python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .perf_analyzer import PerfAnalyzer # noqa: F401 from .perf_config import PerfAnalyzerConfig # noqa: F401
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/triton/deployment_toolkit/perf_analyzer/__init__.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict from .exceptions import PerfAnalyzerException class PerfAnalyzerConfig: """ A config class to set arguments to the perf_analyzer. An argument set to None will use the perf_analyzer's default. """ perf_analyzer_args = [ "async", "sync", "measurement-interval", "measurement-mode", "measurement-request-count", "concurrency-range", "request-rate-range", "request-distribution", "request-intervals", "binary-search", "num-of-sequence", "latency-threshold", "max-threads", "stability-percentage", "max-trials", "percentile", "input-data", "shared-memory", "output-shared-memory-size", "sequence-length", "string-length", "string-data", ] perf_analyzer_multiple_args = [ "shape", ] input_to_options = [ "model-name", "model-version", "batch-size", "url", "protocol", "latency-report-file", "streaming", ] input_to_verbose = ["verbose", "extra-verbose"] def __init__(self): """ Construct a PerfAnalyzerConfig """ self._args = {k: None for k in self.perf_analyzer_args} self._multiple_args = {k: [] for k in self.perf_analyzer_multiple_args} self._options = { "-m": None, "-x": None, "-b": None, "-u": None, "-i": None, "-f": None, "-H": None, "-c": None, "-t": None, } self._verbose = {"-v": None, "-v -v": None} self._input_to_options = { "model-name": "-m", "model-version": "-x", "batch-size": "-b", "url": "-u", "protocol": "-i", "latency-report-file": "-f", "streaming": "-H", "concurrency": "-c", "threads": "-t", } self._input_to_verbose = {"verbose": "-v", "extra-verbose": "-v -v"} @classmethod def allowed_keys(cls): """ Returns ------- list of str The keys that are allowed to be passed into perf_analyzer """ return ( list(cls.perf_analyzer_args) + list(cls.perf_analyzer_multiple_args) + list(cls.input_to_options) + list(cls.input_to_verbose) ) def update_config(self, params=None): """ Allows setting values from a params dict Parameters ---------- params: dict keys are allowed args to perf_analyzer """ if params: for key in params: self[key] = params[key] def to_cli_string(self): """ Utility function to convert a config into a string of arguments to the perf_analyzer with CLI. Returns ------- str cli command string consisting of all arguments to the perf_analyzer set in the config, without the executable name. """ # single dashed options, then verbose flags, then main args args = [f"{k} {v}" for k, v in self._options.items() if v] args += [k for k, v in self._verbose.items() if v] args += [f"--{k}={v}" for k, v in self._args.items() if v] for k, v in self._multiple_args.items(): for item in v: args.append(f"--{k}={item}") return " ".join(args) def __getitem__(self, key: str): """ Gets an arguments value in config Parameters ---------- key : str The name of the argument to the perf_analyzer Returns ------- The value that the argument is set to in this config Raises ------ TritonModelAnalyzerException If argument not found in the config """ if key in self._args: return self._args[key] elif key in self._multiple_args: return self._multiple_args[key] elif key in self._input_to_options: return self._options[self._input_to_options[key]] elif key in self._input_to_verbose: return self._verbose[self._input_to_verbose[key]] else: raise PerfAnalyzerException(f"'{key}' Key not found in config") def __setitem__(self, key: str, value: Any): """ Sets an arguments value in config after checking if defined/supported. Parameters ---------- key : str The name of the argument to the perf_analyzer value : (any) The value to which the argument is being set Raises ------ TritonModelAnalyzerException If key is unsupported or undefined in the config class """ if key in self._args: self._args[key] = value elif key in self._multiple_args: self._multiple_args[key].append(value) elif key in self._input_to_options: self._options[self._input_to_options[key]] = value elif key in self._input_to_verbose: self._verbose[self._input_to_verbose[key]] = value else: raise PerfAnalyzerException( f"The argument '{key}' to the perf_analyzer " "is not supported by the model analyzer." )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/triton/deployment_toolkit/perf_analyzer/perf_config.py
class PerfAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/triton/deployment_toolkit/perf_analyzer/exceptions.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib from subprocess import PIPE, CalledProcessError, Popen # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .exceptions import PerfAnalyzerException MAX_INTERVAL_CHANGES = 10 COUNT_INTERVAL_DELTA = 50 TIME_INTERVAL_DELTA = 2000 LOGGER = logging.getLogger(__name__) class PerfAnalyzer: """ This class provides an interface for running workloads with perf_analyzer. """ def __init__(self, config): """ Parameters ---------- config : PerfAnalyzerConfig keys are names of arguments to perf_analyzer, values are their values. """ self.bin_path = "perf_analyzer" self._config = config self._output = str() def run(self): """ Runs the perf analyzer with the initialized configuration Returns ------- List of Records List of the metrics obtained from this run of perf_analyzer Raises ------ PerfAnalyzerException If subprocess throws CalledProcessError """ for _ in range(MAX_INTERVAL_CHANGES): command = [self.bin_path] command += self._config.to_cli_string().replace("=", " ").split() LOGGER.debug(f"Perf Analyze command: {command}") try: process = Popen(command, start_new_session=True, stdout=PIPE, encoding="utf-8") streamed_output = "" while True: output = process.stdout.readline() if output == "" and process.poll() is not None: break if output: streamed_output += output print(output.rstrip()) self._output += streamed_output result = process.poll() if result != 0: raise CalledProcessError(returncode=result, cmd=command, output=streamed_output) return except CalledProcessError as e: if self._faild_with_measruement_inverval(e.output): if self._config["measurement-mode"] is None or self._config["measurement-mode"] == "count_windows": self._increase_request_count() else: self._increase_time_interval() else: raise PerfAnalyzerException( f"Running perf_analyzer with {e.cmd} failed with" f" exit status {e.returncode} : {e.output}" ) raise PerfAnalyzerException(f"Ran perf_analyzer {MAX_INTERVAL_CHANGES} times, but no valid requests recorded.") def output(self): """ Returns ------- The stdout output of the last perf_analyzer run """ if self._output: return self._output raise PerfAnalyzerException("Attempted to get perf_analyzer output" "without calling run first.") def _faild_with_measruement_inverval(self, output: str): return ( output.find("Failed to obtain stable measurement") or output.find("Please use a larger time window") ) != -1 def _increase_request_count(self): self._config["measurement-request-count"] += COUNT_INTERVAL_DELTA LOGGER.debug( "perf_analyzer's measurement request count is too small, " f"increased to {self._config['measurement-request-count']}." ) def _increase_time_interval(self): self._config["measurement-interval"] += TIME_INTERVAL_DELTA LOGGER.debug( "perf_analyzer's measurement window is too small, " f"increased to {self._config['measurement-interval']} ms." )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/triton/deployment_toolkit/perf_analyzer/perf_analyzer.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class TrivialModel(nn.Module): def __init__(self, config): super().__init__() self.bias = nn.Parameter(torch.zeros(1)) self.encoder_length = config.encoder_length self.example_length = config.example_length self.predict_steps = self.example_length - self.encoder_length self.output_dim = len(config.get("quantiles", [""])) def forward(self, batch): t = next(t for t in batch.values() if t is not None) bs = t.shape[0] return torch.ones([bs, self.example_length - self.encoder_length, self.output_dim]).to(device=t.device) + self.bias def predict(self, batch): targets = batch["target"].clone() prev_predictions = targets.roll(1, 1) return prev_predictions[:, -self.predict_steps :, :] # TODO: reenable usage of such functions def test_with_last(self, batch): bs = max([tensor.shape[0] if tensor is not None else 0 for tensor in batch.values()]) values = ( # TODO: this will become disfuntional after removing "targer_masked" from dataset. Seed comment in data_utils.py batch["target_masked"] .clone()[:, -1, :] .reshape((bs, 1, self.output_dim)) ) return torch.cat((self.example_length - self.encoder_length) * [values], dim=1) def test_with_previous_window(self, batch): targets = batch["target"].clone() prev_predictions = targets.roll(self.predict_steps, 1) return prev_predictions[:, -self.predict_steps :, :]
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/trivial_model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cudf import pandas as pd import pynvml import numpy as np import xgboost as xgb import os import glob import dask_cudf from distributed_utils import create_client class TSPPXGBoost(): def __init__(self, config): self.config = config self.models = [] def fit(self, train, label, valid, valid_label, **kwargs): X = xgb.DeviceQuantileDMatrix(cudf.from_pandas(train), label=cudf.from_pandas(label)) V = xgb.DMatrix(cudf.from_pandas(valid), label=cudf.from_pandas(valid_label)) model = xgb.train(params=self.config, dtrain=X, num_boost_round=self.config.n_rounds, evals=[(X, 'train'), (V, 'valid')], early_stopping_rounds=kwargs.get('patience', 5), verbose_eval=kwargs.get("log_interval", 25), ) self.models.append(model) def predict(self, test, i): model = self.models[i] X = xgb.DMatrix(cudf.from_pandas(test)) return model.predict(X) def save(self, path): os.makedirs(os.path.join(path, 'checkpoints'), exist_ok=True) for i in range(len(self.models)): model = self.models[i] model.save_model(os.path.join(path, f'checkpoints/xgb_{i+1}.model')) def load(self, path): self.models = [] for i in range(self.config.example_length - self.config.encoder_length): p = os.path.join(path, f'checkpoints/xgb_{i+1}.model') model = xgb.Booster() model.load_model(p) self.models.append(model) class TSPPDaskXGBoost(): def __init__(self, config): self.config = config self.models = [] self.client = create_client(config) self.npartitions = self.config.cluster.npartitions def fit(self, train, label, valid, valid_label, **kwargs): X = xgb.dask.DaskDeviceQuantileDMatrix(self.client, dask_cudf.from_cudf(cudf.from_pandas(train), npartitions=self.npartitions), label=dask_cudf.from_cudf(cudf.from_pandas(label), npartitions=self.npartitions)) V = xgb.dask.DaskDMatrix(self.client, dask_cudf.from_cudf(cudf.from_pandas(valid), npartitions=self.npartitions), label=dask_cudf.from_cudf(cudf.from_pandas(valid_label), npartitions=self.npartitions)) model = xgb.dask.train(client=self.client, params=self.config, dtrain=X, num_boost_round=self.config.n_rounds, evals=[(X, 'train'), (V, 'valid')], early_stopping_rounds=kwargs.get('patience', 5), verbose_eval=kwargs.get("log_interval", 25), ) self.models.append(model) self.client.restart() def predict(self, test, i): test = test.reset_index(drop=True) model = self.models[i] test = dask_cudf.from_cudf(cudf.from_pandas(test), npartitions=self.npartitions) test = xgb.dask.DaskDMatrix(self.client, test) out = xgb.dask.predict(self.client, model, test) return out.compute() def save(self, path): os.makedirs(os.path.join(path, 'checkpoints'), exist_ok=True) for i in range(len(self.models)): model = self.models[i] model['booster'].save_model(os.path.join(path, f'checkpoints/xgb_{i+1}.model')) def load(self, path): self.models = [] for i in range(self.config.example_length - self.config.encoder_length): p = os.path.join(path, f'checkpoints/xgb_{i+1}.model') model = {'booster': xgb.dask.Booster()} model['booster'].load_model(p) self.models.append(model)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tspp_xgboost.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from apex.normalization.fused_layer_norm import FusedLayerNorm from torch import Tensor from models.tft_pyt.modeling import * class LSTM(nn.Module): """ Implementation from LSTM portion of https://arxiv.org/abs/1912.09363 """ def __init__(self, config): super().__init__() self.encoder_steps = config.encoder_length # this determines from how distant past we want to use data from self.mask_nans = config.missing_data_strategy == "mask" self.embedding = TFTEmbedding(config) self.static_encoder = StaticCovariateEncoder(config) self.history_vsn = VariableSelectionNetwork(config, config.num_historic_vars) self.history_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.future_vsn = VariableSelectionNetwork(config, config.num_future_vars) self.future_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.output_proj = nn.Linear(config.hidden_size, 1) def forward(self, x: Tensor) -> Tensor: s_inp, t_known_inp, t_observed_inp, t_observed_tgt = self.embedding(x) # Static context cs, ce, ch, cc = self.static_encoder(s_inp) ch, cc = ch.unsqueeze(0), cc.unsqueeze(0) # lstm initial states # Temporal input _historical_inputs = [t_known_inp[:, : self.encoder_steps, :], t_observed_tgt[:, : self.encoder_steps, :]] if t_observed_inp is not None: _historical_inputs.insert(0, t_observed_inp[:, : self.encoder_steps, :]) historical_inputs = torch.cat(_historical_inputs, dim=-2) future_inputs = t_known_inp[:, self.encoder_steps :] # Encoders historical_features, _ = self.history_vsn(historical_inputs, cs) history, state = self.history_encoder(historical_features, (ch, cc)) future_features, _ = self.future_vsn(future_inputs, cs) future, _ = self.future_encoder(future_features, state) output = self.output_proj(future) return output
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/lstm.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC import os import pmdarima as pm # import cuml import numpy as np from cuml.tsa.auto_arima import AutoARIMA as cuMLAutoArima import pickle as pkl class StatModel(ABC): def __init__(self, config): self.horizon = config.example_length - config.encoder_length self.config = config def fit(self, label, data): return def predict(self, data, i): return def save(self): return def load(self, path): return class AutoARIMA(StatModel): def __init__(self, config): super().__init__(config) self.models = [] def fit(self, label, data): self.model = pm.auto_arima(label, X=data) self.models.append(self.model) def predict(self, data, i): model = self.models[i] return model.predict(self.horizon, X=data) def save(self): with open('arima.pkl', 'wb') as f: pkl.dump(self.models, f) def load(self, path): with open(os.path.join(path, 'arima.pkl'), 'rb') as f: self.models = pkl.load(f) class CUMLAutoARIMA(StatModel): def __init__(self, config): super().__init__(config) self.models = [] def fit(self, label, data): self.model = cuMLAutoArima(label.astype(np.float64)) self.model.search() self.model.fit() self.models.append(self.model) def predict(self, data, i): model = self.models[i] return model.forecast(self.horizon).get() def save(self): with open('arima.pkl', 'wb') as f: pkl.dump(self.models, f) def load(self, path): with open(os.path.join(path, 'arima.pkl'), 'rb') as f: self.models = pkl.load(f)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/stat_models.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from data_utils import InputTypes, DataTypes, FeatureSpec import datetime class ElectricityConfig(): def __init__(self): self.features = [ FeatureSpec('id', InputTypes.ID, DataTypes.CATEGORICAL), FeatureSpec('hours_from_start', InputTypes.TIME, DataTypes.CONTINUOUS), FeatureSpec('power_usage', InputTypes.TARGET, DataTypes.CONTINUOUS), FeatureSpec('hour', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('day_of_week', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('hours_from_start', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('categorical_id', InputTypes.STATIC, DataTypes.CATEGORICAL), ] # Dataset split boundaries self.time_ids = 'days_from_start' # This column contains time indices across which we split the data self.train_range = (1096, 1315) self.valid_range = (1308, 1339) self.test_range = (1332, 1346) self.dataset_stride = 1 #how many timesteps between examples self.scale_per_id = True self.missing_id_strategy = None self.missing_cat_data_strategy='encode_all' # Feature sizes self.static_categorical_inp_lens = [369] self.temporal_known_categorical_inp_lens = [] self.temporal_observed_categorical_inp_lens = [] self.quantiles = [0.1, 0.5, 0.9] self.example_length = 8 * 24 self.encoder_length = 7 * 24 self.n_head = 4 self.hidden_size = 128 self.dropout = 0.1 self.attn_dropout = 0.0 #### Derived variables #### self.temporal_known_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.KNOWN and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_observed_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.OBSERVED and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_target_size = len([x for x in self.features if x.feature_type == InputTypes.TARGET]) self.static_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.STATIC and x.feature_embed_type == DataTypes.CONTINUOUS]) self.num_static_vars = self.static_continuous_inp_size + len(self.static_categorical_inp_lens) self.num_future_vars = self.temporal_known_continuous_inp_size + len(self.temporal_known_categorical_inp_lens) self.num_historic_vars = sum([self.num_future_vars, self.temporal_observed_continuous_inp_size, self.temporal_target_size, len(self.temporal_observed_categorical_inp_lens), ]) class VolatilityConfig(): def __init__(self): self.features = [ FeatureSpec('Symbol', InputTypes.ID, DataTypes.CATEGORICAL), FeatureSpec('days_from_start', InputTypes.TIME, DataTypes.CONTINUOUS), FeatureSpec('log_vol', InputTypes.TARGET, DataTypes.CONTINUOUS), FeatureSpec('open_to_close', InputTypes.OBSERVED, DataTypes.CONTINUOUS), FeatureSpec('days_from_start', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('day_of_week', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('day_of_month', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('week_of_year', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('month', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('Region', InputTypes.STATIC, DataTypes.CATEGORICAL), ] # Dataset split boundaries self.time_ids = 'date' # This column contains time indices across which we split the data self.train_range = ('2000-01-01', '2016-01-01') self.valid_range = ('2016-01-01', '2018-01-01') self.test_range = ('2018-01-01', '2019-06-28') self.dataset_stride = 1 #how many timesteps between examples self.scale_per_id = False self.missing_id_strategy = None self.missing_cat_data_strategy='encode_all' # Feature sizes self.static_categorical_inp_lens = [4] self.temporal_known_categorical_inp_lens = [7,31,53,12] self.temporal_observed_categorical_inp_lens = [] self.quantiles = [0.1, 0.5, 0.9] self.example_length = 257 self.encoder_length = 252 self.n_head = 4 self.hidden_size = 96 self.dropout = 0.4 self.attn_dropout = 0.0 #### Derived variables #### self.temporal_known_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.KNOWN and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_observed_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.OBSERVED and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_target_size = len([x for x in self.features if x.feature_type == InputTypes.TARGET]) self.static_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.STATIC and x.feature_embed_type == DataTypes.CONTINUOUS]) self.num_static_vars = self.static_continuous_inp_size + len(self.static_categorical_inp_lens) self.num_future_vars = self.temporal_known_continuous_inp_size + len(self.temporal_known_categorical_inp_lens) self.num_historic_vars = sum([self.num_future_vars, self.temporal_observed_continuous_inp_size, self.temporal_target_size, len(self.temporal_observed_categorical_inp_lens), ]) class TrafficConfig(): def __init__(self): self.features = [ FeatureSpec('id', InputTypes.ID, DataTypes.CATEGORICAL), FeatureSpec('hours_from_start', InputTypes.TIME, DataTypes.CONTINUOUS), FeatureSpec('values', InputTypes.TARGET, DataTypes.CONTINUOUS), FeatureSpec('time_on_day', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('day_of_week', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('hours_from_start', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('categorical_id', InputTypes.STATIC, DataTypes.CATEGORICAL), ] # Dataset split boundaries self.time_ids = 'sensor_day' # This column contains time indices across which we split the data self.train_range = (0, 151) self.valid_range = (144, 166) self.test_range = (159, float('inf')) self.dataset_stride = 1 #how many timesteps between examples self.scale_per_id = False self.missing_id_strategy = None self.missing_cat_data_strategy='encode_all' # Feature sizes self.static_categorical_inp_lens = [963] self.temporal_known_categorical_inp_lens = [] self.temporal_observed_categorical_inp_lens = [] self.quantiles = [0.1, 0.5, 0.9] self.example_length = 8 * 24 self.encoder_length = 7 * 24 self.n_head = 4 self.hidden_size = 128 self.dropout = 0.3 self.attn_dropout = 0.0 #### Derived variables #### self.temporal_known_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.KNOWN and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_observed_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.OBSERVED and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_target_size = len([x for x in self.features if x.feature_type == InputTypes.TARGET]) self.static_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.STATIC and x.feature_embed_type == DataTypes.CONTINUOUS]) self.num_static_vars = self.static_continuous_inp_size + len(self.static_categorical_inp_lens) self.num_future_vars = self.temporal_known_continuous_inp_size + len(self.temporal_known_categorical_inp_lens) self.num_historic_vars = sum([self.num_future_vars, self.temporal_observed_continuous_inp_size, self.temporal_target_size, len(self.temporal_observed_categorical_inp_lens), ]) class FavoritaConfig(): def __init__(self): self.features = [ FeatureSpec('traj_id', InputTypes.ID, DataTypes.CATEGORICAL), #FeatureSpec('days_from_start', InputTypes.TIME, DataTypes.CONTINUOUS), FeatureSpec('date', InputTypes.TIME, DataTypes.DATE), FeatureSpec('log_sales', InputTypes.TARGET, DataTypes.CONTINUOUS), # XXX for no apparent reason TF implementation doesn't scale day_of_month # and month variables. We probably should set them to be categorical FeatureSpec('day_of_month', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('month', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('onpromotion', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('day_of_week', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('national_hol', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('regional_hol', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('local_hol', InputTypes.KNOWN, DataTypes.CATEGORICAL), FeatureSpec('open', InputTypes.KNOWN, DataTypes.CONTINUOUS), FeatureSpec('transactions', InputTypes.OBSERVED, DataTypes.CONTINUOUS), FeatureSpec('oil', InputTypes.OBSERVED, DataTypes.CONTINUOUS), FeatureSpec('categorical_id', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('item_nbr', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('store_nbr', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('city', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('state', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('type', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('cluster', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('family', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('class', InputTypes.STATIC, DataTypes.CATEGORICAL), FeatureSpec('perishable', InputTypes.STATIC, DataTypes.CATEGORICAL) ] # Dataset split boundaries self.time_ids = 'date' # This column contains time indices across which we split the data # When relative split is set then it is necessary to provide valid boundary. # Valid split is shifted from train split by number of forecast steps to the future # The test split is shifted by the number of forecast steps from the valid split self.relative_split = True self.valid_boundary = str(datetime.datetime(2015, 12, 1)) self.train_range = None self.valid_range = None self.test_range = None self.dataset_stride = 1 #how many timesteps between examples self.scale_per_id = True self.missing_cat_data_strategy='encode_all' self.missing_id_strategy = 'drop' # Feature sizes self.static_categorical_inp_lens = [90200, 3426, 53, 22, 16, 5, 17, 32, 313, 2] self.temporal_known_categorical_inp_lens = [2, 7, 55, 5, 25] self.temporal_observed_categorical_inp_lens = [] self.quantiles = [0.1, 0.5, 0.9] self.example_length = 120 self.encoder_length = 90 self.n_head = 4 self.hidden_size = 240 self.dropout = 0.1 self.attn_dropout = 0.0 #### Derived variables #### self.temporal_known_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.KNOWN and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_observed_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.OBSERVED and x.feature_embed_type == DataTypes.CONTINUOUS]) self.temporal_target_size = len([x for x in self.features if x.feature_type == InputTypes.TARGET]) self.static_continuous_inp_size = len([x for x in self.features if x.feature_type == InputTypes.STATIC and x.feature_embed_type == DataTypes.CONTINUOUS]) self.num_static_vars = self.static_continuous_inp_size + len(self.static_categorical_inp_lens) self.num_future_vars = self.temporal_known_continuous_inp_size + len(self.temporal_known_categorical_inp_lens) self.num_historic_vars = sum([self.num_future_vars, self.temporal_observed_continuous_inp_size, self.temporal_target_size, len(self.temporal_observed_categorical_inp_lens), ]) CONFIGS = {'electricity': ElectricityConfig, 'volatility': VolatilityConfig, 'traffic': TrafficConfig, 'favorita': FavoritaConfig, }
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/configuration.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import math import os import pathlib import re import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def set_socket_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): devices = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in devices] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode): device_ids = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in device_ids] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: if mode == 'interleaved': affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == 'continuous': affinity = list(socket_affinity[group_id*cores_per_device:(group_id+1)*cores_per_device]) else: raise RuntimeError('Unknown set_socket_unique_affinity mode') # reintroduce siblings affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def get_thread_siblings_list(): path = '/sys/devices/system/cpu/cpu*/topology/thread_siblings_list' thread_siblings_list = [] pattern = re.compile(r'(\d+)\D(\d+)') for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def set_affinity(gpu_id, nproc_per_node, mode='socket'): if mode == 'socket': set_socket_affinity(gpu_id) elif mode == 'single': set_single_affinity(gpu_id) elif mode == 'single_unique': set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == 'socket_unique_interleaved': set_socket_unique_affinity(gpu_id, nproc_per_node, 'interleaved') elif mode == 'socket_unique_continuous': set_socket_unique_affinity(gpu_id, nproc_per_node, 'continuous') else: raise RuntimeError('Unknown affinity mode') affinity = os.sched_getaffinity(0) return affinity
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/gpu_affinity.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class QuantileLoss(nn.Module): def __init__(self, config): super().__init__() self.register_buffer('q', torch.tensor(config.quantiles)) def forward(self, predictions, targets): diff = predictions - targets ql = (1-self.q)*F.relu(diff) + self.q*F.relu(-diff) losses = ql.view(-1, ql.shape[-1]).mean(0) return losses
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/criterions.py
""" Exponential Moving Average (EMA) of model updates """ from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn class ModelEma(nn.Module): """ Model Exponential Moving Average V2 Keep a moving average of everything in the model state_dict (parameters and buffers). V2 of this module is simpler, it does not match params/buffers based on name but simply iterates in order. It works with torchscript (JIT of full model). """ def __init__(self, model, decay=0.999, device=None): super().__init__() # make a copy of the model for accumulating moving average of weights self.module = deepcopy(model) self.module.eval() self.decay = decay self.device = device # perform ema on different device from model if set if self.device is not None: self.module.to(device=device) def update(self, model): update_fn=lambda ema_v, model_v: self.decay * ema_v + (1. - self.decay) * model_v with torch.no_grad(): for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): if self.device is not None: model_v = model_v.to(device=self.device) ema_v.copy_(update_fn(ema_v, model_v)) def set(self, model): with torch.no_grad(): for ema_v, model_v in zip(self.module.state_dict().values(), model.state_dict().values()): if self.device is not None: model_v = model_v.to(device=self.device) ema_v.copy_( model_v ) def forward(self, x): return self.module(x)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/ema.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################ # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import math import pickle import enum import datetime from collections import namedtuple, OrderedDict import sklearn.preprocessing from sklearn.impute import SimpleImputer import pandas as pd import numpy as np from bisect import bisect import torch from torch.utils.data import Dataset,IterableDataset,DataLoader class DataTypes(enum.IntEnum): """Defines numerical types of each column.""" CONTINUOUS = 0 CATEGORICAL = 1 DATE = 2 STR = 3 class InputTypes(enum.IntEnum): """Defines input types of each column.""" TARGET = 0 OBSERVED = 1 KNOWN = 2 STATIC = 3 ID = 4 # Single column used as an entity identifier TIME = 5 # Single column exclusively used as a time index FeatureSpec = namedtuple('FeatureSpec', ['name', 'feature_type', 'feature_embed_type']) DTYPE_MAP = { DataTypes.CONTINUOUS : np.float32, DataTypes.CATEGORICAL : np.int64, DataTypes.DATE:'datetime64[ns]', DataTypes.STR: str } FEAT_ORDER = [ (InputTypes.STATIC, DataTypes.CATEGORICAL), (InputTypes.STATIC, DataTypes.CONTINUOUS), (InputTypes.KNOWN, DataTypes.CATEGORICAL), (InputTypes.KNOWN, DataTypes.CONTINUOUS), (InputTypes.OBSERVED, DataTypes.CATEGORICAL), (InputTypes.OBSERVED, DataTypes.CONTINUOUS), (InputTypes.TARGET, DataTypes.CONTINUOUS), (InputTypes.ID, DataTypes.CATEGORICAL) ] FEAT_NAMES = ['s_cat' , 's_cont' , 'k_cat' , 'k_cont' , 'o_cat' , 'o_cont' , 'target', 'id'] DEFAULT_ID_COL = 'id' class TFTBinaryDataset(Dataset): def __init__(self, path, config): super(TFTBinaryDataset).__init__() self.features = [x for x in config.features if x.feature_embed_type != DataTypes.DATE] self.example_length = config.example_length self.stride = config.dataset_stride self.grouped = pickle.load(open(path, 'rb')) self.grouped = [x for x in self.grouped if x.shape[0] >= self.example_length] self._cum_examples_in_group = np.cumsum([(g.shape[0] - self.example_length + 1)//self.stride for g in self.grouped]) self.feature_type_col_map = [[i for i,f in enumerate(self.features) if (f.feature_type, f.feature_embed_type) == x] for x in FEAT_ORDER] # The list comprehension below is an elaborate way of rearranging data into correct order, # simultaneously doing casting to proper types. Probably can be written neater self.grouped = [ [ arr[:, idxs].view(dtype=np.float32).astype(DTYPE_MAP[t[1]]) for t, idxs in zip(FEAT_ORDER, self.feature_type_col_map) ] for arr in self.grouped ] def __len__(self): return self._cum_examples_in_group[-1] if len(self._cum_examples_in_group) else 0 def __getitem__(self, idx): g_idx = bisect(self._cum_examples_in_group, idx) e_idx = idx - self._cum_examples_in_group[g_idx-1] if g_idx else idx group = self.grouped[g_idx] tensors = [ torch.from_numpy(feat[e_idx * self.stride:e_idx*self.stride + self.example_length]) if feat.size else torch.empty(0) for feat in group ] return OrderedDict(zip(FEAT_NAMES, tensors)) class TFTDataset(Dataset): def __init__(self, path, config): super(TFTDataset).__init__() self.features = config.features self.data = pd.read_csv(path, index_col=0) self.example_length = config.example_length self.stride = config.dataset_stride # name field is a column name. # there can be multiple entries with the same name because one column can be interpreted in many ways time_col_name = next(x.name for x in self.features if x.feature_type==InputTypes.TIME) id_col_name = next(x.name for x in self.features if x.feature_type==InputTypes.ID) if not id_col_name in self.data.columns: id_col_name = DEFAULT_ID_COL self.features = [x for x in self.features if x.feature_type!=InputTypes.ID] self.features.append(FeatureSpec(DEFAULT_ID_COL, InputTypes.ID, DataTypes.CATEGORICAL)) col_dtypes = {v.name:DTYPE_MAP[v.feature_embed_type] for v in self.features} self.data.sort_values(time_col_name,inplace=True) self.data = self.data[set(x.name for x in self.features)] #leave only relevant columns self.data = self.data.astype(col_dtypes) self.data = self.data.groupby(id_col_name).filter(lambda group: len(group) >= self.example_length) self.grouped = list(self.data.groupby(id_col_name)) self._cum_examples_in_group = np.cumsum([(len(g[1]) - self.example_length + 1)//self.stride for g in self.grouped]) def __len__(self): return self._cum_examples_in_group[-1] def __getitem__(self, idx): g_idx = len([x for x in self._cum_examples_in_group if x <= idx]) e_idx = idx - self._cum_examples_in_group[g_idx-1] if g_idx else idx group = self.grouped[g_idx][1] sliced = group.iloc[e_idx * self.stride:e_idx*self.stride + self.example_length] # We need to be sure that tensors are returned in the correct order tensors = tuple([] for _ in range(8)) for v in self.features: if v.feature_type == InputTypes.STATIC and v.feature_embed_type == DataTypes.CATEGORICAL: tensors[0].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.STATIC and v.feature_embed_type == DataTypes.CONTINUOUS: tensors[1].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.KNOWN and v.feature_embed_type == DataTypes.CATEGORICAL: tensors[2].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.KNOWN and v.feature_embed_type == DataTypes.CONTINUOUS: tensors[3].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.OBSERVED and v.feature_embed_type == DataTypes.CATEGORICAL: tensors[4].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.OBSERVED and v.feature_embed_type == DataTypes.CONTINUOUS: tensors[5].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.TARGET: tensors[6].append(torch.from_numpy(sliced[v.name].to_numpy())) elif v.feature_type == InputTypes.ID: tensors[7].append(torch.from_numpy(sliced[v.name].to_numpy())) tensors = [torch.stack(x, dim=-1) if x else torch.empty(0) for x in tensors] return OrderedDict(zip(FEAT_NAMES, tensors)) def get_dataset_splits(df, config): if hasattr(config, 'relative_split') and config.relative_split: forecast_len = config.example_length - config.encoder_length # The valid split is shifted from the train split by number of the forecast steps to the future. # The test split is shifted by the number of the forecast steps from the valid split train = [] valid = [] test = [] for _, group in df.groupby(DEFAULT_ID_COL): index = group[config.time_ids] _train = group.loc[index < config.valid_boundary] _valid = group.iloc[(len(_train) - config.encoder_length):(len(_train) + forecast_len)] _test = group.iloc[(len(_train) - config.encoder_length + forecast_len):(len(_train) + 2*forecast_len)] train.append(_train) valid.append(_valid) test.append(_test) train = pd.concat(train, axis=0) valid = pd.concat(valid, axis=0) test = pd.concat(test, axis=0) else: index = df[config.time_ids] train = df.loc[(index >= config.train_range[0]) & (index < config.train_range[1])] valid = df.loc[(index >= config.valid_range[0]) & (index < config.valid_range[1])] test = df.loc[(index >= config.test_range[0]) & (index < config.test_range[1])] return train, valid, test def flatten_ids(df, config): if config.missing_id_strategy == 'drop': if hasattr(config, 'combine_ids') and config.combine_ids: index = np.logical_or.reduce([df[c].isna() for c in config.combine_ids]) else: id_col = next(x.name for x in config.features if x.feature_type == InputTypes.ID) index = df[id_col].isna() index = index[index == True].index # Extract indices of nans df.drop(index, inplace=True) if not (hasattr(config, 'combine_ids') and config.combine_ids): id_col = next(x.name for x in config.features if x.feature_type == InputTypes.ID) ids = df[id_col].apply(str) df.drop(id_col, axis=1, inplace=True) encoder = sklearn.preprocessing.LabelEncoder().fit(ids.values) df[DEFAULT_ID_COL] = encoder.transform(ids) encoders = OrderedDict({id_col: encoder}) else: encoders = {c:sklearn.preprocessing.LabelEncoder().fit(df[c].values) for c in config.combine_ids} encoders = OrderedDict(encoders) lens = [len(v.classes_) for v in encoders.values()] clens = np.roll(np.cumprod(lens), 1) clens[0] = 1 # this takes a looooooot of time. Probably it would be better to create 2 dummy columns df[DEFAULT_ID_COL] = df.apply(lambda row: sum([encoders[c].transform([row[c]])[0]*clens[i] for i,c in enumerate(encoders.keys())]), axis=1) df.drop(config.combine_ids, axis=1, inplace=True) return DEFAULT_ID_COL, encoders def impute(df, config): #XXX This ensures that out scaling will have the same mean. We still need to check the variance if not hasattr(config, 'missing_data_label'): return df, None else: imp = SimpleImputer(missing_values=config.missing_data_label, strategy='mean') mask = df.applymap(lambda x: True if x == config.missing_data_label else False) data = df.values col_mask = (data == config.missing_data_label).all(axis=0) data[:,~col_mask] = imp.fit_transform(data) return data, mask def normalize_reals(train, valid, test, config, id_col=DEFAULT_ID_COL): tgt_cols = [x.name for x in config.features if x.feature_type == InputTypes.TARGET] real_cols = list(set(v.name for v in config.features if v.feature_embed_type == DataTypes.CONTINUOUS).difference(set(tgt_cols))) real_scalers = {} tgt_scalers = {} def apply_scalers(df, name=None): if name is None: name = df.name mask = df.applymap(lambda x: True if x == config.missing_data_label else False) if hasattr(config, 'missing_data_label') else None df[real_cols] = real_scalers[name].transform(df[real_cols]) if mask is not None and any(mask): df[real_cols].mask(mask, 10**9) df[tgt_cols] = tgt_scalers[name].transform(df[tgt_cols]) return df if config.scale_per_id: for identifier, sliced in train.groupby(id_col): data = sliced[real_cols] data, _ = impute(data, config) real_scalers[identifier] = sklearn.preprocessing.StandardScaler().fit(data) # XXX We should probably remove examples that contain NaN as a target target = sliced[tgt_cols] tgt_scalers[identifier] = sklearn.preprocessing.StandardScaler().fit(target) train = train.groupby(id_col).apply(apply_scalers) # For valid and testing leave only timeseries previously present in train subset # XXX for proper data science we should consider encoding unseen timeseries as a special case, not throwing them away valid = valid.loc[valid[id_col].isin(real_scalers.keys())] valid = valid.groupby(id_col).apply(apply_scalers) test = test.loc[test[id_col].isin(real_scalers.keys())] test = test.groupby(id_col).apply(apply_scalers) else: data, _ = impute(train[real_cols], config) real_scalers[''] = sklearn.preprocessing.StandardScaler().fit(data) tgt_scalers[''] = sklearn.preprocessing.StandardScaler().fit(train[tgt_cols]) train = apply_scalers(train, name='') valid = apply_scalers(valid, name='') test = apply_scalers(test, name='') return train, valid, test, real_scalers, tgt_scalers def encode_categoricals(train, valid, test, config): cat_encodings = {} cat_cols = list(set(v.name for v in config.features if v.feature_embed_type == DataTypes.CATEGORICAL and v.feature_type != InputTypes.ID)) num_classes = [] #XXX Maybe we should modify config based on this value? Or send a warninig? # For TC performance reasons we might want for num_classes[i] be divisible by 8 # Train categorical encoders for c in cat_cols: if config.missing_cat_data_strategy == 'special_token': #XXX this will probably require some data augmentation unique = train[c].unique() valid[c].loc[valid[c].isin(unique)] = '<UNK>' test[c].loc[test[c].isin(unique)] = '<UNK>' if config.missing_cat_data_strategy == 'encode_all' or \ config.missing_cat_data_strategy == 'special_token': srs = pd.concat([train[c], valid[c], test[c]]).apply(str) cat_encodings[c] = sklearn.preprocessing.LabelEncoder().fit(srs.values) elif config.missing_cat_data_strategy == 'drop': # TODO: implement this. In addition to dropping rows this has to split specific time series in chunks # to prevent data from having temporal gaps pass num_classes.append(srs.nunique()) print('Categorical variables encodings lens: ', num_classes) for split in [train, valid, test]: for c in cat_cols: srs = split[c].apply(str) split[c] = srs split.loc[:,c] = cat_encodings[c].transform(srs) return cat_encodings def preprocess(src_path, dst_path, config): df = pd.read_csv(src_path, index_col=0) for c in config.features: if c.feature_embed_type == DataTypes.DATE: df[c.name] = pd.to_datetime(df[c.name]) # Leave only columns relevant to preprocessing relevant_columns = list(set([f.name for f in config.features] + [config.time_ids])) df = df[relevant_columns] id_col, id_encoders = flatten_ids(df, config) df = df.reindex(sorted(df.columns), axis=1) train, valid, test = get_dataset_splits(df, config) # Length filter the data (all timeseries shorter than example len will be dropped) #for df in [train, valid, test]: # df.groupby(id_col).filter(lambda x: len(x) >= config.example_length) train = pd.concat([x[1] for x in train.groupby(id_col) if len(x[1]) >= config.example_length]) valid = pd.concat([x[1] for x in valid.groupby(id_col) if len(x[1]) >= config.example_length]) test = pd.concat([x[1] for x in test.groupby(id_col) if len(x[1]) >= config.example_length]) train, valid, test, real_scalers, tgt_scalers = normalize_reals(train, valid, test, config, id_col) cat_encodings = encode_categoricals(train, valid, test, config) os.makedirs(dst_path, exist_ok=True) train.to_csv(os.path.join(dst_path, 'train.csv')) valid.to_csv(os.path.join(dst_path, 'valid.csv')) test.to_csv(os.path.join(dst_path, 'test.csv')) # Save relevant columns in binary form for faster dataloading # IMORTANT: We always expect id to be a single column indicating the complete timeseries # We also expect a copy of id in form of static categorical input!!! col_names = [id_col] + [x.name for x in config.features if x.feature_embed_type != DataTypes.DATE and x.feature_type != InputTypes.ID] grouped_train = [x[1][col_names].values.astype(np.float32).view(dtype=np.int32) for x in train.groupby(id_col)] grouped_valid = [x[1][col_names].values.astype(np.float32).view(dtype=np.int32) for x in valid.groupby(id_col)] grouped_test = [x[1][col_names].values.astype(np.float32).view(dtype=np.int32) for x in test.groupby(id_col)] pickle.dump(grouped_train, open(os.path.join(dst_path, 'train.bin'), 'wb')) pickle.dump(grouped_valid, open(os.path.join(dst_path, 'valid.bin'), 'wb')) pickle.dump(grouped_test, open(os.path.join(dst_path, 'test.bin'), 'wb')) with open(os.path.join(dst_path, 'real_scalers.bin'), 'wb') as f: pickle.dump(real_scalers, f) with open(os.path.join(dst_path, 'tgt_scalers.bin'), 'wb') as f: pickle.dump(tgt_scalers, f) with open(os.path.join(dst_path, 'cat_encodings.bin'), 'wb') as f: pickle.dump(cat_encodings, f) with open(os.path.join(dst_path, 'id_encoders.bin'), 'wb') as f: pickle.dump(id_encoders, f) def sample_data(dataset, num_samples): if num_samples < 0: return dataset else: return torch.utils.data.Subset(dataset, np.random.choice(np.arange(len(dataset)), size=num_samples, replace=False)) def standarize_electricity(path): """Code taken from https://github.com/google-research/google-research/blob/master/tft/script_download_data.py""" df = pd.read_csv(os.path.join(path, 'LD2011_2014.txt'), index_col=0, sep=';', decimal=',') df.index = pd.to_datetime(df.index) df.sort_index(inplace=True) # Used to determine the start and end dates of a series output = df.resample('1h').mean().replace(0., np.nan) earliest_time = output.index.min() df_list = [] for label in output: print('Processing {}'.format(label)) srs = output[label] start_date = min(srs.fillna(method='ffill').dropna().index) end_date = max(srs.fillna(method='bfill').dropna().index) active_range = (srs.index >= start_date) & (srs.index <= end_date) srs = srs[active_range].fillna(0.) tmp = pd.DataFrame({'power_usage': srs}) date = tmp.index tmp['t'] = (date - earliest_time).seconds / 60 / 60 + ( date - earliest_time).days * 24 tmp['days_from_start'] = (date - earliest_time).days tmp['categorical_id'] = label tmp['date'] = date tmp['id'] = label tmp['hour'] = date.hour tmp['day'] = date.day tmp['day_of_week'] = date.dayofweek tmp['month'] = date.month df_list.append(tmp) output = pd.concat(df_list, axis=0, join='outer').reset_index(drop=True) output['categorical_id'] = output['id'].copy() output['hours_from_start'] = output['t'] output['categorical_day_of_week'] = output['day_of_week'].copy() output['categorical_hour'] = output['hour'].copy() output.to_csv(os.path.join(path, 'standarized.csv')) def standarize_volatility(path): df = pd.read_csv(os.path.join(path, 'oxfordmanrealizedvolatilityindices.csv'), index_col=0) # no explicit index # Adds additional date/day fields idx = [str(s).split('+')[0] for s in df.index ] # ignore timezones, we don't need them dates = pd.to_datetime(idx) df['date'] = dates df['days_from_start'] = (dates - pd.datetime(2000, 1, 3)).days df['day_of_week'] = dates.dayofweek df['day_of_month'] = dates.day df['week_of_year'] = dates.weekofyear df['month'] = dates.month df['year'] = dates.year df['categorical_id'] = df['Symbol'].copy() # Processes log volatility vol = df['rv5_ss'].copy() vol.loc[vol == 0.] = np.nan df['log_vol'] = np.log(vol) # Adds static information symbol_region_mapping = { '.AEX': 'EMEA', '.AORD': 'APAC', '.BFX': 'EMEA', '.BSESN': 'APAC', '.BVLG': 'EMEA', '.BVSP': 'AMER', '.DJI': 'AMER', '.FCHI': 'EMEA', '.FTMIB': 'EMEA', '.FTSE': 'EMEA', '.GDAXI': 'EMEA', '.GSPTSE': 'AMER', '.HSI': 'APAC', '.IBEX': 'EMEA', '.IXIC': 'AMER', '.KS11': 'APAC', '.KSE': 'APAC', '.MXX': 'AMER', '.N225': 'APAC ', '.NSEI': 'APAC', '.OMXC20': 'EMEA', '.OMXHPI': 'EMEA', '.OMXSPI': 'EMEA', '.OSEAX': 'EMEA', '.RUT': 'EMEA', '.SMSI': 'EMEA', '.SPX': 'AMER', '.SSEC': 'APAC', '.SSMI': 'EMEA', '.STI': 'APAC', '.STOXX50E': 'EMEA' } df['Region'] = df['Symbol'].apply(lambda k: symbol_region_mapping[k]) # Performs final processing output_df_list = [] for grp in df.groupby('Symbol'): sliced = grp[1].copy() sliced.sort_values('days_from_start', inplace=True) # Impute log volatility values sliced['log_vol'].fillna(method='ffill', inplace=True) sliced.dropna() output_df_list.append(sliced) df = pd.concat(output_df_list, axis=0) df.to_csv(os.path.join(path, 'standarized.csv')) def standarize_traffic(path): def process_list(s, variable_type=int, delimiter=None): """Parses a line in the PEMS format to a list.""" if delimiter is None: l = [ variable_type(i) for i in s.replace('[', '').replace(']', '').split() ] else: l = [ variable_type(i) for i in s.replace('[', '').replace(']', '').split(delimiter) ] return l def read_single_list(filename): """Returns single list from a file in the PEMS-custom format.""" with open(os.path.join(path, filename), 'r') as dat: l = process_list(dat.readlines()[0]) return l def read_matrix(filename): """Returns a matrix from a file in the PEMS-custom format.""" array_list = [] with open(os.path.join(path, filename), 'r') as dat: lines = dat.readlines() for i, line in enumerate(lines): if (i + 1) % 50 == 0: print('Completed {} of {} rows for {}'.format(i + 1, len(lines), filename)) array = [ process_list(row_split, variable_type=float, delimiter=None) for row_split in process_list( line, variable_type=str, delimiter=';') ] array_list.append(array) return array_list shuffle_order = np.array(read_single_list('randperm')) - 1 # index from 0 train_dayofweek = read_single_list('PEMS_trainlabels') train_tensor = read_matrix('PEMS_train') test_dayofweek = read_single_list('PEMS_testlabels') test_tensor = read_matrix('PEMS_test') # Inverse permutate shuffle order print('Shuffling') inverse_mapping = { new_location: previous_location for previous_location, new_location in enumerate(shuffle_order) } reverse_shuffle_order = np.array([ inverse_mapping[new_location] for new_location, _ in enumerate(shuffle_order) ]) # Group and reoder based on permuation matrix print('Reodering') day_of_week = np.array(train_dayofweek + test_dayofweek) combined_tensor = np.array(train_tensor + test_tensor) day_of_week = day_of_week[reverse_shuffle_order] combined_tensor = combined_tensor[reverse_shuffle_order] # Put everything back into a dataframe print('Parsing as dataframe') labels = ['traj_{}'.format(i) for i in read_single_list('stations_list')] hourly_list = [] for day, day_matrix in enumerate(combined_tensor): # Hourly data hourly = pd.DataFrame(day_matrix.T, columns=labels) hourly['hour_on_day'] = [int(i / 6) for i in hourly.index ] # sampled at 10 min intervals if hourly['hour_on_day'].max() > 23 or hourly['hour_on_day'].min() < 0: raise ValueError('Invalid hour! {}-{}'.format( hourly['hour_on_day'].min(), hourly['hour_on_day'].max())) hourly = hourly.groupby('hour_on_day', as_index=True).mean()[labels] hourly['sensor_day'] = day hourly['time_on_day'] = hourly.index hourly['day_of_week'] = day_of_week[day] hourly_list.append(hourly) hourly_frame = pd.concat(hourly_list, axis=0, ignore_index=True, sort=False) # Flatten such that each entitiy uses one row in dataframe store_columns = [c for c in hourly_frame.columns if 'traj' in c] other_columns = [c for c in hourly_frame.columns if 'traj' not in c] flat_df = pd.DataFrame(columns=['values', 'prev_values', 'next_values'] + other_columns + ['id']) for store in store_columns: print('Processing {}'.format(store)) sliced = hourly_frame[[store] + other_columns].copy() sliced.columns = ['values'] + other_columns sliced['id'] = int(store.replace('traj_', '')) # Sort by Sensor-date-time key = sliced['id'].apply(str) \ + sliced['sensor_day'].apply(lambda x: '_{:03d}'.format(x)) \ + sliced['time_on_day'].apply(lambda x: '_{:03d}'.format(x)) sliced = sliced.set_index(key).sort_index() sliced['values'] = sliced['values'].fillna(method='ffill') sliced['prev_values'] = sliced['values'].shift(1) sliced['next_values'] = sliced['values'].shift(-1) flat_df = flat_df.append(sliced.dropna(), ignore_index=True, sort=False) # Filter to match range used by other academic papers index = flat_df['sensor_day'] flat_df = flat_df[index < 173].copy() # Creating columns fo categorical inputs flat_df['categorical_id'] = flat_df['id'].copy() flat_df['hours_from_start'] = flat_df['time_on_day'] \ + flat_df['sensor_day']*24. flat_df['categorical_day_of_week'] = flat_df['day_of_week'].copy() flat_df['categorical_time_on_day'] = flat_df['time_on_day'].copy() flat_df.to_csv(os.path.join(path, 'standarized.csv')) # XXX needs rework def standarize_favorita(data_folder): import gc # Extract only a subset of data to save/process for efficiency start_date = pd.datetime(2015, 1, 1) end_date = pd.datetime(2016, 6, 1) print('Regenerating data...') # load temporal data temporal = pd.read_csv(os.path.join(data_folder, 'train.csv'), index_col=0) store_info = pd.read_csv(os.path.join(data_folder, 'stores.csv'), index_col=0) oil = pd.read_csv( os.path.join(data_folder, 'oil.csv'), index_col=0).iloc[:, 0] holidays = pd.read_csv(os.path.join(data_folder, 'holidays_events.csv')) items = pd.read_csv(os.path.join(data_folder, 'items.csv'), index_col=0) transactions = pd.read_csv(os.path.join(data_folder, 'transactions.csv')) # Take first 6 months of data temporal['date'] = pd.to_datetime(temporal['date']) # Filter dates to reduce storage space requirements if start_date is not None: temporal = temporal[(temporal['date'] >= start_date)] if end_date is not None: temporal = temporal[(temporal['date'] < end_date)] dates = temporal['date'].unique() # Add trajectory identifier temporal['traj_id'] = temporal['store_nbr'].apply( str) + '_' + temporal['item_nbr'].apply(str) temporal['unique_id'] = temporal['traj_id'] + '_' + temporal['date'].apply( str) # Remove all IDs with negative returns print('Removing returns data') min_returns = temporal['unit_sales'].groupby(temporal['traj_id']).min() valid_ids = set(min_returns[min_returns >= 0].index) selector = temporal['traj_id'].apply(lambda traj_id: traj_id in valid_ids) new_temporal = temporal[selector].copy() del temporal gc.collect() temporal = new_temporal temporal['open'] = 1 # Resampling print('Resampling to regular grid') resampled_dfs = [] for traj_id, raw_sub_df in temporal.groupby('traj_id'): print('Resampling', traj_id) sub_df = raw_sub_df.set_index('date', drop=True).copy() sub_df = sub_df.resample('1d').last() sub_df['date'] = sub_df.index sub_df[['store_nbr', 'item_nbr', 'onpromotion']] \ = sub_df[['store_nbr', 'item_nbr', 'onpromotion']].fillna(method='ffill') sub_df['open'] = sub_df['open'].fillna( 0) # flag where sales data is unknown sub_df['log_sales'] = np.log(sub_df['unit_sales']) resampled_dfs.append(sub_df.reset_index(drop=True)) new_temporal = pd.concat(resampled_dfs, axis=0) del temporal gc.collect() temporal = new_temporal print('Adding oil') oil.name = 'oil' oil.index = pd.to_datetime(oil.index) #XXX the lines below match the value of the oil on given date with the rest of the timeseries # missing values in oil series are copied from the index before. Then the oil series is joined with # temporal. Then there are some dates present in temporal which arent present in oil, for which # oil values is substituted with -1. WHY?! #TODO: check how many nans there are after first step. Previously oil series was extended by dates # present in dates variable with nan value, which were forward filled. # This behavior is no longer supported by pandas, so we changed to DataFrame.isin method. # This leaves us with more nans after first step than previously. To achieve previous behavior # we have to join series before filling nans. temporal = temporal.join( #oil.loc[oil.index.isin(dates)].fillna(method='ffill'), on='date', how='left') oil.loc[oil.index.isin(dates)], on='date', how='left') temporal['oil'] = temporal['oil'].fillna(method='ffill') temporal['oil'] = temporal['oil'].fillna(-1) print('Adding store info') temporal = temporal.join(store_info, on='store_nbr', how='left') print('Adding item info') temporal = temporal.join(items, on='item_nbr', how='left') transactions['date'] = pd.to_datetime(transactions['date']) temporal = temporal.merge( transactions, left_on=['date', 'store_nbr'], right_on=['date', 'store_nbr'], how='left') temporal['transactions'] = temporal['transactions'].fillna(-1) # Additional date info temporal['day_of_week'] = pd.to_datetime(temporal['date'].values).dayofweek temporal['day_of_month'] = pd.to_datetime(temporal['date'].values).day temporal['month'] = pd.to_datetime(temporal['date'].values).month # Add holiday info print('Adding holidays') holiday_subset = holidays[holidays['transferred'].apply( lambda x: not x)].copy() holiday_subset.columns = [ s if s != 'type' else 'holiday_type' for s in holiday_subset.columns ] holiday_subset['date'] = pd.to_datetime(holiday_subset['date']) local_holidays = holiday_subset[holiday_subset['locale'] == 'Local'] regional_holidays = holiday_subset[holiday_subset['locale'] == 'Regional'] national_holidays = holiday_subset[holiday_subset['locale'] == 'National'] temporal['national_hol'] = temporal.merge( national_holidays, left_on=['date'], right_on=['date'], how='left')['description'].fillna('') temporal['regional_hol'] = temporal.merge( regional_holidays, left_on=['state', 'date'], right_on=['locale_name', 'date'], how='left')['description'].fillna('') temporal['local_hol'] = temporal.merge( local_holidays, left_on=['city', 'date'], right_on=['locale_name', 'date'], how='left')['description'].fillna('') temporal.sort_values('unique_id', inplace=True) # Transform date to integer index start_date = pd.to_datetime(min(temporal['date'])) dates = temporal['date'].apply(pd.to_datetime) temporal['days_from_start'] = (dates - start_date).dt.days temporal['categorical_id'] = temporal['traj_id'].copy() print('Saving processed file to {}'.format(os.path.join(data_folder, 'standarized.csv'))) temporal.to_csv(os.path.join(data_folder, 'standarized.csv'))
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/data_utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time class PerformanceMeter(): def __init__(self): self.reset() def reset(self): self.avg = 0 self.count = 0 self.total_time = 0 self.last_update_time = time.time() self.intervals = [] def update(self, n, exclude_from_total=False): delta = time.time() - self.last_update_time self.intervals.append(delta) if not exclude_from_total: self.total_time += delta self.count += n self.avg = self.count / self.total_time self.last_update_time = time.time() return n/delta def reset_current_lap(self): self.last_update_time = time.time() def p(self, i): assert i <= 100 idx = int(len(self.intervals) * i / 100) return sorted(self.intervals)[idx]
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import time import os import pickle import json import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from torch.utils.data import DataLoader, DistributedSampler, RandomSampler from apex import amp from apex.optimizers import FusedAdam #from torch.nn.parallel import DistributedDataParallel as DDP from apex.parallel import DistributedDataParallel as DDP import numpy as np import dllogger from modeling import TemporalFusionTransformer from configuration import CONFIGS from data_utils import TFTBinaryDataset, sample_data from log_helper import setup_logger from criterions import QuantileLoss from inference import predict from utils import PerformanceMeter import gpu_affinity from ema import ModelEma def load_dataset(args, config): train_split = TFTBinaryDataset(os.path.join(args.data_path, 'train.bin'), config) train_split = sample_data(train_split, args.sample_data[0]) if args.distributed_world_size > 1: data_sampler = DistributedSampler(train_split, args.distributed_world_size, args.distributed_rank, seed=args.seed + args.distributed_rank, drop_last=True) else: data_sampler = RandomSampler(train_split) train_loader = DataLoader(train_split, batch_size=args.batch_size, num_workers=4, sampler=data_sampler, pin_memory=True) valid_split = TFTBinaryDataset(os.path.join(args.data_path, 'valid.bin'), config) valid_split = sample_data(valid_split, args.sample_data[1]) if args.distributed_world_size > 1: data_sampler = DistributedSampler(valid_split, args.distributed_world_size, args.distributed_rank, shuffle=False, drop_last=False) else: data_sampler = None valid_loader = DataLoader(valid_split, batch_size=args.batch_size, sampler=data_sampler, num_workers=4, pin_memory=True) test_split = TFTBinaryDataset(os.path.join(args.data_path, 'test.bin'), config) if args.distributed_world_size > 1: data_sampler = DistributedSampler(test_split, args.distributed_world_size, args.distributed_rank, shuffle=False, drop_last=False) else: data_sampler = None test_loader = DataLoader(test_split, batch_size=args.batch_size, sampler=data_sampler, num_workers=4, pin_memory=True) print_once(f'Train split length: {len(train_split)}') print_once(f'Valid split length: {len(valid_split)}') print_once(f'Test split length: {len(test_split)}') return train_loader, valid_loader, test_loader def print_once(*args, **kwargs): if not dist.is_initialized() or dist.get_rank() == 0: print(*args, **kwargs) def main(args): ### INIT DISTRIBUTED args.distributed_world_size = int(os.environ.get('WORLD_SIZE', 1)) args.local_rank = int(os.environ.get('LOCAL_RANK', 0)) if args.distributed_world_size > 1: dist.init_process_group(backend='nccl', init_method='env://') print_once(f'Distributed training with {args.distributed_world_size} GPUs') args.distributed_rank = dist.get_rank() torch.cuda.set_device(args.local_rank) torch.cuda.synchronize() # Enable CuDNN autotuner nproc_per_node = torch.cuda.device_count() if args.affinity != 'disabled': affinity = gpu_affinity.set_affinity( args.local_rank, nproc_per_node, args.affinity ) print(f'{args.local_rank}: thread affinity: {affinity}') torch.backends.cudnn.benchmark = True if args.seed: np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) setup_logger(args) config = CONFIGS[args.dataset]() if args.overwrite_config: config.__dict__.update(json.loads(args.overwrite_config)) dllogger.log(step='HPARAMS', data={**vars(args), **vars(config)}, verbosity=1) model = TemporalFusionTransformer(config).cuda() if args.ema_decay: model_ema = ModelEma(model, decay=args.ema_decay) print_once('Model params: {}'.format(sum(p.numel() for p in model.parameters()))) criterion = QuantileLoss(config).cuda() optimizer = FusedAdam(model.parameters(), lr=args.lr) if args.use_amp: model, optimizer = amp.initialize(model, optimizer, opt_level="O2", loss_scale="dynamic") if args.distributed_world_size > 1: #model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) model = DDP(model) train_loader, valid_loader, test_loader = load_dataset(args, config) global_step = 0 perf_meter = PerformanceMeter() for epoch in range(args.epochs): start = time.time() dllogger.log(step=global_step, data={'epoch': epoch}, verbosity=1) model.train() for local_step, batch in enumerate(train_loader): perf_meter.reset_current_lap() batch = {key: tensor.cuda() if tensor.numel() else None for key, tensor in batch.items()} predictions = model(batch) targets = batch['target'][:,config.encoder_length:,:] p_losses = criterion(predictions, targets) loss = p_losses.sum() if args.use_amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if not args.grad_accumulation or (global_step+1) % args.grad_accumulation == 0: if args.clip_grad: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) optimizer.step() optimizer.zero_grad() if args.ema_decay: model_ema.update(model) if args.distributed_world_size > 1: dist.all_reduce(p_losses) p_losses /= args.distributed_world_size loss = p_losses.sum() torch.cuda.synchronize() ips = perf_meter.update(args.batch_size * args.distributed_world_size, exclude_from_total=local_step in [0, len(train_loader)-1]) log_dict = {'P10':p_losses[0].item(), 'P50':p_losses[1].item(), 'P90':p_losses[2].item(), 'loss': loss.item(), 'items/s':ips} dllogger.log(step=global_step, data=log_dict, verbosity=1) global_step += 1 validate(args, config, model_ema if args.ema_decay else model, criterion, valid_loader, global_step) if validate.early_stop_c >= args.early_stopping: print_once('Early stopping') break ### TEST PHASE ### state_dict = torch.load(os.path.join(args.results, 'checkpoint.pt'), map_location='cpu') if isinstance(model, DDP): model.module.load_state_dict(state_dict['model']) else: model.load_state_dict(state_dict['model']) model.cuda().eval() tgt_scalers = pickle.load(open(os.path.join(args.data_path, 'tgt_scalers.bin'), 'rb')) cat_encodings = pickle.load(open(os.path.join(args.data_path,'cat_encodings.bin'), 'rb')) unscaled_predictions, unscaled_targets, _, _ = predict(args, config, model, test_loader, tgt_scalers, cat_encodings) losses = QuantileLoss(config)(unscaled_predictions, unscaled_targets) normalizer = unscaled_targets.abs().mean() quantiles = 2 * losses / normalizer if args.distributed_world_size > 1: quantiles = quantiles.cuda() dist.all_reduce(quantiles) quantiles /= args.distributed_world_size quantiles = {'test_p10': quantiles[0].item(), 'test_p50': quantiles[1].item(), 'test_p90': quantiles[2].item(), 'sum':sum(quantiles).item()} finish_log = {**quantiles, 'average_ips':perf_meter.avg, 'convergence_step':validate.conv_step} dllogger.log(step=(), data=finish_log, verbosity=1) def validate(args, config, model, criterion, dataloader, global_step): if not hasattr(validate, 'best_valid_loss'): validate.best_valid_loss = float('inf') if not hasattr(validate, 'early_stop_c'): validate.early_stop_c = 0 model.eval() losses = [] validation_start = time.time() for batch in dataloader: with torch.no_grad(): batch = {key: tensor.cuda() if tensor.numel() else None for key, tensor in batch.items()} predictions = model(batch) targets = batch['target'][:,config.encoder_length:,:] p_losses = criterion(predictions, targets) bs = next(t for t in batch.values() if t is not None).shape[0] losses.append((p_losses, bs)) validation_end = time.time() p_losses = sum([l[0]*l[1] for l in losses])/sum([l[1] for l in losses]) #takes into accunt that the last batch is not full if args.distributed_world_size > 1: dist.all_reduce(p_losses) p_losses = p_losses/args.distributed_world_size ips = len(dataloader.dataset) / (validation_end - validation_start) log_dict = {'P10':p_losses[0].item(), 'P50':p_losses[1].item(), 'P90':p_losses[2].item(), 'loss': p_losses.sum().item(), 'items/s':ips} if log_dict['loss'] < validate.best_valid_loss: validate.best_valid_loss = log_dict['loss'] validate.early_stop_c = 0 validate.conv_step = global_step if not dist.is_initialized() or dist.get_rank() == 0: state_dict = model.module.state_dict() if isinstance(model, (DDP, ModelEma)) else model.state_dict() ckpt = {'args':args, 'config':config, 'model':state_dict} torch.save(ckpt, os.path.join(args.results, 'checkpoint.pt')) if args.distributed_world_size > 1: dist.barrier() else: validate.early_stop_c += 1 log_dict = {'val_'+k:v for k,v in log_dict.items()} dllogger.log(step=global_step, data=log_dict, verbosity=1) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, required=True, help='Path to the dataset') parser.add_argument('--dataset', type=str, required=True, choices=CONFIGS.keys(), help='Dataset name') parser.add_argument('--epochs', type=int, default=25, help='Default number of training epochs') parser.add_argument('--sample_data', type=lambda x: int(float(x)), nargs=2, default=[-1, -1], help="""Subsample the dataset. Specify number of training and valid examples. Values can be provided in scientific notation. Floats will be truncated.""") parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--seed', type=int, default=1) parser.add_argument('--use_amp', action='store_true', help='Enable automatic mixed precision') parser.add_argument('--clip_grad', type=float, default=0.0) parser.add_argument('--grad_accumulation', type=int, default=0) parser.add_argument('--early_stopping', type=int, default=1000, help='Stop training if validation loss does not improve for more than this number of epochs.') parser.add_argument('--results', type=str, default='/results', help='Directory in which results are stored') parser.add_argument('--log_file', type=str, default='dllogger.json', help='Name of dllogger output file') parser.add_argument('--overwrite_config', type=str, default='', help='JSON string used to overload config') parser.add_argument('--affinity', type=str, default='socket_unique_interleaved', choices=['socket', 'single', 'single_unique', 'socket_unique_interleaved', 'socket_unique_continuous', 'disabled'], help='type of CPU affinity') parser.add_argument("--ema_decay", type=float, default=0.0, help='Use exponential moving average') ARGS = parser.parse_args() main(ARGS)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/train.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import numpy as np import pickle import argparse import torch from torch.utils.data import DataLoader from torch.cuda import amp from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from modeling import TemporalFusionTransformer from configuration import ElectricityConfig from data_utils import TFTDataset from utils import PerformanceMeter from criterions import QuantileLoss import dllogger from log_helper import setup_logger def _unscale_per_id(config, values, ids, scalers): values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) flat_values['id'] = ids df_list = [] for idx, group in flat_values.groupby('id'): scaler = scalers[idx] group_copy = group.copy() for col in group_copy.columns: if not 'id' in col: _col = np.expand_dims(group_copy[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] group_copy[col] = _t_col df_list.append(group_copy) flat_values = pd.concat(df_list, axis=0) flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor def _unscale(config, values, scaler): values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) for col in flat_values.columns: if not 'id' in col: _col = np.expand_dims(flat_values[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] flat_values[col] = _t_col flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor def predict(args, config, model, data_loader, scalers, cat_encodings, extend_targets=False): model.eval() predictions = [] targets = [] ids = [] perf_meter = PerformanceMeter() n_workers = args.distributed_world_size if hasattr(args, 'distributed_world_size') else 1 for step, batch in enumerate(data_loader): perf_meter.reset_current_lap() with torch.no_grad(): batch = {key: tensor.cuda() if tensor.numel() else None for key, tensor in batch.items()} ids.append(batch['id'][:,0,:]) targets.append(batch['target']) predictions.append(model(batch).float()) perf_meter.update(args.batch_size * n_workers, exclude_from_total=step in [0, len(data_loader)-1]) targets = torch.cat(targets, dim=0) if not extend_targets: targets = targets[:,config.encoder_length:,:] predictions = torch.cat(predictions, dim=0) if config.scale_per_id: ids = torch.cat(ids, dim=0).cpu().numpy() unscaled_predictions = torch.stack( [_unscale_per_id(config, predictions[:,:,i], ids, scalers) for i in range(len(config.quantiles))], dim=-1) unscaled_targets = _unscale_per_id(config, targets[:,:,0], ids, scalers).unsqueeze(-1) else: ids = None unscaled_predictions = torch.stack( [_unscale(config, predictions[:,:,i], scalers['']) for i in range(len(config.quantiles))], dim=-1) unscaled_targets = _unscale(config, targets[:,:,0], scalers['']).unsqueeze(-1) return unscaled_predictions, unscaled_targets, ids, perf_meter def visualize_v2(args, config, model, data_loader, scalers, cat_encodings): unscaled_predictions, unscaled_targets, ids, _ = predict(args, config, model, data_loader, scalers, cat_encodings, extend_targets=True) num_horizons = config.example_length - config.encoder_length + 1 pad = unscaled_predictions.new_full((unscaled_targets.shape[0], unscaled_targets.shape[1] - unscaled_predictions.shape[1], unscaled_predictions.shape[2]), fill_value=float('nan')) pad[:,-1,:] = unscaled_targets[:,-num_horizons,:] unscaled_predictions = torch.cat((pad, unscaled_predictions), dim=1) ids = torch.from_numpy(ids.squeeze()) joint_graphs = torch.cat([unscaled_targets, unscaled_predictions], dim=2) graphs = {i:joint_graphs[ids == i, :, :] for i in set(ids.tolist())} for key, g in graphs.items(): for i, ex in enumerate(g): df = pd.DataFrame(ex.numpy(), index=range(num_horizons - ex.shape[0], num_horizons), columns=['target'] + [f'P{int(q*100)}' for q in config.quantiles]) fig = df.plot().get_figure() ax = fig.get_axes()[0] _values = df.values[config.encoder_length-1:,:] ax.fill_between(range(num_horizons), _values[:,1], _values[:,-1], alpha=0.2, color='green') os.makedirs(os.path.join(args.results, 'single_example_vis', str(key)), exist_ok=True) fig.savefig(os.path.join(args.results, 'single_example_vis', str(key), f'{i}.pdf')) def inference(args, config, model, data_loader, scalers, cat_encodings): unscaled_predictions, unscaled_targets, ids, perf_meter = predict(args, config, model, data_loader, scalers, cat_encodings) if args.joint_visualization or args.save_predictions: ids = torch.from_numpy(ids.squeeze()) #ids = torch.cat([x['id'][0] for x in data_loader.dataset]) joint_graphs = torch.cat([unscaled_targets, unscaled_predictions], dim=2) graphs = {i:joint_graphs[ids == i, :, :] for i in set(ids.tolist())} for key, g in graphs.items(): #timeseries id, joint targets and predictions _g = {'targets': g[:,:,0]} _g.update({f'P{int(q*100)}':g[:,:,i+1] for i, q in enumerate(config.quantiles)}) if args.joint_visualization: summary_writer = SummaryWriter(log_dir=os.path.join(args.results, 'predictions_vis', str(key))) for q, t in _g.items(): # target and quantiles, timehorizon values if q == 'targets': targets = torch.cat([t[:,0], t[-1,1:]]) # WIP # We want to plot targets on the same graph as predictions. Probably could be written better. for i, val in enumerate(targets): summary_writer.add_scalars(str(key), {f'{q}':val}, i) continue # Tensor t contains different time horizons which are shifted in phase # Next lines realign them y = t.new_full((t.shape[0] + t.shape[1] -1, t.shape[1]), float('nan')) for i in range(y.shape[1]): y[i:i+t.shape[0], i] = t[:,i] for i, vals in enumerate(y): # timestep, timehorizon values value summary_writer.add_scalars(str(key), {f'{q}_t+{j+1}':v for j,v in enumerate(vals) if v == v}, i) summary_writer.close() if args.save_predictions: for q, t in _g.items(): df = pd.DataFrame(t.tolist()) df.columns = [f't+{i+1}' for i in range(len(df.columns))] os.makedirs(os.path.join(args.results, 'predictions', str(key)), exist_ok=True) df.to_csv(os.path.join(args.results, 'predictions', str(key), q+'.csv')) losses = QuantileLoss(config)(unscaled_predictions, unscaled_targets) normalizer = unscaled_targets.abs().mean() q_risk = 2 * losses / normalizer perf_dict = { 'throughput': perf_meter.avg, 'latency_avg': perf_meter.total_time/len(perf_meter.intervals), 'latency_p90': perf_meter.p(90), 'latency_p95': perf_meter.p(95), 'latency_p99': perf_meter.p(99), 'total_infernece_time': perf_meter.total_time, } return q_risk, perf_dict def main(args): setup_logger(args) # Set up model state_dict = torch.load(args.checkpoint) config = state_dict['config'] model = TemporalFusionTransformer(config).cuda() model.load_state_dict(state_dict['model']) model.eval() model.cuda() # Set up dataset test_split = TFTDataset(args.data, config) data_loader = DataLoader(test_split, batch_size=args.batch_size, num_workers=4) scalers = pickle.load(open(args.tgt_scalers, 'rb')) cat_encodings = pickle.load(open(args.cat_encodings, 'rb')) if args.visualize: # TODO: abstract away all forms of visualization. visualize_v2(args, config, model, data_loader, scalers, cat_encodings) quantiles, perf_dict = inference(args, config, model, data_loader, scalers, cat_encodings) quantiles = {'test_p10': quantiles[0].item(), 'test_p50': quantiles[1].item(), 'test_p90': quantiles[2].item(), 'sum':sum(quantiles).item()} finish_log = {**quantiles, **perf_dict} dllogger.log(step=(), data=finish_log, verbosity=1) print('Test q-risk: P10 {} | P50 {} | P90 {}'.format(*quantiles)) print('Latency:\n\tAverage {:.3f}s\n\tp90 {:.3f}s\n\tp95 {:.3f}s\n\tp99 {:.3f}s'.format( perf_dict['latency_avg'], perf_dict['latency_p90'], perf_dict['latency_p95'], perf_dict['latency_p99'])) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', type=str, help='Path to the checkpoint') parser.add_argument('--data', type=str, help='Path to the test split of the dataset') parser.add_argument('--tgt_scalers', type=str, help='Path to the tgt_scalers.bin file produced by the preprocessing') parser.add_argument('--cat_encodings', type=str, help='Path to the cat_encodings.bin file produced by the preprocessing') parser.add_argument('--batch_size', type=int, default=64) parser.add_argument('--visualize', action='store_true', help='Visualize predictions - each example on the separate plot') parser.add_argument('--joint_visualization', action='store_true', help='Visualize predictions - each timeseries on separate plot. Projections will be concatenated.') parser.add_argument('--save_predictions', action='store_true') parser.add_argument('--results', type=str, default='/results') parser.add_argument('--log_file', type=str, default='dllogger.json') ARGS = parser.parse_args() main(ARGS)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/inference.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import sys import itertools import atexit import dllogger from dllogger import Backend, JSONStreamBackend, StdOutBackend import torch.distributed as dist from torch.utils.tensorboard import SummaryWriter class TensorBoardBackend(Backend): def __init__(self, verbosity, log_dir): super().__init__(verbosity=verbosity) self.summary_writer = SummaryWriter(log_dir=os.path.join(log_dir, 'TB_summary'), flush_secs=120, max_queue=200 ) self.hp_cache = None atexit.register(self.summary_writer.close) @property def log_level(self): return self._log_level def metadata(self, timestamp, elapsedtime, metric, metadata): pass def log(self, timestamp, elapsedtime, step, data): if step == 'HPARAMS': parameters = {k: v for k, v in data.items() if not isinstance(v, (list, tuple))} #Unpack list and tuples for d in [{k+f'_{i}':v for i,v in enumerate(l)} for k,l in data.items() if isinstance(l, (list, tuple))]: parameters.update(d) #Remove custom classes parameters = {k: v for k, v in data.items() if isinstance(v, (int, float, str, bool))} parameters.update({k:'None' for k, v in data.items() if v is None}) self.hp_cache = parameters if step == (): if self.hp_cache is None: print('Warning: Cannot save HParameters. Please log HParameters with step=\'HPARAMS\'', file=sys.stderr) return self.summary_writer.add_hparams(self.hp_cache, data) if not isinstance(step, int): return for k, v in data.items(): self.summary_writer.add_scalar(k, v, step) def flush(self): pass def setup_logger(args): os.makedirs(args.results, exist_ok=True) log_path = os.path.join(args.results, args.log_file) if os.path.exists(log_path): for i in itertools.count(): s_fname = args.log_file.split('.') fname = '.'.join(s_fname[:-1]) + f'_{i}.' + s_fname[-1] if len(s_fname) > 1 else args.stat_file + f'.{i}' log_path = os.path.join(args.results, fname) if not os.path.exists(log_path): break def metric_format(metric, metadata, value): return "{}: {}".format(metric, f'{value:.5f}' if isinstance(value, float) else value) def step_format(step): if step == (): return "Finished |" elif isinstance(step, int): return "Step {0: <5} |".format(step) return "Step {} |".format(step) if not dist.is_initialized() or not args.distributed_world_size > 1 or args.distributed_rank == 0: dllogger.init(backends=[JSONStreamBackend(verbosity=1, filename=log_path), TensorBoardBackend(verbosity=1, log_dir=args.results), StdOutBackend(verbosity=2, step_format=step_format, prefix_format=lambda x: "")#, #metric_format=metric_format) ]) else: dllogger.init(backends=[]) dllogger.log(step='PARAMETER', data=vars(args), verbosity=0) container_setup_info = {**get_framework_env_vars(), **get_system_info()} dllogger.log(step='ENVIRONMENT', data=container_setup_info, verbosity=0) dllogger.metadata('loss', {'GOAL': 'MINIMIZE', 'STAGE': 'TRAIN', 'format': ':5f'}) dllogger.metadata('P10', {'GOAL': 'MINIMIZE', 'STAGE': 'TRAIN', 'format': ':5f'}) dllogger.metadata('P50', {'GOAL': 'MINIMIZE', 'STAGE': 'TRAIN', 'format': ':5f'}) dllogger.metadata('P90', {'GOAL': 'MINIMIZE', 'STAGE': 'TRAIN', 'format': ':5f'}) dllogger.metadata('items/s', {'GOAL': 'MAXIMIZE', 'STAGE': 'TRAIN', 'format': ':1f'}) dllogger.metadata('val_loss', {'GOAL': 'MINIMIZE', 'STAGE': 'VAL', 'format':':5f'}) dllogger.metadata('val_P10', {'GOAL': 'MINIMIZE', 'STAGE': 'VAL', 'format': ':5f'}) dllogger.metadata('val_P50', {'GOAL': 'MINIMIZE', 'STAGE': 'VAL', 'format': ':5f'}) dllogger.metadata('val_P90', {'GOAL': 'MINIMIZE', 'STAGE': 'VAL', 'format': ':5f'}) dllogger.metadata('val_items/s', {'GOAL': 'MAXIMIZE', 'STAGE': 'VAL', 'format': ':1f'}) dllogger.metadata('test_P10', {'GOAL': 'MINIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) dllogger.metadata('test_P50', {'GOAL': 'MINIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) dllogger.metadata('test_P90', {'GOAL': 'MINIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) dllogger.metadata('throughput', {'GOAL': 'MAXIMIZE', 'STAGE': 'TEST', 'format': ':1f'}) dllogger.metadata('latency_p90', {'GOAL': 'MIMIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) dllogger.metadata('latency_p95', {'GOAL': 'MIMIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) dllogger.metadata('latency_p99', {'GOAL': 'MIMIMIZE', 'STAGE': 'TEST', 'format': ':5f'}) def get_framework_env_vars(): return { 'NVIDIA_PYTORCH_VERSION': os.environ.get('NVIDIA_PYTORCH_VERSION'), 'PYTORCH_VERSION': os.environ.get('PYTORCH_VERSION'), 'CUBLAS_VERSION': os.environ.get('CUBLAS_VERSION'), 'NCCL_VERSION': os.environ.get('NCCL_VERSION'), 'CUDA_DRIVER_VERSION': os.environ.get('CUDA_DRIVER_VERSION'), 'CUDNN_VERSION': os.environ.get('CUDNN_VERSION'), 'CUDA_VERSION': os.environ.get('CUDA_VERSION'), 'NVIDIA_PIPELINE_ID': os.environ.get('NVIDIA_PIPELINE_ID'), 'NVIDIA_BUILD_ID': os.environ.get('NVIDIA_BUILD_ID'), 'NVIDIA_TF32_OVERRIDE': os.environ.get('NVIDIA_TF32_OVERRIDE'), } def get_system_info(): system_info = subprocess.run('nvidia-smi --query-gpu=gpu_name,memory.total,enforced.power.limit --format=csv'.split(), capture_output=True).stdout system_info = [i.decode('utf-8') for i in system_info.split(b'\n')] system_info = [x for x in system_info if x] return {'system_info': system_info}
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/log_helper.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from typing import Dict, Tuple, Optional, List if os.environ.get("TFT_SCRIPTING", False): from torch.nn import LayerNorm else: from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm class MaybeLayerNorm(nn.Module): def __init__(self, output_size, hidden_size, eps): super().__init__() if output_size and output_size == 1: self.ln = nn.Identity() else: self.ln = LayerNorm(output_size if output_size else hidden_size, eps=eps) def forward(self, x): return self.ln(x) class GLU(nn.Module): def __init__(self, hidden_size, output_size): super().__init__() self.lin = nn.Linear(hidden_size, output_size * 2) def forward(self, x: Tensor) -> Tensor: x = self.lin(x) x = F.glu(x) return x class GRN(nn.Module): def __init__(self, input_size, hidden_size, output_size=None, context_hidden_size=None, dropout=0): super().__init__() self.layer_norm = MaybeLayerNorm(output_size, hidden_size, eps=1e-3) self.lin_a = nn.Linear(input_size, hidden_size) if context_hidden_size is not None: self.lin_c = nn.Linear(context_hidden_size, hidden_size, bias=False) self.lin_i = nn.Linear(hidden_size, hidden_size) self.glu = GLU(hidden_size, output_size if output_size else hidden_size) self.dropout = nn.Dropout(dropout) self.out_proj = nn.Linear(input_size, output_size) if output_size else None def forward(self, a: Tensor, c: Optional[Tensor] = None): x = self.lin_a(a) if c is not None: x = x + self.lin_c(c).unsqueeze(1) x = F.elu(x) x = self.lin_i(x) x = self.dropout(x) x = self.glu(x) y = a if not self.out_proj else self.out_proj(a) x = x + y x = self.layer_norm(x) return x class TFTEmbedding(nn.Module): def __init__(self, config): super().__init__() self.s_cat_inp_lens = config.static_categorical_inp_lens self.t_cat_k_inp_lens = config.temporal_known_categorical_inp_lens self.t_cat_o_inp_lens = config.temporal_observed_categorical_inp_lens self.s_cont_inp_size = config.static_continuous_inp_size self.t_cont_k_inp_size = config.temporal_known_continuous_inp_size self.t_cont_o_inp_size = config.temporal_observed_continuous_inp_size self.t_tgt_size = config.temporal_target_size self.hidden_size = config.hidden_size # There are 7 types of input: # 1. Static categorical # 2. Static continuous # 3. Temporal known a priori categorical # 4. Temporal known a priori continuous # 5. Temporal observed categorical # 6. Temporal observed continuous # 7. Temporal observed targets (time series obseved so far) self.s_cat_embed = nn.ModuleList([ nn.Embedding(n, self.hidden_size) for n in self.s_cat_inp_lens]) if self.s_cat_inp_lens else None self.t_cat_k_embed = nn.ModuleList([ nn.Embedding(n, self.hidden_size) for n in self.t_cat_k_inp_lens]) if self.t_cat_k_inp_lens else None self.t_cat_o_embed = nn.ModuleList([ nn.Embedding(n, self.hidden_size) for n in self.t_cat_o_inp_lens]) if self.t_cat_o_inp_lens else None self.s_cont_embedding_vectors = nn.Parameter(torch.Tensor(self.s_cont_inp_size, self.hidden_size)) if self.s_cont_inp_size else None self.t_cont_k_embedding_vectors = nn.Parameter(torch.Tensor(self.t_cont_k_inp_size, self.hidden_size)) if self.t_cont_k_inp_size else None self.t_cont_o_embedding_vectors = nn.Parameter(torch.Tensor(self.t_cont_o_inp_size, self.hidden_size)) if self.t_cont_o_inp_size else None self.t_tgt_embedding_vectors = nn.Parameter(torch.Tensor(self.t_tgt_size, self.hidden_size)) self.s_cont_embedding_bias = nn.Parameter(torch.zeros(self.s_cont_inp_size, self.hidden_size)) if self.s_cont_inp_size else None self.t_cont_k_embedding_bias = nn.Parameter(torch.zeros(self.t_cont_k_inp_size, self.hidden_size)) if self.t_cont_k_inp_size else None self.t_cont_o_embedding_bias = nn.Parameter(torch.zeros(self.t_cont_o_inp_size, self.hidden_size)) if self.t_cont_o_inp_size else None self.t_tgt_embedding_bias = nn.Parameter(torch.zeros(self.t_tgt_size, self.hidden_size)) if self.s_cont_embedding_vectors is not None: torch.nn.init.xavier_normal_(self.s_cont_embedding_vectors) if self.t_cont_k_embedding_vectors is not None: torch.nn.init.xavier_normal_(self.t_cont_k_embedding_vectors) if self.t_cont_o_embedding_vectors is not None: torch.nn.init.xavier_normal_(self.t_cont_o_embedding_vectors) torch.nn.init.xavier_normal_(self.t_tgt_embedding_vectors) def _apply_embedding(self, cat: Optional[Tensor], cont: Optional[Tensor], cat_emb: Optional[nn.ModuleList], cont_emb: Tensor, cont_bias: Tensor, ) -> Tuple[Optional[Tensor], Optional[Tensor]]: e_cat = torch.stack([embed(cat[...,i]) for i, embed in enumerate(cat_emb)], dim=-2) if cat is not None else None if cont is not None: #the line below is equivalent to following einsums #e_cont = torch.einsum('btf,fh->bthf', cont, cont_emb) #e_cont = torch.einsum('bf,fh->bhf', cont, cont_emb) e_cont = torch.mul(cont.unsqueeze(-1), cont_emb) e_cont = e_cont + cont_bias else: e_cont = None if e_cat is not None and e_cont is not None: return torch.cat([e_cat, e_cont], dim=-2) elif e_cat is not None: return e_cat elif e_cont is not None: return e_cont else: return None def forward(self, x: Dict[str, Tensor]): # temporal/static categorical/continuous known/observed input s_cat_inp = x.get('s_cat', None) s_cont_inp = x.get('s_cont', None) t_cat_k_inp = x.get('k_cat', None) t_cont_k_inp = x.get('k_cont', None) t_cat_o_inp = x.get('o_cat', None) t_cont_o_inp = x.get('o_cont', None) t_tgt_obs = x['target'] # Has to be present # Static inputs are expected to be equal for all timesteps # For memory efficiency there is no assert statement s_cat_inp = s_cat_inp[:,0,:] if s_cat_inp is not None else None s_cont_inp = s_cont_inp[:,0,:] if s_cont_inp is not None else None s_inp = self._apply_embedding(s_cat_inp, s_cont_inp, self.s_cat_embed, self.s_cont_embedding_vectors, self.s_cont_embedding_bias) t_known_inp = self._apply_embedding(t_cat_k_inp, t_cont_k_inp, self.t_cat_k_embed, self.t_cont_k_embedding_vectors, self.t_cont_k_embedding_bias) t_observed_inp = self._apply_embedding(t_cat_o_inp, t_cont_o_inp, self.t_cat_o_embed, self.t_cont_o_embedding_vectors, self.t_cont_o_embedding_bias) # Temporal observed targets # t_observed_tgt = torch.einsum('btf,fh->btfh', t_tgt_obs, self.t_tgt_embedding_vectors) t_observed_tgt = torch.matmul(t_tgt_obs.unsqueeze(3).unsqueeze(4), self.t_tgt_embedding_vectors.unsqueeze(1)).squeeze(3) t_observed_tgt = t_observed_tgt + self.t_tgt_embedding_bias return s_inp, t_known_inp, t_observed_inp, t_observed_tgt class VariableSelectionNetwork(nn.Module): def __init__(self, config, num_inputs): super().__init__() self.joint_grn = GRN(config.hidden_size*num_inputs, config.hidden_size, output_size=num_inputs, context_hidden_size=config.hidden_size) self.var_grns = nn.ModuleList([GRN(config.hidden_size, config.hidden_size, dropout=config.dropout) for _ in range(num_inputs)]) def forward(self, x: Tensor, context: Optional[Tensor] = None): Xi = x.reshape(*x.shape[:-2], -1) grn_outputs = self.joint_grn(Xi, c=context) sparse_weights = F.softmax(grn_outputs, dim=-1) transformed_embed_list = [m(x[...,i,:]) for i, m in enumerate(self.var_grns)] transformed_embed = torch.stack(transformed_embed_list, dim=-1) #the line below performs batched matrix vector multiplication #for temporal features it's bthf,btf->bth #for static features it's bhf,bf->bh variable_ctx = torch.matmul(transformed_embed, sparse_weights.unsqueeze(-1)).squeeze(-1) return variable_ctx, sparse_weights class StaticCovariateEncoder(nn.Module): def __init__(self, config): super().__init__() self.vsn = VariableSelectionNetwork(config, config.num_static_vars) self.context_grns = nn.ModuleList([GRN(config.hidden_size, config.hidden_size, dropout=config.dropout) for _ in range(4)]) def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]: variable_ctx, sparse_weights = self.vsn(x) # Context vectors: # variable selection context # enrichment context # state_c context # state_h context cs, ce, ch, cc = tuple(m(variable_ctx) for m in self.context_grns) return cs, ce, ch, cc class InterpretableMultiHeadAttention(nn.Module): def __init__(self, config): super().__init__() self.n_head = config.n_head assert config.hidden_size % config.n_head == 0 self.d_head = config.hidden_size // config.n_head self.qkv_linears = nn.Linear(config.hidden_size, (2 * self.n_head + 1) * self.d_head, bias=False) self.out_proj = nn.Linear(self.d_head, config.hidden_size, bias=False) self.attn_dropout = nn.Dropout(config.attn_dropout) self.out_dropout = nn.Dropout(config.dropout) self.scale = self.d_head**-0.5 self.register_buffer("_mask", torch.triu(torch.full((config.example_length, config.example_length), float('-inf')), 1).unsqueeze(0)) def forward(self, x: Tensor, mask_future_timesteps: bool = True) -> Tuple[Tensor, Tensor]: bs, t, h_size = x.shape qkv = self.qkv_linears(x) q, k, v = qkv.split((self.n_head * self.d_head, self.n_head * self.d_head, self.d_head), dim=-1) q = q.view(bs, t, self.n_head, self.d_head) k = k.view(bs, t, self.n_head, self.d_head) v = v.view(bs, t, self.d_head) # attn_score = torch.einsum('bind,bjnd->bnij', q, k) attn_score = torch.matmul(q.permute((0, 2, 1, 3)), k.permute((0, 2, 3, 1))) attn_score.mul_(self.scale) if mask_future_timesteps: attn_score = attn_score + self._mask attn_prob = F.softmax(attn_score, dim=3) attn_prob = self.attn_dropout(attn_prob) # attn_vec = torch.einsum('bnij,bjd->bnid', attn_prob, v) attn_vec = torch.matmul(attn_prob, v.unsqueeze(1)) m_attn_vec = torch.mean(attn_vec, dim=1) out = self.out_proj(m_attn_vec) out = self.out_dropout(out) return out, attn_vec class TemporalFusionTransformer(nn.Module): """ Implementation of https://arxiv.org/abs/1912.09363 """ def __init__(self, config): super().__init__() if hasattr(config, 'model'): config = config.model self.encoder_length = config.encoder_length #this determines from how distant past we want to use data from self.embedding = TFTEmbedding(config) self.static_encoder = StaticCovariateEncoder(config) self.history_vsn = VariableSelectionNetwork(config, config.num_historic_vars) self.history_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.future_vsn = VariableSelectionNetwork(config, config.num_future_vars) self.future_encoder = nn.LSTM(config.hidden_size, config.hidden_size, batch_first=True) self.input_gate = GLU(config.hidden_size, config.hidden_size) self.input_gate_ln = LayerNorm(config.hidden_size, eps=1e-3) self.enrichment_grn = GRN(config.hidden_size, config.hidden_size, context_hidden_size=config.hidden_size, dropout=config.dropout) self.attention = InterpretableMultiHeadAttention(config) self.attention_gate = GLU(config.hidden_size, config.hidden_size) self.attention_ln = LayerNorm(config.hidden_size, eps=1e-3) self.positionwise_grn = GRN(config.hidden_size, config.hidden_size, dropout=config.dropout) self.decoder_gate = GLU(config.hidden_size, config.hidden_size) self.decoder_ln = LayerNorm(config.hidden_size, eps=1e-3) self.quantile_proj = nn.Linear(config.hidden_size, len(config.quantiles)) def forward(self, x: Dict[str, Tensor]) -> Tensor: s_inp, t_known_inp, t_observed_inp, t_observed_tgt = self.embedding(x) # Static context cs, ce, ch, cc = self.static_encoder(s_inp) ch, cc = ch.unsqueeze(0), cc.unsqueeze(0) #lstm initial states # Temporal input _historical_inputs = [t_known_inp[:,:self.encoder_length,:], t_observed_tgt[:,:self.encoder_length,:]] if t_observed_inp is not None: _historical_inputs.insert(0,t_observed_inp[:,:self.encoder_length,:]) historical_inputs = torch.cat(_historical_inputs, dim=-2) future_inputs = t_known_inp[:, self.encoder_length:] # Encoders historical_features, _ = self.history_vsn(historical_inputs, cs) history, state = self.history_encoder(historical_features, (ch, cc)) future_features, _ = self.future_vsn(future_inputs, cs) future, _ = self.future_encoder(future_features, state) torch.cuda.synchronize() # this call gives perf boost for unknown reasons # skip connection input_embedding = torch.cat([historical_features, future_features], dim=1) temporal_features = torch.cat([history, future], dim=1) temporal_features = self.input_gate(temporal_features) temporal_features = temporal_features + input_embedding temporal_features = self.input_gate_ln(temporal_features) # Static enrichment enriched = self.enrichment_grn(temporal_features, c=ce) # Temporal self attention x, _ = self.attention(enriched, mask_future_timesteps=True) # Don't compute hictorical quantiles x = x[:, self.encoder_length:, :] temporal_features = temporal_features[:, self.encoder_length:, :] enriched = enriched[:, self.encoder_length:, :] x = self.attention_gate(x) x = x + enriched x = self.attention_ln(x) # Position-wise feed-forward x = self.positionwise_grn(x) # Final skip connection x = self.decoder_gate(x) x = x + temporal_features x = self.decoder_ln(x) out = self.quantile_proj(x) return out
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/modeling.py
import argparse import logging import os from pathlib import Path os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "1" # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator # noqa: E402 module level import not at top of file from .deployment_toolkit.core import ( # noqa: E402 module level import not at top of file DATALOADER_FN_NAME, BaseLoader, BaseSaver, Format, load_from_file, ) from .deployment_toolkit.extensions import loaders, savers # noqa: E402 module level import not at top of file LOGGER = logging.getLogger("export_model") INPUT_MODEL_TYPES = [Format.TF_ESTIMATOR, Format.TF_KERAS, Format.PYT] OUTPUT_MODEL_TYPES = [Format.TF_SAVEDMODEL, Format.TS_TRACE, Format.TS_SCRIPT, Format.ONNX] def _get_args(): parser = argparse.ArgumentParser( description="Script for exporting models from supported frameworks.", allow_abbrev=False ) parser.add_argument("--input-path", help="Path to input python module", required=True) parser.add_argument( "--input-type", help="Input model type", choices=[f.value for f in INPUT_MODEL_TYPES], required=True ) parser.add_argument("--output-path", help="Path to output model file", required=True) parser.add_argument( "--output-type", help="Output model type", choices=[f.value for f in OUTPUT_MODEL_TYPES], required=True ) parser.add_argument("--dataloader", help="Path to python module containing data loader") parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) parser.add_argument( "--ignore-unknown-parameters", help="Ignore unknown parameters (argument often used in CI where set of arguments is constant)", action="store_true", default=False, ) args, unparsed_args = parser.parse_known_args() Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) if args.input_type == Format.PYT.value and args.output_type == Format.ONNX.value: saver_type = f"{Format.PYT.value}--{Format.ONNX.value}" else: saver_type = args.output_type Saver: BaseSaver = savers.get(saver_type) ArgParserGenerator(Saver).update_argparser(parser) if args.dataloader is not None: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) if args.ignore_unknown_parameters: args, unknown_args = parser.parse_known_args() LOGGER.warning(f"Got additional args {unknown_args}") else: args = parser.parse_args() return args def main(): args = _get_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") dataloader_fn = None if args.dataloader is not None: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) Loader: BaseLoader = loaders.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) model = loader.load(args.input_path, dataloader_fn=dataloader_fn, output_type=args.output_type) LOGGER.info("inputs: %s", model.inputs) LOGGER.info("outputs: %s", model.outputs) if args.input_type == Format.PYT.value and args.output_type == Format.ONNX.value: saver_type = f"{Format.PYT.value}--{Format.ONNX.value}" else: saver_type = args.output_type Saver: BaseSaver = savers.get(saver_type) saver = ArgParserGenerator(Saver).from_args(args) saver.save(model, args.output_path, dataloader_fn) if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/export_model.py
import os import pandas as pd import numpy as np import pickle import torch from criterions import QuantileLoss from triton.deployment_toolkit.core import BaseMetricsCalculator def update_argparser(parser): parser.add_argument("--dataset", type=str, help="Path to dataset to be used", required=True) parser.add_argument("--checkpoint", type=str, help="Path to checkpoint to be used", required=True) def _unscale_per_id(config, values, ids, scalers): # values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) flat_values['id'] = ids df_list = [] for idx, group in flat_values.groupby('id'): scaler = scalers[idx] group_copy = group.copy() for col in group_copy.columns: if not 'id' in col: _col = np.expand_dims(group_copy[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] group_copy[col] = _t_col df_list.append(group_copy) flat_values = pd.concat(df_list, axis=0) flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor def _unscale(config, values, scaler): # values = values.cpu().numpy() num_horizons = config.example_length - config.encoder_length + 1 flat_values = pd.DataFrame( values, columns=[f't{j}' for j in range(num_horizons - values.shape[1], num_horizons)] ) for col in flat_values.columns: if not 'id' in col: _col = np.expand_dims(flat_values[col].values, -1) _t_col = scaler.inverse_transform(_col)[:,-1] flat_values[col] = _t_col flat_values = flat_values[[col for col in flat_values if not 'id' in col]] flat_tensor = torch.from_numpy(flat_values.values) return flat_tensor class MetricsCalculator(BaseMetricsCalculator): def __init__(self, dataset, checkpoint): state_dict = torch.load(os.path.join(checkpoint, "checkpoint.pt")) self.config = state_dict['config'] self.predictions = [] self.targets = [] self.ids = [] self.scalers = pickle.load(open(os.path.join(dataset, 'tgt_scalers.bin'), 'rb')) @property def metrics(self): targets = np.concatenate(self.targets, axis=0) # targets = torch.cat(self.targets, dim=0) predictions = np.concatenate(self.predictions, axis=0) # predictions = torch.cat(self.predictions, dim=0) ids = np.concatenate(self.ids, axis=0) if self.config.scale_per_id: unscaled_predictions = torch.stack( [_unscale_per_id(self.config, predictions[:,:,i], ids, self.scalers) for i in range(len(self.config.quantiles))], dim=-1) unscaled_targets = _unscale_per_id(self.config, targets[:,:,0], ids, self.scalers).unsqueeze(-1) else: ids = None unscaled_predictions = torch.stack( [_unscale(self.config, predictions[:,:,i], self.scalers['']) for i in range(len(self.config.quantiles))], dim=-1) unscaled_targets = _unscale(self.config, targets[:,:,0], self.scalers['']).unsqueeze(-1) losses = QuantileLoss(self.config)(unscaled_predictions, unscaled_targets) normalizer = unscaled_targets.abs().mean() q_risk = 2 * losses / normalizer return {'test_p10': q_risk[0].cpu().numpy(), 'test_p50': q_risk[1].cpu().numpy(), 'test_p90': q_risk[2].cpu().numpy()} def update( self, ids, y_pred, x, y_real, ): #can probably just pass all of this to the evaluator main class self.predictions.append(y_pred["target__0"]) self.targets.append(y_real['target__0'][:,:,0][:,:,np.newaxis]) self.ids.append(ids) # return self.metrics
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/metrics.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Using `calculate_metrics.py` script, you can obtain model accuracy/error metrics using defined `MetricsCalculator` class. Data provided to `MetricsCalculator` are obtained from dump files stored in directory pointed by `--dump-dir` argument. Above files are prepared by `run_inference_on_fw.py` and `run_inference_on_triton.py` scripts. Output data is stored in csv file pointed by `--csv` argument. Example call: ```shell script python ./triton/calculate_metrics.py \ --dump-dir /results/dump_triton \ --csv /results/accuracy_results.csv \ --metrics metrics.py \ --metric-class-param1 value ``` """ import argparse import csv import logging import string from pathlib import Path # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import BaseMetricsCalculator, load_from_file from .deployment_toolkit.dump import JsonDumpReader LOGGER = logging.getLogger("calculate_metrics") TOTAL_COLUMN_NAME = "_total_" def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="Run models with given dataloader", allow_abbrev=False) parser.add_argument("--metrics", help="Path to python module containing metrics calculator", required=True) parser.add_argument("--csv", help="Path to csv file", required=True) parser.add_argument("--dump-dir", help="Path to directory with dumped outputs (and labels)", required=True) args, *_ = parser.parse_known_args() MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") ArgParserGenerator(MetricsCalculator).update_argparser(parser) args = parser.parse_args() LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") MetricsCalculator = load_from_file(args.metrics, "metrics", "MetricsCalculator") metrics_calculator: BaseMetricsCalculator = ArgParserGenerator(MetricsCalculator).from_args(args) reader = JsonDumpReader(args.dump_dir) for ids, x, y_true, y_pred in reader.iterate_over(["ids", "inputs", "labels", "outputs"]): ids = list(ids["ids"]) if ids is not None else None metrics_calculator.update(ids=ids, x=x, y_pred=y_pred, y_real=y_true) metrics = metrics_calculator.metrics metric_names_with_space = [name for name in metrics if any([c in string.whitespace for c in name])] if metric_names_with_space: raise ValueError(f"Metric names shall have no spaces; Incorrect names: {', '.join(metric_names_with_space)}") csv_path = Path(args.csv) csv_path.parent.mkdir(parents=True, exist_ok=True) with csv_path.open("w") as csv_file: writer = csv.DictWriter(csv_file, fieldnames=list(metrics.keys())) writer.writeheader() writer.writerow(metrics) if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/calculate_metrics.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To infer the model deployed on Triton, you can use `run_inference_on_triton.py` script. It sends a request with data obtained from pointed data loader and dumps received data into dump files. Those files are stored in directory pointed by `--output-dir` argument. Currently, the client communicates with the Triton server asynchronously using GRPC protocol. Example call: ```shell script python ./triton/run_inference_on_triton.py \ --server-url localhost:8001 \ --model-name ResNet50 \ --model-version 1 \ --dump-labels \ --output-dir /results/dump_triton ``` """ import argparse import functools import logging import queue import threading import time import traceback from pathlib import Path from typing import Optional from tqdm import tqdm # pytype: disable=import-error try: from tritonclient import utils as client_utils # noqa: F401 from tritonclient.grpc import InferenceServerClient, InferInput, InferRequestedOutput except ImportError: from tritongrpcclient import InferenceServerClient, InferInput, InferRequestedOutput # pytype: enable=import-error # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name from .deployment_toolkit.args import ArgParserGenerator from .deployment_toolkit.core import DATALOADER_FN_NAME, load_from_file from .deployment_toolkit.dump import JsonDumpWriter LOGGER = logging.getLogger("run_inference_on_triton") class SyncGRPCTritonRunner: DEFAULT_MAX_RESP_WAIT_S = 120 def __init__( self, server_url: str, model_name: str, model_version: str, *, dataloader, verbose=False, resp_wait_s: Optional[float] = None, ): self._server_url = server_url self._model_name = model_name self._model_version = model_version self._dataloader = dataloader self._verbose = verbose self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s def __iter__(self): client = InferenceServerClient(self._server_url, verbose=self._verbose) error = self._verify_triton_state(client) if error: raise RuntimeError(f"Could not communicate to Triton Server: {error}") LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!" ) model_config = client.get_model_config(self._model_name, self._model_version) model_metadata = client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {model_config}") LOGGER.info(f"Model metadata {model_metadata}") inputs = {tm.name: tm for tm in model_metadata.inputs} outputs = {tm.name: tm for tm in model_metadata.outputs} output_names = list(outputs) outputs_req = [InferRequestedOutput(name) for name in outputs] for ids, x, y_real in self._dataloader: infer_inputs = [] for name in inputs: data = x[name] infer_input = InferInput(name, data.shape, inputs[name].datatype) target_np_dtype = client_utils.triton_to_np_dtype(inputs[name].datatype) data = data.astype(target_np_dtype) infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) results = client.infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=outputs_req, client_timeout=self._response_wait_t, ) y_pred = {name: results.as_numpy(name) for name in output_names} yield ids, x, y_pred, y_real def _verify_triton_state(self, triton_client): if not triton_client.is_server_live(): return f"Triton server {self._server_url} is not live" elif not triton_client.is_server_ready(): return f"Triton server {self._server_url} is not ready" elif not triton_client.is_model_ready(self._model_name, self._model_version): return f"Model {self._model_name}:{self._model_version} is not ready" return None class AsyncGRPCTritonRunner: DEFAULT_MAX_RESP_WAIT_S = 120 DEFAULT_MAX_UNRESP_REQS = 128 DEFAULT_MAX_FINISH_WAIT_S = 900 # 15min def __init__( self, server_url: str, model_name: str, model_version: str, *, dataloader, verbose=False, resp_wait_s: Optional[float] = None, max_unresponded_reqs: Optional[int] = None, ): self._server_url = server_url self._model_name = model_name self._model_version = model_version self._dataloader = dataloader self._verbose = verbose self._response_wait_t = self.DEFAULT_MAX_RESP_WAIT_S if resp_wait_s is None else resp_wait_s self._max_unresp_reqs = self.DEFAULT_MAX_UNRESP_REQS if max_unresponded_reqs is None else max_unresponded_reqs self._results = queue.Queue() self._processed_all = False self._errors = [] self._num_waiting_for = 0 self._sync = threading.Condition() self._req_thread = threading.Thread(target=self.req_loop, daemon=True) def __iter__(self): self._req_thread.start() timeout_s = 0.050 # check flags processed_all and error flags every 50ms while True: try: ids, x, y_pred, y_real = self._results.get(timeout=timeout_s) yield ids, x, y_pred, y_real except queue.Empty: shall_stop = self._processed_all or self._errors if shall_stop: break LOGGER.debug("Waiting for request thread to stop") self._req_thread.join() if self._errors: error_msg = "\n".join(map(str, self._errors)) raise RuntimeError(error_msg) def _on_result(self, ids, x, y_real, output_names, result, error): with self._sync: request_id = str(ids[0]) NOT_MATCHING_REQUEST_ID_MSG = ( "Error during processing result - request_id doesn't match. This shouldn't have happened." ) if error: response_id = error.get_response().id if response_id != request_id: raise RuntimeError(NOT_MATCHING_REQUEST_ID_MSG) self._errors.append(error) else: response_id = result.get_response().id if response_id != request_id: raise RuntimeError(NOT_MATCHING_REQUEST_ID_MSG) y_pred = {name: result.as_numpy(name) for name in output_names} self._results.put((ids, x, y_pred, y_real)) self._num_waiting_for -= 1 self._sync.notify_all() def req_loop(self): client = InferenceServerClient(self._server_url, verbose=self._verbose) self._errors = self._verify_triton_state(client) if self._errors: return LOGGER.debug( f"Triton server {self._server_url} and model {self._model_name}:{self._model_version} " f"are up and ready!" ) model_config = client.get_model_config(self._model_name, self._model_version) model_metadata = client.get_model_metadata(self._model_name, self._model_version) LOGGER.info(f"Model config {model_config}") LOGGER.info(f"Model metadata {model_metadata}") inputs = {tm.name: tm for tm in model_metadata.inputs} outputs = {tm.name: tm for tm in model_metadata.outputs} output_names = list(outputs) self._num_waiting_for = 0 for ids, x, y_real in self._dataloader: infer_inputs = [] for name in inputs: data = x[name] infer_input = InferInput(name, data.shape, inputs[name].datatype) target_np_dtype = client_utils.triton_to_np_dtype(inputs[name].datatype) data = data.astype(target_np_dtype) infer_input.set_data_from_numpy(data) infer_inputs.append(infer_input) outputs_req = [InferRequestedOutput(name) for name in outputs] with self._sync: def _check_can_send(): return self._num_waiting_for < self._max_unresp_reqs can_send = self._sync.wait_for(_check_can_send, timeout=self._response_wait_t) if not can_send: error_msg = f"Runner could not send new requests for {self._response_wait_t}s" self._errors.append(error_msg) self._sync.notify_all() break request_id = str(ids[0]) callback = functools.partial(AsyncGRPCTritonRunner._on_result, self, ids, x, y_real, output_names) client.async_infer( model_name=self._model_name, model_version=self._model_version, inputs=infer_inputs, outputs=outputs_req, callback=callback, request_id=request_id, ) self._num_waiting_for += 1 self._sync.notify_all() # wait till receive all requested data with self._sync: def _all_processed(): LOGGER.debug(f"wait for {self._num_waiting_for} unprocessed jobs") return self._num_waiting_for == 0 self._processed_all = self._sync.wait_for(_all_processed, self.DEFAULT_MAX_FINISH_WAIT_S) if not self._processed_all: error_msg = f"Runner {self._response_wait_t}s timeout received while waiting for results from server" self._errors.append(error_msg) self._sync.notify_all() LOGGER.debug("Finished request thread") def _verify_triton_state(self, triton_client): errors = [] if not triton_client.is_server_live(): errors.append(f"Triton server {self._server_url} is not live") elif not triton_client.is_server_ready(): errors.append(f"Triton server {self._server_url} is not ready") elif not triton_client.is_model_ready(self._model_name, self._model_version): errors.append(f"Model {self._model_name}:{self._model_version} is not ready") return errors def _parse_args(): parser = argparse.ArgumentParser(description="Infer model on Triton server", allow_abbrev=False) parser.add_argument( "--server-url", type=str, default="localhost:8001", help="Inference server URL (default localhost:8001)" ) parser.add_argument("--model-name", help="The name of the model used for inference.", required=True) parser.add_argument("--model-version", help="The version of the model used for inference.", required=True) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--dump-labels", help="Dump labels to output dir", action="store_true", default=False) parser.add_argument("--dump-inputs", help="Dump inputs to output dir", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=True) parser.add_argument("--output-dir", required=True, help="Path to directory where outputs will be saved") parser.add_argument( "--response-wait-time", required=False, help="Maximal time to wait for response", default=120, type=float ) parser.add_argument( "--max-unresponded-requests", required=False, help="Maximal number of unresponded requests", default=128, type=int, ) parser.add_argument( "--synchronous", help="Enable synchronous calls to Triton Server", action="store_true", default=False ) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) args = parser.parse_args() return args def main(): args = _parse_args() log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" log_level = logging.INFO if not args.verbose else logging.DEBUG logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) try: if args.synchronous: runner = SyncGRPCTritonRunner( args.server_url, args.model_name, args.model_version, dataloader=dataloader_fn(), verbose=False, resp_wait_s=args.response_wait_time, ) else: runner = AsyncGRPCTritonRunner( args.server_url, args.model_name, args.model_version, dataloader=dataloader_fn(), verbose=False, resp_wait_s=args.response_wait_time, max_unresponded_reqs=args.max_unresponded_requests, ) except Exception as e: message = traceback.format_exc() LOGGER.error(f"Encountered exception \n{message}") raise e with JsonDumpWriter(output_dir=args.output_dir) as writer: start = time.time() for ids, x, y_pred, y_real in tqdm(runner, unit="batch", mininterval=10): data = _verify_and_format_dump(args, ids, x, y_pred, y_real) writer.write(**data) stop = time.time() LOGGER.info(f"\nThe inference took {stop - start:0.3f}s") def _verify_and_format_dump(args, ids, x, y_pred, y_real): data = {"outputs": y_pred, "ids": {"ids": ids}} if args.dump_inputs: data["inputs"] = x if args.dump_labels: if not y_real: raise ValueError( "Found empty label values. Please provide labels in dataloader_fn or do not use --dump-labels argument" ) data["labels"] = y_real return data if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/run_inference_on_triton.py
import os import numpy as np import torch from torch.utils.data import DataLoader from configuration import ElectricityConfig from data_utils import TFTDataset import argparse from deployment_toolkit.dump import JsonDumpWriter def _verify_and_format_dump(**x): data = {} for k, v in x.items(): temp_data = {} for i in range(v.shape[1]): temp_data["INPUT" + str(i)] = v[:,i] data[k] = temp_data return data def main(): args = _parse_args() state_dict = torch.load(os.path.join(args.checkpoint, "checkpoint.pt")) config = state_dict['config'] test_split = TFTDataset(os.path.join(args.dataset, "test.csv"), config) data_loader = DataLoader(test_split, batch_size=args.batch_size, num_workers=2) input_names_dict = {'s_cat': 's_cat__0', 's_cont':'s_cont__1', 'k_cat':'k_cat__2', 'k_cont':'k_cont__3', 'o_cat':'o_cat__4', 'o_cont':'o_cont__5', 'target':'target__6', 'id':'id__7'} reshaper = [-1] + [1] for step, batch in enumerate(data_loader): bs = batch['target'].shape[0] x = {input_names_dict[key]: tensor.numpy() if tensor.numel() else np.ones([bs]).reshape(reshaper) for key, tensor in batch.items()} ids = batch['id'][:,0,:].numpy() y_real = {'target__0':batch['target'][:,config.encoder_length:,:].numpy()} break import json data = {"data": [{k: {"content": v[i].flatten().tolist(), "shape": list(v[i].shape), "dtype": str(v[i].dtype)} for k, v in x.items()} for i in range(args.batch_size)]} with open(os.path.join(args.input_data_dir, "data.json"), "w") as f: f.write(json.dumps(data)) f.close() # d = json.load(f) # print(d) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--checkpoint", required=True) parser.add_argument("--batch-size", required=False, default=1) parser.add_argument("--dataset", help="Path to dataset", required=True) parser.add_argument("--input-data-dir", help="Path to output folder", required=True) args, *_ = parser.parse_known_args() args = parser.parse_args() return args if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/prepare_input_data.py
import os import torch import torch.nn as nn def update_argparser(parser): parser.add_argument("--checkpoint", type=str, help="Path to checkpoint to be used", required=True) parser.add_argument("--precision", type=str, choices=['fp16', 'fp32'], required=True) class TFTWrapper(nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, s_cat, s_cont, k_cat, k_cont, o_cat, o_cont, target, id): # wrapped_input = torch.jit.annotate(Dict[str, Optional[Tensor]], {}) wrapped_input = {} input_names = ['s_cat', 's_cont', 'k_cat', 'k_cont', 'o_cat', 'o_cont', 'target', 'id'] wrapped_input['s_cat'] = s_cat if s_cat.shape[1] != 1 else None wrapped_input['s_cont'] = s_cont if s_cont.shape[1] != 1 else None wrapped_input['k_cat'] = k_cat if k_cat.shape[1] != 1 else None wrapped_input['k_cont'] = k_cont if k_cont.shape[1] != 1 else None wrapped_input['o_cat'] = o_cat if o_cat.shape[1] != 1 else None wrapped_input['o_cont'] = o_cont if o_cont.shape[1] != 1 else None wrapped_input['target'] = target wrapped_input['id'] = id if id.numel() else None return self.model(wrapped_input) def get_model(**args): #get model config os.environ["TFT_SCRIPTING"] = "True" from modeling import TemporalFusionTransformer state_dict = torch.load(os.path.join(args['checkpoint'], "checkpoint.pt")) config = state_dict['config'] #create model model = TemporalFusionTransformer(config) #load model model.load_state_dict(state_dict['model']) model.eval() model.cuda() model = TFTWrapper(model).cuda() tensor_names = { "inputs": ['s_cat__0', 's_cont__1', 'k_cat__2', 'k_cont__3', 'o_cat__4', 'o_cont__5', 'target__6', 'id__7'], "outputs": ["target__0"] } return model, tensor_names
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/model.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" To infer the model on framework runtime, you can use `run_inference_on_fw.py` script. It infers data obtained from pointed data loader locally and saves received data into dump files. Those files are stored in directory pointed by `--output-dir` argument. Example call: ```shell script python ./triton/run_inference_on_fw.py \ --input-path /models/exported/model.onnx \ --input-type onnx \ --dataloader triton/dataloader.py \ --data-dir /data/imagenet \ --batch-size 32 \ --output-dir /results/dump_local \ --dump-labels ``` """ import argparse import logging import os from pathlib import Path from tqdm import tqdm # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = Path(__file__).parent.name os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_ENABLE_DEPRECATION_WARNINGS"] = "0" from .deployment_toolkit.args import ArgParserGenerator # noqa: E402 module level import not at top of file from .deployment_toolkit.core import ( # noqa: E402 module level import not at top of file DATALOADER_FN_NAME, BaseLoader, BaseRunner, load_from_file, ) from .deployment_toolkit.dump import JsonDumpWriter # noqa: E402 module level import not at top of file from .deployment_toolkit.extensions import loaders, runners # noqa: E402 module level import not at top of file LOGGER = logging.getLogger("run_inference_on_fw") def _verify_and_format_dump(args, ids, x, y_pred, y_real): data = {"outputs": y_pred, "ids": {"ids": ids}} if args.dump_inputs: data["inputs"] = x if args.dump_labels: if not y_real: raise ValueError( "Found empty label values. Please provide labels in dataloader_fn or do not use --dump-labels argument" ) data["labels"] = y_real return data def _parse_and_validate_args(): supported_inputs = set(runners.supported_extensions) & set(loaders.supported_extensions) parser = argparse.ArgumentParser(description="Dump local inference output of given model", allow_abbrev=False) parser.add_argument("--input-path", help="Path to input model", required=True) parser.add_argument("--input-type", help="Input model type", choices=supported_inputs, required=True) parser.add_argument("--dataloader", help="Path to python file containing dataloader.", required=True) parser.add_argument("--output-dir", help="Path to dir where output files will be stored", required=True) parser.add_argument("--dump-labels", help="Dump labels to output dir", action="store_true", default=False) parser.add_argument("--dump-inputs", help="Dump inputs to output dir", action="store_true", default=False) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args, *_ = parser.parse_known_args() get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) ArgParserGenerator(get_dataloader_fn).update_argparser(parser) Loader: BaseLoader = loaders.get(args.input_type) ArgParserGenerator(Loader, module_path=args.input_path).update_argparser(parser) Runner: BaseRunner = runners.get(args.input_type) ArgParserGenerator(Runner).update_argparser(parser) args = parser.parse_args() types_requiring_io_params = [] if args.input_type in types_requiring_io_params and not all(p for p in [args.inputs, args.outptputs]): parser.error(f"For {args.input_type} input provide --inputs and --outputs parameters") return args def main(): args = _parse_and_validate_args() log_level = logging.INFO if not args.verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) LOGGER.info("args:") for key, value in vars(args).items(): LOGGER.info(f" {key} = {value}") Loader: BaseLoader = loaders.get(args.input_type) Runner: BaseRunner = runners.get(args.input_type) loader = ArgParserGenerator(Loader, module_path=args.input_path).from_args(args) runner = ArgParserGenerator(Runner).from_args(args) LOGGER.info(f"Loading {args.input_path}") model = loader.load(args.input_path) with runner.init_inference(model=model) as runner_session, JsonDumpWriter(args.output_dir) as writer: get_dataloader_fn = load_from_file(args.dataloader, label="dataloader", target=DATALOADER_FN_NAME) dataloader_fn = ArgParserGenerator(get_dataloader_fn).from_args(args) LOGGER.info("Data loader initialized; Running inference") for ids, x, y_real in tqdm(dataloader_fn(), unit="batch", mininterval=10): y_pred = runner_session(x) data = _verify_and_format_dump(args, ids=ids, x=x, y_pred=y_pred, y_real=y_real) writer.write(**data) LOGGER.info("Inference finished") if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/run_inference_on_fw.py
import os import numpy as np import torch from torch.utils.data import DataLoader from data_utils import TFTDataset def update_argparser(parser): parser.add_argument("--dataset", type=str, help="Path to dataset to be used", required=True) parser.add_argument("--checkpoint", type=str, help="Path to checkpoint to be used", required=True) parser.add_argument("--batch-size", type=int, help="Path to dataset to be used", default=64) def get_dataloader_fn(dataset, checkpoint, batch_size=64): state_dict = torch.load(os.path.join(checkpoint, "checkpoint.pt")) config = state_dict['config'] test_split = TFTDataset(os.path.join(dataset, "test.csv"), config) data_loader = DataLoader(test_split, batch_size=int(batch_size), num_workers=2) input_names_dict = {'s_cat': 's_cat__0', 's_cont':'s_cont__1', 'k_cat':'k_cat__2', 'k_cont':'k_cont__3', 'o_cat':'o_cat__4', 'o_cont':'o_cont__5', 'target':'target__6', 'id':'id__7'} reshaper = [-1] + [1] def _get_dataloader(): for step, batch in enumerate(data_loader): bs = batch['target'].shape[0] x = {input_names_dict[key]: tensor.numpy() if tensor.numel() else np.ones([bs]).reshape(reshaper) for key, tensor in batch.items()} ids = batch['id'][:,0,:].numpy() # ids = np.arange(step * batch_size, (step + 1) * batch_size) y_real = {'target__0':np.tile(batch['target'][:,config.encoder_length:,:].numpy(), (1, 1, len(config.quantiles)))} yield (ids, x, y_real) return _get_dataloader
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/dataloader.py
#!/usr/bin/env python3 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import logging import os import pathlib import shutil import sys from distutils.version import LooseVersion from enum import Enum from typing import Any, Dict, List import yaml # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .deployment_toolkit.core import BatchingMode, EvaluationMode, MeasurementMode, OfflineMode, PerformanceTool from .deployment_toolkit.model_analyzer import ModelAnalyzer, ModelAnalyzerConfig, ModelAnalyzerMode from .deployment_toolkit.perf_analyzer import PerfAnalyzer, PerfAnalyzerConfig from .deployment_toolkit.report import save_results, show_results, sort_results from .deployment_toolkit.utils import parse_server_url from .deployment_toolkit.warmup import performance_evaluation_warmup LOGGER = logging.getLogger("run_performance_on_triton") if LooseVersion(sys.version) >= LooseVersion("3.8.0"): from importlib.metadata import version TRITON_CLIENT_VERSION = LooseVersion(version("tritonclient")) TRITON_MODEL_ANALYZER_VERSION = LooseVersion(version("triton-model-analyzer")) else: import pkg_resources TRITON_CLIENT_VERSION = LooseVersion(pkg_resources.get_distribution("tritonclient").version) TRITON_MODEL_ANALYZER_VERSION = LooseVersion(pkg_resources.get_distribution("triton-model-analyzer").version) def _log_dict(title: str, dict_: Dict[str, Any]): LOGGER.info(title) for key, value in dict_.items(): LOGGER.info(f"\t{key} = {value}") def _calculate_average_latency(r): avg_sum_fields = [ "Client Send", "Network+Server Send/Recv", "Server Queue", "Server Compute", "Server Compute Input", "Server Compute Infer", "Server Compute Output", "Client Recv", ] avg_latency = sum([int(r.get(f, 0)) for f in avg_sum_fields]) return avg_latency def _update_performance_data(results: List, batch_size: int, performance_partial_file: str): row: Dict = {"Batch": batch_size} with open(performance_partial_file) as csvfile: reader = csv.DictReader(csvfile) for r in reader: avg_latency = _calculate_average_latency(r) row = {**row, **r, "avg latency": avg_latency} results.append(row) def _model_analyzer_evaluation( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, model_repository: str, result_path: pathlib.Path, output_shared_memory_size: int = 102400, verbose: bool = False, ): _log_dict( "Selected configuration", { "server_url": server_url, "model_name": model_name, "input_data": input_data, "input_shapes": input_shapes, "batch_sizes": batch_sizes, "number_of_triton_instances": number_of_triton_instances, "number_of_model_instances": number_of_model_instances, "measurement_mode": measurement_mode, "measurement_interval": measurement_interval, "measurement_request_count": measurement_request_count, "concurrency_steps": concurrency_steps, "batching_mode": batching_mode, "evaluation_mode": evaluation_mode, "offline_mode": offline_mode, "output_shared_memory_size": output_shared_memory_size, "model_repository": model_repository, "result_path": result_path, "verbose": verbose, }, ) perf_analyzer_config = { "measurement-interval": measurement_interval, } if TRITON_MODEL_ANALYZER_VERSION >= LooseVersion("1.8.0"): perf_analyzer_config["input-data"] = [input_data] else: perf_analyzer_config["input-data"] = input_data if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): perf_analyzer_config["measurement-mode"] = measurement_mode.value perf_analyzer_config["measurement-request-count"] = measurement_request_count if evaluation_mode == EvaluationMode.OFFLINE: perf_analyzer_config["shared-memory"] = offline_mode.value perf_analyzer_config["output-shared-memory-size"] = output_shared_memory_size if input_shapes: if TRITON_MODEL_ANALYZER_VERSION > LooseVersion("1.8.0"): perf_analyzer_config["shape"] = input_shapes else: perf_analyzer_config["shape"] = input_shapes[0] LOGGER.warning("Model Analyzer <= 1.8.0 support only single shape param for Perf Analyzer.") if batching_mode == BatchingMode.STATIC: batch_sizes = batch_sizes concurrency = [number_of_triton_instances] elif batching_mode == BatchingMode.DYNAMIC: max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * number_of_triton_instances * number_of_model_instances max_concurrency = min(256, max_total_requests) step = max(1, max_concurrency // concurrency_steps) min_concurrency = step concurrency = {"start": min_concurrency, "stop": max_concurrency, "step": step} batch_sizes = [max(1, max_total_requests // 256)] else: raise ValueError(f"Unsupported batching mode: {batching_mode}") protocol, host, port = parse_server_url(server_url) checkpoints = pathlib.Path("./checkpoints") if checkpoints.is_dir(): shutil.rmtree(checkpoints.as_posix()) checkpoints.mkdir(parents=True, exist_ok=True) config = { "model_repository": model_repository, "triton_launch_mode": "remote", "run_config_search_disable": True, "perf_analyzer_flags": perf_analyzer_config, "perf_analyzer_timeout": 3600, # Workaround for Perf Analyzer timeout - use 1h "profile_models": [model_name], "batch_sizes": batch_sizes, "concurrency": concurrency, "verbose": verbose, "checkpoint_directory": checkpoints.as_posix(), "override_output_model_repository": True, "client_protocol": protocol, f"triton_{protocol}_endpoint": f"{host}:{port}", } if verbose: _log_dict("Model Analyzer profiling configuration", config) with open("config.yaml", "w") as file: yaml.safe_dump(config, file) config = ModelAnalyzerConfig() model_analyzer = ModelAnalyzer(config=config) model_analyzer.run(mode=ModelAnalyzerMode.PROFILE, verbose=verbose) result_path.mkdir(parents=True, exist_ok=True) for file in checkpoints.iterdir(): if not file.is_file() or file.suffix != ".ckpt": continue LOGGER.info(f"Moving checkpoint {file.name} to {result_path}") shutil.move(file, result_path / file.name) inference_output_fields = [ "batch_size", "concurrency", "perf_throughput", "perf_latency", "perf_client_send_recv", "perf_client_response_wait", "perf_server_queue", "perf_server_compute_input", "perf_server_compute_infer", "perf_server_compute_output", ] gpu_output_fields = [ "gpu_uuid", "batch_size", "concurrency", "gpu_used_memory", "gpu_free_memory", "gpu_utilization", "gpu_power_usage", ] filename_model_inference = "metrics-model-inference.csv" filename_model_gpu = "metrics-model-gpu.csv" config = { "analysis_models": model_name, "checkpoint_directory": result_path.as_posix(), "export_path": "/tmp", "inference_output_fields": inference_output_fields, "gpu_output_fields": gpu_output_fields, "filename_model_inference": filename_model_inference, "filename_model_gpu": filename_model_gpu, "summarize": False, } if verbose: _log_dict("Model Analyzer analysis configuration", config) with open("config.yaml", "w") as file: yaml.safe_dump(config, file) config = ModelAnalyzerConfig() model_analyzer = ModelAnalyzer(config=config) model_analyzer.run(mode=ModelAnalyzerMode.ANALYZE, verbose=verbose) inference_metrics_file = pathlib.Path("/tmp") / "results" / filename_model_inference gpu_metrics_file = pathlib.Path("/tmp") / "results" / filename_model_gpu for file in [inference_metrics_file, gpu_metrics_file]: LOGGER.info(f"Moving metrics {file.name} to {result_path}") shutil.move(file, result_path / file.name) def _perf_analyzer_evaluation( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, result_path: pathlib.Path, output_shared_memory_size: int = 102400, verbose: bool = False, ): protocol, host, port = parse_server_url(server_url) if batching_mode == BatchingMode.STATIC: batch_sizes = batch_sizes max_concurrency = 1 min_concurrency = 1 step = 1 elif batching_mode == BatchingMode.DYNAMIC: max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * number_of_triton_instances * number_of_model_instances max_concurrency = min(256, max_total_requests) step = max(1, max_concurrency // concurrency_steps) min_concurrency = step batch_sizes = [max(1, max_total_requests // 256)] else: raise ValueError(f"Unsupported batching mode: {batching_mode}") _log_dict( "Selected configuration", { "server_url": server_url, "model_name": model_name, "input_data": input_data, "input_shapes": input_shapes, "batch_sizes": batch_sizes, "number_of_triton_instances": number_of_triton_instances, "number_of_model_instances": number_of_model_instances, "measurement_mode": measurement_mode, "measurement_interval": measurement_interval, "measurement_request_count": measurement_request_count, "concurrency_steps": concurrency_steps, "batching_mode": batching_mode, "evaluation_mode": evaluation_mode, "offline_mode": offline_mode, "output_shared_memory_size": output_shared_memory_size, "result_path": result_path, "verbose": verbose, }, ) results: List[Dict] = list() for batch_size in batch_sizes: for concurrency in range(min_concurrency, max_concurrency + step, step): performance_partial_file = f"triton_performance_{evaluation_mode.value.lower()}_{batching_mode.value.lower()}_partial_{batch_size}_{concurrency}.csv" params = { "model-name": model_name, "model-version": 1, "batch-size": batch_size, "url": f"{host}:{port}", "protocol": protocol, "input-data": input_data, "measurement-interval": measurement_interval, "concurrency-range": f"{concurrency}:{concurrency}:1", "latency-report-file": performance_partial_file, } if verbose: params["extra-verbose"] = True if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): params["measurement-mode"] = measurement_mode.value params["measurement-request-count"] = measurement_request_count if evaluation_mode == EvaluationMode.OFFLINE: params["shared-memory"] = offline_mode.value params["output-shared-memory-size"] = output_shared_memory_size if verbose: _log_dict(f"Perf Analyzer config for batch_size: {batch_size} and concurrency: {concurrency}", params) config = PerfAnalyzerConfig() for param, value in params.items(): config[param] = value for shape in input_shapes: config["shape"] = shape perf_analyzer = PerfAnalyzer(config=config) perf_analyzer.run() _update_performance_data(results, batch_size, performance_partial_file) os.remove(performance_partial_file) results = sort_results(results=results) save_results(filename=result_path.as_posix(), data=results) show_results(results=results) def _run_performance_analysis( server_url: str, model_name: str, input_data: str, input_shapes: List[str], batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, concurrency_steps: int, batching_mode: BatchingMode, evaluation_mode: EvaluationMode, offline_mode: OfflineMode, output_shared_memory_size: int, performance_tool: PerformanceTool, model_repository: str, result_path: pathlib.Path, warmup: bool, verbose: bool, ): log_level = logging.INFO if not verbose else logging.DEBUG log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(level=log_level, format=log_format) if performance_tool == PerformanceTool.MODEL_ANALYZER: if result_path.suffix: raise ValueError( "Results path for Model Analyzer is invalid. Please, provide the directory name. Example: results" ) elif performance_tool == PerformanceTool.PERF_ANALYZER: if result_path.suffix != ".csv": raise ValueError( "Results path for Perf Analyzer is invalid. Please, provide the CSV file name. Example: results.csv" ) else: raise ValueError(f"Unsupported performance tool {performance_tool}") if warmup: LOGGER.info("Running warmup before the main test") performance_evaluation_warmup( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, ) if performance_tool == PerformanceTool.MODEL_ANALYZER: LOGGER.info("Using Model Analyzer for performance evaluation") _model_analyzer_evaluation( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, concurrency_steps=concurrency_steps, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, model_repository=model_repository, result_path=result_path, verbose=verbose, ) elif performance_tool == PerformanceTool.PERF_ANALYZER: LOGGER.info("Using Perf Analyzer for performance evaluation") _perf_analyzer_evaluation( server_url=server_url, model_name=model_name, input_data=input_data, input_shapes=input_shapes, batch_sizes=batch_sizes, number_of_triton_instances=number_of_triton_instances, number_of_model_instances=number_of_model_instances, measurement_mode=measurement_mode, measurement_interval=measurement_interval, measurement_request_count=measurement_request_count, concurrency_steps=concurrency_steps, batching_mode=batching_mode, evaluation_mode=evaluation_mode, offline_mode=offline_mode, output_shared_memory_size=output_shared_memory_size, result_path=result_path, verbose=verbose, ) else: raise ValueError(f"Unsupported performance tool {performance_tool}") class MeasurementMode(Enum): """ Available measurement stabilization modes """ COUNT_WINDOWS = "count_windows" TIME_WINDOWS = "time_windows" def main(): parser = argparse.ArgumentParser() parser.add_argument( "--server-url", type=str, required=False, default="http://127.0.0.1:8000", help="Url to Triton server", ) parser.add_argument( "--model-name", type=str, required=True, help="Name of the model to test", ) parser.add_argument( "--input-data", type=str, required=False, default="random", help="Input data to perform profiling.", ) parser.add_argument( "--input-shapes", action="append", required=False, help="Input data shape in form INPUT_NAME:<full_shape_without_batch_axis>.", ) parser.add_argument( "--batch-sizes", type=str, required=True, help="List of batch sizes to tests. Comma separated.", ) parser.add_argument( "--number-of-triton-instances", type=int, default=1, help="Number of Triton Server instances", ) parser.add_argument( "--number-of-model-instances", type=int, default=1, help="Number of models instances on Triton Server", ) parser.add_argument( "--measurement-mode", choices=[item.value for item in MeasurementMode], default=MeasurementMode.COUNT_WINDOWS.value, type=str, help="Select measurement mode " "'time_windows' stabilize performance on measurement window. " "'count_windows' stabilize performance on number of samples.", ) parser.add_argument( "--measurement-interval", required=False, help="Time window perf_analyzer will wait to stabilize the measurement", default=5000, type=int, ) parser.add_argument( "--measurement-request-count", required=False, help="Number of samples on which perf_analyzer will stabilize the measurement", default=50, type=int, ) parser.add_argument( "--concurrency-steps", help="Define number of concurrency steps used for dynamic batching tests", default=32, type=int, ) parser.add_argument( "--batching-mode", choices=[item.value for item in BatchingMode], default=BatchingMode.STATIC.value, type=str, help="Select batching mode " "'static' run static batching scenario. " "'dynamic' run dynamic batching scenario.", ) parser.add_argument( "--evaluation-mode", choices=[item.value for item in EvaluationMode], default=EvaluationMode.OFFLINE.value, type=str, help="Select evaluation mode " "'offline' run offline analysis and use GPU memory to pass tensors. " "'online' run online analysis and use HTTP protocol.", ) parser.add_argument( "--offline-mode", choices=[item.value for item in OfflineMode], default=OfflineMode.SYSTEM.value, type=str, help="Select offline mode " "'system' pass tensors through CPU RAM memory. " "'cuda' pass tensors through GPU RAM memory.", ) parser.add_argument( "--output-shared-memory-size", default=100240, type=int, help="Size of memory buffer allocated for output with dynamic shapes in bytes. " "Has to be equal to maximal size of output tensor.", ) parser.add_argument( "--performance-tool", choices=[item.value for item in PerformanceTool], default=PerformanceTool.MODEL_ANALYZER.value, type=str, help="Select performance tool for measurement mode " "'model_analyzer' use Model Analyzer " "'perf_analyzer' use Perf Analyzer", ) parser.add_argument( "--model-repository", default=None, type=str, help="Path to model repository. Valid when using Model Analyzer", ) parser.add_argument("--result-path", type=pathlib.Path, required=True, help="Path where results files is stored.") parser.add_argument( "--warmup", help="Enable model warmup before performance test", action="store_true", default=False ) parser.add_argument("-v", "--verbose", help="Verbose logs", action="store_true", default=False) args = parser.parse_args() batch_sizes = list(map(lambda x: int(x), args.batch_sizes.split(","))) _run_performance_analysis( server_url=args.server_url, model_name=args.model_name, input_data=args.input_data, input_shapes=args.input_shapes or [], batch_sizes=batch_sizes, number_of_triton_instances=args.number_of_triton_instances, number_of_model_instances=args.number_of_model_instances, measurement_mode=MeasurementMode(args.measurement_mode), measurement_interval=args.measurement_interval, measurement_request_count=args.measurement_request_count, concurrency_steps=args.concurrency_steps, batching_mode=BatchingMode(args.batching_mode), evaluation_mode=EvaluationMode(args.evaluation_mode), offline_mode=OfflineMode(args.offline_mode), output_shared_memory_size=args.output_shared_memory_size, performance_tool=PerformanceTool(args.performance_tool), model_repository=args.model_repository, result_path=args.result_path, warmup=args.warmup, verbose=args.verbose, ) if __name__ == "__main__": main()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/run_performance_on_triton.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import importlib import logging import os from enum import Enum from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np LOGGER = logging.getLogger(__name__) DATALOADER_FN_NAME = "get_dataloader_fn" GET_MODEL_FN_NAME = "get_model" GET_SERVING_INPUT_RECEIVER_FN = "get_serving_input_receiver_fn" GET_ARGPARSER_FN_NAME = "update_argparser" class TensorSpec(NamedTuple): name: str dtype: str shape: Tuple class Parameter(Enum): def __lt__(self, other: "Parameter") -> bool: return self.value < other.value def __str__(self): return self.value class Accelerator(Parameter): NONE = "none" AMP = "amp" TRT = "trt" CUDA = NONE # backward compatibility class Precision(Parameter): INT8 = "int8" FP16 = "fp16" FP32 = "fp32" TF32 = "tf32" # Deprecated class Format(Parameter): TF_GRAPHDEF = "tf-graphdef" TF_SAVEDMODEL = "tf-savedmodel" TF_TRT = "tf-trt" TF_ESTIMATOR = "tf-estimator" TF_KERAS = "tf-keras" ONNX = "onnx" TRT = "trt" TS_SCRIPT = "ts-script" TS_TRACE = "ts-trace" PYT = "pyt" FASTERTRANSFORMER = "fastertransformer" class Model(NamedTuple): handle: object # TODO: precision should be removed precision: Optional[Precision] inputs: Dict[str, TensorSpec] outputs: Dict[str, TensorSpec] def load_from_file(file_path, label, target): spec = importlib.util.spec_from_file_location(name=label, location=file_path) my_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(my_module) # pytype: disable=attribute-error return getattr(my_module, target, None) class BaseLoader(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def load(self, model_path: Union[str, Path], **kwargs) -> Model: """ Loads and process model from file based on given set of args """ pass class BaseSaver(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: """ Save model to file """ pass class BaseRunner(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def init_inference(self, model: Model): raise NotImplementedError class BaseRunnerSession(abc.ABC): def __init__(self, model: Model): self._model = model @abc.abstractmethod def __enter__(self): raise NotImplementedError() @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): raise NotImplementedError() @abc.abstractmethod def __call__(self, x: Dict[str, object]): raise NotImplementedError() def _set_env_variables(self) -> Dict[str, object]: """this method not remove values; fix it if needed""" to_set = {} old_values = {k: os.environ.pop(k, None) for k in to_set} os.environ.update(to_set) return old_values def _recover_env_variables(self, old_envs: Dict[str, object]): for name, value in old_envs.items(): if value is None: del os.environ[name] else: os.environ[name] = str(value) class BaseConverter(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None @abc.abstractmethod def convert(self, model: Model, dataloader_fn) -> Model: raise NotImplementedError() @staticmethod def required_source_model_precision(requested_model_precision: Precision) -> Precision: return requested_model_precision class BaseMetricsCalculator(abc.ABC): required_fn_name_for_signature_parsing: Optional[str] = None def calc( self, *, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ) -> Dict[str, float]: """ Calculates error/accuracy metrics Args: ids: List of ids identifying each sample in the batch y_pred: model output as dict where key is output name and value is output value x: model input as dict where key is input name and value is input value y_real: input ground truth as dict where key is output name and value is output value Returns: dictionary where key is metric name and value is its value """ pass @abc.abstractmethod def update( self, ids: List[Any], y_pred: Dict[str, np.ndarray], x: Optional[Dict[str, np.ndarray]], y_real: Optional[Dict[str, np.ndarray]], ): pass @property @abc.abstractmethod def metrics(self) -> Dict[str, Any]: pass class ShapeSpec(NamedTuple): min: Tuple opt: Tuple max: Tuple class MeasurementMode(Enum): COUNT_WINDOWS = "count_windows" TIME_WINDOWS = "time_windows" class PerformanceTool(Enum): """ Available performance evaluation tools """ MODEL_ANALYZER = "model_analyzer" PERF_ANALYZER = "perf_analyzer" class BatchingMode(Enum): """ Available batching modes """ STATIC = "static" DYNAMIC = "dynamic" class EvaluationMode(Enum): """ Available evaluation modes """ OFFLINE = "offline" ONLINE = "online" class OfflineMode(Enum): SYSTEM = "system" CUDA = "cuda"
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/core.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import json import pickle import threading from pathlib import Path from typing import Dict, Iterator, List, Union import numpy as np MB2B = 2 ** 20 B2MB = 1 / MB2B FLUSH_THRESHOLD_B = 256 * MB2B def _validate_batch(name: str, value: Union[list, np.ndarray]): if not isinstance(value, (list, np.ndarray)): raise ValueError(f"Values shall be lists or np.ndarrays; current type {type(value)}") def _validate_prefix_data(prefix_data: Dict[str, List[np.ndarray]]): batch_sizes_per_io_name = {name: [len(batch) for batch in batches] for name, batches in prefix_data.items()} names = list(batch_sizes_per_io_name) for io_name in names: for batch_idx, batch_size in enumerate(batch_sizes_per_io_name[io_name]): if not all([batch_sizes_per_io_name[other_name][batch_idx] == batch_size for other_name in names]): non_equal_batch_sizes = { other_name: batch_sizes_per_io_name[other_name][batch_idx] for other_name in names } non_equal_batch_sizes_str = ", ".join( [f"{name}={batch_size}" for name, batch_size in non_equal_batch_sizes.items()] ) raise ValueError( "All inputs/outputs should have same number of batches with equal batch_size. " f"At batch_idx={batch_idx} there are batch_sizes: {non_equal_batch_sizes_str}" ) # ensure if each io has same number of batches with equal size def _get_nitems_and_batches(prefix_data: Dict[str, List[np.ndarray]]): nitems = 0 nbatches = 0 if prefix_data: nitems_per_io_name = {name: sum(len(batch) for batch in batches) for name, batches in prefix_data.items()} nbatches_per_io_name = {name: len(batches) for name, batches in prefix_data.items()} nitems = list(nitems_per_io_name.values())[0] nbatches = list(nbatches_per_io_name.values())[0] return nitems, nbatches class BaseDumpWriter(abc.ABC): FILE_SUFFIX = ".abstract" def __init__(self, output_dir: Union[str, Path]): self._output_dir = Path(output_dir) # outer dict key is prefix (i.e. input/output/labels/...), inner dict key is input/output name # list is list of batches self._items_cache: Dict[str, Dict[str, List[np.ndarray]]] = {} # key is prefix self._items_counters: Dict[str, int] = {} self._cache_lock = threading.RLock() self._flush_threshold_b = FLUSH_THRESHOLD_B @property def cache_size(self): def _get_bytes_size(name, batch): _validate_batch(name, batch) if not isinstance(batch, np.ndarray): batch = np.narray(batch) return batch.nbytes with self._cache_lock: return { prefix: sum(_get_bytes_size(name, batch) for name, batches in data.items() for batch in batches) for prefix, data in self._items_cache.items() } def _append_to_cache(self, prefix, prefix_data): if prefix_data is None: return if not isinstance(prefix_data, dict): raise ValueError(f"{prefix} data to store shall be dict") with self._cache_lock: cached_prefix_data = self._items_cache.setdefault(prefix, {}) for name, batch in prefix_data.items(): _validate_batch(name, batch) if not isinstance(batch, np.ndarray): batch = np.array(batch) cached_batches = cached_prefix_data.setdefault(name, []) cached_batches += [batch] def write(self, **kwargs): with self._cache_lock: for prefix, prefix_data in kwargs.items(): self._append_to_cache(prefix, prefix_data) biggest_prefix_data_size = max(self.cache_size.values()) if biggest_prefix_data_size > self._flush_threshold_b: self.flush() def flush(self): with self._cache_lock: for prefix, prefix_data in self._items_cache.items(): _validate_prefix_data(prefix_data) output_path = self._output_dir / self._get_filename(prefix) self._dump(prefix_data, output_path) nitems, nbatches = _get_nitems_and_batches(prefix_data) self._items_counters[prefix] += nitems self._items_cache = {} def _get_filename(self, prefix): idx = self._items_counters.setdefault(prefix, 0) return f"{prefix}-{idx:012d}{self.FILE_SUFFIX}" @abc.abstractmethod def _dump(self, prefix_data: Dict[str, List[np.ndarray]], output_path: Path): pass def __enter__(self): if self._output_dir.exists() and len(list(self._output_dir.iterdir())): raise ValueError(f"{self._output_dir.as_posix()} is not empty") self._output_dir.mkdir(parents=True, exist_ok=True) return self def __exit__(self, exc_type, exc_val, exc_tb): self.flush() class PickleDumpWriter(BaseDumpWriter): FILE_SUFFIX = ".pkl" def _dump(self, prefix_data: Dict[str, List[np.ndarray]], output_path: Path): output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open("wb") as pickle_file: pickle.dump(prefix_data, pickle_file) class JsonDumpWriter(BaseDumpWriter): FILE_SUFFIX = ".json" def _dump(self, prefix_data: Dict[str, List[np.ndarray]], output_path: Path): repacked_prefix_data = self._format_data(prefix_data) output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open("w") as json_file: json.dump(repacked_prefix_data, json_file) def _format_data(self, prefix_data: Dict[str, List[np.ndarray]]) -> Dict: def _format_batch_for_perf_analyzer_json_format(batch: np.ndarray): return { "content": batch.flatten().tolist(), "shape": list(batch.shape), "dtype": str(batch.dtype), } _, nbatches = _get_nitems_and_batches(prefix_data) batches = [{} for _ in range(nbatches)] for io_name, batches_per_io in prefix_data.items(): for batch_idx, batch in enumerate(batches_per_io): batches[batch_idx][io_name] = _format_batch_for_perf_analyzer_json_format(batch) return {"data": batches} class BaseDumpReader(abc.ABC): FILE_SUFFIX = ".abstract" def __init__(self, dump_dir: Union[Path, str]): self._dump_dir = Path(dump_dir) def get(self, prefix: str) -> Iterator[Dict[str, np.ndarray]]: dump_files_paths = sorted(self._dump_dir.glob(f"{prefix}*{self.FILE_SUFFIX}")) for dump_file_path in dump_files_paths: prefix_data = self._load_file(dump_file_path) nitems, nbatches = _get_nitems_and_batches(prefix_data) for batch_idx in range(nbatches): yield {io_name: prefix_data[io_name][batch_idx] for io_name in prefix_data} @abc.abstractmethod def _load_file(self, dump_file_path: Path) -> Dict[str, List[np.ndarray]]: pass def iterate_over(self, prefix_list: List[str]) -> Iterator: iterators = [self.get(prefix) for prefix in prefix_list] empty_iterators = [False] * len(iterators) while not all(empty_iterators): values = [None] * len(iterators) for idx, iterator in enumerate(iterators): if empty_iterators[idx]: continue try: values[idx] = next(iterator) except StopIteration: empty_iterators[idx] = True if all(empty_iterators): break if not all(empty_iterators): yield values def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass class PickleDumpReader(BaseDumpReader): FILE_SUFFIX = ".pkl" def _load_file(self, dump_file_path: Path) -> Dict[str, List[np.ndarray]]: with dump_file_path.open("rb") as pickle_file: return pickle.load(pickle_file) class JsonDumpReader(BaseDumpReader): FILE_SUFFIX = ".json" def _load_file(self, dump_file_path: Path) -> Dict[str, List[np.ndarray]]: with dump_file_path.open("rb") as json_file: data = json.load(json_file) return self._repack_data(data) def _repack_data(self, data: Dict) -> Dict[str, List[np.ndarray]]: result: Dict[str, List[np.ndarray]] = {} batches = data["data"] for batch in batches: for io_name, batch_as_dict in batch.items(): io_batches = result.setdefault(io_name, []) flat_array = batch_as_dict["content"] shape = batch_as_dict["shape"] dtype = batch_as_dict["dtype"] batch_as_array = np.array(flat_array).reshape(shape).astype(dtype) io_batches.append(batch_as_array) return result
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/dump.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import logging import os import re from pathlib import Path from typing import List LOGGER = logging.getLogger(__name__) class ExtensionManager: def __init__(self, name: str): self._name = name self._registry = {} def register_extension(self, extension: str, clazz): already_registered_class = self._registry.get(extension, None) if already_registered_class and already_registered_class.__module__ != clazz.__module__: raise RuntimeError( f"Conflicting extension {self._name}/{extension}; " f"{already_registered_class.__module__}.{already_registered_class.__name} " f"and " f"{clazz.__module__}.{clazz.__name__}" ) elif already_registered_class is None: clazz_full_name = f"{clazz.__module__}.{clazz.__name__}" if clazz is not None else "None" LOGGER.debug(f"Registering extension {self._name}/{extension}: {clazz_full_name}") self._registry[extension] = clazz def get(self, extension): if extension not in self._registry: raise RuntimeError(f"Missing extension {self._name}/{extension}") return self._registry[extension] @property def supported_extensions(self): return list(self._registry) @staticmethod def scan_for_extensions(extension_dirs: List[Path]): register_pattern = r".*\.register_extension\(.*" for extension_dir in extension_dirs: for python_path in extension_dir.rglob("*.py"): if not python_path.is_file(): continue payload = python_path.read_text() if re.findall(register_pattern, payload): import_path = python_path.relative_to(toolkit_root_dir.parent) package = import_path.parent.as_posix().replace(os.sep, ".") package_with_module = f"{package}.{import_path.stem}" spec = importlib.util.spec_from_file_location(name=package_with_module, location=python_path) my_module = importlib.util.module_from_spec(spec) my_module.__package__ = package try: spec.loader.exec_module(my_module) # pytype: disable=attribute-error except ModuleNotFoundError as e: LOGGER.error( f"Could not load extensions from {import_path} due to missing python packages; {e}" ) runners = ExtensionManager("runners") loaders = ExtensionManager("loaders") savers = ExtensionManager("savers") converters = ExtensionManager("converters") toolkit_root_dir = (Path(__file__).parent / "..").resolve() ExtensionManager.scan_for_extensions([toolkit_root_dir])
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/extensions.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib from distutils.version import LooseVersion from importlib.metadata import version from typing import List TRITON_CLIENT_VERSION = LooseVersion(version("tritonclient")) # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import BatchingMode, EvaluationMode, MeasurementMode, OfflineMode from .perf_analyzer import PerfAnalyzer, PerfAnalyzerConfig from .utils import parse_server_url LOGGER = logging.getLogger("warmup") def performance_evaluation_warmup( server_url: str, model_name: str, batch_sizes: List[int], number_of_triton_instances: int, number_of_model_instances: int, input_data: str, input_shapes: List[str], measurement_mode: MeasurementMode, measurement_interval: int, measurement_request_count: int, batching_mode: BatchingMode, offline_mode: OfflineMode, evaluation_mode: EvaluationMode, output_shared_memory_size: int, ): protocol, host, port = parse_server_url(server_url) measurement_interval = 2 * measurement_interval measurement_request_count = 2 * measurement_request_count if batching_mode == BatchingMode.STATIC: if len(batch_sizes) == 1: batch_sizes = {batch_sizes[0]} else: batch_sizes = sorted({1, batch_sizes[-1]}) max_concurrency = 1 min_concurrency = 1 step = 1 elif batching_mode == BatchingMode.DYNAMIC: max_batch_size = max(batch_sizes) max_total_requests = 2 * max_batch_size * number_of_triton_instances * number_of_model_instances max_concurrency = min(256, max_total_requests) step = max(1, max_concurrency // 2) min_concurrency = step batch_sizes = [max(1, max_total_requests // 256)] else: raise ValueError(f"Unsupported batching mode: {batching_mode}") for batch_size in batch_sizes: for concurrency in range(min_concurrency, max_concurrency + step, step): params = { "model-name": model_name, "model-version": 1, "batch-size": batch_size, "url": f"{host}:{port}", "protocol": protocol, "input-data": input_data, "measurement-interval": measurement_interval, "concurrency-range": f"{concurrency}:{concurrency}:1", } if TRITON_CLIENT_VERSION >= LooseVersion("2.11.0"): params["measurement-mode"] = measurement_mode.value params["measurement-request-count"] = measurement_request_count if evaluation_mode == EvaluationMode.OFFLINE: params["shared-memory"] = offline_mode.value params["output-shared-memory-size"] = output_shared_memory_size config = PerfAnalyzerConfig() for param, value in params.items(): config[param] = value for shape in input_shapes: config["shape"] = shape perf_analyzer = PerfAnalyzer(config=config) perf_analyzer.run()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/warmup.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Tuple LOGGER = logging.getLogger(__name__) def parse_server_url(server_url: str) -> Tuple[str, str, int]: DEFAULT_PORTS = {"http": 8000, "grpc": 8001} # extract protocol server_url_items = server_url.split("://") if len(server_url_items) != 2: raise ValueError("Prefix server_url with protocol ex.: grpc://127.0.0.1:8001") requested_protocol, server_url = server_url_items requested_protocol = requested_protocol.lower() if requested_protocol not in DEFAULT_PORTS: raise ValueError(f"Unsupported protocol: {requested_protocol}") # extract host and port default_port = DEFAULT_PORTS[requested_protocol] server_url_items = server_url.split(":") if len(server_url_items) == 1: host, port = server_url, default_port elif len(server_url_items) == 2: host, port = server_url_items port = int(port) if port != default_port: LOGGER.warning( f"Current server URL is {server_url} while default {requested_protocol} port is {default_port}" ) else: raise ValueError(f"Could not parse {server_url}. Example of correct server URL: grpc://127.0.0.1:8001") return requested_protocol, host, port
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import inspect import logging from typing import Callable, Dict, Optional, Union from model_navigator.utils.cli import is_dict_generic, is_list_generic, is_optional_generic from .core import GET_ARGPARSER_FN_NAME, load_from_file LOGGER = logging.getLogger(__name__) def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def filter_fn_args(args: Union[dict, argparse.Namespace], fn: Callable) -> dict: signature = inspect.signature(fn) parameters_names = list(signature.parameters) if isinstance(args, argparse.Namespace): args = vars(args) args = {k: v for k, v in args.items() if k in parameters_names} return args def add_args_for_fn_signature(parser, fn) -> argparse.ArgumentParser: parser.conflict_handler = "resolve" signature = inspect.signature(fn) for parameter in signature.parameters.values(): if parameter.name in ["self", "args", "kwargs"]: continue argument_kwargs = {} if parameter.annotation != inspect.Parameter.empty: is_optional = is_optional_generic(parameter.annotation) if is_optional: annotation = parameter.annotation.__args__[0] # Optional[cls] will be changed into Union[cls, None] else: annotation = parameter.annotation is_list = is_list_generic(annotation) is_dict = is_dict_generic(annotation) if parameter.annotation == bool: argument_kwargs["type"] = str2bool argument_kwargs["choices"] = [0, 1] elif is_list: argument_kwargs["type"] = annotation.__args__[0] # List[cls] -> cls elif is_dict: raise RuntimeError( f"Could not prepare argument parser for {parameter.name}: {parameter.annotation} in {fn}" ) else: argument_kwargs["type"] = annotation if parameter.default != inspect.Parameter.empty: if parameter.annotation == bool: argument_kwargs["default"] = str2bool(parameter.default) else: argument_kwargs["default"] = parameter.default else: argument_kwargs["required"] = True name = parameter.name.replace("_", "-") LOGGER.debug(f"Adding argument {name} with {argument_kwargs}") parser.add_argument(f"--{name}", **argument_kwargs) return parser class ArgParserGenerator: def __init__(self, cls_or_fn, module_path: Optional[str] = None): self._cls_or_fn = cls_or_fn init_method_name = "__init__" self._handle = cls_or_fn if inspect.isfunction(cls_or_fn) else getattr(cls_or_fn, init_method_name, None) input_is_python_file = module_path and module_path.endswith(".py") self._input_path = module_path if input_is_python_file else None self._required_fn_name_for_signature_parsing = getattr( cls_or_fn, "required_fn_name_for_signature_parsing", None ) def update_argparser(self, parser): name = self._handle.__name__ group_parser = parser.add_argument_group(name) add_args_for_fn_signature(group_parser, fn=self._handle) self._update_argparser(group_parser) def get_args(self, args: argparse.Namespace): filtered_args = filter_fn_args(args, fn=self._handle) tmp_parser = argparse.ArgumentParser(allow_abbrev=False) self._update_argparser(tmp_parser) custom_names = [ p.dest.replace("-", "_") for p in tmp_parser._actions if not isinstance(p, argparse._HelpAction) ] custom_params = {n: getattr(args, n) for n in custom_names} filtered_args = {**filtered_args, **custom_params} return filtered_args def from_args(self, args: Union[argparse.Namespace, Dict]): args = self.get_args(args) LOGGER.info(f"Initializing {self._cls_or_fn.__name__}({args})") return self._cls_or_fn(**args) def _update_argparser(self, parser): label = "argparser_update" if self._input_path: update_argparser_handle = load_from_file(self._input_path, label=label, target=GET_ARGPARSER_FN_NAME) if update_argparser_handle: update_argparser_handle(parser) elif self._required_fn_name_for_signature_parsing: fn_handle = load_from_file( self._input_path, label=label, target=self._required_fn_name_for_signature_parsing ) if fn_handle: add_args_for_fn_signature(parser, fn_handle)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/args.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import re from typing import Dict, List from natsort import natsorted from tabulate import tabulate def sort_results(results: List): results = natsorted(results, key=lambda item: [item[key] for key in item.keys()]) return results def save_results(filename: str, data: List, formatted: bool = False): data = format_data(data=data) if formatted else data with open(filename, "a") as csvfile: fieldnames = data[0].keys() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for row in data: writer.writerow(row) def format_data(data: List[Dict]) -> List[Dict]: formatted_data = list() for item in data: formatted_item = format_keys(data=item) formatted_data.append(formatted_item) return formatted_data def format_keys(data: Dict) -> Dict: keys = {format_key(key=key): value for key, value in data.items()} return keys def format_key(key: str) -> str: key = " ".join([k.capitalize() for k in re.split("_| ", key)]) return key def show_results(results: List[Dict]): headers = list(results[0].keys()) summary = map(lambda x: list(map(lambda item: item[1], x.items())), results) print(tabulate(summary, headers=headers))
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/report.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from typing import Dict, Optional, Union import numpy as np # pytype: disable=import-error import onnx import onnx.shape_inference import onnxruntime from google.protobuf import text_format from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE from ..core import BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, TensorSpec from ..extensions import loaders, runners, savers from .utils import infer_precision # pytype: enable=import-error LOGGER = logging.getLogger(__name__) def _value_info2tensor_spec(value_info: onnx.ValueInfoProto): onnx_data_type_map = {"float": "float32", "double": "float64"} elem_type_name = onnx.TensorProto.DataType.Name(value_info.type.tensor_type.elem_type).lower() dtype = onnx_data_type_map.get(elem_type_name, elem_type_name) def _get_dim(dim): which = dim.WhichOneof("value") if which is not None: # which is None when dim is None dim = getattr(dim, which) return None if isinstance(dim, (str, bytes)) else dim shape = value_info.type.tensor_type.shape shape = tuple(_get_dim(d) for d in shape.dim) return TensorSpec(value_info.name, dtype=dtype, shape=shape) def _infer_graph_precision(onnx_graph: onnx.GraphProto) -> Optional[Precision]: import networkx as nx # build directed graph nx_graph = nx.DiGraph() def _get_dtype(vi): t = vi.type if hasattr(t, "tensor_type"): type_id = t.tensor_type.elem_type else: raise NotImplementedError("Not implemented yet") return TENSOR_TYPE_TO_NP_TYPE[type_id] node_output2type = {vi.name: _get_dtype(vi) for vi in onnx_graph.value_info} node_outputs2node = {output_name: node for node in onnx_graph.node for output_name in node.output} node_inputs2node = {input_name: node for node in onnx_graph.node for input_name in node.input} for node in onnx_graph.node: node_dtype = node_output2type.get("+".join(node.output), None) nx_graph.add_node( node.name, op=node.op_type, attr={a.name: a for a in node.attribute}, dtype=node_dtype, ) for input_name in node.input: prev_node = node_outputs2node.get(input_name, None) if prev_node: nx_graph.add_edge(prev_node.name, node.name) for input_node in onnx_graph.input: input_name = input_node.name nx_graph.add_node(input_name, op="input", dtype=_get_dtype(input_node)) next_node = node_inputs2node.get(input_name, None) if next_node: nx_graph.add_edge(input_name, next_node.name) for output in onnx_graph.output: output_name = output.name nx_graph.add_node(output_name, op="output", dtype=_get_dtype(output)) prev_node = node_outputs2node.get(output_name, None) if prev_node: nx_graph.add_edge(prev_node.name, output_name) else: LOGGER.warning(f"Could not find previous node for {output_name}") input_names = [n.name for n in onnx_graph.input] output_names = [n.name for n in onnx_graph.output] most_common_dtype = infer_precision(nx_graph, input_names, output_names, lambda node: node.get("dtype", None)) if most_common_dtype is not None: precision = {np.dtype("float32"): Precision.FP32, np.dtype("float16"): Precision.FP16}[most_common_dtype] else: precision = None return precision class OnnxLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() model = onnx.load(model_path) onnx.checker.check_model(model) onnx.helper.strip_doc_string(model) model = onnx.shape_inference.infer_shapes(model) # TODO: probably modification of onnx model ios causes error on optimize # from onnx.utils import polish_model # model = polish_model(model) # run checker, docs strip, optimizer and shape inference inputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.input} outputs = {vi.name: _value_info2tensor_spec(vi) for vi in model.graph.output} precision = _infer_graph_precision(model.graph) return Model(model, precision, inputs, outputs) class OnnxSaver(BaseSaver): def __init__(self, as_text: bool = False): self._as_text = as_text def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: model_path = Path(model_path) LOGGER.debug(f"Saving ONNX model to {model_path.as_posix()}") model_path.parent.mkdir(parents=True, exist_ok=True) onnx_model: onnx.ModelProto = model.handle if self._as_text: with model_path.open("w") as f: f.write(text_format.MessageToString(onnx_model)) else: with model_path.open("wb") as f: f.write(onnx_model.SerializeToString()) """ ExecutionProviders on onnxruntime 1.4.0 ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'MIGraphXExecutionProvider', 'NGRAPHExecutionProvider', 'OpenVINOExecutionProvider', 'DnnlExecutionProvider', 'NupharExecutionProvider', 'VitisAIExecutionProvider', 'ArmNNExecutionProvider', 'ACLExecutionProvider', 'CPUExecutionProvider'] """ def _check_providers(providers): providers = providers or [] if not isinstance(providers, (list, tuple)): providers = [providers] available_providers = onnxruntime.get_available_providers() unavailable = set(providers) - set(available_providers) if unavailable: raise RuntimeError(f"Unavailable providers {unavailable}") return providers class OnnxRunner(BaseRunner): def __init__(self, verbose_runtime_logs: bool = False): self._providers = None self._verbose_runtime_logs = verbose_runtime_logs def init_inference(self, model: Model): assert isinstance(model.handle, onnx.ModelProto) return OnnxRunnerSession( model=model, providers=self._providers, verbose_runtime_logs=self._verbose_runtime_logs ) class OnnxRunnerSession(BaseRunnerSession): def __init__(self, model: Model, providers, verbose_runtime_logs: bool = False): super().__init__(model) self._input_names = None self._output_names = None self._session = None self._providers = providers self._verbose_runtime_logs = verbose_runtime_logs self._old_env_values = {} def __enter__(self): self._old_env_values = self._set_env_variables() sess_options = onnxruntime.SessionOptions() # default session options if self._verbose_runtime_logs: sess_options.log_severity_level = 0 sess_options.log_verbosity_level = 1 LOGGER.info( f"Starting inference session for onnx model providers={self._providers} sess_options={sess_options}" ) self._input_names = list(self._model.inputs) self._output_names = list(self._model.outputs) model_payload = self._model.handle.SerializeToString() self._session = onnxruntime.InferenceSession( model_payload, providers=self._providers, sess_options=sess_options ) return self def __exit__(self, exc_type, exc_value, traceback): self._input_names = None self._output_names = None self._session = None self._recover_env_variables(self._old_env_values) def __call__(self, x: Dict[str, object]): feed_dict = {k: x[k] for k in self._input_names} y_pred = self._session.run(self._output_names, feed_dict) y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.ONNX.value, OnnxLoader) runners.register_extension(Format.ONNX.value, OnnxRunner) savers.register_extension(Format.ONNX.value, OnnxSaver)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda/onnx.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter from typing import Callable, Dict, List, Optional import networkx as nx from ..core import ShapeSpec def infer_precision( nx_graph: nx.Graph, input_names: List[str], output_names: List[str], get_node_dtype_fn: Callable, ): node_dtypes = [nx_graph.nodes[node_name].get("dtype", None) for node_name in nx_graph.nodes] node_dtypes = [dt for dt in node_dtypes if dt is None or dt.kind not in ["i", "b"]] dtypes_counter = Counter(node_dtypes) return dtypes_counter.most_common()[0][0] def get_shapes_with_dynamic_axes(dataloader, batch_size_dim: Optional[int] = None): def _set_dynamic_shapes(t, shapes): for k, v in t.items(): shape = list(v.shape) for dim, s in enumerate(shape): if shapes[k][dim] != -1 and shapes[k][dim] != s: shapes[k][dim] = -1 def _mark_batch_axis(shape, batch_axis: int): shape = list(shape) shape[batch_axis] = -1 return tuple(shape) ## get all shapes from input and output tensors input_shapes = {} output_shapes = {} for batch in dataloader: _, x, y = batch for k, v in x.items(): input_shapes[k] = list(v.shape) for k, v in y.items(): output_shapes[k] = list(v.shape) break # based on max <max_num_iters> iterations, check which # dimensions differ to determine dynamic_axes max_num_iters = 100 for idx, batch in enumerate(dataloader): if idx >= max_num_iters: break _, x, y = batch _set_dynamic_shapes(x, input_shapes) _set_dynamic_shapes(y, output_shapes) if batch_size_dim is not None: input_shapes = {name: _mark_batch_axis(shape, batch_size_dim) for name, shape in input_shapes.items()} output_shapes = {name: _mark_batch_axis(shape, batch_size_dim) for name, shape in output_shapes.items()} return input_shapes, output_shapes def get_dynamic_axes(dataloader, batch_size_dim: Optional[int] = None): input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader, batch_size_dim=batch_size_dim) all_shapes = {**input_shapes, **output_shapes} dynamic_axes = {} for k, shape in all_shapes.items(): for idx, s in enumerate(shape): if s == -1: dynamic_axes[k] = {idx: k + "_" + str(idx)} for k in all_shapes: if k in dynamic_axes: dynamic_axes[k].update({batch_size_dim: "batch_size_" + str(batch_size_dim)}) else: dynamic_axes[k] = {batch_size_dim: "batch_size_" + str(batch_size_dim)} return dynamic_axes def get_input_shapes(dataloader, max_batch_size=1) -> Dict[str, ShapeSpec]: def init_counters_and_shapes(x, counters, min_shapes, max_shapes): for k, v in x.items(): counters[k] = Counter() min_shapes[k] = [float("inf")] * v.ndim max_shapes[k] = [float("-inf")] * v.ndim counters = {} min_shapes: Dict[str, tuple] = {} max_shapes: Dict[str, tuple] = {} for idx, batch in enumerate(dataloader): ids, x, y = batch if idx == 0: init_counters_and_shapes(x, counters, min_shapes, max_shapes) for k, v in x.items(): shape = v.shape counters[k][shape] += 1 min_shapes[k] = tuple(min(a, b) for a, b in zip(min_shapes[k], shape)) max_shapes[k] = tuple(max(a, b) for a, b in zip(max_shapes[k], shape)) opt_shapes: Dict[str, tuple] = {} for k, v in counters.items(): opt_shapes[k] = v.most_common(1)[0][0] shapes = {} for k in opt_shapes.keys(): # same keys in min_shapes and max_shapes shapes[k] = ShapeSpec( min=(1,) + min_shapes[k][1:], max=(max_batch_size,) + max_shapes[k][1:], opt=(max_batch_size,) + opt_shapes[k][1:], ) return shapes
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import sys from pathlib import Path from typing import Dict, NamedTuple, Optional, Union import numpy as np # pytype: disable=import-error try: import pycuda.autoinit import pycuda.driver as cuda except Exception as e: logging.getLogger(__name__).warning(f"Problems with importing pycuda package; {e}") # pytype: enable=import-error import tensorrt as trt # pytype: disable=import-error from ..core import BaseLoader, BaseRunner, BaseRunnerSession, Format, Model, TensorSpec from ..extensions import loaders, runners LOGGER = logging.getLogger(__name__) TRT_LOGGER = trt.Logger(trt.Logger.INFO) # documentation: # https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/index.html # https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#python_samples_section _NP_DTYPE2TRT_DTYPE = { np.dtype("float32"): trt.DataType.FLOAT, np.dtype("float16"): trt.DataType.HALF, np.dtype("int8"): trt.DataType.INT8, np.dtype("int32"): trt.DataType.INT32, np.dtype("bool"): trt.DataType.BOOL, } class TensorRTLoader(BaseLoader): def load(self, model_path: Union[str, Path], **_) -> Model: model_path = Path(model_path) LOGGER.debug(f"Loading TensorRT engine from {model_path}") engine = self._load_engine(model_path) if engine is None: LOGGER.debug("Unable to load engine without plugins. Loading plugins.") trt.init_libnvinfer_plugins(logger=TRT_LOGGER, namespace="") LOGGER.debug(f"Loading TensorRT engine with plugins from {model_path}") engine = self._load_engine(model_path) if engine is None: raise RuntimeError(f"Could not load ICudaEngine from {model_path}") inputs = {} outputs = {} for binding_idx in range(engine.num_bindings): name = engine.get_binding_name(binding_idx) is_input = engine.binding_is_input(binding_idx) dtype = np.dtype(trt.nptype(engine.get_binding_dtype(binding_idx))).name shape = engine.get_binding_shape(binding_idx) if is_input: inputs[name] = TensorSpec(name, dtype, shape) else: outputs[name] = TensorSpec(name, dtype, shape) return Model(engine, None, inputs, outputs) def _load_engine(self, model_path: Path): with model_path.open("rb") as fh, trt.Runtime(TRT_LOGGER) as runtime: engine = runtime.deserialize_cuda_engine(fh.read()) return engine class TRTBuffers(NamedTuple): x_host: Optional[Dict[str, object]] x_dev: Dict[str, object] y_pred_host: Dict[str, object] y_pred_dev: Dict[str, object] class TensorRTRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return TensorRTRunnerSession(model=model) class TensorRTRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, trt.ICudaEngine) self._model = model self._has_dynamic_shapes = None self._context = None self._engine: trt.ICudaEngine = self._model.handle self._cuda_context = pycuda.autoinit.context self._input_names = None self._output_names = None self._buffers = None def __enter__(self): self._context = self._engine.create_execution_context() self._context.__enter__() self._input_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if self._engine.binding_is_input(idx) ] self._output_names = [ self._engine[idx] for idx in range(self._engine.num_bindings) if not self._engine.binding_is_input(idx) ] # all_binding_shapes_specified is True for models without dynamic shapes # so initially this variable is False for models with dynamic shapes self._has_dynamic_shapes = not self._context.all_binding_shapes_specified return self def __exit__(self, exc_type, exc_value, traceback): self._context.__exit__(exc_type, exc_value, traceback) self._input_names = None self._output_names = None # TODO: are cuda buffers dealloc automatically? self._buffers = None def __call__(self, x): buffers = self._prepare_buffers_if_needed(x) bindings = self._update_bindings(buffers) for name in self._input_names: cuda.memcpy_htod(buffers.x_dev[name], buffers.x_host[name]) self._cuda_context.push() self._context.execute_v2(bindings=bindings) self._cuda_context.pop() for name in self._output_names: cuda.memcpy_dtoh(buffers.y_pred_host[name], buffers.y_pred_dev[name]) return buffers.y_pred_host def _update_bindings(self, buffers: TRTBuffers): bindings = [None] * self._engine.num_bindings for name in buffers.y_pred_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.y_pred_dev[name] for name in buffers.x_dev: binding_idx: int = self._engine[name] bindings[binding_idx] = buffers.x_dev[name] return bindings def _set_dynamic_input_shapes(self, x_host): def _is_shape_dynamic(input_shape): return any([dim is None or dim == -1 for dim in input_shape]) for name in self._input_names: bindings_idx = self._engine[name] data_shape = x_host[name].shape # pytype: disable=attribute-error if self._engine.is_shape_binding(bindings_idx): input_shape = self._context.get_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_shape_input(bindings_idx, data_shape) else: input_shape = self._engine.get_binding_shape(bindings_idx) if _is_shape_dynamic(input_shape): self._context.set_binding_shape(bindings_idx, data_shape) assert self._context.all_binding_shapes_specified and self._context.all_shape_inputs_specified def _prepare_buffers_if_needed(self, x_host: Dict[str, object]): # pytype: disable=attribute-error new_batch_size = list(x_host.values())[0].shape[0] current_batch_size = list(self._buffers.y_pred_host.values())[0].shape[0] if self._buffers else 0 # pytype: enable=attribute-error if self._has_dynamic_shapes or new_batch_size != current_batch_size: # TODO: are CUDA buffers dealloc automatically? self._set_dynamic_input_shapes(x_host) y_pred_host = {} for name in self._output_names: shape = self._context.get_binding_shape(self._engine[name]) binding_idx: int = self._engine[name] dtype_from_trt_binding = np.dtype(trt.nptype(self._engine.get_binding_dtype(binding_idx))) dtype_from_model_spec = np.dtype(self._model.outputs[name].dtype) assert dtype_from_model_spec == dtype_from_trt_binding y_pred_host[name] = np.zeros(shape, dtype=dtype_from_model_spec) y_pred_dev = {name: cuda.mem_alloc(data.nbytes) for name, data in y_pred_host.items()} # cast host input into binding dtype def _cast_input(name, data): binding_idx: int = self._engine[name] np_dtype = trt.nptype(self._engine.get_binding_dtype(binding_idx)) return data.astype(np_dtype) x_host = {name: _cast_input(name, host_input) for name, host_input in x_host.items()} x_dev = { name: cuda.mem_alloc(host_input.nbytes) for name, host_input in x_host.items() if name in self._input_names # pytype: disable=attribute-error } self._buffers = TRTBuffers(None, x_dev, y_pred_host, y_pred_dev) return self._buffers._replace(x_host=x_host) if "pycuda.driver" in sys.modules: loaders.register_extension(Format.TRT.value, TensorRTLoader) runners.register_extension(Format.TRT.value, TensorRTRunner) else: LOGGER.warning("Do not register TensorRT extension due problems with importing pycuda.driver package.")
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda/tensorrt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import typing from collections import Counter from pathlib import Path from typing import Dict, Optional, Union import numpy as np import torch # pytype: disable=import-error import yaml from model_navigator.model import ModelSignatureConfig from model_navigator.tensor import TensorSpec from model_navigator.utils.config import YamlConfigFile from ..core import ( GET_MODEL_FN_NAME, BaseLoader, BaseRunner, BaseRunnerSession, BaseSaver, Format, Model, Precision, load_from_file, ) from ..extensions import loaders, runners, savers from .utils import get_dynamic_axes, get_shapes_with_dynamic_axes LOGGER = logging.getLogger(__name__) def get_sample_input(dataloader, device): for batch in dataloader: _, x, _ = batch break if isinstance(x, dict): sample_input = list(x.values()) elif isinstance(x, list): sample_input = x else: raise TypeError("The first element (x) of batch returned by dataloader must be a list or a dict") for idx, s in enumerate(sample_input): sample_input[idx] = torch.from_numpy(s).to(device) return tuple(sample_input) def get_model_device(torch_model): if next(torch_model.parameters()).is_cuda: return "cuda" else: return "cpu" def infer_model_precision(model): counter = Counter() for param in model.parameters(): counter[param.dtype] += 1 if counter[torch.float16] > 0: return Precision.FP16 else: return Precision.FP32 def _get_tensor_dtypes(dataloader, precision): def _get_dtypes(t): def _get_dtype(v): dtype = str(v.dtype) if dtype == "float64": dtype = "float32" if precision == Precision.FP16 and dtype == "float32": dtype = "float16" return np.dtype(dtype) return {k: _get_dtype(v) for k, v in t.items()} batch = next(dataloader) _, x, y = batch input_dtypes = _get_dtypes(x) output_dtypes = _get_dtypes(y) return input_dtypes, output_dtypes ### TODO assumption: floating point input ### type has same precision as the model def _get_model_signature( inputs_names: typing.List[str], outputs_names: typing.List[str], precision, dataloader_fn, batch_size_dim: typing.Optional[int] = None, ): dataloader = dataloader_fn() input_dtypes, output_dtypes = _get_tensor_dtypes(dataloader, precision) input_shapes, output_shapes = get_shapes_with_dynamic_axes(dataloader, batch_size_dim=batch_size_dim) inputs = { name: TensorSpec(name=name, dtype=input_dtypes[name], shape=tuple(input_shapes[name])) for name in inputs_names } outputs = { name: TensorSpec(name=name, dtype=output_dtypes[name], shape=tuple(output_shapes[name])) for name in outputs_names } return ModelSignatureConfig(inputs, outputs) class PyTorchModelLoader(BaseLoader): required_fn_name_for_signature_parsing: Optional[str] = GET_MODEL_FN_NAME def __init__(self, **kwargs): self._model_args = kwargs def load(self, model_path: Union[str, Path], **kwargs) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() get_model = load_from_file(model_path, "model", GET_MODEL_FN_NAME) model, io_names_dict = get_model(**self._model_args) dataloader_fn = kwargs.get("dataloader_fn", None) output_type = kwargs.get("output_type", None) precision = infer_model_precision(model) batch_axis = getattr(model, "bermuda_batch_axis", 0) # by default models supports batching; batch_axis=0 model_signature = _get_model_signature( inputs_names=io_names_dict["inputs"], outputs_names=io_names_dict["outputs"], precision=precision, dataloader_fn=dataloader_fn, batch_size_dim=batch_axis, ) model = Model(handle=model, precision=precision, inputs=model_signature.inputs, outputs=model_signature.outputs) if output_type == Format.TS_TRACE.value: return self._trace(model, dataloader_fn) elif output_type == Format.TS_SCRIPT.value: return self._script(model) elif output_type == Format.ONNX.value: return model else: raise ValueError(f"Not supported PyTorch format: {output_type}") def _trace(self, model: Model, dataloader_fn) -> Model: device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) traced_model = torch.jit.trace_module(model.handle, {"forward": dummy_input}) return Model(traced_model, precision=model.precision, inputs=model.inputs, outputs=model.outputs) def _script(self, model: Model) -> Model: scripted_model = torch.jit.script(model.handle) return Model(scripted_model, precision=model.precision, inputs=model.inputs, outputs=model.outputs) class TorchScriptLoader(BaseLoader): def __init__(self, tensor_names_path: str = None, **kwargs): self._model_args = kwargs self._io_spec = None if tensor_names_path is not None: with Path(tensor_names_path).open("r") as fh: tensor_infos = yaml.load(fh, Loader=yaml.SafeLoader) self._io_spec = ModelSignatureConfig(tensor_infos["inputs"], tensor_infos["outputs"]) def load(self, model_path: Union[str, Path], **_) -> Model: if not isinstance(model_path, Path): model_path = Path(model_path) model = torch.jit.load(model_path.as_posix()) precision = infer_model_precision(model) io_spec = self._io_spec if not io_spec: yaml_path = model_path.parent / f"{model_path.name}.yaml" if not yaml_path.is_file(): raise ValueError( f"If `--tensor-names-path is not provided, " f"TorchScript model loader expects file {yaml_path} with tensor information." ) with yaml_path.open("r") as fh: tensor_info = yaml.load(fh, Loader=yaml.SafeLoader) io_spec = ModelSignatureConfig(tensor_info["inputs"], tensor_info["outputs"]) return Model(handle=model, precision=precision, inputs=io_spec.inputs, outputs=io_spec.outputs) class PYT2ONNXSaver(BaseSaver): def __init__(self, onnx_opset: int = None): self._onnx_opset = onnx_opset def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> Model: if isinstance(model_path, Path): model_path = model_path.as_posix() assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Converter aborted." dynamic_axes = get_dynamic_axes(dataloader_fn(), batch_size_dim=0) device = get_model_device(model.handle) dummy_input = get_sample_input(dataloader_fn(), device) with torch.no_grad(): torch.onnx.export( model.handle, dummy_input, model_path, do_constant_folding=True, input_names=list(model.inputs), output_names=list(model.outputs), dynamic_axes=dynamic_axes, opset_version=self._onnx_opset, ) class TorchScriptSaver(BaseSaver): def save(self, model: Model, model_path: Union[str, Path], dataloader_fn) -> None: if not isinstance(model_path, Path): model_path = Path(model_path) if isinstance(model.handle, torch.jit.ScriptModule): torch.jit.save(model.handle, model_path.as_posix()) else: raise RuntimeError("The model must be of type 'torch.jit.ScriptModule'. Saving aborted.") signature_config = ModelSignatureConfig(inputs=model.inputs, outputs=model.outputs) annotation_path = model_path.parent / f"{model_path.name}.yaml" with YamlConfigFile(annotation_path) as config_file: config_file.save_config(signature_config) class PyTorchRunner(BaseRunner): def __init__(self): pass def init_inference(self, model: Model): return PyTorchRunnerSession(model=model) class PyTorchRunnerSession(BaseRunnerSession): def __init__(self, model: Model): super().__init__(model) assert isinstance(model.handle, torch.jit.ScriptModule) or isinstance( model.handle, torch.nn.Module ), "The model must be of type 'torch.jit.ScriptModule' or 'torch.nn.Module'. Runner aborted." self._model = model self._output_names = None def __enter__(self): self._output_names = list(self._model.outputs) return self def __exit__(self, exc_type, exc_value, traceback): self._output_names = None self._model = None def __call__(self, x: Dict[str, object]): with torch.no_grad(): feed_list = [torch.from_numpy(v).cuda() for k, v in x.items()] y_pred = self._model.handle(*feed_list) if isinstance(y_pred, torch.Tensor): y_pred = (y_pred,) y_pred = [t.cpu().numpy() for t in y_pred] y_pred = dict(zip(self._output_names, y_pred)) return y_pred loaders.register_extension(Format.PYT.value, PyTorchModelLoader) loaders.register_extension(Format.TS_TRACE.value, TorchScriptLoader) loaders.register_extension(Format.TS_SCRIPT.value, TorchScriptLoader) savers.register_extension(Format.TS_SCRIPT.value, TorchScriptSaver) savers.register_extension(Format.TS_TRACE.value, TorchScriptSaver) savers.register_extension(f"{Format.PYT.value}--{Format.ONNX.value}", PYT2ONNXSaver) runners.register_extension(Format.PYT.value, PyTorchRunner) runners.register_extension(Format.TS_SCRIPT.value, PyTorchRunner) runners.register_extension(Format.TS_TRACE.value, PyTorchRunner)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/bermuda/pyt.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .model_analyzer import ModelAnalyzer, ModelAnalyzerMode, ModelAnalyzerReportMode # noqa: F401 from .model_analyzer_config import ModelAnalyzerConfig # noqa: F401
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/model_analyzer/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .exceptions import ModelAnalyzerException class ModelAnalyzerConfig: """ A config class to set arguments to the Model Analyzer. An argument set to None will use the default. """ model_analyzer_args = [ "config-file", ] input_to_options = [ "config-file", ] def __init__(self): # Args will be a dict with the string representation as key self._args = {k: None for k in self.model_analyzer_args} self._options = { "-f": "config.yaml", } self._input_to_options = { "config-file": "-f", } def to_cli_string(self): """ Utility function to convert a config into a string of arguments to the server with CLI. Returns ------- str the command consisting of all set arguments to the model analyzer. e.g. '--model-repository=/models --verbose=True' """ # single dashed options, then verbose flags, then main args args = [f"{k} {v}" for k, v in self._options.items() if v] args += [f"--{k}={v}" for k, v in self._args.items() if v] return " ".join(args) @classmethod def allowed_keys(cls): """ Returns ------- list of str The keys that are allowed to be passed into model_analyzer """ return list(cls.model_analyzer_args) + list(cls.input_to_options) def __getitem__(self, key): """ Gets an arguments value in config Parameters ---------- key : str The name of the argument to the model analyzer Returns ------- The value that the argument is set to in this config """ if key in self._args: return self._args[key] elif key in self._input_to_options: return self._options[self._input_to_options[key]] else: raise ModelAnalyzerException(f"'{key}' Key not found in config") def __setitem__(self, key, value): """ Sets an arguments value in config after checking if defined/supported. Parameters ---------- key : str The name of the argument to the model analyzer value : (any) The value to which the argument is being set Raises ------ TritonModelAnalyzerException If key is unsupported or undefined in the config class """ if key in self._args: self._args[key] = value elif key in self._input_to_options: self._options[self._input_to_options[key]] = value else: raise ModelAnalyzerException(f"The argument '{key}' to the Model Analyzer is not supported.")
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/model_analyzer/model_analyzer_config.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ModelAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/model_analyzer/exceptions.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import subprocess from subprocess import CalledProcessError from .exceptions import ModelAnalyzerException SERVER_OUTPUT_TIMEOUT_SECS = 5 LOGGER = logging.getLogger(__name__) class ModelAnalyzerMode: PROFILE = "profile" ANALYZE = "analyze" REPORT = "report" class ModelAnalyzerReportMode: OFFLINE = "offline" ONLINE = "online" class ModelAnalyzer: """ Concrete Implementation of Model Analyzer interface that runs analyzer locally as as subprocess. """ _analyzer_path = "model-analyzer" def __init__(self, config): """ Parameters ---------- config : AnalyzerConfig the config object containing arguments for this server instance """ self._analyzer_process = None self._analyzer_config = config self._log = None def run(self, mode: str, verbose: bool = False, quiet: bool = False, report_mode: str = None): """ Starts the model analyzer locally """ if self._analyzer_path: cmd = [self._analyzer_path] if verbose: cmd += ["--verbose"] if quiet: cmd += ["--quiet"] if report_mode: cmd += ["-m"] cmd += [report_mode] cmd += [mode] cmd += self._analyzer_config.to_cli_string().split() LOGGER.debug(f"Model Analyze command: {cmd}") try: subprocess.run(cmd, check=True, start_new_session=True) except CalledProcessError as e: raise ModelAnalyzerException( f"Running {self._analyzer_path} with {e.cmd} failed with" f" exit status {e.returncode} : {e.output}" )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/model_analyzer/model_analyzer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .perf_analyzer import PerfAnalyzer # noqa: F401 from .perf_config import PerfAnalyzerConfig # noqa: F401
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/perf_analyzer/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict from .exceptions import PerfAnalyzerException class PerfAnalyzerConfig: """ A config class to set arguments to the perf_analyzer. An argument set to None will use the perf_analyzer's default. """ perf_analyzer_args = [ "async", "sync", "measurement-interval", "measurement-mode", "measurement-request-count", "concurrency-range", "request-rate-range", "request-distribution", "request-intervals", "binary-search", "num-of-sequence", "latency-threshold", "max-threads", "stability-percentage", "max-trials", "percentile", "input-data", "shared-memory", "output-shared-memory-size", "sequence-length", "string-length", "string-data", ] perf_analyzer_multiple_args = [ "shape", ] input_to_options = [ "model-name", "model-version", "batch-size", "url", "protocol", "latency-report-file", "streaming", ] input_to_verbose = ["verbose", "extra-verbose"] def __init__(self): """ Construct a PerfAnalyzerConfig """ self._args = {k: None for k in self.perf_analyzer_args} self._multiple_args = {k: [] for k in self.perf_analyzer_multiple_args} self._options = { "-m": None, "-x": None, "-b": None, "-u": None, "-i": None, "-f": None, "-H": None, "-c": None, "-t": None, } self._verbose = {"-v": None, "-v -v": None} self._input_to_options = { "model-name": "-m", "model-version": "-x", "batch-size": "-b", "url": "-u", "protocol": "-i", "latency-report-file": "-f", "streaming": "-H", "concurrency": "-c", "threads": "-t", } self._input_to_verbose = {"verbose": "-v", "extra-verbose": "-v -v"} @classmethod def allowed_keys(cls): """ Returns ------- list of str The keys that are allowed to be passed into perf_analyzer """ return ( list(cls.perf_analyzer_args) + list(cls.perf_analyzer_multiple_args) + list(cls.input_to_options) + list(cls.input_to_verbose) ) def update_config(self, params=None): """ Allows setting values from a params dict Parameters ---------- params: dict keys are allowed args to perf_analyzer """ if params: for key in params: self[key] = params[key] def to_cli_string(self): """ Utility function to convert a config into a string of arguments to the perf_analyzer with CLI. Returns ------- str cli command string consisting of all arguments to the perf_analyzer set in the config, without the executable name. """ # single dashed options, then verbose flags, then main args args = [f"{k} {v}" for k, v in self._options.items() if v] args += [k for k, v in self._verbose.items() if v] args += [f"--{k}={v}" for k, v in self._args.items() if v] for k, v in self._multiple_args.items(): for item in v: args.append(f"--{k}={item}") return " ".join(args) def __getitem__(self, key: str): """ Gets an arguments value in config Parameters ---------- key : str The name of the argument to the perf_analyzer Returns ------- The value that the argument is set to in this config Raises ------ TritonModelAnalyzerException If argument not found in the config """ if key in self._args: return self._args[key] elif key in self._multiple_args: return self._multiple_args[key] elif key in self._input_to_options: return self._options[self._input_to_options[key]] elif key in self._input_to_verbose: return self._verbose[self._input_to_verbose[key]] else: raise PerfAnalyzerException(f"'{key}' Key not found in config") def __setitem__(self, key: str, value: Any): """ Sets an arguments value in config after checking if defined/supported. Parameters ---------- key : str The name of the argument to the perf_analyzer value : (any) The value to which the argument is being set Raises ------ TritonModelAnalyzerException If key is unsupported or undefined in the config class """ if key in self._args: self._args[key] = value elif key in self._multiple_args: self._multiple_args[key].append(value) elif key in self._input_to_options: self._options[self._input_to_options[key]] = value elif key in self._input_to_verbose: self._verbose[self._input_to_verbose[key]] = value else: raise PerfAnalyzerException( f"The argument '{key}' to the perf_analyzer " "is not supported by the model analyzer." )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/perf_analyzer/perf_config.py
class PerfAnalyzerException(Exception): def __init__(self, message: str): self._message = message def __str__(self): """ Get the exception string representation. Returns ------- str The message associated with this exception, or None if no message. """ return self._message @property def message(self): """ Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/perf_analyzer/exceptions.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib from subprocess import PIPE, CalledProcessError, Popen # method from PEP-366 to support relative import in executed modules if __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .exceptions import PerfAnalyzerException MAX_INTERVAL_CHANGES = 10 COUNT_INTERVAL_DELTA = 50 TIME_INTERVAL_DELTA = 2000 LOGGER = logging.getLogger(__name__) class PerfAnalyzer: """ This class provides an interface for running workloads with perf_analyzer. """ def __init__(self, config): """ Parameters ---------- config : PerfAnalyzerConfig keys are names of arguments to perf_analyzer, values are their values. """ self.bin_path = "perf_analyzer" self._config = config self._output = str() def run(self): """ Runs the perf analyzer with the initialized configuration Returns ------- List of Records List of the metrics obtained from this run of perf_analyzer Raises ------ PerfAnalyzerException If subprocess throws CalledProcessError """ for _ in range(MAX_INTERVAL_CHANGES): command = [self.bin_path] command += self._config.to_cli_string().replace("=", " ").split() LOGGER.debug(f"Perf Analyze command: {command}") try: process = Popen(command, start_new_session=True, stdout=PIPE, encoding="utf-8") streamed_output = "" while True: output = process.stdout.readline() if output == "" and process.poll() is not None: break if output: streamed_output += output print(output.rstrip()) self._output += streamed_output result = process.poll() if result != 0: raise CalledProcessError(returncode=result, cmd=command, output=streamed_output) return except CalledProcessError as e: if self._faild_with_measruement_inverval(e.output): if self._config["measurement-mode"] is None or self._config["measurement-mode"] == "count_windows": self._increase_request_count() else: self._increase_time_interval() else: raise PerfAnalyzerException( f"Running perf_analyzer with {e.cmd} failed with" f" exit status {e.returncode} : {e.output}" ) raise PerfAnalyzerException(f"Ran perf_analyzer {MAX_INTERVAL_CHANGES} times, but no valid requests recorded.") def output(self): """ Returns ------- The stdout output of the last perf_analyzer run """ if self._output: return self._output raise PerfAnalyzerException("Attempted to get perf_analyzer output" "without calling run first.") def _faild_with_measruement_inverval(self, output: str): return ( output.find("Failed to obtain stable measurement") or output.find("Please use a larger time window") ) != -1 def _increase_request_count(self): self._config["measurement-request-count"] += COUNT_INTERVAL_DELTA LOGGER.debug( "perf_analyzer's measurement request count is too small, " f"increased to {self._config['measurement-request-count']}." ) def _increase_time_interval(self): self._config["measurement-interval"] += TIME_INTERVAL_DELTA LOGGER.debug( "perf_analyzer's measurement window is too small, " f"increased to {self._config['measurement-interval']} ms." )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/deployment_toolkit/perf_analyzer/perf_analyzer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Any, Dict, List, Union # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .task import DataObject class Configuration(DataObject): """ Configuration object - handle single experiment data """ def __init__( self, precision: str, format: str, batch_size: Union[str, List], accelerator: str, triton_gpu_engine_count: int, triton_max_queue_delay: int, capture_cuda_graph: int, checkpoint_variant: str, triton_preferred_batch_sizes: Union[str, List], **kwargs: Any, ): """ Args: precision: Target model precision format: Target conversion format batch_size: Batch sizes to evaluate accelerator: Triton Backend Accelerator triton_gpu_engine_count: Number of model instances triton_max_queue_delay: Maximal queue delay capture_cuda_graph: Triton Capture CUDA Graph optimization for tensorrt checkpoint_variant: Checkpoint used for configuration triton_preferred_batch_sizes: Preferred batch sizes **kwargs: Additional model arguments """ if isinstance(batch_size, str): batch_size = map(lambda item: int(item), batch_size.split(",")) if isinstance(triton_preferred_batch_sizes, str): triton_preferred_batch_sizes = map(lambda item: int(item), triton_preferred_batch_sizes.split(" ")) self.precision = precision self.format = format self.batch_size = sorted(batch_size) self.accelerator = accelerator self.triton_gpu_engine_count = triton_gpu_engine_count self.triton_max_queue_delay = triton_max_queue_delay self.capture_cuda_graph = capture_cuda_graph self.max_batch_size = max(self.batch_size) self.checkpoint_variant = checkpoint_variant self.triton_preferred_batch_sizes = " ".join(map(lambda i: str(i), sorted(triton_preferred_batch_sizes))) for key, value in kwargs.items(): self.__setattr__(key, value) @property def parameters(self) -> Dict: """ Return values stored in configuration Returns: Dictionary with configuration parameters """ return self.__dict__
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/configuration.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib from datetime import datetime from typing import Dict, List # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .configuration import Configuration from .downloader import download from .experiment import Experiment, Stage from .logger import LOGGER from .maintainer import Maintainer from .pipeline import Pipeline from .stages import ResultsType, TritonPerformanceOfflineStage, TritonPerformanceOnlineStage from .task import Checkpoint, Dataset, SystemInfo, Task from .triton import Triton from .utils import clean_directory class Preparer(abc.ABC): """ Runner preparer object. """ @abc.abstractmethod def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): pass class ExperimentPreparer(Preparer): """ Experiment runner preparer object. """ def exec( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, maintainer: Maintainer, triton: Triton, logs_dir: pathlib.Path, ): LOGGER.info("Preparing Triton container image") triton_container_image = self._prepare_triton_container_image(config, maintainer, triton) LOGGER.info("Initialize task") task = self._initialize_task( workspace=workspace, config=config, pipeline=pipeline, triton_container_image=triton_container_image, logs_dir=logs_dir, ) LOGGER.info("Preparing directories") self._create_dirs(workspace, task) LOGGER.info("Clean previous run artifacts directories") self._clean_previous_run_artifacts(workspace, task) LOGGER.info("Downloading checkpoints") self._download_checkpoints(task) return task def _create_dirs(self, workspace: pathlib.Path, task: Task) -> None: """ Create directories used to store artifacts and final results Returns: None """ for directory in [task.results_dir, task.logs_dir, task.checkpoints_dir]: directory_path = workspace / directory directory_path.mkdir(parents=True, exist_ok=True) LOGGER.info(f"Directory {directory} created.") def _clean_previous_run_artifacts(self, workspace: pathlib.Path, task: Task) -> None: """ Clean logs from previous run Returns: None """ for directory in [ task.logs_dir, task.results_dir, ]: directory_path = workspace / directory clean_directory(directory_path) LOGGER.info(f"Location {directory} cleaned.") def _prepare_triton_container_image(self, config: Config, maintainer: Maintainer, triton: Triton) -> str: """ Prepare Triton Container Image based on provided configuration Returns: Name of container image to use in process """ if not config.triton_dockerfile: image_name = triton.container_image(config.container_version) LOGGER.info(f"Using official Triton container image: {image_name}.") return image_name if config.triton_container_image: LOGGER.info(f"Using provided Triton Container Image: {config.triton_container_image}") return config.triton_container_image normalized_model_name = config.model_name.lower().replace("_", "-") image_name = f"tritonserver-{normalized_model_name}:latest" LOGGER.info(f"Building Triton Container Image: {image_name}") maintainer.build_image( image_name=image_name, image_file_path=pathlib.Path(config.triton_dockerfile), build_args={"FROM_IMAGE": triton.container_image(container_version=config.container_version)}, ) return image_name def _download_checkpoints(self, task: Task) -> None: """ Download checkpoints """ for variant, checkpoint in task.checkpoints.items(): checkpoint_url = checkpoint.url download_path = checkpoint.path if download_path.is_dir(): LOGGER.info(f"Checkpoint {download_path.name} already downloaded.") continue if not checkpoint_url: LOGGER.warning( f"Checkpoint {variant} url is not provided." "\nIf you want to use that checkpoint please train the model locally" f"\nand copy to {download_path} directory" ) continue download(checkpoint_url, download_path) def _initialize_task( self, workspace: pathlib.Path, config: Config, pipeline: Pipeline, triton_container_image: str, logs_dir: pathlib.Path, ) -> Task: """ Initialize task object Args: workspace: Path to workspace where artifacts are stored config: Config object pipeline: Pipeline object triton_container_image: Triton Inference Server container image used for tests Returns: Task object """ datasets = {} for dataset in config.datasets: datasets[dataset.name] = Dataset(name=dataset.name) checkpoints = {} for checkpoint in config.checkpoints: download_path = workspace / Task.checkpoints_dir / checkpoint.name checkpoints[checkpoint.name] = Checkpoint(name=checkpoint.name, url=checkpoint.url, path=download_path) results_types = self._task_results_types(pipeline=pipeline) stages = dict() for stage in pipeline.stages(): stages[stage.label] = {"result_path": stage.result_path, "result_type": stage.result_type} experiments = list() for idx, configuration in enumerate(config.configurations, start=1): experiment = self._prepare_experiment( idx=idx, configuration=configuration, results_types=results_types, stages=stages, ) experiments.append(experiment) system_info = SystemInfo.from_host() task = Task( model_name=config.model_name, framework=config.framework, checkpoints=checkpoints, datasets=datasets, datasets_dir=config.datasets_dir, experiments=experiments, container_version=config.container_version, system_info=system_info, triton_container_image=triton_container_image, triton_custom_operations=config.triton_custom_operations, triton_load_model_method=config.triton_load_model_method, started_at=int(datetime.utcnow().timestamp()), logs_dir=logs_dir, ) return task def _task_results_types(self, pipeline: Pipeline) -> List[str]: """ Types of results generated as part of task Returns: List of result types """ results = list() for stage in pipeline.stages(): if TritonPerformanceOfflineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_OFFLINE) continue if TritonPerformanceOnlineStage.label == stage.label: results.append(ResultsType.TRITON_PERFORMANCE_ONLINE) continue return results def _prepare_experiment( self, idx: int, configuration: Configuration, results_types: List[str], stages: Dict, ) -> Experiment: """ Prepare experiments data Args: idx: Experiment index configuration: Configuration object results_types: Results types stored in experiment stages: Stages executed as part of experiment Returns: Experiment object """ parameters = {key.lower(): value for key, value in configuration.parameters.items()} results_mapped = dict() for result_type in results_types: results_mapped[result_type] = result_type stages_mapped = dict() for name, stage_data in stages.items(): stages_mapped[name] = Stage(name=name, **stage_data) experiment = Experiment( experiment_id=idx, parameters=parameters, stages=stages_mapped, results=results_mapped, ) return experiment
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/preparer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import platform import subprocess from datetime import datetime from typing import Dict, List, Optional, Union import cpuinfo import psutil import yaml # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import CustomDumper, DataObject from .experiment import Experiment from .triton import Triton class GPU(DataObject): """ GPU information data object """ name: str driver_version: str cuda_version: str memory: str tdp: str def __init__(self, name: str, driver_version: str, cuda_version: str, memory: str, tdp: str): """ Args: name: name of GPU driver_version: version of driver cuda_version: version of CUDA memory: size of memory available on GPU [MB] tdp: Max TDP of GPU unit """ self.name = name self.driver_version = driver_version self.cuda_version = cuda_version self.memory = memory self.tdp = tdp @staticmethod def from_dict(data: Dict): """ Create GPU object from dictionary Args: data: dictionary with GPU data Returns: GPU object """ return GPU( name=data["name"], driver_version=data["driver_version"], cuda_version=data["cuda_version"], memory=data["memory"], tdp=data["tdp"], ) @staticmethod def from_host(): """ Create GPU object from host data Returns: GPU object """ data = subprocess.check_output( ["nvidia-smi", "--query-gpu=name,driver_version,memory.total,power.max_limit", "--format=csv"] ).decode() lines = data.split(sep="\n") device_details = lines[1].split(",") name = device_details[0].strip() driver_version = device_details[1].strip() memory = device_details[2].strip() tdp = device_details[3].strip() cuda_version = None data = subprocess.check_output(["nvidia-smi", "--query"]).decode() lines = data.split(sep="\n") for line in lines: if line.startswith("CUDA Version"): cuda_version = line.split(":")[1].strip() break return GPU( name=name, driver_version=driver_version, cuda_version=cuda_version, memory=memory, tdp=tdp, ) class CPU(DataObject): """ CPU details """ name: str physical_cores: int logical_cores: int min_frequency: float max_frequency: float def __init__(self, name: str, physical_cores: int, logical_cores: int, min_frequency: float, max_frequency: float): """ Args: name: name of CPU unit physical_cores: number of physical cores available on CPU logical_cores: number of logical cores available on CPU min_frequency: minimal clock frequency max_frequency: maximal clock frequency """ self.name = name self.physical_cores = physical_cores self.logical_cores = logical_cores self.min_frequency = min_frequency self.max_frequency = max_frequency @staticmethod def from_host(): """ Create CPU object from host data Returns: CPU object """ return CPU( name=cpuinfo.get_cpu_info()["brand_raw"], physical_cores=psutil.cpu_count(logical=False), logical_cores=psutil.cpu_count(logical=True), min_frequency=psutil.cpu_freq().min, max_frequency=psutil.cpu_freq().max, ) class Memory(DataObject): """ Memory data object """ size: float def __init__(self, size: float): """ Args: size: RAM memory size in MB """ self.size = size @staticmethod def from_host(): """ Create Memory object from host data Returns: Memory object """ svm = psutil.virtual_memory() return Memory(size=svm.total) class SystemInfo(DataObject): """ System Information data object """ system: str cpu: CPU memory: Memory gpu: GPU def __init__(self, system: str, cpu: CPU, memory: Memory, gpu: GPU): """ Args: system: name of operating system cpu: CPU info memory: Memory info gpu: GPU info """ self.system = system self.cpu = cpu self.memory = memory self.gpu = gpu @staticmethod def from_host(): """ Create SystemInfo object from host data Returns: SystemInfo object """ system = platform.platform() gpu = GPU.from_host() memory = Memory.from_host() cpu = CPU.from_host() return SystemInfo(system=system, cpu=cpu, gpu=gpu, memory=memory) class Checkpoint(DataObject): """ Checkpoint data object """ def __init__(self, name: str, url: str, path: Union[str, pathlib.Path]): """ Args: name: Name of checkpoint path: Location of checkpoint on local hardware """ self.name = name self.url = url self.path = pathlib.Path(path) class Dataset(DataObject): """ Dataset data object """ def __init__(self, name: str): """ Args: name: Name of dataset """ self.name = name class Task(DataObject): """ Task data object to store build information """ model_name: str framework: str started_at: int ended_at: Optional[int] container_version: str checkpoints: Dict[str, Checkpoint] datasets: Dict[str, Dataset] datasets_dir: Optional[Union[str, pathlib.Path]] experiments: List[Experiment] system_info: SystemInfo triton_container_image: Optional[str] triton_custom_operations: Optional[str] filename: str = "task.yaml" results_dir: str = "results" checkpoints_dir: str = "checkpoints" def __init__( self, model_name: str, framework: str, container_version: str, checkpoints: Dict, datasets: Dict, experiments: List, system_info: SystemInfo, started_at: int, logs_dir: pathlib.Path = pathlib.Path("/var/logs"), datasets_dir: Optional[Union[str, pathlib.Path]] = None, ended_at: Optional[int] = None, triton_container_image: Optional[str] = None, triton_custom_operations: Optional[str] = None, triton_load_model_method: str = Triton.LOAD_MODE.EXPLICIT, ): """ Args: model_name: Name of model framework: Model framework container_version: Container version used in task checkpoints: List of checkpoints datasets: List of datasets datasets_dir: Directory where datasests are stored experiments: List of experiments run as part of task system_info: information about node on which experiment was executed started_at: Time when task has started ended_at: Time when task has ended triton_container_image: Custom Triton Container Image used for task triton_custom_operations: Custom operations library path triton_load_model_method: Method how models are loaded on Triton """ self.started_at = started_at self.ended_at = ended_at self.model_name = model_name self.framework = framework self.container_version = container_version self.checkpoints = checkpoints self.datasets = datasets self.datasets_dir = pathlib.Path(datasets_dir) self.experiments = experiments self.system_info = system_info self.triton_container_image = triton_container_image self.triton_custom_operations = triton_custom_operations self.triton_load_model_method = triton_load_model_method self.logs_dir = logs_dir def start(self) -> None: """ Update stage execution info at start Returns: None """ self.started_at = int(datetime.utcnow().timestamp()) def end(self) -> None: """ Update stage execution info at end Returns: None """ self.ended_at = int(datetime.utcnow().timestamp()) def to_file(self, file_path: Union[pathlib.Path, str]): """ Store task data to YAML file Args: file_path: path to file where task data has to be saved Returns: None """ task_data = self.to_dict() with open(file_path, "w") as f: yaml.dump(task_data, f, Dumper=CustomDumper, width=240, sort_keys=False)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/task.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib import signal import sys from typing import List, Type # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .exceptions import RunnerException from .executor import Executor from .finalizer import Finalizer from .logger import LOGGER, log_format from .maintainer import Maintainer from .pipeline import Pipeline from .preparer import Preparer from .triton import Triton class Runner: """ Runner class. Main entrypoint to performing task and experiments """ WORKSPACE = pathlib.Path.cwd() EXECUTOR_WORKSPACE = WORKSPACE / "runner_workspace" def __init__( self, pipeline: Pipeline, config: Config, executor_cls: Type[Executor], maintainer_cls: Type[Maintainer], preparer_cls: Type[Preparer], finalizer_cls: Type[Finalizer], devices: List[str] = None, log_level: int = logging.INFO, ): self._pipeline = pipeline self._config = config self._pipeline = pipeline self._config = config self._preparer = preparer_cls() self._finalizer = finalizer_cls() self._devices = devices or ["0"] self._log_level = log_level self._logs_dir = self.EXECUTOR_WORKSPACE / "logs" self._log_file_path = self._logs_dir / "runner.log" self._maintainer = maintainer_cls() self._executor = executor_cls( workspace=self.EXECUTOR_WORKSPACE, maintainer=self._maintainer, pipeline=pipeline, devices=devices, ) signal.signal(signal.SIGINT, self._catch) self._logs_dir.mkdir(parents=True, exist_ok=True) def start(self) -> None: """ Start runner Returns: None """ self._setup_logger() task = self._preparer.exec( workspace=self.EXECUTOR_WORKSPACE, config=self._config, pipeline=self._pipeline, logs_dir=self._logs_dir, maintainer=self._maintainer, triton=Triton(), ) results = [] try: for result in self._executor.start(task): results.append(result) except RunnerException as e: LOGGER.error(f"Error running task: {str(e)}") finally: self._executor.stop() self._finalizer.exec(workspace=self.EXECUTOR_WORKSPACE, task=task, results=results) def _catch(self, signum, frame): """ SIGINT catcher. Stops executor on any sigterm. Args: signum: signal id frame: signal frame """ self._executor.stop() sys.exit(0) def _setup_logger(self) -> None: """ Add file handle for logger Returns: None """ file = logging.FileHandler(self._log_file_path) formatter = logging.Formatter(log_format) file.setFormatter(formatter) LOGGER.addHandler(file) LOGGER.setLevel(level=self._log_level) LOGGER.initialize(file_path=self._log_file_path)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/runner.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Framework, Paths class Triton: """ Triton Inference Server helper class """ image = "nvcr.io/nvidia/tritonserver" tag = "py3" class LOAD_MODE: """ Loading mode available in Triton """ POLL = "poll" EXPLICIT = "explicit" @staticmethod def container_image(container_version: str): """ Container image based on version Args: container_version: Version of container to be used Returns: Image name with tag """ return f"{Triton.image}:{container_version}-{Triton.tag}" @staticmethod def command( framework: str, repository_path: str, strict_mode: bool = False, poll_model: bool = False, metrics: bool = False, verbose: bool = False, ): """ Command to run Triton Inference Server inside container Args: framework: Framework used for model repository_path: Path to model repository strict_mode: Flag to use strict model config poll_model: Poll model metrics: Enable GPU metrics (disable for MIG) verbose: Use verbose mode logging Returns: """ triton_command = f"tritonserver --model-store={repository_path}" if poll_model: triton_command += " --model-control-mode=poll --repository-poll-secs 5" else: triton_command += " --model-control-mode=explicit" if not strict_mode: triton_command += " --strict-model-config=false" if not metrics: triton_command += " --allow-metrics=false --allow-gpu-metrics=false" if verbose: triton_command += " --log-verbose 1" if framework in (Framework.TensorFlow1, Framework.TensorFlow2): version = 1 if framework == Framework.TensorFlow1 else 2 triton_command += f" --backend-config=tensorflow,version={version}" return triton_command @staticmethod def library_path(framework: str): """ Obtain custom library path for framework Args: framework: Framework used for model Returns: Path to additional libraries needed by framework """ paths = { Framework.PyTorch.name: "/opt/tritonserver/backends/pytorch", Framework.TensorFlow1.name: "/opt/tritonserver/backends/tensorflow1", Framework.TensorFlow2.name: "/opt/tritonserver/backends/tensorflow2", } return paths[framework] @staticmethod def custom_library_path_remote() -> str: """ Path to custom library mounted in Triton container Returns: Path to shared library with custom operations """ return f"{Paths.LIBRARIES_PATH}/libcustomops.so" @staticmethod def custom_library_path_local(libs_dir: pathlib.Path) -> pathlib.Path: """ Path to custom library in local path Args: libs_dir: path to libraries directory Returns: Path to shared library with custom operations """ return libs_dir / "libcustomops.so"
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/triton.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Dict, List, Optional, Union import yaml if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .configuration import Configuration from .core import DataObject from .triton import Triton class Checkpoint(DataObject): """ Checkpoint data placeholder """ name: str url: str def __init__(self, name: str, url: str): self.name = name self.url = url class Dataset(DataObject): """ Dataset data placeholder """ name: str def __init__(self, name: str): self.name = name class Config(DataObject): """ Configuration object for runner experiments """ def __init__( self, model_name: str, framework: str, container_version: str, configurations: List[Configuration], datasets_dir: str = "datasets", datasets: List[Dataset] = None, checkpoints: List[Checkpoint] = None, triton_dockerfile: Optional[str] = None, triton_container_image: Optional[str] = None, triton_custom_operations: Optional[str] = None, triton_load_model_method: Optional[str] = Triton.LOAD_MODE.EXPLICIT, ): """ Args: model_name: Name of model framework: Framework used to create model container_version: Version of Triton Inference Server container used for evaluation configurations: List of experiments configurations datasets_dir: Directory where datasets are stored datasets: Datasets used for conversion/export checkpoints: Checkpoints with trained model triton_load_model_method: Triton Inference Server model loading mode triton_dockerfile: Dockerfile for Triton to build custom image triton_container_image: Custom image used for Triton Server - leave empty to use default or built from Dockerfile triton_custom_operations: Path where custom operation library is stored """ self.model_name = model_name self.framework = framework self.container_version = container_version self.configurations = configurations self.datasets_dir = datasets_dir self.datasets = datasets self.checkpoints = checkpoints self.triton_load_model_method = triton_load_model_method self.triton_dockerfile = triton_dockerfile self.triton_container_image = triton_container_image self.triton_custom_operations = triton_custom_operations def to_file(self, file_path: Union[pathlib.Path, str]) -> None: """ Save config data to file Args: file_path: path to file where config data is should be stored Returns: None """ data = self.to_dict() with open(file_path, "w") as f: yaml.safe_dump(data, f) @staticmethod def from_dict(config_data: Dict): """ Create configuration object from data stored in dictionary Args: config_data: dictionary with config data Returns: Config object """ configurations = [] for configuration_data in config_data["configurations"]: configuration = Configuration(**configuration_data) configurations.append(configuration) checkpoints = [] for checkpoint_data in config_data.get("checkpoints", []): checkpoint = Checkpoint( name=checkpoint_data["name"], url=checkpoint_data["url"], ) checkpoints.append(checkpoint) datasets = [] for dataset_data in config_data.get("datasets", []): dataset = Dataset(name=dataset_data["name"]) datasets.append(dataset) return Config( model_name=config_data["model_name"], framework=config_data["framework"], container_version=config_data["container_version"], configurations=configurations, checkpoints=checkpoints, datasets=datasets, datasets_dir=config_data.get("datasets_dir"), triton_load_model_method=config_data["triton_load_model_method"], triton_dockerfile=config_data.get("triton_dockerfile"), triton_container_image=config_data.get("triton_container_image"), triton_custom_operations=config_data.get("triton_custom_operations"), ) @staticmethod def from_file(file_path: Union[pathlib.Path, str]): """ Load experiment data from file Args: file_path: path to file where experiment data is stored Returns: Experiment object """ with open(file_path, "r") as f: config_data = yaml.safe_load(f) return Config.from_dict(config_data)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/config.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import shutil import urllib.request from typing import Any, Callable from zipfile import ZipFile from retrying import retry from tqdm.auto import tqdm # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .logger import LOGGER from .exceptions import RunnerException def unzip(checkpoint_path: pathlib.Path, archive_path: pathlib.Path) -> None: """ Unzip acrhive to provided path Args: checkpoint_path: Path where archive has to be unpacked archive_path: Path to archive Archive filename Returns: None """ LOGGER.info(f"Creating directory for checkpoint: {checkpoint_path.name}") checkpoint_path.mkdir(parents=True, exist_ok=True) LOGGER.info(f"Unpacking checkpoint files {checkpoint_path}") with ZipFile(archive_path, "r") as zf: zf.extractall(path=checkpoint_path) LOGGER.info("done") LOGGER.info(f"Removing zip file: {archive_path}") archive_path.unlink() LOGGER.info("done") def download_progress(t: Any) -> Callable: """ Progress bar Args: t: progress Returns: Callable """ last_b = [0] def update_to(b: int = 1, bsize: int = 1, tsize: int = None): if tsize not in (None, -1): t.total = tsize t.update((b - last_b[0]) * bsize) last_b[0] = b return update_to @retry(stop_max_attempt_number=3) def download(checkpoint_url: str, checkpoint_path: pathlib.Path) -> None: """ Download checkpoint from given url to provided path Args: checkpoint_url: Url from which checkpoint has to be downloaded checkpoint_path: Path where checkpoint has to be stored Returns: None """ LOGGER.info(f"Downloading checkpoint from {checkpoint_url}") with tqdm(unit="B") as t: reporthook = download_progress(t) result = urllib.request.urlretrieve(checkpoint_url, reporthook=reporthook) filename = result[0] LOGGER.info(f"Checkpoint saved in {filename}") file_path = pathlib.Path(filename) if not file_path.is_file() and not file_path.is_dir(): raise RunnerException(f"Checkpoint {filename} does not exist") LOGGER.info(f"Moving checkpoint to {checkpoint_path.parent}") shutil.move(file_path, checkpoint_path.parent / file_path.name) LOGGER.info("done") archive_path = checkpoint_path.parent / file_path.name unzip(checkpoint_path, archive_path)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/downloader.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib import shutil from typing import Dict, List import yaml # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .experiment import ExperimentResult from .logger import LOGGER from .stages import ResultsType from .summary import load_results, save_summary from .task import Task class Finalizer(abc.ABC): @abc.abstractmethod def exec(self, workspace: pathlib.Path, task: Task, results: List[ExperimentResult]): pass class ExperimentFinalizer(Finalizer): """ Public runner finalizer object. """ def exec(self, workspace: pathlib.Path, task: Task, results: List[ExperimentResult]): results_path = workspace / task.results_dir self._generate_summary(results_path, results) self._finalize_task(results_path, task) def _finalize_task(self, results_path: pathlib.Path, task: Task) -> None: """ Finalize task information Args: task: Task object Returns: None """ task.end() file_path = results_path / task.filename LOGGER.debug(f"Saving task details to file {file_path}") task.to_file(file_path) LOGGER.debug("Done") LOGGER.info(f"Task details and results stored in {results_path}") def _generate_summary(self, results_path: pathlib.Path, experiment_results: List[ExperimentResult]): """ Generate summary for results collected in all experiments Args: results_path: Path where results should be stored experiment_results: Results collected from experiments Returns: """ performance_offline_results = list() performance_online_results = list() results_mapping = { ResultsType.TRITON_PERFORMANCE_OFFLINE: performance_offline_results, ResultsType.TRITON_PERFORMANCE_ONLINE: performance_online_results, } self._collect_summary_results(experiment_results, results_mapping) self._prepare_final_results(results_path, results_mapping) def _collect_summary_results(self, experiment_results: List[ExperimentResult], results_mapping: Dict): for experiment_result in experiment_results: experiment = experiment_result.experiment for result_type, result_path in experiment_result.results.items(): if not result_path.is_file() and not result_path.is_dir(): raise FileNotFoundError(f"Expected file {result_path} not found") LOGGER.debug(f"Found {result_type} in {result_path} file.") if result_type not in results_mapping: LOGGER.debug(f"Results {result_type} for {experiment.experiment_id} are ignored in final summary.") return LOGGER.debug(f"Collecting {result_type} results from {result_path} for summary") result = load_results( results_path=result_path, parameters=experiment.parameters, result_type=result_type, ) results_mapping[result_type].extend(result) LOGGER.debug(f"Done.") def _prepare_final_results(self, results_path: pathlib.Path, results_mapping: Dict) -> None: """ Prepare summary files for offline and online performance Args: results_path: Path where results should be stored results_mapping: Mapping with results type and collected results for given stage Returns: None """ for results_type, results in results_mapping.items(): save_summary( result_type=results_type, results=results, summary_dir=results_path, )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/finalizer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Command from .exceptions import RunnerException from .stages import Stage class CommandsExporter: """ Command exported to BASH scripts """ def __init__(self, scripts_dir: pathlib.Path): """ Args: scripts_dir: Paths where scripts should be stored """ self._scripts_dir = scripts_dir def export(self, stage: Stage) -> Command: """ Export stage commands to script and return new command to execute Args: stage: Stage object with commands Returns: Command object with script execution command """ filename = self._get_filename(stage.label) file_path = self._scripts_dir / filename with open(file_path, "w+") as stagefile: stagefile.write("set -x\n") stagefile.write("set -e\n") stagefile.write("export PYTHONUNBUFFERED=1\n") stagefile.write("export PYTHONPATH=`pwd`\n") for command in stage.commands: stagefile.write(str(command)) result = os.system(f'ex +"set syn=sh" +"norm gg=G" -cwq {file_path}') if result != 0: raise RunnerException(f"Failed running {filename} script formatting. Exit code {result}") command = Command(f"bash -xe {file_path.as_posix()}") return command def _get_filename(self, label: str): """ Generate filename for script based on label Args: label: String with stage label Returns: String with script filename """ filename = label.replace(" ", "_").lower() filename = f"{filename}.sh" return filename
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/exporter.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from enum import Enum from typing import Any, Dict, List import yaml class CustomDumper(yaml.Dumper): """ Custom YAML dumper to avoid craeting aliases """ def ignore_aliases(self, data: Dict) -> bool: return True class Paths: """ Paths mapping inside Triton Container """ MODEL_REPOSITORY_PATH = "/mnt/triton-models" LIBRARIES_PATH = "/mnt/libs" class Framework(Enum): """ Supported frameworks """ TensorFlow1 = "TensorFlow1" TensorFlow2 = "TensorFlow2" PyTorch = "PyTorch" class Command: """Represents wrapper of raw string command""" def __init__(self, data: str): """ Store command data Args: data: string with bash commands to execute """ self._data = data def __str__(self) -> str: """ String object representation Returns: String """ return self._data class DataObject(object): """ Data object representation handling recursive transformation from object to dict """ READ_ONLY = set() def to_dict(self) -> Dict: """ Represent object as dictionary Returns: Dict """ data = dict() filtered_data = {key: value for key, value in self.__dict__.items() if key not in self.READ_ONLY} for key, value in filtered_data.items(): data[key] = self._convert_value(value) return data def _convert_value(self, value: Any) -> Any: """ Convert value based on its type Args: value: variable to convert Returns: Converted object """ if isinstance(value, DataObject): value = value.to_dict() elif isinstance(value, dict): value = self._from_dict(value) elif isinstance(value, list): value = self._from_list(value) elif isinstance(value, Enum): value = value.value elif isinstance(value, pathlib.Path): value = value.as_posix() return value def _from_dict(self, values: Dict) -> Any: """ Convert dictionary values Args: values: dictionary with values Returns: Any """ data = dict() for key, value in values.items(): data[key] = self._convert_value(value) return data def _from_list(self, values: List) -> Any: """ Convert list of values Args: values: list with values Returns: Any """ items = list() for value in values: item = self._convert_value(value) items.append(item) return items AVAILABLE_FRAMEWORKS = [f.value for f in Framework]
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/core.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pathlib import coloredlogs class Logger(logging.Logger): def __init__(self, name, level=logging.NOTSET): super().__init__(name, level=level) self._file_path = None def initialize(self, file_path: pathlib.Path): self._file_path = file_path def write(self, log: str): if not self._file_path: return with open(self._file_path, "+a") as file: file.write(log) LOGGER = Logger("runner") log_format = "%(asctime)s %(levelname)s %(name)s %(message)s" logging.basicConfig(format=log_format) coloredlogs.install( level=logging.INFO, fmt=log_format, logger=LOGGER, field_styles={ "asctime": {"color": "green"}, "hostname": {"color": "magenta"}, "levelname": {"bold": True, "color": "blue"}, "name": {"color": "blue"}, "programname": {"color": "cyan"}, "username": {"color": "yellow"}, }, reconfigure=True, )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/logger.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import List, Type # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .executor import Executor from .finalizer import Finalizer from .maintainer import Maintainer from .pipeline import Pipeline from .preparer import Preparer from .runner import Runner class RunnerProxy: """ Runner proxy to configure original runner """ maintainer_cls: Type[Maintainer] = None executor_cls: Type[Executor] = None preparer_cls: Type[Preparer] = None finalizer_cls: Type[Finalizer] = None def __init__(self, config: Config, pipeline: Pipeline, devices: List[str]): """ RunnerProxy constructor Args: config: Config object pipeline: Pipeline to evaluate devices: List of devices to use for tests """ self._runner = Runner( config=config, pipeline=pipeline, devices=devices, maintainer_cls=self.maintainer_cls, executor_cls=self.executor_cls, preparer_cls=self.preparer_cls, finalizer_cls=self.finalizer_cls, ) def start(self) -> None: """ Runner interface """ self._runner.start()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/runner_proxy.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import List, Optional, Tuple, Union # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Command class ResultsType: """ Results types generated by runner """ TRITON_PERFORMANCE_OFFLINE = "triton_performance_offline" TRITON_PERFORMANCE_ONLINE = "triton_performance_online" class Stage: """ Stage definition """ label: str commands: List[Command] result_path: Optional[str] result_type: Optional[str] def __init__( self, commands: Union[Tuple[str, ...], List[str]], result_path: Optional[str] = None, result_type: Optional[str] = None, ): """ Args: commands: List or Tuple of commands provided as raw string result_path: Path to results file generated by stage result_type: Type of results generated by stage """ if type(commands) not in [tuple, list]: raise ValueError("""Incorrect type of commands list. Please, provide list of commands as tuple.""") self.commands = list(map(lambda command: Command(data=command), commands)) self.result_path = result_path self.result_type = result_type class ExportStage(Stage): label = "Export Model" class ConversionStage(Stage): label = "Convert Model" class DeployStage(Stage): label = "Deploy Model" class CorrectnessStage(Stage): label = "Model Correctness Tests" class TritonPreparePerformanceProfilingDataStage(Stage): label = "Prepare Triton Profiling Data" class TritonPerformanceOfflineStage(Stage): label = "Triton Performance Offline Tests" class TritonPerformanceOnlineStage(Stage): label = "Triton Performance Online Tests"
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/stages.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import pathlib from datetime import datetime from typing import Any, Dict, Optional # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import DataObject class ExperimentStatus(object): """ Experiment status flags object """ SUCCEED = "Succeed" FAILED = "Failed" class StageStatus: """ Stages status flags object """ SUCCEED = "Succeed" FAILED = "Failed" class Stage(DataObject): """ Stage data object """ name: str status: str started_at: Optional[int] ended_at: Optional[int] result_path: Optional[str] result_type: Optional[str] def __init__( self, name: str, result_path: Optional[str], result_type: Optional[str], status: str = StageStatus.FAILED, started_at: Optional[int] = None, ended_at: Optional[int] = None, ): """ Args: name: name of stage result_path: path where results file is stored result_type: type of results status: success/fail status started_at: time when stage has started ended_at: time when stage has ended """ self.name = name self.status = status self.started_at = started_at self.ended_at = ended_at self.result_path = result_path self.result_type = result_type def start(self) -> None: """ Update stage execution info at start Returns: None """ self.started_at = int(datetime.utcnow().timestamp()) def end(self) -> None: """ Update stage execution info at end Returns: None """ self.status = StageStatus.SUCCEED self.ended_at = int(datetime.utcnow().timestamp()) class Experiment(DataObject): """ Experiment data object """ experiment_id: int parameters: Dict stages: Dict[str, Stage] results: Dict[str, str] status: str started_at: Optional[int] ended_at: Optional[int] def __init__( self, experiment_id: int, parameters: Dict, stages: Dict[str, Stage], results: Dict[str, str], started_at: Optional[int] = None, ended_at: Optional[int] = None, status: str = ExperimentStatus.FAILED, ): """ Args: experiment_id: experiment identifier parameters: dictionary with experiment configuration stages: dictionary with stages run in experiment results: mapping between results types and location where are stored started_at: time when experiment has started ended_at: time when experiment has ended status: experiment success/fail information """ self.experiment_id = experiment_id self.started_at = started_at self.ended_at = ended_at self.parameters = parameters self.stages = stages self.status = status self.results = results self.results_dir = f"experiment_{experiment_id}" def start(self) -> None: """ Update experiment execution info at start Returns: None """ self.started_at = int(datetime.utcnow().timestamp()) def end(self) -> None: """ Update experiment execution info at end Returns: None """ self.status = ExperimentStatus.SUCCEED self.ended_at = int(datetime.utcnow().timestamp()) @dataclasses.dataclass class Status: state: ExperimentStatus message: str @dataclasses.dataclass class ExperimentResult: """ Experiment result object """ status: Status experiment: Experiment results: Dict[str, pathlib.Path] payload: Dict[str, Any] = dataclasses.field(default_factory=dict)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/experiment.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import pathlib from typing import Dict, List, Union # method from PEP-366 to support relative import in executed modules import yaml if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ..deployment_toolkit.report import save_results, sort_results from .logger import LOGGER def save_summary(result_type: str, results: List, summary_dir: pathlib.Path) -> None: """ Create file with summary for results of given type Args: result_type: Type of results to dump results: Results data summary_dir: Path where results should be stored Returns: None """ if len(results) == 0: LOGGER.warning(f"No {result_type} results found.") return results = sort_results(results=results) kind_file = summary_dir / f"{result_type}_summary.csv" save_results(filename=kind_file.as_posix(), data=results, formatted=True) LOGGER.info(f"Summary for {result_type} stored in {kind_file}") def load_results(*, results_path: Union[pathlib.Path, str], result_type: str, parameters: Dict) -> List: """ Update results Args: results_path: Path to file or directory from which data should be read result_type: type of results parameters: Parameters used in experiment which generated results Returns: List of result rows """ LOGGER.debug(f"Loading {result_type} from {results_path} for summary") results_path = pathlib.Path(results_path) if results_path.is_file(): files = [results_path] elif results_path.is_dir(): files = list(results_path.iterdir()) else: LOGGER.debug(f"Unable to load file: {results_path}. Generating empty rows.") data = [{}] return data if any([file.name.endswith(".ckpt") for file in files]): model_analyzer_metrics = results_path / "metrics-model-inference.csv" files = [model_analyzer_metrics] else: files = [file for file in files if file.name.endswith(".csv")] results = list() parameters_cpy = {key: value for key, value in parameters.items() if key != "batch"} for file in files: if file.suffix == ".csv": data = _generate_data_from_csv(file=file) elif file.suffix == ".json": data = _generate_data_from_json(file=file) elif file.suffix == ".yaml": data = _generate_data_from_yaml(file=file) else: raise ValueError(f"Unsupported file extension: {file.suffix}") for item in data: result = {**parameters_cpy, **item} results.append(result) LOGGER.debug(f"Loading done. Collected {len(results)} results.") return results def _normalize_key(*, key: str) -> str: """ Normalize key Args: key: Key to normalize Returns: Normalized string """ key = "_".join(key.split(sep=" ")) key = key.lower() return key def _normalize_keys(*, data: Dict) -> Dict: """ Normalize keys in dictionary Args: data: Dictionary to normalize Returns: Normalized dictionary """ keys = {_normalize_key(key=key): value for key, value in data.items()} return keys def _generate_data_from_csv(*, file: Union[pathlib.Path, str]) -> List[Dict]: """ Generate result rows from CSV file Args: file: CSV file path Returns: List of rows """ LOGGER.debug(f"Reading data from {file}") filtered_rows: List[Dict] = [] with open(file, "r") as csvfile: reader = csv.DictReader(csvfile) for r in reader: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.debug("done") return filtered_rows def _generate_data_from_json(file: pathlib.Path) -> List[Dict]: LOGGER.info(f"Reading data from {file}") filtered_rows: List[Dict] = list() with open(file, "r") as json_file: file_data = json.load(json_file) if not isinstance(file_data, list): file_data = [file_data] for r in file_data: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.info("done") return filtered_rows def _generate_data_from_yaml(file: pathlib.Path) -> List[Dict]: LOGGER.info(f"Reading data from {file}") filtered_rows: List[Dict] = list() with open(file, "r") as yaml_file: file_data = yaml.safe_load(yaml_file) if not isinstance(file_data, list): file_data = [file_data] for r in file_data: r = _normalize_keys(data=r) filtered_row = {k: v for k, v in r.items()} filtered_rows.append(filtered_row) LOGGER.info("done") return filtered_rows
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/summary.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .pipeline import Pipeline pipeline = Pipeline() pipeline.model_export( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi python3 triton/export_model.py \ --input-path triton/model.py \ --input-type pyt \ --output-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-type ${EXPORT_FORMAT} \ --ignore-unknown-parameters \ --onnx-opset 13 \ \ --checkpoint ${CHECKPOINT_DIR}/ \ --precision ${EXPORT_PRECISION} \ \ --dataloader triton/dataloader.py \ --dataset ${DATASETS_DIR}/${DATASET} \ --batch-size 1 """, ) ) pipeline.model_conversion( commands=( r""" if [[ "${EXPORT_FORMAT}" == "ts-trace" || "${EXPORT_FORMAT}" == "ts-script" ]]; then export FORMAT_SUFFIX="pt" else export FORMAT_SUFFIX="${EXPORT_FORMAT}" fi model-navigator convert \ --model-name ${MODEL_NAME} \ --model-path ${SHARED_DIR}/exported_model.${FORMAT_SUFFIX} \ --output-path ${SHARED_DIR}/converted_model \ --target-formats ${FORMAT} \ --target-precisions ${PRECISION} \ --launch-mode local \ --override-workspace \ --verbose \ \ --onnx-opsets 13 \ --max-batch-size ${MAX_BATCH_SIZE} \ --container-version 21.08 \ --max-workspace-size 10000000000 \ --atol target__0=100 \ --rtol target__0=100 """, ) ) pipeline.model_deploy( commands=( r""" if [[ "${FORMAT}" == "ts-trace" || "${FORMAT}" == "ts-script" ]]; then export CONFIG_FORMAT="torchscript" else export CONFIG_FORMAT="${FORMAT}" fi model-navigator triton-config-model \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --model-version 1 \ --model-path ${SHARED_DIR}/converted_model \ --model-format ${CONFIG_FORMAT} \ --model-control-mode ${TRITON_LOAD_MODEL_METHOD} \ --load-model \ --load-model-timeout-s 100 \ --verbose \ \ --backend-accelerator ${ACCELERATOR} \ --tensorrt-precision ${PRECISION} \ --tensorrt-capture-cuda-graph \ --tensorrt-max-workspace-size 10000000000 \ --max-batch-size ${MAX_BATCH_SIZE} \ --batching dynamic \ --preferred-batch-sizes ${TRITON_PREFERRED_BATCH_SIZES} \ --max-queue-delay-us ${TRITON_MAX_QUEUE_DELAY} \ --engine-count-per-device ${DEVICE}=${TRITON_GPU_ENGINE_COUNT} """, ) ) pipeline.triton_prepare_performance_profiling_data( commands=( r""" mkdir -p ${SHARED_DIR}/input_data """, r""" python triton/prepare_input_data.py \ --input-data-dir ${SHARED_DIR}/input_data/ \ --dataset ${DATASETS_DIR}/${DATASET} \ --checkpoint ${CHECKPOINT_DIR}/ \ """, ) ) pipeline.triton_performance_offline_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data ${SHARED_DIR}/input_data/data.json \ --batch-sizes ${BATCH_SIZE} \ --number-of-triton-instances ${TRITON_INSTANCES} \ --batching-mode static \ --evaluation-mode offline \ --measurement-request-count ${REQUEST_COUNT} \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_offline.csv """, ), result_path="${SHARED_DIR}/triton_performance_offline.csv", ) pipeline.triton_performance_online_tests( commands=( r""" python triton/run_performance_on_triton.py \ --model-repository ${MODEL_REPOSITORY_PATH} \ --model-name ${MODEL_NAME} \ --input-data ${SHARED_DIR}/input_data/data.json \ --batch-sizes ${BATCH_SIZE} \ --number-of-triton-instances ${TRITON_INSTANCES} \ --number-of-model-instances ${TRITON_GPU_ENGINE_COUNT} \ --batching-mode dynamic \ --evaluation-mode online \ --measurement-request-count 500 \ --warmup \ --performance-tool perf_analyzer \ --result-path ${SHARED_DIR}/triton_performance_online.csv """, ), result_path="${SHARED_DIR}/triton_performance_online.csv", )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/pipeline_impl.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib import shutil import subprocess from enum import Enum from typing import Any, List, Optional # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .core import Command from .exceptions import RunnerException from .logger import LOGGER def format_env_key(s: str): """ Format environmental variable key Args: s: String to format Returns: Upper cased string """ return s.upper() def format_env_value(value: Any) -> str: """ Format environment variable value Args: value: value to be formatted Returns: Formatted value as a string """ value = value if not isinstance(value, Enum) else value.value value = value if type(value) not in [list, tuple] else ",".join(map(str, value)) value = str(value) return value def get_result_path(result_path: str) -> str: """ Map result path when different variants passed ex. with env variable in path Args: result_path: Path to result file Returns: str """ for env_var, val in os.environ.items(): result_path = result_path.replace(f"${{{env_var}}}", val) if result_path.startswith("/"): return result_path if result_path.startswith("./"): result_path = result_path[2:] return result_path def clean_directory(directory: pathlib.Path) -> None: """ Remove all files and directories from directory Args: directory: Path to directory which should be cleaned Returns: None """ LOGGER.debug(f"Cleaning {directory.as_posix()}") if not directory.is_dir(): LOGGER.warning(f"{directory.name} is not a directory.") return for item in os.listdir(directory): item_path = directory / item if item_path.is_dir(): LOGGER.debug(f"Remove dir {item_path.as_posix()}") shutil.rmtree(item_path.as_posix()) elif item_path.is_file(): LOGGER.debug(f"Remove file: {item_path.as_posix()}") item_path.unlink() else: LOGGER.warning(f"Cannot remove item {item_path.name}. Not a file or directory.") def exec_command(command: Command) -> None: """ Execute command Args: command: Command to run """ try: process = subprocess.Popen( [str(command)], shell=True, start_new_session=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, encoding="utf-8", ) while True: output = process.stdout.readline() if output == "" and process.poll() is not None: break if output: print(output.rstrip()) LOGGER.write(output) result = process.poll() if result != 0: raise RunnerException(f"Command {command} failed with exit status: {result}") except subprocess.CalledProcessError as e: raise RunnerException(f"Running command {e.cmd} failed with exit status {e.returncode} : {e.output}")
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Dict, Tuple # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .stages import ( ConversionStage, DeployStage, ExportStage, ResultsType, TritonPerformanceOfflineStage, TritonPerformanceOnlineStage, TritonPreparePerformanceProfilingDataStage, ) class Pipeline: """ Definition of stages that has to be executed before and during experiments """ # Stages to execute as part of single experiment _experiment_stages = [ ExportStage.label, ConversionStage.label, DeployStage.label, TritonPreparePerformanceProfilingDataStage.label, TritonPerformanceOfflineStage.label, TritonPerformanceOnlineStage.label, ] def __init__(self): """ Initialize pipeline """ self._stages: Dict = dict() def model_export(self, commands: Tuple[str, ...]) -> None: """ Model export stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = ExportStage(commands=commands) self._stages[stage.label] = stage def model_conversion(self, commands: Tuple[str, ...]) -> None: """ Model conversion stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = ConversionStage(commands=commands) self._stages[stage.label] = stage def model_deploy(self, commands: Tuple[str, ...]) -> None: """ Model deployment stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = DeployStage(commands=commands) self._stages[stage.label] = stage def triton_prepare_performance_profiling_data(self, commands: Tuple[str, ...]) -> None: """ Model profiling data creation stage Args: commands: Commands to be executed as part of stage Returns: None """ stage = TritonPreparePerformanceProfilingDataStage(commands=commands) self._stages[stage.label] = stage def triton_performance_offline_tests(self, commands: Tuple[str, ...], result_path: str) -> None: """ Model performance offline test stage Args: commands: Commands to be executed as part of stage result_path: Path where results file is stored Returns: None """ stage = TritonPerformanceOfflineStage( commands=commands, result_path=result_path, result_type=ResultsType.TRITON_PERFORMANCE_OFFLINE, ) self._stages[stage.label] = stage def triton_performance_online_tests(self, commands: Tuple[str, ...], result_path: str) -> None: """ Model performance online test stage Args: commands: Commands to be executed as part of stage result_path: Path where results file is stored Returns: None """ stage = TritonPerformanceOnlineStage( commands=commands, result_path=result_path, result_type=ResultsType.TRITON_PERFORMANCE_ONLINE, ) self._stages[stage.label] = stage def stages(self): """ Generate stages which should be run per experiment Returns: Generator with stages object """ for stage_name in self._experiment_stages: stage = self._stages.get(stage_name) if not stage: continue yield stage
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/pipeline.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class RunnerException(Exception): """ Runner Exception """ def __init__(self, message: str): self._message = message def __str__(self): return self._message @property def message(self): """Get the exception message. Returns ------- str The message associated with this exception, or None if no message. """ return self._message
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/exceptions.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import pathlib from typing import List if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .config import Config from .executor import Executor from .finalizer import ExperimentFinalizer from .maintainer import DockerMaintainer from .preparer import ExperimentPreparer from .runner_proxy import RunnerProxy from .pipeline_impl import pipeline class ExperimentRunner(RunnerProxy): """ Experiment Runner proxy for runner wrapper """ maintainer_cls = DockerMaintainer executor_cls = Executor preparer_cls = ExperimentPreparer finalizer_cls = ExperimentFinalizer def execute(config_path: str, devices: List[str]): if len(devices) == 0: devices = ["0"] config = Config.from_file(config_path) runner = ExperimentRunner(config=config, pipeline=pipeline, devices=devices) runner.start() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--config-path", type=str, required=True, help="Path to configuration file with details.") parser.add_argument( "--devices", type=str, nargs="*", required=False, help="Path to configuration file with details." ) args = parser.parse_args() config_path = args.config_path devices = args.devices execute(config_path, devices)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/__main__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pathlib import shutil import traceback from typing import Dict, List, Optional from colorama import Fore # method from PEP-366 to support relative import in executed modules if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ..deployment_toolkit.core import Accelerator, Precision from .core import Paths from .exceptions import RunnerException from .experiment import ExperimentResult, ExperimentStatus, Status from .exporter import CommandsExporter from .logger import LOGGER from .maintainer import Container, Maintainer from .pipeline import Pipeline from .stages import Stage from .task import Experiment, Task from .triton import Triton from .utils import clean_directory, exec_command, format_env_key, format_env_value, get_result_path class Executor: """ Experiments executor """ def __init__( self, workspace: pathlib.Path, maintainer: Maintainer, pipeline: Pipeline, devices: List[str] = None, ): """ Initialize experiments executor Args: workspace: Path to workspace to store artifacts maintainer: maintainer for running commands pipeline: pipeline definition devices: List of devices on which Triton Inference Server will be executed """ self._maintainer = maintainer self._pipeline = pipeline self._devices = devices or ["0"] self._workspace = workspace self._executor_workspace = workspace / "executor" self._shared_dir = self._executor_workspace / "shared" self._triton_models_repository_dir = self._executor_workspace / "triton_models" self._scripts_dir = self._executor_workspace / "scripts" self._libraries_dir = self._executor_workspace / "libs" self._exporter = CommandsExporter(self._scripts_dir) self._triton_container: Optional[Container] = None def start(self, task: Task): """ Process the task and execute experiments. """ self._create_dirs() total_experiment = len(task.experiments) LOGGER.info(f"Total experiments to verify: {total_experiment}") for idx, experiment in enumerate(task.experiments, start=1): LOGGER.info( f"{Fore.CYAN}================ Experiment: {idx}/{total_experiment} Started ================{Fore.RESET}" ) results = {} environment = self._prepare_environment(task, experiment.parameters) LOGGER.info(f"Experiment details") LOGGER.info(json.dumps(environment, indent=4)) self._clean_experiment_artifacts(idx, total_experiment) self._create_experiment_results_dir(task, experiment) experiment.start() LOGGER.info("Running Triton Servers:") log_file = self._workspace / task.logs_dir / f"triton-server-experiment-{idx}.log" self._triton_container = self._triton_server_container( triton_container_image=task.triton_container_image, framework=task.framework, accelerator=experiment.parameters["accelerator"], precision=experiment.parameters["precision"], custom_library=bool(task.triton_custom_operations is not None), load_model_method=task.triton_load_model_method, log_file=log_file, ) try: self._triton_container.start() for stage in self._pipeline.stages(): LOGGER.info( f"{Fore.GREEN}[Experiment: {idx}/{total_experiment}] ================ Stage {stage.label} Started ================{Fore.RESET}" ) experiment_stage = experiment.stages[stage.label] experiment_stage.start() is_ok = self._run_stage(stage=stage) if not is_ok: LOGGER.error(f"Stage {stage.label} failed.") break self._save_results(task, experiment, stage.label, results) experiment_stage.end() LOGGER.info( f"{Fore.GREEN}[Experiment: {idx}/{total_experiment}] ================ Stage {stage.label} Finished ================{Fore.RESET}" ) except Exception: message = traceback.format_exc() LOGGER.error(f"Error running experiment: {message}") yield ExperimentResult( status=Status(state=ExperimentStatus.FAILED, message=message), experiment=experiment, results=results, ) finally: self._triton_container.stop() experiment.end() LOGGER.info( f"{Fore.CYAN}================ Experiment: {idx}/{total_experiment} Finished ================{Fore.RESET}" ) yield ExperimentResult( status=Status(state=ExperimentStatus.SUCCEED, message="Experiment Succeed"), experiment=experiment, results=results, ) def stop(self) -> None: """ Stop executor Returns: None """ if self._triton_container: self._triton_container.stop() def _prepare_environment(self, task: Task, parameters: Dict) -> Dict: """ Prepare environment data and export it Args: parameters: Key and values which should be exported to environment Returns: Dictionary with environment data """ environment = { "MODEL_NAME": task.model_name, "FRAMEWORK": task.framework, "SHARED_DIR": self._shared_dir.as_posix(), "MODEL_REPOSITORY_PATH": self._triton_models_repository_dir.as_posix(), "TRITON_SERVER_URL": "localhost", "TRITON_INSTANCES": "1", "TRITON_LOAD_MODEL_METHOD": task.triton_load_model_method, } checkpoint_variant = parameters.get("checkpoint_variant") if checkpoint_variant: del parameters["checkpoint_variant"] environment["CHECKPOINT_DIR"] = task.checkpoints[checkpoint_variant].path.as_posix() if task.datasets_dir: environment["DATASETS_DIR"] = task.datasets_dir.as_posix() for key, value in parameters.items(): key = format_env_key(key) value = format_env_value(value) environment[key] = value for key, value in environment.items(): os.environ[key] = value return environment def _triton_server_container( self, triton_container_image: str, framework: str, load_model_method: str, accelerator: str, precision: str, log_file: pathlib.Path, custom_library: bool, ) -> Container: """ Create Triton Inference Server container for experiment Args: triton_container_image: Triton Inference Server container image framework: Framework used to run model accelerator: Accelerator used for experiment precision: Precision used for experiment load_model_method: Configure how Triton will load model log_file: File where Triton logs are stored Returns: Container object """ volumes = { self._triton_models_repository_dir: {"bind": Paths.MODEL_REPOSITORY_PATH, "mode": "rw"}, self._libraries_dir: {"bind": Paths.LIBRARIES_PATH, "mode": "rw"}, } environment = { "MODEL_REPOSITORY_PATH": Paths.MODEL_REPOSITORY_PATH, "LIBRARIES_PATH": Paths.LIBRARIES_PATH, "TRITON_LOAD_MODEL_METHOD": load_model_method, } if custom_library: library_path = Triton.library_path(framework=framework) environment["LD_LIBRARY_PATH"] = f"{library_path}:${{LD_LIBRARY_PATH}}" environment["LD_PRELOAD"] = Triton.custom_library_path_remote() if accelerator == Accelerator.TRT.value and precision == Precision.FP16.value: environment["ORT_TENSORRT_FP16_ENABLE"] = 1 strict_mode = False command = Triton.command( framework=framework, repository_path=Paths.MODEL_REPOSITORY_PATH, strict_mode=strict_mode, ) command = f' bash -c "{command}"' container = self._maintainer.triton_container( command=command, image=triton_container_image, devices=self._devices, volumes=volumes, environment=environment, log_file=log_file, ) return container def _save_results(self, task: Task, experiment: Experiment, stage_name: str, results: Dict) -> None: """ Update results for stage Args: task: Task object experiment: Experiment for which stage has to be updated stage_name: Name of stage results: Results path mapping Returns: None """ stage = experiment.stages[stage_name] if not stage.result_path: LOGGER.debug(f"No results file to copy for {stage.name}") return if not stage.result_type: LOGGER.debug(f"No results type provided for {stage.name}") return os.environ["SHARED_DIR"] = self._shared_dir.as_posix() result_path = get_result_path(result_path=stage.result_path) result_path = pathlib.Path(result_path) if not result_path.is_file() and not result_path.is_dir(): raise RunnerException(f"Results file {result_path} not found.") experiment_dir = self._workspace / task.results_dir / experiment.results_dir LOGGER.info(f"Saving {stage.result_type} to {experiment_dir}") if result_path.is_dir(): dst_path = experiment_dir / stage.result_type shutil.copytree(result_path, dst_path) elif result_path.is_file(): suffix = result_path.suffix dst_path = experiment_dir / f"{stage.result_type}{suffix}" shutil.copy(result_path, dst_path) else: raise RunnerException(f"Result not found {result_path}") LOGGER.info("Done") results[stage.result_type] = dst_path def _create_dirs(self) -> None: """ Create directories used to store artifacts and final results Returns: None """ LOGGER.info(f"{Fore.GREEN}================ Creating Artifacts Directories Started ================{Fore.RESET}") if self._executor_workspace.is_dir(): LOGGER.info(f"Removing previous executor workspace: {self._executor_workspace}") shutil.rmtree(self._executor_workspace) for directory in [ self._libraries_dir, self._shared_dir, self._scripts_dir, self._triton_models_repository_dir, ]: directory.mkdir(parents=True, exist_ok=True) LOGGER.info(f"Directory {directory.name} created.") LOGGER.info( f"{Fore.GREEN}================ Creating Artifacts Directories Finished ================{Fore.RESET}" ) def _clean_experiment_artifacts(self, idx: int, total: int) -> None: """ Clean artifacts stored between experiments Returns: None """ LOGGER.info( f"{Fore.GREEN}[Experiment: {idx}/{total}] ================ Cleanup Experiment Data Started ================{Fore.RESET}" ) for directory in [ self._shared_dir, self._scripts_dir, self._triton_models_repository_dir, ]: clean_directory(directory) LOGGER.info(f"Location {directory} cleaned.") LOGGER.info( f"{Fore.GREEN}[Experiment: {idx}/{total}] ================ Cleanup Experiment Data Finished ================{Fore.RESET}" ) def _create_experiment_results_dir(self, task: Task, experiment: Experiment): """ Create result directory for experiment Returns: """ experiment_dir = self._workspace / task.results_dir / experiment.results_dir experiment_dir.mkdir(parents=True, exist_ok=True) def _prepare_triton_custom_operations(self, task: Task) -> None: """ Prepare Triton Server custom operations library Returns: None """ if task.triton_custom_operations: target_library_path = Triton.custom_library_path_local(self._libraries_dir) target_library_path_dir = target_library_path.parent target_library_path_dir.mkdir(parents=True, exist_ok=True) shutil.copy(task.triton_custom_operations, target_library_path) def _run_stage(self, stage: Stage) -> bool: """ Run single stage commands Args: stage: Stage object with defined commands Returns: True on success, False otherwise """ try: command = self._exporter.export(stage=stage) exec_command(command) except RunnerException: return False return True
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/executor.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .docker.maintainer import DockerMaintainer class MaintainerFactory: @staticmethod def create_docker_maintainer(): return DockerMaintainer()
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/maintainer_factory.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .container import Container from .docker.maintainer import DockerMaintainer from .maintainer import Maintainer
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from typing import Any class Container(abc.ABC): def __init__(self, name: str): self.name = name self._container = None @abc.abstractmethod def start(self): """ Start container """ pass @abc.abstractmethod def stop(self): """ Stop container """ @abc.abstractmethod def run(self, command: str) -> Any: """ Run command inside container Args: command: command to execute Returns: Any """ pass
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/container.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib from typing import Any, Dict, List, Optional, Union if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from .container import Container class Maintainer(abc.ABC): @abc.abstractmethod def triton_container( self, command: str, image: str, devices: List, volumes: Dict, environment: Dict, log_file: Union[pathlib.Path, str] ) -> Container: """ Return triton container Args: command: Triton Server command that has to be executed image: Container image devices: List of device ids which has to be available in container volumes: Volumes mapping environment: Environment variables set in container log_file: File path where server logs has to be saved Returns: Container object """ pass @abc.abstractmethod def build_image( self, *, image_file_path: pathlib.Path, image_name: str, workdir_path: Optional[pathlib.Path] = None, build_args: Optional[Dict[str, Any]] = None, ) -> None: pass
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/maintainer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ContainerNotStarted(Exception): pass
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/exceptions.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/docker/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import pathlib import docker from docker.models.containers import ExecResult if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ..container import Container class DockerContainer(Container): def __init__(self, name: str): super().__init__(name) self._container = None self._docker_client = docker.from_env() self._docker_api_client = docker.APIClient() @abc.abstractmethod def start(self): """ Start container """ pass @abc.abstractmethod def stop(self): """ Stop container """ @abc.abstractmethod def run(self, command: str) -> ExecResult: """ Run command inside container Args: command: command to execute Returns: ExecResult """ pass
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/docker/container.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib from typing import Any, Dict, List, Optional, Union import docker if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ...logger import LOGGER from ..maintainer import Maintainer from .container import DockerContainer from .containers import TritonServerContainer class DockerMaintainer(Maintainer): def triton_container( self, command: str, image: str, devices: List, volumes: Dict, environment: Dict, log_file: Union[pathlib.Path, str] ) -> DockerContainer: """ Return triton container Args: command: Triton Server command that has to be executed image: Container image devices: List of device ids which has to be available in container volumes: Volumes mapping environment: Environment variables set in container log_file: File path where server logs has to be saved Returns: DockerContainer object """ return TritonServerContainer( name="triton-server", command=command, image=image, devices=devices, volumes=volumes, environment=environment, log_file=log_file, ) def build_image( self, *, image_file_path: pathlib.Path, image_name: str, workdir_path: Optional[pathlib.Path] = None, build_args: Optional[Dict[str, Any]] = None, ) -> None: workdir_path = workdir_path or image_file_path.parent build_args = build_args or {} LOGGER.info(f"Building {image_name} docker image.") LOGGER.debug(f" Using workdir: {workdir_path}") LOGGER.debug(f" Dockerfile: {image_file_path}") LOGGER.debug(f" Build args: {build_args}") build_logs = list() try: docker_client = docker.from_env() _, build_logs = docker_client.images.build( path=workdir_path.resolve().as_posix(), dockerfile=image_file_path.resolve().as_posix(), tag=image_name, buildargs=build_args, network_mode="host", rm=True, ) except docker.errors.BuildError as e: build_logs = e.build_log raise e finally: for chunk in build_logs: log = chunk.get("stream") if log: LOGGER.debug(log.rstrip())
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/docker/maintainer.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .triton_server_container import TritonServerContainer
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/docker/containers/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pathlib from threading import Thread from typing import Dict, Generator, Union from docker.models.containers import ExecResult from docker.types import DeviceRequest, Ulimit if __name__ == "__main__" and __package__ is None: __package__ = pathlib.Path(__file__).parent.name from ....logger import LOGGER from ...exceptions import ContainerNotStarted from ..container import DockerContainer class TritonServerContainer(DockerContainer): def __init__( self, name: str, command: str, image: str, volumes: Dict, devices: Union[list, int], environment: Dict, log_file: Union[pathlib.Path, str], network: str = "host", shm_size: str = "1G", ): """ Initialize Triton Server Container Args: name: Container name command: Triton Server command to exec on container start image: Docker Image volumes: Volumes to mount inside container devices: Devices which has to be visible in container environment: Environment variables log_file: Path where logs should be saved network: Network mode shm_size: Shared memory size """ super().__init__(name) self._image = image self._command = command self._volumes = volumes self._devices = devices self._environment = environment self._network = network self._shm_size = shm_size self._triton_exec = None self._logging_thread = None self._log_file_path = pathlib.Path(log_file) def start(self) -> None: """ Start Triton Server Container """ devices = [ DeviceRequest(capabilities=[["gpu"]], device_ids=self._devices), ] LOGGER.info(f"Triton environment: {json.dumps(self._environment, indent=4)}") LOGGER.info(f"Starting Triton container {self.name}.") self._container = self._docker_client.containers.run( image=self._image, name=self.name, device_requests=devices, detach=True, tty=True, shm_size=self._shm_size, ulimits=[ Ulimit(name="memlock", soft=-1, hard=-1), Ulimit(name="stack", soft=67108864, hard=67108864), ], volumes=self._volumes, environment=self._environment, network_mode=self._network, auto_remove=True, ipc_mode="host", ) LOGGER.info(f"Triton command:") LOGGER.info(f" {self._command}") LOGGER.info(f"Starting Triton Server {self.name}.") self._triton_exec = self._docker_api_client.exec_create( container=self._container.id, cmd=self._command, ) stream_generator = self._docker_api_client.exec_start(exec_id=self._triton_exec["Id"], stream=True) self._logging_thread = Thread(target=TritonServerContainer._logging, args=(self, stream_generator), daemon=True) self._logging_thread.start() def stop(self) -> None: """ Stop Triton Server Container and save logs to file """ if self._container is not None: triton_result = self._docker_api_client.exec_inspect(self._triton_exec["Id"]) if triton_result.get("ExitCode") not in (0, None): LOGGER.info( f"Triton Inference Server instance {self.name} failed. Exit code: {triton_result.get('ExitCode')}" ) LOGGER.info(f"Stopping triton server {self.name}.") self._container.stop() self._container = None self._docker_client.close() self._docker_api_client.close() def run(self, command: str) -> ExecResult: """ Run command in container Args: command: Command to execute Returns: ExecResult """ if not self._container: raise ContainerNotStarted("Triton Server Container is not running. Use .start() first.") return self._container.exec_run(command) def _logging(self, generator: Generator) -> None: """Triton logging thread for Triton Inference Server Args: generator (string generator): Triton log stream. """ with open(self._log_file_path, mode="w") as file: try: while True: log = next(generator) txt = log.decode("utf-8") file.write(txt) except StopIteration: LOGGER.info(f"Saving Triton Inference Server {self.name} logs in {self._log_file_path}.")
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/models/tft_pyt/triton/runner/maintainer/docker/containers/triton_server_container.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import numpy as np import time import logging from tqdm import tqdm from .evaluation_metrics import METRICS from .evaluator import MetricEvaluator from triton.run_inference_on_triton import AsyncGRPCTritonRunner import tritonclient.http as triton_http import tritonclient.grpc as triton_grpc import xgboost as xgb import hydra class TritonEvaluator(MetricEvaluator): def __init__(self, config): self.output_selector = config.get("output_selector", None) self.metrics = [] preprocessor_state = pickle.load(open(config.preprocessor_state_path, "rb")) self.scalers = preprocessor_state["scalers"] self.save_predictions = config.get("save_predictions", False) self.example_history = [] for name in config.metrics: if name not in METRICS: raise ValueError(f"No metric of name: {name}") self.metrics.append(METRICS[name]()) self.config = config def predict(self, dataloader, model_name, server_url="localhost:8001"): LOGGER = logging.getLogger("run_inference_on_triton") runner = AsyncGRPCTritonRunner( server_url, model_name, "1", dataloader=dataloader(), verbose=False, resp_wait_s=120, max_unresponded_reqs=128, ) start = time.time() preds_full = [] labels_full = [] weights_full = [] ids_full = [] for ids, x, y_pred, y_real in tqdm(runner, unit="batch", mininterval=10): if self.save_predictions: self.example_history.append(x['target__6'][:,:self.config.encoder_length]) ids_full.append(ids) preds_full.append(y_pred['target__0']) labels_full.append(y_real['target__0'][:,:,0][:,:,np.newaxis]) weights_full.append(x['weight__9']) stop = time.time() preds_full = np.concatenate(preds_full, axis=0) labels_full = np.concatenate(labels_full, axis=0) weights_full = np.concatenate(weights_full, axis=0) if np.isnan(weights_full).any(): weights_full = np.empty([0]) ids_full = np.concatenate(ids_full, axis=0) LOGGER.info(f"\nThe inference took {stop - start:0.3f}s") if self.save_predictions: self.example_history = np.concatenate(self.example_history, axis=0) return preds_full, labels_full, ids_full, weights_full def predict_xgboost(self, dataloader, max_batch_size, server_url="localhost:8001"): grpc_client = triton_grpc.InferenceServerClient( url=server_url, verbose = False ) out = [] labels = [] ids = [] weights = [] for i, (test_step, test_label) in enumerate(dataloader): labels.append(test_label.to_numpy()) ids.append(test_step['_id_'].to_numpy()) data = test_step.to_numpy().astype('float32') weights.append([]) test_len = len(data) num_iters = int(test_len/max_batch_size) + 1 temp_out = [] for j in range(num_iters): sliced_data = data[j*max_batch_size:(j+1)*max_batch_size] dims = sliced_data.shape triton_input_grpc = triton_grpc.InferInput( 'input__0', dims, 'FP32' ) triton_input_grpc.set_data_from_numpy(sliced_data) triton_output_grpc = triton_grpc.InferRequestedOutput('output__0') request_grpc = grpc_client.infer( f'xgb_{i+1}', model_version='1', inputs=[triton_input_grpc], outputs=[triton_output_grpc] ) outt = request_grpc.as_numpy('output__0') temp_out = np.hstack((temp_out, outt)) out.append(temp_out) weights.append([]) outtemp = np.vstack(out).transpose() labels_temp = np.hstack(labels) ids_temp = np.vstack(ids).transpose() if len(outtemp.shape) == 2: outtemp = outtemp[:,:,np.newaxis] if len(labels_temp.shape) == 2: labels_temp = labels_temp[:, :, np.newaxis] if self.save_predictions: labels_ids = dataloader.data[['_id_', dataloader.target[0]]] for n, g in labels_ids.groupby("_id_"): labels_all = g[dataloader.target[0]].to_numpy().round(6) windows_labels = np.lib.stride_tricks.sliding_window_view(labels_all, dataloader.example_length) self.example_history.append(windows_labels.copy()[:, :dataloader.encoder_length]) self.example_history = np.concatenate(self.example_history, axis=0)[:, :, np.newaxis] return outtemp, labels_temp, ids_temp[:,0], np.stack(weights)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/evaluators/triton_evaluator.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np from abc import ABC, abstractmethod class AbstractMetric(ABC): @staticmethod @abstractmethod def __call__(pred, label, weights): pass class SMAPE(AbstractMetric): name = "SMAPE" @staticmethod def __call__(preds, labels, weights): if not weights.size: weights = None return 100 * np.average(2 * np.abs(preds - labels) / (np.abs(labels) + np.abs(preds)), weights=weights) def normalised_quantile_loss(y_pred, y, quantile, weights=None): """Implementation of the q-Risk function from https://arxiv.org/pdf/1912.09363.pdf""" prediction_underflow = y - y_pred weighted_errors = quantile * np.maximum(prediction_underflow, 0.0) + (1.0 - quantile) * np.maximum( -prediction_underflow, 0.0 ) if weights is not None and weights.size: weighted_errors = weighted_errors * weights y = y * weights loss = weighted_errors.sum() normaliser = abs(y).sum() return 2 * loss / normaliser class P50_loss(AbstractMetric): name = "P50" selector = 1 @staticmethod def __call__(labels, preds, weights): return normalised_quantile_loss(labels, preds, 0.5,weights) class P90_loss(AbstractMetric): name = "P90" selector = 2 @staticmethod def __call__(labels, preds, weights): return normalised_quantile_loss(labels, preds, 0.9,weights) # Normalized Deviation class ND(AbstractMetric): name = "ND" @staticmethod def __call__(preds, labels, weights): diff = np.abs(labels - preds) if not weights.size: return np.sum(diff) / np.sum(np.abs(labels)) else: return np.sum(diff * weights) / np.sum(np.abs(labels) * weights) class MAE(AbstractMetric): name = "MAE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: weights = None if return_individual: return np.average(np.abs(preds - labels), weights=weights, axis=0) else: return np.average(np.abs(preds - labels), weights=weights) class MSE(AbstractMetric): name = "MSE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: weights = None if return_individual: return np.average((preds - labels)**2, weights=weights, axis=0) else: return np.average((preds - labels)**2, weights=weights) class RMSE(AbstractMetric): name = "RMSE" @staticmethod def __call__(preds, labels, weights): if not weights.size: weights = None return np.sqrt(np.average((preds - labels)**2, weights=weights)) class R_Squared(AbstractMetric): name = "R_Squared" @staticmethod def __call__(preds, labels, weights, return_individual=False): if not weights.size: if return_individual: return r2_score(preds, labels, multioutput="raw_values") return r2_score(preds, labels) else: values = r2_score(preds, labels, multioutput="raw_values") if return_individual: return values * weights return np.sum(values * weights) / np.sum(weights) class WMSMAPE(AbstractMetric): name = "WMSMAPE" @staticmethod def __call__(preds, labels, weights, return_individual=False): if weights.size: if return_individual: return 2 * weights * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds)) else: return ( 100.0 / np.sum(weights) * np.sum(2 * weights * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds))) ) if return_individual: return 2 * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds)) else: return 100.0 / len(labels) * np.sum(2 * np.abs(preds - labels) / (np.maximum(labels, 1) + np.abs(preds))) METRICS = { "SMAPE": SMAPE, "WMSMAPE": WMSMAPE, "MSE": MSE, "MAE": MAE, "P50": P50_loss, "P90": P90_loss, "RMSE": RMSE, "R_Squared": R_Squared, "ND": ND, }
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/evaluators/evaluation_metrics.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from abc import ABC import dgl import numpy as np import torch from data.datasets import get_collate_fn from distributed_utils import get_mp_context from torch.utils.data import DataLoader from training.utils import to_device from .evaluation_metrics import METRICS import pandas as pd class MetricEvaluator(ABC): def __init__(self, config): self.output_selector = config.get("output_selector", None) self.metrics = [] preprocessor_state = pickle.load(open(config.preprocessor_state_path, "rb")) self.scalers = preprocessor_state["scalers"] self.save_predictions = config.get("save_predictions", False) self.example_history = [] for name in config.metrics: if name not in METRICS: raise ValueError(f"No metric of name: {name}") self.metrics.append(METRICS[name]()) self.config = config def predict(self, *args, **kwargs): raise NotImplementedError def save_preds(self, preds, ids): all_examples = self.example_history all_examples = all_examples.transpose(2,0,1).reshape(-1, all_examples.shape[1]) if len(preds.shape) == 4: tgt_ords = np.arange(preds.shape[2]).repeat(preds.shape[0]) tgt_ords = pd.DataFrame(tgt_ords, columns=['#target']) preds = preds.transpose(2,0,1,3).reshape(-1,preds.shape[1], preds.shape[3]) ids = ids.transpose().reshape(-1) else: tgt_ords = None all_examples = self.scalers.inverse_transform_targets(all_examples, ids) hist_df = pd.DataFrame(all_examples, columns=[f't{i+1}' for i in range(-self.config.encoder_length, 0)]) ids = pd.DataFrame(ids, columns=['id']) col_labels = [f'Estimator{j}_t{i:+}' for j in range(preds.shape[2]) for i in range(preds.shape[1])] preds_df = pd.DataFrame(preds.reshape(preds.shape[0],-1, order='F'), columns=col_labels) df = pd.concat([ids, tgt_ords, hist_df, preds_df], axis=1) df.to_csv('predictions.csv') def evaluate(self, preds, labels, ids, weights): results = {} # In multi target case we treat each target as a separate example. # Then we can reduce it to a single target case setting BS = prev_BS * num_targets if len(preds.shape) == 4: if self.scalers.scale_per_id: ids = np.arange(preds.shape[-2]) ids = np.repeat(ids, preds.shape[0]) else: ids = None # TODO: this causes a memory movement. Rewrite this with views! preds = np.concatenate([preds[:, :, i] for i in range(preds.shape[-2])], axis=0) labels = np.concatenate([labels[:, :, i] for i in range(labels.shape[-1])], axis=0) weights = np.concatenate([weights[:, :, i] for i in range(weights.shape[-1])], axis=0) elif len(preds.shape) == 3: labels = labels.squeeze(-1) if weights.size: weights = weights.squeeze(-1) else: raise ValueError("Expected shape of predictions is either BSxTxFxH or BSxTxH") upreds = np.stack([self.scalers.inverse_transform_targets(preds[..., i], ids) for i in range(preds.shape[-1])], axis=-1) labels = self.scalers.inverse_transform_targets(labels, ids) if self.save_predictions: self.save_preds(upreds, ids) for metric in self.metrics: selector = getattr(metric, 'selector', self.output_selector) preds = upreds[..., selector] results[metric.name] = metric(preds, labels, weights) if np.all(np.isfinite(preds)) else np.NaN results = {k: float(v) for k, v in results.items()} return results class CTLMetricEvaluator(MetricEvaluator): def __init__(self, test_data, config): super().__init__(config) self.device = config.device if test_data is not None: mp_context = get_mp_context() self.dataloader = DataLoader( test_data, batch_size=self.config.batch_size, num_workers=1, pin_memory=True, collate_fn=get_collate_fn(config.model_type, config.encoder_length, test=True), multiprocessing_context=mp_context ) else: self.dataloader = None def prep_data(self, batch): ids = batch.ndata['id'] if isinstance(batch, dgl.DGLGraph) else batch["id"] ids = ids[:, 0, ...] # Shape BS x T x F [x H] weights = batch.ndata['weight'] if isinstance(batch, dgl.DGLGraph) else batch['weight'] weights = weights[:, self.config.encoder_length:, :] if weights is not None and weights.numel() else torch.empty(0) batch = to_device(batch, device=self.device) return batch, weights, ids def predict(self, model, dataloader=None): if not dataloader: dataloader = self.dataloader assert dataloader is not None, "Dataloader cannot be None, either pass in a valid dataloader or \ initialize evaluator with valid test_data" test_method_name = 'predict' if hasattr(model, "predict") else '__call__' test_method = getattr(model, test_method_name) model.eval() with torch.no_grad(): preds_full = [] labels_full = [] weights_full = [] ids_full = [] for i, (batch, labels, _) in enumerate(dataloader): if self.save_predictions: self.example_history.append(batch['target'][:,:self.config.encoder_length].detach().cpu()) batch, weights, ids = self.prep_data(batch) labels_full.append(labels) weights_full.append(weights) preds = test_method(batch) ids_full.append(ids) preds_full.append(preds) preds_full = torch.cat(preds_full, dim=0).cpu().numpy() labels_full = torch.cat(labels_full, dim=0).cpu().numpy() weights_full = torch.cat(weights_full).cpu().numpy() ids_full = torch.cat(ids_full).cpu().numpy() if self.save_predictions: self.example_history = torch.cat(self.example_history, dim=0).cpu().numpy() return preds_full, labels_full, ids_full, weights_full class StatMetricEvaluator(MetricEvaluator): def __init__(self, test_data, config): super().__init__(config) self.dataloader = test_data def predict(self, model, dataloader=None): dataloader = dataloader or self.dataloader assert dataloader, "Test dataloader not provided" preds_full = [] labels_full = [] weights_full = [] ids_full = [] for i, test_batch in enumerate(dataloader): labels = test_batch["endog"] ids = test_batch["id"].iloc[0] preds = np.array(model.predict(test_batch["exog"], i)) labels_full.append(labels) weights_full.append(test_batch.get('weight', [])) ids_full.append(ids) preds_full.append(preds) preds_full = np.stack(preds_full) labels_full = np.stack(labels_full) weights_full = np.stack(weights_full) ids_full = np.stack(ids_full) if len(preds_full.shape) == 2: preds_full = preds_full[:, :, np.newaxis] return preds_full, labels_full, ids_full, weights_full class XGBMetricEvaluator(MetricEvaluator): def __init__(self, test_data, config): super().__init__(config) self.dataloader = test_data def predict(self, model, dataloader=None): dataloader = dataloader or self.dataloader assert dataloader, "Test dataloader not provided" out = [] labels = [] ids = [] weights = [] for i, (test_step, test_label) in enumerate(dataloader): labels.append(test_label.to_numpy()) ids.append(test_step['_id_'].to_numpy()) outt = model.predict(test_step, i) weights.append([]) out.append(outt) outtemp = np.vstack(out).transpose() labels_temp = np.hstack(labels) ids_temp = np.vstack(ids).transpose()[:, 0] if len(outtemp.shape) == 2: outtemp = outtemp[:, :, np.newaxis] if len(labels_temp.shape) == 2: labels_temp = labels_temp[:, :, np.newaxis] if self.save_predictions: labels_ids = self.dataloader.data[['_id_', self.dataloader.target[0]]] for n, g in labels_ids.groupby("_id_"): labels_all = g[self.dataloader.target[0]].to_numpy().round(6) windows_labels = np.lib.stride_tricks.sliding_window_view(labels_all, self.dataloader.example_length) self.example_history.append(windows_labels.copy()[:, :self.dataloader.encoder_length]) self.example_history = np.concatenate(self.example_history, axis=0)[:, :, np.newaxis] return outtemp, labels_temp, ids_temp, np.stack(weights)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/evaluators/evaluator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess from typing import Dict, List, Optional, Tuple import dllogger import shutil import hydra from triton.dataloader import get_dataloader_fn from loggers.log_helper import setup_logger def run_server_launch(config): cfg = config # export model output_path = os.path.join(cfg.checkpoint, "deployment") tspp_main_dir = os.path.sep + os.path.join(*(os.getcwd().split(os.path.sep)[:-3])) # get the actual model name if not os.path.isdir(os.path.join(output_path, "navigator_workspace")) or not os.path.isdir( os.path.join(output_path, "navigator_workspace/model-store") ): if os.path.isdir(os.path.join(output_path, "navigator_workspace/final-model-store")): shutil.copytree(os.path.join(output_path, "navigator_workspace/final-model-store"), os.path.join(output_path, "navigator_workspace/model-store")) else: assert ( False ), "This checkpoint directory is not configured correctly, there should be a dir/deployment/navigator_workspace/model-store/ directory" files_in_store = list(os.listdir(os.path.join(output_path, "navigator_workspace/model-store"))) if len(files_in_store) < 1: assert False, "There needs to be exactly 1 model in the model-store directory" model_name = cfg.get("model_name") if cfg.get("model_name", None) else files_in_store[0] # deploy subprocess.run(["bash", "inference/deploy.sh", output_path, str(cfg.gpu)], cwd=tspp_main_dir, check=True)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/inference/launch_inference_server.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess from typing import Dict, List, Optional, Tuple import shutil import yaml import conf.conf_utils from triton.xgboost_triton import run_XGBoost_triton from omegaconf import OmegaConf def run_converter(config, export, convert): cfg = config with open(os.path.join(cfg.checkpoint, ".hydra/config.yaml"), "rb") as f: config = OmegaConf.load(f) config.inference = cfg with open(os.path.join(cfg.checkpoint, ".hydra/config_merged.yaml"), "wb") as f: OmegaConf.resolve(config) OmegaConf.save(config=config, f=f.name) if config.dataset.config.get('xgb', False): return run_XGBoost_triton(cfg, config) if config.dataset.config.get('stat', False): raise ValueError("Stat models not supported in deployment") model_name = config.model._target_.split(".")[1] precision = cfg.precision assert precision in ["fp16", "fp32"], "Precision needs to be either fp32 or fp16" # export model output_path = os.path.join(cfg.checkpoint, "deployment") os.makedirs(output_path, exist_ok=True) tspp_main_dir = os.path.sep + os.path.join(*(os.getcwd().split(os.path.sep)[:-3])) model_format = "torchscript" if export.config.type != "onnx" else export.config.type subprocess.run( [ "python", "triton/export_model.py", "--input-path", "triton/model.py", "--input-type", "pyt", "--output-path", "{}/exported_model.pt".format(output_path), "--output-type", "{}".format(export.config.type), "--dataloader", "triton/dataloader.py", "--batch-size", "{}".format(cfg.batch_size), "--model-dir", "{}".format(cfg.checkpoint), "--onnx-opset", "13", "--ignore-unknown-parameters", ], cwd=tspp_main_dir, check=True, ) if model_format == "torchscript": with open(output_path + "/exported_model.pt.yaml", "r") as stream: var_config = yaml.safe_load(stream) var_config_list = [] for arg in ["--value-ranges", "--max-shapes", "--dtypes", "--min-shapes"]: var_config_list.append(arg) if arg == "--value-ranges": for k, v in var_config["inputs"].items(): var_config_list.append(k + "=0,1") elif arg == "--max-shapes": for k, v in var_config["inputs"].items(): var_config_list.append(k + "=" + ",".join([str(cfg.batch_size)] + [str(x) for x in v["shape"][1:]])) elif arg == "--min-shapes": for k, v in var_config["inputs"].items(): var_config_list.append(k + "=" + ",".join([str(x) for x in v["shape"]])) else: for k, v in var_config["inputs"].items(): var_config_list.append(k + "=" + v["dtype"]) else: var_config_list = [] # model-navigator run if cfg.optimize: subprocess.run( [ "model-navigator", "run", "--model-name", model_name, "--model-path", "{}/exported_model.pt".format(output_path), "--config-path", "{}/exported_model.pt.yaml".format(output_path), "--override-workspace", "--workspace-path", "{}/navigator_workspace".format(output_path), "--verbose", "--target-formats", "{}".format(convert.config.type), "--model-format", model_format, "--config-search-concurrency", "1", "32", "1024", "--triton-launch-mode", "docker", "--max-workspace-size", "10000000000", "--max-batch-size", "{}".format(cfg.batch_size), "--gpus", "{}".format(cfg.gpu), "--atol", "1e-3", "--rtol", "100", "--onnx-opsets", "13", "--container-version", "21.12", ] + var_config_list, cwd=tspp_main_dir, check=True, ) else: subprocess.run( [ "model-navigator", "convert", "--model-name", model_name, "--model-path", "{}/exported_model.pt".format(output_path), "--override-workspace", "--workspace-path", "{}/navigator_workspace".format(output_path), "--output-path", "{}/converted_model".format(output_path), "--verbose", "--target-formats", "{}".format(convert.config.type), "--model-format", model_format, "--launch-mode", "local", "--max-workspace-size", "10000000000", "--max-batch-size", "{}".format(cfg.batch_size), "--target-precisions", precision, "--gpus", "{}".format(cfg.gpu), "--atol", "1e-3", "--rtol", "100", "--onnx-opsets", "13", "--container-version", "21.12", ] + var_config_list, cwd=tspp_main_dir, check=True, ) subprocess.run( [ "model-navigator", "triton-config-model", "--model-name", model_name, "--model-path", "{}/converted_model".format(output_path), "--model-version", "1", "--model-format", "{}".format(convert.config.type), "--model-repository", "{}/navigator_workspace/model-store/".format(output_path), "--backend-accelerator", cfg.accelerator, "--max-batch-size", "{}".format(cfg.batch_size), "--engine-count-per-device", "gpu=2", "--tensorrt-precision", precision, "--tensorrt-capture-cuda-graph", "--verbose", ], cwd=tspp_main_dir, check=True, ) convert_type = ( convert.config.type if convert.config.type != "torchscript" else export.config.type ) subprocess.run( [ "python", "triton/check_accuracy.py", "--native-model", cfg.checkpoint, "--native-type", "pyt", "--export-model", "{}/exported_model.pt".format(output_path), "--export-type", export.config.type, "--convert-model", "{}/converted_model".format(output_path), "--convert-type", convert_type, "--dataloader", "triton/dataloader.py", "--batch-size", "{}".format(1), "--model-dir", "{}".format(cfg.checkpoint), ], cwd=tspp_main_dir, check=True, )
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/inference/converter.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess import hydra from omegaconf import OmegaConf from triton.dataloader import get_dataloader_fn from loggers.log_helper import setup_logger import dllogger from data.data_utils import Preprocessor def run_inference_triton(config): cfg = config with open(os.path.join(cfg.checkpoint, ".hydra/config_merged.yaml"), "rb") as f: config = OmegaConf.load(f) config.evaluator = OmegaConf.merge(config.evaluator, cfg.evaluator) if cfg.get("dataset_dir", None): if not os.path.isdir(config.dataset.config.dest_path): raise ValueError("dataset_dir must be a directory") config.dataset.config.dest_path = cfg.dataset_dir config.inference = cfg with open(os.path.join(cfg.checkpoint, ".hydra/config_merged.yaml"), "wb") as f: OmegaConf.resolve(config) OmegaConf.save(config=config, f=f.name) output_path = os.path.join(cfg.checkpoint, "deployment") tspp_main_dir = os.path.sep + os.path.join(*(os.getcwd().split(os.path.sep)[:-3])) # get the actual model name if not os.path.isdir(os.path.join(output_path, "navigator_workspace")) or not os.path.isdir( os.path.join(output_path, "navigator_workspace/model-store") ): if os.path.isdir(os.path.join(output_path, "navigator_workspace/final-model-store")): shutil.copytree(os.path.join(output_path, "navigator_workspace/final-model-store"), os.path.join(output_path, "navigator_workspace/model-store")) else: assert ( False ), "This checkpoint directory is not configured correctly, there should be a dir/deployment/navigator_workspace/model-store/ directory" files_in_store = list(os.listdir(os.path.join(output_path, "navigator_workspace/model-store"))) if len(files_in_store) < 1: assert False, "There needs to be exactly 1 model in the model-store directory" evaluator = hydra.utils.call(config.evaluator) if config.dataset.config.get('xgb', False): if cfg.get("dataset_path", None): preprocessor = Preprocessor(config.dataset.config) if cfg.get("preproc_state_path", None): preprocessor_state_file = cfg.preproc_state_path else: preprocessor_state_file = None preprocessor.load_state(preprocessor_state_file) test_df = preprocessor.preprocess_test(dataset=cfg.dataset_path) test_df = preprocessor.apply_scalers(test_df) test_df = preprocessor.impute(test_df) train, valid, test = hydra.utils.call(config.dataset, input_df=test_df) else: train, valid, test = hydra.utils.call(config.dataset) del train, valid preds_full, labels_full, ids_full, weights_full = evaluator.predict_xgboost(test, max_batch_size=cfg.batch_size) elif config.dataset.config.get('stat', False): raise ValueError("Stat models not supported on triton") else: model_name = cfg.get("model_name") if cfg.get("model_name", None) else files_in_store[0] dataloader = get_dataloader_fn(cfg.checkpoint, cfg.batch_size) preds_full, labels_full, ids_full, weights_full = evaluator.predict(dataloader, model_name) #Need to merge the eval configs here metrics = evaluator.evaluate(preds_full, labels_full, ids_full, weights_full) logger = setup_logger(cfg) logger.log(step=[], data={k: float(v) for k, v in metrics.items()}, verbosity=dllogger.Verbosity.VERBOSE) logger.log(step='event', data={"String": "Evaluation Metrics: {}".format(metrics)}, verbosity=dllogger.Verbosity.DEFAULT) print(metrics)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/inference/inference_triton.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from typing import Dict, List, Optional, Tuple import dllogger import hydra import numpy as np import torch from apex import amp from omegaconf import OmegaConf import conf.conf_utils from loggers.log_helper import setup_logger from data.data_utils import Preprocessor def run_inference(config): cfg = config with open(os.path.join(cfg.checkpoint, ".hydra/config.yaml"), "rb") as f: config = OmegaConf.load(f) if cfg.get("evaluator", None) is not None: config.evaluator.config = OmegaConf.merge(config.evaluator.config, cfg.evaluator.config) if cfg.get("dataset_dir", None): if not os.path.isdir(config.dataset.config.dest_path): raise ValueError("dataset_dir must be a directory") config.dataset.config.dest_path = cfg.dataset_dir config.evaluator.config.device = cfg.device if cfg.get("dataset_path", None): preprocessor = Preprocessor(config.dataset.config) if cfg.get("preproc_state_path", None): preprocessor_state_file = cfg.preproc_state_path else: preprocessor_state_file = None preprocessor.load_state(preprocessor_state_file) test_df = preprocessor.preprocess_test(dataset=cfg.dataset_path) test_df = preprocessor.apply_scalers(test_df) test_df = preprocessor.impute(test_df) train, valid, test = hydra.utils.call(config.dataset, input_df=test_df) else: train, valid, test = hydra.utils.call(config.dataset) del train, valid evaluator = hydra.utils.instantiate(config.evaluator, test_data=test) model = hydra.utils.instantiate(config.model) if not (config.dataset.config.get('xgb', False) or config.dataset.config.get('stat', False)): state_dict = torch.load(os.path.join(cfg.checkpoint, "best_checkpoint.zip"))['model_state_dict'] model.load_state_dict(state_dict) device = torch.device(cfg.device) # maybe change depending on evaluator model.to(device=device) precision = cfg.precision assert precision in ["fp16", "fp32"], "Precision needs to be either fp32 or fp16" if precision == "fp16": model = amp.initialize(model, opt_level="O2") else: model.load(cfg.checkpoint) preds_full, labels_full, ids_full, weights_full = evaluator.predict(model) eval_metrics = evaluator.evaluate(preds_full, labels_full, ids_full, weights_full) logger = setup_logger(cfg) logger.log(step=[], data={k: float(v) for k, v in eval_metrics.items()}, verbosity=dllogger.Verbosity.VERBOSE) logger.log(step='event', data={"String": "Evaluation Metrics: {}".format(eval_metrics)}, verbosity=dllogger.Verbosity.DEFAULT) return eval_metrics
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/inference/inference.py
# Copyright 2022 NVIDIA Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import os def select_per_group(df, start, end): ''' Groups the dataframe by the _id_ and grabs elements on the slice start to end. The resulting array is concat to a dataframe. ''' result = [] for _, g in df.groupby("_id_"): result.append(g[start:end]) return pd.concat((result)) def select_test_group(df, encoder, example): ''' Purpose of the function is to create the dataframe to pass to the xgboost predict. After grouping by the _id_, each group has elements selected such that all complete time-series are chosen. ''' final = [] for _, g in df.groupby("_id_"): final.append(g[encoder-1: encoder + len(g) - example]) return pd.concat((final)) def load_xgb_df(dest_path, features, ds_type): ''' Loads and does some light preprocessing on the train, valid and test. First the csvs are read for each, then the features not present in the feature spec are dropped, and finally the features with datatype as object are dropped. The final step is to prevent issues with xgboost training and cuDF casting. ''' path = dest_path if not isinstance(path, pd.DataFrame): df = pd.read_csv(os.path.join(path, f"{ds_type}.csv")) else: df = path all_features = [f.name for f in features] + ['_id_'] all_read = df.columns to_drop = [c for c in all_read if c not in all_features] df.drop(columns=to_drop, inplace=True) object_columns = [c for c, d in zip(df.columns, df.dtypes) if d == "object"] df.drop(columns=object_columns, inplace=True) return df def xgb_multiID_preprocess(df, features, time_series_count): date = [feature.name for feature in features if feature.feature_type == "TIME"][0] target = [feature.name for feature in features if feature.feature_type == "TARGET"][0] time_series_count = time_series_count target_values = [] for _, g in df.groupby("_id_"): target_values.append(g[[date, target]]) final = target_values[0] final.rename(columns={target: f'{target}_{0}'}, inplace=True) for i in range(1, time_series_count): target_values[i].rename(columns={target: f'{target}_{i}'}, inplace=True) final = final.merge(target_values[i], on=date, how='outer') df = df.merge(final, on=date, how='outer') return df def feat_adder(df, lag_feats, rolling_feats): ''' Main data preprocessing function for xgboost. lag_feats and rolling_feats are both dictionaries from features to lists. After grouping by the _id_ we iterate through the lag features and move down the features i steps in the history. Similarly the rolling_feats are iterated through and the moving average of the past i time steps of that feature is added as a feature. The names of the new lag features are the {feature_name}_{i}_lag and of the new rolling features are {feature_name}_{i}_rolling. ''' final = [] for _, g in df.groupby("_id_"): for f, v in lag_feats.items(): for i in v: g['{}_{}_lag'.format(f, i)] = g[f].shift(i) for f, v in rolling_feats.items(): for i in v: g['{}_{}_rolling'.format(f, i)] = g[f].rolling(i).sum() final.append(g) return pd.concat((final)) def data_label_split(df, target): ''' Drops rows with NaN as the target value. In addition separates the labels from the data by doing an inplace drop. ''' df.dropna(subset=target, inplace=True) labels = df[target] df.drop(target, 1, inplace=True) return labels def target_shift(df, target, feat, i): ''' Brings features up that are (i+1) time steps in the future. Currently these features are the target and the known/static variables. This future target is the value that will be predicted in the trainer. These features have an _target added to their name. ''' in_feat = target + feat out_feat = [f'{i}_target' for i in in_feat] df[out_feat] = df.groupby("_id_")[in_feat].shift(-1 * (i+1)) return df
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/data/xgb_util.py
# Copyright 2021-2022 NVIDIA Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import pickle from bisect import bisect import dgl import numpy as np import pandas as pd import torch from data.data_utils import InputTypes, DataTypes, FEAT_NAMES, FEAT_ORDER, DTYPE_MAP, translate_features import dgl from dgl.transform import metis_partition_assignment from torch.utils.data import Dataset from torch.utils.data.dataloader import default_collate from data.xgb_util import load_xgb_df, feat_adder, data_label_split, select_test_group, target_shift, \ xgb_multiID_preprocess from bisect import bisect from data.data_utils import InputTypes, DataTypes, FEAT_NAMES, FEAT_ORDER, DTYPE_MAP, translate_features, group_ids class TSBaseDataset(Dataset): def __init__(self, features, df, encoder_length, example_length, stride=1, **kwargs): super().__init__() assert example_length > encoder_length self.features = features self.encoder_length = encoder_length self.example_length = example_length self.stride = stride self.df = df self.load() self.features = [i for i in self.features if i.feature_type != InputTypes.TIME] self.feature_type_col_map = [ [i for i, f in enumerate(self.features) if (f.feature_type, f.feature_embed_type) == x] for x in FEAT_ORDER ] def load(self): raise NotImplementedError class TSDataset(TSBaseDataset): def __init__(self, features, df=None, encoder_length=52, example_length=54, stride=1, **kwargs): super().__init__(features, df, encoder_length, example_length, stride) self.grouped = [x for x in self.grouped if x.shape[0] >= self.example_length] self.group_lens = [(g.shape[0] - self.example_length + 1) // self.stride for g in self.grouped] self._cum_examples_in_group = np.cumsum(self.group_lens) self.grouped = [ [ arr[:, idxs].view(dtype=np.float32).astype(DTYPE_MAP[t[1]]) for t, idxs in zip(FEAT_ORDER, self.feature_type_col_map) ] for arr in self.grouped ] def load(self): if isinstance(self.df, pd.DataFrame): data = self.df else: data = pd.read_csv(self.df, index_col=0) self.grouped = group_ids(data, self.features) def get_probabilities(self): sampled = [] for i in range(len(self.grouped)): group_len = self.group_lens[i] group = self.grouped[i] sample_weights = group[-1] sampled.append(sample_weights[np.arange(0, self.stride * group_len, self.stride)]) sampled = np.concatenate(sampled) return sampled def __len__(self): return self._cum_examples_in_group[-1] def __getitem__(self, idx): g_idx = bisect(self._cum_examples_in_group, idx) e_idx = idx - self._cum_examples_in_group[g_idx - 1] if g_idx else idx group = self.grouped[g_idx] tensors = [ torch.from_numpy(feat[e_idx * self.stride: e_idx * self.stride + self.example_length]) if feat.size else torch.empty(0) for feat in group ] out = dict(zip(FEAT_NAMES, tensors)) out["id"] = out["id"][0, :] return out class TSBinaryDataset(TSDataset): def load(self): if isinstance(self.df, pd.DataFrame): data = self.df self.grouped = group_ids(data, self.features) else: self.grouped = pickle.load(open(self.df, "rb")) class TSMultiIDDatasetBase(TSBaseDataset): def __init__(self, features, df=None, encoder_length=52, example_length=54, stride=1, collumns_to_collapse=None, **kwargs ): super().__init__(features, df, encoder_length, example_length, stride) # This part is tricky: we want to do this only for training dataset and then apply the same changes to valid and test splits to maintain coherence. # We can't do this in the preprocessing step because many different dataset classes rely on the same csv file. Thus the first time dataset is created # if we pass empty list of collumns to collapse and populate it here. This list is a part for common argument set for the train, valid and test splits # so is maintained throughout construction of all the splits. if collumns_to_collapse is not None: if not collumns_to_collapse: for name, df in self.tables.items(): if df.eq(df.iloc[:, 0], axis=0).all().all(): self.tables[name] = df.iloc[:, :1] collumns_to_collapse.append(name) # Append dummy value to indicate that this this operation has already been performed # This alleviates an edge case in which in train split we don't collapse any collumns and then we pass an empty list allowing collapse of # collumns in valid and test sets. collumns_to_collapse.append(None) else: for name in collumns_to_collapse: if name is not None: self.tables[name] = self.tables[name].iloc[:, :1] self.data = {} for fname, ftype in zip(FEAT_NAMES, FEAT_ORDER): names = [f.name for f in self.features if (f.feature_type, f.feature_embed_type) == ftype] if names: df = pd.concat([v for k,v in self.tables.items() if k in names], axis=1) self.data[fname] = df.values.astype(dtype=DTYPE_MAP[ftype[1]]) else: self.data[fname] = None del self.tables self._n_timeslices = (next(len(df) for df in self.data.values() if df is not None) - self.example_length + 1) // self.stride def load(self): time_col_name = next(x.name for x in self.features if x.feature_type == InputTypes.TIME) id_col_name = next(x.name for x in self.features if x.feature_type == InputTypes.ID) if isinstance(self.df, pd.DataFrame): data = self.df else: data = pd.read_csv(self.df, index_col=0) self.tables = {} for f in self.features: self.tables[f.name] = data.pivot(index=time_col_name, columns=id_col_name, values=f.name) class TSMultiTargetDataset(TSMultiIDDatasetBase): def __len__(self): return self._n_timeslices def __getitem__(self, idx): if idx < 0: idx = idx + len(self) if idx >= len(self) or idx < 0: raise IndexError out = { k: torch.from_numpy(v[idx * self.stride : idx * self.stride + self.example_length]) if v is not None else torch.empty(0) for k,v in self.data.items() } return out class TSMultiIDDataset(TSMultiIDDatasetBase): def __init__(self, features, df=None, encoder_length=52, example_length=54, stride=1, collumns_to_collapse=None, **kwargs): super().__init__(features, df, encoder_length, example_length, stride, collumns_to_collapse) def __len__(self): return self._n_timeslices * self.data['id'].shape[1] def __getitem__(self, idx): g_idx = idx // self._n_timeslices e_idx = idx - g_idx * self._n_timeslices targets = torch.from_numpy(self.data['target'][e_idx * self.stride : e_idx * self.stride + self.example_length]) out = { k: torch.from_numpy(v[e_idx * self.stride : e_idx * self.stride + self.example_length, :]) if v is not None else torch.empty(0) for k,v in self.data.items() } out['o_cont'] = torch.cat([out['o_cont'], targets], dim=-1) out['s_cat'] = out['s_cat'][:, g_idx].unsqueeze(1) if out['s_cat'].numel() else out['s_cat'] out['s_cont'] = out['s_cont'][:, g_idx].unsqueeze(1) if out['s_cont'].numel() else out['s_cont'] out['id'] = out['id'][:, g_idx] out['target'] = out['target'][:, g_idx].unsqueeze(1) out['weight'] = out['weight'][:, g_idx].unsqueeze(1) if out['weight'].numel() else out['weight'] return out class StatDataset(Dataset): def __init__(self, features, path_stat, df=None, encoder_length=52, example_length=54, stride=1, split=None, split_feature=None, ds_type=None): self.ds_type = ds_type if ds_type == "valid": return super().__init__() assert example_length > encoder_length, "Length of example longer than encoder length" assert split, "Split not given" assert ds_type in ["train", "test"] self.features = features self.time_feature = split_feature self.weight_features = [feature.name for feature in self.features if feature.feature_type == InputTypes.WEIGHT] self.encoder_length = encoder_length self.example_length = example_length self.horizon = self.example_length - self.encoder_length self.stride = stride self.split = split self.id_col_name = next(x.name for x in self.features if x.feature_type == InputTypes.ID) self.col_dtypes = {v.name: DTYPE_MAP[v.feature_embed_type] for v in self.features} if isinstance(df, pd.DataFrame): self.data = df.astype(self.col_dtypes) else: self.data = pd.read_csv(os.path.join(path_stat, "full.csv"), dtype=self.col_dtypes) self.data = self.data.groupby(self.id_col_name).filter(lambda group: len(group) >= self.example_length) self.grouped = list(self.data.groupby(self.id_col_name)) self.endog = [feature.name for feature in self.features if feature.feature_type == InputTypes.TARGET] self.exog = [ feature.name for feature in self.features if feature.feature_type in [InputTypes.KNOWN, InputTypes.OBSERVED, InputTypes.STATIC] and feature.feature_embed_type == DataTypes.CONTINUOUS ] self.grouped = [group[1] for group in self.grouped] self.grouped = [ group for group in self.grouped if len(group[group[self.time_feature] <= self.split]) >= self.encoder_length and len(group[group[self.time_feature] > self.split]) >= self.horizon ] self._cum_examples_in_group = np.cumsum( [(len(group[group[self.time_feature] > split]) - self.horizon) // self.stride + 1 for group in self.grouped] ) def __len__(self): if self.ds_type == "valid": raise ValueError return self._cum_examples_in_group[-1] def __getitem__(self, idx): if self.ds_type == "valid": raise ValueError if idx > self._cum_examples_in_group[-1]: raise StopIteration g_idx = bisect(self._cum_examples_in_group, idx) e_idx = idx - self._cum_examples_in_group[g_idx - 1] if g_idx else idx group = self.grouped[g_idx] test = group[group[self.time_feature] > self.split] if self.ds_type == "test": test_slice = test[self.stride * e_idx: self.stride * e_idx + self.horizon] test_out = {"endog": test_slice[self.endog], "exog": test_slice[self.exog], "id": test_slice[self.id_col_name]} if len(self.weight_features): test_out["weight"] = test_slice[self.weight_features] return test_out else: train = group[group[self.time_feature] <= self.split] if (self.encoder_length - self.stride * e_idx) > 0: train_slice = train[-(self.encoder_length - self.stride * e_idx):].append( test[max(0, self.stride * e_idx - self.encoder_length): self.stride * e_idx] ) else: train_slice = test[max(0, self.stride * e_idx - self.encoder_length): self.stride * e_idx] train_out = {"endog": train_slice[self.endog], "exog": train_slice[self.exog]} return train_out class XGBDataset(Dataset): def __init__(self, df, path_xgb, features_xgb, lag_features, moving_average_features, example_length, encoder_length, time_series_count, MultiID, ds_type, **kwargs): self.ds_type = ds_type features = features_xgb dest_path = df if isinstance(df, pd.DataFrame) else path_xgb self.encoder_length = encoder_length self.example_length = example_length lag_features_conf = lag_features self.lag_features = {} for feat in lag_features_conf: assert feat.get("min_value", None) is not None or feat.get("value", None) is not None if feat.get("min_value", None) is not None: assert feat.get("max_value", None) is not None and feat.get("min_value") > 0 and feat.get( "max_value") > feat.get("min_value") self.lag_features[feat.name] = list(range(feat.get("min_value"), feat.get("max_value") + 1)) else: self.lag_features[feat.name] = list(feat.value) moving_average_features_conf = moving_average_features self.moving_average_features = {} for feat in moving_average_features_conf: assert feat.get("window_size", None) is not None self.moving_average_features[feat.name] = self.moving_average_features.get(feat.name, []) + [ feat.window_size] self.horizon = example_length - encoder_length self.target = [feature.name for feature in features if feature.feature_type == "TARGET"] self.observed = [feature.name for feature in features if feature.feature_type == "OBSERVED"] self.known = [feature.name for feature in features if feature.feature_type in ["KNOWN", "STATIC"]] assert len(self.target) == 1, "Only 1 target feature is currently supported with xgboost" self.data = load_xgb_df(dest_path, features, ds_type) self.extra_columns = [[f'{k}_{i}' for i in v] for k, v in self.lag_features.items()] if MultiID: target = self.target[0] lag_target_value = self.lag_features.pop(target, []) for i in range(time_series_count): self.lag_features[f'{target}_{i}'] = lag_target_value self.moving_average_features[f'{target}_{i}'] = self.moving_average_features.pop(target, []) self.data = xgb_multiID_preprocess(self.data, features, time_series_count) # XXX need to work with self.data = feat_adder(self.data, self.lag_features, self.moving_average_features) def __getitem__(self, idx): if idx >= self.horizon: raise StopIteration data_step = self.data.copy() data_step = target_shift(data_step, self.target, self.known, idx) if self.ds_type == 'test': data_step = select_test_group(data_step, self.encoder_length, self.example_length) labels = data_label_split(data_step, [f'{i}_target' for i in self.target]) return data_step, labels def __len__(self): return self.horizon class ClusteredGraphDataset(Dataset): def __init__(self, graph, graph_partitions=10, partition_joining_coef=2, **kwargs): if isinstance(graph, str): self.graph = pickle.load(open(graph, "rb")) else: self.graph = graph assert isinstance(graph_partitions, int) and graph_partitions > 0 assert partition_joining_coef <= graph_partitions self.part_count = graph_partitions if graph_partitions > 1: self.partition = metis_partition_assignment(self.graph, self.part_count) else: self.partition = torch.zeros(self.graph.num_nodes(), dtype=torch.int64) self.joining_coef = partition_joining_coef def __len__(self): return math.comb(self.part_count, self.joining_coef) def __getitem__(self, idx): indicator = self.idx_to_combination(self.part_count, self.joining_coef, idx) c_ids = np.nonzero(indicator)[0] subgraph = self.get_subgraph(c_ids) return subgraph def get_subgraph(self, c_ids): ids = sum([self.partition == i for i in c_ids]).bool() return self.graph.subgraph(ids) def idx_to_combination(self, n, r, m): """ n: int total number of elements r: int number of elements in combination m: int 0-based index of combination in reverse-lexicographic order Returns list - indicator vector of chosen elements """ assert m < math.comb(n, r), "Index out of range" out = [0] * n while n > 0: if n > r and r >= 0: y = math.comb(n - 1, r) else: y = 0 if m >= y: m -= y out[n - 1] = 1 r -= 1 n -= 1 return out class TemporalClusteredGraphDataset(ClusteredGraphDataset): def __init__(self, features, graph, df=None, encoder_length=52, example_length=54, stride=1, **kwargs): super().__init__(graph, **kwargs) assert example_length > encoder_length self.features = [i for i in features if i.feature_type != InputTypes.TIME] self.encoder_length = encoder_length self.example_length = example_length self.stride = stride self.df = df self.feature_type_col_map = [ np.array([i for i, f in enumerate(self.features) if (f.feature_type, f.feature_embed_type) == x]) for x in FEAT_ORDER ] if isinstance(df, pd.DataFrame): data = self.df grouped = group_ids(data, self.features) else: grouped = pickle.load(open(self.df, "rb")) # We assume that all the time series are of the same length and have the same set of features assert all([x.shape == grouped[0].shape for x in grouped]) ndata = np.stack(grouped) self.ndata = { name: ndata[:, :, ids].view(dtype=np.float32).astype(DTYPE_MAP[f[1]]) if not ids.size == 0 else np.empty((*ndata.shape[:-1], 0)) for name, f, ids in zip(FEAT_NAMES, FEAT_ORDER, self.feature_type_col_map) } self.t_dim = ndata.shape[1] self.n_timeslices = (self.t_dim - self.example_length + 1) // self.stride def __len__(self): # the number of possible subgraphs times the number of possible time slices return super().__len__() * self.n_timeslices def __getitem__(self, idx): g_idx = idx // self.n_timeslices t_idx = idx - g_idx * self.n_timeslices subgraph = super().__getitem__(g_idx) node_ids = np.array(subgraph.ndata["_ID"]) for k, v in self.ndata.items(): subgraph.ndata[k] = torch.from_numpy( v[node_ids, t_idx * self.stride: t_idx * self.stride + self.example_length, :] ) return subgraph def create_datasets(config, input_df=None): def select_dataset_class(config): binarized = config.get("binarized", False) graph_dataset = config.get("construct_graph", False) multi_id_dataset = config.get("MultiID", False) single_target = config.get('single_target', False) if config.get("xgb", False): specific_args = { "path_xgb": config.dest_path, "features_xgb": config.features, "lag_features": config.get("lag_features", []), "moving_average_features": config.get("moving_average_features", []), "time_series_count": config.time_series_count, "MultiID": config.get("MultiID", False) } return XGBDataset, specific_args if config.get("stat", False): specific_args = { "path_stat": config.dest_path, "split": config.test_range[0], "split_feature": config.time_ids } return StatDataset, specific_args if binarized and graph_dataset: specific_args = { "graph": os.path.join(config.dest_path, "graph.bin"), "graph_partitions": config.graph_partitions, "partition_joining_coef": config.partition_joining_coef, } return TemporalClusteredGraphDataset, specific_args elif binarized and multi_id_dataset: raise NotImplementedError elif binarized: return TSBinaryDataset, {} elif not binarized and graph_dataset: raise NotImplementedError elif not binarized and multi_id_dataset and not single_target: specific_args = {} if config.get('collapse_identical_columns', False): specific_args['collumns_to_collapse'] = [] return TSMultiTargetDataset, specific_args elif not binarized and multi_id_dataset and single_target: specific_args = {} if config.get('collapse_identical_columns', False): specific_args['collumns_to_collapse'] = [] return TSMultiIDDataset, specific_args else: return TSDataset, {} common_args = { "features": translate_features(config.features), "encoder_length": config.encoder_length, "example_length": config.example_length, "stride": config.get("stride", 1), } dataset_class, specific_args = select_dataset_class(config) if input_df is not None: print("Input DataFrame provided to create_datasets functions") print("Warning: Please make sure the dataframe is preprocessed") test = dataset_class(df=input_df, **common_args, **specific_args, ds_type='test') train = None valid = None else: path_template = os.path.join(config.dest_path, "{{subset}}.{extension}") path_template = path_template.format(extension="bin" if config.get("binarized", False) else "csv") train = dataset_class(df=path_template.format(subset="train"), **common_args, **specific_args, ds_type="train") valid = dataset_class(df=path_template.format(subset="valid"), **common_args, **specific_args, ds_type="valid") test = dataset_class(df=path_template.format(subset="test"), **common_args, **specific_args, ds_type="test") if not (config.get("xgb", False) or config.get("stat", False)): train = sample_data(train, config.get("train_samples", -1)) valid = sample_data(valid, config.get("valid_samples", -1)) return train, valid, test def sample_data(dataset, num_samples): if num_samples < 0: return dataset else: return torch.utils.data.Subset(dataset, np.random.choice(np.arange(len(dataset)), size=num_samples, replace=False)) def get_collate_fn(model_type, encoder_length, test=False): allowed_types = ['default', 'graph', 'autoregressive'] if model_type not in allowed_types: raise ValueError(f'Model type has to be one of {allowed_types}') def collate_graph(samples): """A collater used for GNNs""" batch = dgl.batch(samples) labels = batch.ndata["target"][:, encoder_length:, :] weights = batch.ndata['weight'] if weights is not None and weights.numel(): weights = weights[:, encoder_length :, :] return batch, labels, weights def collate_ar(samples): batch = default_collate(samples) labels = batch["target"] weights = batch['weight'] return batch, labels, weights def collate_dict(samples): """Default TSPP collater""" batch = default_collate(samples) labels = batch["target"][:, encoder_length:, :] weights = batch['weight'] if weights is not None and weights.numel(): weights = weights[:, encoder_length:, :] return batch, labels, weights if model_type == 'graph': return collate_graph elif model_type == 'autoregressive' and not test: return collate_ar else: return collate_dict
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/data/datasets.py
# Copyright 2021-2022 NVIDIA Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import enum import os import pickle import hydra import numpy as np import pandas as pd from omegaconf.listconfig import ListConfig from sklearn.impute import SimpleImputer from sklearn.preprocessing import FunctionTransformer from typing import Union class DataTypes(enum.IntEnum): """Defines numerical types of each column.""" CONTINUOUS = 0 CATEGORICAL = 1 DATE = 2 STR = 3 DTYPE_MAP = { DataTypes.CONTINUOUS: np.float32, DataTypes.CATEGORICAL: np.int64, DataTypes.DATE: np.datetime64, DataTypes.STR: str, } class InputTypes(enum.IntEnum): """Defines input types of each column.""" TARGET = 0 OBSERVED = 1 KNOWN = 2 STATIC = 3 ID = 4 # Single column used as an entity identifier TIME = 5 # Single column exclusively used as a time index WEIGHT = 6 SAMPLE_WEIGHT = 7 class FeatureSpec: enabled_attributes = ["name", "feature_type", "feature_embed_type", "cardinality", "scaler"] def __init__(self, input_dict): for key in input_dict: if key in self.enabled_attributes: setattr(self, key, input_dict[key]) else: raise ValueError("Attribute not enabled: {attr}".format(attr=key)) self.name = input_dict["name"] self.feature_type = InputTypes[input_dict["feature_type"]] self.feature_embed_type = DataTypes[input_dict["feature_embed_type"]] def get(self, key, value=None): if hasattr(self, key): return getattr(self, key) else: return value def __str__(self): return str((self.name, self.feature_type, self.feature_embed_type)) def __repr__(self): return str(self) FEAT_ORDER = [ (InputTypes.STATIC, DataTypes.CATEGORICAL), (InputTypes.STATIC, DataTypes.CONTINUOUS), (InputTypes.KNOWN, DataTypes.CATEGORICAL), (InputTypes.KNOWN, DataTypes.CONTINUOUS), (InputTypes.OBSERVED, DataTypes.CATEGORICAL), (InputTypes.OBSERVED, DataTypes.CONTINUOUS), (InputTypes.TARGET, DataTypes.CONTINUOUS), (InputTypes.WEIGHT, DataTypes.CONTINUOUS), (InputTypes.SAMPLE_WEIGHT, DataTypes.CONTINUOUS), (InputTypes.ID, DataTypes.CATEGORICAL), ] FEAT_NAMES = ["s_cat", "s_cont", "k_cat", "k_cont", "o_cat", "o_cont", "target", "weight", "sample_weight", "id"] def group_ids(df, features): col_names = ["_id_"] + [ x.name for x in features if x.feature_embed_type != DataTypes.STR and x.feature_type != InputTypes.TIME and x.feature_type != InputTypes.ID ] grouped = [x[1][col_names].values.astype(np.float32).view(dtype=np.int32) for x in df.groupby("_id_")] return grouped def translate_features(features, preproc=False): all_features = [FeatureSpec(feature) for feature in features] if preproc: return all_features return [FeatureSpec({"name": "_id_", "feature_type": "ID", "feature_embed_type": "CATEGORICAL"})] + [ feature for feature in all_features if feature.feature_type != InputTypes.ID ] def map_dt(dt): if isinstance(dt, int): dt = dt elif isinstance(dt, ListConfig): dt = datetime.datetime(*dt) elif isinstance(dt, str): dt = datetime.datetime.strptime(dt, "%Y-%m-%d") return dt def impute(df, config): if not (config.get("missing_data_label", False)): return df, None else: imp = SimpleImputer(missing_values=config.missing_data_label, strategy="mean") mask = df.applymap(lambda x: True if x == config.missing_data_label else False) data = df.values col_mask = (data == config.missing_data_label).all(axis=0) data[:, ~col_mask] = imp.fit_transform(data) return data, mask def map_scalers(features): mapping = {} for feature in features: if feature.get("scaler", None): if mapping.get(feature.scaler, None): mapping[feature.scaler].append(feature.name) else: mapping[feature.scaler] = [feature.name] return mapping class Log1pScaler(FunctionTransformer): @staticmethod def _inverse(x): return np.expm1(x) def __init__(self): super().__init__(func=np.log1p, inverse_func=Log1pScaler._inverse, validate=False) class CompositeScaler: def __init__(self, target_features, input_continuous, scale_per_id): self.target_mapping = map_scalers(target_features) self.continuous_mapping = map_scalers(input_continuous) self.target_features = target_features self.input_continuous = input_continuous self.scale_per_id = scale_per_id self.continuous_scalers = {} self.target_scalers = {} def fit(self, df): for k, v in self.continuous_mapping.items(): self.continuous_scalers[k] = {} if self.scale_per_id: for identifier, sliced in df.groupby("_id_"): scaler = hydra.utils.instantiate(k).fit(sliced[v]) self.continuous_scalers[k][identifier] = scaler else: scaler = hydra.utils.instantiate(k).fit(df[v]) self.continuous_scalers[k][""] = scaler for k, v in self.target_mapping.items(): self.target_scalers[k] = {} if self.scale_per_id: for identifier, sliced in df.groupby("_id_"): scaler = hydra.utils.instantiate(k).fit(sliced[v]) self.target_scalers[k][identifier] = scaler else: scaler = hydra.utils.instantiate(k).fit(df[v]) self.target_scalers[k][""] = scaler def apply_scalers(self, df, name=None): if name is None: name = df.name for k, v in self.continuous_mapping.items(): df[v] = self.continuous_scalers[k][name].transform(df[v]) for k, v in self.target_mapping.items(): df[v] = self.target_scalers[k][name].transform(df[v]) return df def transform(self, df): if self.scale_per_id: df = df.groupby("_id_").apply(self.apply_scalers) else: df = self.apply_scalers(df, name="") return df def inverse_transform_targets(self, values, ids=None): # TODO: Assuming single targets for now. This has to be adapted to muti-target if len(self.target_scalers) > 0: shape = values.shape scalers = list(self.target_scalers.values())[0] if self.scale_per_id: assert ids is not None flat_values = values.flatten() flat_ids = np.repeat(ids, values.shape[1]) df = pd.DataFrame({"id": flat_ids, "value": flat_values}) df_list = [] for identifier, sliced in df.groupby("id"): df_list.append(np.stack( [scalers[identifier].inverse_transform(sliced["value"].values.reshape(-1, 1)).flatten(), sliced.index.values], axis=-1)) tmp = np.concatenate(df_list) tmp = tmp[tmp[:, -1].argsort()] return tmp[:, 0].reshape(shape) else: flat_values = values.reshape(-1, 1) flat_values = scalers[""].inverse_transform(flat_values) return flat_values.reshape(shape) return values class Preprocessor: def __init__(self, config): self.config = config self.features = translate_features(self.config["features"], preproc=True) self.feat_splits = self._get_feature_splits() self.cont_features_names = [continuous.name for continuous in self.feat_splits["input_continuous"]] self.dest_path = self.config.dest_path self.source_path = self.config.source_path self.preprocessor_state = {} def _get_feature_splits(self): splits = {} splits["dates"] = [feature for feature in self.features if feature.feature_embed_type == DataTypes.DATE] splits["target_features"] = [feature for feature in self.features if feature.feature_type == InputTypes.TARGET] splits["time_feature"] = [feature for feature in self.features if feature.feature_type == InputTypes.TIME][0] splits["id_features"] = [feature for feature in self.features if feature.feature_type == InputTypes.ID] splits["input_categoricals"] = [ feature for feature in self.features if feature.feature_embed_type == DataTypes.CATEGORICAL and feature.feature_type in [InputTypes.STATIC, InputTypes.KNOWN, InputTypes.OBSERVED] ] splits["input_continuous"] = [ feature for feature in self.features if feature.feature_embed_type == DataTypes.CONTINUOUS and feature.feature_type in [InputTypes.STATIC, InputTypes.KNOWN, InputTypes.OBSERVED] ] return splits def _map_ids(self, df): print("Mapping nodes") id_features = [feature.name for feature in self.feat_splits["id_features"]] if "id_mappings" in self.preprocessor_state: id_features_df = self.preprocessor_state["id_mappings"] id_features_dict = id_features_df.set_index(id_features).to_dict()["_id_"] def id_map_funct(x): var = tuple(x[id_features]) if len(var) == 1: var = var[0] return id_features_dict.get(var, np.nan) df["_id_"] = df.apply(lambda x: id_map_funct(x), axis=1) else: id_features = [feature.name for feature in self.feat_splits["id_features"]] current_id = df[id_features[0]].astype("category").cat.codes + 1 for additional_id in id_features[1:]: current_id = df[additional_id].astype("category").cat.codes * (current_id.max() + 1) + current_id + 1 df["_id_"] = current_id.astype("category").cat.codes id_features_df = df[id_features + ["_id_"]] id_features_df = id_features_df.drop_duplicates(subset=None).reset_index(drop=True) self.preprocessor_state["id_mappings"] = id_features_df def _map_categoricals(self, df): print("Mapping categoricals to bounded range") if "categorical_mappings" in self.preprocessor_state: categorical_mappings = self.preprocessor_state["categorical_mappings"] for categorical in self.feat_splits['input_categoricals']: df[categorical.name] = df[categorical.name].map(categorical_mappings[categorical.name]) else: input_categorical_map_dict = {} for categorical in self.feat_splits['input_categoricals']: cat_feature = df[categorical.name].astype("category") input_categorical_map_dict[categorical.name] = dict(zip([np.nan] + cat_feature.cat.categories.tolist(), range(0, len(cat_feature.cat.categories)+1))) df[categorical.name] = cat_feature.cat.codes + 1 self.preprocessor_state["categorical_mappings"] = input_categorical_map_dict def _get_dataset_splits(self, df): print("Splitting datasets") if hasattr(self.config, "valid_boundary") and self.config.valid_boundary is not None: forecast_len = self.config.example_length - self.config.encoder_length # The valid split is shifted from the train split by number of the forecast steps to the future. # The test split is shifted by the number of the forecast steps from the valid split valid_boundary = map_dt(self.config.valid_boundary) grouped = df.groupby('_id_') train_mask = grouped[self.config.time_ids].apply(lambda dates: dates < valid_boundary) train = df[train_mask] print('Calculated train.') train_sizes = train.groupby('_id_').size() valid_indexes = grouped[self.config.time_ids].apply( lambda dates: dates.iloc[(train_sizes[dates.name] - self.config.encoder_length): (train_sizes[dates.name] + forecast_len)].index if dates.name in train_sizes else pd.Series() ) valid = df.loc[np.concatenate(valid_indexes)] print('Calculated valid.') test_indexes = grouped[self.config.time_ids].apply( lambda dates: dates.iloc[(train_sizes[dates.name] - self.config.encoder_length + forecast_len): (train_sizes[dates.name] + 2 * forecast_len)].index if dates.name in train_sizes else pd.Series() ) test = df.loc[np.concatenate(test_indexes)] print('Calculated test.') elif df.dtypes[self.config.time_ids] not in [np.float64, np.int]: index = df[self.config.time_ids] train = df.loc[(index >= map_dt(self.config.train_range[0])) & (index < map_dt(self.config.train_range[1]))] valid = df.loc[(index >= map_dt(self.config.valid_range[0])) & (index < map_dt(self.config.valid_range[1]))] test = df.loc[(index >= map_dt(self.config.test_range[0])) & (index < map_dt(self.config.test_range[1]))] else: index = df[self.config.time_ids] train = df.loc[(index >= self.config.train_range[0]) & (index < self.config.train_range[1])] valid = df.loc[(index >= self.config.valid_range[0]) & (index < self.config.valid_range[1])] test = df.loc[(index >= self.config.test_range[0]) & (index < self.config.test_range[1])] train = train[(train.groupby('_id_').size()[train['_id_']] > self.config.encoder_length).values] valid = valid[(valid.groupby('_id_').size()[valid['_id_']] > self.config.encoder_length).values] test = test[(test.groupby('_id_').size()[test['_id_']] > self.config.encoder_length).values] return train, valid, test def _recombine_datasets(self, train, valid, test): if hasattr(self.config, "valid_boundary") and self.config.valid_boundary is not None: forecast_len = self.config.example_length - self.config.encoder_length # The valid split is shifted from the train split by number of the forecast steps to the future. # The test split is shifted by the number of the forecast steps from the valid split train_temp = [] valid_temp = [] for g0, g1 in zip(train.groupby("_id_"), valid.groupby("_id_")): _train = g0[1].iloc[: -self.config.encoder_length] _valid = g1[1].iloc[:forecast_len] train_temp.append(_train) valid_temp.append(_valid) train = pd.concat(train_temp, axis=0) valid = pd.concat(valid_temp, axis=0) elif train.dtypes[self.config.time_ids] not in [np.float64, np.int]: train = train[train[self.config.time_ids] < map_dt(self.config.valid_range[0])] valid = valid[valid[self.config.time_ids] < map_dt(self.config.test_range[0])] else: train = train[train[self.config.time_ids] < self.config.valid_range[0]] valid = valid[valid[self.config.time_ids] < self.config.test_range[0]] return pd.concat((train, valid, test)) def _drop_unseen_categoricals(self, train, valid, test, drop_unseen=True): # TODO: Handle this for inference preprocess function if self.config.get("drop_unseen", False): print("Dropping unseen categoricals") if not drop_unseen: print("Warning: Assuming that inference dataset only has the input categoricals from the training set") return train, valid, test if hasattr(self.config, "valid_boundary") and self.config.valid_boundary is not None: arriter = ["_id_"] else: arriter = [cat.name for cat in self.feat_splits["input_categoricals"]] + ["_id_"] if train is not None: for categorical in arriter: seen_values = train[categorical].unique() valid = valid[valid[categorical].isin(seen_values)] test = test[test[categorical].isin(seen_values)] return train, valid, test def fit_scalers(self, df): print("Calculating scalers") self.scaler = CompositeScaler( self.feat_splits["target_features"], self.feat_splits["input_continuous"], scale_per_id=self.config.get('scale_per_id', False) ) self.scaler.fit(df) self.preprocessor_state["scalers"] = self.scaler def apply_scalers(self, df): print("Applying scalers") return self.preprocessor_state["scalers"].transform(df) def save_datasets(self, train, valid, test): print(F"Saving processed data at {self.dest_path}") os.makedirs(self.dest_path, exist_ok=True) train.to_csv(os.path.join(self.dest_path, "train.csv")) valid.to_csv(os.path.join(self.dest_path, "valid.csv")) test.to_csv(os.path.join(self.dest_path, "test.csv")) self._recombine_datasets(train, valid, test).to_csv(os.path.join(self.dest_path, "full.csv")) # Save relevant columns in binary form for faster dataloading # IMORTANT: We always expect id to be a single column indicating the complete timeseries # We also expect a copy of id in form of static categorical input!!!]] if self.config.get("binarized", False): grouped_train = group_ids(train, self.features) grouped_valid = group_ids(valid, self.features) grouped_test = group_ids(test, self.features) pickle.dump(grouped_train, open(os.path.join(self.dest_path, "train.bin"), "wb")) pickle.dump(grouped_valid, open(os.path.join(self.dest_path, "valid.bin"), "wb")) pickle.dump(grouped_test, open(os.path.join(self.dest_path, "test.bin"), "wb")) def save_state(self): filepath = os.path.join(self.dest_path, "tspp_preprocess.bin") print(F"Saving preprocessor state at {filepath}") with open(filepath, "wb") as f: pickle.dump(self.preprocessor_state, f) def load_state(self, preprocessor_state_file): filepath = os.path.join(self.config.dest_path, "tspp_preprocess.bin") if preprocessor_state_file: filepath = preprocessor_state_file if not os.path.exists(filepath): raise ValueError(F"Invalid preprocessor state file: {filepath}") print(F"Reading preprocessor state binary file: {filepath}") f = open(filepath, "rb") self.preprocessor_state = pickle.load(f) required_keys = ("id_mappings", "categorical_mappings", "scalers") if not all(k in self.preprocessor_state for k in required_keys): raise ValueError(F"preprocessor state binary file at :{filepath} must have keys={required_keys} but found={self.preprocessor_state.keys()}") def impute(self, df): print("Fixing any nans in continuous features") df[self.cont_features_names] = df[self.cont_features_names].replace(np.NaN, 10 ** 9) return df def _init_setup(self, dataset=None, drop_na=True): if dataset is None: print(F"Reading in data from CSV File: {self.source_path}") df = pd.read_csv(self.source_path, parse_dates=[d.name for d in self.feat_splits["dates"]]) elif isinstance(dataset, str) and dataset.endswith(".csv"): print(F"Reading in data from CSV File: {dataset}") df = pd.read_csv(dataset, parse_dates=[d.name for d in self.feat_splits["dates"]]) elif isinstance(dataset, pd.DataFrame): print("Input DataFrame provided for preprocessing") #TODO: check support for parse dates as done during read csv # Currently date related features are only used for dataset splits during training df = dataset.copy() else: raise ValueError(F"Function either accepts a path to a csv file or a dataframe") print("Sorting on time feature") #TODO: Check if we sort df for inference only case df = df.sort_values([self.feat_splits["time_feature"].name]) f_names = [feature.name for feature in self.features] + [self.config.time_ids] df = df[list(dict.fromkeys(f_names))] if self.config.get("missing_data_label", False): df = df.replace(self.config.get("missing_data_label"), np.NaN) if drop_na: df = df.dropna(subset=[t.name for t in self.feat_splits["target_features"]]) return df def preprocess(self): df = self._init_setup() self._map_ids(df) self._map_categoricals(df) train, valid, test = self._get_dataset_splits(df) train, valid, test = self._drop_unseen_categoricals(train, valid, test) return train, valid, test def preprocess_test(self, dataset: Union[str, pd.DataFrame]) -> pd.DataFrame: df = self._init_setup(dataset=dataset, drop_na=False) self._map_ids(df) self._map_categoricals(df) #TODO: this is a workaround and maybe needs to be handled properly in the future _, _, df = self._drop_unseen_categoricals(None, None, df, drop_unseen=False) return df
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/data/data_utils.py
# Copyright 2021-2022 NVIDIA Corporation # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Only downloads data if the csv files are present, unless the "force_download" argument is supplied. For new datasets, the download_and_unzip(.) can be reused to pull csv files from an online repository, but may require subsequent dataset-specific processing. Usage: python3 script_download_data --dataset {DATASET} --output_dir {DIR} Command line args: DATASET: Name of dataset to download {e.g. electricity} DIR: Path to main dataset diredtory """ from __future__ import absolute_import, division, print_function import argparse from cmath import nan import gc import os import sys import warnings import numpy as np import pandas as pd import pyunpack import wget import pickle from datetime import date, timedelta, datetime from scipy.spatial import distance_matrix import dgl import torch warnings.filterwarnings("ignore") # General functions for data downloading & aggregation. def download_from_url(url, output_path): """Downloads a file froma url.""" print("Pulling data from {} to {}".format(url, output_path)) wget.download(url, output_path) print("done") def unzip(zip_path, output_file, data_folder): """Unzips files and checks successful completion.""" print("Unzipping file: {}".format(zip_path)) pyunpack.Archive(zip_path).extractall(data_folder) # Checks if unzip was successful if not os.path.exists(output_file): raise ValueError( "Error in unzipping process! {} not found.".format(output_file) ) def download_and_unzip(url, zip_path, csv_path, data_folder): """Downloads and unzips an online csv file. Args: url: Web address zip_path: Path to download zip file csv_path: Expected path to csv file data_folder: Folder in which data is stored. """ download_from_url(url, zip_path) unzip(zip_path, csv_path, data_folder) print("Done.") # Dataset specific download routines. def download_electricity(data_folder): """Downloads electricity dataset from UCI repository.""" url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip" csv_path = os.path.join(data_folder, "LD2011_2014.txt") zip_path = csv_path + ".zip" download_and_unzip(url, zip_path, csv_path, data_folder) print("Aggregating to hourly data") df = pd.read_csv(csv_path, index_col=0, sep=";", decimal=",") df.index = pd.to_datetime(df.index) df.sort_index(inplace=True) # Used to determine the start and end dates of a series output = df.resample("1h").mean().replace(0.0, np.nan) earliest_time = output.index.min() # Filter to match range used by other academic papers output = output[(output.index >= '2014-01-01') & (output.index < '2014-09-08')] df_list = [] for label in output: srs = output[label] if srs.isna().all(): continue start_date = min(srs.fillna(method="ffill").dropna().index) end_date = max(srs.fillna(method="bfill").dropna().index) srs = output[label].fillna(0.0) tmp = pd.DataFrame({"power_usage": srs}) date = tmp.index tmp["t"] = (date - earliest_time).seconds / 60 / 60 + ( date - earliest_time ).days * 24 tmp["days_from_start"] = (date - earliest_time).days tmp["categorical_id"] = label tmp["date"] = date tmp["id"] = label tmp["hour"] = date.hour tmp["day"] = date.day tmp["day_of_week"] = date.dayofweek tmp["month"] = date.month tmp["power_usage_weight"] = ((date >= start_date) & (date <= end_date)) df_list.append(tmp) output = pd.concat(df_list, axis=0, join="outer").reset_index(drop=True) output["categorical_id"] = output["id"].copy() output["hours_from_start"] = output["t"] output["categorical_day_of_week"] = output["day_of_week"].copy() output["categorical_hour"] = output["hour"].copy() output["power_usage_weight"] = output["power_usage_weight"].apply(lambda b: 1 if b else 0) output.to_csv(data_folder + "/electricity.csv") print("Done.") def download_traffic(data_folder): """Downloads traffic dataset from UCI repository.""" url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip" csv_path = os.path.join(data_folder, "PEMS_train") zip_path = os.path.join(data_folder, "PEMS-SF.zip") download_and_unzip(url, zip_path, csv_path, data_folder) print("Aggregating to hourly data") def process_list(s, variable_type=int, delimiter=None): """Parses a line in the PEMS format to a list.""" if delimiter is None: parsed_list = [ variable_type(i) for i in s.replace("[", "").replace("]", "").split() ] else: parsed_list = [ variable_type(i) for i in s.replace("[", "").replace("]", "").split(delimiter) ] return parsed_list def read_single_list(filename): """Returns single list from a file in the PEMS-custom format.""" with open(os.path.join(data_folder, filename), "r") as dat: parsed_list_from_file = process_list(dat.readlines()[0]) return parsed_list_from_file def read_matrix(filename): """Returns a matrix from a file in the PEMS-custom format.""" array_list = [] with open(os.path.join(data_folder, filename), "r") as dat: lines = dat.readlines() for i, line in enumerate(lines): array = [ process_list(row_split, variable_type=float, delimiter=None) for row_split in process_list( line, variable_type=str, delimiter=";" ) ] array_list.append(array) return array_list shuffle_order = np.array(read_single_list("randperm")) - 1 # index from 0 train_dayofweek = read_single_list("PEMS_trainlabels") train_tensor = read_matrix("PEMS_train") test_dayofweek = read_single_list("PEMS_testlabels") test_tensor = read_matrix("PEMS_test") # Inverse permutate shuffle order print("Shuffling") inverse_mapping = { new_location: previous_location for previous_location, new_location in enumerate(shuffle_order) } reverse_shuffle_order = np.array( [ inverse_mapping[new_location] for new_location, _ in enumerate(shuffle_order) ] ) # Group and reoder based on permuation matrix print("Reodering") day_of_week = np.array(train_dayofweek + test_dayofweek) combined_tensor = np.array(train_tensor + test_tensor) day_of_week = day_of_week[reverse_shuffle_order] combined_tensor = combined_tensor[reverse_shuffle_order] # Put everything back into a dataframe print("Parsing as dataframe") labels = ["traj_{}".format(i) for i in read_single_list("stations_list")] hourly_list = [] for day, day_matrix in enumerate(combined_tensor): # Hourly data hourly = pd.DataFrame(day_matrix.T, columns=labels) hourly["hour_on_day"] = [ int(i / 6) for i in hourly.index ] # sampled at 10 min intervals if hourly["hour_on_day"].max() > 23 or hourly["hour_on_day"].min() < 0: raise ValueError( "Invalid hour! {}-{}".format( hourly["hour_on_day"].min(), hourly["hour_on_day"].max() ) ) hourly = hourly.groupby("hour_on_day", as_index=True).mean()[labels] hourly["sensor_day"] = day hourly["time_on_day"] = hourly.index hourly["day_of_week"] = day_of_week[day] hourly_list.append(hourly) hourly_frame = pd.concat(hourly_list, axis=0, ignore_index=True, sort=False) # Flatten such that each entitiy uses one row in dataframe store_columns = [c for c in hourly_frame.columns if "traj" in c] other_columns = [c for c in hourly_frame.columns if "traj" not in c] flat_df = pd.DataFrame( columns=["values", "prev_values", "next_values"] + other_columns + ["id"] ) def format_index_string(x): """Returns formatted string for key.""" if x < 10: return "00" + str(x) elif x < 100: return "0" + str(x) elif x < 1000: return str(x) raise ValueError("Invalid value of x {}".format(x)) for store in store_columns: sliced = hourly_frame[[store] + other_columns].copy() sliced.columns = ["values"] + other_columns sliced["id"] = int(store.replace("traj_", "")) # Sort by Sensor-date-time key = ( sliced["id"].apply(str) + sliced["sensor_day"].apply(lambda x: "_" + format_index_string(x)) + sliced["time_on_day"].apply( lambda x: "_" + format_index_string(x) ) ) sliced = sliced.set_index(key).sort_index() sliced["values"] = sliced["values"].fillna(method="ffill") sliced["prev_values"] = sliced["values"].shift(1) sliced["next_values"] = sliced["values"].shift(-1) flat_df = flat_df.append(sliced.dropna(), ignore_index=True, sort=False) # Filter to match range used by other academic papers index = flat_df["sensor_day"] flat_df = flat_df[index < 173].copy() # Creating columns fo categorical inputs flat_df["categorical_id"] = flat_df["id"].copy() flat_df["hours_from_start"] = ( flat_df["time_on_day"] + flat_df["sensor_day"] * 24.0 ) flat_df["categorical_day_of_week"] = flat_df["day_of_week"].copy() flat_df["categorical_time_on_day"] = flat_df["time_on_day"].copy() flat_df.to_csv(data_folder + "/traffic.csv") def construct_graph(nodes_loc, k=0.8): """ Constructs a graph based on a physical location of nodes nodes_loc: 2D array num_nodes x dim features: list of node features """ dist_mx = distance_matrix(nodes_loc, nodes_loc) std = dist_mx.std() adj_mx = np.exp(-np.square(dist_mx / std)) adj_mx[adj_mx < k] = 0 np.fill_diagonal(adj_mx, 0) edges = np.nonzero(adj_mx) graph = dgl.graph(edges, num_nodes=nodes_loc.shape[0]) return graph def main(args): """Runs main download routine. Args: expt_name: Name of experiment force_download: Whether to force data download from scratch output_folder: Folder path for storing data """ print("#### Running download script ###") download_function = DOWNLOAD_FUNCTIONS[args.dataset] print("Getting {} data...".format(args.dataset)) subdir = os.path.join(args.output_dir, args.dataset) print(subdir) if os.path.exists(subdir): print(f"Warning: Path {subdir} exists. Overwritting files!", file=sys.stderr) os.makedirs(subdir, exist_ok=True) download_function(subdir) print("Download completed.") DOWNLOAD_FUNCTIONS = { "electricity": download_electricity, "traffic": download_traffic, } if __name__ == "__main__": parser = argparse.ArgumentParser(description="Data download configs") parser.add_argument( "--dataset", metavar="DATASET", type=str, choices=DOWNLOAD_FUNCTIONS.keys(), required=True, help="Dataset name" ) parser.add_argument( "--output_dir", metavar="DIR", type=str, default=".", help="Path to folder for data download", ) args = parser.parse_args() main(args)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/data/script_download_data.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from omegaconf import OmegaConf from data.data_utils import InputTypes, DataTypes, FeatureSpec OmegaConf.register_new_resolver("and", lambda x, y: x and y, use_cache=True) OmegaConf.register_new_resolver("feature.selector", lambda x,feat_type,embed_type: OmegaConf.create([elem for elem in x if elem.feature_type == feat_type and elem.feature_embed_type == embed_type]) ) OmegaConf.register_new_resolver("add", lambda x,y: x + y) OmegaConf.register_new_resolver("if", lambda x,y,z: y if x else z) OmegaConf.register_new_resolver("feature.cardinalities", lambda x: OmegaConf.create([elem.cardinality for elem in x])) OmegaConf.register_new_resolver("len", len) OmegaConf.register_new_resolver("cmp", lambda x, y: x == y) OmegaConf.register_new_resolver("cont.lower", lambda x, y: y.lower() in x.lower()) # XXX I don't know whether it is the best idea to allow user to sum over nested structure without checks def sum_nested(*args): if len(args) == 1 and isinstance(args[0], (int, float)): return args[0] return sum(arg if isinstance(arg, (int, float)) else sum_nested(*arg) for arg in args) OmegaConf.register_new_resolver("sum", sum_nested)
DeepLearningExamples-master
Tools/PyTorch/TimeSeriesPredictionPlatform/conf/conf_utils.py
# Copyright 2017-2018 The Apache Software Foundation # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ train fit utility """ import logging import math import glob import os import random import sys import time import re from itertools import starmap import signal import pickle import dllogger import horovod.mxnet as hvd import mxnet as mx import mxnet.contrib.amp as amp import numpy as np from mxnet import autograd as ag from mxnet import gluon import data from benchmarking import BenchmarkingDataIter from global_metrics import CompositeMeter, MaxMeter, MinMeter, AvgMeter, PercentileMeter class PartitionSignalHandler(): def __init__(self, sync_freq: int = 10): self.step = 0 self.freq = sync_freq self.t = mx.nd.array([0]) signal.signal(signal.SIGUSR1, self._signal_handler) signal.signal(signal.SIGTERM, self._signal_handler) def sync(self) -> bool: if self.step % self.freq == 0: new_sync = hvd.allreduce(self.t, average=False) if new_sync[0] > 0: self.t[0] = 1 self.step += 1 return self.should_end() def should_end(self) -> bool: return bool(self.t[0] > 0) def _signal_handler(self, signum, frame): print("Signal received") self.t[0] = 1 def add_fit_args(parser): def int_list(x): return list(map(int, x.split(','))) def float_list(x): return list(map(float, x.split(','))) train = parser.add_argument_group('Training') train.add_argument('--mode', default='train_val', choices=('train_val', 'train', 'val', 'pred'), help='mode') train.add_argument('--seed', type=int, default=None, help='random seed') train.add_argument('--gpus', type=int_list, default=[0], help='list of gpus to run, e.g. 0 or 0,2,5') train.add_argument('--kv-store', type=str, default='device', choices=('device', 'horovod'), help='key-value store type') train.add_argument('--dtype', type=str, default='float16', choices=('float32', 'float16'), help='precision') train.add_argument('--amp', action='store_true', help='If enabled, turn on AMP (Automatic Mixed Precision)') train.add_argument('--batch-size', type=int, default=192, help='the batch size') train.add_argument('--num-epochs', type=int, default=90, help='number of epochs') train.add_argument('--run-epochs', type=int, default=-1, help='number of epochs to run in single run') train.add_argument('--lr', type=float, default=0.1, help='initial learning rate') train.add_argument('--lr-schedule', choices=('multistep', 'cosine'), default='cosine', help='learning rate schedule') train.add_argument('--lr-factor', type=float, default=0.256, help='the ratio to reduce lr on each step') train.add_argument('--lr-steps', type=float_list, default=[], help='the epochs to reduce the lr, e.g. 30,60') train.add_argument('--warmup-epochs', type=int, default=5, help='the epochs to ramp-up lr to scaled large-batch value') train.add_argument('--optimizer', type=str, default='sgd', help='the optimizer type') train.add_argument('--mom', type=float, default=0.875, help='momentum for sgd') train.add_argument('--wd', type=float, default=1 / 32768, help='weight decay for sgd') train.add_argument('--label-smoothing', type=float, default=0.1, help='label smoothing factor') train.add_argument('--mixup', type=float, default=0, help='alpha parameter for mixup (if 0 then mixup is not applied)') train.add_argument('--disp-batches', type=int, default=20, help='show progress for every n batches') train.add_argument('--model-prefix', type=str, default='model', help='model checkpoint prefix') train.add_argument('--save-frequency', type=int, default=-1, help='frequency of saving model in epochs (--model-prefix must be specified). ' 'If -1 then save only best model. If 0 then do not save anything.') train.add_argument('--begin-epoch', type=int, default=0, help='start the model from an epoch') train.add_argument('--load', help='checkpoint to load') train.add_argument('--test-io', action='store_true', help='test reading speed without training') train.add_argument('--test-io-mode', default='train', choices=('train', 'val'), help='data to test') train.add_argument('--log', type=str, default='log.log', help='file where to save the log from the experiment') train.add_argument('--dllogger-log', type=str, default='dllogger_log.log', help='file where to save the dllogger log from the experiment') train.add_argument('--workspace', type=str, default='./', help='path to directory where results will be stored') train.add_argument('--logdir', type=str, default=None, help="path to directory where logs will be stored") train.add_argument('--no-metrics', action='store_true', help='do not calculate evaluation metrics (for benchmarking)') train.add_argument('--benchmark-iters', type=int, default=None, help='run only benchmark-iters iterations from each epoch') return train def get_epoch_size(args, kv): return math.ceil(args.num_examples / args.batch_size) def get_lr_scheduler(args): def multistep_schedule(x): lr = args.lr * \ (args.lr_factor ** (len(list(filter(lambda step: step <= x, args.lr_steps))))) warmup_coeff = min(1, x / args.warmup_epochs) return warmup_coeff * lr def cosine_schedule(x): steps = args.lr_steps if not steps or steps[0] > args.warmup_epochs: steps = [args.warmup_epochs] + steps elif not steps or steps[0] != 0: steps = [0] + steps if steps[-1] != args.num_epochs: steps.append(args.num_epochs) if x < args.warmup_epochs: return args.lr * x / args.warmup_epochs for i, (step, next_step) in enumerate(zip(steps, steps[1:])): if next_step > x: return args.lr * 0.5 * (1 + math.cos(math.pi * (x - step) / (next_step - step))) * (args.lr_factor ** i) return 0 schedules = { 'multistep': multistep_schedule, 'cosine': cosine_schedule, } return schedules[args.lr_schedule] def load_model(args, model): file = list(glob.glob( f"{args.workspace}/{args.model_prefix}_*.params")) if len(file) == 0: return -1 file = [x for x in sorted(file) if "best.params" not in x] if len(file) == 0: return -1 file = file[-1] epoch = re.match(f".*{args.model_prefix}_([0-9]*)\.params", file) if epoch is None: return -1 epoch = int(epoch.group(1)) model.load_parameters(file) logging.info('Loaded model {}'.format(file)) return epoch def save_checkpoint(net, epoch, top1, best_acc, model_prefix, workspace, save_frequency, kvstore, force_save=False): if model_prefix is None or save_frequency == 0 or ('horovod' in kvstore and hvd.rank() != 0): return if (save_frequency > 0 and (epoch + 1) % save_frequency == 0) or force_save: fname = '{}_{:04}.params'.format(model_prefix, epoch) fname = os.path.join(workspace, fname) net.save_parameters(fname) logging.info('[Epoch {}] Saving checkpoint to {} with Accuracy: {:.4f}'.format( epoch, fname, top1)) if top1 > best_acc: fname = os.path.join(workspace, f'{model_prefix}_best.params') net.save_parameters(fname) logging.info('[Epoch {}] Saving checkpoint to {} with Accuracy: {:.4f}'.format( epoch, fname, top1)) def model_pred(args, model, image): from imagenet_classes import classes output = model(image.reshape(-1, *image.shape) )[0].softmax().as_in_context(mx.cpu()) top = output.argsort(is_ascend=False)[:10] for i, ind in enumerate(top): ind = int(ind.asscalar()) logging.info('{:2d}. {:5.2f}% -> {}'.format(i + 1, output[ind].asscalar() * 100, classes[ind])) def reduce_metrics(args, metrics, kvstore): if 'horovod' not in kvstore or not metrics[0] or hvd.size() == 1: return metrics m = mx.ndarray.array(metrics[1], ctx=mx.gpu(args.gpus[0])) reduced = hvd.allreduce(m) values = reduced.as_in_context(mx.cpu()).asnumpy().tolist() return (metrics[0], values) def model_score(args, net, val_data, metric, kvstore): if val_data is None: logging.info('Omitting validation: no data') return [], [] if not isinstance(metric, mx.metric.EvalMetric): metric = mx.metric.create(metric) metric.reset() val_data.reset() total_batch_size = val_data.batch_size * val_data._num_gpus * \ (hvd.size() if 'horovod' in kvstore else 1) durations = [] tic = time.time() outputs = [] for batches in val_data: # synchronize to previous iteration for o in outputs: o.wait_to_read() data = [b.data[0] for b in batches] label = [b.label[0][:len(b.data[0]) - b.pad] for b in batches if len(b.data[0]) != b.pad] outputs = [net(X) for X, b in zip(data, batches)] outputs = [o[:len(b.data[0]) - b.pad] for o, b in zip(outputs, batches) if len(b.data[0]) != b.pad] metric.update(label, outputs) durations.append(time.time() - tic) tic = time.time() metric = reduce_metrics(args, metric.get_global(), kvstore) durations = durations[min(len(durations) // 10, 100):] duration_stats = { 'ips': total_batch_size / np.mean(durations), 'latency_avg': np.mean(durations), } return metric, duration_stats, durations class ScalarMetric(mx.metric.Loss): def update(self, _, scalar): self.sum_metric += scalar self.global_sum_metric += scalar self.num_inst += 1 self.global_num_inst += 1 def label_smoothing(labels, classes, eta): return labels.one_hot(classes, on_value=1 - eta + eta / classes, off_value=eta / classes) def model_fit(args, net, train_data, eval_metric, optimizer, optimizer_params, lr_scheduler, eval_data, global_metrics, kvstore, kv, begin_epoch, num_epoch, run_epoch, model_prefix): if not isinstance(eval_metric, mx.metric.EvalMetric): eval_metric = mx.metric.create(eval_metric) loss_metric = ScalarMetric() if 'horovod' in kvstore: trainer = hvd.DistributedTrainer( net.collect_params(), optimizer, optimizer_params) else: trainer = gluon.Trainer(net.collect_params(), optimizer, optimizer_params, kvstore=kv, update_on_kvstore=False) if args.amp: amp.init_trainer(trainer) partition_handler = PartitionSignalHandler(1) sparse_label_loss = (args.label_smoothing == 0 and args.mixup == 0) loss = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=sparse_label_loss) loss.hybridize(static_shape=True, static_alloc=True) local_batch_size = train_data.batch_size total_batch_size = local_batch_size * train_data._num_gpus * \ (hvd.size() if 'horovod' in kvstore else 1) durations = [] epoch_size = get_epoch_size(args, kv) run_epoch = num_epoch if (run_epoch == -1) else (begin_epoch + run_epoch) def transform_data(images, labels): if args.mixup != 0: coeffs = mx.nd.array(np.random.beta(args.mixup, args.mixup, size=images.shape[0])).as_in_context( images.context) image_coeffs = coeffs.astype( images.dtype, copy=False).reshape(*coeffs.shape, 1, 1, 1) ret_images = image_coeffs * images + \ (1 - image_coeffs) * images[::-1] ret_labels = label_smoothing( labels, args.num_classes, args.label_smoothing) label_coeffs = coeffs.reshape(*coeffs.shape, 1) ret_labels = label_coeffs * ret_labels + \ (1 - label_coeffs) * ret_labels[::-1] else: ret_images = images if not sparse_label_loss: ret_labels = label_smoothing( labels, args.num_classes, args.label_smoothing) else: ret_labels = labels return ret_images, ret_labels i = -1 best_accuracy = -1 for epoch in range(begin_epoch, min(run_epoch, num_epoch)): tic = time.time() btic = time.time() etic = time.time() train_data.reset() eval_metric.reset() loss_metric.reset() logging.info('Starting epoch {}'.format(epoch)) outputs = [] if not partition_handler.should_end(): for i, batches in enumerate(train_data): # synchronize to previous iteration # for o in outputs: # o.wait_to_read() trainer.set_learning_rate(lr_scheduler(epoch + i / epoch_size)) data = [b.data[0] for b in batches] label = [b.label[0].as_in_context( b.data[0].context) for b in batches] orig_label = label data, label = zip(*starmap(transform_data, zip(data, label))) outputs = [] Ls = [] with ag.record(): for x, y in zip(data, label): z = net(x) L = loss(z, y) # store the loss and do backward after we have done forward # on all GPUs for better speed on multiple GPUs. Ls.append(L) outputs.append(z) if args.amp: with amp.scale_loss(Ls, trainer) as scaled_loss: ag.backward(scaled_loss) else: ag.backward(Ls) if 'horovod' in kvstore: trainer.step(local_batch_size) else: trainer.step(total_batch_size) loss_metric.update(..., np.mean( [l.asnumpy() for l in Ls]).item()) if args.disp_batches and not (i + 1) % args.disp_batches: dllogger_it_data = { 'train.loss': loss_metric.get()[1], 'train.ips': args.disp_batches * total_batch_size / (time.time() - btic), 'train.lr': trainer.learning_rate } dllogger.log((epoch, i), data=dllogger_it_data) loss_metric.reset_local() btic = time.time() durations.append(time.time() - tic) tic = time.time() else: break durations = durations[min(len(durations) // 10, 100):] dllogger_epoch_data = { 'train.loss': loss_metric.get_global()[1], 'train.ips': total_batch_size / np.mean(durations) } should_break = partition_handler.sync() if args.mode == 'train_val': logging.info('Validating epoch {}'.format(epoch)) score, duration_stats, _ = model_score( args, net, eval_data, eval_metric, kvstore) dllogger_epoch_data.update( starmap(lambda key, val: ( 'val.{}'.format(key), val), zip(*score)) ) dllogger_epoch_data.update( starmap(lambda key, val: ('val.{}'.format(key), val), duration_stats.items()) ) score = dict(zip(*score)) accuracy = score.get('accuracy', -1) save_checkpoint(net, epoch, accuracy, best_accuracy, model_prefix, args.workspace, args.save_frequency if args.mode == "train_val" else -1, kvstore, force_save=should_break) best_accuracy = max(best_accuracy, accuracy) global_metrics.update_dict(dllogger_epoch_data) dllogger.log(step=(epoch,), data=dllogger_epoch_data) def fit(args, model, data_loader): """ train a model args : argparse returns model : the the neural network model data_loader : function that returns the train and val data iterators """ start_time = time.time() # select gpu for horovod process if 'horovod' in args.kv_store: args.gpus = [args.gpus[hvd.local_rank()]] if args.amp: amp.init() if args.seed is not None: logging.info('Setting seeds to {}'.format(args.seed)) random.seed(args.seed) np.random.seed(args.seed) mx.random.seed(args.seed) # kvstore if 'horovod' in args.kv_store: kv = None rank = hvd.rank() num_workers = hvd.size() else: kv = mx.kvstore.create(args.kv_store) rank = kv.rank num_workers = kv.num_workers if args.test_io: train, val = data_loader(args, kv) if args.test_io_mode == 'train': data_iter = train else: data_iter = val tic = time.time() for i, batch in enumerate(data_iter): if isinstance(batch, list): for b in batch: for j in b.data: j.wait_to_read() else: for j in batch.data: j.wait_to_read() if (i + 1) % args.disp_batches == 0: logging.info('Batch [{}]\tSpeed: {:.2f} samples/sec'.format( i, args.disp_batches * args.batch_size / (time.time() - tic))) tic = time.time() return start_epoch = load_model(args, model) + 1 if start_epoch == 0: # all initializers should be specified in the model definition. # if not, this will raise an error model.initialize(mx.init.Initializer()) logging.info(f"starting epoch {start_epoch}") # devices for training devs = list(map(mx.gpu, args.gpus)) model.collect_params().reset_ctx(devs) if args.mode == 'pred': logging.info('Infering image {}'.format(args.data_pred)) model_pred(args, model, data.load_image(args, args.data_pred, devs[0])) return # learning rate lr_scheduler = get_lr_scheduler(args) optimizer_params = { 'learning_rate': 0, 'wd': args.wd, 'multi_precision': True, } # Only a limited number of optimizers have 'momentum' property has_momentum = {'sgd', 'dcasgd', 'nag', 'signum', 'lbsgd'} if args.optimizer in has_momentum: optimizer_params['momentum'] = args.mom # evaluation metrices if not args.no_metrics: eval_metrics = ['accuracy'] eval_metrics.append(mx.metric.create( 'top_k_accuracy', top_k=5)) else: eval_metrics = [] train, val = data_loader(args, kv) train = BenchmarkingDataIter(train, args.benchmark_iters) if val is not None: val = BenchmarkingDataIter(val, args.benchmark_iters) if 'horovod' in args.kv_store: # Fetch and broadcast parameters params = model.collect_params() if params is not None: hvd.broadcast_parameters(params, root_rank=0) ctx = mx.gpu(hvd.local_rank()) tensor1 = mx.nd.zeros(shape=(1,), dtype='float32', ctx=ctx) tensor2 = mx.nd.zeros(shape=(1,), dtype='float32', ctx=ctx) tensor1, tensor2 = hvd.grouped_allreduce([tensor1,tensor2]) global_metrics = CompositeMeter() if args.mode in ['train_val', 'train']: global_metrics.register_metric('train.loss', MinMeter()) global_metrics.register_metric('train.ips', AvgMeter()) if args.mode in ['train_val', 'val']: global_metrics.register_metric('val.accuracy', MaxMeter()) global_metrics.register_metric('val.top_k_accuracy_5', MaxMeter()) global_metrics.register_metric('val.ips', AvgMeter()) global_metrics.register_metric('val.latency_avg', AvgMeter()) if args.mode in ['val']: global_metrics.register_metric('val.latency_50', PercentileMeter(50)) global_metrics.register_metric('val.latency_90', PercentileMeter(90)) global_metrics.register_metric('val.latency_95', PercentileMeter(95)) global_metrics.register_metric('val.latency_99', PercentileMeter(99)) global_metrics.register_metric('val.latency_100', PercentileMeter(100)) # run if args.mode in ['train_val', 'train']: model_fit( args, model, train, begin_epoch=start_epoch, num_epoch=args.num_epochs, run_epoch=args.run_epochs, eval_data=val, eval_metric=eval_metrics, global_metrics=global_metrics, kvstore=args.kv_store, kv=kv, optimizer=args.optimizer, optimizer_params=optimizer_params, lr_scheduler=lr_scheduler, model_prefix=args.model_prefix, ) elif args.mode == 'val': for epoch in range(args.num_epochs): # loop for benchmarking score, duration_stats, durations = model_score( args, model, val, eval_metrics, args.kv_store) dllogger_data = dict(starmap(lambda key, val: ( 'val.{}'.format(key), val), zip(*score))) dllogger_data.update( starmap(lambda key, val: ('val.{}'.format(key), val), duration_stats.items()) ) global_metrics.update_dict(dllogger_data) for percentile in [50, 90, 95, 99, 100]: metric_name = 'val.latency_{}'.format(percentile) dllogger_data[metric_name] = np.percentile( durations, percentile) global_metrics.update_metric(metric_name, durations) dllogger.log(step=(epoch,), data=dllogger_data) else: raise ValueError('Wrong mode') mx.nd.waitall() dllogger.log(tuple(), data=global_metrics.get())
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/fit.py
#!/usr/bin/env python3 # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys import json import traceback import numpy as np from collections import OrderedDict from subprocess import Popen def int_list(x): return list(map(int, x.split(','))) parser = argparse.ArgumentParser(description='Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--executable', default='./runner', help='path to runner') parser.add_argument('-o', '--output', metavar='OUT', required=True, help="path to benchmark report") parser.add_argument('-n', '--ngpus', metavar='N1,[N2,...]', type=int_list, required=True, help='numbers of gpus separated by comma') parser.add_argument('-b', '--batch-sizes', metavar='B1,[B2,...]', type=int_list, required=True, help='batch sizes separated by comma') parser.add_argument('-i', '--benchmark-iters', metavar='I', type=int, default=100, help='iterations') parser.add_argument('-e', '--epochs', metavar='E', type=int, default=1, help='number of epochs') parser.add_argument('-w', '--warmup', metavar='N', type=int, default=0, help='warmup epochs') parser.add_argument('--timeout', metavar='T', type=str, default='inf', help='timeout for each run') parser.add_argument('--mode', metavar='MODE', choices=('train_val', 'train', 'val'), default='train_val', help="benchmark mode") args, other_args = parser.parse_known_args() latency_percentiles = [50, 90, 95, 99, 100] harmonic_mean_metrics = ['train.ips', 'val.ips'] res = OrderedDict() res['model'] = '' res['ngpus'] = args.ngpus res['bs'] = args.batch_sizes res['metric_keys'] = [] if args.mode == 'train' or args.mode == 'train_val': res['metric_keys'].append('train.ips') if args.mode == 'val' or args.mode == 'train_val': res['metric_keys'].append('val.ips') res['metric_keys'].append('val.latency_avg') if args.mode == 'val': for percentile in latency_percentiles: res['metric_keys'].append('val.latency_{}'.format(percentile)) res['metrics'] = OrderedDict() for n in args.ngpus: res['metrics'][str(n)] = OrderedDict() for bs in args.batch_sizes: res['metrics'][str(n)][str(bs)] = OrderedDict() log_file = args.output + '-{},{}'.format(n, bs) Popen(['timeout', args.timeout, args.executable, '-n', str(n), '-b', str(bs), '--benchmark-iters', str(args.benchmark_iters), '-e', str(args.epochs), '--dllogger-log', log_file, '--mode', args.mode, '--no-metrics'] + other_args, stdout=sys.stderr).wait() try: with open(log_file, 'r') as f: lines = [line for line in f.read().splitlines() if 'step' in line] log_data = [json.loads(line[5:]) for line in lines] epochs_report = list(filter(lambda x: len(x['step']) == 1, log_data)) if len(epochs_report) != args.epochs: raise ValueError('Wrong number epochs in report') epochs_report = epochs_report[args.warmup:] for metric in res['metric_keys']: data = list(map(lambda x: x['data'][metric], epochs_report)) if metric in harmonic_mean_metrics: avg = len(data) / sum(map(lambda x: 1 / x, data)) else: avg = np.mean(data) res['metrics'][str(n)][str(bs)][metric] = avg except Exception as e: traceback.print_exc() for metric in res['metric_keys']: res['metrics'][str(n)][str(bs)][metric] = float('nan') column_len = 11 for m in res['metric_keys']: print(m, file=sys.stderr) print(' ' * column_len, end='|', file=sys.stderr) for bs in args.batch_sizes: print(str(bs).center(column_len), end='|', file=sys.stderr) print(file=sys.stderr) print('-' * (len(args.batch_sizes) + 1) * (column_len + 1), file=sys.stderr) for n in args.ngpus: print(str(n).center(column_len), end='|', file=sys.stderr) for bs in args.batch_sizes: print('{:.5g}'.format(res['metrics'][str(n)][str(bs)][m]).center(column_len), end='|', file=sys.stderr) print(file=sys.stderr) print(file=sys.stderr) with open(args.output, 'w') as f: json.dump(res, f, indent=4)
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/benchmark.py
# Copyright 2017-2018 The Apache Software Foundation # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import mxnet as mx from mxnet.gluon.block import HybridBlock from mxnet.gluon import nn def add_model_args(parser): model = parser.add_argument_group('Model') model.add_argument('--arch', default='resnetv15', choices=['resnetv1', 'resnetv15', 'resnextv1', 'resnextv15', 'xception'], help='model architecture') model.add_argument('--num-layers', type=int, default=50, help='number of layers in the neural network, \ required by some networks such as resnet') model.add_argument('--num-groups', type=int, default=32, help='number of groups for grouped convolutions, \ required by some networks such as resnext') model.add_argument('--num-classes', type=int, default=1000, help='the number of classes') model.add_argument('--batchnorm-eps', type=float, default=1e-5, help='the amount added to the batchnorm variance to prevent output explosion.') model.add_argument('--batchnorm-mom', type=float, default=0.9, help='the leaky-integrator factor controling the batchnorm mean and variance.') model.add_argument('--fuse-bn-relu', type=int, default=0, help='have batchnorm kernel perform activation relu') model.add_argument('--fuse-bn-add-relu', type=int, default=0, help='have batchnorm kernel perform add followed by activation relu') return model class Builder: def __init__(self, dtype, input_layout, conv_layout, bn_layout, pooling_layout, bn_eps, bn_mom, fuse_bn_relu, fuse_bn_add_relu): self.dtype = dtype self.input_layout = input_layout self.conv_layout = conv_layout self.bn_layout = bn_layout self.pooling_layout = pooling_layout self.bn_eps = bn_eps self.bn_mom = bn_mom self.fuse_bn_relu = fuse_bn_relu self.fuse_bn_add_relu = fuse_bn_add_relu self.act_type = 'relu' self.bn_gamma_initializer = lambda last: 'zeros' if last else 'ones' self.linear_initializer = lambda groups=1: mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2 * (groups ** 0.5)) self.last_layout = self.input_layout def copy(self): return copy.copy(self) def batchnorm(self, last=False): gamma_initializer = self.bn_gamma_initializer(last) bn_axis = 3 if self.bn_layout == 'NHWC' else 1 return self.sequence( self.transpose(self.bn_layout), nn.BatchNorm(axis=bn_axis, momentum=self.bn_mom, epsilon=self.bn_eps, gamma_initializer=gamma_initializer, running_variance_initializer=gamma_initializer) ) def batchnorm_add_relu(self, last=False): gamma_initializer = self.bn_gamma_initializer(last) if self.fuse_bn_add_relu: bn_axis = 3 if self.bn_layout == 'NHWC' else 1 return self.sequence( self.transpose(self.bn_layout), BatchNormAddRelu(axis=bn_axis, momentum=self.bn_mom, epsilon=self.bn_eps, act_type=self.act_type, gamma_initializer=gamma_initializer, running_variance_initializer=gamma_initializer) ) return NonFusedBatchNormAddRelu(self, last=last) def batchnorm_relu(self, last=False): gamma_initializer = self.bn_gamma_initializer(last) if self.fuse_bn_relu: bn_axis = 3 if self.bn_layout == 'NHWC' else 1 return self.sequence( self.transpose(self.bn_layout), nn.BatchNorm(axis=bn_axis, momentum=self.bn_mom, epsilon=self.bn_eps, act_type=self.act_type, gamma_initializer=gamma_initializer, running_variance_initializer=gamma_initializer) ) return self.sequence(self.batchnorm(last=last), self.activation()) def activation(self): return nn.Activation(self.act_type) def global_avg_pool(self): return self.sequence( self.transpose(self.pooling_layout), nn.GlobalAvgPool2D(layout=self.pooling_layout) ) def max_pool(self, pool_size, strides=1, padding=True): padding = pool_size // 2 if padding is True else int(padding) return self.sequence( self.transpose(self.pooling_layout), nn.MaxPool2D(pool_size, strides=strides, padding=padding, layout=self.pooling_layout) ) def conv(self, channels, kernel_size, padding=True, strides=1, groups=1, in_channels=0): padding = kernel_size // 2 if padding is True else int(padding) initializer = self.linear_initializer(groups=groups) return self.sequence( self.transpose(self.conv_layout), nn.Conv2D(channels, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=False, groups=groups, in_channels=in_channels, layout=self.conv_layout, weight_initializer=initializer) ) def separable_conv(self, channels, kernel_size, in_channels, padding=True, strides=1): return self.sequence( self.conv(in_channels, kernel_size, padding=padding, strides=strides, groups=in_channels, in_channels=in_channels), self.conv(channels, 1, in_channels=in_channels) ) def dense(self, units, in_units=0): return nn.Dense(units, in_units=in_units, weight_initializer=self.linear_initializer()) def transpose(self, to_layout): if self.last_layout == to_layout: return None ret = Transpose(self.last_layout, to_layout) self.last_layout = to_layout return ret def sequence(self, *seq): seq = list(filter(lambda x: x is not None, seq)) if len(seq) == 1: return seq[0] ret = nn.HybridSequential() ret.add(*seq) return ret class Transpose(HybridBlock): def __init__(self, from_layout, to_layout): super().__init__() supported_layouts = ['NCHW', 'NHWC'] if from_layout not in supported_layouts: raise ValueError('Not prepared to handle layout: {}'.format(from_layout)) if to_layout not in supported_layouts: raise ValueError('Not prepared to handle layout: {}'.format(to_layout)) self.from_layout = from_layout self.to_layout = to_layout def hybrid_forward(self, F, x): # Insert transpose if from_layout and to_layout don't match if self.from_layout == 'NCHW' and self.to_layout == 'NHWC': return F.transpose(x, axes=(0, 2, 3, 1)) elif self.from_layout == 'NHWC' and self.to_layout == 'NCHW': return F.transpose(x, axes=(0, 3, 1, 2)) else: return x def __repr__(self): s = '{name}({content})' if self.from_layout == self.to_layout: content = 'passthrough ' + self.from_layout else: content = self.from_layout + ' -> ' + self.to_layout return s.format(name=self.__class__.__name__, content=content) class LayoutWrapper(HybridBlock): def __init__(self, op, io_layout, op_layout, **kwargs): super(LayoutWrapper, self).__init__(**kwargs) with self.name_scope(): self.layout1 = Transpose(io_layout, op_layout) self.op = op self.layout2 = Transpose(op_layout, io_layout) def hybrid_forward(self, F, *x): return self.layout2(self.op(*(self.layout1(y) for y in x))) class BatchNormAddRelu(nn.BatchNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if self._kwargs.pop('act_type') != 'relu': raise ValueError('BatchNormAddRelu can be used only with ReLU as activation') def hybrid_forward(self, F, x, y, gamma, beta, running_mean, running_var): return F.BatchNormAddRelu(data=x, addend=y, gamma=gamma, beta=beta, moving_mean=running_mean, moving_var=running_var, name='fwd', **self._kwargs) class NonFusedBatchNormAddRelu(HybridBlock): def __init__(self, builder, **kwargs): super().__init__() self.bn = builder.batchnorm(**kwargs) self.act = builder.activation() def hybrid_forward(self, F, x, y): return self.act(self.bn(x) + y) # Blocks class ResNetBasicBlock(HybridBlock): def __init__(self, builder, channels, stride, downsample=False, in_channels=0, version='1', resnext_groups=None, **kwargs): super().__init__() assert not resnext_groups self.transpose = builder.transpose(builder.conv_layout) builder_copy = builder.copy() body = [ builder.conv(channels, 3, strides=stride, in_channels=in_channels), builder.batchnorm_relu(), builder.conv(channels, 3), ] self.body = builder.sequence(*body) self.bn_add_relu = builder.batchnorm_add_relu(last=True) builder = builder_copy if downsample: self.downsample = builder.sequence( builder.conv(channels, 1, strides=stride, in_channels=in_channels), builder.batchnorm() ) else: self.downsample = None def hybrid_forward(self, F, x): if self.transpose is not None: x = self.transpose(x) residual = x x = self.body(x) if self.downsample: residual = self.downsample(residual) x = self.bn_add_relu(x, residual) return x class ResNetBottleNeck(HybridBlock): def __init__(self, builder, channels, stride, downsample=False, in_channels=0, version='1', resnext_groups=None): super().__init__() stride1 = stride if version == '1' else 1 stride2 = 1 if version == '1' else stride mult = 2 if resnext_groups else 1 groups = resnext_groups or 1 self.transpose = builder.transpose(builder.conv_layout) builder_copy = builder.copy() body = [ builder.conv(channels * mult // 4, 1, strides=stride1, in_channels=in_channels), builder.batchnorm_relu(), builder.conv(channels * mult // 4, 3, strides=stride2), builder.batchnorm_relu(), builder.conv(channels, 1) ] self.body = builder.sequence(*body) self.bn_add_relu = builder.batchnorm_add_relu(last=True) builder = builder_copy if downsample: self.downsample = builder.sequence( builder.conv(channels, 1, strides=stride, in_channels=in_channels), builder.batchnorm() ) else: self.downsample = None def hybrid_forward(self, F, x): if self.transpose is not None: x = self.transpose(x) residual = x x = self.body(x) if self.downsample: residual = self.downsample(residual) x = self.bn_add_relu(x, residual) return x class XceptionBlock(HybridBlock): def __init__(self, builder, definition, in_channels, relu_at_beginning=True): super().__init__() self.transpose = builder.transpose(builder.conv_layout) builder_copy = builder.copy() body = [] if relu_at_beginning: body.append(builder.activation()) last_channels = in_channels for channels1, channels2 in zip(definition, definition[1:] + [0]): if channels1 > 0: body.append(builder.separable_conv(channels1, 3, in_channels=last_channels)) if channels2 > 0: body.append(builder.batchnorm_relu()) else: body.append(builder.batchnorm(last=True)) last_channels = channels1 else: body.append(builder.max_pool(3, 2)) self.body = builder.sequence(*body) builder = builder_copy if any(map(lambda x: x <= 0, definition)): self.shortcut = builder.sequence( builder.conv(last_channels, 1, strides=2, in_channels=in_channels), builder.batchnorm(), ) else: self.shortcut = builder.sequence() def hybrid_forward(self, F, x): return self.shortcut(x) + self.body(x) # Nets class ResNet(HybridBlock): def __init__(self, builder, block, layers, channels, classes=1000, version='1', resnext_groups=None): super().__init__() assert len(layers) == len(channels) - 1 self.version = version with self.name_scope(): features = [ builder.conv(channels[0], 7, strides=2), builder.batchnorm_relu(), builder.max_pool(3, 2), ] for i, num_layer in enumerate(layers): stride = 1 if i == 0 else 2 features.append(self.make_layer(builder, block, num_layer, channels[i+1], stride, in_channels=channels[i], resnext_groups=resnext_groups)) features.append(builder.global_avg_pool()) self.features = builder.sequence(*features) self.output = builder.dense(classes, in_units=channels[-1]) def make_layer(self, builder, block, layers, channels, stride, in_channels=0, resnext_groups=None): layer = [] layer.append(block(builder, channels, stride, channels != in_channels, in_channels=in_channels, version=self.version, resnext_groups=resnext_groups)) for _ in range(layers-1): layer.append(block(builder, channels, 1, False, in_channels=channels, version=self.version, resnext_groups=resnext_groups)) return builder.sequence(*layer) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x class Xception(HybridBlock): def __init__(self, builder, definition=([32, 64], [[128, 128, 0], [256, 256, 0], [728, 728, 0], *([[728, 728, 728]] * 8), [728, 1024, 0]], [1536, 2048]), classes=1000): super().__init__() definition1, definition2, definition3 = definition with self.name_scope(): features = [] last_channels = 0 for i, channels in enumerate(definition1): features += [ builder.conv(channels, 3, strides=(2 if i == 0 else 1), in_channels=last_channels), builder.batchnorm_relu(), ] last_channels = channels for i, block_definition in enumerate(definition2): features.append(XceptionBlock(builder, block_definition, in_channels=last_channels, relu_at_beginning=False if i == 0 else True)) last_channels = list(filter(lambda x: x > 0, block_definition))[-1] for i, channels in enumerate(definition3): features += [ builder.separable_conv(channels, 3, in_channels=last_channels), builder.batchnorm_relu(), ] last_channels = channels features.append(builder.global_avg_pool()) self.features = builder.sequence(*features) self.output = builder.dense(classes, in_units=last_channels) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x resnet_spec = {18: (ResNetBasicBlock, [2, 2, 2, 2], [64, 64, 128, 256, 512]), 34: (ResNetBasicBlock, [3, 4, 6, 3], [64, 64, 128, 256, 512]), 50: (ResNetBottleNeck, [3, 4, 6, 3], [64, 256, 512, 1024, 2048]), 101: (ResNetBottleNeck, [3, 4, 23, 3], [64, 256, 512, 1024, 2048]), 152: (ResNetBottleNeck, [3, 8, 36, 3], [64, 256, 512, 1024, 2048])} def create_resnet(builder, version, num_layers=50, resnext=False, classes=1000): assert num_layers in resnet_spec, \ "Invalid number of layers: {}. Options are {}".format( num_layers, str(resnet_spec.keys())) block_class, layers, channels = resnet_spec[num_layers] assert not resnext or num_layers >= 50, \ "Cannot create resnext with less then 50 layers" net = ResNet(builder, block_class, layers, channels, version=version, resnext_groups=args.num_groups if resnext else None) return net class fp16_model(mx.gluon.block.HybridBlock): def __init__(self, net, **kwargs): super(fp16_model, self).__init__(**kwargs) with self.name_scope(): self._net = net def hybrid_forward(self, F, x): y = self._net(x) y = F.cast(y, dtype='float32') return y def get_model(arch, num_classes, num_layers, image_shape, dtype, amp, input_layout, conv_layout, batchnorm_layout, pooling_layout, batchnorm_eps, batchnorm_mom, fuse_bn_relu, fuse_bn_add_relu, **kwargs): builder = Builder( dtype = dtype, input_layout = input_layout, conv_layout = conv_layout, bn_layout = batchnorm_layout, pooling_layout = pooling_layout, bn_eps = batchnorm_eps, bn_mom = batchnorm_mom, fuse_bn_relu = fuse_bn_relu, fuse_bn_add_relu = fuse_bn_add_relu, ) if arch.startswith('resnet') or arch.startswith('resnext'): version = '1' if arch in {'resnetv1', 'resnextv1'} else '1.5' net = create_resnet( builder = builder, version = version, resnext = arch.startswith('resnext'), num_layers = num_layers, classes = num_classes, ) elif arch == 'xception': net = Xception(builder, classes=num_classes) else: raise ValueError('Wrong model architecture') net.hybridize(static_shape=True, static_alloc=True) if not amp: net.cast(dtype) if dtype == 'float16': net = fp16_model(net) return net
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/models.py
import logging import os import sys import dllogger import horovod.mxnet as hvd def format_step(step): if isinstance(step, str): return step s = "" if len(step) > 0: s += "Epoch: {} ".format(step[0]) if len(step) > 1: s += "Iteration: {} ".format(step[1]) if len(step) > 2: s += "Validation Iteration: {} ".format(step[2]) if len(step) == 0: s = "Summary:" return s def setup_logging(args): logging.basicConfig(level=logging.DEBUG, format='{asctime}:{levelname}: {message}', style='{') if hvd.rank() == 0: logging_dir = args.logdir if args.logdir is not None else args.workspace dllogger.init(backends=[ dllogger.StdOutBackend(dllogger.Verbosity.DEFAULT, step_format=format_step), dllogger.JSONStreamBackend( dllogger.Verbosity.VERBOSE, os.path.join(logging_dir, args.dllogger_log)), ]) else: dllogger.init([]) dllogger.metadata("val.accuracy", {"unit": None}) dllogger.metadata("val.top_k_accuracy_5", {"unit": None}) dllogger.metadata("train.ips", {"unit": "images/s"}) dllogger.metadata("val.ips", {"unit": "images/s"}) dllogger.metadata("val.latency_50", {"unit": "s"}) dllogger.metadata("val.latency_90", {"unit": "s"}) dllogger.metadata("val.latency_avg", {"unit": "s"})
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/log_utils.py
import numpy as np class CompositeMeter: def __init__(self): self.register = {} def register_metric(self, name, metric): self.register[name] = metric def _validate(self, metric_name): if metric_name not in self.register: raise ValueError('{} is not registered metric'.format(metric_name)) def update_metric(self, metric_name, value): self._validate(metric_name) self.register[metric_name].update(value) def update_dict(self, dict_metric): for name, val in dict_metric.items(): if name in self.register.keys(): self.update_metric(name, val) def get(self, metric_name=None): if metric_name is not None: self._validate(metric_name) return self.register[metric_name].get() res_dict = {name: metric.get() for name, metric in self.register.items()} return res_dict class MaxMeter: def __init__(self): self.max = None self.n = 0 def reset(self): self.max = None self.n = 0 def update(self, val): if self.max is None: self.max = val else: self.max = max(self.max, val) def get(self): return self.max class MinMeter: def __init__(self): self.min = None self.n = 0 def reset(self): self.min = None self.n = 0 def update(self, val): if self.min is None: self.min = val else: self.min = min(self.min, val) def get(self): return self.min class AvgMeter: def __init__(self): self.sum = 0 self.n = 0 def reset(self): self.sum = 0 self.n = 0 def update(self, val): self.sum += val self.n += 1 def get(self): return self.sum / self.n class PercentileMeter: def __init__(self, q): self.data = [] self.q = q def reset(self): self.data = [] def update(self, data): self.data.extend(data) def get(self): return np.percentile(self.data, self.q)
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/global_metrics.py
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from packaging.version import Version from nvidia import dali from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types from nvidia.dali.plugin.mxnet import DALIClassificationIterator import horovod.mxnet as hvd def add_dali_args(parser): group = parser.add_argument_group('DALI data backend', 'entire group applies only to dali data backend') group.add_argument('--dali-separ-val', action='store_true', help='each process will perform independent validation on whole val-set') group.add_argument('--dali-threads', type=int, default=6, help="number of threads" +\ "per GPU for DALI") group.add_argument('--dali-validation-threads', type=int, default=10, help="number of threads" +\ "per GPU for DALI for validation") group.add_argument('--dali-prefetch-queue', type=int, default=5, help="DALI prefetch queue depth") group.add_argument('--dali-nvjpeg-memory-padding', type=int, default=64, help="Memory padding value for nvJPEG (in MB)") group.add_argument('--dali-fuse-decoder', type=int, default=1, help="0 or 1 whether to fuse decoder or not") group.add_argument('--dali-nvjpeg-width-hint', type=int, default=5980, help="Width hint value for nvJPEG (in pixels)") group.add_argument('--dali-nvjpeg-height-hint', type=int, default=6430, help="Height hint value for nvJPEG (in pixels)") group.add_argument('--dali-dont-use-mmap', default=False, action='store_true', help="Use plain I/O instead of MMAP for datasets") return parser class HybridTrainPipe(Pipeline): def __init__(self, args, batch_size, num_threads, device_id, rec_path, idx_path, shard_id, num_shards, crop_shape, nvjpeg_padding, prefetch_queue=3, output_layout=types.NCHW, pad_output=True, dtype='float16', dali_cpu=False, nvjpeg_width_hint=5980, nvjpeg_height_hint=6430, ): super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id, prefetch_queue_depth = prefetch_queue) self.input = ops.MXNetReader(path=[rec_path], index_path=[idx_path], random_shuffle=True, shard_id=shard_id, num_shards=num_shards, dont_use_mmap=args.dali_dont_use_mmap) if dali_cpu: dali_device = "cpu" decoder_device = "cpu" else: dali_device = "gpu" decoder_device = "mixed" dali_kwargs_fallback = {} if Version(dali.__version__) >= Version("1.2.0"): dali_kwargs_fallback = { "preallocate_width_hint": nvjpeg_width_hint, "preallocate_height_hint": nvjpeg_height_hint, } if args.dali_fuse_decoder: self.decode = ops.ImageDecoderRandomCrop(device=decoder_device, output_type=types.RGB, device_memory_padding=nvjpeg_padding, host_memory_padding=nvjpeg_padding, **dali_kwargs_fallback) else: self.decode = ops.ImageDecoder(device=decoder_device, output_type=types.RGB, device_memory_padding=nvjpeg_padding, host_memory_padding=nvjpeg_padding, **dali_kwargs_fallback) if args.dali_fuse_decoder: self.resize = ops.Resize(device=dali_device, resize_x=crop_shape[1], resize_y=crop_shape[0]) else: self.resize = ops.RandomResizedCrop(device=dali_device, size=crop_shape) self.cmnp = ops.CropMirrorNormalize(device="gpu", output_dtype=types.FLOAT16 if dtype == 'float16' else types.FLOAT, output_layout=output_layout, crop=crop_shape, pad_output=pad_output, image_type=types.RGB, mean=args.rgb_mean, std=args.rgb_std) self.coin = ops.CoinFlip(probability=0.5) def define_graph(self): rng = self.coin() self.jpegs, self.labels = self.input(name="Reader") images = self.decode(self.jpegs) images = self.resize(images) output = self.cmnp(images.gpu(), mirror=rng) return [output, self.labels] class HybridValPipe(Pipeline): def __init__(self, args, batch_size, num_threads, device_id, rec_path, idx_path, shard_id, num_shards, crop_shape, nvjpeg_padding, prefetch_queue=3, resize_shp=None, output_layout=types.NCHW, pad_output=True, dtype='float16', dali_cpu=False, nvjpeg_width_hint=5980, nvjpeg_height_hint=6430): super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id, prefetch_queue_depth=prefetch_queue) self.input = ops.MXNetReader(path=[rec_path], index_path=[idx_path], random_shuffle=False, shard_id=shard_id, num_shards=num_shards, dont_use_mmap=args.dali_dont_use_mmap) if dali_cpu: dali_device = "cpu" decoder_device = "cpu" else: dali_device = "gpu" decoder_device = "mixed" dali_kwargs_fallback = {} if Version(dali.__version__) >= Version("1.2.0"): dali_kwargs_fallback = { "preallocate_width_hint": nvjpeg_width_hint, "preallocate_height_hint": nvjpeg_height_hint } self.decode = ops.ImageDecoder(device=decoder_device, output_type=types.RGB, device_memory_padding=nvjpeg_padding, host_memory_padding=nvjpeg_padding, **dali_kwargs_fallback) self.resize = ops.Resize(device=dali_device, resize_shorter=resize_shp) if resize_shp else None self.cmnp = ops.CropMirrorNormalize(device="gpu", output_dtype=types.FLOAT16 if dtype == 'float16' else types.FLOAT, output_layout=output_layout, crop=crop_shape, pad_output=pad_output, image_type=types.RGB, mean=args.rgb_mean, std=args.rgb_std) def define_graph(self): self.jpegs, self.labels = self.input(name="Reader") images = self.decode(self.jpegs) if self.resize: images = self.resize(images) output = self.cmnp(images.gpu()) return [output, self.labels] def get_rec_iter(args, kv=None, dali_cpu=False): gpus = args.gpus num_threads = args.dali_threads num_validation_threads = args.dali_validation_threads pad_output = (args.image_shape[0] == 4) # the input_layout w.r.t. the model is the output_layout of the image pipeline output_layout = types.NHWC if args.input_layout == 'NHWC' else types.NCHW if 'horovod' in args.kv_store: rank = hvd.rank() nWrk = hvd.size() else: rank = kv.rank if kv else 0 nWrk = kv.num_workers if kv else 1 batch_size = args.batch_size // nWrk // len(gpus) trainpipes = [HybridTrainPipe(args = args, batch_size = batch_size, num_threads = num_threads, device_id = gpu_id, rec_path = args.data_train, idx_path = args.data_train_idx, shard_id = gpus.index(gpu_id) + len(gpus)*rank, num_shards = len(gpus)*nWrk, crop_shape = args.image_shape[1:], output_layout = output_layout, dtype = args.dtype, pad_output = pad_output, dali_cpu = dali_cpu, nvjpeg_padding = args.dali_nvjpeg_memory_padding * 1024 * 1024, prefetch_queue = args.dali_prefetch_queue, nvjpeg_width_hint = args.dali_nvjpeg_width_hint, nvjpeg_height_hint = args.dali_nvjpeg_height_hint) for gpu_id in gpus] if args.data_val: valpipes = [HybridValPipe(args = args, batch_size = batch_size, num_threads = num_validation_threads, device_id = gpu_id, rec_path = args.data_val, idx_path = args.data_val_idx, shard_id = 0 if args.dali_separ_val else gpus.index(gpu_id) + len(gpus)*rank, num_shards = 1 if args.dali_separ_val else len(gpus)*nWrk, crop_shape = args.image_shape[1:], resize_shp = args.data_val_resize, output_layout = output_layout, dtype = args.dtype, pad_output = pad_output, dali_cpu = dali_cpu, nvjpeg_padding = args.dali_nvjpeg_memory_padding * 1024 * 1024, prefetch_queue = args.dali_prefetch_queue, nvjpeg_width_hint = args.dali_nvjpeg_width_hint, nvjpeg_height_hint = args.dali_nvjpeg_height_hint) for gpu_id in gpus] if args.data_val else None trainpipes[0].build() if args.data_val: valpipes[0].build() worker_val_examples = valpipes[0].epoch_size("Reader") if not args.dali_separ_val: worker_val_examples = worker_val_examples // nWrk if rank < valpipes[0].epoch_size("Reader") % nWrk: worker_val_examples += 1 if args.num_examples < trainpipes[0].epoch_size("Reader"): warnings.warn("{} training examples will be used, although full training set contains {} examples".format(args.num_examples, trainpipes[0].epoch_size("Reader"))) dali_train_iter = DALIClassificationIterator(trainpipes, args.num_examples // nWrk) if args.data_val: dali_val_iter = DALIClassificationIterator(valpipes, worker_val_examples, fill_last_batch = False) if args.data_val else None else: dali_val_iter = None return dali_train_iter, dali_val_iter
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/dali.py
classes = { 0: 'tench, Tinca tinca', 1: 'goldfish, Carassius auratus', 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias', 3: 'tiger shark, Galeocerdo cuvieri', 4: 'hammerhead, hammerhead shark', 5: 'electric ray, crampfish, numbfish, torpedo', 6: 'stingray', 7: 'cock', 8: 'hen', 9: 'ostrich, Struthio camelus', 10: 'brambling, Fringilla montifringilla', 11: 'goldfinch, Carduelis carduelis', 12: 'house finch, linnet, Carpodacus mexicanus', 13: 'junco, snowbird', 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea', 15: 'robin, American robin, Turdus migratorius', 16: 'bulbul', 17: 'jay', 18: 'magpie', 19: 'chickadee', 20: 'water ouzel, dipper', 21: 'kite', 22: 'bald eagle, American eagle, Haliaeetus leucocephalus', 23: 'vulture', 24: 'great grey owl, great gray owl, Strix nebulosa', 25: 'European fire salamander, Salamandra salamandra', 26: 'common newt, Triturus vulgaris', 27: 'eft', 28: 'spotted salamander, Ambystoma maculatum', 29: 'axolotl, mud puppy, Ambystoma mexicanum', 30: 'bullfrog, Rana catesbeiana', 31: 'tree frog, tree-frog', 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', 33: 'loggerhead, loggerhead turtle, Caretta caretta', 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', 35: 'mud turtle', 36: 'terrapin', 37: 'box turtle, box tortoise', 38: 'banded gecko', 39: 'common iguana, iguana, Iguana iguana', 40: 'American chameleon, anole, Anolis carolinensis', 41: 'whiptail, whiptail lizard', 42: 'agama', 43: 'frilled lizard, Chlamydosaurus kingi', 44: 'alligator lizard', 45: 'Gila monster, Heloderma suspectum', 46: 'green lizard, Lacerta viridis', 47: 'African chameleon, Chamaeleo chamaeleon', 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', 49: 'African crocodile, Nile crocodile, Crocodylus niloticus', 50: 'American alligator, Alligator mississipiensis', 51: 'triceratops', 52: 'thunder snake, worm snake, Carphophis amoenus', 53: 'ringneck snake, ring-necked snake, ring snake', 54: 'hognose snake, puff adder, sand viper', 55: 'green snake, grass snake', 56: 'king snake, kingsnake', 57: 'garter snake, grass snake', 58: 'water snake', 59: 'vine snake', 60: 'night snake, Hypsiglena torquata', 61: 'boa constrictor, Constrictor constrictor', 62: 'rock python, rock snake, Python sebae', 63: 'Indian cobra, Naja naja', 64: 'green mamba', 65: 'sea snake', 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus', 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus', 68: 'sidewinder, horned rattlesnake, Crotalus cerastes', 69: 'trilobite', 70: 'harvestman, daddy longlegs, Phalangium opilio', 71: 'scorpion', 72: 'black and gold garden spider, Argiope aurantia', 73: 'barn spider, Araneus cavaticus', 74: 'garden spider, Aranea diademata', 75: 'black widow, Latrodectus mactans', 76: 'tarantula', 77: 'wolf spider, hunting spider', 78: 'tick', 79: 'centipede', 80: 'black grouse', 81: 'ptarmigan', 82: 'ruffed grouse, partridge, Bonasa umbellus', 83: 'prairie chicken, prairie grouse, prairie fowl', 84: 'peacock', 85: 'quail', 86: 'partridge', 87: 'African grey, African gray, Psittacus erithacus', 88: 'macaw', 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', 90: 'lorikeet', 91: 'coucal', 92: 'bee eater', 93: 'hornbill', 94: 'hummingbird', 95: 'jacamar', 96: 'toucan', 97: 'drake', 98: 'red-breasted merganser, Mergus serrator', 99: 'goose', 100: 'black swan, Cygnus atratus', 101: 'tusker', 102: 'echidna, spiny anteater, anteater', 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', 104: 'wallaby, brush kangaroo', 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', 106: 'wombat', 107: 'jellyfish', 108: 'sea anemone, anemone', 109: 'brain coral', 110: 'flatworm, platyhelminth', 111: 'nematode, nematode worm, roundworm', 112: 'conch', 113: 'snail', 114: 'slug', 115: 'sea slug, nudibranch', 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore', 117: 'chambered nautilus, pearly nautilus, nautilus', 118: 'Dungeness crab, Cancer magister', 119: 'rock crab, Cancer irroratus', 120: 'fiddler crab', 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus', 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', 124: 'crayfish, crawfish, crawdad, crawdaddy', 125: 'hermit crab', 126: 'isopod', 127: 'white stork, Ciconia ciconia', 128: 'black stork, Ciconia nigra', 129: 'spoonbill', 130: 'flamingo', 131: 'little blue heron, Egretta caerulea', 132: 'American egret, great white heron, Egretta albus', 133: 'bittern', 134: 'crane', 135: 'limpkin, Aramus pictus', 136: 'European gallinule, Porphyrio porphyrio', 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana', 138: 'bustard', 139: 'ruddy turnstone, Arenaria interpres', 140: 'red-backed sandpiper, dunlin, Erolia alpina', 141: 'redshank, Tringa totanus', 142: 'dowitcher', 143: 'oystercatcher, oyster catcher', 144: 'pelican', 145: 'king penguin, Aptenodytes patagonica', 146: 'albatross, mollymawk', 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', 149: 'dugong, Dugong dugon', 150: 'sea lion', 151: 'Chihuahua', 152: 'Japanese spaniel', 153: 'Maltese dog, Maltese terrier, Maltese', 154: 'Pekinese, Pekingese, Peke', 155: 'Shih-Tzu', 156: 'Blenheim spaniel', 157: 'papillon', 158: 'toy terrier', 159: 'Rhodesian ridgeback', 160: 'Afghan hound, Afghan', 161: 'basset, basset hound', 162: 'beagle', 163: 'bloodhound, sleuthhound', 164: 'bluetick', 165: 'black-and-tan coonhound', 166: 'Walker hound, Walker foxhound', 167: 'English foxhound', 168: 'redbone', 169: 'borzoi, Russian wolfhound', 170: 'Irish wolfhound', 171: 'Italian greyhound', 172: 'whippet', 173: 'Ibizan hound, Ibizan Podenco', 174: 'Norwegian elkhound, elkhound', 175: 'otterhound, otter hound', 176: 'Saluki, gazelle hound', 177: 'Scottish deerhound, deerhound', 178: 'Weimaraner', 179: 'Staffordshire bullterrier, Staffordshire bull terrier', 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', 181: 'Bedlington terrier', 182: 'Border terrier', 183: 'Kerry blue terrier', 184: 'Irish terrier', 185: 'Norfolk terrier', 186: 'Norwich terrier', 187: 'Yorkshire terrier', 188: 'wire-haired fox terrier', 189: 'Lakeland terrier', 190: 'Sealyham terrier, Sealyham', 191: 'Airedale, Airedale terrier', 192: 'cairn, cairn terrier', 193: 'Australian terrier', 194: 'Dandie Dinmont, Dandie Dinmont terrier', 195: 'Boston bull, Boston terrier', 196: 'miniature schnauzer', 197: 'giant schnauzer', 198: 'standard schnauzer', 199: 'Scotch terrier, Scottish terrier, Scottie', 200: 'Tibetan terrier, chrysanthemum dog', 201: 'silky terrier, Sydney silky', 202: 'soft-coated wheaten terrier', 203: 'West Highland white terrier', 204: 'Lhasa, Lhasa apso', 205: 'flat-coated retriever', 206: 'curly-coated retriever', 207: 'golden retriever', 208: 'Labrador retriever', 209: 'Chesapeake Bay retriever', 210: 'German short-haired pointer', 211: 'vizsla, Hungarian pointer', 212: 'English setter', 213: 'Irish setter, red setter', 214: 'Gordon setter', 215: 'Brittany spaniel', 216: 'clumber, clumber spaniel', 217: 'English springer, English springer spaniel', 218: 'Welsh springer spaniel', 219: 'cocker spaniel, English cocker spaniel, cocker', 220: 'Sussex spaniel', 221: 'Irish water spaniel', 222: 'kuvasz', 223: 'schipperke', 224: 'groenendael', 225: 'malinois', 226: 'briard', 227: 'kelpie', 228: 'komondor', 229: 'Old English sheepdog, bobtail', 230: 'Shetland sheepdog, Shetland sheep dog, Shetland', 231: 'collie', 232: 'Border collie', 233: 'Bouvier des Flandres, Bouviers des Flandres', 234: 'Rottweiler', 235: 'German shepherd, German shepherd dog, German police dog, alsatian', 236: 'Doberman, Doberman pinscher', 237: 'miniature pinscher', 238: 'Greater Swiss Mountain dog', 239: 'Bernese mountain dog', 240: 'Appenzeller', 241: 'EntleBucher', 242: 'boxer', 243: 'bull mastiff', 244: 'Tibetan mastiff', 245: 'French bulldog', 246: 'Great Dane', 247: 'Saint Bernard, St Bernard', 248: 'Eskimo dog, husky', 249: 'malamute, malemute, Alaskan malamute', 250: 'Siberian husky', 251: 'dalmatian, coach dog, carriage dog', 252: 'affenpinscher, monkey pinscher, monkey dog', 253: 'basenji', 254: 'pug, pug-dog', 255: 'Leonberg', 256: 'Newfoundland, Newfoundland dog', 257: 'Great Pyrenees', 258: 'Samoyed, Samoyede', 259: 'Pomeranian', 260: 'chow, chow chow', 261: 'keeshond', 262: 'Brabancon griffon', 263: 'Pembroke, Pembroke Welsh corgi', 264: 'Cardigan, Cardigan Welsh corgi', 265: 'toy poodle', 266: 'miniature poodle', 267: 'standard poodle', 268: 'Mexican hairless', 269: 'timber wolf, grey wolf, gray wolf, Canis lupus', 270: 'white wolf, Arctic wolf, Canis lupus tundrarum', 271: 'red wolf, maned wolf, Canis rufus, Canis niger', 272: 'coyote, prairie wolf, brush wolf, Canis latrans', 273: 'dingo, warrigal, warragal, Canis dingo', 274: 'dhole, Cuon alpinus', 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus', 276: 'hyena, hyaena', 277: 'red fox, Vulpes vulpes', 278: 'kit fox, Vulpes macrotis', 279: 'Arctic fox, white fox, Alopex lagopus', 280: 'grey fox, gray fox, Urocyon cinereoargenteus', 281: 'tabby, tabby cat', 282: 'tiger cat', 283: 'Persian cat', 284: 'Siamese cat, Siamese', 285: 'Egyptian cat', 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', 287: 'lynx, catamount', 288: 'leopard, Panthera pardus', 289: 'snow leopard, ounce, Panthera uncia', 290: 'jaguar, panther, Panthera onca, Felis onca', 291: 'lion, king of beasts, Panthera leo', 292: 'tiger, Panthera tigris', 293: 'cheetah, chetah, Acinonyx jubatus', 294: 'brown bear, bruin, Ursus arctos', 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus', 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', 297: 'sloth bear, Melursus ursinus, Ursus ursinus', 298: 'mongoose', 299: 'meerkat, mierkat', 300: 'tiger beetle', 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', 302: 'ground beetle, carabid beetle', 303: 'long-horned beetle, longicorn, longicorn beetle', 304: 'leaf beetle, chrysomelid', 305: 'dung beetle', 306: 'rhinoceros beetle', 307: 'weevil', 308: 'fly', 309: 'bee', 310: 'ant, emmet, pismire', 311: 'grasshopper, hopper', 312: 'cricket', 313: 'walking stick, walkingstick, stick insect', 314: 'cockroach, roach', 315: 'mantis, mantid', 316: 'cicada, cicala', 317: 'leafhopper', 318: 'lacewing, lacewing fly', 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", 320: 'damselfly', 321: 'admiral', 322: 'ringlet, ringlet butterfly', 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', 324: 'cabbage butterfly', 325: 'sulphur butterfly, sulfur butterfly', 326: 'lycaenid, lycaenid butterfly', 327: 'starfish, sea star', 328: 'sea urchin', 329: 'sea cucumber, holothurian', 330: 'wood rabbit, cottontail, cottontail rabbit', 331: 'hare', 332: 'Angora, Angora rabbit', 333: 'hamster', 334: 'porcupine, hedgehog', 335: 'fox squirrel, eastern fox squirrel, Sciurus niger', 336: 'marmot', 337: 'beaver', 338: 'guinea pig, Cavia cobaya', 339: 'sorrel', 340: 'zebra', 341: 'hog, pig, grunter, squealer, Sus scrofa', 342: 'wild boar, boar, Sus scrofa', 343: 'warthog', 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius', 345: 'ox', 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', 347: 'bison', 348: 'ram, tup', 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis', 350: 'ibex, Capra ibex', 351: 'hartebeest', 352: 'impala, Aepyceros melampus', 353: 'gazelle', 354: 'Arabian camel, dromedary, Camelus dromedarius', 355: 'llama', 356: 'weasel', 357: 'mink', 358: 'polecat, fitch, foulmart, foumart, Mustela putorius', 359: 'black-footed ferret, ferret, Mustela nigripes', 360: 'otter', 361: 'skunk, polecat, wood pussy', 362: 'badger', 363: 'armadillo', 364: 'three-toed sloth, ai, Bradypus tridactylus', 365: 'orangutan, orang, orangutang, Pongo pygmaeus', 366: 'gorilla, Gorilla gorilla', 367: 'chimpanzee, chimp, Pan troglodytes', 368: 'gibbon, Hylobates lar', 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus', 370: 'guenon, guenon monkey', 371: 'patas, hussar monkey, Erythrocebus patas', 372: 'baboon', 373: 'macaque', 374: 'langur', 375: 'colobus, colobus monkey', 376: 'proboscis monkey, Nasalis larvatus', 377: 'marmoset', 378: 'capuchin, ringtail, Cebus capucinus', 379: 'howler monkey, howler', 380: 'titi, titi monkey', 381: 'spider monkey, Ateles geoffroyi', 382: 'squirrel monkey, Saimiri sciureus', 383: 'Madagascar cat, ring-tailed lemur, Lemur catta', 384: 'indri, indris, Indri indri, Indri brevicaudatus', 385: 'Indian elephant, Elephas maximus', 386: 'African elephant, Loxodonta africana', 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', 389: 'barracouta, snoek', 390: 'eel', 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', 392: 'rock beauty, Holocanthus tricolor', 393: 'anemone fish', 394: 'sturgeon', 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus', 396: 'lionfish', 397: 'puffer, pufferfish, blowfish, globefish', 398: 'abacus', 399: 'abaya', 400: "academic gown, academic robe, judge's robe", 401: 'accordion, piano accordion, squeeze box', 402: 'acoustic guitar', 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier', 404: 'airliner', 405: 'airship, dirigible', 406: 'altar', 407: 'ambulance', 408: 'amphibian, amphibious vehicle', 409: 'analog clock', 410: 'apiary, bee house', 411: 'apron', 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', 413: 'assault rifle, assault gun', 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack', 415: 'bakery, bakeshop, bakehouse', 416: 'balance beam, beam', 417: 'balloon', 418: 'ballpoint, ballpoint pen, ballpen, Biro', 419: 'Band Aid', 420: 'banjo', 421: 'bannister, banister, balustrade, balusters, handrail', 422: 'barbell', 423: 'barber chair', 424: 'barbershop', 425: 'barn', 426: 'barometer', 427: 'barrel, cask', 428: 'barrow, garden cart, lawn cart, wheelbarrow', 429: 'baseball', 430: 'basketball', 431: 'bassinet', 432: 'bassoon', 433: 'bathing cap, swimming cap', 434: 'bath towel', 435: 'bathtub, bathing tub, bath, tub', 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon', 437: 'beacon, lighthouse, beacon light, pharos', 438: 'beaker', 439: 'bearskin, busby, shako', 440: 'beer bottle', 441: 'beer glass', 442: 'bell cote, bell cot', 443: 'bib', 444: 'bicycle-built-for-two, tandem bicycle, tandem', 445: 'bikini, two-piece', 446: 'binder, ring-binder', 447: 'binoculars, field glasses, opera glasses', 448: 'birdhouse', 449: 'boathouse', 450: 'bobsled, bobsleigh, bob', 451: 'bolo tie, bolo, bola tie, bola', 452: 'bonnet, poke bonnet', 453: 'bookcase', 454: 'bookshop, bookstore, bookstall', 455: 'bottlecap', 456: 'bow', 457: 'bow tie, bow-tie, bowtie', 458: 'brass, memorial tablet, plaque', 459: 'brassiere, bra, bandeau', 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty', 461: 'breastplate, aegis, egis', 462: 'broom', 463: 'bucket, pail', 464: 'buckle', 465: 'bulletproof vest', 466: 'bullet train, bullet', 467: 'butcher shop, meat market', 468: 'cab, hack, taxi, taxicab', 469: 'caldron, cauldron', 470: 'candle, taper, wax light', 471: 'cannon', 472: 'canoe', 473: 'can opener, tin opener', 474: 'cardigan', 475: 'car mirror', 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig', 477: "carpenter's kit, tool kit", 478: 'carton', 479: 'car wheel', 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', 481: 'cassette', 482: 'cassette player', 483: 'castle', 484: 'catamaran', 485: 'CD player', 486: 'cello, violoncello', 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone', 488: 'chain', 489: 'chainlink fence', 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', 491: 'chain saw, chainsaw', 492: 'chest', 493: 'chiffonier, commode', 494: 'chime, bell, gong', 495: 'china cabinet, china closet', 496: 'Christmas stocking', 497: 'church, church building', 498: 'cinema, movie theater, movie theatre, movie house, picture palace', 499: 'cleaver, meat cleaver, chopper', 500: 'cliff dwelling', 501: 'cloak', 502: 'clog, geta, patten, sabot', 503: 'cocktail shaker', 504: 'coffee mug', 505: 'coffeepot', 506: 'coil, spiral, volute, whorl, helix', 507: 'combination lock', 508: 'computer keyboard, keypad', 509: 'confectionery, confectionary, candy store', 510: 'container ship, containership, container vessel', 511: 'convertible', 512: 'corkscrew, bottle screw', 513: 'cornet, horn, trumpet, trump', 514: 'cowboy boot', 515: 'cowboy hat, ten-gallon hat', 516: 'cradle', 517: 'crane', 518: 'crash helmet', 519: 'crate', 520: 'crib, cot', 521: 'Crock Pot', 522: 'croquet ball', 523: 'crutch', 524: 'cuirass', 525: 'dam, dike, dyke', 526: 'desk', 527: 'desktop computer', 528: 'dial telephone, dial phone', 529: 'diaper, nappy, napkin', 530: 'digital clock', 531: 'digital watch', 532: 'dining table, board', 533: 'dishrag, dishcloth', 534: 'dishwasher, dish washer, dishwashing machine', 535: 'disk brake, disc brake', 536: 'dock, dockage, docking facility', 537: 'dogsled, dog sled, dog sleigh', 538: 'dome', 539: 'doormat, welcome mat', 540: 'drilling platform, offshore rig', 541: 'drum, membranophone, tympan', 542: 'drumstick', 543: 'dumbbell', 544: 'Dutch oven', 545: 'electric fan, blower', 546: 'electric guitar', 547: 'electric locomotive', 548: 'entertainment center', 549: 'envelope', 550: 'espresso maker', 551: 'face powder', 552: 'feather boa, boa', 553: 'file, file cabinet, filing cabinet', 554: 'fireboat', 555: 'fire engine, fire truck', 556: 'fire screen, fireguard', 557: 'flagpole, flagstaff', 558: 'flute, transverse flute', 559: 'folding chair', 560: 'football helmet', 561: 'forklift', 562: 'fountain', 563: 'fountain pen', 564: 'four-poster', 565: 'freight car', 566: 'French horn, horn', 567: 'frying pan, frypan, skillet', 568: 'fur coat', 569: 'garbage truck, dustcart', 570: 'gasmask, respirator, gas helmet', 571: 'gas pump, gasoline pump, petrol pump, island dispenser', 572: 'goblet', 573: 'go-kart', 574: 'golf ball', 575: 'golfcart, golf cart', 576: 'gondola', 577: 'gong, tam-tam', 578: 'gown', 579: 'grand piano, grand', 580: 'greenhouse, nursery, glasshouse', 581: 'grille, radiator grille', 582: 'grocery store, grocery, food market, market', 583: 'guillotine', 584: 'hair slide', 585: 'hair spray', 586: 'half track', 587: 'hammer', 588: 'hamper', 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier', 590: 'hand-held computer, hand-held microcomputer', 591: 'handkerchief, hankie, hanky, hankey', 592: 'hard disc, hard disk, fixed disk', 593: 'harmonica, mouth organ, harp, mouth harp', 594: 'harp', 595: 'harvester, reaper', 596: 'hatchet', 597: 'holster', 598: 'home theater, home theatre', 599: 'honeycomb', 600: 'hook, claw', 601: 'hoopskirt, crinoline', 602: 'horizontal bar, high bar', 603: 'horse cart, horse-cart', 604: 'hourglass', 605: 'iPod', 606: 'iron, smoothing iron', 607: "jack-o'-lantern", 608: 'jean, blue jean, denim', 609: 'jeep, landrover', 610: 'jersey, T-shirt, tee shirt', 611: 'jigsaw puzzle', 612: 'jinrikisha, ricksha, rickshaw', 613: 'joystick', 614: 'kimono', 615: 'knee pad', 616: 'knot', 617: 'lab coat, laboratory coat', 618: 'ladle', 619: 'lampshade, lamp shade', 620: 'laptop, laptop computer', 621: 'lawn mower, mower', 622: 'lens cap, lens cover', 623: 'letter opener, paper knife, paperknife', 624: 'library', 625: 'lifeboat', 626: 'lighter, light, igniter, ignitor', 627: 'limousine, limo', 628: 'liner, ocean liner', 629: 'lipstick, lip rouge', 630: 'Loafer', 631: 'lotion', 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', 633: "loupe, jeweler's loupe", 634: 'lumbermill, sawmill', 635: 'magnetic compass', 636: 'mailbag, postbag', 637: 'mailbox, letter box', 638: 'maillot', 639: 'maillot, tank suit', 640: 'manhole cover', 641: 'maraca', 642: 'marimba, xylophone', 643: 'mask', 644: 'matchstick', 645: 'maypole', 646: 'maze, labyrinth', 647: 'measuring cup', 648: 'medicine chest, medicine cabinet', 649: 'megalith, megalithic structure', 650: 'microphone, mike', 651: 'microwave, microwave oven', 652: 'military uniform', 653: 'milk can', 654: 'minibus', 655: 'miniskirt, mini', 656: 'minivan', 657: 'missile', 658: 'mitten', 659: 'mixing bowl', 660: 'mobile home, manufactured home', 661: 'Model T', 662: 'modem', 663: 'monastery', 664: 'monitor', 665: 'moped', 666: 'mortar', 667: 'mortarboard', 668: 'mosque', 669: 'mosquito net', 670: 'motor scooter, scooter', 671: 'mountain bike, all-terrain bike, off-roader', 672: 'mountain tent', 673: 'mouse, computer mouse', 674: 'mousetrap', 675: 'moving van', 676: 'muzzle', 677: 'nail', 678: 'neck brace', 679: 'necklace', 680: 'nipple', 681: 'notebook, notebook computer', 682: 'obelisk', 683: 'oboe, hautboy, hautbois', 684: 'ocarina, sweet potato', 685: 'odometer, hodometer, mileometer, milometer', 686: 'oil filter', 687: 'organ, pipe organ', 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO', 689: 'overskirt', 690: 'oxcart', 691: 'oxygen mask', 692: 'packet', 693: 'paddle, boat paddle', 694: 'paddlewheel, paddle wheel', 695: 'padlock', 696: 'paintbrush', 697: "pajama, pyjama, pj's, jammies", 698: 'palace', 699: 'panpipe, pandean pipe, syrinx', 700: 'paper towel', 701: 'parachute, chute', 702: 'parallel bars, bars', 703: 'park bench', 704: 'parking meter', 705: 'passenger car, coach, carriage', 706: 'patio, terrace', 707: 'pay-phone, pay-station', 708: 'pedestal, plinth, footstall', 709: 'pencil box, pencil case', 710: 'pencil sharpener', 711: 'perfume, essence', 712: 'Petri dish', 713: 'photocopier', 714: 'pick, plectrum, plectron', 715: 'pickelhaube', 716: 'picket fence, paling', 717: 'pickup, pickup truck', 718: 'pier', 719: 'piggy bank, penny bank', 720: 'pill bottle', 721: 'pillow', 722: 'ping-pong ball', 723: 'pinwheel', 724: 'pirate, pirate ship', 725: 'pitcher, ewer', 726: "plane, carpenter's plane, woodworking plane", 727: 'planetarium', 728: 'plastic bag', 729: 'plate rack', 730: 'plow, plough', 731: "plunger, plumber's helper", 732: 'Polaroid camera, Polaroid Land camera', 733: 'pole', 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', 735: 'poncho', 736: 'pool table, billiard table, snooker table', 737: 'pop bottle, soda bottle', 738: 'pot, flowerpot', 739: "potter's wheel", 740: 'power drill', 741: 'prayer rug, prayer mat', 742: 'printer', 743: 'prison, prison house', 744: 'projectile, missile', 745: 'projector', 746: 'puck, hockey puck', 747: 'punching bag, punch bag, punching ball, punchball', 748: 'purse', 749: 'quill, quill pen', 750: 'quilt, comforter, comfort, puff', 751: 'racer, race car, racing car', 752: 'racket, racquet', 753: 'radiator', 754: 'radio, wireless', 755: 'radio telescope, radio reflector', 756: 'rain barrel', 757: 'recreational vehicle, RV, R.V.', 758: 'reel', 759: 'reflex camera', 760: 'refrigerator, icebox', 761: 'remote control, remote', 762: 'restaurant, eating house, eating place, eatery', 763: 'revolver, six-gun, six-shooter', 764: 'rifle', 765: 'rocking chair, rocker', 766: 'rotisserie', 767: 'rubber eraser, rubber, pencil eraser', 768: 'rugby ball', 769: 'rule, ruler', 770: 'running shoe', 771: 'safe', 772: 'safety pin', 773: 'saltshaker, salt shaker', 774: 'sandal', 775: 'sarong', 776: 'sax, saxophone', 777: 'scabbard', 778: 'scale, weighing machine', 779: 'school bus', 780: 'schooner', 781: 'scoreboard', 782: 'screen, CRT screen', 783: 'screw', 784: 'screwdriver', 785: 'seat belt, seatbelt', 786: 'sewing machine', 787: 'shield, buckler', 788: 'shoe shop, shoe-shop, shoe store', 789: 'shoji', 790: 'shopping basket', 791: 'shopping cart', 792: 'shovel', 793: 'shower cap', 794: 'shower curtain', 795: 'ski', 796: 'ski mask', 797: 'sleeping bag', 798: 'slide rule, slipstick', 799: 'sliding door', 800: 'slot, one-armed bandit', 801: 'snorkel', 802: 'snowmobile', 803: 'snowplow, snowplough', 804: 'soap dispenser', 805: 'soccer ball', 806: 'sock', 807: 'solar dish, solar collector, solar furnace', 808: 'sombrero', 809: 'soup bowl', 810: 'space bar', 811: 'space heater', 812: 'space shuttle', 813: 'spatula', 814: 'speedboat', 815: "spider web, spider's web", 816: 'spindle', 817: 'sports car, sport car', 818: 'spotlight, spot', 819: 'stage', 820: 'steam locomotive', 821: 'steel arch bridge', 822: 'steel drum', 823: 'stethoscope', 824: 'stole', 825: 'stone wall', 826: 'stopwatch, stop watch', 827: 'stove', 828: 'strainer', 829: 'streetcar, tram, tramcar, trolley, trolley car', 830: 'stretcher', 831: 'studio couch, day bed', 832: 'stupa, tope', 833: 'submarine, pigboat, sub, U-boat', 834: 'suit, suit of clothes', 835: 'sundial', 836: 'sunglass', 837: 'sunglasses, dark glasses, shades', 838: 'sunscreen, sunblock, sun blocker', 839: 'suspension bridge', 840: 'swab, swob, mop', 841: 'sweatshirt', 842: 'swimming trunks, bathing trunks', 843: 'swing', 844: 'switch, electric switch, electrical switch', 845: 'syringe', 846: 'table lamp', 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle', 848: 'tape player', 849: 'teapot', 850: 'teddy, teddy bear', 851: 'television, television system', 852: 'tennis ball', 853: 'thatch, thatched roof', 854: 'theater curtain, theatre curtain', 855: 'thimble', 856: 'thresher, thrasher, threshing machine', 857: 'throne', 858: 'tile roof', 859: 'toaster', 860: 'tobacco shop, tobacconist shop, tobacconist', 861: 'toilet seat', 862: 'torch', 863: 'totem pole', 864: 'tow truck, tow car, wrecker', 865: 'toyshop', 866: 'tractor', 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', 868: 'tray', 869: 'trench coat', 870: 'tricycle, trike, velocipede', 871: 'trimaran', 872: 'tripod', 873: 'triumphal arch', 874: 'trolleybus, trolley coach, trackless trolley', 875: 'trombone', 876: 'tub, vat', 877: 'turnstile', 878: 'typewriter keyboard', 879: 'umbrella', 880: 'unicycle, monocycle', 881: 'upright, upright piano', 882: 'vacuum, vacuum cleaner', 883: 'vase', 884: 'vault', 885: 'velvet', 886: 'vending machine', 887: 'vestment', 888: 'viaduct', 889: 'violin, fiddle', 890: 'volleyball', 891: 'waffle iron', 892: 'wall clock', 893: 'wallet, billfold, notecase, pocketbook', 894: 'wardrobe, closet, press', 895: 'warplane, military plane', 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin', 897: 'washer, automatic washer, washing machine', 898: 'water bottle', 899: 'water jug', 900: 'water tower', 901: 'whiskey jug', 902: 'whistle', 903: 'wig', 904: 'window screen', 905: 'window shade', 906: 'Windsor tie', 907: 'wine bottle', 908: 'wing', 909: 'wok', 910: 'wooden spoon', 911: 'wool, woolen, woollen', 912: 'worm fence, snake fence, snake-rail fence, Virginia fence', 913: 'wreck', 914: 'yawl', 915: 'yurt', 916: 'web site, website, internet site, site', 917: 'comic book', 918: 'crossword puzzle, crossword', 919: 'street sign', 920: 'traffic light, traffic signal, stoplight', 921: 'book jacket, dust cover, dust jacket, dust wrapper', 922: 'menu', 923: 'plate', 924: 'guacamole', 925: 'consomme', 926: 'hot pot, hotpot', 927: 'trifle', 928: 'ice cream, icecream', 929: 'ice lolly, lolly, lollipop, popsicle', 930: 'French loaf', 931: 'bagel, beigel', 932: 'pretzel', 933: 'cheeseburger', 934: 'hotdog, hot dog, red hot', 935: 'mashed potato', 936: 'head cabbage', 937: 'broccoli', 938: 'cauliflower', 939: 'zucchini, courgette', 940: 'spaghetti squash', 941: 'acorn squash', 942: 'butternut squash', 943: 'cucumber, cuke', 944: 'artichoke, globe artichoke', 945: 'bell pepper', 946: 'cardoon', 947: 'mushroom', 948: 'Granny Smith', 949: 'strawberry', 950: 'orange', 951: 'lemon', 952: 'fig', 953: 'pineapple, ananas', 954: 'banana', 955: 'jackfruit, jak, jack', 956: 'custard apple', 957: 'pomegranate', 958: 'hay', 959: 'carbonara', 960: 'chocolate sauce, chocolate syrup', 961: 'dough', 962: 'meat loaf, meatloaf', 963: 'pizza, pizza pie', 964: 'potpie', 965: 'burrito', 966: 'red wine', 967: 'espresso', 968: 'cup', 969: 'eggnog', 970: 'alp', 971: 'bubble', 972: 'cliff, drop, drop-off', 973: 'coral reef', 974: 'geyser', 975: 'lakeside, lakeshore', 976: 'promontory, headland, head, foreland', 977: 'sandbar, sand bar', 978: 'seashore, coast, seacoast, sea-coast', 979: 'valley, vale', 980: 'volcano', 981: 'ballplayer, baseball player', 982: 'groom, bridegroom', 983: 'scuba diver', 984: 'rapeseed', 985: 'daisy', 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", 987: 'corn', 988: 'acorn', 989: 'hip, rose hip, rosehip', 990: 'buckeye, horse chestnut, conker', 991: 'coral fungus', 992: 'agaric', 993: 'gyromitra', 994: 'stinkhorn, carrion fungus', 995: 'earthstar', 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', 997: 'bolete', 998: 'ear, spike, capitulum', 999: 'toilet tissue, toilet paper, bathroom tissue' }
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/imagenet_classes.py
# Copyright 2017-2018 The Apache Software Foundation # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ----------------------------------------------------------------------- # # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import dllogger import horovod.mxnet as hvd import dali import data import fit import models from log_utils import setup_logging def parse_args(): parser = argparse.ArgumentParser(description="Train classification models on ImageNet", formatter_class=argparse.ArgumentDefaultsHelpFormatter) models.add_model_args(parser) fit.add_fit_args(parser) data.add_data_args(parser) dali.add_dali_args(parser) data.add_data_aug_args(parser) return parser.parse_args() if __name__ == '__main__': args = parse_args() if 'horovod' in args.kv_store: hvd.init() setup_logging(args) dllogger.log(step='PARAMETER', data=vars(args)) model = models.get_model(**vars(args)) data_loader = data.get_data_loader(args) fit.fit(args, model, data_loader)
DeepLearningExamples-master
MxNet/Classification/RN50v1.5/train.py