add_prd_class_assignments(roidb) def _merge_paired_boxes_into_roidb(roidb, sbj_box_list, obj_box_list): assert len(sbj_box_list) == len(obj_box_list) == len(roidb) for i, entry in enumerate(roidb): sbj_boxes = sbj_box_list[i] obj_boxes = obj_box_list[i] assert sbj_boxes.shape[0] == obj_boxes.shape[0] num_pairs = sbj_boxes.shape[0] sbj_gt_overlaps = np.zeros( (num_pairs, entry['sbj_gt_overlaps'].shape[1]), dtype=entry['sbj_gt_overlaps'].dtype ) obj_gt_overlaps = np.zeros( (num_pairs, entry['obj_gt_overlaps'].shape[1]), dtype=entry['obj_gt_overlaps'].dtype ) prd_gt_overlaps = np.zeros( (num_pairs, entry['prd_gt_overlaps'].shape[1]), dtype=entry['prd_gt_overlaps'].dtype ) pair_to_gt_ind_map = -np.ones( (num_pairs), dtype=entry['pair_to_gt_ind_map'].dtype ) pair_gt_inds = np.arange(entry['prd_gt_classes'].shape[0]) if len(pair_gt_inds) > 0: sbj_gt_boxes = entry['sbj_gt_boxes'][pair_gt_inds, :] sbj_gt_classes = entry['sbj_gt_classes'][pair_gt_inds] obj_gt_boxes = entry['obj_gt_boxes'][pair_gt_inds, :] obj_gt_classes = entry['obj_gt_classes'][pair_gt_inds] prd_gt_classes = entry['prd_gt_classes'][pair_gt_inds] sbj_to_gt_overlaps = box_utils.bbox_overlaps( sbj_boxes.astype(dtype=np.float32, copy=False), sbj_gt_boxes.astype(dtype=np.float32, copy=False) ) obj_to_gt_overlaps = box_utils.bbox_overlaps( obj_boxes.astype(dtype=np.float32, copy=False), obj_gt_boxes.astype(dtype=np.float32, copy=False) ) pair_to_gt_overlaps = np.minimum(sbj_to_gt_overlaps, obj_to_gt_overlaps) # Gt box that overlaps each input box the most # (ties are broken arbitrarily by class order) sbj_argmaxes = sbj_to_gt_overlaps.argmax(axis=1) sbj_maxes = sbj_to_gt_overlaps.max(axis=1) # Amount of that overlap sbj_I = np.where(sbj_maxes >= 0)[0] # Those boxes with non-zero overlap with gt boxes, get all items obj_argmaxes = obj_to_gt_overlaps.argmax(axis=1) obj_maxes = obj_to_gt_overlaps.max(axis=1) # Amount of that overlap obj_I = np.where(obj_maxes >= 0)[0] # Those boxes with non-zero overlap with gt boxes, get all items pair_argmaxes = pair_to_gt_overlaps.argmax(axis=1) pair_maxes = pair_to_gt_overlaps.max(axis=1) # Amount of that overlap pair_I = np.where(pair_maxes >= 0)[0] # Those boxes with non-zero overlap with gt boxes, get all items # Record max overlaps with the class of the appropriate gt box sbj_gt_overlaps[sbj_I, sbj_gt_classes[sbj_argmaxes[sbj_I]]] = sbj_maxes[sbj_I] obj_gt_overlaps[obj_I, obj_gt_classes[obj_argmaxes[obj_I]]] = obj_maxes[obj_I] prd_gt_overlaps[pair_I, prd_gt_classes[pair_argmaxes[pair_I]]] = pair_maxes[pair_I] pair_to_gt_ind_map[pair_I] = pair_gt_inds[pair_argmaxes[pair_I]] entry['sbj_boxes'] = sbj_boxes.astype(entry['sbj_gt_boxes'].dtype, copy=False) entry['sbj_gt_overlaps'] = sbj_gt_overlaps entry['sbj_gt_overlaps'] = scipy.sparse.csr_matrix(entry['sbj_gt_overlaps']) entry['obj_boxes'] = obj_boxes.astype(entry['obj_gt_boxes'].dtype, copy=False) entry['obj_gt_overlaps'] = obj_gt_overlaps entry['obj_gt_overlaps'] = scipy.sparse.csr_matrix(entry['obj_gt_overlaps']) entry['prd_gt_classes'] = -np.ones((num_pairs), dtype=entry['prd_gt_classes'].dtype) entry['prd_gt_overlaps'] = prd_gt_overlaps entry['prd_gt_overlaps'] = scipy.sparse.csr_matrix(entry['prd_gt_overlaps']) entry['pair_to_gt_ind_map'] = pair_to_gt_ind_map.astype( entry['pair_to_gt_ind_map'].dtype, copy=False) def _add_prd_class_assignments(roidb): """Compute object category assignment for each box associated with each roidb entry. """ for entry in roidb: sbj_gt_overlaps = entry['sbj_gt_overlaps'].toarray() max_sbj_overlaps = sbj_gt_overlaps.max(axis=1) max_sbj_classes = sbj_gt_overlaps.argmax(axis=1) entry['max_sbj_classes'] = max_sbj_classes entry['max_sbj_overlaps'] = max_sbj_overlaps obj_gt_overlaps = entry['obj_gt_overlaps'].toarray() max_obj_overlaps = obj_gt_overlaps.max(axis=1) max_obj_classes = obj_gt_overlaps.argmax(axis=1) entry['max_obj_classes'] = max_obj_classes entry['max_obj_overlaps'] = max_obj_overlaps prd_gt_overlaps = entry['prd_gt_overlaps'].toarray() max_pair_overlaps = prd_gt_overlaps.max(axis=1) max_prd_classes = prd_gt_overlaps.argmax(axis=1) entry['max_prd_classes'] = max_prd_classes entry['max_pair_overlaps'] = max_pair_overlaps # sanity checks # if max overlap is 0, the class must be background (class 0) # zero_inds = np.where(max_pair_overlaps == 0)[0] # assert all(max_prd_classes[zero_inds] == 0) # # if max overlap > 0, the class must be a fg class (not class 0) # nonzero_inds = np.where(max_pair_overlaps > 0)[0] # assert all(max_prd_classes[nonzero_inds] != 0) def add_proposals(roidb, rois, scales, crowd_thresh): """Add proposal boxes (rois) to an roidb that has ground-truth annotations but no proposals. If the proposals are not at the original image scale, specify the scale factor that separate them in scales. """ box_list = [] for i in range(len(roidb)): inv_im_scale = 1. / scales[i] idx = np.where(rois[:, 0] == i)[0] box_list.append(rois[idx, 1:] * inv_im_scale) _merge_proposal_boxes_into_roidb(roidb, box_list) if crowd_thresh > 0: _filter_crowd_proposals(roidb, crowd_thresh) _add_class_assignments(roidb) def _merge_proposal_boxes_into_roidb(roidb, box_list): """Add proposal boxes to each roidb entry.""" assert len(box_list) == len(roidb) for i, entry in enumerate(roidb): boxes = box_list[i] num_boxes = boxes.shape[0] gt_overlaps = np.zeros( (num_boxes, entry['gt_overlaps'].shape[1]), dtype=entry['gt_overlaps'].dtype ) box_to_gt_ind_map = -np.ones( (num_boxes), dtype=entry['box_to_gt_ind_map'].dtype ) # Note: unlike in other places, here we intentionally include all gt # rois, even ones marked as crowd. Boxes that overlap with crowds will # be filtered out later (see: _filter_crowd_proposals). gt_inds = np.where(entry['gt_classes'] > 0)[0] if len(gt_inds) > 0: gt_boxes = entry['boxes'][gt_inds, :] gt_classes = entry['gt_classes'][gt_inds] proposal_to_gt_overlaps = box_utils.bbox_overlaps( boxes.astype(dtype=np.float32, copy=False), gt_boxes.astype(dtype=np.float32, copy=False) ) # Gt box that overlaps each input box the most # (ties are broken arbitrarily by class order) argmaxes = proposal_to_gt_overlaps.argmax(axis=1) # Amount of that overlap maxes = proposal_to_gt_overlaps.max(axis=1) # Those boxes with non-zero overlap with gt boxes I = np.where(maxes > 0)[0] # Record max overlaps with the class of the appropriate gt box gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I] box_to_gt_ind_map[I] = gt_inds[argmaxes[I]] entry['boxes'] = np.append( entry['boxes'], boxes.astype(entry['boxes'].dtype, copy=False), axis=0 ) entry['gt_classes'] = np.append( entry['gt_classes'], np.zeros((num_boxes), dtype=entry['gt_classes'].dtype) ) entry['seg_areas'] = np.append( entry['seg_areas'], np.zeros((num_boxes), dtype=entry['seg_areas'].dtype) ) entry['gt_overlaps'] = np.append( entry['gt_overlaps'].toarray(), gt_overlaps, axis=0 ) entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps']) entry['is_crowd'] = np.append( entry['is_crowd'], np.zeros((num_boxes), dtype=entry['is_crowd'].dtype) ) entry['box_to_gt_ind_map'] = np.append( entry['box_to_gt_ind_map'], box_to_gt_ind_map.astype( entry['box_to_gt_ind_map'].dtype, copy=False ) ) def _filter_crowd_proposals(roidb, crowd_thresh): """Finds proposals that are inside crowd regions and marks them as overlap = -1 with each ground-truth rois, which means they will be excluded from training. """ for entry in roidb: gt_overlaps = entry['gt_overlaps'].toarray() crowd_inds = np.where(entry['is_crowd'] == 1)[0] non_gt_inds = np.where(entry['gt_classes'] == 0)[0] if len(crowd_inds) == 0 or len(non_gt_inds) == 0: continue crowd_boxes = box_utils.xyxy_to_xywh(entry['boxes'][crowd_inds, :]) non_gt_boxes = box_utils.xyxy_to_xywh(entry['boxes'][non_gt_inds, :]) iscrowd_flags = [int(True)] * len(crowd_inds) ious = COCOmask.iou(non_gt_boxes, crowd_boxes, iscrowd_flags) bad_inds = np.where(ious.max(axis=1) > crowd_thresh)[0] gt_overlaps[non_gt_inds[bad_inds], :] = -1 entry['gt_overlaps'] = scipy.sparse.csr_matrix(gt_overlaps) def _add_class_assignments(roidb): """Compute object category assignment for each box associated with each roidb entry. """ for entry in roidb: gt_overlaps = entry['gt_overlaps'].toarray() # max overlap with gt over classes (columns) max_overlaps = gt_overlaps.max(axis=1) # gt class that had the max overlap max_classes = gt_overlaps.argmax(axis=1) entry['max_classes'] = max_classes entry['max_overlaps'] = max_overlaps # sanity checks # if max overlap is 0, the class must be background (class 0) zero_inds = np.where(max_overlaps == 0)[0] assert all(max_classes[zero_inds] == 0) # if max overlap > 0, the class must be a fg class (not class 0) nonzero_inds = np.where(max_overlaps > 0)[0] assert all(max_classes[nonzero_inds] != 0) def _sort_proposals(proposals, id_field): """Sort proposals by the specified id field.""" order = np.argsort(proposals[id_field]) fields_to_sort = ['boxes', id_field, 'scores'] for k in fields_to_sort: proposals[k] = [proposals[k][i] for i in order]
ContrastiveLosses4VRD-master
lib/datasets_rel/json_dataset_rel.py
#! /usr/bin/python3 import sys,os,json,requests from requests.packages.urllib3.exceptions import InsecureRequestWarning # Input file with read line by line file = sys.argv[1] f = open(file,'r') lines = f.readlines() # Itterate the each host to get the RedFish Details for item in lines: if item == '[master]\n' or item == '[nodes]\n': # Split based on ":" from file print(' ') else: bmc = item.strip().split(' ') if len(bmc) > 6: host = bmc[6] user = bmc[7] pas = bmc[8] host1 = host.strip().split('=') user1 = user.strip().split('=') pas1 = pas.strip().split('=') print('\n' + '*' * 70) # method to validate whether the server is valid for RedFish API try: url = "https://{}/redfish/v1/".format(host1[1]) requests.packages.urllib3.disable_warnings(InsecureRequestWarning) response = requests.get(url, verify=False,timeout=3) # method to get valid RedFish Server details with help of res function try: oe = response.json()['Oem'] #Itterate the OEM Patners to get the server details for item in oe: if item == 'Supermicro': cc = "https://{}/redfish/v1/Systems/1/Bios".format(host1[1]) requests.packages.urllib3.disable_warnings(InsecureRequestWarning) output = requests.get(cc,verify=False,auth=(user1[1], pas1[1])) sev_snp = output.json()['Attributes']['SEV-SNPSupport#01A7'] smee = output.json()['Attributes']['SMEE#003E'] iommu = output.json()['Attributes']['IOMMU#0196'] sev_asid = output.json()['Attributes']['SEV-ESASIDSpaceLimit#700C'] snp_memory = output.json()['Attributes']['SNPMemory(RMPTable)Coverage#003C'] print("SEV SNP Support: {}".format(sev_snp)) print("SMEE Status: {}".format(smee)) print("IOMMU Status: {}".format(iommu)) print("SEV-ES ASID Space Limit: {}".format(sev_asid)) print("SNP Memory Coverage: {}".format(snp_memory)) print('*' * 70) if sev_snp == 'Enabled' and smee == 'Enabled' and iommu == 'Enabled' and snp_memory == 'Enabled' and sev_asid == 100: print("BIOS configured for Cloud Computing") else: print("BIOS not configured for Cloud Computing") elif item == 'Ami': cc = "https://{}/redfish/v1/Systems/Self/Bios".format(host1[1]) requests.packages.urllib3.disable_warnings(InsecureRequestWarning) output = requests.get(cc,verify=False,auth=(user1[1], pas1[1])) sev_asid_count = output.json()['Attributes']['CbsCmnCpuSevAsidCount'] sev_asid_limit = output.json()['Attributes']['CbsCmnCpuSevAsidSpaceCtrl'] sev_asid_space = output.json()['Attributes']['CbsCmnCpuSevAsidSpaceLimit'] snp_memory = output.json()['Attributes']['CbsDbgCpuSnpMemCover'] smee = output.json()['Attributes']['CbsCmnCpuSmee'] snp_support = output.json()['Attributes']['CbsSevSnpSupport'] print("SEV SNP Support: {}".format(snp_support)) print("SEV ASID Count: {}".format(sev_asid_count)) print("SEV ASID Space Limit Control: {}".format(sev_asid_limit)) print("SEV-ES ASID Space Limit: {}".format(sev_asid_space)) print("SNP Memory Coverage: {}".format(snp_memory)) print("SMEE Status: {}".format(smee)) print(" ") print('*' * 70) if snp_support == 'CbsSevSnpSupportEnable' and smee == 'CbsCmnCpuSmeeEnabled' and snp_memory == 'CbsDbgCpuSnpMemCoverEnabled' and sev_asid_limit == 'CbsCmnCpuSevAsidSpaceCtrlManual' and sev_asid_count == 'CbsCmnCpuSevAsidCount509ASIDs' and sev_asid_space == 100: print("BIOS configured for Cloud Computing") else: print("BIOS not configured for Cloud Computing") else: print('Not a valid system, it should be either ASRockRack system or SuperMicro System') except Exception as e: if 'Oem' in str(e): atosurl = "https://{}/redfish/v1".format(host) atos = requests.get(atosurl,verify=False) print('Atos Server {} UUI is: '.format(host) + atos.json()['UUID']) except: print('{} Server is not for RedFish API'.format(host)) else: print("Please update BMC IP, Username and Password details in hosts file like \n'localhost ansible_ssh_user=nvidia ansible_ssh_pass=nvidia ansible_sudo_pass=nvidia ansible_ssh_common_args='-o StrictHostKeyChecking=no' bmc_ip=<bmc-IP> bmc_username=root bmc_password=nvidia123'")
cloud-native-stack-master
playbooks/files/redfish.py
#!/usr/bin/env python3 import json import requests inFileName = "../../README.md" outFileName = "../../docs/index.html" htmlBeforeBody = ''' <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang=""> <head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <title>NVTX - NVIDIA Tools Extension Library</title> <link rel="stylesheet" href="github-markdown.css"> <style> .markdown-body { box-sizing: border-box; min-width: 200px; max-width: 980px; margin: 0 auto; padding: 45px; } @media (max-width: 767px) { .markdown-body { padding: 15px; } } </style> </head> <body class="markdown-body" style="background-color: var(--color-canvas-default)"> ''' htmlAfterBody = ''' </body> </html> ''' try: with open(inFileName, "r+") as inFile: markdownText = inFile.read() except IOError: print("Failed to open input file ", inFileName) sys.exit(1) # Replace relative intra-repo links with full URLs, assuming release-v3 branch repoBaseUrl = "https://github.com/NVIDIA/NVTX/tree/release-v3" markdownText = markdownText.replace("(/c)", "(" + repoBaseUrl + "/c)") markdownText = markdownText.replace("(/python)", "(" + repoBaseUrl + "/python)") # Github replaces image links to external sites in README files with mangled things # for "security". This means README.md cannot directly link to docs/images using # github.io links (which it treats as external) with getting them mangled. Solution # is to instead have READMEs on github link to raw.githubusercontent.com. Replace # those links here with local links, so README.md converted to index.html for # github.io will get the local images from github.io's hosting. rawContextBaseUrl = "https://raw.githubusercontent.com/NVIDIA/NVTX/release-v3/docs/" markdownText = markdownText.replace(rawContextBaseUrl, "") # Replace mentions of "this repo", which makes sense in the GitHub repo's markdown files, # with a name that makes more sense in docs hosted outside the GitHub repo. markdownText = markdownText.replace("this repo", "the NVIDIA NVTX GitHub repo") url = "https://api.github.com/markdown" postData = {"text": markdownText, "mode": "markdown"} try: response = requests.post(url, json = postData) response.raise_for_status() except Exception as ex: print("Failure in API call to GitHub to convert markdown to html:", ex) sys.exit(1) html = htmlBeforeBody + response.text + htmlAfterBody try: with open(outFileName, "w") as outFile: outFile.write(html) except IOError: print("Failed to open output file ", outFileName) sys.exit(1) print(f'Successfully generated "{outFileName}" from "{inFileName}".')
NVTX-release-v3
tools/docs/generate-readme.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import os import glob import sysconfig from distutils.sysconfig import get_python_lib from Cython.Build import cythonize from setuptools import find_packages, setup from setuptools.extension import Extension cython_files = ["nvtx/**/*.pyx"] try: nthreads = int(os.environ.get("PARALLEL_LEVEL", "0") or "0") except Exception: nthreads = 0 include_dirs = [os.path.dirname(sysconfig.get_path("include")),] library_dirs = [get_python_lib()] extensions = [ Extension( "*", sources=cython_files, include_dirs=include_dirs, library_dirs=library_dirs, language="c", ) ] cython_tests = glob.glob("nvtx/_lib/tests/*.pyx") # tests: extensions += cythonize( [ Extension( "*", sources=cython_tests, include_dirs=include_dirs, library_dirs=library_dirs, language="c" ) ], nthreads=nthreads, compiler_directives=dict( profile=True, language_level=3, embedsignature=True, binding=True ), ) setup( name="nvtx", version="0.2.5", description="PyNVTX - Python code annotation library", url="https://github.com/NVIDIA/nvtx", author="NVIDIA Corporation", license="Apache 2.0", classifiers=[ "Intended Audience :: Developers", "Topic :: Database", "Topic :: Scientific/Engineering", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", ], # Include the separately-compiled shared library ext_modules=cythonize( extensions, nthreads=nthreads, compiler_directives=dict( profile=False, language_level=3, embedsignature=True ), ), packages=find_packages(include=["nvtx", "nvtx.*"]), package_data=dict.fromkeys( find_packages(include=["nvtx._lib*"]), ["*.pxd"], ), license_files=["LICENSE.txt"], zip_safe=False, )
NVTX-release-v3
python/setup.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = "nvtx" copyright = "2020-2022, NVIDIA Corporation" author = "NVIDIA Corporation" # The full version, including alpha/beta/rc tags release = "0.2.5" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"]
NVTX-release-v3
python/docs/conf.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception from nvtx.nvtx import ( annotate, enabled, pop_range, push_range, start_range, end_range, mark ) from nvtx._lib.profiler import Profile
NVTX-release-v3
python/nvtx/__init__.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import contextlib import os from functools import wraps from nvtx._lib import ( Domain, EventAttributes, mark as libnvtx_mark, pop_range as libnvtx_pop_range, push_range as libnvtx_push_range, start_range as libnvtx_start_range, end_range as libnvtx_end_range ) _ENABLED = not os.getenv("NVTX_DISABLE", False) class annotate: """ Annotate code ranges using a context manager or a decorator. """ def __init__(self, message=None, color=None, domain=None, category=None): """ Annotate a function or a code range. Parameters ---------- message : str, optional A message associated with the annotated code range. When used as a decorator, the default value of message is the name of the function being decorated. When used as a context manager, the default value is the empty string. color : str or color, optional A color associated with the annotated code range. Supports `matplotlib` colors if it is available. domain : str, optional A string specifying the domain under which the code range is scoped. The default domain is named "NVTX". category : str, int, optional A string or an integer specifying the category within the domain under which the code range is scoped. If unspecified, the code range is not associated with a category. Examples -------- >>> import nvtx >>> import time Using a decorator: >>> @nvtx.annotate("my_func", color="red", domain="my_domain") ... def func(): ... time.sleep(0.1) Using a context manager: >>> with nvtx.annotate("my_code_range", color="blue"): ... time.sleep(10) ... """ self.domain = Domain(domain) category_id = None if isinstance(category, int): category_id = category elif isinstance(category, str): category_id = self.domain.get_category_id(category) self.attributes = EventAttributes(message, color, category_id) def __reduce__(self): return ( self.__class__, (self.attributes.message, self.attributes.color, self.domain.name), ) def __enter__(self): libnvtx_push_range(self.attributes, self.domain.handle) return self def __exit__(self, *exc): libnvtx_pop_range(self.domain.handle) return False def __call__(self, func): if not self.attributes.message: self.attributes.message = func.__name__ @wraps(func) def inner(*args, **kwargs): libnvtx_push_range(self.attributes, self.domain.handle) result = func(*args, **kwargs) libnvtx_pop_range(self.domain.handle) return result return inner def mark(message=None, color="blue", domain=None, category=None): """ Mark an instantaneous event. Parameters ---------- message : str A message associatedn with the event. color : str, color, optional Color associated with the event. domain : str, optional A string specifuing the domain under which the event is scoped. The default domain is named "NVTX". category : str, int, optional A string or an integer specifying the category within the domain under which the event is scoped. If unspecified, the event is not associated with a category. """ domain = Domain(domain) category_id = None if isinstance(category, int): category_id = category elif isinstance(category, str): category_id = domain.get_category_id(category) attributes = EventAttributes(message, color, category_id) libnvtx_mark(attributes, domain.handle) def push_range(message=None, color="blue", domain=None, category=None): """ Mark the beginning of a code range. Parameters ---------- message : str, optional A message associated with the annotated code range. color : str, color, optional A color associated with the annotated code range. Supports domain : str, optional Name of a domain under which the code range is scoped. The default domain name is "NVTX". category : str, int, optional A string or an integer specifying the category within the domain under which the code range is scoped. If unspecified, the code range is not associated with a category. Examples -------- >>> import time >>> import nvtx >>> nvtx.push_range("my_code_range", domain="my_domain") >>> time.sleep(1) >>> nvtx.pop_range(domain="my_domain") """ domain = Domain(domain) category_id = None if isinstance(category, int): category_id = category elif isinstance(category, str): category_id = domain.get_category_id(category) libnvtx_push_range(EventAttributes(message, color, category_id), domain.handle) def pop_range(domain=None): """ Mark the end of a code range that was started with `push_range`. Parameters ---------- domain : str, optional The domain under which the code range is scoped. The default domain is "NVTX". """ libnvtx_pop_range(Domain(domain).handle) def start_range(message=None, color="blue", domain=None, category=None): """ Mark the beginning of a code range. Parameters ---------- message : str, optional A message associated with the annotated code range. color : str, color, optional A color associated with the annotated code range. Supports domain : str, optional Name of a domain under which the code range is scoped. The default domain name is "NVTX". category : str, int, optional A string or an integer specifying the category within the domain under which the code range is scoped. If unspecified, the code range is not associated with a category. Returns ------- An object of type `RangeId` that must be passed to the `end_range()` function. Examples -------- >>> import time >>> import nvtx >>> range_id = nvtx.start_range("my_code_range", domain="my_domain") >>> time.sleep(1) >>> nvtx.end_range(range_id, domain="my_domain") """ domain = Domain(domain) category_id = None if isinstance(category, int): category_id = category elif isinstance(category, str): category_id = domain.get_category_id(category) marker_id = libnvtx_start_range( EventAttributes(message, color, category_id), domain.handle ) return marker_id def end_range(range_id): """ Mark the end of a code range that was started with `start_range`. Parameters ---------- range_id : RangeId The `RangeId` object returned by the `start_range` function. """ libnvtx_end_range(range_id) def enabled(): """ Returns True if nvtx is enabled. """ return _ENABLED if not enabled(): class annotate(contextlib.nullcontext): def __init__(self, *args, **kwargs): pass def __call__(self, func): return func # Could use a decorator here but overheads are significant enough # not to. See https://github.com/NVIDIA/NVTX/pull/24 for discussion. def mark(message=None, color=None, domain=None, category=None): pass def push_range(message=None, color=None, domain=None, category=None): pass def pop_range(domain=None): pass def start_range(message=None, color=None, domain=None, category=None): pass def end_range(range_id): pass
NVTX-release-v3
python/nvtx/nvtx.py
import sys from runpy import run_path from optparse import OptionParser def main(): from nvtx import Profile usage = "%prog [options] scriptfile [args] ..." parser = OptionParser(usage) parser.add_option( "--linenos", action="store_true", dest="linenos", default=True, help="Include file and line number information in annotations. Otherwise, " "only the function name is used." ) parser.add_option( "--no-linenos", action="store_false", dest="linenos", default=True, help="Do not include file and line number information in annotations." ) parser.add_option( "--annotate-cfuncs", action="store_true", dest="annotate_cfuncs", default=False, help="Also annotate C-extension and builtin functions. [default: %default]", ) options, args = parser.parse_args() script_file = args[0] sys.argv = args profiler = Profile( linenos=options.linenos, annotate_cfuncs=options.annotate_cfuncs ) profiler.enable() try: run_path(script_file) finally: profiler.disable() if __name__ == "__main__": main()
NVTX-release-v3
python/nvtx/__main__.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import functools _NVTX_COLORS = { None: 0x0000FF, # blue "green": 0x008000, "blue": 0x0000FF, "yellow": 0xFFFF00, "purple": 0x800080, "rapids": 0x7400FF, "cyan": 0x00FFFF, "red": 0xFF0000, "white": 0xFFFFFF, "darkgreen": 0x006400, "orange": 0xFFA500, } @functools.lru_cache() def color_to_hex(color=None): """ Convert color to ARGB hex value. """ if isinstance(color, int): return color if color in _NVTX_COLORS: return _NVTX_COLORS[color] try: import matplotlib.colors except ImportError as e: raise TypeError( f"Invalid color {color}. Please install matplotlib " "for additional colors support" ) from e rgba = matplotlib.colors.to_rgba(color) argb = (rgba[-1], rgba[0], rgba[1], rgba[2]) return int(matplotlib.colors.to_hex(argb, keep_alpha=True)[1:], 16)
NVTX-release-v3
python/nvtx/colors.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import pickle import pytest import nvtx @pytest.mark.parametrize( "message", [ None, "", "x", "abc", "abc def" ] ) @pytest.mark.parametrize( "color", [ None, "red", "green", "blue" ] ) @pytest.mark.parametrize( "domain", [ None, "", "x", "abc", "abc def" ] ) def test_annotate_context_manager(message, color, domain): with nvtx.annotate(message=message, color=color, domain=domain): pass @pytest.mark.parametrize( "message", [ None, "", "x", "abc", "abc def" ] ) @pytest.mark.parametrize( "color", [ None, "red", "green", "blue" ] ) @pytest.mark.parametrize( "domain", [ None, "", "x", "abc", "abc def" ] ) def test_annotate_decorator(message, color, domain): @nvtx.annotate(message=message, color=color, domain=domain) def foo(): pass foo() def test_pickle_annotate(): orig = nvtx.annotate(message="foo", color="blue", domain="test") pickled = pickle.dumps(orig) unpickled = pickle.loads(pickled) assert orig.attributes.message == unpickled.attributes.message assert orig.attributes.color == unpickled.attributes.color assert orig.domain == unpickled.domain def test_domain_reuse(): a = nvtx._lib.Domain("x") b = nvtx._lib.Domain("x") assert a is b c = nvtx._lib.Domain("y") assert a is not c @pytest.mark.parametrize( "message", [ None, "", "x", "abc", "abc def" ] ) @pytest.mark.parametrize( "color", [ None, "red", "green", "blue" ] ) @pytest.mark.parametrize( "domain", [ None, "", "x", "abc", "abc def" ] ) @pytest.mark.parametrize( "category", [ None, "", "y" "x", "abc", "abc def", 0, 1, ] ) def test_categories_basic(message, color, domain, category): with nvtx.annotate(message=message, domain=domain, category=category): pass def test_get_category_id(): dom = nvtx._lib.Domain("foo") id1 = dom.get_category_id("bar") id2 = dom.get_category_id("bar") assert id1 == id2 id3 = dom.get_category_id("baz") assert id2 != id3 @pytest.mark.parametrize( "message", [ None, "abc", ] ) @pytest.mark.parametrize( "color", [ None, "red", ] ) @pytest.mark.parametrize( "domain", [ None, "abc", ] ) @pytest.mark.parametrize( "category", [ None, "abc", 1, ] ) def test_start_end(message, color, domain, category): rng = nvtx.start_range(message, color, domain, category) nvtx.end_range(rng) @pytest.mark.parametrize( "message", [ None, "abc", ] ) @pytest.mark.parametrize( "color", [ None, "red", ] ) @pytest.mark.parametrize( "domain", [ None, "abc", ] ) @pytest.mark.parametrize( "category", [ None, "abc", 1, ] ) def test_push_pop(message, color, domain, category): nvtx.push_range(message, color, domain, category) nvtx.pop_range() @pytest.mark.parametrize( "message", [ None, "abc", ] ) @pytest.mark.parametrize( "color", [ None, "red", ] ) @pytest.mark.parametrize( "domain", [ None, "abc", ] ) @pytest.mark.parametrize( "category", [ None, "abc", 1, ] ) def test_mark(message, color, domain, category): nvtx.mark(message, color, domain, category)
NVTX-release-v3
python/nvtx/tests/test_basic.py
NVTX-release-v3
python/nvtx/tests/test_profiler.py
# Copyright 2021-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import functools import importlib import sys def py_func(func): """ Wraps func in a plain Python function. """ @functools.wraps(func) def wrapped(*args, **kwargs): return func(*args, **kwargs) return wrapped cython_test_modules = ["nvtx._lib.tests.test_profiler"] for mod in cython_test_modules: try: # For each callable in `mod` with name `test_*`, # wrap the callable in a plain Python function # and set the result as an attribute of this module. mod = importlib.import_module(mod) for name in dir(mod): item = getattr(mod, name) if callable(item) and name.startswith("test_"): item = py_func(item) setattr(sys.modules[__name__], name, item) except ImportError: pass
NVTX-release-v3
python/nvtx/tests/test_cython.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception from nvtx._lib.lib import ( Domain, EventAttributes, pop_range, push_range, start_range, end_range, mark )
NVTX-release-v3
python/nvtx/_lib/__init__.py
NVTX-release-v3
python/nvtx/_lib/tests/__init__.py
# Copyright 2020-2022 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
NVTX-release-v3
python/nvtx/utils/__init__.py