python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import horovod.tensorflow as hvd import tensorflow as tf class Dice(tf.keras.metrics.Metric): def __init__(self, n_class, **kwargs): super().__init__(**kwargs) self.n_class = n_class self.steps = self.add_weight(name="steps", initializer="zeros", aggregation=tf.VariableAggregation.SUM) self.dice = self.add_weight( name="dice", shape=(n_class,), initializer="zeros", aggregation=tf.VariableAggregation.SUM, ) def update_state(self, y_pred, y_true): self.steps.assign_add(1) self.dice.assign_add(self.compute_stats(y_pred, y_true)) def result(self): dice_sum = hvd.allreduce(self.dice, op=hvd.mpi_ops.Sum) steps_sum = hvd.allreduce(self.steps, op=hvd.mpi_ops.Sum) return dice_sum / steps_sum def compute_stats(self, y_pred, y_true): scores = tf.TensorArray(tf.float32, size=self.n_class) pred_classes = tf.argmax(y_pred, axis=-1) if tf.rank(pred_classes) < tf.rank(y_true) and y_true.shape[-1] == 1: y_true = tf.squeeze(y_true, axis=[-1]) for i in range(0, self.n_class): if tf.math.count_nonzero(y_true == i) == 0: scores = scores.write(i, 1 if tf.math.count_nonzero(pred_classes == i) == 0 else 0) continue true_pos, false_neg, false_pos = self.get_stats(pred_classes, y_true, i) denom = tf.cast(2 * true_pos + false_pos + false_neg, dtype=tf.float32) score_cls = tf.cast(2 * true_pos, tf.float32) / denom scores = scores.write(i, score_cls) return scores.stack() @staticmethod def get_stats(preds, target, class_idx): true_pos = tf.math.count_nonzero(tf.logical_and(preds == class_idx, target == class_idx)) false_neg = tf.math.count_nonzero(tf.logical_and(preds != class_idx, target == class_idx)) false_pos = tf.math.count_nonzero(tf.logical_and(preds == class_idx, target != class_idx)) return true_pos, false_neg, false_pos class Max(tf.keras.metrics.Metric): def __init__(self, name="max", dtype=tf.float32): super().__init__(name=name) self.value = self.add_weight( name=f"{name}_weight", shape=(), initializer="zeros", dtype=dtype, ) def update_state(self, new_value): self.value.assign(tf.math.maximum(self.value, new_value)) def result(self): return self.value class MetricAggregator: def __init__(self, name, dtype=tf.float32, improvement_metric="max"): self.name = name self.improvement_metric = improvement_metric self.metrics = { "value": tf.Variable(0, dtype=dtype), "max": Max(name=f"{name}_max", dtype=dtype), } def logger_metrics(self): return { f"{self.name}_value": float(self.metrics["value"]), f"{self.name}_max": float(self.metrics["max"].result()), } def checkpoint_metrics(self): return {f"{self.name}_{k}": v for k, v in self.metrics.items()} def update(self, value): old_metric_value = self.metrics[self.improvement_metric].result() self.metrics["value"] = value self.metrics["max"].update_state(value) new_metric_value = self.metrics[self.improvement_metric].result() return old_metric_value < new_metric_value def make_class_logger_metrics(scores, name="val_dice"): metrics = {} for i, v in enumerate(scores): metrics[f"L{i}"] = float(v) return metrics if __name__ == "__main__": n_class = 3 pred = tf.one_hot([0, 1, 1, 1, 2], depth=n_class, dtype=tf.float32) target = tf.constant([0, 1, 1, 2, 2]) metric = Dice(n_class) metric.update_state(pred, target) # metric.result() == [1. 0.8 0.66] # Check Dice computing with zero denominator pred = tf.one_hot([0, 2], depth=n_class, dtype=tf.float32) target = tf.constant([0, 2]) metric.update_state(pred, target) # metric.result() == [1. 0.9 0.83]
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/metrics.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import horovod.tensorflow as hvd import numpy as np import tensorflow as tf import tensorflow_addons as tfa from tensorflow.python.compiler.tensorrt import trt_convert as trt from runtime.checkpoint import CheckpointManager from runtime.losses import DiceCELoss, WeightDecay from runtime.metrics import Dice, MetricAggregator, make_class_logger_metrics from runtime.utils import is_main_process, make_empty_dir, progress_bar def update_best_metrics(old, new, start_time, iteration, watch_metric=None): did_change = False for metric, value in new.items(): if metric not in old or old[metric]["value"] < value: old[metric] = {"value": value, "timestamp": time.time() - start_time, "iter": int(iteration)} if watch_metric == metric: did_change = True return did_change def get_scheduler(args, total_steps): scheduler = { "poly": tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=args.learning_rate, end_learning_rate=args.end_learning_rate, decay_steps=total_steps, power=0.9, ), "cosine": tf.keras.optimizers.schedules.CosineDecay( initial_learning_rate=args.learning_rate, decay_steps=total_steps ), "cosine_annealing": tf.keras.optimizers.schedules.CosineDecayRestarts( initial_learning_rate=args.learning_rate, first_decay_steps=args.cosine_annealing_first_cycle_steps, alpha=0.1, ), "none": args.learning_rate, }[args.scheduler.lower()] return scheduler def get_optimizer(args, scheduler): optimizer = { "sgd": tf.keras.optimizers.SGD(learning_rate=scheduler, momentum=args.momentum), "adam": tf.keras.optimizers.Adam(learning_rate=scheduler), "radam": tfa.optimizers.RectifiedAdam(learning_rate=scheduler), }[args.optimizer.lower()] if args.lookahead: optimizer = tfa.optimizers.Lookahead(optimizer) if args.amp: optimizer = tf.keras.mixed_precision.LossScaleOptimizer(optimizer, dynamic=True) return optimizer def get_epoch_size(args, batch_size, dataset_size): if args.steps_per_epoch: return args.steps_per_epoch div = args.gpus * (batch_size if args.dim == 3 else args.nvol) return (dataset_size + div - 1) // div def process_performance_stats(deltas, batch_size, mode): deltas_ms = 1000 * np.array(deltas) throughput_imgps = 1000.0 * batch_size / deltas_ms.mean() stats = {f"throughput_{mode}": throughput_imgps, f"latency_{mode}_mean": deltas_ms.mean()} for level in [90, 95, 99]: stats.update({f"latency_{mode}_{level}": np.percentile(deltas_ms, level)}) return stats def benchmark(args, step_fn, data, steps, warmup_steps, logger, mode="train"): assert steps > warmup_steps, "Number of benchmarked steps has to be greater then number of warmup steps" deltas = [] wrapped_data = progress_bar( enumerate(data), quiet=args.quiet, desc=f"Benchmark ({mode})", unit="step", postfix={"phase": "warmup"}, total=steps, ) start = time.perf_counter() for step, (images, labels) in wrapped_data: output_map = step_fn(images, labels, warmup_batch=step == 0) if step >= warmup_steps: deltas.append(time.perf_counter() - start) if step == warmup_steps and is_main_process() and not args.quiet: wrapped_data.set_postfix(phase="benchmark") start = time.perf_counter() if step >= steps: break stats = process_performance_stats(deltas, args.gpus * args.batch_size, mode=mode) logger.log_metrics(stats) def train(args, model, dataset, logger): train_data = dataset.train_dataset() epochs = args.epochs batch_size = args.batch_size if args.dim == 3 else args.nvol steps_per_epoch = get_epoch_size(args, batch_size, dataset.train_size()) total_steps = epochs * steps_per_epoch scheduler = get_scheduler(args, total_steps) optimizer = get_optimizer(args, scheduler) loss_fn = DiceCELoss( y_one_hot=True, reduce_batch=args.reduce_batch, include_background=args.include_background, ) wdecay = WeightDecay(factor=args.weight_decay) tstep = tf.Variable(0) @tf.function def train_step_fn(features, labels, warmup_batch=False): features, labels = model.adjust_batch(features, labels) with tf.GradientTape() as tape: output_map = model(features) dice_loss = model.compute_loss(loss_fn, labels, output_map) loss = dice_loss + wdecay(model) if args.amp: loss = optimizer.get_scaled_loss(loss) tape = hvd.DistributedGradientTape(tape) gradients = tape.gradient(loss, model.trainable_variables) if args.amp: gradients = optimizer.get_unscaled_gradients(gradients) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) # Note: broadcast should be done after the first gradient step to ensure optimizer initialization. if warmup_batch: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(optimizer.variables(), root_rank=0) return dice_loss dice_metrics = MetricAggregator(name="dice") checkpoint = CheckpointManager( args.ckpt_dir, strategy=args.ckpt_strategy, resume_training=args.resume_training, variables={"model": model, "optimizer": optimizer, "step": tstep, **dice_metrics.checkpoint_metrics()}, ) if args.benchmark: benchmark(args, train_step_fn, train_data, args.bench_steps, args.warmup_steps, logger) else: wrapped_data = progress_bar( train_data, quiet=args.quiet, desc="Train", postfix={"epoch": 1}, unit="step", total=total_steps - int(tstep), ) start_time = time.time() total_train_loss, dice_score = 0.0, 0.0 for images, labels in wrapped_data: if tstep >= total_steps: break tstep.assign_add(1) loss = train_step_fn(images, labels, warmup_batch=tstep == 1) total_train_loss += float(loss) lr = scheduler(tstep) if callable(scheduler) else scheduler metrics = {"loss": float(loss), "learning_rate": float(lr)} if tstep % steps_per_epoch == 0: epoch = int(tstep // steps_per_epoch) if epoch > args.skip_eval: dice = evaluate(args, model, dataset, logger) dice_score = tf.reduce_mean(dice[1:]) did_improve = dice_metrics.update(dice_score) metrics = dice_metrics.logger_metrics() metrics.update(make_class_logger_metrics(dice)) if did_improve: metrics["time_to_train"] = time.time() - start_time logger.log_metrics(metrics=metrics, step=int(tstep)) checkpoint.update(float(dice_score)) logger.flush() else: checkpoint.update(None) if is_main_process() and not args.quiet: wrapped_data.set_postfix(epoch=epoch + 1) elif tstep % steps_per_epoch == 0: total_train_loss = 0.0 metrics = { "train_loss": round(total_train_loss / steps_per_epoch, 5), "val_loss": round(1 - float(dice_score), 5), "dice": round(float(dice_metrics.metrics["max"].result()), 5), } logger.log_metrics(metrics=metrics) logger.flush() def evaluate(args, model, dataset, logger): dice = Dice(n_class=model.n_class) data_size = dataset.val_size() wrapped_data = progress_bar( enumerate(dataset.val_dataset()), quiet=args.quiet, desc="Validation", unit="step", total=data_size, ) for i, (features, labels) in wrapped_data: if args.dim == 2: features, labels = features[0], labels[0] output_map = model.inference(features) dice.update_state(output_map, labels) if i + 1 == data_size: break result = dice.result() if args.exec_mode == "evaluate": metrics = { "eval_dice": float(tf.reduce_mean(result)), "eval_dice_nobg": float(tf.reduce_mean(result[1:])), } logger.log_metrics(metrics) return result def predict(args, model, dataset, logger): if args.benchmark: @tf.function def predict_bench_fn(features, labels, warmup_batch): if args.dim == 2: features = features[0] output_map = model(features, training=False) return output_map benchmark( args, predict_bench_fn, dataset.test_dataset(), args.bench_steps, args.warmup_steps, logger, mode="predict", ) else: if args.save_preds: prec = "amp" if args.amp else "fp32" dir_name = f"preds_task_{args.task}_dim_{args.dim}_fold_{args.fold}_{prec}" if args.tta: dir_name += "_tta" save_dir = args.results / dir_name make_empty_dir(save_dir) data_size = dataset.test_size() wrapped_data = progress_bar( enumerate(dataset.test_dataset()), quiet=args.quiet, desc="Predict", unit="step", total=data_size, ) for i, (images, meta) in wrapped_data: features, _ = model.adjust_batch(images, None) pred = model.inference(features, training=False) if args.save_preds: model.save_pred(pred, meta, idx=i, data_module=dataset, save_dir=save_dir) if i + 1 == data_size: break def export_model(args, model): checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(tf.train.latest_checkpoint(args.ckpt_dir)).expect_partial() input_shape = [1, *model.patch_size, model.n_class] dummy_input = tf.constant(tf.zeros(input_shape, dtype=tf.float32)) _ = model(dummy_input, training=False) prec = "amp" if args.amp else "fp32" path = str(args.results / f"saved_model_task_{args.task}_dim_{args.dim}_{prec}") tf.keras.models.save_model(model, str(path)) trt_prec = trt.TrtPrecisionMode.FP32 if prec == "fp32" else trt.TrtPrecisionMode.FP16 converter = trt.TrtGraphConverterV2( input_saved_model_dir=path, conversion_params=trt.TrtConversionParams(precision_mode=trt_prec), ) converter.convert() trt_path = str(args.results / f"trt_saved_model_task_{args.task}_dim_{args.dim}_{prec}") converter.save(trt_path)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/run.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from time import time import tensorflow as tf from models.nn_unet import NNUnet from runtime.utils import rank_zero_only class CheckpointManager: def __init__(self, ckpt_dir, strategy, variables, step_counter=None, resume_training=False): self.dir = Path(ckpt_dir) self.strategy = strategy self.vars = variables self.ckpt = tf.train.Checkpoint(**variables) self.creation_time = time() self.latest_save_time = time() if "last" in strategy: self.last_manager = tf.train.CheckpointManager( self.ckpt, self.dir, max_to_keep=1, checkpoint_name="ckpt-last", step_counter=step_counter ) if resume_training: self.ckpt.restore(self.last_manager.latest_checkpoint) if "best" in strategy: self.best_manager = tf.train.CheckpointManager( self.ckpt, self.dir / "best", max_to_keep=1, checkpoint_name="ckpt-best", step_counter=step_counter ) self.best_metric = None @rank_zero_only def update(self, metric_value=None): if "last" in self.strategy: self.last_manager.save() if ( metric_value is not None and "best" in self.strategy and (self.best_metric is None or self.best_metric < metric_value) ): self.latest_save_time = time() if self.best_metric is not None: print( f"({int(self.latest_save_time - self.creation_time)}s)", f"New best metric value achieved ({float(metric_value):.4f} > {float(self.best_metric):.4f}).", ) print("Saving new checkpoint.") self.best_metric = metric_value self.best_manager.save() def load_best(self): self.ckpt.restore(self.best_manager.latest_checkpoint) return self.best_metric, int(self.latest_save_time - self.creation_time) def load_model(args): if args.saved_model_dir is not None: print(f"Loading SavedModel from {str(args.saved_model_dir)}") model = tf.saved_model.load(str(args.saved_model_dir)) model = NNUnet(args, loaded_model=model) else: if not (Path(args.ckpt_dir).is_dir() and (Path(args.ckpt_dir) / "checkpoint").exists()): raise ValueError(f"Could not find checkpoint directory {args.ckpt_dir}") model = NNUnet(args) checkpoint = tf.train.Checkpoint(model=model) checkpoint.restore(tf.train.latest_checkpoint(args.ckpt_dir)).expect_partial() return model
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/checkpoint.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import os import pickle import shutil import sys from functools import wraps from pathlib import Path import horovod.tensorflow as hvd import numpy as np import tensorflow as tf from tqdm import tqdm def hvd_init(): hvd.init() gpus = tf.config.experimental.list_physical_devices("GPU") for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], "GPU") def set_tf_flags(args): os.environ["CUDA_CACHE_DISABLE"] = "0" os.environ["HOROVOD_GPU_ALLREDUCE"] = "NCCL" os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" os.environ["TF_GPU_THREAD_MODE"] = "gpu_private" os.environ["TF_GPU_THREAD_COUNT"] = str(hvd.size()) os.environ["TF_USE_CUDNN_BATCHNORM_SPATIAL_PERSISTENT"] = "1" os.environ["TF_ADJUST_HUE_FUSED"] = "1" os.environ["TF_ADJUST_SATURATION_FUSED"] = "1" os.environ["TF_ENABLE_WINOGRAD_NONFUSED"] = "1" os.environ["TF_SYNC_ON_FINISH"] = "0" os.environ["TF_AUTOTUNE_THRESHOLD"] = "2" os.environ["TF_ENABLE_AUTO_MIXED_PRECISION"] = "0" os.environ["TF_ENABLE_LAYOUT_NHWC"] = "1" os.environ["TF_CPP_VMODULE"] = "4" if args.xla: os.environ["TF_XLA_ENABLE_GPU_GRAPH_CAPTURE"] = "1" if args.amp: os.environ["XLA_FLAGS"] = "--xla_gpu_force_conv_nhwc" tf.config.optimizer.set_jit(True) if hvd.size() > 1: tf.config.threading.set_inter_op_parallelism_threads(max(2, (multiprocessing.cpu_count() // hvd.size()) - 2)) else: tf.config.threading.set_inter_op_parallelism_threads(8) if args.amp: tf.keras.mixed_precision.set_global_policy("mixed_float16") def is_main_process(): return hvd.rank() == 0 def progress_bar(iterable, *args, quiet, **kwargs): if quiet or not is_main_process(): return iterable return tqdm(iterable, *args, **kwargs) def rank_zero_only(fn): @wraps(fn) def wrapped_fn(*args, **kwargs): if is_main_process(): return fn(*args, **kwargs) return wrapped_fn def set_seed(seed): np.random.seed(seed) tf.random.set_seed(seed) def get_task_code(args): return f"{args.task}_{args.dim}d_tf2" def get_config_file(args): task_code = get_task_code(args) path = os.path.join(args.data, "config.pkl") if not os.path.exists(path): path = os.path.join(args.data, task_code, "config.pkl") return pickle.load(open(path, "rb")) def get_tta_flips(dim): if dim == 2: return [[1], [2], [1, 2]] return [[1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]] def make_empty_dir(path, force=False): path = Path(path) if path.exists(): if not path.is_dir(): print(f"Output path {path} exists and is not a directory." "Please remove it and try again.") sys.exit(1) else: if not force: decision = input(f"Output path {path} exists. Continue and replace it? [Y/n]: ") if decision.strip().lower() not in ["", "y"]: sys.exit(1) shutil.rmtree(path, ignore_errors=True) path.mkdir(parents=True)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/utils.py
import argparse from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser from pathlib import Path def positive_int(value): ivalue = int(value) if ivalue <= 0: raise argparse.ArgumentTypeError(f"Argparse error. Expected a positive integer but got {value}") return ivalue def non_negative_int(value): ivalue = int(value) if ivalue < 0: raise argparse.ArgumentTypeError(f"Argparse error. Expected a non-negative integer but got {value}") return ivalue def float_0_1(value): fvalue = float(value) if not (0 <= fvalue <= 1): raise argparse.ArgumentTypeError(f"Argparse error. Expected a float from range (0, 1), but got {value}") return fvalue def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") class ArgParser(ArgumentParser): def arg(self, *args, **kwargs): return super().add_argument(*args, **kwargs) def flag(self, *args, **kwargs): return super().add_argument(*args, action="store_true", **kwargs) def boolean_flag(self, *args, **kwargs): return super().add_argument(*args, type=str2bool, nargs="?", const=True, metavar="BOOLEAN", **kwargs) def get_main_args(): p = ArgParser(formatter_class=ArgumentDefaultsHelpFormatter) # Runtime p.arg( "--exec-mode", "--exec_mode", type=str, choices=["train", "evaluate", "predict", "export"], default="train", help="Execution mode to run the model", ) p.arg("--gpus", type=non_negative_int, default=1) p.arg("--data", type=Path, default=Path("/data"), help="Path to data directory") p.arg("--task", type=str, default="01", help="Task number, MSD uses numbers 01-10") p.arg("--dim", type=int, choices=[2, 3], default=3, help="UNet dimension") p.arg("--seed", type=non_negative_int, default=None, help="Random seed") p.flag("--benchmark", help="Run model benchmarking") p.boolean_flag("--tta", default=False, help="Enable test time augmentation") p.boolean_flag("--save-preds", "--save_preds", default=False, help="Save predictions") # Logging p.arg("--results", type=Path, default=Path("/results"), help="Path to results directory") p.arg("--logname", type=str, default="dllogger.json", help="DLLogger output filename") p.flag("--quiet", help="Minimalize stdout/stderr output") p.boolean_flag("--use-dllogger", "--use_dllogger", default=True, help="Use DLLogger logging") # Performance optimization p.boolean_flag("--amp", default=False, help="Enable automatic mixed precision") p.boolean_flag("--xla", default=False, help="Enable XLA compiling") # Training hyperparameters and loss fn customization p.arg("--batch-size", "--batch_size", type=positive_int, default=2, help="Batch size") p.arg("--learning-rate", "--learning_rate", type=float, default=0.0003, help="Learning rate") p.arg("--momentum", type=float, default=0.99, help="Momentum factor (SGD only)") p.arg( "--scheduler", type=str, default="cosine_annealing", choices=["none", "poly", "cosine", "cosine_annealing"], help="Learning rate scheduler", ) p.arg("--end-learning-rate", type=float, default=0.00001, help="End learning rate for poly scheduler") p.arg( "--cosine-annealing-first-cycle-steps", type=positive_int, default=4096, help="Length of a cosine decay cycle in steps, only with 'cosine_annealing' scheduler", ) p.arg( "--cosine-annealing-peak-decay", type=float_0_1, default=0.95, help="Multiplier reducing initial learning rate" ) p.arg("--optimizer", type=str, default="adam", choices=["sgd", "adam", "radam"], help="Optimizer") p.boolean_flag("--deep-supervision", "--deep_supervision", default=False, help="Use deep supervision.") p.boolean_flag("--lookahead", default=False, help="Use Lookahead with the optimizer") p.arg("--weight-decay", "--weight_decay", type=float, default=0.0001, help="Weight decay (L2 penalty)") p.boolean_flag( "--loss-batch-reduction", dest="reduce_batch", default=True, help="Reduce batch dimension first during loss calculation", ) p.boolean_flag( "--loss-include-background", dest="include_background", default=False, help="Include background class to loss calculation", ) # UNet architecture p.arg("--negative-slope", type=float, default=0.01, help="Negative slope for LeakyReLU") p.arg( "--norm", type=str, choices=["instance", "batch", "group", "none"], default="instance", help="Type of normalization layers", ) # Checkpoints p.arg( "--ckpt-strategy", type=str, default="last_and_best", choices=["last_and_best", "last_only", "none"], help="Strategy how to save checkpoints", ) p.arg("--ckpt-dir", type=Path, default=Path("/results/ckpt/"), help="Path to checkpoint directory") p.arg("--saved-model-dir", type=Path, help="Path to saved model directory (for evaluation and prediction)") p.flag("--resume-training", "--resume_training", help="Resume training from the last checkpoint") p.boolean_flag("--load_sm", default=False, help="Load exported savedmodel") p.boolean_flag("--validate", default=False, help="Validate exported savedmodel") # Data loading and processing p.arg( "--nvol", type=positive_int, default=2, help="Number of volumes which come into single batch size for 2D model", ) p.arg( "--oversampling", type=float_0_1, default=0.33, help="Probability of crop to have some region with positive label", ) p.arg( "--num-workers", type=non_negative_int, default=8, help="Number of subprocesses to use for data loading", ) # Sliding window inference p.arg( "--overlap", type=float_0_1, default=0.25, help="Amount of overlap between scans during sliding window inference", ) p.arg( "--blend", "--blend-mode", dest="blend_mode", type=str, choices=["gaussian", "constant"], default="constant", help="How to blend output of overlapping windows", ) # Validation p.arg("--nfolds", type=positive_int, default=5, help="Number of cross-validation folds") p.arg("--fold", type=non_negative_int, default=0, help="Fold number") p.arg("--epochs", type=positive_int, default=1000, help="Number of epochs") p.arg("--skip-eval", type=non_negative_int, default=0, help="Skip evaluation for the first N epochs.") p.arg( "--steps-per-epoch", type=positive_int, help="Steps per epoch. By default ceil(training_dataset_size / batch_size / gpus)", ) # Benchmarking p.arg( "--bench-steps", type=non_negative_int, default=200, help="Number of benchmarked steps in total", ) p.arg( "--warmup-steps", type=non_negative_int, default=100, help="Number of warmup steps before collecting benchmarking statistics", ) args = p.parse_args() return args
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/args.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf class DiceLoss(tf.keras.losses.Loss): def __init__(self, y_one_hot=True, reduce_batch=False, eps=1e-6, include_background=False): super().__init__() self.y_one_hot = y_one_hot self.reduce_batch = reduce_batch self.eps = eps self.include_background = include_background def dice_coef(self, y_true, y_pred): intersection = tf.reduce_sum(y_true * y_pred, axis=1) pred_sum = tf.reduce_sum(y_pred, axis=1) true_sum = tf.reduce_sum(y_true, axis=1) dice = (2.0 * intersection + self.eps) / (pred_sum + true_sum + self.eps) return tf.reduce_mean(dice, axis=0) @tf.function def call(self, y_true, y_pred): n_class = y_pred.shape[-1] if self.reduce_batch: flat_shape = (1, -1, n_class) else: flat_shape = (y_pred.shape[0], -1, n_class) if self.y_one_hot: y_true = tf.one_hot(y_true, n_class) flat_pred = tf.reshape(tf.cast(y_pred, tf.float32), flat_shape) flat_true = tf.reshape(y_true, flat_shape) dice_coefs = self.dice_coef(flat_true, tf.keras.activations.softmax(flat_pred, axis=-1)) if not self.include_background: dice_coefs = dice_coefs[1:] dice_loss = tf.reduce_mean(1 - dice_coefs) return dice_loss class DiceCELoss(tf.keras.losses.Loss): def __init__(self, y_one_hot=True, **dice_kwargs): super().__init__() self.y_one_hot = y_one_hot self.dice_loss = DiceLoss(y_one_hot=False, **dice_kwargs) @tf.function def call(self, y_true, y_pred): y_pred = tf.cast(y_pred, tf.float32) n_class = y_pred.shape[-1] if self.y_one_hot: y_true = tf.one_hot(y_true, n_class) dice_loss = self.dice_loss(y_true, y_pred) ce_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( labels=y_true, logits=y_pred, ) ) return dice_loss + ce_loss class WeightDecay: def __init__(self, factor): self.factor = factor @tf.function def __call__(self, model): # TODO: add_n -> accumulate_n ? return self.factor * tf.add_n([tf.nn.l2_loss(v) for v in model.trainable_variables if "norm" not in v.name])
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/runtime/losses.py
import itertools import numpy as np import tensorflow as tf from scipy import signal def get_window_slices(image_size, roi_size, overlap, strategy): dim_starts = [] for image_x, roi_x in zip(image_size, roi_size): interval = roi_x if roi_x == image_x else int(roi_x * (1 - overlap)) starts = list(range(0, image_x - roi_x + 1, interval)) if strategy == "overlap_inside" and starts[-1] + roi_x < image_x: starts.append(image_x - roi_x) dim_starts.append(starts) slices = [(starts + (0,), roi_size + (-1,)) for starts in itertools.product(*dim_starts)] batched_window_slices = [((0,) + start, (1,) + roi_size) for start, roi_size in slices] return batched_window_slices @tf.function def gaussian_kernel(roi_size, sigma): gauss = signal.windows.gaussian(roi_size[0], std=sigma * roi_size[0]) for s in roi_size[1:]: gauss = np.outer(gauss, signal.windows.gaussian(s, std=sigma * s)) gauss = np.reshape(gauss, roi_size) gauss = np.power(gauss, 1 / len(roi_size)) gauss /= gauss.max() return tf.convert_to_tensor(gauss, dtype=tf.float32) def get_importance_kernel(roi_size, blend_mode, sigma): if blend_mode == "constant": return tf.ones(roi_size, dtype=tf.float32) elif blend_mode == "gaussian": return gaussian_kernel(roi_size, sigma) else: raise ValueError(f'Invalid blend mode: {blend_mode}. Use either "constant" or "gaussian".') @tf.function def run_model(x, model, importance_map, **kwargs): return tf.cast(model(x, **kwargs), dtype=tf.float32) * importance_map def sliding_window_inference( inputs, roi_size, model, overlap, n_class, importance_map, strategy="overlap_inside", **kwargs, ): image_size = tuple(inputs.shape[1:-1]) roi_size = tuple(roi_size) # Padding to make sure that the image size is at least roi size padded_image_size = tuple(max(image_size[i], roi_size[i]) for i in range(3)) padding_size = [image_x - input_x for image_x, input_x in zip(image_size, padded_image_size)] paddings = [[0, 0]] + [[x // 2, x - x // 2] for x in padding_size] + [[0, 0]] input_padded = tf.pad(inputs, paddings) output_shape = (1, *padded_image_size, n_class) output_sum = tf.zeros(output_shape, dtype=tf.float32) output_weight_sum = tf.ones(output_shape, dtype=tf.float32) window_slices = get_window_slices(padded_image_size, roi_size, overlap, strategy) for window_slice in window_slices: window = tf.slice(input_padded, begin=window_slice[0], size=window_slice[1]) pred = run_model(window, model, importance_map, **kwargs) padding = [ [start, output_size - (start + size)] for start, size, output_size in zip(*window_slice, output_shape) ] padding = padding[:-1] + [[0, 0]] output_sum = output_sum + tf.pad(pred, padding) output_weight_sum = output_weight_sum + tf.pad(importance_map, padding) output = output_sum / output_weight_sum crop_slice = [slice(pad[0], pad[0] + input_x) for pad, input_x in zip(paddings, inputs.shape[:-1])] return output[crop_slice]
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/models/sliding_window.py
import tensorflow as tf from models import layers class UNet(tf.keras.Model): def __init__( self, input_shape, n_class, kernels, strides, normalization_layer, negative_slope, dimension, deep_supervision, ): super().__init__() self.dim = dimension self.n_class = n_class self.negative_slope = negative_slope self.norm = normalization_layer self.deep_supervision = deep_supervision filters = [min(2 ** (5 + i), 320 if dimension == 3 else 512) for i in range(len(strides))] self.filters = filters self.kernels = kernels self.strides = strides down_block = layers.ConvBlock self.input_block = self.get_conv_block( conv_block=down_block, filters=filters[0], kernel_size=kernels[0], stride=strides[0], input_shape=input_shape, ) self.downsamples = self.get_block_list( conv_block=down_block, filters=filters[1:], kernels=kernels[1:-1], strides=strides[1:-1] ) self.bottleneck = self.get_conv_block( conv_block=down_block, filters=filters[-1], kernel_size=kernels[-1], stride=strides[-1] ) self.upsamples = self.get_block_list( conv_block=layers.UpsampleBlock, filters=filters[:-1][::-1], kernels=kernels[1:][::-1], strides=strides[1:][::-1], ) self.output_block = self.get_output_block() if self.deep_supervision: self.deep_supervision_heads = [self.get_output_block(), self.get_output_block()] self.n_layers = len(self.upsamples) - 1 def call(self, x, training=True): skip_connections = [] out = self.input_block(x) skip_connections.append(out) for down_block in self.downsamples: out = down_block(out) skip_connections.append(out) out = self.bottleneck(out) decoder_outputs = [] for up_block in self.upsamples: out = up_block(out, skip_connections.pop()) decoder_outputs.append(out) out = self.output_block(out) if training and self.deep_supervision: out = [ out, self.deep_supervision_heads[0](decoder_outputs[-2]), self.deep_supervision_heads[1](decoder_outputs[-3]), ] return out def get_output_block(self): return layers.OutputBlock(filters=self.n_class, dim=self.dim, negative_slope=self.negative_slope) def get_conv_block(self, conv_block, filters, kernel_size, stride, **kwargs): return conv_block( dim=self.dim, stride=stride, norm=self.norm, kernel_size=kernel_size, filters=filters, negative_slope=self.negative_slope, **kwargs, ) def get_block_list(self, conv_block, filters, kernels, strides): layers = [] for filter, kernel, stride in zip(filters, kernels, strides): conv_layer = self.get_conv_block(conv_block, filter, kernel, stride) layers.append(conv_layer) return layers
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/models/unet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import tensorflow as tf from runtime.utils import get_config_file, get_tta_flips, is_main_process from skimage.transform import resize from models.sliding_window import get_importance_kernel, sliding_window_inference from models.unet import UNet class NNUnet(tf.keras.Model): def __init__(self, args, loaded_model=None): super(NNUnet, self).__init__() self.args = args in_channels, n_class, kernels, strides, self.patch_size = self.get_unet_params(self.args) self.n_class = n_class input_shape = (None, None, None, in_channels) if self.args.dim == 3: input_shape = (None,) + input_shape if loaded_model is not None: input_dtype = tf.float16 if args.amp else tf.float32 @tf.function def wrapped_model(inputs, *args, **kwargs): return loaded_model(tf.cast(inputs, dtype=input_dtype), *args, **kwargs) self.model = wrapped_model else: if not self.args.xla and self.args.norm == "instance": self.args.norm = "atex_instance" self.model = UNet( input_shape=input_shape, n_class=n_class, kernels=kernels, strides=strides, dimension=self.args.dim, normalization_layer=self.args.norm, negative_slope=self.args.negative_slope, deep_supervision=self.args.deep_supervision, ) if is_main_process(): print(f"Filters: {self.model.filters},\nKernels: {kernels}\nStrides: {strides}") self.tta_flips = get_tta_flips(self.args.dim) if self.args.dim == 3: self.predictor = self.sw_inference elif self.args.benchmark: self.predictor = self.call else: self.predictor = self.call_2d if args.dim == 3: importance_kernel = get_importance_kernel(self.patch_size, args.blend_mode, 0.125) self.importance_map = tf.tile( tf.reshape(importance_kernel, shape=[1, *self.patch_size, 1]), multiples=[1, 1, 1, 1, n_class], ) @tf.function def call(self, *args, **kwargs): return self.model(*args, **kwargs) @tf.function(reduce_retracing=True) def call_2d(self, *args, **kwargs): return self.model(*args, **kwargs) @tf.function def compute_loss(self, loss_fn, label, preds): if self.args.deep_supervision: upsample_layer = tf.keras.layers.UpSampling3D if self.args.dim == 3 else tf.keras.layers.UpSampling2D loss = loss_fn(label, preds[0]) upsample_factor = np.ones(self.args.dim, dtype=np.uint8) for i, pred in enumerate(preds[1:]): upsample_factor = upsample_factor * self.model.strides[i + 1] upsampled_pred = upsample_layer(upsample_factor)(pred) loss += 0.5 ** (i + 1) * loss_fn(label, upsampled_pred) c_norm = 1 / (2 - 2 ** (-len(preds))) return c_norm * loss return loss_fn(label, preds) def sw_inference(self, img, **kwargs): return sliding_window_inference( inputs=img, roi_size=self.patch_size, model=self.model, overlap=self.args.overlap, n_class=self.n_class, importance_map=self.importance_map, **kwargs, ) def inference(self, img): pred = self.predictor(img, training=False) if self.args.tta: for flip_axes in self.tta_flips: flipped_img = tf.reverse(img, axis=flip_axes) flipped_pred = self.predictor(flipped_img, training=False) pred = pred + tf.reverse(flipped_pred, axis=flip_axes) pred = pred / (len(self.tta_flips) + 1) return pred @staticmethod def get_unet_params(args): config = get_config_file(args) patch_size, spacings = config["patch_size"], config["spacings"] strides, kernels, sizes = [], [], patch_size[:] while True: spacing_ratio = [spacing / min(spacings) for spacing in spacings] stride = [2 if ratio <= 2 and size >= 8 else 1 for (ratio, size) in zip(spacing_ratio, sizes)] kernel = [3 if ratio <= 2 else 1 for ratio in spacing_ratio] if all(s == 1 for s in stride): break sizes = [i / j for i, j in zip(sizes, stride)] spacings = [i * j for i, j in zip(spacings, stride)] kernels.append(kernel) strides.append(stride) if len(strides) == 5: break strides.insert(0, len(spacings) * [1]) kernels.append(len(spacings) * [3]) return config["in_channels"], config["n_class"], kernels, strides, patch_size @staticmethod def layout_2d(x): if x is None: return None batch_size, depth, height, width, channels = x.shape return tf.reshape(x, (batch_size * depth, height, width, channels)) def adjust_batch(self, features, labels): if self.args.dim == 2: features, labels = self.layout_2d(features), self.layout_2d(labels) return features, labels def save_pred(self, pred, meta, idx, data_module, save_dir): meta = meta[0].numpy() original_shape = meta[2] min_d, max_d = meta[0, 0], meta[1, 0] min_h, max_h = meta[0, 1], meta[1, 1] min_w, max_w = meta[0, 2], meta[1, 2] if len(pred.shape) == 5 and pred.shape[0] == 1: pred = tf.squeeze(pred, 0) if not all(original_shape == pred.shape[:-1]): paddings = [ [min_d, original_shape[0] - max_d], [min_h, original_shape[1] - max_h], [min_w, original_shape[2] - max_w], [0, 0], ] final_pred = tf.pad(pred, paddings=paddings) else: final_pred = pred final_pred = tf.nn.softmax(final_pred, axis=-1) final_pred = final_pred.numpy() final_pred = np.moveaxis(final_pred, -1, 0) if not all(original_shape == final_pred.shape[1:]): class_ = final_pred.shape[0] resized_pred = np.zeros((class_, *original_shape)) for i in range(class_): resized_pred[i] = resize( final_pred[i], original_shape, order=3, mode="edge", cval=0, clip=True, anti_aliasing=False ) final_pred = resized_pred fname = data_module.test_fname(idx) output_fname = os.path.basename(fname).replace("_x", "") np.save(os.path.join(save_dir, output_fname), final_pred, allow_pickle=False)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/models/nn_unet.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nv_norms import tensorflow as tf import tensorflow_addons as tfa convolutions = { "Conv2d": tf.keras.layers.Conv2D, "Conv3d": tf.keras.layers.Conv3D, "ConvTranspose2d": tf.keras.layers.Conv2DTranspose, "ConvTranspose3d": tf.keras.layers.Conv3DTranspose, } class KaimingNormal(tf.keras.initializers.VarianceScaling): def __init__(self, negative_slope, seed=None): super().__init__( scale=2.0 / (1 + negative_slope**2), mode="fan_in", distribution="untruncated_normal", seed=seed ) def get_config(self): return {"seed": self.seed} def get_norm(name): if "group" in name: return tfa.layers.GroupNormalization(32, axis=-1, center=True, scale=True) elif "batch" in name: return tf.keras.layers.BatchNormalization(axis=-1, center=True, scale=True) elif "atex_instance" in name: return nv_norms.InstanceNormalization(axis=-1) elif "instance" in name: return tfa.layers.InstanceNormalization(axis=-1, center=True, scale=True) elif "none" in name: return tf.identity else: raise ValueError("Invalid normalization layer") def extract_args(kwargs): args = {} if "input_shape" in kwargs: args["input_shape"] = kwargs["input_shape"] return args def get_conv(filters, kernel_size, stride, dim, use_bias=False, **kwargs): conv = convolutions[f"Conv{dim}d"] return conv( filters=filters, kernel_size=kernel_size, strides=stride, padding="same", use_bias=use_bias, kernel_initializer=KaimingNormal(kwargs["negative_slope"]), data_format="channels_last", **extract_args(kwargs), ) def get_transp_conv(filters, kernel_size, stride, dim, **kwargs): conv = convolutions[f"ConvTranspose{dim}d"] return conv( filters=filters, kernel_size=kernel_size, strides=stride, padding="same", use_bias=True, data_format="channels_last", **extract_args(kwargs), ) class ConvLayer(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.conv = get_conv(filters, kernel_size, stride, **kwargs) self.norm = get_norm(kwargs["norm"]) self.lrelu = tf.keras.layers.LeakyReLU(alpha=kwargs["negative_slope"]) def call(self, data): out = self.conv(data) out = self.norm(out) out = self.lrelu(out) return out class ConvBlock(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.conv1 = ConvLayer(filters, kernel_size, stride, **kwargs) kwargs.pop("input_shape", None) self.conv2 = ConvLayer(filters, kernel_size, 1, **kwargs) def call(self, input_data): out = self.conv1(input_data) out = self.conv2(out) return out class UpsampleBlock(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, stride, **kwargs): super().__init__() self.transp_conv = get_transp_conv(filters, stride, stride, **kwargs) self.conv_block = ConvBlock(filters, kernel_size, 1, **kwargs) def call(self, input_data, skip_data): out = self.transp_conv(input_data) out = tf.concat((out, skip_data), axis=-1) out = self.conv_block(out) return out class OutputBlock(tf.keras.layers.Layer): def __init__(self, filters, dim, negative_slope): super().__init__() self.conv = get_conv( filters, kernel_size=1, stride=1, dim=dim, use_bias=True, negative_slope=negative_slope, ) def call(self, data): return self.conv(data)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/models/layers.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess from argparse import ArgumentParser from pathlib import Path parser = ArgumentParser() parser.add_argument("--mode", type=str, required=True, choices=["train", "predict"], help="Benchmarking mode") parser.add_argument("--task", type=str, default="01", help="Task code") parser.add_argument("--dim", type=int, required=True, choices=[2, 3], help="Dimension of UNet") parser.add_argument("--gpus", type=int, default=1, help="Number of gpus") parser.add_argument("--batch-size", "--batch_size", type=int, required=True) parser.add_argument("--amp", action="store_true", help="Enable automatic mixed precision") parser.add_argument("--bind", action="store_true", help="Bind CPUs for each GPU. Improves throughput for multi-GPU.") parser.add_argument("--horovod", action="store_true") parser.add_argument("--xla", action="store_true", help="Enable XLA compiling") parser.add_argument( "--bench-steps", "--bench_steps", type=int, default=200, help="Number of benchmarked steps in total" ) parser.add_argument( "--warmup-steps", "--warmup_steps", type=int, default=100, help="Warmup iterations before collecting statistics" ) parser.add_argument("--results", type=Path, default=Path("/results"), help="Path to results directory") parser.add_argument("--logname", type=str, default="perf.json", help="Name of the dlloger output") if __name__ == "__main__": args = parser.parse_args() path_to_main = Path(__file__).resolve().parent.parent / "main.py" cmd = f"horovodrun -np {args.gpus} " if args.horovod else "" if args.bind: cmd += "bindpcie --cpu=exclusive,nosmt " cmd += f"python {path_to_main} --benchmark --ckpt-strategy none --seed 0 " cmd += f"--exec-mode {args.mode} " cmd += f"--task {args.task} " cmd += f"--dim {args.dim} " cmd += f"--batch-size {args.batch_size} " cmd += f"--amp {args.amp} " cmd += f"--xla {args.xla} " cmd += f"--bench-steps {args.bench_steps} " cmd += f"--warmup-steps {args.warmup_steps} " cmd += f"--results {args.results} " cmd += f"--logname {args.logname} " cmd += f"--gpus {args.gpus} " subprocess.run(cmd, shell=True)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/scripts/benchmark.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from pathlib import Path from subprocess import call parser = ArgumentParser() parser.add_argument("--task", type=str, default="01", help="Task code") parser.add_argument("--dim", type=int, required=True, choices=[2, 3], help="Dimension of UNet") parser.add_argument("--gpus", type=int, default=1, help="Number of gpus") parser.add_argument("--seed", type=int, default=1, help="Random seed") parser.add_argument("--learning_rate", type=float, default=3e-4) parser.add_argument("--fold", type=int, required=True, choices=[0, 1, 2, 3, 4], help="Fold number") parser.add_argument("--amp", action="store_true", help="Enable automatic mixed precision") parser.add_argument("--tta", action="store_true", help="Enable test time augmentation") parser.add_argument("--horovod", action="store_true", help="Launch horovod within script") parser.add_argument("--bind", action="store_true", help="Bind CPUs for each GPU. Improves throughput for multi-GPU.") parser.add_argument("--results", type=Path, default=Path("/results"), help="Path to results directory") parser.add_argument("--logname", type=str, default="train_log.json", help="Name of the dlloger output") if __name__ == "__main__": args = parser.parse_args() skip = 100 if args.gpus == 1 else 150 path_to_main = Path(__file__).resolve().parent.parent / "main.py" cmd = f"horovodrun -np {args.gpus} " if args.horovod else "" if args.bind: cmd += "bindpcie --cpu=exclusive,nosmt " cmd += f"python {path_to_main} --exec-mode train --deep_supervision --xla --skip-eval {skip} " cmd += f"--task {args.task} " cmd += f"--dim {args.dim} " cmd += f"--epochs {300 if args.gpus == 1 else 600} " cmd += f"--batch-size {2 if args.dim == 3 else 64} " cmd += f"--learning_rate {args.learning_rate} " cmd += f"--fold {args.fold} " cmd += f"--amp {args.amp} " cmd += f"--tta {args.tta} " cmd += f"--results {args.results} " cmd += f"--logname {args.logname} " cmd += f"--gpus {args.gpus} " cmd += f"--seed {args.seed} " call(cmd, shell=True)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/scripts/train.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from pathlib import Path from subprocess import call parser = ArgumentParser() parser.add_argument("--data", type=Path, required=True, help="Path to data") parser.add_argument("--task", type=str, default="01", help="Task code") parser.add_argument("--dim", type=int, required=True, choices=[2, 3], help="Dimension of UNet") parser.add_argument("--batch-size", "--batch_size", type=int, default=2, help="Batch size") parser.add_argument("--fold", type=int, required=True, choices=[0, 1, 2, 3, 4], help="Fold number") parser.add_argument("--amp", action="store_true", help="Enable automatic mixed precision") parser.add_argument("--tta", action="store_true", help="Enable test time augmentation") parser.add_argument("--save-preds", "--save_preds", action="store_true", help="Save predicted masks") parser.add_argument( "--results", type=Path, default=Path("/results"), help="Path to results directory, output for the predicted masks" ) group = parser.add_mutually_exclusive_group(required=True) group.add_argument("--ckpt-dir", "--ckpt_dir", type=Path, help="Path to checkpoint directory") group.add_argument("--saved-model-dir", "--saved_model_dir", type=Path, help="Path to saved model directory") if __name__ == "__main__": args = parser.parse_args() path_to_main = Path(__file__).resolve().parent.parent / "main.py" cmd = "" cmd += f"python {path_to_main} --exec-mode predict " cmd += f"--data {args.data} " cmd += f"--task {args.task} " cmd += f"--dim {args.dim} " cmd += f"--batch-size {args.batch_size} " cmd += f"--fold {args.fold} " cmd += f"--amp {args.amp} " cmd += f"--tta {args.tta} " cmd += f"--save-preds {args.save_preds} " cmd += f"--results {args.results} " if args.ckpt_dir: cmd += f"--ckpt-dir {args.ckpt_dir} " elif args.saved_model_dir: cmd += f"--saved-model-dir {args.saved_model_dir} " cmd += "--use-wandb false" call(cmd, shell=True)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/scripts/inference.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def generate_foreground_bounding_box(img): """ Generate the spatial bounding box of foreground in the image with start-end positions. Foreground is defined by positive intensity across channels. The output format of the coordinates is: [1st_spatial_dim_start, 2nd_spatial_dim_start, ..., Nth_spatial_dim_start], [1st_spatial_dim_end, 2nd_spatial_dim_end, ..., Nth_spatial_dim_end] The bounding boxes edges are aligned with the input image edges. This function returns [0, 0, ...], [0, 0, ...] if there's no positive intensity. Args: img: source image to generate bounding box from. """ data = np.any(img > 0, axis=0) ndim = len(data.shape) if not data.any(): return [0] * ndim, [0] * ndim else: indices = np.where(data) box_start = [ax.min() for ax in indices] box_end = [ax.max() + 1 for ax in indices] return box_start, box_end def spatial_crop(img, box_start, box_end): slices = [slice(s, e) for s, e in zip(box_start, box_end)] sd = min(len(slices), len(img.shape[1:])) slices = [slice(None)] + slices[:sd] return img[tuple(slices)] def crop_foreground(image, label=None): box_start, box_end = generate_foreground_bounding_box(image) box_start = np.asarray(box_start, dtype=np.int16) box_end = np.asarray(box_end, dtype=np.int16) image_cropped = spatial_crop(image, box_start, box_end) label_cropped = spatial_crop(label, box_start, box_end) if label is not None else None return image_cropped, label_cropped, (box_start, box_end) def _normalize(img, nonzero, eps=1e-7): slices = (img != 0) if nonzero else np.ones(img.shape, dtype=bool) if not np.any(slices): return img sub = np.mean(img[slices]) div = np.std(img[slices]) if div == 0.0: div = eps img[slices] = (img[slices] - sub) / div return img def normalize_intensity(img, nonzero=True, channel_wise=True): if channel_wise: for i, d in enumerate(img): img[i] = _normalize(d, nonzero=nonzero) else: img = _normalize(img, nonzero=nonzero) return img.astype(np.float32)
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/data_preprocessing/transforms.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. task = { "01": "Task01_BrainTumour", "02": "Task02_Heart", "03": "Task03_Liver", "04": "Task04_Hippocampus", "05": "Task05_Prostate", "06": "Task06_Lung", "07": "Task07_Pancreas", "08": "Task08_HepaticVessel", "09": "Task09_Spleen", "10": "Task10_Colon", } patch_size = { "01_3d_tf2": [128, 128, 128], "02_3d_tf2": [80, 192, 160], "03_3d_tf2": [128, 128, 128], "04_3d_tf2": [40, 56, 40], "05_3d_tf2": [20, 320, 256], "06_3d_tf2": [80, 192, 160], "07_3d_tf2": [40, 224, 224], "08_3d_tf2": [64, 192, 192], "09_3d_tf2": [64, 192, 160], "10_3d_tf2": [56, 192, 160], "01_2d_tf2": [192, 160], "02_2d_tf2": [320, 256], "03_2d_tf2": [512, 512], "04_2d_tf2": [56, 40], "05_2d_tf2": [320, 320], "06_2d_tf2": [512, 512], "07_2d_tf2": [512, 512], "08_2d_tf2": [512, 512], "09_2d_tf2": [512, 512], "10_2d_tf2": [512, 512], } spacings = { "01_3d_tf2": [1.0, 1.0, 1.0], "02_3d_tf2": [1.37, 1.25, 1.25], "03_3d_tf2": [1, 0.7676, 0.7676], "04_3d_tf2": [1.0, 1.0, 1.0], "05_3d_tf2": [3.6, 0.62, 0.62], "06_3d_tf2": [1.24, 0.79, 0.79], "07_3d_tf2": [2.5, 0.8, 0.8], "08_3d_tf2": [1.5, 0.8, 0.8], "09_3d_tf2": [1.6, 0.79, 0.79], "10_3d_tf2": [3, 0.78, 0.78], "11_3d_tf2": [5, 0.741, 0.741], "01_2d_tf2": [1.0, 1.0], "02_2d_tf2": [1.25, 1.25], "03_2d_tf2": [0.7676, 0.7676], "04_2d_tf2": [1.0, 1.0], "05_2d_tf2": [0.62, 0.62], "06_2d_tf2": [0.79, 0.79], "07_2d_tf2": [0.8, 0.8], "08_2d_tf2": [0.8, 0.8], "09_2d_tf2": [0.79, 0.79], "10_2d_tf2": [0.78, 0.78], } ct_min = { "03": -17, "06": -1024, "07": -96, "08": -3, "09": -41, "10": -30, "11": -958, } ct_max = { "03": 201, "06": 325, "07": 215, "08": 243, "09": 176, "10": 165.82, "11": 93, } ct_mean = {"03": 99.4, "06": -158.58, "07": 77.9, "08": 104.37, "09": 99.29, "10": 62.18, "11": -547.7} ct_std = {"03": 39.36, "06": 324.7, "07": 75.4, "08": 52.62, "09": 39.47, "10": 32.65, "11": 281.08}
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/data_preprocessing/configs.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import math import os import pickle from pathlib import Path import nibabel import numpy as np from joblib import Parallel, delayed from runtime.utils import get_task_code, make_empty_dir from skimage.transform import resize from data_preprocessing import configs, transforms class Preprocessor: def __init__(self, args): self.args = args self.ct_min = 0 self.ct_max = 0 self.ct_mean = 0 self.ct_std = 0 self.target_spacing = None self.task = args.task self.task_code = get_task_code(args) self.patch_size = configs.patch_size[self.task_code] self.training = args.exec_mode == "training" self.data_path = args.data / configs.task[args.task] self.results = args.results / self.task_code if not self.training: self.results /= self.args.exec_mode metadata_path = self.data_path / "dataset.json" if self.args.exec_mode == "val": dataset_json = json.load(open(metadata_path, "r")) dataset_json["val"] = dataset_json["training"] with open(metadata_path, "w") as outfile: json.dump(dataset_json, outfile) self.metadata = json.load(open(metadata_path, "r")) self.modality = self.metadata["modality"]["0"] def run(self): print(f"Preprocessing {self.data_path}") make_empty_dir(self.results, force=self.args.force) if self.task_code in configs.spacings: self.target_spacing = configs.spacings[self.task_code] else: self.collect_spacings() print(f"Target spacing {self.target_spacing}") if self.modality == "CT": try: self.ct_min = configs.ct_min[self.task] self.ct_max = configs.ct_max[self.task] self.ct_mean = configs.ct_mean[self.task] self.ct_std = configs.ct_std[self.task] except KeyError: self.collect_intensities() _mean = round(self.ct_mean, 2) _std = round(self.ct_std, 2) print(f"[CT] min: {self.ct_min}, max: {self.ct_max}, mean: {_mean}, std: {_std}") self.run_parallel(self.preprocess_pair, self.args.exec_mode) pickle.dump( { "patch_size": self.patch_size, "spacings": self.target_spacing, "n_class": len(self.metadata["labels"]), "in_channels": len(self.metadata["modality"]), }, open(os.path.join(self.results, "config.pkl"), "wb"), ) def preprocess_pair(self, pair): fname = os.path.basename(pair["image"] if isinstance(pair, dict) else pair) image, label, image_spacings = self.load_pair(pair) original_size = image.shape[1:] image, label, bbox = transforms.crop_foreground(image, label) test_metadata = np.vstack([bbox, original_size]) if not self.training else None if self.args.dim == 3: image, label = self.resample(image, label, image_spacings) if self.modality == "CT": image = np.clip(image, self.ct_min, self.ct_max) image = self.normalize(image) if self.training: image, label = self.standardize(image, label) image, label = np.transpose(image, (1, 2, 3, 0)), np.transpose(label, (1, 2, 3, 0)) self.save(image, label, fname, test_metadata) def resample(self, image, label, image_spacings): if self.target_spacing != image_spacings: image, label = self.resample_pair(image, label, image_spacings) return image, label def standardize(self, image, label): pad_shape = self.calculate_pad_shape(image) image_shape = image.shape[1:] if pad_shape != image_shape: paddings = [(pad_sh - image_sh) / 2 for (pad_sh, image_sh) in zip(pad_shape, image_shape)] image = self.pad(image, paddings) label = self.pad(label, paddings) if self.args.dim == 2: # Center cropping 2D images. _, _, height, weight = image.shape start_h = (height - self.patch_size[0]) // 2 start_w = (weight - self.patch_size[1]) // 2 image = image[:, :, start_h : start_h + self.patch_size[0], start_w : start_w + self.patch_size[1]] label = label[:, :, start_h : start_h + self.patch_size[0], start_w : start_w + self.patch_size[1]] return image, label def normalize(self, image): if self.modality == "CT": return (image - self.ct_mean) / self.ct_std return transforms.normalize_intensity(image, nonzero=True, channel_wise=True) def save(self, image, label, fname, test_metadata): mean, std = np.round(np.mean(image, (0, 1, 2)), 2), np.round(np.std(image, (0, 1, 2)), 2) print(f"Saving {fname} shape {image.shape} mean {mean} std {std}") self.save_npy(image, fname, "_x.npy") if label is not None: self.save_npy(label, fname, "_y.npy") if test_metadata is not None: self.save_npy(test_metadata, fname, "_meta.npy") def load_pair(self, pair): image = self.load_nifty(pair["image"] if isinstance(pair, dict) else pair) image_spacing = self.load_spacing(image) image = image.get_fdata().astype(np.float32) image = self.standardize_layout(image) if self.training: label = self.load_nifty(pair["label"]).get_fdata().astype(np.uint8) label = self.standardize_layout(label) else: label = None return image, label, image_spacing def resample_pair(self, image, label, spacing): shape = self.calculate_new_shape(spacing, image.shape[1:]) if self.check_anisotrophy(spacing): image = self.resample_anisotrophic_image(image, shape) if label is not None: label = self.resample_anisotrophic_label(label, shape) else: image = self.resample_regular_image(image, shape) if label is not None: label = self.resample_regular_label(label, shape) image = image.astype(np.float32) if label is not None: label = label.astype(np.uint8) return image, label def calculate_pad_shape(self, image): min_shape = self.patch_size[:] image_shape = image.shape[1:] if len(min_shape) == 2: # In 2D case we don't want to pad depth axis. min_shape.insert(0, image_shape[0]) pad_shape = [max(mshape, ishape) for mshape, ishape in zip(min_shape, image_shape)] return pad_shape def get_intensities(self, pair): image = self.load_nifty(pair["image"]).get_fdata().astype(np.float32) label = self.load_nifty(pair["label"]).get_fdata().astype(np.uint8) foreground_idx = np.where(label > 0) intensities = image[foreground_idx].tolist() return intensities def collect_intensities(self): intensities = self.run_parallel(self.get_intensities, "training") intensities = list(itertools.chain.from_iterable(intensities)) self.ct_min, self.ct_max = np.percentile(intensities, [0.5, 99.5]) self.ct_mean, self.ct_std = np.mean(intensities), np.std(intensities) def get_spacing(self, pair): image = nibabel.load(self.data_path / pair["image"]) spacing = self.load_spacing(image) return spacing def collect_spacings(self): spacing = self.run_parallel(self.get_spacing, "training") spacing = np.array(spacing) target_spacing = np.median(spacing, axis=0) if max(target_spacing) / min(target_spacing) >= 3: lowres_axis = np.argmin(target_spacing) target_spacing[lowres_axis] = np.percentile(spacing[:, lowres_axis], 10) self.target_spacing = list(target_spacing) def check_anisotrophy(self, spacing): def check(spacing): return np.max(spacing) / np.min(spacing) >= 3 return check(spacing) or check(self.target_spacing) def calculate_new_shape(self, spacing, shape): spacing_ratio = np.array(spacing) / np.array(self.target_spacing) new_shape = (spacing_ratio * np.array(shape)).astype(int).tolist() return new_shape def save_npy(self, image, fname, suffix): np.save(os.path.join(self.results, fname.replace(".nii.gz", suffix)), image, allow_pickle=False) def run_parallel(self, func, exec_mode): return Parallel(n_jobs=self.args.n_jobs)(delayed(func)(pair) for pair in self.metadata[exec_mode]) def load_nifty(self, fname): return nibabel.load(os.path.join(self.data_path, fname)) @staticmethod def load_spacing(image): return image.header["pixdim"][1:4].tolist()[::-1] @staticmethod def pad(image, padding): pad_d, pad_w, pad_h = padding return np.pad( image, ( (0, 0), (math.floor(pad_d), math.ceil(pad_d)), (math.floor(pad_w), math.ceil(pad_w)), (math.floor(pad_h), math.ceil(pad_h)), ), ) @staticmethod def standardize_layout(data): if len(data.shape) == 3: data = np.expand_dims(data, 3) return np.transpose(data, (3, 2, 1, 0)) @staticmethod def resize_fn(image, shape, order, mode): return resize(image, shape, order=order, mode=mode, cval=0, clip=True, anti_aliasing=False) def resample_anisotrophic_image(self, image, shape): resized_channels = [] for image_c in image: resized = [self.resize_fn(i, shape[1:], 3, "edge") for i in image_c] resized = np.stack(resized, axis=0) resized = self.resize_fn(resized, shape, 0, "constant") resized_channels.append(resized) resized = np.stack(resized_channels, axis=0) return resized def resample_regular_image(self, image, shape): resized_channels = [] for image_c in image: resized_channels.append(self.resize_fn(image_c, shape, 3, "edge")) resized = np.stack(resized_channels, axis=0) return resized def resample_anisotrophic_label(self, label, shape): depth = label.shape[1] reshaped = np.zeros(shape, dtype=np.uint8) shape_2d = shape[1:] reshaped_2d = np.zeros((depth, *shape_2d), dtype=np.uint8) n_class = np.max(label) for class_ in range(1, n_class + 1): for depth_ in range(depth): mask = label[0, depth_] == class_ resized_2d = self.resize_fn(mask.astype(float), shape_2d, 1, "edge") reshaped_2d[depth_][resized_2d >= 0.5] = class_ for class_ in range(1, n_class + 1): mask = reshaped_2d == class_ resized = self.resize_fn(mask.astype(float), shape, 0, "constant") reshaped[resized >= 0.5] = class_ reshaped = np.expand_dims(reshaped, 0) return reshaped def resample_regular_label(self, label, shape): reshaped = np.zeros(shape, dtype=np.uint8) n_class = np.max(label) for class_ in range(1, n_class + 1): mask = label[0] == class_ resized = self.resize_fn(mask.astype(float), shape, 1, "edge") reshaped[resized >= 0.5] = class_ reshaped = np.expand_dims(reshaped, 0) return reshaped
DeepLearningExamples-master
TensorFlow2/Segmentation/nnUNet/data_preprocessing/preprocessor.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections import json import os import tensorflow as tf from utils import log, heading from run_pretraining import PretrainingConfig from modeling import PretrainingModel def from_pretrained_ckpt(args): config = PretrainingConfig( model_name='postprocessing', data_dir='postprocessing', generator_hidden_size=0.3333333, ) # Padding for divisibility by 8 if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) if args.amp: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16", loss_scale="dynamic") tf.keras.mixed_precision.experimental.set_policy(policy) print('Compute dtype: %s' % policy.compute_dtype) # Compute dtype: float16 print('Variable dtype: %s' % policy.variable_dtype) # Variable dtype: float32 # Set up model model = PretrainingModel(config) # Load checkpoint checkpoint = tf.train.Checkpoint(step=tf.Variable(1), model=model) checkpoint.restore(args.pretrained_checkpoint).expect_partial() log(" ** Restored from {} at step {}".format(args.pretrained_checkpoint, int(checkpoint.step) - 1)) disc_dir = os.path.join(args.output_dir, 'discriminator') gen_dir = os.path.join(args.output_dir, 'generator') heading(" ** Saving discriminator") model.discriminator(model.discriminator.dummy_inputs) model.discriminator.save_pretrained(disc_dir) heading(" ** Saving generator") model.generator(model.generator.dummy_inputs) model.generator.save_pretrained(gen_dir) if __name__ == '__main__': # Parse essential args parser = argparse.ArgumentParser() parser.add_argument('--pretrained_checkpoint') parser.add_argument('--output_dir') parser.add_argument('--amp', action='store_true', default=False) args = parser.parse_args() from_pretrained_ckpt(args)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/postprocess_pretrained_ckpt.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Configuration base class and utilities.""" import copy import json import logging import os from typing import Dict, Optional, Tuple from utils import log from file_utils import CONFIG_NAME, cached_path, hf_bucket_url, is_remote_url logger = logging.getLogger(__name__) class PretrainedConfig(object): r""" Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as methods for loading/downloading/saving configurations. Note: A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does **not** load the model weights. It only affects the model's configuration. Class attributes (overridden by derived classes): - ``pretrained_config_archive_map``: a python ``dict`` with `shortcut names` (string) as keys and `url` (string) of associated pretrained model configurations as values. - ``model_type``: a string that identifies the model type, that we serialize into the JSON file, and that we use to recreate the correct object in :class:`~transformers.AutoConfig`. Args: finetuning_task (:obj:`string` or :obj:`None`, `optional`, defaults to :obj:`None`): Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. num_labels (:obj:`int`, `optional`, defaults to `2`): Number of classes to use when the model is a classification model (sequences/tokens) output_attentions (:obj:`bool`, `optional`, defaults to :obj:`False`): Should the model returns attentions weights. output_hidden_states (:obj:`string`, `optional`, defaults to :obj:`False`): Should the model returns all hidden-states. torchscript (:obj:`bool`, `optional`, defaults to :obj:`False`): Is the model used with Torchscript (for PyTorch models). """ pretrained_config_archive_map = {} # type: Dict[str, str] model_type = "" # type: str def __init__(self, **kwargs): # Attributes with defaults self.output_attentions = kwargs.pop("output_attentions", False) self.output_hidden_states = kwargs.pop("output_hidden_states", False) self.output_past = kwargs.pop("output_past", True) # Not used by all models self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models self.use_bfloat16 = kwargs.pop("use_bfloat16", False) self.pruned_heads = kwargs.pop("pruned_heads", {}) # Is decoder is used in encoder-decoder models to differentiate encoder from decoder self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False) self.is_decoder = kwargs.pop("is_decoder", False) # Parameters for sequence generation self.max_length = kwargs.pop("max_length", 20) self.min_length = kwargs.pop("min_length", 0) self.do_sample = kwargs.pop("do_sample", False) self.early_stopping = kwargs.pop("early_stopping", False) self.num_beams = kwargs.pop("num_beams", 1) self.temperature = kwargs.pop("temperature", 1.0) self.top_k = kwargs.pop("top_k", 50) self.top_p = kwargs.pop("top_p", 1.0) self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) self.length_penalty = kwargs.pop("length_penalty", 1.0) self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) self.bad_words_ids = kwargs.pop("bad_words_ids", None) self.num_return_sequences = kwargs.pop("num_return_sequences", 1) # Fine-tuning task arguments self.architectures = kwargs.pop("architectures", None) self.finetuning_task = kwargs.pop("finetuning_task", None) self.num_labels = kwargs.pop("num_labels", 2) self.id2label = kwargs.pop("id2label", {i: "LABEL_{}".format(i) for i in range(self.num_labels)}) self.id2label = dict((int(key), value) for key, value in self.id2label.items()) self.label2id = kwargs.pop("label2id", dict(zip(self.id2label.values(), self.id2label.keys()))) self.label2id = dict((key, int(value)) for key, value in self.label2id.items()) # Tokenizer arguments TODO: eventually tokenizer and models should share the same config self.prefix = kwargs.pop("prefix", None) self.bos_token_id = kwargs.pop("bos_token_id", None) self.pad_token_id = kwargs.pop("pad_token_id", None) self.eos_token_id = kwargs.pop("eos_token_id", None) self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) # task specific arguments self.task_specific_params = kwargs.pop("task_specific_params", None) # TPU arguments self.xla_device = kwargs.pop("xla_device", None) # Additional attributes without default values for key, value in kwargs.items(): try: setattr(self, key, value) except AttributeError as err: log("Can't set {} with value {} for {}".format(key, value, self)) raise err @property def num_labels(self): return self._num_labels @num_labels.setter def num_labels(self, num_labels): self._num_labels = num_labels self.id2label = {i: "LABEL_{}".format(i) for i in range(self.num_labels)} self.id2label = dict((int(key), value) for key, value in self.id2label.items()) self.label2id = dict(zip(self.id2label.values(), self.id2label.keys())) self.label2id = dict((key, int(value)) for key, value in self.label2id.items()) def save_pretrained(self, save_directory): """ Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the :func:`~transformers.PretrainedConfig.from_pretrained` class method. Args: save_directory (:obj:`string`): Directory where the configuration JSON file will be saved. """ assert os.path.isdir( save_directory ), "Saving path should be a directory where the model and configuration can be saved" # If we save using the predefined names, we can load using `from_pretrained` output_config_file = os.path.join(save_directory, CONFIG_NAME) self.to_json_file(output_config_file) log("Configuration saved in {}".format(output_config_file)) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs) -> "PretrainedConfig": r""" Instantiate a :class:`~transformers.PretrainedConfig` (or a derived class) from a pre-trained model configuration. Args: pretrained_model_name_or_path (:obj:`string`): either: - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``. - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``. cache_dir (:obj:`string`, `optional`): Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. kwargs (:obj:`Dict[str, any]`, `optional`): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. force_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Force to (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`): Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies (:obj:`Dict`, `optional`): A dictionary of proxy servers to use by protocol or endpoint, e.g.: :obj:`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. return_unused_kwargs: (`optional`) bool: If False, then this function returns just the final configuration object. If True, then this functions returns a :obj:`Tuple(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored. Returns: :class:`PretrainedConfig`: An instance of a configuration object Examples:: # We can't instantiate directly the base class `PretrainedConfig` so let's show the examples on a # derived class: BertConfig config = BertConfig.from_pretrained('bert-base-uncased') # Download configuration from S3 and cache. config = BertConfig.from_pretrained('./test/saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')` config = BertConfig.from_pretrained('./test/saved_model/my_configuration.json') config = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False) assert config.output_attention == True config, unused_kwargs = BertConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False, return_unused_kwargs=True) assert config.output_attention == True assert unused_kwargs == {'foo': False} """ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) return cls.from_dict(config_dict, **kwargs) @classmethod def get_config_dict( cls, pretrained_model_name_or_path: str, pretrained_config_archive_map: Optional[Dict] = None, **kwargs ) -> Tuple[Dict, Dict]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a Config using `from_dict`. Parameters: pretrained_model_name_or_path (:obj:`string`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. pretrained_config_archive_map: (:obj:`Dict[str, str]`, `optional`) Dict: A map of `shortcut names` to `url`. By default, will use the current class attribute. Returns: :obj:`Tuple[Dict, Dict]`: The dictionary that will be used to instantiate the configuration object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) if pretrained_config_archive_map is None: pretrained_config_archive_map = cls.pretrained_config_archive_map if pretrained_model_name_or_path in pretrained_config_archive_map: config_file = pretrained_config_archive_map[pretrained_model_name_or_path] elif os.path.isdir(pretrained_model_name_or_path): config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): config_file = pretrained_model_name_or_path else: config_file = hf_bucket_url(pretrained_model_name_or_path, postfix=CONFIG_NAME) try: # Load from URL or cache if already cached resolved_config_file = cached_path( config_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) # Load config dict if resolved_config_file is None: raise EnvironmentError config_dict = cls._dict_from_json_file(resolved_config_file) except EnvironmentError: if pretrained_model_name_or_path in pretrained_config_archive_map: msg = "Couldn't reach server at '{}' to download pretrained model configuration file.".format( config_file ) else: msg = ( "Can't load '{}'. Make sure that:\n\n" "- '{}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n" "- or '{}' is the correct path to a directory containing a '{}' file\n\n".format( pretrained_model_name_or_path, pretrained_model_name_or_path, pretrained_model_name_or_path, CONFIG_NAME, ) ) raise EnvironmentError(msg) except json.JSONDecodeError: msg = ( "Couldn't reach server at '{}' to download configuration file or " "configuration file is not a valid JSON file. " "Please check network or file content here: {}.".format(config_file, resolved_config_file) ) raise EnvironmentError(msg) if resolved_config_file == config_file: log("loading configuration file {}".format(config_file)) else: log("loading configuration file {} from cache at {}".format(config_file, resolved_config_file)) return config_dict, kwargs @classmethod def from_dict(cls, config_dict: Dict, **kwargs) -> "PretrainedConfig": """ Constructs a `Config` from a Python dictionary of parameters. Args: config_dict (:obj:`Dict[str, any]`): Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved from a pre-trained checkpoint by leveraging the :func:`~transformers.PretrainedConfig.get_config_dict` method. kwargs (:obj:`Dict[str, any]`): Additional parameters from which to initialize the configuration object. Returns: :class:`PretrainedConfig`: An instance of a configuration object """ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) config = cls(**config_dict) if hasattr(config, "pruned_heads"): config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items()) # Update config with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) # log("Model config {}".format(str(config))) if return_unused_kwargs: return config, kwargs else: return config @classmethod def from_json_file(cls, json_file: str) -> "PretrainedConfig": """ Constructs a `Config` from the path to a json file of parameters. Args: json_file (:obj:`string`): Path to the JSON file containing the parameters. Returns: :class:`PretrainedConfig`: An instance of a configuration object """ config_dict = cls._dict_from_json_file(json_file) return cls(**config_dict) @classmethod def _dict_from_json_file(cls, json_file: str): with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return json.loads(text) def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): return "{} {}".format(self.__class__.__name__, self.to_json_string()) def to_dict(self): """ Serializes this instance to a Python dictionary. Returns: :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) if hasattr(self.__class__, "model_type"): output["model_type"] = self.__class__.model_type return output def to_json_string(self): """ Serializes this instance to a JSON string. Returns: :obj:`string`: String containing all the attributes that make up this configuration instance in JSON format. """ return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path): """ Save this instance to a json file. Args: json_file_path (:obj:`string`): Path to the JSON file in which this configuration instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def update(self, config_dict: Dict): """ Updates attributes of this class with attributes from `config_dict`. Args: :obj:`Dict[str, any]`: Dictionary of attributes that shall be updated for this class. """ for key, value in config_dict.items(): setattr(self, key, value) BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", "bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-config.json", "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-config.json", "bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-config.json", "bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-config.json", "bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-config.json", "bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-config.json", "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/config.json", "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/config.json", "bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/config.json", } class BertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.BertModel`. It is used to instantiate an BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT `bert-base-uncased <https://huggingface.co/bert-base-uncased>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, optional, defaults to 30522): Vocabulary size of the BERT model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.BertModel`. hidden_size (:obj:`int`, optional, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, optional, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, optional, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, optional, defaults to 2): The vocabulary size of the `token_type_ids` passed into :class:`~transformers.BertModel`. initializer_range (:obj:`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, optional, defaults to 1e-12): The epsilon used by the layer normalization layers. Example:: from transformers import BertModel, BertConfig # Initializing a BERT bert-base-uncased style configuration configuration = BertConfig() # Initializing a model from the bert-base-uncased style configuration model = BertModel(configuration) # Accessing the model configuration configuration = model.config Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints. """ pretrained_config_archive_map = BERT_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/configuration_utils.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ELECTRA model configuration """ import logging from configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/electra-small-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-generator/config.json", "google/electra-base-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-generator/config.json", "google/electra-large-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-generator/config.json", "google/electra-small-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-discriminator/config.json", "google/electra-base-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-discriminator/config.json", "google/electra-large-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-discriminator/config.json", } class ElectraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.ElectraModel`. It is used to instantiate an ELECTRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ELECTRA `google/electra-small-discriminator <https://huggingface.co/google/electra-small-discriminator>`__ architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: vocab_size (:obj:`int`, optional, defaults to 30522): Vocabulary size of the ELECTRA model. Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of :class:`~transformers.ElectraModel`. embedding_size (:obj:`int`, optional, defaults to 128): Dimensionality of the encoder layers and the pooler layer. hidden_size (:obj:`int`, optional, defaults to 256): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (:obj:`int`, optional, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (:obj:`int`, optional, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (:obj:`int`, optional, defaults to 1024): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (:obj:`str` or :obj:`function`, optional, defaults to "gelu"): The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (:obj:`float`, optional, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (:obj:`int`, optional, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (:obj:`int`, optional, defaults to 2): The vocabulary size of the `token_type_ids` passed into :class:`~transformers.ElectraModel`. initializer_range (:obj:`float`, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (:obj:`float`, optional, defaults to 1e-12): The epsilon used by the layer normalization layers. Example:: from transformers import ElectraModel, ElectraConfig # Initializing a ELECTRA electra-base-uncased style configuration configuration = ElectraConfig() # Initializing a model from the electra-base-uncased style configuration model = ElectraModel(configuration) # Accessing the model configuration configuration = model.config Attributes: pretrained_config_archive_map (Dict[str, str]): A dictionary containing all the available pre-trained checkpoints. """ pretrained_config_archive_map = ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "electra" def __init__( self, vocab_size=30522, embedding_size=128, hidden_size=256, num_hidden_layers=12, num_attention_heads=4, intermediate_size=1024, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/configuration.py
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" import copy import functools import itertools import json import logging import operator import os import re import collections import unicodedata from collections import UserDict, defaultdict from contextlib import contextmanager from typing import List, Optional, Sequence, Tuple, Union from tokenizers import AddedToken, Encoding from tokenizers.implementations import BaseTokenizer from file_utils import cached_path, hf_bucket_url, is_remote_url, is_tf_available, is_torch_available if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch logger = logging.getLogger(__name__) SPECIAL_TOKENS_MAP_FILE = "special_tokens_map.json" ADDED_TOKENS_FILE = "added_tokens.json" TOKENIZER_CONFIG_FILE = "tokenizer_config.json" # Define type aliases TextInput = str TextPairInput = Tuple[str, str] PreTokenizedInput = List[str] PreTokenizedInputPair = Tuple[List[str], List[str]] def flatten(x: Sequence): """ Flatten the provided (potentially nested) sequence Args: x (Sequence): Potentially nested sequence to flatten Returns: list: Flattened sequence """ return functools.reduce(operator.iconcat, x, []) @contextmanager def truncate_and_pad( tokenizer: BaseTokenizer, max_length: int, stride: int, strategy: str, pad_to_max_length: bool, padding_side: str, pad_token_id: int, pad_token_type_id: int, pad_token: str, ): """ This contextmanager is in charge of defining the truncation and the padding strategies and then restore the tokenizer settings afterwards. This contextmanager assumes the provider tokenizer has no padding / truncation strategy before the managed section. If your tokenizer set a padding / truncation strategy before, then it will be reset to no padding/truncation when exiting the managed section. Args: tokenizer (BaseTokenizer): The tokenizer which will be used max_length (int): The maximum size of the sequence stride (int): The stride to use when handling overflow strategy (str): Overflowing logic to use pad_to_max_length (bool): Boolean indicating if the output needs to be padded up to max_length padding_side (str): "left" or "right" indicating the direction the output sequence will be padded pad_token_id (int): The integer representation of the padding token to use pad_token_type_id (int): The integer representation of the padding token type to use pad_token (str): The string representation of the padding token to use Returns: """ # Handle all the truncation and padding stuff if max_length is not None: tokenizer.enable_truncation(max_length, stride=stride, strategy=strategy) if pad_to_max_length and (pad_token and pad_token_id >= 0): tokenizer.enable_padding( max_length=max_length, direction=padding_side, pad_id=pad_token_id, pad_type_id=pad_token_type_id, pad_token=pad_token, ) elif pad_to_max_length: logger.warning( "Disabled padding because no padding token set (pad_token: {}, pad_token_id: {}).\n" "To remove this error, you can add a new pad token and then resize model embedding:\n" "\ttokenizer.pad_token = '<PAD>'\n\tmodel.resize_token_embeddings(len(tokenizer))".format( pad_token, pad_token_id ) ) yield if max_length is not None: tokenizer.no_truncation() if pad_to_max_length and (pad_token and pad_token_id >= 0): tokenizer.no_padding() class BatchEncoding(UserDict): """ Data structure derived from Dictionary holding all the required information to forward through a model. In addition, this structure expose utility methods to map from word/char space to token space. """ def __init__(self, data: dict, encoding: Optional[Union[Encoding, Sequence[Encoding]]] = None): super().__init__(data) if isinstance(encoding, Encoding): encoding = [encoding] self._encodings = encoding def __getitem__(self, item: Union[int, str]) -> Encoding: if isinstance(item, str): return self.data[item] elif self._encodings is not None: return self._encodings[item] else: raise KeyError("int index is supported only on {} from a Rust tokenizer".format(type(self).__name__)) def __getattr__(self, item: str): return self.data[item] @property def encodings(self) -> Optional[List[Encoding]]: """ Return the list all encoding from the tokenization process Returns: List[Encoding] or None if input was tokenized through Python tokenizer """ return self._encodings def keys(self): return self.data.keys() def values(self): return self.data.values() def items(self): return self.data.items() def char_to_token_offsets(self, sentence: int, char: int) -> Tuple[int, int]: """ Find the Offsets of the token containing the character at the specified position Args: sentence: Index of the sentence relative to the batch provided to the tokenizer char: Char index to get the relative token offsets Returns: tuple: (token start, token end) """ if not self._encodings: raise ValueError("char_to_token_offsets() is not available when using Python based tokenizers") return self[sentence].char_to_token_offsets(char) def char_to_token(self, sentence: int, char: int) -> int: """ Return the index of the token at position of the given char. Args: sentence (int): Index of the sentence relative to the batch provided to the tokenizer char (int): Char index to get the relative token offsets Returns: int: Integer referring to the position of the token in the returned set of tokens for the sentence """ if not self._encodings: raise ValueError("char_to_token() is not available when using Python based tokenizers") return self[sentence].char_to_token(char) def char_to_word_offsets(self, sentence: int, char: int) -> Tuple[int, int]: """ Find the Offsets of the word containing the character at the specified position Args: sentence (int): Index of the sentence relative to the batch provided to the tokenizer char (int): Char index to get the relative token offsets Returns: tuple: (word start, word end) representing the first and last characters of the word """ if not self._encodings: raise ValueError("char_to_word_offsets() is not available when using Python based tokenizers") return self[sentence].char_to_word_offsets(char) def token_to_word_offsets(self, sentence: int, index: int) -> Optional[Tuple[int, int]]: """ Find the Offsets of the word containing the token at the given index Args: sentence (int): Index of the sentence relative to the batch provided to the tokenizer index (int): Index of the token to map to the original word offsets Returns: Optional[tuple]: (word start, word end) or None """ if not self._encodings: raise ValueError("token_to_word_offsets() is not available when using Python based tokenizers") return self[sentence].token_to_word_offsets(index) class SpecialTokensMixin: SPECIAL_TOKENS_ATTRIBUTES = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", "additional_special_tokens", ] def __init__(self, **kwargs): self._bos_token = None self._eos_token = None self._unk_token = None self._sep_token = None self._pad_token = None self._cls_token = None self._mask_token = None self._pad_token_type_id = 0 self._additional_special_tokens = [] for key, value in kwargs.items(): if key in self.SPECIAL_TOKENS_ATTRIBUTES: if key == "additional_special_tokens": assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value) elif isinstance(value, AddedToken): setattr(self, key, str(value)) elif isinstance(value, str): setattr(self, key, value) else: raise TypeError( "special token {} has to be either str or AddedToken but got: {}".format(key, type(value)) ) @property def bos_token(self): """ Beginning of sentence token (string). Log an error if used while not having been set. """ if self._bos_token is None: logger.error("Using bos_token, but it is not set yet.") return self._bos_token @property def eos_token(self): """ End of sentence token (string). Log an error if used while not having been set. """ if self._eos_token is None: logger.error("Using eos_token, but it is not set yet.") return self._eos_token @property def unk_token(self): """ Unknown token (string). Log an error if used while not having been set. """ if self._unk_token is None: logger.error("Using unk_token, but it is not set yet.") return self._unk_token @property def sep_token(self): """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """ if self._sep_token is None: logger.error("Using sep_token, but it is not set yet.") return self._sep_token @property def pad_token(self): """ Padding token (string). Log an error if used while not having been set. """ if self._pad_token is None: logger.error("Using pad_token, but it is not set yet.") return self._pad_token @property def cls_token(self): """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ if self._cls_token is None: logger.error("Using cls_token, but it is not set yet.") return self._cls_token @property def mask_token(self): """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ if self._mask_token is None: logger.error("Using mask_token, but it is not set yet.") return self._mask_token @property def additional_special_tokens(self): """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """ if self._additional_special_tokens is None: logger.error("Using additional_special_tokens, but it is not set yet.") return self._additional_special_tokens @bos_token.setter def bos_token(self, value): self._bos_token = value @eos_token.setter def eos_token(self, value): self._eos_token = value @unk_token.setter def unk_token(self, value): self._unk_token = value @sep_token.setter def sep_token(self, value): self._sep_token = value @pad_token.setter def pad_token(self, value): self._pad_token = value @cls_token.setter def cls_token(self, value): self._cls_token = value @mask_token.setter def mask_token(self, value): self._mask_token = value @property def bos_token_id(self): """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.bos_token) @property def eos_token_id(self): """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.eos_token) @property def unk_token_id(self): """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.unk_token) @property def sep_token_id(self): """ Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.sep_token) @property def pad_token_id(self): """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.pad_token) @property def pad_token_type_id(self): """ Id of the padding token type in the vocabulary.""" return self._pad_token_type_id @property def cls_token_id(self): """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.cls_token) @property def mask_token_id(self): """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.mask_token) @property def additional_special_tokens_ids(self): """ Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """ return self.convert_tokens_to_ids(self.additional_special_tokens) @property def special_tokens_map(self): """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their values ('<unk>', '<cls>'...) """ set_attr = {} for attr in self.SPECIAL_TOKENS_ATTRIBUTES: attr_value = getattr(self, "_" + attr) if attr_value: set_attr[attr] = attr_value return set_attr @property def all_special_tokens(self): """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes (cls_token, unk_token...). """ all_toks = [] set_attr = self.special_tokens_map for attr_value in set_attr.values(): all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value]) all_toks = list(set(all_toks)) return all_toks @property def all_special_ids(self): """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to class attributes (cls_token, unk_token...). """ all_toks = self.all_special_tokens all_ids = self.convert_tokens_to_ids(all_toks) return all_ids @additional_special_tokens.setter def additional_special_tokens(self, value): self._additional_special_tokens = value class PreTrainedTokenizer(SpecialTokensMixin): """ Base class for all tokenizers. Handle all the shared methods for tokenization and special tokens as well as methods downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary. This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...). Class attributes (overridden by derived classes): - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string). - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file. - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size. - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method. Parameters: - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id`` - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id`` - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id`` - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id`` - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id`` - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id`` - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id`` - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids`` """ vocab_files_names = {} pretrained_vocab_files_map = {} pretrained_init_configuration = {} max_model_input_sizes = {} model_input_names = ["token_type_ids", "attention_mask"] padding_side = "right" NO_PAD_TOKEN_FOR_BATCH_MSG = ( "No padding token is set for this model, therefore no batch can be made with uneven " "sequences. Set a padding token or adjust the lengths of the sequences building the " "batch so that every sequence is of the same length." ) UNEVEN_SEQUENCES_FOR_BATCH_MSG = ( "The sequences building the batch are not of the same size, no tensor " "can be built. Set `pad_to_max_length=True` to pad the smaller sequences" "up to the larger sequence's length." ) @property def vocab_size(self) -> int: """ Size of the base vocabulary (without the added tokens) """ raise NotImplementedError @property def is_fast(self): return False def get_vocab(self): """ Returns the vocabulary as a dict of {token: index} pairs. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. """ raise NotImplementedError() def __init__(self, max_len=None, **kwargs): super().__init__(**kwargs) self.max_len = max_len if max_len is not None else int(1e12) # Padding side is right by default and over-riden in subclasses. If specified in the kwargs, it is changed. self.padding_side = kwargs.pop("padding_side", self.padding_side) self.model_input_names = kwargs.pop("model_input_names", self.model_input_names) # Added tokens self.added_tokens_encoder = {} self.unique_added_tokens_encoder = set() self.added_tokens_decoder = {} # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``) self.init_inputs = () self.init_kwargs = {} def __len__(self): """ Size of the full vocabulary with the added tokens """ return self.vocab_size + len(self.added_tokens_encoder) @classmethod def from_pretrained(cls, *inputs, **kwargs): r""" Instantiate a :class:`~transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer. Args: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``. - (not applicable to all derived classes, deprecated) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``. cache_dir: (`optional`) string: Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the vocabulary files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method. kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~transformers.PreTrainedTokenizer` for details. Examples:: # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer # Download vocabulary from S3 and cache. tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 (user-uploaded) and cache. tokenizer = BertTokenizer.from_pretrained('dbmdz/bert-base-german-cased') # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`) tokenizer = BertTokenizer.from_pretrained('./test/saved_model/') # If the tokenizer uses a single vocabulary file, you can point directly to this file tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt') # You can link tokens to special vocabulary when instantiating tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>') # You should be sure '<unk>' is in the vocabulary when doing that. # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead) assert tokenizer.unk_token == '<unk>' """ return cls._from_pretrained(*inputs, **kwargs) @classmethod def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs): cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) s3_models = list(cls.max_model_input_sizes.keys()) vocab_files = {} init_configuration = {} if pretrained_model_name_or_path in s3_models: # Get the vocabulary from AWS S3 bucket for file_id, map_list in cls.pretrained_vocab_files_map.items(): vocab_files[file_id] = map_list[pretrained_model_name_or_path] if ( cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration ): init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path].copy() else: # Get the vocabulary from local files logger.info( "Model name '{}' not found in model shortcut name list ({}). " "Assuming '{}' is a path, a model identifier, or url to a directory containing tokenizer files.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path ) ) if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): if len(cls.vocab_files_names) > 1: raise ValueError( "Calling {}.from_pretrained() with the path to a single file or url is not supported." "Use a model identifier or the path to a directory instead.".format(cls.__name__) ) logger.warning( "Calling {}.from_pretrained() with the path to a single file or url is deprecated".format( cls.__name__ ) ) file_id = list(cls.vocab_files_names.keys())[0] vocab_files[file_id] = pretrained_model_name_or_path else: # At this point pretrained_model_name_or_path is either a directory or a model identifier name additional_files_names = { "added_tokens_file": ADDED_TOKENS_FILE, "special_tokens_map_file": SPECIAL_TOKENS_MAP_FILE, "tokenizer_config_file": TOKENIZER_CONFIG_FILE, } # Look for the tokenizer main vocabulary files + the additional tokens files for file_id, file_name in {**cls.vocab_files_names, **additional_files_names}.items(): if os.path.isdir(pretrained_model_name_or_path): full_file_name = os.path.join(pretrained_model_name_or_path, file_name) if not os.path.exists(full_file_name): logger.info("Didn't find file {}. We won't load it.".format(full_file_name)) full_file_name = None else: full_file_name = hf_bucket_url(pretrained_model_name_or_path, postfix=file_name) vocab_files[file_id] = full_file_name # Get files from url, cache, or disk depending on the case try: resolved_vocab_files = {} for file_id, file_path in vocab_files.items(): if file_path is None: resolved_vocab_files[file_id] = None else: resolved_vocab_files[file_id] = cached_path( file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) except EnvironmentError: if pretrained_model_name_or_path in s3_models: msg = "Couldn't reach server at '{}' to download vocabulary files." else: msg = ( "Model name '{}' was not found in tokenizers model name list ({}). " "We assumed '{}' was a path or url to a directory containing vocabulary files " "named {}, but couldn't find such vocabulary files at this path or url.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path, list(cls.vocab_files_names.values()), ) ) raise EnvironmentError(msg) if all(full_file_name is None for full_file_name in resolved_vocab_files.values()): raise EnvironmentError( "Model name '{}' was not found in tokenizers model name list ({}). " "We assumed '{}' was a path, a model identifier, or url to a directory containing vocabulary files " "named {} but couldn't find such vocabulary files at this path or url.".format( pretrained_model_name_or_path, ", ".join(s3_models), pretrained_model_name_or_path, list(cls.vocab_files_names.values()), ) ) for file_id, file_path in vocab_files.items(): if file_path == resolved_vocab_files[file_id]: logger.info("loading file {}".format(file_path)) else: logger.info("loading file {} from cache at {}".format(file_path, resolved_vocab_files[file_id])) # Prepare tokenizer initialization kwargs # Did we saved some inputs and kwargs to reload ? tokenizer_config_file = resolved_vocab_files.pop("tokenizer_config_file", None) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as tokenizer_config_handle: init_kwargs = json.load(tokenizer_config_handle) saved_init_inputs = init_kwargs.pop("init_inputs", ()) if not init_inputs: init_inputs = saved_init_inputs else: init_kwargs = init_configuration # Update with newly provided kwargs init_kwargs.update(kwargs) # Set max length if needed if pretrained_model_name_or_path in cls.max_model_input_sizes: # if we're using a pretrained model, ensure the tokenizer # wont index sequences longer than the number of positional embeddings max_len = cls.max_model_input_sizes[pretrained_model_name_or_path] if max_len is not None and isinstance(max_len, (int, float)): init_kwargs["max_len"] = min(init_kwargs.get("max_len", int(1e12)), max_len) # Merge resolved_vocab_files arguments in init_kwargs. added_tokens_file = resolved_vocab_files.pop("added_tokens_file", None) special_tokens_map_file = resolved_vocab_files.pop("special_tokens_map_file", None) for args_name, file_path in resolved_vocab_files.items(): if args_name not in init_kwargs: init_kwargs[args_name] = file_path if special_tokens_map_file is not None: with open(special_tokens_map_file, encoding="utf-8") as special_tokens_map_handle: special_tokens_map = json.load(special_tokens_map_handle) for key, value in special_tokens_map.items(): if key not in init_kwargs: init_kwargs[key] = value # Instantiate tokenizer. try: tokenizer = cls(*init_inputs, **init_kwargs) except OSError: raise OSError( "Unable to load vocabulary from file. " "Please check that the provided vocabulary is accessible and not corrupted." ) # Save inputs and kwargs for saving and re-loading with ``save_pretrained`` tokenizer.init_inputs = init_inputs tokenizer.init_kwargs = init_kwargs # update unique_added_tokens_encoder with special tokens for correct tokenization tokenizer.unique_added_tokens_encoder.update(set(tokenizer.all_special_tokens)) # Add supplementary tokens. if added_tokens_file is not None: with open(added_tokens_file, encoding="utf-8") as added_tokens_handle: added_tok_encoder = json.load(added_tokens_handle) added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} tokenizer.added_tokens_encoder.update(added_tok_encoder) tokenizer.added_tokens_decoder.update(added_tok_decoder) tokenizer.unique_added_tokens_encoder.update(set(tokenizer.added_tokens_encoder.keys())) return tokenizer def save_pretrained(self, save_directory): """ Save the tokenizer vocabulary files together with: - added tokens, - special-tokens-to-class-attributes-mapping, - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert). This won't save modifications other than (added tokens and special token mapping) you may have applied to the tokenizer after the instantiation (e.g. modifying tokenizer.do_lower_case after creation). This method make sure the full tokenizer can then be re-loaded using the :func:`~transformers.PreTrainedTokenizer.from_pretrained` class method. """ if not os.path.isdir(save_directory): logger.error("Saving directory ({}) should be a directory".format(save_directory)) return special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE) added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE) tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE) tokenizer_config = copy.deepcopy(self.init_kwargs) if len(self.init_inputs) > 0: tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs) for file_id in self.vocab_files_names.keys(): tokenizer_config.pop(file_id, None) with open(tokenizer_config_file, "w", encoding="utf-8") as f: f.write(json.dumps(tokenizer_config, ensure_ascii=False)) with open(special_tokens_map_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.special_tokens_map, ensure_ascii=False)) if len(self.added_tokens_encoder) > 0: with open(added_tokens_file, "w", encoding="utf-8") as f: out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False) f.write(out_str) vocab_files = self.save_vocabulary(save_directory) return vocab_files + (special_tokens_map_file, added_tokens_file) def save_vocabulary(self, save_directory): """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens and special token mappings. Please use :func:`~transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~transformers.PreTrainedTokenizer.from_pretrained` class method. """ raise NotImplementedError def add_tokens(self, new_tokens): """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary. Args: new_tokens: string or list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). Returns: Number of tokens added to the vocabulary. Examples:: # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2']) print('We have added', num_added_toks, 'tokens') model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. """ if not new_tokens: return 0 if not isinstance(new_tokens, list): new_tokens = [new_tokens] to_add_tokens = [] for token in new_tokens: assert isinstance(token, str) if self.init_kwargs.get("do_lower_case", False) and token not in self.all_special_tokens: token = token.lower() if ( token != self.unk_token and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token) and token not in to_add_tokens ): to_add_tokens.append(token) logger.info("Adding %s to the vocabulary", token) added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens)) added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} self.added_tokens_encoder.update(added_tok_encoder) self.unique_added_tokens_encoder = set(self.added_tokens_encoder.keys()).union(set(self.all_special_tokens)) self.added_tokens_decoder.update(added_tok_decoder) return len(to_add_tokens) def num_special_tokens_to_add(self, pair=False): """ Returns the number of added tokens when encoding a sequence with special tokens. Note: This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop. Args: pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the number of added tokens in the case of a single sequence if set to False. Returns: Number of tokens added to sequences """ token_ids_0 = [] token_ids_1 = [] return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None)) def add_special_tokens(self, special_tokens_dict): """ Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them to class attributes. If special tokens are NOT in the vocabulary, they are added to it (indexed starting from the last index of the current vocabulary). Using `add_special_tokens` will ensure your special tokens can be used in several ways: - special tokens are carefully handled by the tokenizer (they are never split) - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts. When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>') Args: special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes: [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``]. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them). Returns: Number of tokens added to the vocabulary. Examples:: # Let's see how to add a new classification token to GPT-2 tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') special_tokens_dict = {'cls_token': '<CLS>'} num_added_toks = tokenizer.add_special_tokens(special_tokens_dict) print('We have added', num_added_toks, 'tokens') model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer. assert tokenizer.cls_token == '<CLS>' """ if not special_tokens_dict: return 0 added_tokens = 0 for key, value in special_tokens_dict.items(): assert key in self.SPECIAL_TOKENS_ATTRIBUTES if key == "additional_special_tokens": assert isinstance(value, (list, tuple)) and all(isinstance(t, str) for t in value) added_tokens += self.add_tokens(value) else: assert isinstance(value, str) added_tokens += self.add_tokens([value]) logger.info("Assigning %s to the %s key of the tokenizer", value, key) setattr(self, key, value) return added_tokens def tokenize(self, text: TextInput, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Take care of added tokens. text: The sequence to be encoded. add_prefix_space: Only applies to GPT-2 and RoBERTa tokenizers. When `True`, this ensures that the sequence begins with an empty space. False by default except for when using RoBERTa with `add_special_tokens=True`. **kwargs: passed to the `prepare_for_tokenization` preprocessing method. """ all_special_tokens = self.all_special_tokens text = self.prepare_for_tokenization(text, **kwargs) def lowercase_text(t): # convert non-special tokens to lowercase escaped_special_toks = [re.escape(s_tok) for s_tok in all_special_tokens] pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)" return re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), t) if self.init_kwargs.get("do_lower_case", False): text = lowercase_text(text) def split_on_token(tok, text): result = [] split_text = text.split(tok) for i, sub_text in enumerate(split_text): sub_text = sub_text.rstrip() if i == 0 and not sub_text: result += [tok] elif i == len(split_text) - 1: if sub_text: result += [sub_text] else: pass else: if sub_text: result += [sub_text] result += [tok] return result def split_on_tokens(tok_list, text): if not text.strip(): return [] if not tok_list: return self._tokenize(text) tokenized_text = [] text_list = [text] for tok in tok_list: tokenized_text = [] for sub_text in text_list: if sub_text not in self.unique_added_tokens_encoder: tokenized_text += split_on_token(tok, sub_text) else: tokenized_text += [sub_text] text_list = tokenized_text return list( itertools.chain.from_iterable( ( self._tokenize(token) if token not in self.unique_added_tokens_encoder else [token] for token in tokenized_text ) ) ) added_tokens = self.unique_added_tokens_encoder tokenized_text = split_on_tokens(added_tokens, text) return tokenized_text def _tokenize(self, text, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). Do NOT take care of added tokens. """ raise NotImplementedError def convert_tokens_to_ids(self, tokens): """ Converts a single token, or a sequence of tokens, (str) in a single integer id (resp. a sequence of ids), using the vocabulary. """ if tokens is None: return None if isinstance(tokens, str): return self._convert_token_to_id_with_added_voc(tokens) ids = [] for token in tokens: ids.append(self._convert_token_to_id_with_added_voc(token)) return ids def _convert_token_to_id_with_added_voc(self, token): if token is None: return None if token in self.added_tokens_encoder: return self.added_tokens_encoder[token] return self._convert_token_to_id(token) def _convert_token_to_id(self, token): raise NotImplementedError def encode( self, text: TextInput, text_pair: Optional[TextInput] = None, add_special_tokens: bool = True, max_length: Optional[int] = None, stride: int = 0, truncation_strategy: str = "longest_first", pad_to_max_length: bool = False, return_tensors: Optional[str] = None, **kwargs ): """ Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary. Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``. Args: text (:obj:`str` or :obj:`List[str]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) text_pair (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`None`): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to ``True``, the sequences will be encoded with the special tokens relative to their model. max_length (:obj:`int`, `optional`, defaults to :obj:`None`): If set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary stride (:obj:`int`, `optional`, defaults to ``0``): If set to a number along with max_length, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. truncation_strategy (:obj:`str`, `optional`, defaults to `longest_first`): String selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) pad_to_max_length (:obj:`bool`, `optional`, defaults to :obj:`False`): If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max length. If no max length is specified, the padding is done up to the model's max length. The tokenizer padding sides are handled by the class attribute `padding_side` which can be set to the following strings: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences Defaults to False: no padding. return_tensors (:obj:`str`, `optional`, defaults to :obj:`None`): Can be set to 'tf' or 'pt' to return respectively TensorFlow :obj:`tf.constant` or PyTorch :obj:`torch.Tensor` instead of a list of python integers. **kwargs: passed to the `self.tokenize()` method """ encoded_inputs = self.encode_plus( text, text_pair=text_pair, max_length=max_length, add_special_tokens=add_special_tokens, stride=stride, truncation_strategy=truncation_strategy, pad_to_max_length=pad_to_max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] def encode_plus( self, text: TextInput, text_pair: Optional[TextInput] = None, add_special_tokens: bool = True, max_length: Optional[int] = None, stride: int = 0, truncation_strategy: str = "longest_first", pad_to_max_length: bool = False, is_pretokenized: bool = False, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, **kwargs ) -> BatchEncoding: """ Returns a dictionary containing the encoded sequence or sequence pair and additional information: the mask for sequence classification and the overflowing elements if a ``max_length`` is specified. Args: text (:obj:`str` or :obj:`List[str]`): The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) text_pair (:obj:`str` or :obj:`List[str]`, `optional`, defaults to :obj:`None`): Optional second sequence to be encoded. This can be a string, a list of strings (tokenized string using the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids` method) add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to ``True``, the sequences will be encoded with the special tokens relative to their model. max_length (:obj:`int`, `optional`, defaults to :obj:`None`): If set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary stride (:obj:`int`, `optional`, defaults to ``0``): If set to a number along with max_length, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. truncation_strategy (:obj:`str`, `optional`, defaults to `longest_first`): String selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) pad_to_max_length (:obj:`bool`, `optional`, defaults to :obj:`False`): If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max length. If no max length is specified, the padding is done up to the model's max length. The tokenizer padding sides are handled by the class attribute `padding_side` which can be set to the following strings: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences Defaults to False: no padding. is_pretokenized (:obj:`bool`, defaults to :obj:`False`): Set to True to indicate the input is already tokenized return_tensors (:obj:`str`, `optional`, defaults to :obj:`None`): Can be set to 'tf' or 'pt' to return respectively TensorFlow :obj:`tf.constant` or PyTorch :obj:`torch.Tensor` instead of a list of python integers. return_token_type_ids (:obj:`bool`, `optional`, defaults to :obj:`None`): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are token type IDs? <../glossary.html#token-type-ids>`_ return_attention_mask (:obj:`bool`, `optional`, defaults to :obj:`none`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are attention masks? <../glossary.html#attention-mask>`__ return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return overflowing token information (default False). return_special_tokens_mask (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return special tokens mask information (default False). return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return (char_start, char_end) for each token (default False). If using Python's tokenizer, this method will raise NotImplementedError. This one is only available on Rust-based tokenizers inheriting from PreTrainedTokenizerFast. **kwargs: passed to the `self.tokenize()` method Return: A Dictionary of shape:: { input_ids: list[int], token_type_ids: list[int] if return_token_type_ids is True (default) attention_mask: list[int] if return_attention_mask is True (default) overflowing_tokens: list[int] if a ``max_length`` is specified and return_overflowing_tokens is True num_truncated_tokens: int if a ``max_length`` is specified and return_overflowing_tokens is True special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True } With the fields: - ``input_ids``: list of token ids to be fed to a model - ``token_type_ids``: list of token type ids to be fed to a model - ``attention_mask``: list of indices specifying which tokens should be attended to by the model - ``overflowing_tokens``: list of overflowing tokens if a max length is specified. - ``num_truncated_tokens``: number of overflowing tokens a ``max_length`` is specified - ``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added tokens and 1 specifying sequence tokens. """ def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, add_special_tokens=add_special_tokens, **kwargs) return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers." "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) # Throw an error if we can pad because there is no padding token if pad_to_max_length and self.pad_token_id is None: raise ValueError( "Unable to set proper padding strategy as the tokenizer does not have a padding token. In this case please set the `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` or add a new pad token via the function add_special_tokens if you want to use a padding strategy" ) first_ids = get_input_ids(text) second_ids = get_input_ids(text_pair) if text_pair is not None else None return self.prepare_for_model( first_ids, pair_ids=second_ids, max_length=max_length, pad_to_max_length=pad_to_max_length, add_special_tokens=add_special_tokens, stride=stride, truncation_strategy=truncation_strategy, return_tensors=return_tensors, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, ) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextPairInput], List[PreTokenizedInput], List[PreTokenizedInputPair] ], add_special_tokens: bool = True, max_length: Optional[int] = None, stride: int = 0, truncation_strategy: str = "longest_first", pad_to_max_length: bool = False, is_pretokenized: bool = False, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_masks: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_masks: bool = False, return_offsets_mapping: bool = False, return_input_lengths: bool = False, **kwargs ) -> BatchEncoding: """ Returns a dictionary containing the encoded sequence or sequence pair and additional information: the mask for sequence classification and the overflowing elements if a ``max_length`` is specified. Args: batch_text_or_text_pairs (:obj:`List[str]` or :obj:`List[List[str]]`): Batch of sequences or pair of sequences to be encoded. This can be a list of string/string-sequences/int-sequences or a list of pair of string/string-sequences/int-sequence (see details in encode_plus) add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to ``True``, the sequences will be encoded with the special tokens relative to their model. max_length (:obj:`int`, `optional`, defaults to :obj:`None`): If set to a number, will limit the total sequence returned so that it has a maximum length. If there are overflowing tokens, those will be added to the returned dictionary stride (:obj:`int`, `optional`, defaults to ``0``): If set to a number along with max_length, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. truncation_strategy (:obj:`str`, `optional`, defaults to `longest_first`): String selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) pad_to_max_length (:obj:`bool`, `optional`, defaults to :obj:`False`): If set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max length. If no max length is specified, the padding is done up to the model's max length. The tokenizer padding sides are handled by the class attribute `padding_side` which can be set to the following strings: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences Defaults to False: no padding. is_pretokenized (:obj:`bool`, defaults to :obj:`False`): Set to True to indicate the input is already tokenized return_tensors (:obj:`str`, `optional`, defaults to :obj:`None`): Can be set to 'tf' or 'pt' to return respectively TensorFlow :obj:`tf.constant` or PyTorch :obj:`torch.Tensor` instead of a list of python integers. return_token_type_ids (:obj:`bool`, `optional`, defaults to :obj:`None`): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are token type IDs? <../glossary.html#token-type-ids>`_ return_attention_masks (:obj:`bool`, `optional`, defaults to :obj:`none`): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute. `What are attention masks? <../glossary.html#attention-mask>`__ return_overflowing_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return overflowing token information (default False). return_special_tokens_masks (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return special tokens mask information (default False). return_offsets_mapping (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True to return (char_start, char_end) for each token (default False). If using Python's tokenizer, this method will raise NotImplementedError. This one is only available on Rust-based tokenizers inheriting from PreTrainedTokenizerFast. return_input_lengths (:obj:`bool`, `optional`, defaults to :obj:`False`): If set the resulting dictionary will include the length of each sample **kwargs: passed to the `self.tokenize()` method Return: A Dictionary of shape:: { input_ids: list[List[int]], token_type_ids: list[List[int]] if return_token_type_ids is True (default) attention_mask: list[List[int]] if return_attention_mask is True (default) overflowing_tokens: list[List[int]] if a ``max_length`` is specified and return_overflowing_tokens is True num_truncated_tokens: List[int] if a ``max_length`` is specified and return_overflowing_tokens is True special_tokens_mask: list[List[int]] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True } With the fields: - ``input_ids``: list of token ids to be fed to a model - ``token_type_ids``: list of token type ids to be fed to a model - ``attention_mask``: list of indices specifying which tokens should be attended to by the model - ``overflowing_tokens``: list of overflowing tokens if a max length is specified. - ``num_truncated_tokens``: number of overflowing tokens a ``max_length`` is specified - ``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added tokens and 1 specifying sequence tokens. """ def get_input_ids(text): if isinstance(text, str): tokens = self.tokenize(text, add_special_tokens=add_special_tokens, **kwargs) return self.convert_tokens_to_ids(tokens) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str): return self.convert_tokens_to_ids(text) elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): return text else: raise ValueError( "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." ) # Throw an error if we can pad because there is no padding token if pad_to_max_length and self.pad_token_id is None: raise ValueError( "Unable to set proper padding strategy as the tokenizer does not have a padding token. In this case please set the `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` or add a new pad token via the function add_special_tokens if you want to use a padding strategy" ) if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers." "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) input_ids = [] for ids_or_pair_ids in batch_text_or_text_pairs: if isinstance(ids_or_pair_ids, (list, tuple)) and len(ids_or_pair_ids) == 2 and not is_pretokenized: ids, pair_ids = ids_or_pair_ids else: ids, pair_ids = ids_or_pair_ids, None first_ids = get_input_ids(ids) second_ids = get_input_ids(pair_ids) if pair_ids is not None else None input_ids.append((first_ids, second_ids)) if max_length is None and pad_to_max_length: def total_sequence_length(input_pairs): first_ids, second_ids = input_pairs return len(first_ids) + ( self.num_special_tokens_to_add() if second_ids is None else (len(second_ids) + self.num_special_tokens_to_add(pair=True)) ) max_length = max([total_sequence_length(ids) for ids in input_ids]) batch_outputs = {} for first_ids, second_ids in input_ids: # Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by # the model. It adds special tokens, truncates sequences if overflowing while taking into account # the special tokens and manages a window stride for overflowing tokens outputs = self.prepare_for_model( first_ids, pair_ids=second_ids, max_length=max_length, pad_to_max_length=pad_to_max_length, add_special_tokens=add_special_tokens, stride=stride, truncation_strategy=truncation_strategy, return_attention_mask=return_attention_masks, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_masks, ) # Append the non-padded length to the output if return_input_lengths: outputs["input_len"] = len(outputs["input_ids"]) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) if return_tensors is not None: # Do the tensor conversion in batch for key, value in batch_outputs.items(): if return_tensors == "tf" and is_tf_available(): try: batch_outputs[key] = tf.constant(value) except ValueError: if None in [item for sequence in value for item in sequence]: raise ValueError(self.NO_PAD_TOKEN_FOR_BATCH_MSG) else: raise ValueError(self.UNEVEN_SEQUENCES_FOR_BATCH_MSG) elif return_tensors == "pt" and is_torch_available(): try: batch_outputs[key] = torch.tensor(value) except ValueError: raise ValueError(self.UNEVEN_SEQUENCES_FOR_BATCH_MSG) except RuntimeError: if None in [item for sequence in value for item in sequence]: raise ValueError(self.NO_PAD_TOKEN_FOR_BATCH_MSG) else: raise elif return_tensors is not None: logger.warning( "Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format( return_tensors ) ) return BatchEncoding(batch_outputs) def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, max_length: Optional[int] = None, add_special_tokens: bool = True, stride: int = 0, truncation_strategy: str = "longest_first", pad_to_max_length: bool = False, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, ): """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a window stride for overflowing tokens Args: ids: list of tokenized input ids. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_ids: Optional second list of input ids. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. max_length: maximum length of the returned list. Will truncate by taking into account the special tokens. add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative to their model. stride: window stride for overflowing tokens. Can be useful for edge effect removal when using sequential list of inputs. truncation_strategy: string selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences) - 'only_first': Only truncate the first sequence - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) pad_to_max_length: if set to True, the returned sequences will be padded according to the model's padding side and padding index, up to their max length. If no max length is specified, the padding is done up to the model's max length. The tokenizer padding sides are handled by the following strings: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences Defaults to False: no padding. return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant or PyTorch torch.Tensor instead of a list of python integers. return_token_type_ids: (optional) Set to False to avoid returning token_type_ids (default True). return_attention_mask: (optional) Set to False to avoid returning attention mask (default True) return_overflowing_tokens: (optional) Set to True to return overflowing token information (default False). return_special_tokens_mask: (optional) Set to True to return special tokens mask information (default False). Return: A Dictionary of shape:: { input_ids: list[int], token_type_ids: list[int] if return_token_type_ids is True (default) overflowing_tokens: list[int] if a ``max_length`` is specified and return_overflowing_tokens is True num_truncated_tokens: int if a ``max_length`` is specified and return_overflowing_tokens is True special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True } With the fields: ``input_ids``: list of token ids to be fed to a model ``token_type_ids``: list of token type ids to be fed to a model ``overflowing_tokens``: list of overflowing tokens if a max length is specified. ``num_truncated_tokens``: number of overflowing tokens a ``max_length`` is specified ``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added tokens and 1 specifying sequence tokens. """ pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Handle max sequence length total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) if max_length and total_len > max_length: ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Handle special_tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([1] * len(pair_ids) if pair else []) if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if max_length and len(encoded_inputs["input_ids"]) > max_length: encoded_inputs["input_ids"] = encoded_inputs["input_ids"][:max_length] if return_token_type_ids: encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"][:max_length] if return_special_tokens_mask: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"][:max_length] if max_length is None and len(encoded_inputs["input_ids"]) > self.max_len: logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " "for this model ({} > {}). Running this sequence through the model will result in " "indexing errors".format(len(ids), self.max_len) ) needs_to_be_padded = pad_to_max_length and ( max_length and len(encoded_inputs["input_ids"]) < max_length or max_length is None and len(encoded_inputs["input_ids"]) < self.max_len and self.max_len <= 10000 ) if pad_to_max_length and max_length is None and self.max_len > 10000: logger.warning( "Sequence can't be padded as no maximum length is specified and the model maximum length is too high." ) if needs_to_be_padded: difference = (max_length if max_length is not None else self.max_len) - len(encoded_inputs["input_ids"]) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) + [0] * difference if return_token_type_ids: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if return_special_tokens_mask: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + [1] * len(encoded_inputs["input_ids"]) if return_token_type_ids: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if return_special_tokens_mask: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) elif return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) # Prepare inputs as tensors if asked if return_tensors == "tf" and is_tf_available(): encoded_inputs["input_ids"] = tf.constant([encoded_inputs["input_ids"]]) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = tf.constant([encoded_inputs["token_type_ids"]]) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = tf.constant([encoded_inputs["attention_mask"]]) elif return_tensors == "pt" and is_torch_available(): encoded_inputs["input_ids"] = torch.tensor([encoded_inputs["input_ids"]]) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = torch.tensor([encoded_inputs["token_type_ids"]]) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = torch.tensor([encoded_inputs["attention_mask"]]) elif return_tensors is not None: logger.warning( "Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format( return_tensors ) ) return BatchEncoding(encoded_inputs) def prepare_for_tokenization(self, text, **kwargs): """ Performs any necessary transformations before tokenization """ return text def truncate_sequences( self, ids, pair_ids=None, num_tokens_to_remove=0, truncation_strategy="longest_first", stride=0 ): """Truncates a sequence pair in place to the maximum length. truncation_strategy: string selected in the following options: - 'longest_first' (default) Iteratively reduce the inputs sequence until the input is under max_length starting from the longest one at each token (when there is a pair of input sequences). Overflowing tokens only contains overflow from the first sequence. - 'only_first': Only truncate the first sequence. raise an error if the first sequence is shorter or equal to than num_tokens_to_remove. - 'only_second': Only truncate the second sequence - 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length) """ if num_tokens_to_remove <= 0: return ids, pair_ids, [] if truncation_strategy == "longest_first": overflowing_tokens = [] for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): overflowing_tokens = [ids[-1]] + overflowing_tokens ids = ids[:-1] else: pair_ids = pair_ids[:-1] window_len = min(len(ids), stride) if window_len > 0: overflowing_tokens = ids[-window_len:] + overflowing_tokens elif truncation_strategy == "only_first": assert len(ids) > num_tokens_to_remove window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] ids = ids[:-num_tokens_to_remove] elif truncation_strategy == "only_second": assert pair_ids is not None and len(pair_ids) > num_tokens_to_remove window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] elif truncation_strategy == "do_not_truncate": raise ValueError("Input sequence are too long for max_length. Please select a truncation strategy.") else: raise ValueError( "Truncation_strategy should be selected in ['longest_first', 'only_first', 'only_second', 'do_not_truncate']" ) return (ids, pair_ids, overflowing_tokens) def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): if token_ids_1 is None: return len(token_ids_0) * [0] return [0] * len(token_ids_0) + [1] * len(token_ids_1) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: single sequence: <s> X </s> pair of sequences: <s> A </s></s> B </s> """ if token_ids_1 is None: return token_ids_0 return token_ids_0 + token_ids_1 def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0: list of ids (must not contain special tokens) token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids for sequence pairs already_has_special_tokens: (default False) Set to True if the token list is already formated with special tokens for the model Returns: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0)) def convert_ids_to_tokens(self, ids, skip_special_tokens=False): """ Converts a single index or a sequence of indices (integers) in a token " (resp.) a sequence of tokens (str), using the vocabulary and added tokens. Args: skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False """ if isinstance(ids, int): if ids in self.added_tokens_decoder: return self.added_tokens_decoder[ids] else: return self._convert_id_to_token(ids) tokens = [] for index in ids: index = int(index) if skip_special_tokens and index in self.all_special_ids: continue if index in self.added_tokens_decoder: tokens.append(self.added_tokens_decoder[index]) else: tokens.append(self._convert_id_to_token(index)) return tokens def _convert_id_to_token(self, index): raise NotImplementedError def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids)) but we often want to remove sub-word tokenization artifacts at the same time. """ return " ".join(self.convert_ids_to_tokens(tokens)) def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): """ Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``. Args: token_ids: list of tokenized input ids. Can be obtained using the `encode` or `encode_plus` methods. skip_special_tokens: if set to True, will replace special tokens. clean_up_tokenization_spaces: if set to True, will clean up the tokenization spaces. """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separatly for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) text = " ".join(sub_texts) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text @staticmethod def clean_up_tokenization(out_string): """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms. """ out_string = ( out_string.replace(" .", ".") .replace(" ?", "?") .replace(" !", "!") .replace(" ,", ",") .replace(" ' ", "'") .replace(" n't", "n't") .replace(" 'm", "'m") .replace(" do not", " don't") .replace(" 's", "'s") .replace(" 've", "'ve") .replace(" 're", "'re") ) return out_string def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", "bert-base-german-cased": "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt", "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt", "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt", "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt", "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt", "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt", "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-vocab.txt", "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-vocab.txt", "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/vocab.txt", "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/vocab.txt", "bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "bert-base-uncased": 512, "bert-large-uncased": 512, "bert-base-cased": 512, "bert-large-cased": 512, "bert-base-multilingual-uncased": 512, "bert-base-multilingual-cased": 512, "bert-base-chinese": 512, "bert-base-german-cased": 512, "bert-large-uncased-whole-word-masking": 512, "bert-large-cased-whole-word-masking": 512, "bert-large-uncased-whole-word-masking-finetuned-squad": 512, "bert-large-cased-whole-word-masking-finetuned-squad": 512, "bert-base-cased-finetuned-mrpc": 512, "bert-base-german-dbmdz-cased": 512, "bert-base-german-dbmdz-uncased": 512, "bert-base-finnish-cased-v1": 512, "bert-base-finnish-uncased-v1": 512, "bert-base-dutch-cased": 512, } PRETRAINED_INIT_CONFIGURATION = { "bert-base-uncased": {"do_lower_case": True}, "bert-large-uncased": {"do_lower_case": True}, "bert-base-cased": {"do_lower_case": False}, "bert-large-cased": {"do_lower_case": False}, "bert-base-multilingual-uncased": {"do_lower_case": True}, "bert-base-multilingual-cased": {"do_lower_case": False}, "bert-base-chinese": {"do_lower_case": False}, "bert-base-german-cased": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking": {"do_lower_case": True}, "bert-large-cased-whole-word-masking": {"do_lower_case": False}, "bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True}, "bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False}, "bert-base-cased-finetuned-mrpc": {"do_lower_case": False}, "bert-base-german-dbmdz-cased": {"do_lower_case": False}, "bert-base-german-dbmdz-uncased": {"do_lower_case": True}, "bert-base-finnish-cased-v1": {"do_lower_case": False}, "bert-base-finnish-uncased-v1": {"do_lower_case": True}, "bert-base-dutch-cased": {"do_lower_case": False}, } # Bert Classes class BertTokenizer(PreTrainedTokenizer): r""" Constructs a BERT tokenizer. Based on WordPiece. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (:obj:`string`): File containing the vocabulary. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to lowercase the input when tokenizing. do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to do basic tokenization before WordPiece. never_split (:obj:`bool`, `optional`, defaults to :obj:`True`): List of tokens which will never be split during tokenization. Only has an effect when :obj:`do_basic_tokenize=True` unk_token (:obj:`string`, `optional`, defaults to "[UNK]"): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`string`, `optional`, defaults to "[SEP]"): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`string`, `optional`, defaults to "[PAD]"): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`string`, `optional`, defaults to "[CLS]"): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`string`, `optional`, defaults to "[MASK]"): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/transformers/issues/328 """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, **kwargs ): super().__init__( unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.max_len_single_sentence = self.max_len - 2 # take into account special tokens self.max_len_sentences_pair = self.max_len - 3 # take into account special tokens if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file) ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods. Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Set to True if the token list is already formatted with special tokens for the model Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 0 for a special token, 1 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formated with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | if token_ids_1 is None, only returns the first portion of the mask (0's). Args: token_ids_0 (:obj:`List[int]`): List of ids. token_ids_1 (:obj:`List[int]`, `optional`, defaults to :obj:`None`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, vocab_path): """ Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory. Args: vocab_path (:obj:`str`): The directory in which to save the vocabulary. Returns: :obj:`Tuple(str)`: Paths to the files saved. """ index = 0 if os.path.isdir(vocab_path): vocab_file = os.path.join(vocab_path, VOCAB_FILES_NAMES["vocab_file"]) else: vocab_file = vocab_path with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( "Saving vocabulary to {}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!".format(vocab_file) ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True): """ Constructs a BasicTokenizer. Args: **do_lower_case**: Whether to lower case the input. **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. **tokenize_chinese_chars**: (`optional`) boolean (default True) Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/pytorch-pretrained-BERT/issues/328 """ if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = never_split self.tokenize_chinese_chars = tokenize_chinese_chars def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ never_split = self.never_split + (never_split if never_split is not None else []) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case and token not in never_split: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/tokenization_utils.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list return [i for i, e in enumerate(affinity_list) if e != 0] def set_affinity(gpu_id=None): if gpu_id is None: gpu_id = int(os.getenv('LOCAL_RANK', 0)) dev = device(gpu_id) os.sched_setaffinity(0, dev.getCpuAffinity()) # list of ints representing the logical cores this process is now affinitied with return os.sched_getaffinity(0)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/gpu_affinity.py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for preparing pre-training data and supplying them to the model.""" import collections import numpy as np import tensorflow as tf import utils import tokenization def get_dataset(config, batch_size, num_cpu_threads=4, world_size=1, rank=0): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([config.max_seq_length], tf.int64), } input_files = [] for input_pattern in config.pretrain_tfrecords.split(","): input_files.extend(tf.io.gfile.glob(input_pattern)) d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files)) d = d.shard(num_shards=world_size, index=rank) d = d.repeat() d = d.shuffle(buffer_size=len(input_files), seed=config.seed, reshuffle_each_iteration=False) cycle_length = min(num_cpu_threads, len(input_files)) d = d.interleave( tf.data.TFRecordDataset, cycle_length=cycle_length, deterministic=True) d = d.shuffle(buffer_size=100, seed=config.seed, reshuffle_each_iteration=False) d = d.map(lambda record: _decode_record(record, name_to_features)) d = d.batch(batch_size) return d def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example # model inputs - it's a bit nicer to use a namedtuple rather than keep the # features as a dict Inputs = collections.namedtuple( "Inputs", ["input_ids", "input_mask", "segment_ids", "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]) def features_to_inputs(features): return Inputs( input_ids=features["input_ids"], input_mask=features["input_mask"], segment_ids=features["segment_ids"], masked_lm_positions=(features["masked_lm_positions"] if "masked_lm_positions" in features else None), masked_lm_ids=(features["masked_lm_ids"] if "masked_lm_ids" in features else None), masked_lm_weights=(features["masked_lm_weights"] if "masked_lm_weights" in features else None), ) def get_updated_inputs(inputs, **kwargs): features = inputs._asdict() for k, v in kwargs.items(): features[k] = v return features_to_inputs(features) def get_shape_list(tensor, expected_rank=None, name=None): """Returns a list of the shape of tensor, preferring static dimensions. Args: tensor: A tf.Tensor object to find the shape of. expected_rank: (optional) int. The expected rank of `tensor`. If this is specified and the `tensor` has a different rank, and exception will be thrown. name: Optional name of the tensor for the error message. Returns: A list of dimensions of the shape of tensor. All static dimensions will be returned as python integers, and dynamic dimensions will be returned as tf.Tensor scalars. """ if isinstance(tensor, np.ndarray) or isinstance(tensor, list): shape = np.array(tensor).shape if isinstance(expected_rank, six.integer_types): assert len(shape) == expected_rank elif expected_rank is not None: assert len(shape) in expected_rank return shape # # if name is None: # name = tensor.name # # if expected_rank is not None: # assert_rank(tensor, expected_rank, name) shape = tensor.shape.as_list() non_static_indexes = [] for (index, dim) in enumerate(shape): if dim is None: non_static_indexes.append(index) if not non_static_indexes: return shape dyn_shape = tf.shape(tensor) for index in non_static_indexes: shape[index] = dyn_shape[index] return shape def gather_positions(sequence, positions): """Gathers the vectors at the specific positions over a minibatch. Args: sequence: A [batch_size, seq_length] or [batch_size, seq_length, depth] tensor of values positions: A [batch_size, n_positions] tensor of indices Returns: A [batch_size, n_positions] or [batch_size, n_positions, depth] tensor of the values at the indices """ shape = get_shape_list(sequence, expected_rank=[2, 3]) depth_dimension = (len(shape) == 3) if depth_dimension: B, L, D = shape else: B, L = shape D = 1 sequence = tf.expand_dims(sequence, -1) position_shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(positions + position_shift, [-1]) flat_sequence = tf.reshape(sequence, [B * L, D]) gathered = tf.gather(flat_sequence, flat_positions) if depth_dimension: return tf.reshape(gathered, [B, -1, D]) else: return tf.reshape(gathered, [B, -1]) def scatter_update(sequence, updates, positions): """Scatter-update a sequence. Args: sequence: A [batch_size, seq_len] or [batch_size, seq_len, depth] tensor updates: A tensor of size batch_size*seq_len(*depth) positions: A [batch_size, n_positions] tensor Returns: A tuple of two tensors. First is a [batch_size, seq_len] or [batch_size, seq_len, depth] tensor of "sequence" with elements at "positions" replaced by the values at "updates." Updates to index 0 are ignored. If there are duplicated positions the update is only applied once. Second is a [batch_size, seq_len] mask tensor of which inputs were updated. """ shape = get_shape_list(sequence, expected_rank=[2, 3]) depth_dimension = (len(shape) == 3) if depth_dimension: B, L, D = shape else: B, L = shape D = 1 sequence = tf.expand_dims(sequence, -1) N = get_shape_list(positions)[1] shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(positions + shift, [-1, 1]) flat_updates = tf.reshape(updates, [-1, D]) updates = tf.scatter_nd(flat_positions, flat_updates, [B * L, D]) updates = tf.reshape(updates, [B, L, D]) flat_updates_mask = tf.ones([B * N], tf.int32) updates_mask = tf.scatter_nd(flat_positions, flat_updates_mask, [B * L]) updates_mask = tf.reshape(updates_mask, [B, L]) not_first_token = tf.concat([tf.zeros((B, 1), tf.int32), tf.ones((B, L - 1), tf.int32)], -1) updates_mask *= not_first_token updates_mask_3d = tf.expand_dims(updates_mask, -1) # account for duplicate positions if sequence.dtype == tf.float32: updates_mask_3d = tf.cast(updates_mask_3d, tf.float32) updates /= tf.maximum(1.0, updates_mask_3d) else: assert sequence.dtype == tf.int32 updates = tf.math.floordiv(updates, tf.maximum(1, updates_mask_3d)) updates_mask = tf.minimum(updates_mask, 1) updates_mask_3d = tf.minimum(updates_mask_3d, 1) updated_sequence = (((1 - updates_mask_3d) * sequence) + (updates_mask_3d * updates)) if not depth_dimension: updated_sequence = tf.squeeze(updated_sequence, -1) return updated_sequence, updates_mask def _get_candidates_mask(inputs: Inputs, vocab, disallow_from_mask=None): """Returns a mask tensor of positions in the input that can be masked out.""" ignore_ids = [vocab["[SEP]"], vocab["[CLS]"], vocab["[MASK]"]] candidates_mask = tf.ones_like(inputs.input_ids, tf.bool) for ignore_id in ignore_ids: candidates_mask &= tf.not_equal(inputs.input_ids, ignore_id) candidates_mask &= tf.cast(inputs.input_mask, tf.bool) if disallow_from_mask is not None: candidates_mask &= ~disallow_from_mask return candidates_mask def mask(config, inputs, mask_prob, proposal_distribution=1.0, disallow_from_mask=None, already_masked=None): """Implementation of dynamic masking. The optional arguments aren't needed for BERT/ELECTRA and are from early experiments in "strategically" masking out tokens instead of uniformly at random. Args: config: configure_pretraining.PretrainingConfig inputs: pretrain_data.Inputs containing input input_ids/input_mask mask_prob: percent of tokens to mask proposal_distribution: for non-uniform masking can be a [B, L] tensor of scores for masking each position. disallow_from_mask: a boolean tensor of [B, L] of positions that should not be masked out already_masked: a boolean tensor of [B, N] of already masked-out tokens for multiple rounds of masking Returns: a pretrain_data.Inputs with masking added """ # Get the batch size, sequence length, and max masked-out tokens N = config.max_predictions_per_seq B, L = get_shape_list(inputs.input_ids) # Find indices where masking out a token is allowed vocab = tokenization.ElectraTokenizer( config.vocab_file, do_lower_case=config.do_lower_case).get_vocab() candidates_mask = _get_candidates_mask(inputs, vocab, disallow_from_mask) # Set the number of tokens to mask out per example num_tokens = tf.cast(tf.reduce_sum(inputs.input_mask, -1), tf.float32) num_to_predict = tf.maximum(1, tf.minimum( N, tf.cast(tf.round(num_tokens * mask_prob), tf.int32))) masked_lm_weights = tf.cast(tf.sequence_mask(num_to_predict, N), tf.float32) if already_masked is not None: masked_lm_weights *= (1 - already_masked) # Get a probability of masking each position in the sequence candidate_mask_float = tf.cast(candidates_mask, tf.float32) sample_prob = (proposal_distribution * candidate_mask_float) sample_prob /= tf.reduce_sum(sample_prob, axis=-1, keepdims=True) # Sample the positions to mask out sample_prob = tf.stop_gradient(sample_prob) sample_logits = tf.math.log(sample_prob) masked_lm_positions = tf.random.categorical( sample_logits, N, dtype=tf.int32) masked_lm_positions *= tf.cast(masked_lm_weights, tf.int32) # Get the ids of the masked-out tokens shift = tf.expand_dims(L * tf.range(B), -1) flat_positions = tf.reshape(masked_lm_positions + shift, [-1, 1]) masked_lm_ids = tf.gather_nd(tf.reshape(inputs.input_ids, [-1]), flat_positions) masked_lm_ids = tf.reshape(masked_lm_ids, [B, -1]) masked_lm_ids *= tf.cast(masked_lm_weights, tf.int32) # Update the input ids replace_with_mask_positions = masked_lm_positions * tf.cast( tf.less(tf.random.uniform([B, N]), 0.85), tf.int32) inputs_ids, _ = scatter_update( inputs.input_ids, tf.fill([B, N], vocab["[MASK]"]), replace_with_mask_positions) return get_updated_inputs( inputs, input_ids=tf.stop_gradient(inputs_ids), masked_lm_positions=masked_lm_positions, masked_lm_ids=masked_lm_ids, masked_lm_weights=masked_lm_weights ) def unmask(inputs: Inputs): unmasked_input_ids, _ = scatter_update( inputs.input_ids, inputs.masked_lm_ids, inputs.masked_lm_positions) return get_updated_inputs(inputs, input_ids=unmasked_input_ids) def sample_from_softmax(logits, disallow=None): if disallow is not None: logits -= 1000.0 * disallow uniform_noise = tf.random.uniform( get_shape_list(logits), minval=0, maxval=1) gumbel_noise = tf.cast(-tf.math.log(-tf.math.log(uniform_noise + 1e-9) + 1e-9), logits.dtype) return tf.one_hot(tf.argmax(tf.nn.softmax(logits + gumbel_noise), -1, output_type=tf.int32), logits.shape[-1]) ENDC = "\033[0m" COLORS = ["\033[" + str(n) + "m" for n in list(range(91, 97)) + [90]] RED = COLORS[0] BLUE = COLORS[3] CYAN = COLORS[5] GREEN = COLORS[1] def print_tokens(inputs: Inputs, inv_vocab, updates_mask=None): """Pretty-print model inputs.""" pos_to_tokid = {} for tokid, pos, weight in zip( inputs.masked_lm_ids[0], inputs.masked_lm_positions[0], inputs.masked_lm_weights[0]): if weight == 0: pass else: pos_to_tokid[pos] = tokid text = "" provided_update_mask = (updates_mask is not None) if not provided_update_mask: updates_mask = np.zeros_like(inputs.input_ids) for pos, (tokid, um) in enumerate( zip(inputs.input_ids[0], updates_mask[0])): token = inv_vocab[tokid] if token == "[PAD]": break if pos in pos_to_tokid: token = RED + token + " (" + inv_vocab[pos_to_tokid[pos]] + ")" + ENDC if provided_update_mask: assert um == 1 else: if provided_update_mask: assert um == 0 text += token + " " utils.log(utils.printable_text(text))
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/pretrain_utils.py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Writes out text data as tfrecords that ELECTRA can be pre-trained on.""" import argparse import multiprocessing import os import random import time import tensorflow as tf import utils from tokenization import ElectraTokenizer def create_int_feature(values): feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return feature class ExampleBuilder(object): """Given a stream of input text, creates pretraining examples.""" def __init__(self, tokenizer, max_length): self._tokenizer = tokenizer self._current_sentences = [] self._current_length = 0 self._max_length = max_length self._target_length = max_length def add_line(self, line): """Adds a line of text to the current example being built.""" line = line.strip().replace("\n", " ") if (not line) and self._current_length != 0: # empty lines separate docs return self._create_example() bert_tokens = self._tokenizer.tokenize(line) bert_tokids = self._tokenizer.convert_tokens_to_ids(bert_tokens) self._current_sentences.append(bert_tokids) self._current_length += len(bert_tokids) if self._current_length >= self._target_length: return self._create_example() return None def _create_example(self): """Creates a pre-training example from the current list of sentences.""" # small chance to only have one segment as in classification tasks if random.random() < 0.1: first_segment_target_length = 100000 else: # -3 due to not yet having [CLS]/[SEP] tokens in the input text first_segment_target_length = (self._target_length - 3) // 2 first_segment = [] second_segment = [] for sentence in self._current_sentences: # the sentence goes to the first segment if (1) the first segment is # empty, (2) the sentence doesn't put the first segment over length or # (3) 50% of the time when it does put the first segment over length if (len(first_segment) == 0 or len(first_segment) + len(sentence) < first_segment_target_length or (len(second_segment) == 0 and len(first_segment) < first_segment_target_length and random.random() < 0.5)): first_segment += sentence else: second_segment += sentence # trim to max_length while accounting for not-yet-added [CLS]/[SEP] tokens first_segment = first_segment[:self._max_length - 2] second_segment = second_segment[:max(0, self._max_length - len(first_segment) - 3)] # prepare to start building the next example self._current_sentences = [] self._current_length = 0 # small chance for random-length instead of max_length-length example if random.random() < 0.05: self._target_length = random.randint(5, self._max_length) else: self._target_length = self._max_length return self._make_tf_example(first_segment, second_segment) def _make_tf_example(self, first_segment, second_segment): """Converts two "segments" of text into a tf.train.Example.""" vocab = self._tokenizer.vocab input_ids = [vocab["[CLS]"]] + first_segment + [vocab["[SEP]"]] segment_ids = [0] * len(input_ids) if second_segment: input_ids += second_segment + [vocab["[SEP]"]] segment_ids += [1] * (len(second_segment) + 1) input_mask = [1] * len(input_ids) input_ids += [0] * (self._max_length - len(input_ids)) input_mask += [0] * (self._max_length - len(input_mask)) segment_ids += [0] * (self._max_length - len(segment_ids)) tf_example = tf.train.Example(features=tf.train.Features(feature={ "input_ids": create_int_feature(input_ids), "input_mask": create_int_feature(input_mask), "segment_ids": create_int_feature(segment_ids) })) return tf_example class ExampleWriter(object): """Writes pre-training examples to disk.""" def __init__(self, job_id, vocab_file, output_dir, max_seq_length, num_jobs, blanks_separate_docs, do_lower_case, num_out_files=1000): self._blanks_separate_docs = blanks_separate_docs tokenizer = ElectraTokenizer( vocab_file=vocab_file, do_lower_case=do_lower_case) self._example_builder = ExampleBuilder(tokenizer, max_seq_length) self._writers = [] for i in range(num_out_files): if i % num_jobs == job_id: output_fname = os.path.join( output_dir, "pretrain_data.tfrecord-{:}-of-{:}".format( i, num_out_files)) self._writers.append(tf.io.TFRecordWriter(output_fname)) self.n_written = 0 def write_examples(self, input_file): """Writes out examples from the provided input file.""" with tf.io.gfile.GFile(input_file) as f: for line in f: line = line.strip() if line or self._blanks_separate_docs: example = self._example_builder.add_line(line) if example: self._writers[self.n_written % len(self._writers)].write( example.SerializeToString()) self.n_written += 1 example = self._example_builder.add_line("") if example: self._writers[self.n_written % len(self._writers)].write( example.SerializeToString()) self.n_written += 1 def finish(self): for writer in self._writers: writer.close() def write_examples(job_id, args): """A single process creating and writing out pre-processed examples.""" def log(*args): msg = " ".join(map(str, args)) print("Job {}:".format(job_id), msg) log("Creating example writer") example_writer = ExampleWriter( job_id=job_id, vocab_file=args.vocab_file, output_dir=args.output_dir, max_seq_length=args.max_seq_length, num_jobs=args.num_processes, blanks_separate_docs=args.blanks_separate_docs, do_lower_case=args.do_lower_case, num_out_files=args.num_out_files, ) log("Writing tf examples") fnames = sorted(tf.io.gfile.listdir(args.corpus_dir)) fnames = [f for (i, f) in enumerate(fnames) if i % args.num_processes == job_id] random.shuffle(fnames) start_time = time.time() for file_no, fname in enumerate(fnames): if file_no > 0: elapsed = time.time() - start_time log("processed {:}/{:} files ({:.1f}%), ELAPSED: {:}s, ETA: {:}s, " "{:} examples written".format( file_no, len(fnames), 100.0 * file_no / len(fnames), int(elapsed), int((len(fnames) - file_no) / (file_no / elapsed)), example_writer.n_written)) example_writer.write_examples(os.path.join(args.corpus_dir, fname)) example_writer.finish() log("Done!") # python build_pretraining_dataset --corpus-dir def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--corpus-dir", required=True, help="Location of pre-training text files.") parser.add_argument("--vocab-file", required=True, help="Location of vocabulary file.") parser.add_argument("--output-dir", required=True, help="Where to write out the tfrecords.") parser.add_argument("--max-seq-length", default=128, type=int, help="Number of tokens per example.") parser.add_argument("--num-processes", default=1, type=int, help="Parallelize across multiple processes.") parser.add_argument("--blanks-separate-docs", default=True, type=bool, help="Whether blank lines indicate document boundaries.") parser.add_argument("--do-lower-case", dest='do_lower_case', action='store_true', help="Lower case input text.") parser.add_argument("--no-lower-case", dest='do_lower_case', action='store_false', help="Don't lower case input text.") parser.add_argument("--num-out-files", default=1000, type=int, help="Number of output files.") parser.add_argument("--seed", default=1314, type=int) args = parser.parse_args() random.seed(args.seed) utils.rmkdir(args.output_dir) if args.num_processes == 1: write_examples(0, args) else: jobs = [] for i in range(args.num_processes): job = multiprocessing.Process(target=write_examples, args=(i, args)) jobs.append(job) job.start() for job in jobs: job.join() if __name__ == "__main__": main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/build_pretraining_dataset.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to optimization (weight updates).""" import re import collections import tensorflow as tf import tensorflow_addons.optimizers as tfa_optimizers from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.training import training_ops from utils import log class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): """Applys a warmup schedule on a given learning rate decay schedule.""" def __init__(self, initial_learning_rate, decay_schedule_fn, warmup_steps, power=1.0, name=None): super().__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or "WarmUp") as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power) return tf.cond( global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step - self.warmup_steps), name=name, ) def get_config(self): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def create_optimizer(init_lr, num_train_steps, num_warmup_steps, weight_decay_rate=0.01, layerwise_lr_decay=-1, n_transformer_layers=None, clip_norm=1.0, optimizer="adam", skip_adaptive=False, power=1.0, beta_1=0.9, beta_2=0.999, end_lr=0.0): """Creates an optimizer with learning rate schedule.""" # Implements linear decay of the learning rate. learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=end_lr, power=power ) if num_warmup_steps: learning_rate_fn = WarmUp( initial_learning_rate=init_lr, decay_schedule_fn=learning_rate_fn, warmup_steps=num_warmup_steps ) layer_decay = None if layerwise_lr_decay > 0 and n_transformer_layers is not None: layer_decay = _get_layer_decay(layerwise_lr_decay, n_transformer_layers) if optimizer == "adam": optimizer = AdamWeightDecay( learning_rate=learning_rate_fn, weight_decay_rate=weight_decay_rate, layer_decay=layer_decay, beta_1=beta_1, beta_2=beta_2, epsilon=1e-6, exclude_from_weight_decay=["layer_norm", "bias", "LayerNorm"], clip_norm=clip_norm, ) else: if skip_adaptive: skip_list = ["layer_norm", "bias", "LayerNorm"] else: skip_list = ["None"] log("Skip list for LAMB {}".format(skip_list)) optimizer = tfa_optimizers.LAMB( learning_rate=learning_rate_fn, weight_decay_rate=weight_decay_rate, beta_1=beta_1, beta_2=beta_2, epsilon=1e-6, exclude_from_weight_decay=["layer_norm", "bias", "LayerNorm"], exclude_from_layer_adaptation=skip_list, ) return optimizer class AdamWeightDecay(tf.keras.optimizers.Adam): """Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways. Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, weight_decay_rate=0.0, include_in_weight_decay=None, exclude_from_weight_decay=None, layer_decay=None, clip_norm=1.0, name="AdamWeightDecay", **kwargs ): super().__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay self.layer_decay = layer_decay self.clip_norm = clip_norm @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {"WarmUp": WarmUp} return super().from_config(config, custom_objects=custom_objects) def _prepare_local(self, var_device, var_dtype, apply_state): super()._prepare_local(var_device, var_dtype, apply_state) apply_state["weight_decay_rate"] = tf.constant(self.weight_decay_rate, name="adam_weight_decay_rate") def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state["weight_decay_rate"], use_locking=self._use_locking ) return tf.no_op() def apply_gradients(self, grads_and_vars, name=None, experimental_aggregate_gradients=True): grads, tvars = list(zip(*grads_and_vars)) # Being done in train_step ##(grads, _) = tf.clip_by_global_norm(grads, clip_norm=self.clip_norm) return super().apply_gradients(zip(grads, tvars), name=name, experimental_aggregate_gradients=experimental_aggregate_gradients) def _get_lr(self, var, apply_state): """Retrieves the learning rate with the given state.""" # if apply_state is None: # return self._decayed_lr_t[var_dtype], {} var_name, var_device, var_dtype = var.name, var.device, var.dtype.base_dtype apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients lr_t = coefficients["lr_t"] lr = coefficients["lr"] if self.layer_decay is not None: update_for_var = False for key in self.layer_decay: if key in var_name: update_for_var = True lr_t *= self.layer_decay[key] lr *= self.layer_decay[key] break if not update_for_var: raise ValueError("No learning rate specified for variable", var) return lr_t, lr, coefficients, dict(apply_state=apply_state) def _resource_apply_dense(self, grad, var, apply_state=None): # print("Dense: {} {} {}".format(var.name, var.device, var.dtype.base_dtype)) lr_t, _, coefficients, kwargs = self._get_lr(var, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): m = self.get_slot(var, 'm') v = self.get_slot(var, 'v') if not self.amsgrad: return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, coefficients['beta_1_power'], coefficients['beta_2_power'], lr_t, coefficients['beta_1_t'], coefficients['beta_2_t'], coefficients['epsilon'], grad, use_locking=self._use_locking) else: vhat = self.get_slot(var, 'vhat') return training_ops.resource_apply_adam_with_amsgrad( var.handle, m.handle, v.handle, vhat.handle, coefficients['beta_1_power'], coefficients['beta_2_power'], lr_t, coefficients['beta_1_t'], coefficients['beta_2_t'], coefficients['epsilon'], grad, use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): # print("Sparse: {} {} {}".format(var.name, var.device, var.dtype.base_dtype)) lr_t, lr, coefficients, kwargs = self._get_lr(var, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): # m_t = beta1 * m + (1 - beta1) * g_t m = self.get_slot(var, 'm') m_scaled_g_values = grad * coefficients['one_minus_beta_1_t'] m_t = state_ops.assign(m, m * coefficients['beta_1_t'], use_locking=self._use_locking) with tf.control_dependencies([m_t]): m_t = self._resource_scatter_add(m, indices, m_scaled_g_values) # v_t = beta2 * v + (1 - beta2) * (g_t * g_t) v = self.get_slot(var, 'v') v_scaled_g_values = (grad * grad) * coefficients['one_minus_beta_2_t'] v_t = state_ops.assign(v, v * coefficients['beta_2_t'], use_locking=self._use_locking) with tf.control_dependencies([v_t]): v_t = self._resource_scatter_add(v, indices, v_scaled_g_values) if not self.amsgrad: v_sqrt = math_ops.sqrt(v_t) var_update = state_ops.assign_sub( var, lr * m_t / (v_sqrt + coefficients['epsilon']), use_locking=self._use_locking) return control_flow_ops.group(*[var_update, m_t, v_t]) else: v_hat = self.get_slot(var, 'vhat') v_hat_t = math_ops.maximum(v_hat, v_t) with tf.control_dependencies([v_hat_t]): v_hat_t = state_ops.assign( v_hat, v_hat_t, use_locking=self._use_locking) v_hat_sqrt = math_ops.sqrt(v_hat_t) var_update = state_ops.assign_sub( var, lr * m_t / (v_hat_sqrt + coefficients['epsilon']), use_locking=self._use_locking) return control_flow_ops.group(*[var_update, m_t, v_t, v_hat_t]) def get_config(self): config = super().get_config() config.update({"weight_decay_rate": self.weight_decay_rate}) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True # Inspired from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py class GradientAccumulator(object): """Distribution strategies-aware gradient accumulation utility.""" def __init__(self): """Initializes the accumulator.""" self._gradients = [] self._accum_steps = tf.Variable( initial_value=0, dtype=tf.int64, trainable=False, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ) @property def step(self): """Number of accumulated steps.""" return self._accum_steps.value() @property def gradients(self): """The accumulated gradients.""" return list( gradient.value() if gradient is not None else gradient for gradient in self._get_replica_gradients() ) def __call__(self, gradients): """Accumulates :obj:`gradients`.""" if not self._gradients: self._gradients.extend( [ tf.Variable(tf.zeros_like(gradient), trainable=False) if gradient is not None else gradient for gradient in gradients ] ) if len(gradients) != len(self._gradients): raise ValueError("Expected %s gradients, but got %d" % (len(self._gradients), len(gradients))) for accum_gradient, gradient in zip(self._get_replica_gradients(), gradients): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(gradient) self._accum_steps.assign_add(1) def reset(self): """Resets the accumulated gradients.""" if self._gradients: self._accum_steps.assign(0) for gradient in self._get_replica_gradients(): if gradient is not None: gradient.assign(tf.zeros_like(gradient)) def _get_replica_gradients(self): if tf.distribute.has_strategy(): # In a replica context, we want to accumulate gradients on each replica # without synchronization, so we directly assign the value of the # current replica. replica_context = tf.distribute.get_replica_context() if replica_context is None or tf.distribute.get_strategy().num_replicas_in_sync == 1: return self._gradients return ( gradient.device_map.select_for_current_replica(gradient.values, replica_context) for gradient in self._gradients if gradient is not None ) else: return self._gradients def _get_layer_decay(layer_decay, n_layers): """Have lower learning rates for layers closer to the input.""" key_to_depths = collections.OrderedDict({ "/embeddings/": 0, "/embeddings_project/": 0, "/start_logits/": n_layers + 2, "/end_logits/": n_layers + 2, "/answer_class/": n_layers + 2, "/qa_outputs/": n_layers + 2, }) for layer in range(n_layers): key_to_depths["encoder/layer_._" + str(layer) + "/"] = layer + 1 return { key: layer_decay ** (n_layers + 2 - depth) for key, depth in key_to_depths.items() }
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/optimization.py
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tokenization_utils import BertTokenizer from tokenization_utils import BertTokenizer VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/electra-small-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-generator/vocab.txt", "google/electra-base-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-generator/vocab.txt", "google/electra-large-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-generator/vocab.txt", "google/electra-small-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-discriminator/vocab.txt", "google/electra-base-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-discriminator/vocab.txt", "google/electra-large-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-discriminator/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } PRETRAINED_INIT_CONFIGURATION = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class ElectraTokenizer(BertTokenizer): r""" Constructs an Electra tokenizer. :class:`~transformers.ElectraTokenizer` is identical to :class:`~transformers.BertTokenizer` and runs end-to-end tokenization: punctuation splitting + wordpiece. Refer to superclass :class:`~transformers.BertTokenizer` for usage examples and documentation concerning parameters. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/tokenization.py
# coding=utf-8 # Copyright 2020 The Google Research Authors. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pre-trains an ELECTRA model.""" import argparse import collections import json import time import datetime import os import tensorflow as tf import horovod.tensorflow as hvd from horovod.tensorflow.compression import Compression from gpu_affinity import set_affinity import utils import sys import pretrain_utils from utils import get_rank, get_world_size, is_main_process, log, log_config, setup_logger, postprocess_dllog from tokenization import ElectraTokenizer from modeling import PretrainingModel from optimization import create_optimizer, GradientAccumulator import dllogger class PretrainingConfig(object): """Defines pre-training hyperparameters.""" def __init__(self, model_name, **kwargs): self.model_name = model_name self.seed = 42 self.debug = False # debug mode for quickly running things self.do_train = True # pre-train ELECTRA self.do_eval = False # evaluate generator/discriminator on unlabeled data self.phase2 = False # amp self.amp = True self.xla = True self.fp16_compression = False # optimizer type self.optimizer = 'adam' self.gradient_accumulation_steps = 1 # lamb whitelisting for LN and biases self.skip_adaptive = False # loss functions self.electra_objective = True # if False, use the BERT objective instead self.gen_weight = 1.0 # masked language modeling / generator loss self.disc_weight = 50.0 # discriminator loss self.mask_prob = 0.15 # percent of input tokens to mask out / replace # optimization self.learning_rate = 5e-4 self.lr_decay_power = 0.5 self.weight_decay_rate = 0.01 self.num_warmup_steps = 10000 self.opt_beta_1 = 0.878 self.opt_beta_2 = 0.974 self.end_lr = 0.0 # training settings self.log_freq = 10 self.skip_checkpoint = False self.save_checkpoints_steps = 1000 self.num_train_steps = 1000000 self.num_eval_steps = 100 self.keep_checkpoint_max = 5 # maximum number of recent checkpoint files to keep; change to 0 or None to keep all checkpoints self.restore_checkpoint = None self.load_weights = False self.steps_this_run = -1 # model settings self.model_size = "base" # one of "small", "base", or "large" # override the default transformer hparams for the provided model size; see # modeling.BertConfig for the possible hparams and util.training_utils for # the defaults self.model_hparam_overrides = ( kwargs["model_hparam_overrides"] if "model_hparam_overrides" in kwargs else {}) self.embedding_size = None # bert hidden size by default self.vocab_size = 30522 # number of tokens in the vocabulary self.do_lower_case = True # lowercase the input? # generator settings self.uniform_generator = False # generator is uniform at random self.shared_embeddings = True # share generator/discriminator token embeddings? # self.untied_generator = True # tie all generator/discriminator weights? self.generator_layers = 1.0 # frac of discriminator layers for generator self.generator_hidden_size = 0.25 # frac of discrim hidden size for gen self.disallow_correct = False # force the generator to sample incorrect # tokens (so 15% of tokens are always # fake) self.temperature = 1.0 # temperature for sampling from generator # batch sizes self.max_seq_length = 128 self.train_batch_size = 128 self.eval_batch_size = 128 self.results_dir = "results" self.json_summary = None self.update(kwargs) # default locations of data files self.pretrain_tfrecords = os.path.join( "data", "pretrain_tfrecords/pretrain_data.tfrecord*") self.vocab_file = os.path.join("vocab", "vocab.txt") self.model_dir = os.path.join(self.results_dir, "models", model_name) self.checkpoints_dir = os.path.join(self.model_dir, "checkpoints") self.weights_dir = os.path.join(self.model_dir, "weights") self.results_txt = os.path.join(self.results_dir, "unsup_results.txt") self.results_pkl = os.path.join(self.results_dir, "unsup_results.pkl") self.log_dir = os.path.join(self.model_dir, "logs") self.max_predictions_per_seq = int((self.mask_prob + 0.005) * self.max_seq_length) # defaults for different-sized model if self.model_size == "base": self.embedding_size = 768 self.hidden_size = 768 self.num_hidden_layers = 12 if self.hidden_size % 64 != 0: raise ValueError("Hidden size {} should be divisible by 64. Number of attention heads is hidden size {} / 64 ".format(self.hidden_size, self.hidden_size)) self.num_attention_heads = int(self.hidden_size / 64.) elif self.model_size == "large": self.embedding_size = 1024 self.hidden_size = 1024 self.num_hidden_layers = 24 if self.hidden_size % 64 != 0: raise ValueError("Hidden size {} should be divisible by 64. Number of attention heads is hidden size {} / 64 ".format(self.hidden_size, self.hidden_size)) self.num_attention_heads = int(self.hidden_size / 64.) else: raise ValueError("--model_size : 'base' and 'large supported only.") self.act_func = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.update(kwargs) def update(self, kwargs): for k, v in kwargs.items(): if v is not None: self.__dict__[k] = v def metric_fn(config, metrics, eval_fn_inputs): """Computes the loss and accuracy of the model.""" d = eval_fn_inputs metrics["masked_lm_accuracy"].update_state( y_true=tf.reshape(d["masked_lm_ids"], [-1]), y_pred=tf.reshape(d["masked_lm_preds"], [-1]), sample_weight=tf.reshape(d["masked_lm_weights"], [-1])) metrics["masked_lm_loss"].update_state( values=tf.reshape(d["mlm_loss"], [-1]), sample_weight=tf.reshape(d["masked_lm_weights"], [-1])) if config.electra_objective: metrics["sampled_masked_lm_accuracy"].update_state( y_true=tf.reshape(d["masked_lm_ids"], [-1]), y_pred=tf.reshape(d["sampled_tokids"], [-1]), sample_weight=tf.reshape(d["masked_lm_weights"], [-1])) if config.disc_weight > 0: metrics["disc_loss"].update_state(d["disc_loss"]) #metrics["disc_auc"].update_state( # d["disc_labels"] * d["input_mask"], # d["disc_probs"] * tf.cast(d["input_mask"], tf.float32)) metrics["disc_accuracy"].update_state( y_true=d["disc_labels"], y_pred=d["disc_preds"], sample_weight=d["input_mask"]) metrics["disc_precision"].update_state( y_true=d["disc_labels"], y_pred=d["disc_preds"], sample_weight=d["disc_preds"] * d["input_mask"]) metrics["disc_recall"].update_state( y_true=d["disc_labels"], y_pred=d["disc_preds"], sample_weight=d["disc_labels"] * d["input_mask"]) return metrics @tf.function def train_one_step(config, model, optimizer, features, accumulator, first_step, take_step, clip_norm=1.0): #Forward and Backward pass with tf.GradientTape() as tape: total_loss, eval_fn_inputs = model(features, is_training=True) unscaled_loss = tf.stop_gradient(total_loss) if config.amp: total_loss = optimizer.get_scaled_loss(total_loss) #Backpropogate gradients #tape = hvd.DistributedGradientTape( # tape, sparse_as_dense=True, # compression=Compression.fp16 if config.amp and config.fp16_compression else Compression.none) gradients = tape.gradient(total_loss, model.trainable_variables) #Get unscaled gradients if AMP if config.amp: gradients = optimizer.get_unscaled_gradients(gradients) #Accumulate gradients accumulator(gradients) #Need to call apply_gradients on very first step irrespective of gradient accumulation #This is required for the optimizer to build it's states if first_step or take_step: #All reduce and Clip the accumulated gradients allreduced_accumulated_gradients = [None if g is None else hvd.allreduce(g / tf.cast(config.gradient_accumulation_steps, g.dtype), compression=Compression.fp16 if config.amp and config.fp16_compression else Compression.none) for g in accumulator.gradients] (clipped_accumulated_gradients, _) = tf.clip_by_global_norm(allreduced_accumulated_gradients, clip_norm=clip_norm) #Weight update optimizer.apply_gradients(zip(clipped_accumulated_gradients, model.trainable_variables)) accumulator.reset() #brodcast model weights after first train step if first_step: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(optimizer.variables(), root_rank=0) return unscaled_loss, eval_fn_inputs def main(e2e_start_time): # Parse essential argumentss parser = argparse.ArgumentParser() parser.add_argument("--model_name", required=True) parser.add_argument("--model_size", default="base", type=str, help="base or large") parser.add_argument("--pretrain_tfrecords", type=str) parser.add_argument("--phase2", action='store_true') parser.add_argument("--fp16_compression", action='store_true') parser.add_argument("--amp", action='store_true', help="Whether to use fp16.") parser.add_argument("--xla", action='store_true', help="Whether to use xla.") parser.add_argument("--seed", default=42, type=int) parser.add_argument("--num_train_steps", type=int) parser.add_argument("--num_warmup_steps", type=int) parser.add_argument("--learning_rate", type=float) parser.add_argument("--train_batch_size", type=int) parser.add_argument("--max_seq_length", type=int) parser.add_argument("--mask_prob", type=float) parser.add_argument("--disc_weight", type=float) parser.add_argument("--generator_hidden_size", type=float) parser.add_argument("--log_freq", type=int, default=10, help="Training metrics logging frequency") parser.add_argument("--save_checkpoints_steps", type=int) parser.add_argument("--steps_this_run", type=int, default=-1, help="run a fixed number of steps only") parser.add_argument("--keep_checkpoint_max", type=int) parser.add_argument("--restore_checkpoint", default=None, type=str) parser.add_argument("--load_weights", action='store_true') parser.add_argument("--weights_dir") parser.add_argument("--optimizer", default="adam", type=str, help="adam or lamb") parser.add_argument("--skip_adaptive", action='store_true', help="Whether to apply adaptive LR on LayerNorm and biases") parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of Gradient Accumulation steps") parser.add_argument("--lr_decay_power", type=float, default=0.5, help="LR decay power") parser.add_argument("--opt_beta_1", type=float, default=0.878, help="Optimizer beta1") parser.add_argument("--opt_beta_2", type=float, default=0.974, help="Optimizer beta2") parser.add_argument("--end_lr", type=float, default=0.0, help="Ending LR") parser.add_argument("--log_dir", type=str, default=None, help="Path to store logs") parser.add_argument("--results_dir", type=str, default=None, help="Path to store all model results") parser.add_argument("--skip_checkpoint", action='store_true', default=False, help="Path to store logs") parser.add_argument('--json-summary', type=str, default=None, help='If provided, the json summary will be written to the specified file.') args = parser.parse_args() config = PretrainingConfig(**args.__dict__) # Padding for divisibility by 8 if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) # Set up tensorflow hvd.init() args.log_dir = config.log_dir # DLLogger setup_logger(args) dllogger.metadata('training_sequences_per_second', {'unit': 'sequences/s'}) dllogger.metadata('final_loss', {'unit': None}) dllogger.metadata('e2e_train_time', {'unit': 's'}) set_affinity(hvd.local_rank()) gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') tf.config.optimizer.set_jit(config.xla) #tf.config.optimizer.set_experimental_options({"auto_mixed_precision": config.amp}) if config.amp: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16", loss_scale="dynamic") tf.keras.mixed_precision.experimental.set_policy(policy) print('Compute dtype: %s' % policy.compute_dtype) # Compute dtype: float16 print('Variable dtype: %s' % policy.variable_dtype) # Variable dtype: float32 #tf.random.set_seed(config.seed) # Set up config cont' if config.load_weights and config.restore_checkpoint: raise ValueError("`load_weights` and `restore_checkpoint` should not be on at the same time.") if config.phase2 and not config.restore_checkpoint: raise ValueError("`phase2` cannot be used without `restore_checkpoint`.") utils.heading("Config:") log_config(config) # Save pretrain configs pretrain_config_json = os.path.join(config.checkpoints_dir, 'pretrain_config.json') if is_main_process(): utils.write_json(config.__dict__, pretrain_config_json) log("Configuration saved in {}".format(pretrain_config_json)) # Set up model model = PretrainingModel(config) # Set up metrics metrics = dict() metrics["train_perf"] = tf.keras.metrics.Mean(name="train_perf") metrics["total_loss"] = tf.keras.metrics.Mean(name="total_loss") metrics["masked_lm_accuracy"] = tf.keras.metrics.Accuracy(name="masked_lm_accuracy") metrics["masked_lm_loss"] = tf.keras.metrics.Mean(name="masked_lm_loss") if config.electra_objective: metrics["sampled_masked_lm_accuracy"] = tf.keras.metrics.Accuracy(name="sampled_masked_lm_accuracy") if config.disc_weight > 0: metrics["disc_loss"] = tf.keras.metrics.Mean(name="disc_loss") metrics["disc_auc"] = tf.keras.metrics.AUC(name="disc_auc") metrics["disc_accuracy"] = tf.keras.metrics.Accuracy(name="disc_accuracy") metrics["disc_precision"] = tf.keras.metrics.Accuracy(name="disc_precision") metrics["disc_recall"] = tf.keras.metrics.Accuracy(name="disc_recall") # Set up tensorboard current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") train_log_dir = os.path.join(config.log_dir, current_time, 'train_' + str(get_rank()) + '_of_' + str(get_world_size())) train_summary_writer = tf.summary.create_file_writer(train_log_dir) # Set up dataset dataset = pretrain_utils.get_dataset( config, config.train_batch_size, world_size=get_world_size(), rank=get_rank()) train_iterator = iter(dataset) # Set up optimizer optimizer = create_optimizer( init_lr=config.learning_rate, num_train_steps=config.num_train_steps, num_warmup_steps=config.num_warmup_steps, weight_decay_rate=config.weight_decay_rate, optimizer=config.optimizer, skip_adaptive=config.skip_adaptive, power=config.lr_decay_power, beta_1=config.opt_beta_1, beta_2=config.opt_beta_2, end_lr=config.end_lr) accumulator = GradientAccumulator() if config.amp: optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, "dynamic") # Set up model checkpoint checkpoint = tf.train.Checkpoint( step=tf.Variable(0), phase2=tf.Variable(False), optimizer=optimizer, model=model) manager = tf.train.CheckpointManager(checkpoint, config.checkpoints_dir, max_to_keep=config.keep_checkpoint_max) if config.restore_checkpoint and config.restore_checkpoint != "latest": checkpoint.restore(config.restore_checkpoint) log(" ** Restored model checkpoint from {}".format(config.restore_checkpoint)) elif config.restore_checkpoint and config.restore_checkpoint == "latest" and manager.latest_checkpoint: checkpoint.restore(manager.latest_checkpoint) log(" ** Restored model checkpoint from {}".format(manager.latest_checkpoint)) elif config.load_weights: model.generator(model.generator.dummy_inputs) model.discriminator(model.discriminator.dummy_inputs) model.generator.load_weights(os.path.join(config.weights_dir, 'generator', 'tf_model.h5')) model.discriminator.load_weights(os.path.join(config.weights_dir, 'discriminator', 'tf_model.h5')) else: log(" ** Initializing from scratch.") restore_iterator = bool(config.restore_checkpoint) and config.restore_checkpoint == "latest" # Initialize global step for phase2 if config.phase2 and not bool(checkpoint.phase2): optimizer.iterations.assign(0) checkpoint.step.assign(0) checkpoint.phase2.assign(True) restore_iterator = False if bool(checkpoint.phase2): manager = tf.train.CheckpointManager( checkpoint, config.checkpoints_dir, checkpoint_name='ckpt-p2', max_to_keep=config.keep_checkpoint_max) # Set up iterator checkpoint iter_checkpoint = tf.train.Checkpoint( train_iterator=train_iterator, world_size=tf.Variable(get_world_size()), rank=tf.Variable(get_rank())) iter_manager = tf.train.CheckpointManager( iter_checkpoint, os.path.join(config.checkpoints_dir, 'iter_ckpt_rank_' + '{:02}'.format(get_rank())), checkpoint_name='iter_ckpt_rank_' + '{:02}'.format(get_rank()), max_to_keep=config.keep_checkpoint_max) if restore_iterator and iter_manager.latest_checkpoint: ckpt_world_size = tf.train.load_variable( iter_manager.latest_checkpoint, 'world_size/.ATTRIBUTES/VARIABLE_VALUE') if ckpt_world_size == get_world_size(): iter_checkpoint.restore(iter_manager.latest_checkpoint) log(" ** Restored iterator checkpoint from {}".format(iter_manager.latest_checkpoint), all_rank=True) utils.heading("Running training") accumulator.reset() train_start, start_step = time.time(), int(checkpoint.step) - 1 local_step = 0 saved_ckpt = False while int(checkpoint.step) <= config.num_train_steps: saved_ckpt = False step = int(checkpoint.step) features = next(train_iterator) iter_start = time.time() # if step == 200: tf.profiler.experimental.start(logdir=train_log_dir) total_loss, eval_fn_inputs = train_one_step(config, model, optimizer, features, accumulator, local_step==1, take_step=local_step % args.gradient_accumulation_steps == 0) # if step == 300: tf.profiler.experimental.stop() metrics["train_perf"].update_state( config.train_batch_size * get_world_size() / (time.time() - iter_start)) metrics["total_loss"].update_state(values=total_loss) metric_fn(config, metrics, eval_fn_inputs) if (step % args.log_freq == 0) and (local_step % args.gradient_accumulation_steps == 0): log_info_dict = {k:float(v.result().numpy() * 100) if "accuracy" in k else float(v.result().numpy()) for k, v in metrics.items()} dllogger.log(step=(step,), data=log_info_dict, verbosity=0) log('Step:{step:6d}, Loss:{total_loss:10.6f}, Gen_loss:{masked_lm_loss:10.6f}, Disc_loss:{disc_loss:10.6f}, Gen_acc:{masked_lm_accuracy:6.2f}, ' 'Disc_acc:{disc_accuracy:6.2f}, Perf:{train_perf:4.0f}, Loss Scaler: {loss_scale}, Elapsed: {elapsed}, ETA: {eta}, '.format( step=step, **log_info_dict, loss_scale=optimizer.loss_scale if config.amp else 1, elapsed=utils.get_readable_time(time.time() - train_start), eta=utils.get_readable_time( (time.time() - train_start) / (step - start_step) * (config.num_train_steps - step))), all_rank=True) with train_summary_writer.as_default(): for key, m in metrics.items(): tf.summary.scalar(key, m.result(), step=step) if int(checkpoint.step) < config.num_train_steps: for m in metrics.values(): m.reset_states() #Print allreduced metrics on the last step if (int(checkpoint.step) == config.num_train_steps and (local_step % args.gradient_accumulation_steps == 0)) or ((local_step + 1) % (config.save_checkpoints_steps * args.gradient_accumulation_steps) == 0): log_info_dict = {k:float(hvd.allreduce(v.result()).numpy() * 100) if "accuracy" in k else float(hvd.allreduce(v.result()).numpy()) for k, v in metrics.items()} log_info_dict["training_sequences_per_second"] = log_info_dict["train_perf"] log_info_dict["final_loss"] = log_info_dict["total_loss"] log_info_dict["e2e_train_time"] = time.time() - e2e_start_time dllogger.log(step=(), data=log_info_dict, verbosity=0) log('<FINAL STEP METRICS> Step:{step:6d}, Loss:{total_loss:10.6f}, Gen_loss:{masked_lm_loss:10.6f}, Disc_loss:{disc_loss:10.6f}, Gen_acc:{masked_lm_accuracy:6.2f}, ' 'Disc_acc:{disc_accuracy:6.2f}, Perf:{train_perf:4.0f},'.format( step=step, **log_info_dict), all_rank=False) if local_step % args.gradient_accumulation_steps == 0: checkpoint.step.assign(int(optimizer.iterations)) if not config.skip_checkpoint and (local_step % (config.save_checkpoints_steps * args.gradient_accumulation_steps) == 0): saved_ckpt = True if is_main_process(): save_path = manager.save(checkpoint_number=step) log(" ** Saved model checkpoint for step {}: {}".format(step, save_path)) iter_save_path = iter_manager.save(checkpoint_number=step) log(" ** Saved iterator checkpoint for step {}: {}".format(step, iter_save_path), all_rank=True) local_step += 1 if config.steps_this_run != -1 and (local_step % (config.steps_this_run * args.gradient_accumulation_steps) == 0): #terminating run sooner as steps_this_run has been reached log("terminating as steps_this_run:{} has been reached".format(config.steps_this_run)) break step = (int(checkpoint.step) - 1) dllogger.flush() if not config.skip_checkpoint and not saved_ckpt: if is_main_process(): save_path = manager.save(checkpoint_number=step) log(" ** Saved model checkpoint for step {}: {}".format(step, save_path)) iter_save_path = iter_manager.save(checkpoint_number=step) log(" ** Saved iterator checkpoint for step {}: {}".format(step, iter_save_path), all_rank=True) return args if __name__ == "__main__": start_time = time.time() args = main(start_time) log("Total Time:{:.4f}".format(time.time() - start_time)) if is_main_process(): postprocess_dllog(args)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/run_pretraining.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess import time import argparse import json import logging import collections import tensorflow as tf if sys.version_info[0] == 2: import cPickle as pickle else: import pickle from configuration import ElectraConfig from modeling import TFElectraForQuestionAnswering from tokenization import ElectraTokenizer from squad_utils import SquadResult, RawResult, _get_best_indices TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/electra-small-generator", "google/electra-base-generator", "google/electra-large-generator", "google/electra-small-discriminator", "google/electra-base-discriminator", "google/electra-large-discriminator", # See all ELECTRA models at https://huggingface.co/models?filter=electra ] _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["start_index", "end_index", "start_logit", "end_logit"]) def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--electra_model", default=None, type=str, required=True, help="Model selected in the list: " + ", ".join(TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST)) parser.add_argument("--init_checkpoint", default=None, type=str, required=True, help="The checkpoint file from pretraining") parser.add_argument("--question", default=None, type=str, required=True, help="Question") parser.add_argument("--context", default=None, type=str, required=True, help="Context") parser.add_argument( "--joint_head", default=True, type=bool, help="Jointly predict the start and end positions", ) parser.add_argument( "--beam_size", default=4, type=int, help="Beam size when doing joint predictions", ) parser.add_argument("--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument("--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument('--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.') parser.add_argument('--null_score_diff_threshold', type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.") args = parser.parse_args() return args def get_predictions_joint_head(start_indices, end_indices, result, max_len, args): predictions = [] for i in range(args.beam_size): start_index = start_indices[i] for j in range(args.beam_size): # for end_index in end_indices: end_index = end_indices[i * args.beam_size + j] if start_index >= max_len: continue if end_index >= max_len: continue if end_index < start_index: continue length = end_index - start_index + 1 if length > args.max_answer_length: continue predictions.append( _PrelimPrediction( start_index=start_index, end_index=end_index, start_logit=result.start_logits[i], end_logit=result.end_logits[i * args.beam_size + j])) return predictions def get_predictions(start_indices, end_indices, result, max_len, args): predictions = [] for start_index in start_indices: for end_index in end_indices: if start_index >= max_len: continue if end_index >= max_len: continue if end_index < start_index: continue length = end_index - start_index + 1 if length > args.max_answer_length: continue predictions.append( _PrelimPrediction( start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) return predictions def main(): args = parse_args() print("***** Loading tokenizer and model *****") electra_model = args.electra_model config = ElectraConfig.from_pretrained(electra_model) tokenizer = ElectraTokenizer.from_pretrained(electra_model) model = TFElectraForQuestionAnswering.from_pretrained(electra_model, config=config, args=args) print("***** Loading fine-tuned checkpoint: {} *****".format(args.init_checkpoint)) model.load_weights(args.init_checkpoint, by_name=False, skip_mismatch=False).expect_partial() question, text = args.question, args.context encoding = tokenizer.encode_plus(question, text, return_tensors='tf') input_ids, token_type_ids, attention_mask = encoding["input_ids"], encoding["token_type_ids"], \ encoding["attention_mask"] all_tokens = tokenizer.convert_ids_to_tokens(input_ids.numpy()[0]) if not args.joint_head: start_logits, end_logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, )[:2] start_logits = start_logits[0].numpy().tolist() end_logits = end_logits[0].numpy().tolist() result = RawResult(unique_id=0, start_logits=start_logits, end_logits=end_logits) start_indices = _get_best_indices(result.start_logits, args.n_best_size) end_indices = _get_best_indices(result.end_logits, args.n_best_size) predictions = get_predictions(start_indices, end_indices, result, len(all_tokens), args) null_score = result.start_logits[0] + result.end_logits[0] else: outputs = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) output = [output[0].numpy().tolist() for output in outputs] start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( 0, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) predictions = get_predictions_joint_head(result.start_top_index, result.end_top_index, result, len(all_tokens), args) null_score = result.cls_logits predictions = sorted(predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) answer = predictions[0] answer = ' '.join(all_tokens[answer.start_index: answer.end_index + 1]) if args.null_score_diff_threshold > null_score and args.version_2_with_negative: answer = '' print(answer) return answer if __name__ == "__main__": main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/run_inference.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json, pickle, sys, unicodedata, six, time, os import horovod.tensorflow as hvd import tensorflow as tf import dllogger def get_rank(): try: return hvd.rank() except: return 0 def get_world_size(): try: return hvd.size() except: return 1 def is_main_process(): return get_rank() == 0 def format_step(step): if isinstance(step, str): return step s = "" if len(step) == 1: s += "Training Iteration: {} ".format(step[0]) return s if len(step) > 0: s += "Training Epoch: {} ".format(step[0]) if len(step) > 1: s += "Training Iteration: {} ".format(step[1]) return s def load_json(path): with tf.io.gfile.GFile(path, "r") as f: return json.load(f) def write_json(o, path): if "/" in path: tf.io.gfile.makedirs(path.rsplit("/", 1)[0]) with tf.io.gfile.GFile(path, "w") as f: json.dump(o, f) def load_pickle(path): with tf.io.gfile.GFile(path, "rb") as f: return pickle.load(f) def write_pickle(o, path): if "/" in path: tf.io.gfile.makedirs(path.rsplit("/", 1)[0]) with tf.io.gfile.GFile(path, "wb") as f: pickle.dump(o, f, -1) def mkdir(path): if not tf.io.gfile.exists(path): tf.io.gfile.makedirs(path) def rmrf(path): if tf.io.gfile.exists(path): tf.io.gfile.rmtree(path) def rmkdir(path): rmrf(path) mkdir(path) def log(*args, **kwargs): all_rank = kwargs.pop("all_rank", False) if not all_rank and not is_main_process(): return msg = " ".join(map(str, args)) sys.stdout.write(msg + "\n") sys.stdout.flush() def log_config(config): for key, value in sorted(config.__dict__.items()): log(key, value) log() def heading(*args): log(80 * "=") log(*args) log(80 * "=") def nest_dict(d, prefixes, delim="_"): """Go from {prefix_key: value} to {prefix: {key: value}}.""" nested = {} for k, v in d.items(): for prefix in prefixes: if k.startswith(prefix + delim): if prefix not in nested: nested[prefix] = {} nested[prefix][k.split(delim, 1)[1]] = v else: nested[k] = v return nested def flatten_dict(d, delim="_"): """Go from {prefix: {key: value}} to {prefix_key: value}.""" flattened = {} for k, v in d.items(): if isinstance(v, dict): for k2, v2 in v.items(): flattened[k + delim + k2] = v2 else: flattened[k] = v return flattened def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def get_readable_time(elapsed): d, h, m, s = [int(x) for x in time.strftime("%d:%H:%M:%S", time.gmtime(elapsed)).split(':')] d -= 1 return '{:2d}h{:2d}m{:2d}s'.format(24*d + h, m, s) def setup_logger(args): os.makedirs(args.log_dir, exist_ok=True) if not args.json_summary: log_path = os.path.join(args.log_dir, 'dllogger_rank{}.log'.format(get_rank())) else: log_path = "{}_rank{}".format(args.json_summary, get_rank()) if is_main_process(): dllogger.init(backends = [dllogger.JSONStreamBackend(verbosity=1, filename=log_path), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)]) else: dllogger.init(backends = [dllogger.JSONStreamBackend(verbosity=1, filename=log_path)]) for k,v in vars(args).items(): dllogger.log(step='PARAMETER', data={k:v}, verbosity=0) container_setup_info = { 'NVIDIA_TENSORFLOW_VERSION': os.environ.get('NVIDIA_TENSORFLOW_VERSION'), 'TENSORFLOW_VERSION': os.environ.get('TENSORFLOW_VERSION'), 'CUBLAS_VERSION': os.environ.get('CUBLAS_VERSION'), 'NCCL_VERSION': os.environ.get('NCCL_VERSION'), 'CUDA_DRIVER_VERSION': os.environ.get('CUDA_DRIVER_VERSION'), 'CUDNN_VERSION': os.environ.get('CUDNN_VERSION'), 'CUDA_VERSION': os.environ.get('CUDA_VERSION'), 'NVIDIA_PIPELINE_ID': os.environ.get('NVIDIA_PIPELINE_ID'), 'NVIDIA_BUILD_ID': os.environ.get('NVIDIA_BUILD_ID'), 'NVIDIA_TF32_OVERRIDE': os.environ.get('NVIDIA_TF32_OVERRIDE'), } dllogger.log(step='PARAMETER', data=container_setup_info, verbosity=0) def postprocess_dllog(args): if not args.json_summary: log_path = os.path.join(args.log_dir, 'dllogger_rank{}.log') else: log_path = str(args.json_summary) + "_rank{}" logfiles = [open(log_path.format(i), 'r') for i in range(get_world_size())] if not args.json_summary: log_path = os.path.join(args.log_dir, 'dllogger.log') else: log_path = str(args.json_summary) with open(log_path, 'w') as dest_file: for lines in zip(*[f.readlines() for f in logfiles]): json_lines = [json.loads(l[5:]) for l in lines] assert all(x['type'] == json_lines[0]['type'] for x in json_lines) if json_lines[0]['type'] != 'LOG': dest_file.write(lines[0]) continue assert all(x['step'] == json_lines[0]['step'] for x in json_lines) if json_lines[0]['step'] == 'PARAMETER': dest_file.write(lines[0]) else: d = dict.fromkeys(json_lines[0]['data']) for k in d.keys(): vs = [line['data'][k] for line in json_lines] d[k] = sum(vs)/len(vs) json_lines[0]['data'] = d dest_file.write('DLLL ') dest_file.write(json.dumps(json_lines[0])) dest_file.write('\n') for l in logfiles: l.close()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/utils.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TF general model utils.""" import functools import logging import os import h5py import numpy as np import tensorflow as tf from tensorflow.python.keras.saving import hdf5_format from configuration_utils import PretrainedConfig, BertConfig from file_utils import DUMMY_INPUTS, TF2_WEIGHTS_NAME, WEIGHTS_NAME, cached_path, hf_bucket_url, is_remote_url from file_utils import MULTIPLE_CHOICE_DUMMY_INPUTS, add_start_docstrings, add_start_docstrings_to_callable from tokenization_utils import BatchEncoding from utils import log class TFModelUtilsMixin: """ A few utilities for `tf.keras.Model`s, to be used as a mixin. """ def num_parameters(self, only_trainable: bool = False) -> int: """ Get number of (optionally, trainable) parameters in the model. """ if only_trainable: return int(sum(np.prod(w.shape.as_list()) for w in self.trainable_variables)) else: return self.count_params() def keras_serializable(cls): """ Decorate a Keras Layer class to support Keras serialization. This is done by: 1. adding a `transformers_config` dict to the Keras config dictionary in `get_config` (called by Keras at serialization time 2. wrapping `__init__` to accept that `transformers_config` dict (passed by Keras at deserialization time) and convert it to a config object for the actual layer initializer 3. registering the class as a custom object in Keras (if the Tensorflow version supports this), so that it does not need to be supplied in `custom_objects` in the call to `tf.keras.models.load_model` :param cls: a tf.keras.layers.Layers subclass that accepts a `config` argument to its initializer (typically a `TF*MainLayer` class in this project) :return: the same class object, with modifications for Keras deserialization. """ initializer = cls.__init__ config_class = getattr(cls, "config_class", None) if config_class is None: raise AttributeError("Must set `config_class` to use @keras_serializable") @functools.wraps(initializer) def wrapped_init(self, *args, **kwargs): transformers_config = kwargs.pop("transformers_config", None) config = args[0] if args and isinstance(args[0], PretrainedConfig) else kwargs.get("config", None) if config is not None and transformers_config is not None: raise ValueError("Must pass either `config` or `transformers_config`, not both") elif config is not None: # normal layer construction, call with unchanged args (config is already in there) initializer(self, *args, **kwargs) elif transformers_config is not None: # Keras deserialization, convert dict to config config = config_class.from_dict(transformers_config) initializer(self, config, *args, **kwargs) else: raise ValueError("Must pass either `config` (PretrainedConfig) or `transformers_config` (dict)") self._transformers_config = config cls.__init__ = wrapped_init if not hasattr(cls, "get_config"): raise TypeError("Only use @keras_serializable on tf.keras.layers.Layer subclasses") if hasattr(cls.get_config, "_is_default"): def get_config(self): cfg = super(cls, self).get_config() cfg["transformers_config"] = self._transformers_config.to_dict() return cfg cls.get_config = get_config cls._keras_serializable = True if hasattr(tf.keras.utils, "register_keras_serializable"): cls = tf.keras.utils.register_keras_serializable()(cls) return cls class TFPreTrainedModel(tf.keras.Model, TFModelUtilsMixin): r""" Base class for all TF models. :class:`~transformers.TFPreTrainedModel` takes care of storing the configuration of the models and handles methods for loading/downloading/saving models as well as a few methods common to all models to (i) resize the input embeddings and (ii) prune heads in the self-attention heads. Class attributes (overridden by derived classes): - ``config_class``: a class derived from :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture. - ``pretrained_model_archive_map``: a python ``dict`` of with `short-cut-names` (string) as keys and `url` (string) of associated pretrained weights as values. - ``load_tf_weights``: a python ``method`` for loading a TensorFlow checkpoint in a PyTorch model, taking as arguments: - ``model``: an instance of the relevant subclass of :class:`~transformers.PreTrainedModel`, - ``config``: an instance of the relevant subclass of :class:`~transformers.PretrainedConfig`, - ``path``: a path (string) to the TensorFlow checkpoint. - ``base_model_prefix``: a string indicating the attribute associated to the base model in derived classes of the same architecture adding modules on top of the base model. """ config_class = None pretrained_model_archive_map = {} base_model_prefix = "" @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(DUMMY_INPUTS)} def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) if not isinstance(config, PretrainedConfig): raise ValueError( "Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. " "To create a model from a pretrained model use " "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( self.__class__.__name__, self.__class__.__name__ ) ) # Save config in model self.config = config def get_input_embeddings(self): """ Returns the model's input embeddings. Returns: :obj:`tf.keras.layers.Layer`: A torch module mapping vocabulary to hidden states. """ base_model = getattr(self, self.base_model_prefix, self) if base_model is not self: return base_model.get_input_embeddings() else: raise NotImplementedError def get_output_embeddings(self): """ Returns the model's output embeddings. Returns: :obj:`tf.keras.layers.Layer`: A torch module mapping hidden states to vocabulary. """ return None # Overwrite for models with output embeddings def _get_resized_embeddings(self, old_embeddings, new_num_tokens=None): """ Build a resized Embedding Variable from a provided token Embedding Module. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end Args: new_num_tokens: (`optional`) int New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end Reducing the size will remove vectors from the end If not provided or None: return the provided token Embedding Module. Return: ``tf.Variable`` Pointer to the resized Embedding Module or the old Embedding Module if new_num_tokens is None """ # if new_num_tokens is None: # return old_embeddings # old_num_tokens, old_embedding_dim = old_embeddings.weight.size() # if old_num_tokens == new_num_tokens: # return old_embeddings # # Build new embeddings # new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim) # new_embeddings.to(old_embeddings.weight.device) # # initialize all new embeddings (in particular added tokens) # self._init_weights(new_embeddings) # # Copy token embeddings from the previous weights # num_tokens_to_copy = min(old_num_tokens, new_num_tokens) # new_embeddings.weight.data[:num_tokens_to_copy, :] = old_embeddings.weight.data[:num_tokens_to_copy, :] # return new_embeddings def resize_token_embeddings(self, new_num_tokens=None): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a `tie_weights()` method. Arguments: new_num_tokens: (`optional`) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens ``tf.Variable`` Module of the model. Return: ``tf.Variable`` Pointer to the input tokens Embeddings Module of the model """ raise NotImplementedError def prune_heads(self, heads_to_prune): """ Prunes heads of the base model. Arguments: heads_to_prune: dict with keys being selected layer indices (`int`) and associated values being the list of heads to prune in said layer (list of `int`). """ raise NotImplementedError def save_pretrained(self, save_directory): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the :func:`~transformers.PreTrainedModel.from_pretrained` class method. """ if os.path.isfile(save_directory): log("Provided path ({}) should be a directory, not a file".format(save_directory)) return os.makedirs(save_directory, exist_ok=True) # Save configuration file self.config.save_pretrained(save_directory) # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(save_directory, TF2_WEIGHTS_NAME) self.save_weights(output_model_file) with h5py.File(output_model_file, "r") as f: if "layer_names" not in f.attrs and "model_weights" in f: f = f["model_weights"] hdf5_layer_names = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names")) log(f"Model weights saved in {output_model_file}: {hdf5_layer_names}") @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r"""Instantiate a pretrained TF 2.0 model from a pre-trained model configuration. The warning ``Weights from XXX not initialized from pretrained model`` means that the weights of XXX do not come pre-trained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning task. The warning ``Weights from XXX not used in YYY`` means that the layer XXX is not used by YYY, therefore those weights are discarded. Parameters: pretrained_model_name_or_path: either: - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``. - a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``. - a path or url to a `PyTorch state_dict save file` (e.g. `./pt_model/pytorch_model.bin`). In this case, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards. model_args: (`optional`) Sequence of positional arguments: All remaning positional arguments will be passed to the underlying model's ``__init__`` method config: (`optional`) one of: - an instance of a class derived from :class:`~transformers.PretrainedConfig`, or - a string valid as input to :func:`~transformers.PretrainedConfig.from_pretrained()` Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when: - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or - the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory. - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory. from_pt: (`optional`) boolean, default False: Load the model weights from a PyTorch state_dict save file (see docstring of pretrained_model_name_or_path argument). cache_dir: (`optional`) string: Path to a directory in which a downloaded pre-trained model configuration should be cached if the standard cache should not be used. force_download: (`optional`) boolean, default False: Force to (re-)download the model weights and configuration files and override the cached versions if they exists. resume_download: (`optional`) boolean, default False: Do not delete incompletely recieved file. Attempt to resume the download if such a file exists. proxies: (`optional`) dict, default None: A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request. output_loading_info: (`optional`) boolean: Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages. kwargs: (`optional`) Remaining dictionary of keyword arguments: Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded: - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done) - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function. Examples:: # For example purposes. Not runnable. model = BertModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache. model = BertModel.from_pretrained('./test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')` model = BertModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading assert model.config.output_attention == True # Loading from a TF checkpoint file instead of a PyTorch model (slower) config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json') model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_pt=True, config=config) """ config = kwargs.pop("config", None) cache_dir = kwargs.pop("cache_dir", None) from_pt = kwargs.pop("from_pt", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) output_loading_info = kwargs.pop("output_loading_info", False) # Load config if we don't provide a configuration if not isinstance(config, PretrainedConfig): config_path = config if config is not None else pretrained_model_name_or_path config, model_kwargs = cls.config_class.from_pretrained( config_path, *model_args, cache_dir=cache_dir, return_unused_kwargs=True, force_download=force_download, resume_download=resume_download, **kwargs, ) else: model_kwargs = kwargs # Load model if pretrained_model_name_or_path is not None: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: archive_file = cls.pretrained_model_archive_map[pretrained_model_name_or_path] elif os.path.isdir(pretrained_model_name_or_path): if os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)): # Load from a TF 2.0 checkpoint archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME) elif from_pt and os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} or `from_pt` set to False".format( [WEIGHTS_NAME, TF2_WEIGHTS_NAME], pretrained_model_name_or_path ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, postfix=(WEIGHTS_NAME if from_pt else TF2_WEIGHTS_NAME) ) # redirect to the cache, if necessary try: resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, ) except EnvironmentError as e: if pretrained_model_name_or_path in cls.pretrained_model_archive_map: log("Couldn't reach server at '{}' to download pretrained weights.".format(archive_file)) else: log( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name_or_path, ", ".join(cls.pretrained_model_archive_map.keys()), archive_file, ) ) raise e if resolved_archive_file == archive_file: log("loading weights file {}".format(archive_file)) else: log("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config, *model_args, **model_kwargs) if from_pt: # Load from a PyTorch checkpoint raise NotImplementedError # return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file, allow_missing_keys=True) model(model.dummy_inputs, training=False) # build the network with dummy inputs assert os.path.isfile(resolved_archive_file), "Error retrieving file {}".format(resolved_archive_file) # 'by_name' allow us to do transfer learning by skipping/adding layers # see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1339-L1357 try: model.load_weights(resolved_archive_file, by_name=True) except OSError: raise OSError( "Unable to load weights from h5 file. " "If you tried to load a TF 2.0 model from a PyTorch checkpoint, please set from_pt=True. " ) model(model.dummy_inputs, training=False) # Make sure restore ops are run # Check if the models are the same to output loading information with h5py.File(resolved_archive_file, "r") as f: if "layer_names" not in f.attrs and "model_weights" in f: f = f["model_weights"] hdf5_layer_names = set(hdf5_format.load_attributes_from_hdf5_group(f, "layer_names")) model_layer_names = set(layer.name for layer in model.layers) missing_keys = list(model_layer_names - hdf5_layer_names) unexpected_keys = list(hdf5_layer_names - model_layer_names) error_msgs = [] if len(unexpected_keys) > 0: log( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when " f"initializing {model.__class__.__name__}: {unexpected_keys}\n" ) else: log(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: log( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} " f"and are newly initialized: {missing_keys}\n" ) else: log( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n" f"If your task is similar to the task the model of the ckeckpoint was trained on, " f"you can already use {model.__class__.__name__} for predictions without further training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading weights for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs)) ) if output_loading_info: loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "error_msgs": error_msgs} return model, loading_info return model def prepare_inputs_for_generation(self, inputs, **kwargs): return {"inputs": inputs} def _do_output_past(self, outputs): has_output_past = hasattr(self.config, "output_past") and self.config.output_past has_mem_len = hasattr(self.config, "mem_len") and self.config.mem_len if has_output_past and not has_mem_len and len(outputs) > 1: return True elif has_mem_len and self.config.mem_len > 0 and len(outputs) > 1: return True return False def generate( self, input_ids=None, max_length=None, min_length=None, do_sample=None, early_stopping=None, num_beams=None, temperature=None, top_k=None, top_p=None, repetition_penalty=None, bad_words_ids=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, num_return_sequences=None, attention_mask=None, decoder_start_token_id=None, ): r""" Generates sequences for models with a LM head. The method currently supports greedy or penalized greedy decoding, sampling with top-k or nucleus sampling and beam-search. Adapted in part from `Facebook's XLM beam search code`_. .. _`Facebook's XLM beam search code`: https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529 Parameters: input_ids: (`optional`) `tf.Tensor` of `dtype=tf.int32` of shape `(batch_size, sequence_length)` The sequence used as a prompt for the generation. If `None` the method initializes it as an empty `torch.LongTensor` of shape `(1,)`. max_length: (`optional`) int The max length of the sequence to be generated. Between 1 and infinity. Default to 20. min_length: (`optional`) int The min length of the sequence to be generated. Between 0 and infinity. Default to 0. do_sample: (`optional`) bool If set to `False` greedy decoding is used. Otherwise sampling is used. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. early_stopping: (`optional`) bool if set to `True` beam search is stopped when at least `num_beams` sentences finished per batch. Defaults to `False` as defined in `configuration_utils.PretrainedConfig`. num_beams: (`optional`) int Number of beams for beam search. Must be between 1 and infinity. 1 means no beam search. Default to 1. temperature: (`optional`) float The value used to module the next token probabilities. Must be strictely positive. Default to 1.0. top_k: (`optional`) int The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50. top_p: (`optional`) float The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1. repetition_penalty: (`optional`) float The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0. bos_token_id: (`optional`) int Beginning of sentence token if no prompt is provided. Default to specicic model bos_token_id or None if it does not exist. pad_token_id: (`optional`) int Pad token. Defaults to pad_token_id as defined in the models config. eos_token_id: (`optional`) int EOS token. Defaults to eos_token_id as defined in the models config. length_penalty: (`optional`) float Exponential penalty to the length. Default to 1. no_repeat_ngram_size: (`optional`) int If set to int > 0, all ngrams of size `no_repeat_ngram_size` can only occur once. bad_words_ids: (`optional`) list of lists of int `bad_words_ids` contains tokens that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use `tokenizer.encode(bad_word, add_prefix_space=True)`. num_return_sequences: (`optional`) int The number of independently computed returned sequences for each element in the batch. Default to 1. attention_mask (`optional`) obj: `tf.Tensor` with `dtype=tf.int32` of same shape as `input_ids` Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. Defaults to `None`. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_start_token_id=None: (`optional`) int If an encoder-decoder model starts decoding with a different token than BOS. Defaults to `None` and is changed to `BOS` later. Return: output: `tf.Tensor` of `dtype=tf.int32` shape `(batch_size * num_return_sequences, sequence_length)` sequence_length is either equal to max_length or shorter if all batches finished early due to the `eos_token_id` Examples:: tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. outputs = model.generate(max_length=40) # do greedy decoding print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from S3 and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3) # 3 generate sequences using by sampling for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from S3 and cache. input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from S3 and cache. input_context = 'My cute dog' # "Legal" is one of the control codes for ctrl bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated """ # We cannot generate if the model does not have a LM head if self.get_output_embeddings() is None: raise AttributeError( "You tried to generate sequences with a model that does not have a LM Head." "Please use another model class (e.g. `TFOpenAIGPTLMHeadModel`, `TFXLNetLMHeadModel`, `TFGPT2LMHeadModel`, `TFCTRLLMHeadModel`, `TFT5ForConditionalGeneration`, `TFTransfoXLLMHeadModel`)" ) max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length do_sample = do_sample if do_sample is not None else self.config.do_sample early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping num_beams = num_beams if num_beams is not None else self.config.num_beams temperature = temperature if temperature is not None else self.config.temperature top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) if input_ids is not None: batch_size = shape_list(input_ids)[0] # overriden by the input batch_size else: batch_size = 1 assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictely positive integer." assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer." assert isinstance(do_sample, bool), "`do_sample` should be a boolean." assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean." assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictely positive integer." assert temperature > 0, "`temperature` should be strictely positive." assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer." assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1." assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1." assert input_ids is not None or ( isinstance(bos_token_id, int) and bos_token_id >= 0 ), "If input_ids is not defined, `bos_token_id` should be a positive integer." assert pad_token_id is None or ( isinstance(pad_token_id, int) and (pad_token_id >= 0) ), "`pad_token_id` should be a positive integer." assert (eos_token_id is None) or ( isinstance(eos_token_id, int) and (eos_token_id >= 0) ), "`eos_token_id` should be a positive integer." assert length_penalty > 0, "`length_penalty` should be strictely positive." assert ( isinstance(num_return_sequences, int) and num_return_sequences > 0 ), "`num_return_sequences` should be a strictely positive integer." assert ( bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list) ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated" if input_ids is None: assert isinstance(bos_token_id, int) and bos_token_id >= 0, ( "you should either supply a context to complete as `input_ids` input " "or a `bos_token_id` (integer >= 0) as a first token to start the generation." ) input_ids = tf.fill((batch_size, 1), bos_token_id) else: assert len(shape_list(input_ids)) == 2, "Input prompt should be of shape (batch_size, sequence length)." # not allow to duplicate outputs when greedy decoding if do_sample is False: if num_beams == 1: # no_beam_search greedy generation conditions assert ( num_return_sequences == 1 ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1" else: # beam_search greedy generation conditions assert ( num_beams >= num_return_sequences ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences" # create attention mask if necessary # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140 if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids.numpy()): attention_mask = tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=tf.int32) elif attention_mask is None: attention_mask = tf.ones_like(input_ids) if pad_token_id is None and eos_token_id is not None: log( "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id) ) pad_token_id = eos_token_id # current position and vocab size cur_len = shape_list(input_ids)[1] vocab_size = self.config.vocab_size # set effective batch size and effective batch multiplier according to do_sample if do_sample: effective_batch_size = batch_size * num_return_sequences effective_batch_mult = num_return_sequences else: effective_batch_size = batch_size effective_batch_mult = 1 # Expand input ids if num_beams > 1 or num_return_sequences > 1 if num_return_sequences > 1 or num_beams > 1: input_ids_len = shape_list(input_ids)[-1] input_ids = tf.broadcast_to( tf.expand_dims(input_ids, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len) ) attention_mask = tf.broadcast_to( tf.expand_dims(attention_mask, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len) ) input_ids = tf.reshape( input_ids, (effective_batch_size * num_beams, input_ids_len) ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) attention_mask = tf.reshape( attention_mask, (effective_batch_size * num_beams, input_ids_len) ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) if self.config.is_encoder_decoder: if decoder_start_token_id is None: decoder_start_token_id = bos_token_id assert ( decoder_start_token_id is not None ), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation" assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self) assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder) # get encoder and store encoder outputs encoder = self.get_encoder() encoder_outputs = encoder(input_ids, attention_mask=attention_mask) # create empty decoder_input_ids input_ids = tf.ones((effective_batch_size * num_beams, 1), dtype=tf.int32,) * decoder_start_token_id cur_len = 1 else: encoder_outputs = None cur_len = shape_list(input_ids)[-1] if num_beams > 1: output = self._generate_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, early_stopping=early_stopping, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, batch_size=effective_batch_size, num_return_sequences=num_return_sequences, length_penalty=length_penalty, num_beams=num_beams, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, ) else: output = self._generate_no_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, batch_size=effective_batch_size, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, ) return output def _generate_no_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, decoder_start_token_id, batch_size, vocab_size, encoder_outputs, attention_mask, ): """ Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated independantly. """ # length of generated sentences / unfinished sentences unfinished_sents = tf.ones_like(input_ids[:, 0]) sent_lengths = tf.ones_like(input_ids[:, 0]) * max_length past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation(input_ids, past=past, attention_mask=attention_mask) outputs = self(**model_inputs) next_token_logits = outputs[0][:, -1, :] # if model has past, then set the past variable to speed up decoding if self._do_output_past(outputs): past = outputs[1] # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: next_token_logits_penalties = _create_next_token_logits_penalties( input_ids, next_token_logits, repetition_penalty ) next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len) # create banned_tokens boolean mask banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: # create eos_token_id boolean mask is_token_logit_eos_token = tf.convert_to_tensor( [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool ) eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [batch_size, vocab_size]) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, eos_token_indices_mask, -float("inf") ) if do_sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # Top-p/top-k filtering next_token_logits = tf_top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) # Sample next_token = tf.squeeze( tf.random.categorical(next_token_logits, dtype=tf.int32, num_samples=1), axis=1 ) else: # Greedy decoding next_token = tf.math.argmax(next_token_logits, axis=-1, output_type=tf.int32) # update generations and finished sentences if eos_token_id is not None: # pad finished sentences if eos_token_id exist tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents) else: tokens_to_add = next_token input_ids = tf.concat([input_ids, tf.expand_dims(tokens_to_add, -1)], 1) if eos_token_id is not None: eos_in_sents = tokens_to_add == eos_token_id # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length is_sents_unfinished_and_token_to_add_is_eos = tf.math.multiply( unfinished_sents, tf.cast(eos_in_sents, tf.int32) ) sent_lengths = ( sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos) + cur_len * is_sents_unfinished_and_token_to_add_is_eos ) # unfinished_sents is set to zero if eos in sentence unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos # stop when there is a </s> in each sentence, or if we exceed the maximul length if tf.math.reduce_max(unfinished_sents) == 0: break # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) cur_len = cur_len + 1 # if there are different sentences lengths in the batch, some batches have to be padded min_sent_length = tf.math.reduce_min(sent_lengths) max_sent_length = tf.math.reduce_max(sent_lengths) if min_sent_length != max_sent_length: assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths" # finished sents are filled with pad_token padding = tf.ones([batch_size, max_sent_length.numpy()], dtype=tf.int32) * pad_token_id # create length masks for tf.where operation broad_casted_sent_lengths = tf.broadcast_to( tf.expand_dims(sent_lengths, -1), [batch_size, max_sent_length] ) broad_casted_range = tf.transpose( tf.broadcast_to(tf.expand_dims(tf.range(max_length), -1), [max_length, batch_size]) ) decoded = tf.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding) else: decoded = input_ids return decoded def _generate_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, early_stopping, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, bos_token_id, pad_token_id, decoder_start_token_id, eos_token_id, batch_size, num_return_sequences, length_penalty, num_beams, vocab_size, encoder_outputs, attention_mask, ): """ Generate sequences for each example with beam search. """ # generated hypotheses generated_hyps = [ BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping) for _ in range(batch_size) ] # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times if do_sample is False: beam_scores_begin = tf.zeros((batch_size, 1), dtype=tf.float32) beam_scores_end = tf.ones((batch_size, num_beams - 1), dtype=tf.float32) * (-1e9) beam_scores = tf.concat([beam_scores_begin, beam_scores_end], -1) else: beam_scores = tf.zeros((batch_size, num_beams), dtype=tf.float32) beam_scores = tf.reshape(beam_scores, (batch_size * num_beams,)) # cache compute states past = encoder_outputs # done sentences done = [False for _ in range(batch_size)] while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation(input_ids, past=past, attention_mask=attention_mask) outputs = self(**model_inputs) # (batch_size * num_beams, cur_len, vocab_size) next_token_logits = outputs[0][:, -1, :] # (batch_size * num_beams, vocab_size) # if model has past, then set the past variable to speed up decoding if self._do_output_past(outputs): past = outputs[1] # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: next_token_logits_penalties = _create_next_token_logits_penalties( input_ids, next_token_logits, repetition_penalty ) next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties) # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # calculate log softmax score scores = tf.nn.log_softmax(next_token_logits, axis=-1) # (batch_size * num_beams, vocab_size) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: # create eos_token_id boolean mask num_batch_hypotheses = batch_size * num_beams is_token_logit_eos_token = tf.convert_to_tensor( [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool ) eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [num_batch_hypotheses, vocab_size]) scores = set_tensor_by_indices_to_value(scores, eos_token_indices_mask, -float("inf")) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 num_batch_hypotheses = batch_size * num_beams banned_tokens = calc_banned_ngram_tokens( input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) # create banned_tokens boolean mask banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) scores = set_tensor_by_indices_to_value( scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) scores = set_tensor_by_indices_to_value( scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) assert shape_list(scores) == [batch_size * num_beams, vocab_size] if do_sample: _scores = scores + tf.broadcast_to( beam_scores[:, None], (batch_size * num_beams, vocab_size) ) # (batch_size * num_beams, vocab_size) # Top-p/top-k filtering _scores = tf_top_k_top_p_filtering( _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2 ) # (batch_size * num_beams, vocab_size) # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search) _scores = tf.reshape(_scores, (batch_size, num_beams * vocab_size)) next_tokens = tf.random.categorical( _scores, dtype=tf.int32, num_samples=2 * num_beams ) # (batch_size, 2 * num_beams) # Compute next scores next_scores = tf.gather(_scores, next_tokens, batch_dims=1) # (batch_size, 2 * num_beams) # sort the sampled vector to make sure that the first num_beams samples are the best next_scores_indices = tf.argsort(next_scores, direction="DESCENDING", axis=1) next_scores = tf.gather(next_scores, next_scores_indices, batch_dims=1) # (batch_size, num_beams * 2) next_tokens = tf.gather(next_tokens, next_scores_indices, batch_dims=1) # (batch_size, num_beams * 2) else: # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product) next_scores = scores + tf.broadcast_to( beam_scores[:, None], (batch_size * num_beams, vocab_size) ) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis accross beams) next_scores = tf.reshape( next_scores, (batch_size, num_beams * vocab_size) ) # (batch_size, num_beams * vocab_size) next_scores, next_tokens = tf.math.top_k(next_scores, k=2 * num_beams, sorted=True) assert shape_list(next_scores) == shape_list(next_tokens) == [batch_size, 2 * num_beams] # next batch beam content next_batch_beam = [] # for each sentence for batch_idx in range(batch_size): # if we are done with this sentence if done[batch_idx]: assert ( len(generated_hyps[batch_idx]) >= num_beams ), "Batch can only be done if at least {} beams have been generated".format(num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch continue # next sentence beam content next_sent_beam = [] # next tokens for this sentence for beam_token_rank, (beam_token_id, beam_token_score) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx]) ): # get beam and token IDs beam_id = beam_token_id // vocab_size token_id = beam_token_id % vocab_size effective_beam_id = batch_idx * num_beams + beam_id # add to generated hypotheses if end of sentence or last iteration if (eos_token_id is not None) and (token_id.numpy() == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams if is_beam_token_worse_than_top_num_beams: continue generated_hyps[batch_idx].add( tf.identity(input_ids[effective_beam_id]), beam_token_score.numpy() ) else: # add next predicted token if it is not eos_token next_sent_beam.append((beam_token_score, token_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == num_beams: break # Check if were done so that we can save a pad step if all(done) done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done( tf.reduce_max(next_scores[batch_idx]).numpy(), cur_len=cur_len ) # update next beam content assert len(next_sent_beam) == num_beams, "Beam should always be full" next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == num_beams * (batch_idx + 1) # stop when we are done with each sentence if all(done): break # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * num_beams beam_scores = tf.convert_to_tensor([x[0] for x in next_batch_beam], dtype=tf.float32) beam_tokens = tf.convert_to_tensor([x[1] for x in next_batch_beam], dtype=tf.int32) beam_idx = tf.convert_to_tensor([x[2] for x in next_batch_beam], dtype=tf.int32) # re-order batch input_ids = tf.stack([tf.identity(input_ids[x, :]) for x in beam_idx]) input_ids = tf.concat([input_ids, tf.expand_dims(beam_tokens, 1)], axis=-1) # re-order internal states if past is not None: past = self._reorder_cache(past, beam_idx) # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) # update current length cur_len = cur_len + 1 # finalize all open beam hypotheses and end to generated hypotheses for batch_idx in range(batch_size): # Add all open beam hypothesis to generated_hyps if done[batch_idx]: continue # test that beam scores match previously calculated scores if not eos and batch_idx not done if eos_token_id is not None and all( (token_id % vocab_size).numpy().item() is not eos_token_id for token_id in next_tokens[batch_idx] ): assert tf.reduce_all( next_scores[batch_idx, :num_beams] == tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx] ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format( next_scores[:, :num_beams][batch_idx], tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx] ) # need to add best num_beams hypotheses to generated hyps for beam_id in range(num_beams): effective_beam_id = batch_idx * num_beams + beam_id final_score = beam_scores[effective_beam_id].numpy().item() final_tokens = input_ids[effective_beam_id] generated_hyps[batch_idx].add(final_tokens, final_score) # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch output_batch_size = batch_size if do_sample else batch_size * num_return_sequences output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences # select the best hypotheses sent_lengths_list = [] best = [] # retrieve best hypotheses for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0]) for j in range(output_num_return_sequences_per_batch): best_hyp = sorted_hyps.pop()[1] sent_lengths_list.append(len(best_hyp)) best.append(best_hyp) assert output_batch_size == len(best), "Output batch size {} must match output beam hypotheses {}".format( output_batch_size, len(best) ) sent_lengths = tf.convert_to_tensor(sent_lengths_list, dtype=tf.int32) # shorter batches are filled with pad_token if tf.reduce_min(sent_lengths).numpy() != tf.reduce_max(sent_lengths).numpy(): assert pad_token_id is not None, "`Pad_token_id` has to be defined" sent_max_len = min(tf.reduce_max(sent_lengths).numpy() + 1, max_length) decoded_list = [] # fill with hypothesis and eos_token_id if necessary for i, hypo in enumerate(best): assert sent_lengths[i] == shape_list(hypo)[0] # if sent_length is max_len do not pad if sent_lengths[i] == sent_max_len: decoded_slice = hypo else: # else pad to sent_max_len num_pad_tokens = sent_max_len - sent_lengths[i] padding = pad_token_id * tf.ones((num_pad_tokens,), dtype=tf.int32) decoded_slice = tf.concat([hypo, padding], axis=-1) # finish sentence with EOS token if sent_lengths[i] < max_length: decoded_slice = tf.where( tf.range(sent_max_len, dtype=tf.int32) == sent_lengths[i], eos_token_id * tf.ones((sent_max_len,), dtype=tf.int32), decoded_slice, ) # add to list decoded_list.append(decoded_slice) decoded = tf.stack(decoded_list) else: # none of the hypotheses have an eos_token assert (len(hypo) == max_length for hypo in best) decoded = tf.stack(best) return decoded @staticmethod def _reorder_cache(past, beam_idx): reordered_past = [] for layer_past in past: # get the correct batch idx from layer past batch dim # batch dim of `past` and `mems` is at 2nd position reordered_layer_past = [tf.identity(tf.expand_dims(layer_past[:, i], 1)) for i in beam_idx] reordered_layer_past = tf.concat(reordered_layer_past, axis=1) # check that shape matches assert shape_list(reordered_layer_past) == shape_list(layer_past) reordered_past.append(reordered_layer_past) past = tuple(reordered_past) return past def _create_next_token_logits_penalties(input_ids, logits, repetition_penalty): # create logit penalties for already seen input_ids token_penalties = np.ones(shape_list(logits)) prev_input_ids = [np.unique(input_id) for input_id in input_ids.numpy()] for i, prev_input_id in enumerate(prev_input_ids): logit_penalized = logits[i].numpy()[prev_input_id] logit_penalties = np.zeros(logit_penalized.shape) # if previous logit score is < 0 then multiply repetition penalty else divide logit_penalties[logit_penalized < 0] = repetition_penalty logit_penalties[logit_penalized > 0] = 1 / repetition_penalty np.put(token_penalties[i], prev_input_id, logit_penalties) return tf.convert_to_tensor(token_penalties, dtype=tf.float32) def calc_banned_ngram_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len): # Copied from fairseq for no_repeat_ngram in beam_search""" if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].numpy().tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids): banned_tokens = [] def _tokens_match(prev_tokens, tokens): if len(tokens) == 0: # if bad word tokens is just one token always ban it return True if len(tokens) > len(prev_input_ids): # if bad word tokens are longer then prev input_ids they can't be equal return False if prev_tokens[-len(tokens) :] == tokens: # if tokens match return True else: return False for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids ) if _tokens_match(prev_input_ids_slice.numpy().tolist(), banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ logits_shape = shape_list(logits) if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None] logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value) if top_p < 1.0: sorted_indices = tf.argsort(logits, direction="DESCENDING") sorted_logits = tf.gather( logits, sorted_indices, axis=-1, batch_dims=1 ) # expects logits to be of dim (batch_size, vocab_size) cumulative_probs = tf.math.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove = tf.concat( [ tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]), sorted_indices_to_remove[:, min_tokens_to_keep:], ], -1, ) # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove = tf.roll(sorted_indices_to_remove, 1, axis=-1) sorted_indices_to_remove = tf.concat( [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, 1:]], -1, ) # scatter sorted tensors to original indexing indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices) logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value) return logits def scatter_values_on_batch_indices(values, batch_indices): shape = shape_list(batch_indices) # broadcast batch dim to shape broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1]) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape) def set_tensor_by_indices_to_value(tensor, indices, value): # create value_tensor since tensor value assignment is not possible in TF value_tensor = tf.zeros_like(tensor) + value return tf.where(indices, value_tensor, tensor) class BeamHypotheses(object): def __init__(self, num_beams, max_length, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.max_length = max_length - 1 # ignoring bos_token self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ score = sum_logprobs / len(hyp) ** self.length_penalty if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_scores[0][1]] self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len=None): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: if cur_len is None: cur_len = self.max_length cur_score = best_sum_logprobs / cur_len ** self.length_penalty ret = self.worst_score >= cur_score return ret class TFConv1D(tf.keras.layers.Layer): def __init__(self, nf, nx, initializer_range=0.02, **kwargs): """ TFConv1D layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2) Basically works like a Linear layer but the weights are transposed """ super().__init__(**kwargs) self.nf = nf self.nx = nx self.initializer_range = initializer_range def build(self, input_shape): self.weight = self.add_weight( "weight", shape=[self.nx, self.nf], initializer=get_initializer(self.initializer_range) ) self.bias = self.add_weight("bias", shape=[1, self.nf], initializer=tf.zeros_initializer()) def call(self, x): bz, sl = shape_list(x)[:2] x = tf.reshape(x, [-1, self.nx]) x = tf.matmul(x, self.weight) + self.bias x = tf.reshape(x, [bz, sl, self.nf]) return x class TFSharedEmbeddings(tf.keras.layers.Layer): """Construct shared token embeddings. """ def __init__(self, vocab_size, hidden_size, initializer_range=None, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.initializer_range = hidden_size ** -0.5 if initializer_range is None else initializer_range def build(self, input_shape): """Build shared token embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ self.weight = self.add_weight( "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range) ) super().build(input_shape) def call(self, inputs, mode="embedding"): """Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: (1) If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; (2) mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, input_ids): """Applies embedding based on inputs tensor.""" return tf.gather(self.weight, input_ids) def _linear(self, inputs): """Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [..., hidden_size] Returns: float32 tensor with shape [..., vocab_size]. """ first_dims = shape_list(inputs)[:-1] x = tf.reshape(inputs, [-1, self.hidden_size]) logits = tf.matmul(x, self.weight, transpose_b=True) return tf.reshape(logits, first_dims + [self.vocab_size]) class TFSequenceSummary(tf.keras.layers.Layer): r""" Compute a single vector summary of a sequence hidden states according to various possibilities: Args of the config class: summary_type: - 'last' => [default] take the last token hidden state (like XLNet) - 'first' => take the first token hidden state (like Bert) - 'mean' => take the mean of all tokens hidden states - 'cls_index' => supply a Tensor of classification token position (GPT/GPT-2) - 'attn' => Not implemented now, use multi-head attention summary_use_proj: Add a projection after the vector extraction summary_proj_to_labels: If True, the projection outputs to config.num_labels classes (otherwise to hidden_size). Default: False. summary_activation: 'tanh' => add a tanh activation to the output, Other => no activation. Default summary_first_dropout: Add a dropout before the projection and activation summary_last_dropout: Add a dropout after the projection and activation """ def __init__(self, config, initializer_range=0.02, **kwargs): super().__init__(**kwargs) self.summary_type = config.summary_type if hasattr(config, "summary_use_proj") else "last" if self.summary_type == "attn": # We should use a standard multi-head attention module with absolute positional embedding for that. # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276 # We can probably just use the multi-head attention module of PyTorch >=1.1.0 raise NotImplementedError self.has_summary = hasattr(config, "summary_use_proj") and config.summary_use_proj if self.has_summary: if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0: num_classes = config.num_labels else: num_classes = config.hidden_size self.summary = tf.keras.layers.Dense( num_classes, kernel_initializer=get_initializer(initializer_range), name="summary" ) self.has_activation = hasattr(config, "summary_activation") and config.summary_activation == "tanh" if self.has_activation: self.activation = tf.keras.activations.tanh self.has_first_dropout = hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0 if self.has_first_dropout: self.first_dropout = tf.keras.layers.Dropout(config.summary_first_dropout) self.has_last_dropout = hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0 if self.has_last_dropout: self.last_dropout = tf.keras.layers.Dropout(config.summary_last_dropout) def call(self, inputs, training=False): """ hidden_states: float Tensor in shape [bsz, seq_len, hidden_size], the hidden-states of the last layer. cls_index: [optional] position of the classification token if summary_type == 'cls_index', shape (bsz,) or more generally (bsz, ...) where ... are optional leading dimensions of hidden_states. if summary_type == 'cls_index' and cls_index is None: we take the last token of the sequence as classification token """ if not isinstance(inputs, (dict, tuple, list)): hidden_states = inputs cls_index = None elif isinstance(inputs, (tuple, list)): hidden_states = inputs[0] cls_index = inputs[1] if len(inputs) > 1 else None assert len(inputs) <= 2, "Too many inputs." else: hidden_states = inputs.get("hidden_states") cls_index = inputs.get("cls_index", None) if self.summary_type == "last": output = hidden_states[:, -1] elif self.summary_type == "first": output = hidden_states[:, 0] elif self.summary_type == "mean": output = tf.reduce_mean(hidden_states, axis=1) elif self.summary_type == "cls_index": hidden_shape = shape_list(hidden_states) # e.g. [batch, num choices, seq length, hidden dims] if cls_index is None: cls_index = tf.fill( hidden_shape[:-2], hidden_shape[-2] - 1 ) # A tensor full of shape [batch] or [batch, num choices] full of sequence length cls_shape = shape_list(cls_index) if len(cls_shape) <= len(hidden_shape) - 2: cls_index = cls_index[..., tf.newaxis] # else: # cls_index = cls_index[..., tf.newaxis] # cls_index = cls_index.expand((-1,) * (cls_index.dim()-1) + (hidden_states.size(-1),)) # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states output = tf.gather(hidden_states, cls_index, batch_dims=len(hidden_shape) - 2) output = tf.squeeze( output, axis=len(hidden_shape) - 2 ) # shape of output: (batch, num choices, hidden_size) elif self.summary_type == "attn": raise NotImplementedError if self.has_first_dropout: output = self.first_dropout(output, training=training) if self.has_summary: output = self.summary(output) if self.has_activation: output = self.activation(output) if self.has_last_dropout: output = self.last_dropout(output, training=training) return output def shape_list(x): """Deal with dynamic shape in tensorflow cleanly.""" static = x.shape.as_list() dynamic = tf.shape(x) return [dynamic[i] if s is None else s for i, s in enumerate(static)] def get_initializer(initializer_range=0.02): """Creates a `tf.initializers.truncated_normal` with the given range. Args: initializer_range: float, initializer range for stddev. Returns: TruncatedNormal initializer with stddev = `initializer_range`. """ return tf.keras.initializers.TruncatedNormal(stddev=initializer_range) TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5", "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-tf_model.h5", "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-tf_model.h5", "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-tf_model.h5", "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-tf_model.h5", "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-tf_model.h5", "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-tf_model.h5", "bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-tf_model.h5", "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-tf_model.h5", "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-tf_model.h5", "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5", "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5", "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5", "bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-tf_model.h5", "bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-tf_model.h5", "bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-tf_model.h5", "bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-tf_model.h5", "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/tf_model.h5", "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/tf_model.h5", "bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/tf_model.h5", } def gelu(x): """ Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0))) return x * cdf def gelu_new(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def swish(x): return x * tf.sigmoid(x) ACT2FN = { "gelu": tf.keras.layers.Activation(gelu), "relu": tf.keras.activations.relu, "swish": tf.keras.layers.Activation(swish), "gelu_new": tf.keras.layers.Activation(gelu_new), } class TFBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.initializer_range = config.initializer_range self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="position_embeddings", ) self.token_type_embeddings = tf.keras.layers.Embedding( config.type_vocab_size, config.hidden_size, embeddings_initializer=get_initializer(self.initializer_range), name="token_type_embeddings", ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape): """Build shared word embedding layer """ with tf.name_scope("word_embeddings"): # Create and initialize weights. The random normal initializer was chosen # arbitrarily, and works well. self.word_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call(self, inputs, mode="embedding", training=False): """Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: (1) If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; (2) mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs, training=training) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, inputs, training=False): """Applies embedding based on inputs tensor.""" input_ids, position_ids, token_type_ids, inputs_embeds = inputs if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :] if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = tf.gather(self.word_embeddings, input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings def _linear(self, inputs): """Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ batch_size = shape_list(inputs)[0] length = shape_list(inputs)[1] x = tf.reshape(inputs, [-1, self.hidden_size]) logits = tf.matmul(x, self.word_embeddings, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size]) class TFBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.amp = config.amp self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs, training=False): hidden_states, attention_mask, head_mask = inputs batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], tf.float32) attention_scores = attention_scores / tf.cast(tf.math.sqrt(dk), tf.float16 if self.amp else tf.float32) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class TFBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, inputs, training=False): hidden_states, input_tensor = inputs hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self_attention = TFBertSelfAttention(config, name="self") self.dense_output = TFBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, inputs, training=False): input_tensor, attention_mask, head_mask = inputs self_outputs = self.self_attention([input_tensor, attention_mask, head_mask], training=training) attention_output = self.dense_output([self_outputs[0], input_tensor], training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class TFBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, inputs, training=False): hidden_states, input_tensor = inputs hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class TFBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFBertAttention(config, name="attention") self.intermediate = TFBertIntermediate(config, name="intermediate") self.bert_output = TFBertOutput(config, name="output") def call(self, inputs, training=False): hidden_states, attention_mask, head_mask = inputs attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output([intermediate_output, attention_output], training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] def call(self, inputs, training=False): hidden_states, attention_mask, head_mask = inputs all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module([hidden_states, attention_mask, head_mask[i]], training=training) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # outputs, (hidden states), (attentions) class TFBertPooler(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) return pooled_output class TFBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFBertLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.transform = TFBertPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states class TFBertMLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.predictions = TFBertLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class TFBertNSPHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = tf.keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="seq_relationship" ) def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @keras_serializable class TFBertMainLayer(tf.keras.layers.Layer): config_class = BertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.num_hidden_layers = config.num_hidden_layers self.embeddings = TFBertEmbeddings(config, name="embeddings") self.encoder = TFBertEncoder(config, name="encoder") self.pooler = TFBertPooler(config, name="pooler") def get_input_embeddings(self): return self.embeddings def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds assert len(inputs) <= 6, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) assert len(inputs) <= 6, "Too many inputs." else: input_ids = inputs if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, tf.float32) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.num_hidden_layers # head_mask = tf.constant([0] * self.num_hidden_layers) embedding_output = self.embeddings([input_ids, position_ids, token_type_ids, inputs_embeds], training=training) encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output,) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class TFBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertConfig pretrained_model_archive_map = TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" BERT_START_DOCSTRING = r""" This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.BertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. training (:obj:`boolean`, `optional`, defaults to :obj:`False`): Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them (if set to :obj:`False`) for evaluation. """ @add_start_docstrings( "The bare Bert Model transformer outputing raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class TFBertModel(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ outputs = self.bert(inputs, **kwargs) return outputs @add_start_docstrings( """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, BERT_START_DOCSTRING, ) class TFBertForPreTraining(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.nsp = TFBertNSPHead(config, name="nsp___cls") self.mlm = TFBertMLMHead(config, self.bert.embeddings, name="mlm___cls") def get_output_embeddings(self): return self.bert.embeddings @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForPreTraining tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForPreTraining.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) prediction_scores, seq_relationship_scores = outputs[:2] """ outputs = self.bert(inputs, **kwargs) sequence_output, pooled_output = outputs[:2] prediction_scores = self.mlm(sequence_output, training=kwargs.get("training", False)) seq_relationship_score = self.nsp(pooled_output) outputs = (prediction_scores, seq_relationship_score,) + outputs[ 2: ] # add hidden states and attention if they are here return outputs # prediction_scores, seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING) class TFBertForMaskedLM(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.mlm = TFBertMLMHead(config, self.bert.embeddings, name="mlm___cls") def get_output_embeddings(self): return self.bert.embeddings @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForMaskedLM.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) prediction_scores = outputs[0] """ outputs = self.bert(inputs, **kwargs) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output, training=kwargs.get("training", False)) outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here return outputs # prediction_scores, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING, ) class TFBertForNextSentencePrediction(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.nsp = TFBertNSPHead(config, name="nsp___cls") @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: seq_relationship_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, 2)`) Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForNextSentencePrediction tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) seq_relationship_scores = outputs[0] """ outputs = self.bert(inputs, **kwargs) pooled_output = outputs[1] seq_relationship_score = self.nsp(pooled_output) outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here return outputs # seq_relationship_score, (hidden_states), (attentions) @add_start_docstrings( """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class TFBertForSequenceClassification(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, name="bert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: logits (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) logits = outputs[0] """ outputs = self.bert(inputs, **kwargs) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=kwargs.get("training", False)) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here return outputs # logits, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, BERT_START_DOCSTRING, ) class TFBertForMultipleChoice(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.bert = TFBertMainLayer(config, name="bert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: classification_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`: `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForMultipleChoice tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForMultipleChoice.from_pretrained('bert-base-uncased') choices = ["Hello, my dog is cute", "Hello, my cat is amazing"] input_ids = tf.constant([tokenizer.encode(s) for s in choices])[None, :] # Batch size 1, 2 choices outputs = model(input_ids) classification_scores = outputs[0] """ if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds assert len(inputs) <= 6, "Too many inputs." elif isinstance(inputs, dict): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) assert len(inputs) <= 6, "Too many inputs." else: input_ids = inputs if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs = [ flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, inputs_embeds, ] outputs = self.bert(flat_inputs, training=training) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here return outputs # reshaped_logits, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BERT_START_DOCSTRING, ) class TFBertForTokenClassification(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, name="bert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForTokenClassification tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForTokenClassification.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) scores = outputs[0] """ outputs = self.bert(inputs, **kwargs) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=kwargs.get("training", False)) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here return outputs # scores, (hidden_states), (attentions) @add_start_docstrings( """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BERT_START_DOCSTRING, ) class TFBertForQuestionAnswering(TFBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.bert = TFBertMainLayer(config, name="bert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: start_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length,)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import BertTokenizer, TFBertForQuestionAnswering tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :] # Batch size 1 outputs = model(input_ids) start_scores, end_scores = outputs[:2] """ outputs = self.bert(inputs, **kwargs) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) outputs = (start_logits, end_logits,) + outputs[2:] return outputs # start_logits, end_logits, (hidden_states), (attentions)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/modeling_utils.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for working with the local dataset cache. This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp Copyright by the AllenNLP authors. """ import fnmatch import json import logging import os import shutil import sys import tarfile import tempfile from contextlib import contextmanager from functools import partial, wraps from hashlib import sha256 from typing import Optional from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import boto3 import requests from botocore.config import Config from botocore.exceptions import ClientError from filelock import FileLock from tqdm.auto import tqdm # from examples import __version__ __version__ = "0.1" logger = logging.getLogger(__name__) # pylint: disable=invalid-name try: USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() if USE_TORCH in ("1", "ON", "YES", "AUTO") and USE_TF not in ("1", "ON", "YES"): import torch _torch_available = True # pylint: disable=invalid-name logger.info("PyTorch version {} available.".format(torch.__version__)) else: logger.info("Disabling PyTorch because USE_TF is set") _torch_available = False except ImportError: _torch_available = False # pylint: disable=invalid-name try: USE_TF = os.environ.get("USE_TF", "AUTO").upper() USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() if USE_TF in ("1", "ON", "YES", "AUTO") and USE_TORCH not in ("1", "ON", "YES"): import tensorflow as tf assert hasattr(tf, "__version__") and int(tf.__version__[0]) >= 2 _tf_available = True # pylint: disable=invalid-name logger.info("TensorFlow version {} available.".format(tf.__version__)) else: logger.info("Disabling Tensorflow because USE_TORCH is set") _tf_available = False except (ImportError, AssertionError): _tf_available = False # pylint: disable=invalid-name try: from torch.hub import _get_torch_home torch_cache_home = _get_torch_home() except ImportError: torch_cache_home = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) default_cache_path = os.path.join(torch_cache_home, "transformers") try: from pathlib import Path PYTORCH_PRETRAINED_BERT_CACHE = Path( os.getenv("PYTORCH_TRANSFORMERS_CACHE", os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)) ) except (AttributeError, ImportError): PYTORCH_PRETRAINED_BERT_CACHE = os.getenv( "PYTORCH_TRANSFORMERS_CACHE", os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) ) PYTORCH_TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE # Kept for backward compatibility TRANSFORMERS_CACHE = PYTORCH_PRETRAINED_BERT_CACHE # Kept for backward compatibility WEIGHTS_NAME = "pytorch_model.bin" TF2_WEIGHTS_NAME = "tf_model.h5" TF_WEIGHTS_NAME = "model.ckpt" CONFIG_NAME = "config.json" MODEL_CARD_NAME = "modelcard.json" MULTIPLE_CHOICE_DUMMY_INPUTS = [[[0], [1]], [[0], [1]]] DUMMY_INPUTS = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] DUMMY_MASK = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" CLOUDFRONT_DISTRIB_PREFIX = "https://d2ws9o8vfrpkyk.cloudfront.net" def is_torch_available(): return _torch_available def is_tf_available(): return _tf_available def add_start_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_start_docstrings_to_callable(*docstr): def docstring_decorator(fn): class_name = ":class:`~transformers.{}`".format(fn.__qualname__.split(".")[0]) intro = " The {} forward method, overrides the :func:`__call__` special method.".format(class_name) note = r""" .. note:: Although the recipe for forward pass needs to be defined within this function, one should call the :class:`Module` instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them. """ fn.__doc__ = intro + note + "".join(docstr) + (fn.__doc__ if fn.__doc__ is not None else "") return fn return docstring_decorator def add_end_docstrings(*docstr): def docstring_decorator(fn): fn.__doc__ = fn.__doc__ + "".join(docstr) return fn return docstring_decorator def is_remote_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https", "s3") def hf_bucket_url(identifier, postfix=None, cdn=False) -> str: endpoint = CLOUDFRONT_DISTRIB_PREFIX if cdn else S3_BUCKET_PREFIX if postfix is None: return "/".join((endpoint, identifier)) else: return "/".join((endpoint, identifier, postfix)) def url_to_filename(url, etag=None): """ Convert `url` into a hashed filename in a repeatable way. If `etag` is specified, append its hash to the url's, delimited by a period. If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name so that TF 2.0 can identify it as a HDF5 file (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) """ url_bytes = url.encode("utf-8") url_hash = sha256(url_bytes) filename = url_hash.hexdigest() if etag: etag_bytes = etag.encode("utf-8") etag_hash = sha256(etag_bytes) filename += "." + etag_hash.hexdigest() if url.endswith(".h5"): filename += ".h5" return filename def filename_to_url(filename, cache_dir=None): """ Return the url and etag (which may be ``None``) stored for `filename`. Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist. """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) cache_path = os.path.join(cache_dir, filename) if not os.path.exists(cache_path): raise EnvironmentError("file {} not found".format(cache_path)) meta_path = cache_path + ".json" if not os.path.exists(meta_path): raise EnvironmentError("file {} not found".format(meta_path)) with open(meta_path, encoding="utf-8") as meta_file: metadata = json.load(meta_file) url = metadata["url"] etag = metadata["etag"] return url, etag def cached_path( url_or_filename, cache_dir=None, force_download=False, proxies=None, resume_download=False, user_agent=None, extract_compressed_file=False, force_extract=False, local_files_only=False, ) -> Optional[str]: """ Given something that might be a URL (or might be a local path), determine which. If it's a URL, download the file and cache it, and return the path to the cached file. If it's already a local path, make sure the file exists and then return the path. Args: cache_dir: specify a cache directory to save the file to (overwrite the default cache dir). force_download: if True, re-dowload the file even if it's already cached in the cache dir. resume_download: if True, resume the download if incompletly recieved file is found. user_agent: Optional string or dict that will be appended to the user-agent on remote requests. extract_compressed_file: if True and the path point to a zip or tar file, extract the compressed file in a folder along the archive. force_extract: if True when extract_compressed_file is True and the archive was already extracted, re-extract the archive and overide the folder where it was extracted. Return: None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk). Local path (string) otherwise """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(url_or_filename, Path): url_or_filename = str(url_or_filename) if isinstance(cache_dir, Path): cache_dir = str(cache_dir) if is_remote_url(url_or_filename): # URL, so get it from the cache (downloading if necessary) output_path = get_from_cache( url_or_filename, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, user_agent=user_agent, local_files_only=local_files_only, ) elif os.path.exists(url_or_filename): # File, and it exists. output_path = url_or_filename elif urlparse(url_or_filename).scheme == "": # File, but it doesn't exist. raise EnvironmentError("file {} not found".format(url_or_filename)) else: # Something unknown raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename)) if extract_compressed_file: if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" output_dir, output_file = os.path.split(output_path) output_extract_dir_name = output_file.replace(".", "-") + "-extracted" output_path_extracted = os.path.join(output_dir, output_extract_dir_name) if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract: return output_path_extracted # Prevent parallel extractions lock_path = output_path + ".lock" with FileLock(lock_path): shutil.rmtree(output_path_extracted, ignore_errors=True) os.makedirs(output_path_extracted) if is_zipfile(output_path): with ZipFile(output_path, "r") as zip_file: zip_file.extractall(output_path_extracted) zip_file.close() elif tarfile.is_tarfile(output_path): tar_file = tarfile.open(output_path) tar_file.extractall(output_path_extracted) tar_file.close() else: raise EnvironmentError("Archive format of {} could not be identified".format(output_path)) return output_path_extracted return output_path def split_s3_path(url): """Split a full s3 path into the bucket name and path.""" parsed = urlparse(url) if not parsed.netloc or not parsed.path: raise ValueError("bad s3 path {}".format(url)) bucket_name = parsed.netloc s3_path = parsed.path # Remove '/' at beginning of path. if s3_path.startswith("/"): s3_path = s3_path[1:] return bucket_name, s3_path def s3_request(func): """ Wrapper function for s3 requests in order to create more helpful error messages. """ @wraps(func) def wrapper(url, *args, **kwargs): try: return func(url, *args, **kwargs) except ClientError as exc: if int(exc.response["Error"]["Code"]) == 404: raise EnvironmentError("file {} not found".format(url)) else: raise return wrapper @s3_request def s3_etag(url, proxies=None): """Check ETag on S3 object.""" s3_resource = boto3.resource("s3", config=Config(proxies=proxies)) bucket_name, s3_path = split_s3_path(url) s3_object = s3_resource.Object(bucket_name, s3_path) return s3_object.e_tag @s3_request def s3_get(url, temp_file, proxies=None): """Pull a file directly from S3.""" s3_resource = boto3.resource("s3", config=Config(proxies=proxies)) bucket_name, s3_path = split_s3_path(url) s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file) def http_get(url, temp_file, proxies=None, resume_size=0, user_agent=None): ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0]) if is_torch_available(): ua += "; torch/{}".format(torch.__version__) if is_tf_available(): ua += "; tensorflow/{}".format(tf.__version__) if isinstance(user_agent, dict): ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items()) elif isinstance(user_agent, str): ua += "; " + user_agent headers = {"user-agent": ua} if resume_size > 0: headers["Range"] = "bytes=%d-" % (resume_size,) response = requests.get(url, stream=True, proxies=proxies, headers=headers) if response.status_code == 416: # Range not satisfiable return content_length = response.headers.get("Content-Length") total = resume_size + int(content_length) if content_length is not None else None progress = tqdm( unit="B", unit_scale=True, total=total, initial=resume_size, desc="Downloading", disable=bool(logger.getEffectiveLevel() == logging.NOTSET), ) for chunk in response.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) progress.close() def get_from_cache( url, cache_dir=None, force_download=False, proxies=None, etag_timeout=10, resume_download=False, user_agent=None, local_files_only=False, ) -> Optional[str]: """ Given a URL, look for the corresponding file in the local cache. If it's not there, download it. Then return the path to the cached file. Return: None in case of non-recoverable file (non-existent or inaccessible url + no cache on disk). Local path (string) otherwise """ if cache_dir is None: cache_dir = TRANSFORMERS_CACHE if isinstance(cache_dir, Path): cache_dir = str(cache_dir) os.makedirs(cache_dir, exist_ok=True) etag = None if not local_files_only: # Get eTag to add to filename, if it exists. if url.startswith("s3://"): etag = s3_etag(url, proxies=proxies) else: try: response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout) if response.status_code == 200: etag = response.headers.get("ETag") except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass filename = url_to_filename(url, etag) # get cache path to put the file cache_path = os.path.join(cache_dir, filename) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(cache_path): return cache_path else: matching_files = [ file for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*") if not file.endswith(".json") and not file.endswith(".lock") ] if len(matching_files) > 0: return os.path.join(cache_dir, matching_files[-1]) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( "Cannot find the requested files in the cached path and outgoing traffic has been" " disabled. To enable model look-ups and downloads online, set 'local_files_only'" " to False." ) return None # From now on, etag is not None. if os.path.exists(cache_path) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lock_path = cache_path + ".lock" with FileLock(lock_path): if resume_download: incomplete_path = cache_path + ".incomplete" @contextmanager def _resumable_file_manager(): with open(incomplete_path, "a+b") as f: yield f temp_file_manager = _resumable_file_manager if os.path.exists(incomplete_path): resume_size = os.stat(incomplete_path).st_size else: resume_size = 0 else: temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False) resume_size = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: logger.info("%s not found in cache or force_download set to True, downloading to %s", url, temp_file.name) # GET file object if url.startswith("s3://"): if resume_download: logger.warn('Warning: resumable downloads are not implemented for "s3://" urls') s3_get(url, temp_file, proxies=proxies) else: http_get(url, temp_file, proxies=proxies, resume_size=resume_size, user_agent=user_agent) logger.info("storing %s in cache at %s", url, cache_path) os.replace(temp_file.name, cache_path) logger.info("creating metadata file for %s", cache_path) meta = {"url": url, "etag": etag} meta_path = cache_path + ".json" with open(meta_path, "w") as meta_file: json.dump(meta, meta_file) return cache_path
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/file_utils.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess import time import argparse import json import logging import tensorflow as tf import horovod.tensorflow as hvd from horovod.tensorflow.compression import Compression from gpu_affinity import set_affinity if sys.version_info[0] == 2: import cPickle as pickle else: import pickle from tqdm import tqdm import dllogger from utils import is_main_process, format_step, get_rank, get_world_size, log from configuration import ElectraConfig from modeling import TFElectraForQuestionAnswering from tokenization import ElectraTokenizer from optimization import create_optimizer from squad_utils import SquadV1Processor, SquadV2Processor, squad_convert_examples_to_features, \ SquadResult, RawResult, get_answers TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/electra-small-generator", "google/electra-base-generator", "google/electra-large-generator", "google/electra-small-discriminator", "google/electra-base-discriminator", "google/electra-large-discriminator", # See all ELECTRA models at https://huggingface.co/models?filter=electra ] def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--electra_model", default=None, type=str, required=True, help="Model selected in the list: " + ", ".join(TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST)) parser.add_argument("--data_dir", default=None, type=str, required=True, help="Path to dataset.") parser.add_argument("--output_dir", default=".", type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.") parser.add_argument("--init_checkpoint", default=None, type=str, help="The checkpoint file from pretraining") # Other parameters parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_eval", action='store_true', help="Whether to use evaluate accuracy of predictions") parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json") parser.add_argument("--predict_file", default=None, type=str, help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=1e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay_rate", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--layerwise_lr_decay", default=0.8, type=float, help="The layerwise learning rate decay. Shallower layers have lower learning rates.") parser.add_argument("--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1.0, type=float, help="Total number of training steps to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% " "of training.") parser.add_argument("--max_seq_length", default=384, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded.") parser.add_argument("--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.") parser.add_argument("--max_query_length", default=64, type=int, help="The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--vocab_file", default=None, type=str, help="Path to vocabulary file use for tokenization") parser.add_argument("--ci", action="store_true", help="true if running on CI") parser.add_argument( "--joint_head", default=True, type=bool, help="Jointly predict the start and end positions", ) parser.add_argument( "--beam_size", default=4, type=int, help="Beam size when doing joint predictions", ) parser.add_argument("--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument("--max_answer_length", default=30, type=int, help="The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument("--verbose_logging", action='store_true', help="If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--do_lower_case", action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", type=int, default=os.getenv('LOCAL_RANK', -1), help="local_rank for distributed training on gpus") parser.add_argument('--amp', action='store_true', help="Automatic mixed precision training") parser.add_argument('--fp16_all_reduce', action='store_true', help="Whether to use 16-bit all reduce") parser.add_argument('--xla', action='store_true', help="Whether to use XLA") parser.add_argument('--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.') parser.add_argument('--null_score_diff_threshold', type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.") parser.add_argument('--log_freq', type=int, default=50, help='frequency of logging loss.') parser.add_argument('--json-summary', type=str, default="results/dllogger.json", help='If provided, the json summary will be written to the specified file.') parser.add_argument("--eval_script", help="Script to evaluate squad predictions", default="evaluate.py", type=str) parser.add_argument("--use_env", action='store_true', help="Whether to read local rank from ENVVAR") parser.add_argument('--skip_checkpoint', default=False, action='store_true', help="Whether to save checkpoints") parser.add_argument('--disable-progress-bar', default=False, action='store_true', help='Disable tqdm progress bar') parser.add_argument("--skip_cache", default=False, action='store_true', help="Whether to cache train features") parser.add_argument("--cache_dir", default=None, type=str, help="Location to cache train feaures. Will default to the dataset direct") args = parser.parse_args() if not args.do_train and (not args.init_checkpoint or args.init_checkpoint == 'None'): raise ValueError("Checkpoint is required if do_train is not set") return args def get_dataset_from_features(features, batch_size, drop_remainder=True, ngpu=8, mode="train", v2=False): """Input function for training""" all_input_ids = tf.convert_to_tensor([f.input_ids for f in features], dtype=tf.int64) all_input_mask = tf.convert_to_tensor([f.attention_mask for f in features], dtype=tf.int64) all_segment_ids = tf.convert_to_tensor([f.token_type_ids for f in features], dtype=tf.int64) all_start_pos = tf.convert_to_tensor([f.start_position for f in features], dtype=tf.int64) all_end_pos = tf.convert_to_tensor([f.end_position for f in features], dtype=tf.int64) # if v2 else None: all_cls_index = tf.convert_to_tensor([f.cls_index for f in features], dtype=tf.int64) all_p_mask = tf.convert_to_tensor([f.p_mask for f in features], dtype=tf.float32) all_is_impossible = tf.convert_to_tensor([f.is_impossible for f in features], dtype=tf.float32) dataset = tf.data.Dataset.from_tensor_slices( (all_input_ids, all_input_mask, all_segment_ids, all_start_pos, all_end_pos) + (all_cls_index, all_p_mask, all_is_impossible)) if ngpu > 1: dataset = dataset.shard(get_world_size(), get_rank()) if mode == "train": dataset = dataset.shuffle(batch_size * 3) # dataset = dataset.map(self._preproc_samples, # num_parallel_calls=multiprocessing.cpu_count()//self._num_gpus) dataset = dataset.batch(batch_size, drop_remainder=drop_remainder) dataset = dataset.prefetch(batch_size) return dataset @tf.function def train_step(model, inputs, loss, amp, opt, init, v2=False, loss_class=None, fp16=False, clip_norm=1.0): with tf.GradientTape() as tape: [input_ids, input_mask, segment_ids, start_positions, end_positions, cls_index, p_mask, is_impossible] = inputs if not v2: is_impossible = None start_logits, end_logits, cls_logits = model(input_ids, attention_mask=input_mask, token_type_ids=segment_ids, start_positions=start_positions, end_positions=end_positions, cls_index=cls_index, p_mask=p_mask, is_impossible=is_impossible, position_ids=None, head_mask=None, inputs_embeds=None, training=True, )[0:3] # If we are on multi-GPU, split add a dimension if len(start_positions.shape) > 1: start_positions = tf.squeeze(start_positions, axis=-1, name="squeeze_start_positions") if len(end_positions.shape) > 1: end_positions = tf.squeeze(end_positions, axis=-1, name="squeeze_end_positions") if is_impossible is not None and len(is_impossible.shape) > 1 and v2 and cls_logits is not None: is_impossible = tf.squeeze(is_impossible, axis=-1, name="squeeze_is_impossible") # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.shape[1] start_positions = tf.clip_by_value(start_positions, 0, ignored_index, name="clip_start_positions") end_positions = tf.clip_by_value(end_positions, 0, ignored_index, name="clip_end_positions") start_loss = loss(y_true=start_positions, y_pred=tf.cast(start_logits, tf.float32)) end_loss = loss(y_true=end_positions, y_pred=tf.cast(end_logits, tf.float32)) loss_value = (start_loss + end_loss) / 2 if v2: cls_loss_value = loss_class(y_true=is_impossible, y_pred=tf.cast(cls_logits, tf.float32)) loss_value += cls_loss_value * 0.5 unscaled_loss = tf.stop_gradient(loss_value) if amp: loss_value = opt.get_scaled_loss(loss_value) tape = hvd.DistributedGradientTape(tape, sparse_as_dense=True, compression=Compression.fp16 if fp16 else Compression.none) gradients = tape.gradient(loss_value, model.trainable_variables) if amp: gradients = opt.get_unscaled_gradients(gradients) (gradients, _) = tf.clip_by_global_norm(gradients, clip_norm=clip_norm) opt.apply_gradients(zip(gradients, model.trainable_variables)) # , clip_norm=1.0) if init: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(opt.variables(), root_rank=0) return unscaled_loss # , outputs#, tape.gradient(loss_value, model.trainable_variables) @tf.function def infer_step(model, input_ids, attention_mask=None, token_type_ids=None, cls_index=None, p_mask=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): return model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, cls_index=cls_index, p_mask=p_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, training=training, ) def main(): args = parse_args() hvd.init() set_affinity(hvd.local_rank()) if is_main_process(): log("Running total processes: {}".format(get_world_size())) log("Starting process: {}".format(get_rank())) if is_main_process(): dllogger.init(backends=[dllogger.JSONStreamBackend(verbosity=dllogger.Verbosity.VERBOSE, filename=args.json_summary), dllogger.StdOutBackend(verbosity=dllogger.Verbosity.VERBOSE, step_format=format_step)]) else: dllogger.init(backends=[]) dllogger.metadata("exact_match", {"unit": None}) dllogger.metadata("F1", {"unit": None}) dllogger.metadata("inference_sequences_per_second", {"unit": "sequences/s"}) dllogger.metadata("training_sequences_per_second", {"unit": "sequences/s"}) tf.random.set_seed(args.seed) dllogger.log(step="PARAMETER", data={"SEED": args.seed}) # script parameters BATCH_SIZE = args.train_batch_size EVAL_BATCH_SIZE = args.predict_batch_size USE_XLA = args.xla USE_AMP = args.amp EPOCHS = args.num_train_epochs if not args.do_train: EPOCHS = args.num_train_epochs = 1 log("Since running inference only, setting args.num_train_epochs to 1") if not os.path.exists(args.output_dir) and is_main_process(): os.makedirs(args.output_dir) # TensorFlow configuration gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') tf.config.optimizer.set_jit(USE_XLA) #tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP}) if args.amp: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16", loss_scale="dynamic") tf.keras.mixed_precision.experimental.set_policy(policy) print('Compute dtype: %s' % policy.compute_dtype) # Compute dtype: float16 print('Variable dtype: %s' % policy.variable_dtype) # Variable dtype: float32 if is_main_process(): log("***** Loading tokenizer and model *****") # Load tokenizer and model from pretrained model/vocabulary. Specify the number of labels to classify (2+: classification, 1: regression) electra_model = args.electra_model config = ElectraConfig.from_pretrained(electra_model, cache_dir=args.cache_dir) config.update({"amp": args.amp}) if args.vocab_file is None: tokenizer = ElectraTokenizer.from_pretrained(electra_model, cache_dir=args.cache_dir) else: tokenizer = ElectraTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) model = TFElectraForQuestionAnswering.from_pretrained(electra_model, config=config, cache_dir=args.cache_dir, args=args) if is_main_process(): log("***** Loading dataset *****") # Load data processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() train_examples = processor.get_train_examples(args.data_dir) if args.do_train else None dev_examples = processor.get_dev_examples(args.data_dir) if args.do_predict else None if is_main_process(): log("***** Loading features *****") # Load cached features squad_version = '2.0' if args.version_2_with_negative else '1.1' if args.cache_dir is None: args.cache_dir = args.data_dir cached_train_features_file = args.cache_dir.rstrip('/') + '/' + 'TF2_train-v{4}.json_{1}_{2}_{3}'.format( electra_model.split("/")[1], str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), squad_version) cached_dev_features_file = args.cache_dir.rstrip('/') + '/' + 'TF2_dev-v{4}.json_{1}_{2}_{3}'.format( electra_model.split("/")[1], str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), squad_version) try: with open(cached_train_features_file, "rb") as reader: train_features = pickle.load(reader) if args.do_train else [] with open(cached_dev_features_file, "rb") as reader: dev_features = pickle.load(reader) if args.do_predict else [] except: train_features = ( # TODO: (yy) do on rank 0? squad_convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True, return_dataset="", ) if args.do_train else [] ) dev_features = ( squad_convert_examples_to_features( examples=dev_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False, return_dataset="", ) if args.do_predict else [] ) # Dump Cached features if not args.skip_cache and is_main_process(): if args.do_train: log("***** Building Cache Files: {} *****".format(cached_train_features_file)) with open(cached_train_features_file, "wb") as writer: pickle.dump(train_features, writer) if args.do_predict: log("***** Building Cache Files: {} *****".format(cached_dev_features_file)) with open(cached_dev_features_file, "wb") as writer: pickle.dump(dev_features, writer) len_train_features = len(train_features) total_train_steps = int((len_train_features * EPOCHS / BATCH_SIZE) / get_world_size()) + 1 train_steps_per_epoch = int((len_train_features / BATCH_SIZE) / get_world_size()) + 1 len_dev_features = len(dev_features) total_dev_steps = int((len_dev_features / EVAL_BATCH_SIZE)) + 1 train_dataset = get_dataset_from_features(train_features, BATCH_SIZE, v2=args.version_2_with_negative) if args.do_train else [] dev_dataset = get_dataset_from_features(dev_features, EVAL_BATCH_SIZE, drop_remainder=False, ngpu=1, mode="dev", v2=args.version_2_with_negative) if args.do_predict else [] opt = create_optimizer(init_lr=args.learning_rate, num_train_steps=total_train_steps, num_warmup_steps=int(args.warmup_proportion * total_train_steps), weight_decay_rate=args.weight_decay_rate, layerwise_lr_decay=args.layerwise_lr_decay, n_transformer_layers=model.num_hidden_layers) if USE_AMP: # loss scaling is currently required when using mixed precision opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(opt, "dynamic") # Define loss function loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss_class = tf.keras.losses.BinaryCrossentropy( from_logits=True, name='binary_crossentropy' ) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") model.compile(optimizer=opt, loss=loss, metrics=[metric]) train_loss_results = [] if args.do_train and is_main_process(): log("***** Running training *****") log(" Num examples = ", len_train_features) log(" Num Epochs = ", args.num_train_epochs) log(" Instantaneous batch size per GPU = ", args.train_batch_size) log( " Total train batch size (w. parallel, distributed & accumulation) = ", args.train_batch_size * get_world_size(), ) log(" Total optimization steps =", total_train_steps) total_train_time = 0 latency = [] for epoch in range(EPOCHS): if args.do_train: epoch_loss_avg = tf.keras.metrics.Mean() epoch_perf_avg = tf.keras.metrics.Mean() epoch_start = time.time() epoch_iterator = tqdm(train_dataset, total=train_steps_per_epoch, desc="Iteration", mininterval=5, disable=not is_main_process()) for iter, inputs in enumerate(epoch_iterator): # breaking criterion if max_steps if > 1 if args.max_steps > 0 and (epoch * train_steps_per_epoch + iter) > args.max_steps: break iter_start = time.time() # Optimize the model loss_value = train_step(model, inputs, loss, USE_AMP, opt, (iter == 0 and epoch == 0), v2=args.version_2_with_negative, loss_class=loss_class, fp16=USE_AMP) #introduce CPU-GPU sync for training perf computation loss_numpy = loss_value.numpy() epoch_perf_avg.update_state(1. * BATCH_SIZE / (time.time() - iter_start)) if iter % args.log_freq == 0: if is_main_process(): log("\nEpoch: {:03d}, Step:{:6d}, Loss:{:12.8f}, Perf:{:5.0f}, loss_scale:{}, opt_step:{}".format(epoch, iter, loss_value, epoch_perf_avg.result() * get_world_size(), opt.loss_scale if config.amp else 1, int(opt.iterations))) dllogger.log(step=(epoch, iter,), data={"step_loss": float(loss_value.numpy()), "train_perf": float( epoch_perf_avg.result().numpy() * get_world_size())}) # Track progress epoch_loss_avg.update_state(loss_value) # Add current batch loss # End epoch train_loss_results.append(epoch_loss_avg.result()) total_train_time += float(time.time() - epoch_start) # Summarize and save checkpoint at the end of each epoch if is_main_process(): dllogger.log(step=tuple(), data={"e2e_train_time": total_train_time, "training_sequences_per_second": float( epoch_perf_avg.result().numpy() * get_world_size()), "final_loss": float(epoch_loss_avg.result().numpy())}) if not args.skip_checkpoint: if args.ci: checkpoint_name = "{}/electra_base_qa_v2_{}_epoch_{}_ckpt".format(args.output_dir, args.version_2_with_negative, epoch + 1) else: checkpoint_name = "checkpoints/electra_base_qa_v2_{}_epoch_{}_ckpt".format(args.version_2_with_negative, epoch + 1) if is_main_process(): model.save_weights(checkpoint_name) if args.do_predict and (args.evaluate_during_training or epoch == args.num_train_epochs - 1): if not args.do_train: log("***** Loading checkpoint: {} *****".format(args.init_checkpoint)) model.load_weights(args.init_checkpoint).expect_partial() current_feature_id = 0 all_results = [] if is_main_process(): log("***** Running evaluation *****") log(" Num Batches = ", total_dev_steps) log(" Batch size = ", args.predict_batch_size) raw_infer_start = time.time() if is_main_process(): infer_perf_avg = tf.keras.metrics.Mean() dev_iterator = tqdm(dev_dataset, total=total_dev_steps, desc="Iteration", mininterval=5, disable=not is_main_process()) for input_ids, input_mask, segment_ids, start_positions, end_positions, cls_index, p_mask, is_impossible in dev_iterator: # training=False is needed only if there are layers with different # behavior during training versus inference (e.g. Dropout). iter_start = time.time() if not args.joint_head: batch_start_logits, batch_end_logits = infer_step(model, input_ids, attention_mask=input_mask, token_type_ids=segment_ids, )[:2] #Synchronize with GPU to compute time _ = batch_start_logits.numpy() else: outputs = infer_step(model, input_ids, attention_mask=input_mask, token_type_ids=segment_ids, cls_index=cls_index, p_mask=p_mask, ) #Synchronize with GPU to compute time _ = outputs[0].numpy() infer_time = (time.time() - iter_start) infer_perf_avg.update_state(1. * EVAL_BATCH_SIZE / infer_time) latency.append(infer_time) for iter_ in range(input_ids.shape[0]): if not args.joint_head: start_logits = batch_start_logits[iter_].numpy().tolist() end_logits = batch_end_logits[iter_].numpy().tolist() dev_feature = dev_features[current_feature_id] current_feature_id += 1 unique_id = int(dev_feature.unique_id) all_results.append(RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) else: dev_feature = dev_features[current_feature_id] current_feature_id += 1 unique_id = int(dev_feature.unique_id) output = [output[iter_].numpy().tolist() for output in outputs] start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) all_results.append(result) # Compute and save predictions answers, nbest_answers = get_answers(dev_examples, dev_features, all_results, args) output_prediction_file = os.path.join(args.output_dir, "predictions.json") output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") e2e_infer_time = time.time() - raw_infer_start # if args.version_2_with_negative: # output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") # else: # output_null_log_odds_file = None with open(output_prediction_file, "w") as f: f.write(json.dumps(answers, indent=4) + "\n") with open(output_nbest_file, "w") as f: f.write(json.dumps(nbest_answers, indent=4) + "\n") if args.do_eval: if args.version_2_with_negative: dev_file = "dev-v2.0.json" else: dev_file = "dev-v1.1.json" eval_out = subprocess.check_output([sys.executable, args.eval_script, args.data_dir + "/" + dev_file, output_prediction_file]) log(eval_out.decode('UTF-8')) scores = str(eval_out).strip() exact_match = float(scores.split(":")[1].split(",")[0]) if args.version_2_with_negative: f1 = float(scores.split(":")[2].split(",")[0]) else: f1 = float(scores.split(":")[2].split("}")[0]) log("Epoch: {:03d} Results: {}".format(epoch, eval_out.decode('UTF-8'))) log("**EVAL SUMMARY** - Epoch: {:03d}, EM: {:6.3f}, F1: {:6.3f}, Infer_Perf: {:4.0f} seq/s" .format(epoch, exact_match, f1, infer_perf_avg.result())) latency_all = sorted(latency)[:-2] log( "**LATENCY SUMMARY** - Epoch: {:03d}, Ave: {:6.3f} ms, 90%: {:6.3f} ms, 95%: {:6.3f} ms, 99%: {:6.3f} ms" .format(epoch, sum(latency_all) / len(latency_all) * 1000, sum(latency_all[:int(len(latency_all) * 0.9)]) / int(len(latency_all) * 0.9) * 1000, sum(latency_all[:int(len(latency_all) * 0.95)]) / int(len(latency_all) * 0.95) * 1000, sum(latency_all[:int(len(latency_all) * 0.99)]) / int(len(latency_all) * 0.99) * 1000, )) dllogger.log(step=tuple(), data={"inference_sequences_per_second": float(infer_perf_avg.result().numpy()), "e2e_inference_time": e2e_infer_time}) if is_main_process() and args.do_train and args.do_eval: log( "**RESULTS SUMMARY** - EM: {:6.3f}, F1: {:6.3f}, Train_Time: {:4.0f} s, Train_Perf: {:4.0f} seq/s, Infer_Perf: {:4.0f} seq/s" .format(exact_match, f1, total_train_time, epoch_perf_avg.result() * get_world_size(), infer_perf_avg.result())) dllogger.log(step=tuple(), data={"exact_match": exact_match, "F1": f1}) if __name__ == "__main__": main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/run_tf_squad.py
# Copyright 2020 The Google AI Team, Stanford University and The HuggingFace Inc. team. # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import tensorflow as tf from configuration import ElectraConfig from file_utils import add_start_docstrings, add_start_docstrings_to_callable from modeling_utils import ACT2FN, TFBertEncoder, TFBertPreTrainedModel from modeling_utils import get_initializer, shape_list from tokenization_utils import BatchEncoding import pretrain_utils, collections logger = logging.getLogger(__name__) TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP = { "google/electra-small-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-generator/tf_model.h5", "google/electra-base-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-generator/tf_model.h5", "google/electra-large-generator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-generator/tf_model.h5", "google/electra-small-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-small-discriminator/tf_model.h5", "google/electra-base-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-base-discriminator/tf_model.h5", "google/electra-large-discriminator": "https://s3.amazonaws.com/models.huggingface.co/bert/google/electra-large-discriminator/tf_model.h5", } class TFElectraEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.initializer_range = config.initializer_range self.position_embeddings = tf.keras.layers.Embedding( config.max_position_embeddings, config.embedding_size, embeddings_initializer=get_initializer(self.initializer_range), name="position_embeddings", ) self.token_type_embeddings = tf.keras.layers.Embedding( config.type_vocab_size, config.embedding_size, embeddings_initializer=get_initializer(self.initializer_range), name="token_type_embeddings", ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.amp = config.amp def build(self, input_shape): """Build shared word embedding layer """ with tf.name_scope("word_embeddings"): # Create and initialize weights. The random normal initializer was chosen # arbitrarily, and works well. self.word_embeddings = self.add_weight( "weight", shape=[self.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call(self, inputs, mode="embedding", training=False): """Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: (1) If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; (2) mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs, training=training) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, inputs, training=False): """Applies embedding based on inputs tensor.""" input_ids, position_ids, token_type_ids, inputs_embeds = inputs if input_ids is not None: input_shape = shape_list(input_ids) else: input_shape = shape_list(inputs_embeds)[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :] if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = tf.gather(self.word_embeddings, input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) if self.amp: embeddings = inputs_embeds + tf.cast(position_embeddings, tf.float16) + tf.cast(token_type_embeddings, tf.float16) else: embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings, training=training) return embeddings def _linear(self, inputs): """Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ batch_size = shape_list(inputs)[0] length = shape_list(inputs)[1] x = tf.reshape(inputs, [-1, self.embedding_size]) logits = tf.matmul(x, self.word_embeddings, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size]) class TFElectraDiscriminatorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense") self.dense_prediction = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="dense_prediction") self.config = config def call(self, discriminator_hidden_states, training=False): hidden_states = self.dense(discriminator_hidden_states) hidden_states = ACT2FN[self.config.hidden_act](hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states), axis=-1) return logits class TFElectraGeneratorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense( config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense") def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = ACT2FN["gelu"](hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFElectraPreTrainedModel(TFBertPreTrainedModel): config_class = ElectraConfig pretrained_model_archive_map = TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "electra" def get_extended_attention_mask(self, attention_mask, input_shape): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, tf.float32) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask class TFElectraMainLayer(TFElectraPreTrainedModel): config_class = ElectraConfig def __init__(self, config, shared_embeddings=False, input_embeddings=None, **kwargs): super().__init__(config, **kwargs) if shared_embeddings and input_embeddings is not None: self.embeddings = input_embeddings else: self.embeddings = TFElectraEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embeddings_project") self.encoder = TFBertEncoder(config, name="encoder") self.config = config def get_input_embeddings(self): return self.embeddings def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): if isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else attention_mask token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids position_ids = inputs[3] if len(inputs) > 3 else position_ids head_mask = inputs[4] if len(inputs) > 4 else head_mask inputs_embeds = inputs[5] if len(inputs) > 5 else inputs_embeds assert len(inputs) <= 6, "Too many inputs." elif isinstance(inputs, (dict, BatchEncoding)): input_ids = inputs.get("input_ids") attention_mask = inputs.get("attention_mask", attention_mask) token_type_ids = inputs.get("token_type_ids", token_type_ids) position_ids = inputs.get("position_ids", position_ids) head_mask = inputs.get("head_mask", head_mask) inputs_embeds = inputs.get("inputs_embeds", inputs_embeds) assert len(inputs) <= 6, "Too many inputs." else: input_ids = inputs if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) head_mask = self.get_head_mask(head_mask) hidden_states = self.embeddings([input_ids, position_ids, token_type_ids, inputs_embeds], training=training) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=training) hidden_states = self.encoder([hidden_states, extended_attention_mask, head_mask], training=training) return hidden_states ELECTRA_START_DOCSTRING = r""" This model is a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ELECTRA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.ElectraTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.encode_plus` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, embedding_dim)`, `optional`, defaults to :obj:`None`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. training (:obj:`boolean`, `optional`, defaults to :obj:`False`): Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them (if set to :obj:`False`) for evaluation. """ @add_start_docstrings( "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " "hidden size and embedding size are different." "" "Both the generator and discriminator checkpoints may be loaded into this model.", ELECTRA_START_DOCSTRING, ) class TFElectraModel(TFElectraPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") def get_input_embeddings(self): return self.electra.embeddings @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING) def call(self, inputs, **kwargs): r""" Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs: last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import ElectraTokenizer, TFElectraModel tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') model = TFElectraModel.from_pretrained('google/electra-small-discriminator') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ outputs = self.electra(inputs, **kwargs) return outputs @add_start_docstrings( """ Electra model with a binary classification head on top as used during pre-training for identifying generated tokens. Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model of the two to have the correct classification head to be used for this model.""", ELECTRA_START_DOCSTRING, ) class TFElectraForPreTraining(TFElectraPreTrainedModel): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions") def get_input_embeddings(self): return self.electra.embeddings @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): r""" Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs: scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import ElectraTokenizer, TFElectraForPreTraining tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') model = TFElectraForPreTraining.from_pretrained('google/electra-small-discriminator') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) scores = outputs[0] """ discriminator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, training=training ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) output = (logits,) output += discriminator_hidden_states[1:] return output # (loss), scores, (hidden_states), (attentions) class TFElectraMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def call(self, hidden_states, training=False): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @add_start_docstrings( """ Electra model with a language modeling head on top. Even though both the discriminator and generator may be loaded into this model, the generator is the only model of the two to have been trained for the masked language modeling task.""", ELECTRA_START_DOCSTRING, ) class TFElectraForMaskedLM(TFElectraPreTrainedModel): def __init__(self, config, shared_embeddings=False, input_embeddings=None, **kwargs): super().__init__(config, **kwargs) self.vocab_size = config.vocab_size self.electra = TFElectraMainLayer(config, shared_embeddings=shared_embeddings, input_embeddings=input_embeddings, name="electra") self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head") def get_input_embeddings(self): return self.electra.embeddings def get_output_embeddings(self): return self.generator_lm_head @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): r""" Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs: prediction_scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import ElectraTokenizer, TFElectraForMaskedLM tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-generator') model = TFElectraForMaskedLM.from_pretrained('google/electra-small-generator') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) prediction_scores = outputs[0] """ generator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, training=training ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=training) prediction_scores = self.generator_lm_head(prediction_scores, training=training) output = (prediction_scores,) output += generator_hidden_states[1:] return output # (masked_lm_loss), prediction_scores, (hidden_states), (attentions) def get_generator_config(config, bert_config): """Get model config for the generator network.""" gen_config = ElectraConfig.from_dict(bert_config.to_dict()) gen_config.hidden_size = int(round( bert_config.hidden_size * config.generator_hidden_size)) #To keep hidden size divisble by 64 - attention head size if gen_config.hidden_size % 64 != 0: gen_config.hidden_size += 64 - (gen_config.hidden_size % 64) gen_config.num_hidden_layers = int(round( bert_config.num_hidden_layers * config.generator_layers)) gen_config.intermediate_size = 4 * gen_config.hidden_size gen_config.num_attention_heads = max(1, gen_config.hidden_size // 64) return gen_config class PretrainingModel(tf.keras.Model): """Transformer pre-training using the replaced-token-detection task.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) # Set up model config self._config = config self.disc_config = ElectraConfig(vocab_size=config.vocab_size, embedding_size=config.embedding_size, hidden_size=config.hidden_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, intermediate_size=4*config.hidden_size, hidden_act=config.act_func, hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=config.attention_probs_dropout_prob, ) self.disc_config.update({"amp": config.amp}) # Set up discriminator self.discriminator = TFElectraForPreTraining(self.disc_config) # Set up generator gen_config = get_generator_config(config, self.disc_config) gen_config.update({"amp": config.amp}) if config.electra_objective: if config.shared_embeddings: self.generator = TFElectraForMaskedLM( gen_config, shared_embeddings=True, input_embeddings=self.discriminator.get_input_embeddings()) else: self.generator = TFElectraForMaskedLM(gen_config) else: self.generator = TFElectraForMaskedLM(self.disc_config) def call(self, features, is_training): config = self._config # Mask the input masked_inputs = pretrain_utils.mask( config, pretrain_utils.features_to_inputs(features), config.mask_prob) # Generator if config.uniform_generator: mlm_output = self._get_masked_lm_output(masked_inputs, None, is_training=is_training) else: mlm_output = self._get_masked_lm_output( masked_inputs, self.generator, is_training=is_training) fake_data = self._get_fake_data(masked_inputs, mlm_output.logits) total_loss = config.gen_weight * mlm_output.loss # Discriminator disc_output = None if config.electra_objective: disc_output = self._get_discriminator_output( fake_data.inputs, self.discriminator, fake_data.is_fake_tokens, is_training=is_training) total_loss += config.disc_weight * disc_output.loss # Evaluation inputs eval_fn_inputs = { "input_ids": masked_inputs.input_ids, "masked_lm_preds": mlm_output.preds, "mlm_loss": mlm_output.per_example_loss, "masked_lm_ids": masked_inputs.masked_lm_ids, "masked_lm_weights": masked_inputs.masked_lm_weights, "input_mask": masked_inputs.input_mask } if config.electra_objective: eval_fn_inputs.update({ "disc_loss": disc_output.per_example_loss, "disc_labels": disc_output.labels, "disc_probs": disc_output.probs, "disc_preds": disc_output.preds, "sampled_tokids": tf.argmax(fake_data.sampled_tokens, -1, output_type=tf.int32) }) return total_loss, eval_fn_inputs def _get_masked_lm_output(self, inputs, generator, is_training=False): """Masked language modeling softmax layer.""" masked_lm_weights = inputs.masked_lm_weights if self._config.uniform_generator: logits = tf.zeros(self.disc_config.vocab_size) logits_tiled = tf.zeros( pretrain_utils.get_shape_list(inputs.masked_lm_ids) + [self.disc_config.vocab_size]) logits_tiled += tf.reshape(logits, [1, 1, self.disc_config.vocab_size]) logits = logits_tiled else: outputs = generator( input_ids=inputs.input_ids, attention_mask=inputs.input_mask, token_type_ids=inputs.segment_ids, training=is_training) logits = outputs[0] logits = pretrain_utils.gather_positions( logits, inputs.masked_lm_positions) oh_labels = tf.one_hot( inputs.masked_lm_ids, depth=self.disc_config.vocab_size, dtype=tf.float32) probs = tf.cast(tf.nn.softmax(logits), tf.float32) log_probs = tf.cast(tf.nn.log_softmax(logits), tf.float32) label_log_probs = -tf.reduce_sum(log_probs * oh_labels, axis=-1) numerator = tf.reduce_sum(masked_lm_weights * label_log_probs) denominator = tf.reduce_sum(masked_lm_weights) + 1e-6 loss = numerator / denominator preds = tf.argmax(log_probs, axis=-1, output_type=tf.int32) MLMOutput = collections.namedtuple( "MLMOutput", ["logits", "probs", "loss", "per_example_loss", "preds"]) return MLMOutput( logits=logits, probs=probs, per_example_loss=label_log_probs, loss=loss, preds=preds) def _get_discriminator_output(self, inputs, discriminator, labels, is_training=False): """Discriminator binary classifier.""" outputs = discriminator( input_ids=inputs.input_ids, attention_mask=inputs.input_mask, token_type_ids=inputs.segment_ids, training=is_training, ) logits = outputs[0] weights = tf.cast(inputs.input_mask, tf.float32) labelsf = tf.cast(labels, tf.float32) logits = tf.cast(logits, tf.float32) losses = tf.nn.sigmoid_cross_entropy_with_logits( logits=logits, labels=labelsf) * weights per_example_loss = (tf.reduce_sum(losses, axis=-1) / (1e-6 + tf.reduce_sum(weights, axis=-1))) loss = tf.reduce_sum(losses) / (1e-6 + tf.reduce_sum(weights)) probs = tf.nn.sigmoid(logits) preds = tf.cast(tf.round((tf.sign(logits) + 1) / 2), tf.int32) DiscOutput = collections.namedtuple( "DiscOutput", ["loss", "per_example_loss", "probs", "preds", "labels"]) return DiscOutput( loss=loss, per_example_loss=per_example_loss, probs=probs, preds=preds, labels=labels, ) def _get_fake_data(self, inputs, mlm_logits): """Sample from the generator to create corrupted input.""" inputs = pretrain_utils.unmask(inputs) disallow = tf.one_hot( inputs.masked_lm_ids, depth=self.disc_config.vocab_size, dtype=tf.float32) if self._config.disallow_correct else None sampled_tokens = tf.stop_gradient(pretrain_utils.sample_from_softmax( mlm_logits / self._config.temperature, disallow=disallow)) sampled_tokids = tf.argmax(sampled_tokens, -1, output_type=tf.int32) updated_input_ids, masked = pretrain_utils.scatter_update( inputs.input_ids, sampled_tokids, inputs.masked_lm_positions) labels = masked * (1 - tf.cast( tf.equal(updated_input_ids, inputs.input_ids), tf.int32)) updated_inputs = pretrain_utils.get_updated_inputs( inputs, input_ids=updated_input_ids) FakedData = collections.namedtuple("FakedData", [ "inputs", "is_fake_tokens", "sampled_tokens"]) return FakedData(inputs=updated_inputs, is_fake_tokens=labels, sampled_tokens=sampled_tokens) @add_start_docstrings( """ Electra model with a token classification head on top. Both the discriminator and generator may be loaded into this model.""", ELECTRA_START_DOCSTRING, ) class TFElectraForTokenClassification(TFElectraPreTrainedModel): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier") @add_start_docstrings_to_callable(ELECTRA_INPUTS_DOCSTRING) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): r""" Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.ElectraConfig`) and inputs: scores (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`): tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``): tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import tensorflow as tf from transformers import ElectraTokenizer, TFElectraForTokenClassification tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') model = TFElectraForTokenClassification.from_pretrained('google/electra-small-discriminator') input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 outputs = model(input_ids) scores = outputs[0] """ discriminator_hidden_states = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, training=training ) discriminator_sequence_output = discriminator_hidden_states[0] discriminator_sequence_output = self.dropout(discriminator_sequence_output) logits = self.classifier(discriminator_sequence_output) output = (logits,) output += discriminator_hidden_states[1:] return output # (loss), scores, (hidden_states), (attentions) class TFPoolerStartLogits(tf.keras.Model): """ Compute SQuAD start_logits from sequence hidden states. """ def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.dense = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="start_logit_pooler_dense" ) def call(self, hidden_states, p_mask=None, next_layer_dtype=tf.float32): """ Args: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape `(batch_size, seq_len)` invalid position mask such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ x = tf.squeeze(self.dense(hidden_states), axis=-1, name="squeeze_start_logit_pooler") if p_mask is not None: x = tf.cast(x, tf.float32) * (1 - p_mask) - 1e30 * p_mask return x class TFPoolerEndLogits(tf.keras.Model): """ Compute SQuAD end_logits from sequence hidden states and start token hidden state. """ def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.dense_0 = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="end_logit_pooler_dense_0" ) self.activation = tf.keras.layers.Activation('tanh') # nn.Tanh() self.LayerNorm = tf.keras.layers.LayerNormalization(axis=-1, epsilon=config.layer_norm_eps, name="end_logit_pooler_LayerNorm") self.dense_1 = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="end_logit_pooler_dense_1" ) def call(self, hidden_states, start_states=None, start_positions=None, p_mask=None, training=False, next_layer_dtype=tf.float32): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to hidden_states hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span: **p_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, seq_len)`` Mask of invalid position such as query and special symbols (PAD, SEP, CLS) 1.0 means token should be masked. """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None and training: bsz, slen, hsz = hidden_states.shape start_states = tf.gather(hidden_states, start_positions[:, None], axis=1, batch_dims=1) # shape (bsz, 1, hsz) start_states = tf.broadcast_to(start_states, (bsz, slen, hsz)) # shape (bsz, slen, hsz) x = self.dense_0(tf.concat([hidden_states, start_states], axis=-1)) x = self.activation(x) if training: # since we are not doing beam search, add dimension with value=1. corresponds to dimension with top_k during inference - if not layernorm crashes x = tf.expand_dims(x, axis=2) x = self.LayerNorm(x) if training: # undo the additional dimension added above x = tf.squeeze(self.dense_1(x), axis=[-1, -2]) else: x = tf.squeeze(self.dense_1(x), axis=-1) if p_mask is not None: x = tf.cast(x, tf.float32) * (1 - p_mask) - 1e30 * p_mask return x class TFPoolerAnswerClass(tf.keras.Model): """ Compute SQuAD 2.0 answer class from classification and start tokens hidden states. """ def __init__(self, config, *inputs, **kwargs): super().__init__(*inputs, **kwargs) self.dense_0 = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="pooler_answer_class_dense_0" ) self.activation = tf.keras.layers.Activation('tanh') self.dense_1 = tf.keras.layers.Dense( 1, use_bias=False, kernel_initializer=get_initializer(config.initializer_range), name="pooler_answer_class_dense_1" ) def call(self, hidden_states, start_states=None, start_positions=None, cls_index=None): """ Args: One of ``start_states``, ``start_positions`` should be not None. If both are set, ``start_positions`` overrides ``start_states``. **start_states**: ``torch.LongTensor`` of shape identical to ``hidden_states``. hidden states of the first tokens for the labeled span. **start_positions**: ``torch.LongTensor`` of shape ``(batch_size,)`` position of the first token for the labeled span. **cls_index**: torch.LongTensor of shape ``(batch_size,)`` position of the CLS token. If None, take the last token. note(Original repo): no dependency on end_feature so that we can obtain one single `cls_logits` for each sample """ assert ( start_states is not None or start_positions is not None ), "One of start_states, start_positions should be not None" if start_positions is not None: start_states = tf.gather(hidden_states, start_positions[:, None], axis=1, batch_dims=1) # shape (bsz, 1, hsz) start_states = tf.squeeze(start_states, axis=1) # shape (bsz, hsz) if cls_index is not None: cls_token_state = tf.gather(hidden_states, cls_index[:, None], axis=1, batch_dims=1) # shape (bsz, 1, hsz) cls_token_state = tf.squeeze(cls_token_state, axis=1) # shape (bsz, hsz) else: cls_token_state = hidden_states[:, 0, :] # shape (bsz, hsz) x = self.dense_0(tf.concat([start_states, cls_token_state], axis=-1)) x = self.activation(x) x = tf.squeeze(self.dense_1(x), axis=-1) return x class TFElectraForQuestionAnswering(TFElectraPreTrainedModel): def __init__(self, config, args): super().__init__(config, args) self.start_n_top = args.beam_size # config.start_n_top self.end_n_top = args.beam_size # config.end_n_top self.joint_head = args.joint_head self.v2 = args.version_2_with_negative self.electra = TFElectraMainLayer(config, name="electra") self.num_hidden_layers = config.num_hidden_layers self.amp = config.amp ##old head if not self.joint_head: self.qa_outputs = tf.keras.layers.Dense( 2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs") else: self.start_logits = TFPoolerStartLogits(config, name='start_logits') self.end_logits = TFPoolerEndLogits(config, name='end_logits') if self.v2: self.answer_class = TFPoolerAnswerClass(config, name='answer_class') def call( self, input_ids=None, attention_mask=None, token_type_ids=None, start_positions=None, end_positions=None, cls_index=None, p_mask=None, is_impossible=None, position_ids=None, head_mask=None, inputs_embeds=None, training=False, ): outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, training=training ) discriminator_sequence_output = outputs[0] # Simple head model if not self.joint_head: logits = self.qa_outputs(discriminator_sequence_output) [start_logits, end_logits] = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1, name="squeeze_start_logit") end_logits = tf.squeeze(end_logits, axis=-1, name="squeeze_end_logit") outputs = (start_logits, end_logits) + outputs return outputs start_logits = self.start_logits(discriminator_sequence_output, p_mask=p_mask, next_layer_dtype=self.end_logits.dense_0.dtype) if training: # start_positions is not None and end_positions is not None: # during training, compute the end logits based on the ground truth of the start position end_logits = self.end_logits(discriminator_sequence_output, start_positions=start_positions, p_mask=p_mask, training=training, next_layer_dtype=tf.float16 if self.amp else tf.float32) if self.v2: # cls_index is not None:#cls_index is not None and is_impossible is not None: # Predict answerability from the representation of CLS and START cls_logits = self.answer_class(discriminator_sequence_output, start_positions=start_positions, cls_index=cls_index) else: cls_logits = None outputs = (start_logits, end_logits, cls_logits) + outputs else: # during inference, compute the end logits based on beam search bsz, slen, hsz = discriminator_sequence_output.shape start_n_top = min(self.start_n_top, slen) end_n_top = min(self.end_n_top, slen) start_log_probs = tf.nn.log_softmax(start_logits, axis=-1, name="start_logit_softmax") # shape (bsz, slen) start_top_log_probs, start_top_index = tf.math.top_k(start_log_probs, k=start_n_top, name="start_log_probs_top_k") start_states = tf.gather(discriminator_sequence_output, start_top_index, axis=1, batch_dims=1) # shape (bsz, start_n_top, hsz) start_states = tf.broadcast_to(tf.expand_dims(start_states, axis=1), [bsz, slen, start_n_top, hsz]) # shape (bsz, slen, start_n_top, hsz) discriminator_sequence_output_expanded = tf.broadcast_to( tf.expand_dims(discriminator_sequence_output, axis=2), list(start_states.shape)) # shape (bsz, slen, start_n_top, hsz) p_mask = tf.expand_dims(p_mask, axis=-1) if p_mask is not None else None end_logits = self.end_logits(discriminator_sequence_output_expanded, start_states=start_states, p_mask=p_mask, next_layer_dtype=tf.float16 if self.amp else tf.float32) # self.answer_class.dense_0.dtype) end_log_probs = tf.nn.log_softmax(end_logits, axis=1, name="end_logit_softmax") # shape (bsz, slen, start_n_top) # need to transpose because tf.math.top_k works on default axis=-1 end_log_probs = tf.transpose(end_log_probs, perm=[0, 2, 1]) end_top_log_probs, end_top_index = tf.math.top_k( end_log_probs, k=end_n_top) # shape (bsz, end_n_top, start_n_top).perm(0,2,1) end_top_log_probs = tf.reshape(end_top_log_probs, ( -1, start_n_top * end_n_top)) # shape (bsz, self.start_n_top * self.end_n_top) end_top_index = tf.reshape(end_top_index, (-1, start_n_top * end_n_top)) # shape (bsz, self.start_n_top * self.end_n_top) if self.v2: # cls_index is not None: start_p = tf.nn.softmax(start_logits, axis=-1, name="start_softmax") start_states = tf.einsum( "blh,bl->bh", discriminator_sequence_output, tf.cast(start_p, tf.float16) if self.amp else start_p ) # get the representation of START as weighted sum of hidden states # explicitly setting cls_index to None cls_logits = self.answer_class( discriminator_sequence_output, start_states=start_states, cls_index=None) # one single `cls_logits` for each sample else: cls_logits = tf.fill([bsz], 0.0) outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits return outputs
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/modeling.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import csv import logging import os import math import collections from functools import partial from multiprocessing import Pool, cpu_count import horovod.tensorflow as hvd import numpy as np from tqdm import tqdm from file_utils import is_tf_available, is_torch_available from tokenization_utils import BasicTokenizer, whitespace_tokenize if is_torch_available(): import torch from torch.utils.data import TensorDataset if is_tf_available(): import tensorflow as tf logger = logging.getLogger(__name__) def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start : (new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _new_check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # if len(doc_spans) == 1: # return True best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span["start"] + doc_span["length"] - 1 if position < doc_span["start"]: continue if position > end: continue num_left_context = position - doc_span["start"] num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span["length"] if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index def _is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False def squad_convert_example_to_features(example, max_seq_length, doc_stride, max_query_length, is_training): features = [] if is_training and not example.is_impossible: # Get start and end position start_position = example.start_position end_position = example.end_position # If the answer cannot be found in the text, then skip this example. actual_text = " ".join(example.doc_tokens[start_position : (end_position + 1)]) cleaned_answer_text = " ".join(whitespace_tokenize(example.answer_text)) if actual_text.find(cleaned_answer_text) == -1: logger.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) return [] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.answer_text ) spans = [] truncated_query = tokenizer.encode(example.question_text, add_special_tokens=False, max_length=max_query_length) sequence_added_tokens = ( tokenizer.max_len - tokenizer.max_len_single_sentence + 1 if "roberta" in str(type(tokenizer)) or "camembert" in str(type(tokenizer)) else tokenizer.max_len - tokenizer.max_len_single_sentence ) sequence_pair_added_tokens = tokenizer.max_len - tokenizer.max_len_sentences_pair span_doc_tokens = all_doc_tokens while len(spans) * doc_stride < len(all_doc_tokens): encoded_dict = tokenizer.encode_plus( truncated_query if tokenizer.padding_side == "right" else span_doc_tokens, span_doc_tokens if tokenizer.padding_side == "right" else truncated_query, max_length=max_seq_length, return_overflowing_tokens=True, pad_to_max_length=True, stride=max_seq_length - doc_stride - len(truncated_query) - sequence_pair_added_tokens, truncation_strategy="only_second" if tokenizer.padding_side == "right" else "only_first", return_token_type_ids=True, ) paragraph_len = min( len(all_doc_tokens) - len(spans) * doc_stride, max_seq_length - len(truncated_query) - sequence_pair_added_tokens, ) if tokenizer.pad_token_id in encoded_dict["input_ids"]: if tokenizer.padding_side == "right": non_padded_ids = encoded_dict["input_ids"][: encoded_dict["input_ids"].index(tokenizer.pad_token_id)] else: last_padding_id_position = ( len(encoded_dict["input_ids"]) - 1 - encoded_dict["input_ids"][::-1].index(tokenizer.pad_token_id) ) non_padded_ids = encoded_dict["input_ids"][last_padding_id_position + 1 :] else: non_padded_ids = encoded_dict["input_ids"] tokens = tokenizer.convert_ids_to_tokens(non_padded_ids) token_to_orig_map = {} for i in range(paragraph_len): index = len(truncated_query) + sequence_added_tokens + i if tokenizer.padding_side == "right" else i token_to_orig_map[index] = tok_to_orig_index[len(spans) * doc_stride + i] encoded_dict["paragraph_len"] = paragraph_len encoded_dict["tokens"] = tokens encoded_dict["token_to_orig_map"] = token_to_orig_map encoded_dict["truncated_query_with_special_tokens_length"] = len(truncated_query) + sequence_added_tokens encoded_dict["token_is_max_context"] = {} encoded_dict["start"] = len(spans) * doc_stride encoded_dict["length"] = paragraph_len spans.append(encoded_dict) if "overflowing_tokens" not in encoded_dict: break span_doc_tokens = encoded_dict["overflowing_tokens"] for doc_span_index in range(len(spans)): for j in range(spans[doc_span_index]["paragraph_len"]): is_max_context = _new_check_is_max_context(spans, doc_span_index, doc_span_index * doc_stride + j) index = ( j if tokenizer.padding_side == "left" else spans[doc_span_index]["truncated_query_with_special_tokens_length"] + j ) spans[doc_span_index]["token_is_max_context"][index] = is_max_context for span in spans: # Identify the position of the CLS token cls_index = span["input_ids"].index(tokenizer.cls_token_id) # p_mask: mask with 1 for token than cannot be in the answer (0 for token which can be in an answer) # Original TF implem also keep the classification token (set to 0) (not sure why...) p_mask = np.array(span["token_type_ids"]) p_mask = np.minimum(p_mask, 1) if tokenizer.padding_side == "right": # Limit positive values to one p_mask = 1 - p_mask p_mask[np.where(np.array(span["input_ids"]) == tokenizer.sep_token_id)[0]] = 1 # Set the CLS index to '0' p_mask[cls_index] = 0 span_is_impossible = example.is_impossible start_position = 0 end_position = 0 if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = span["start"] doc_end = span["start"] + span["length"] - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = cls_index end_position = cls_index span_is_impossible = True else: if tokenizer.padding_side == "left": doc_offset = 0 else: doc_offset = len(truncated_query) + sequence_added_tokens start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset features.append( SquadFeatures( span["input_ids"], span["attention_mask"], span["token_type_ids"], cls_index, p_mask.tolist(), example_index=0, # Can not set unique_id and example_index here. They will be set after multiple processing. unique_id=0, paragraph_len=span["paragraph_len"], token_is_max_context=span["token_is_max_context"], tokens=span["tokens"], token_to_orig_map=span["token_to_orig_map"], start_position=start_position, end_position=end_position, is_impossible=span_is_impossible, ) ) return features def squad_convert_example_to_features_init(tokenizer_for_convert): global tokenizer tokenizer = tokenizer_for_convert def squad_convert_examples_to_features( examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, return_dataset=False, threads=1 ): """ Converts a list of examples into a list of features that can be directly given as input to a model. It is model-dependant and takes advantage of many of the tokenizer's features to create the model's inputs. Args: examples: list of :class:`~transformers.data.processors.squad.SquadExample` tokenizer: an instance of a child of :class:`~transformers.PreTrainedTokenizer` max_seq_length: The maximum sequence length of the inputs. doc_stride: The stride used when the context is too large and is split across several features. max_query_length: The maximum length of the query. is_training: whether to create features for model evaluation or model training. return_dataset: Default False. Either 'pt' or 'tf'. if 'pt': returns a torch.data.TensorDataset, if 'tf': returns a tf.data.Dataset threads: multiple processing threadsa-smi Returns: list of :class:`~transformers.data.processors.squad.SquadFeatures` Example:: processor = SquadV2Processor() examples = processor.get_dev_examples(data_dir) features = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, ) """ # Defining helper methods features = [] threads = min(threads, cpu_count()) with Pool(threads, initializer=squad_convert_example_to_features_init, initargs=(tokenizer,)) as p: annotate_ = partial( squad_convert_example_to_features, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=is_training, ) features = list( tqdm( p.imap(annotate_, examples, chunksize=32), total=len(examples), desc="convert squad examples to features", mininterval=5, disable=hvd.rank() not in [-1, 0] ) ) new_features = [] unique_id = 1000000000 example_index = 0 for example_features in tqdm(features, total=len(features), desc="add example index and unique id", mininterval=5, disable=hvd.rank() not in [-1, 0]): if not example_features: continue for example_feature in example_features: example_feature.example_index = example_index example_feature.unique_id = unique_id new_features.append(example_feature) unique_id += 1 example_index += 1 features = new_features del new_features if return_dataset == "pt": if not is_torch_available(): raise RuntimeError("PyTorch must be installed to return a PyTorch dataset.") # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_masks = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long) all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float) all_is_impossible = torch.tensor([f.is_impossible for f in features], dtype=torch.float) if not is_training: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_masks, all_token_type_ids, all_example_index, all_cls_index, all_p_mask ) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_masks, all_token_type_ids, all_start_positions, all_end_positions, all_cls_index, all_p_mask, all_is_impossible, ) return features, dataset elif return_dataset == "tf": if not is_tf_available(): raise RuntimeError("TensorFlow must be installed to return a TensorFlow dataset.") def gen(): for ex in features: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, { "start_position": ex.start_position, "end_position": ex.end_position, "cls_index": ex.cls_index, "p_mask": ex.p_mask, "is_impossible": ex.is_impossible, }, ) return tf.data.Dataset.from_generator( gen, ( {"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, { "start_position": tf.int64, "end_position": tf.int64, "cls_index": tf.int64, "p_mask": tf.int32, "is_impossible": tf.int32, }, ), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, { "start_position": tf.TensorShape([]), "end_position": tf.TensorShape([]), "cls_index": tf.TensorShape([]), "p_mask": tf.TensorShape([None]), "is_impossible": tf.TensorShape([]), }, ), ) return features class DataProcessor(object): # TODO can be removed """Base class for data converters for sequence classification data sets.""" def get_example_from_tensor_dict(self, tensor_dict): """Gets an example from a dict with tensorflow tensors Args: tensor_dict: Keys and values should match the corresponding Glue tensorflow_dataset examples. """ raise NotImplementedError() def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() def tfds_map(self, example): """Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts examples to the correct format.""" if len(self.get_labels()) > 1: example.label = self.get_labels()[int(example.label)] return example @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: return list(csv.reader(f, delimiter="\t", quotechar=quotechar)) class SquadProcessor(DataProcessor): """ Processor for the SQuAD data set. Overriden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and version 2.0 of SQuAD, respectively. """ train_file = None dev_file = None def _get_example_from_tensor_dict(self, tensor_dict, evaluate=False): if not evaluate: answer = tensor_dict["answers"]["text"][0].numpy().decode("utf-8") answer_start = tensor_dict["answers"]["answer_start"][0].numpy() answers = [] else: answers = [ {"answer_start": start.numpy(), "text": text.numpy().decode("utf-8")} for start, text in zip(tensor_dict["answers"]["answer_start"], tensor_dict["answers"]["text"]) ] answer = None answer_start = None return SquadExample( qas_id=tensor_dict["id"].numpy().decode("utf-8"), question_text=tensor_dict["question"].numpy().decode("utf-8"), context_text=tensor_dict["context"].numpy().decode("utf-8"), answer_text=answer, start_position_character=answer_start, title=tensor_dict["title"].numpy().decode("utf-8"), answers=answers, ) def get_examples_from_dataset(self, dataset, evaluate=False): """ Creates a list of :class:`~transformers.data.processors.squad.SquadExample` using a TFDS dataset. Args: dataset: The tfds dataset loaded from `tensorflow_datasets.load("squad")` evaluate: boolean specifying if in evaluation mode or in training mode Returns: List of SquadExample Examples:: import tensorflow_datasets as tfds dataset = tfds.load("squad") training_examples = get_examples_from_dataset(dataset, evaluate=False) evaluation_examples = get_examples_from_dataset(dataset, evaluate=True) """ if evaluate: dataset = dataset["validation"] else: dataset = dataset["train"] examples = [] for tensor_dict in tqdm(dataset, mininterval=5, disable=hvd.rank() not in [-1, 0]): examples.append(self._get_example_from_tensor_dict(tensor_dict, evaluate=evaluate)) return examples def get_train_examples(self, data_dir, filename=None): """ Returns the training examples from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the training file has a different name than the original one which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = "" if self.train_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.train_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "train") def get_dev_examples(self, data_dir, filename=None): """ Returns the evaluation example from the data directory. Args: data_dir: Directory containing the data files used for training and evaluating. filename: None by default, specify this if the evaluation file has a different name than the original one which is `train-v1.1.json` and `train-v2.0.json` for squad versions 1.1 and 2.0 respectively. """ if data_dir is None: data_dir = "" if self.dev_file is None: raise ValueError("SquadProcessor should be instantiated via SquadV1Processor or SquadV2Processor") with open( os.path.join(data_dir, self.dev_file if filename is None else filename), "r", encoding="utf-8" ) as reader: input_data = json.load(reader)["data"] return self._create_examples(input_data, "dev") def _create_examples(self, input_data, set_type): is_training = set_type == "train" examples = [] for entry in tqdm(input_data, mininterval=5, disable=hvd.rank() not in [-1, 0]): title = entry["title"] for paragraph in entry["paragraphs"]: context_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position_character = None answer_text = None answers = [] if "is_impossible" in qa: is_impossible = qa["is_impossible"] else: is_impossible = False if not is_impossible: if is_training: answer = qa["answers"][0] answer_text = answer["text"] start_position_character = answer["answer_start"] else: answers = qa["answers"] example = SquadExample( qas_id=qas_id, question_text=question_text, context_text=context_text, answer_text=answer_text, start_position_character=start_position_character, title=title, is_impossible=is_impossible, answers=answers, ) examples.append(example) return examples class SquadV1Processor(SquadProcessor): train_file = "train-v1.1.json" dev_file = "dev-v1.1.json" class SquadV2Processor(SquadProcessor): train_file = "train-v2.0.json" dev_file = "dev-v2.0.json" class SquadExample(object): """ A single training/test example for the Squad dataset, as loaded from disk. Args: qas_id: The example's unique identifier question_text: The question string context_text: The context string answer_text: The answer string start_position_character: The character position of the start of the answer title: The title of the example answers: None by default, this is used during evaluation. Holds answers as well as their start positions. is_impossible: False by default, set to True if the example has no possible answer. """ def __init__( self, qas_id, question_text, context_text, answer_text, start_position_character, title, answers=[], is_impossible=False, ): self.qas_id = qas_id self.question_text = question_text self.context_text = context_text self.answer_text = answer_text self.title = title self.is_impossible = is_impossible self.answers = answers self.start_position, self.end_position = 0, 0 doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True # Split on whitespace so that different tokens may be attributed to their original position. for c in self.context_text: if _is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) self.doc_tokens = doc_tokens self.char_to_word_offset = char_to_word_offset # Start and end positions only has a value during evaluation. if start_position_character is not None and not is_impossible: self.start_position = char_to_word_offset[start_position_character] self.end_position = char_to_word_offset[ min(start_position_character + len(answer_text) - 1, len(char_to_word_offset) - 1) ] class SquadFeatures(object): """ Single squad example features to be fed to a model. Those features are model-specific and can be crafted from :class:`~transformers.data.processors.squad.SquadExample` using the :method:`~transformers.data.processors.squad.squad_convert_examples_to_features` method. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. token_type_ids: Segment token indices to indicate first and second portions of the inputs. cls_index: the index of the CLS token. p_mask: Mask identifying tokens that can be answers vs. tokens that cannot. Mask with 1 for tokens than cannot be in the answer and 0 for token that can be in an answer example_index: the index of the example unique_id: The unique Feature identifier paragraph_len: The length of the context token_is_max_context: List of booleans identifying which tokens have their maximum context in this feature object. If a token does not have their maximum context in this feature object, it means that another feature object has more information related to that token and should be prioritized over this feature for that token. tokens: list of tokens corresponding to the input ids token_to_orig_map: mapping between the tokens and the original text, needed in order to identify the answer. start_position: start of the answer token index end_position: end of the answer token index """ def __init__( self, input_ids, attention_mask, token_type_ids, cls_index, p_mask, example_index, unique_id, paragraph_len, token_is_max_context, tokens, token_to_orig_map, start_position, end_position, is_impossible, ): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.cls_index = cls_index self.p_mask = p_mask self.example_index = example_index self.unique_id = unique_id self.paragraph_len = paragraph_len self.token_is_max_context = token_is_max_context self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible class SquadResult(object): """ Constructs a SquadResult which can be used to evaluate a model's output on the SQuAD dataset. Args: unique_id: The unique identifier corresponding to that example. start_logits: The logits corresponding to the start of the answer end_logits: The logits corresponding to the end of the answer """ def __init__(self, unique_id, start_logits, end_logits, start_top_index=None, end_top_index=None, cls_logits=None): self.start_logits = start_logits self.end_logits = end_logits self.unique_id = unique_id if start_top_index: self.start_top_index = start_top_index self.end_top_index = end_top_index self.cls_logits = cls_logits RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def get_answers(examples, features, results, args): predictions = collections.defaultdict(list) # it is possible that one example corresponds to multiple features _Prediction = collections.namedtuple('_Prediction', ['text', 'start_logit', 'end_logit']) if args.version_2_with_negative: null_vals = collections.defaultdict(lambda: (float("inf"), 0, 0)) for ex, feat, result in match_results(examples, features, results): if not args.joint_head: start_indices = _get_best_indices(result.start_logits, args.n_best_size) end_indices = _get_best_indices(result.end_logits, args.n_best_size) prelim_predictions = get_valid_prelim_predictions(start_indices, end_indices, feat, result, args) feature_null_score = result.start_logits[0] + result.end_logits[0] else: prelim_predictions = get_valid_prelim_predictions_joint_head(result.start_top_index, result.end_top_index, feat, result, args) # start_indices = result.start_top_index # end_indices = result.end_top_index feature_null_score = result.cls_logits prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) if args.version_2_with_negative and feature_null_score < null_vals[ex.qas_id][0]: null_vals[ex.qas_id] = (feature_null_score, result.start_logits[0], result.end_logits[0]) curr_predictions = [] seen_predictions = set() for pred in prelim_predictions: if len(curr_predictions) == args.n_best_size: break if pred.start_index > 0: # this is a non-null prediction TODO: this probably is irrelevant final_text = get_answer_text(ex, feat, pred, args) else: final_text = '' if final_text in seen_predictions: continue seen_predictions.add(final_text) curr_predictions.append(_Prediction(final_text, pred.start_logit, pred.end_logit)) predictions[ex.qas_id] += curr_predictions # Add empty prediction if args.version_2_with_negative: for qas_id in predictions.keys(): predictions[qas_id].append(_Prediction('', null_vals[qas_id][1], null_vals[qas_id][2])) nbest_answers = collections.defaultdict(list) answers = {} for qas_id, preds in predictions.items(): # nbest = sorted( # preds, # key=lambda x: (x.start_logit + x.end_logit), # reverse=True)[:args.n_best_size] seen_predictions = set() nbest = [] for pred in sorted(predictions[qas_id], key=lambda x: (x.start_logit + x.end_logit), reverse=True): if len(nbest) >= args.n_best_size: break if pred.text in seen_predictions: continue seen_predictions.add(pred.text) nbest.append(pred) # In very rare edge cases we could only have single null prediction. # So we just create a nonce prediction in this case to avoid failure. if not nbest or (args.version_2_with_negative and len(nbest) == 1): nbest.append(_Prediction(text="empty", start_logit=0.0, end_logit=0.0)) total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry and entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_answers[qas_id].append(output) if args.version_2_with_negative: if not args.joint_head: score_diff = null_vals[qas_id][0] - best_non_null_entry.start_logit - best_non_null_entry.end_logit else: score_diff = null_vals[qas_id][0] if score_diff > args.null_score_diff_threshold: answers[qas_id] = "" else: answers[qas_id] = best_non_null_entry.text else: answers[qas_id] = nbest_answers[qas_id][0]['text'] return answers, nbest_answers def get_answer_text(example, feature, pred, args): tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text(tok_text, orig_text, args.do_lower_case, args.verbose_logging) return final_text def get_valid_prelim_predictions_joint_head(start_indices, end_indices, feature, result, args): _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["start_index", "end_index", "start_logit", "end_logit"]) prelim_predictions = [] # for start_index in start_indices: for i in range(args.beam_size): start_index = start_indices[i] for j in range(args.beam_size): # for end_index in end_indices: end_index = end_indices[i * args.beam_size + j] if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > args.max_answer_length: continue prelim_predictions.append( _PrelimPrediction( start_index=start_index, end_index=end_index, start_logit=result.start_logits[i], # start_index], end_logit=result.end_logits[i * args.beam_size + j])) # end_index])) return prelim_predictions def get_valid_prelim_predictions(start_indices, end_indices, feature, result, args): _PrelimPrediction = collections.namedtuple( "PrelimPrediction", ["start_index", "end_index", "start_logit", "end_logit"]) prelim_predictions = [] for start_index in start_indices: for end_index in end_indices: if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > args.max_answer_length: continue prelim_predictions.append( _PrelimPrediction( start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) return prelim_predictions def match_results(examples, features, results): unique_f_ids = set([f.unique_id for f in features]) unique_r_ids = set([r.unique_id for r in results]) matching_ids = unique_f_ids & unique_r_ids features = [f for f in features if f.unique_id in matching_ids] results = [r for r in results if r.unique_id in matching_ids] features.sort(key=lambda x: x.unique_id) results.sort(key=lambda x: x.unique_id) for f, r in zip(features, results): # original code assumes strict ordering of examples. TODO: rewrite this yield examples[f.example_index], f, r def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False): """Project the tokenized prediction back to the original text.""" def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose_logging: logger.info( "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose_logging: logger.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in tok_ns_to_s_map.items(): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose_logging: logger.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose_logging: logger.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indices(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indices = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indices.append(index_and_score[i][0]) return best_indices def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/squad_utils.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bz2 import os import urllib.request import sys class SquadDownloader: def __init__(self, save_path): self.save_path = save_path + '/squad' if not os.path.exists(self.save_path): os.makedirs(self.save_path) if not os.path.exists(self.save_path + '/v1.1'): os.makedirs(self.save_path + '/v1.1') if not os.path.exists(self.save_path + '/v2.0'): os.makedirs(self.save_path + '/v2.0') self.download_urls = { 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json' : 'v1.1/train-v1.1.json', 'https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json' : 'v1.1/dev-v1.1.json', 'https://worksheets.codalab.org/rest/bundles/0xbcd57bee090b421c982906709c8c27e1/contents/blob/' : 'v1.1/evaluate-v1.1.py', 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json' : 'v2.0/train-v2.0.json', 'https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json' : 'v2.0/dev-v2.0.json', 'https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/' : 'v2.0/evaluate-v2.0.py', } def download(self): for item in self.download_urls: url = item file = self.download_urls[item] print('Downloading:', url) if os.path.isfile(self.save_path + '/' + file): print('** Download file already exists, skipping download') else: response = urllib.request.urlopen(url) with open(self.save_path + '/' + file, "wb") as handle: handle.write(response.read())
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/SquadDownloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import BookscorpusTextFormatting import Downloader import TextSharding import WikicorpusTextFormatting import argparse import itertools import multiprocessing import os import pprint import subprocess def main(args): working_dir = os.environ['DATA_PREP_WORKING_DIR'] print('Working Directory:', working_dir) print('Action:', args.action) print('Dataset Name:', args.dataset) if args.input_files: args.input_files = args.input_files.split(',') hdf5_tfrecord_folder_prefix = "_lower_case_" + str(args.do_lower_case) + "_seq_len_" + str(args.max_seq_length) \ + "_random_seed_" + str(args.random_seed) directory_structure = { 'download' : working_dir + '/download', # Downloaded and decompressed 'extracted' : working_dir +'/extracted', # Extracted from whatever the initial format is (e.g., wikiextractor) 'formatted' : working_dir + '/formatted_one_article_per_line', # This is the level where all sources should look the same 'sharded' : working_dir + '/sharded_' + "training_shards_" + str(args.n_training_shards) + "_test_shards_" + str(args.n_test_shards) + "_fraction_" + str(args.fraction_test_set), 'tfrecord' : working_dir + '/tfrecord'+ hdf5_tfrecord_folder_prefix, 'hdf5': working_dir + '/hdf5' + hdf5_tfrecord_folder_prefix } print('\nDirectory Structure:') pp = pprint.PrettyPrinter(indent=2) pp.pprint(directory_structure) print('') if args.action == 'download': if not os.path.exists(directory_structure['download']): os.makedirs(directory_structure['download']) downloader = Downloader.Downloader(args.dataset, directory_structure['download']) downloader.download() elif args.action == 'text_formatting': assert args.dataset != 'google_pretrained_weights' and args.dataset != 'nvidia_pretrained_weights' and args.dataset != 'squad' and args.dataset != 'mrpc', 'Cannot perform text_formatting on pretrained weights' if not os.path.exists(directory_structure['extracted']): os.makedirs(directory_structure['extracted']) if not os.path.exists(directory_structure['formatted']): os.makedirs(directory_structure['formatted']) if args.dataset == 'bookscorpus': books_path = directory_structure['download'] + '/bookscorpus' #books_path = directory_structure['download'] output_filename = directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt' books_formatter = BookscorpusTextFormatting.BookscorpusTextFormatting(books_path, output_filename, recursive=True) books_formatter.merge() elif args.dataset == 'wikicorpus_en': if args.skip_wikiextractor == 0: path_to_wikiextractor_in_container = '/workspace/wikiextractor/WikiExtractor.py' wikiextractor_command = path_to_wikiextractor_in_container + ' ' + directory_structure['download'] + '/' + args.dataset + '/wikicorpus_en.xml ' + '-b 100M --processes ' + str(args.n_processes) + ' -o ' + directory_structure['extracted'] + '/' + args.dataset print('WikiExtractor Command:', wikiextractor_command) wikiextractor_process = subprocess.run(wikiextractor_command, shell=True, check=True) #wikiextractor_process.communicate() wiki_path = directory_structure['extracted'] + '/wikicorpus_en' output_filename = directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt' wiki_formatter = WikicorpusTextFormatting.WikicorpusTextFormatting(wiki_path, output_filename, recursive=True) wiki_formatter.merge() elif args.dataset == 'wikicorpus_zh': raise NotImplementedError( 'wikicorpus_zh not fully supported at this time. The simplified/tradition Chinese data needs to be ' 'translated and properly segmented still, and should work once this step is added.') # if args.skip_wikiextractor == 0: # path_to_wikiextractor_in_container = '/workspace/wikiextractor/WikiExtractor.py' # wikiextractor_command = path_to_wikiextractor_in_container + ' ' + directory_structure['download'] + '/' + args.dataset + '/wikicorpus_zh.xml ' + '-b 100M --processes ' + str(args.n_processes) + ' -o ' + directory_structure['extracted'] + '/' + args.dataset # print('WikiExtractor Command:', wikiextractor_command) # wikiextractor_process = subprocess.run(wikiextractor_command, shell=True, check=True) # #wikiextractor_process.communicate() # # wiki_path = directory_structure['extracted'] + '/wikicorpus_zh' # output_filename = directory_structure['formatted'] + '/wikicorpus_zh_one_article_per_line.txt' # wiki_formatter = WikicorpusTextFormatting.WikicorpusTextFormatting(wiki_path, output_filename, recursive=True) # wiki_formatter.merge() # # assert os.stat(output_filename).st_size > 0, 'File glob did not pick up extracted wiki files from WikiExtractor.' elif args.action == 'sharding': # Note: books+wiki requires user to provide list of input_files (comma-separated with no spaces) if args.dataset == 'bookscorpus' or 'wikicorpus' in args.dataset or 'books_wiki' in args.dataset: if args.input_files is None: if args.dataset == 'bookscorpus': args.input_files = [directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt'] elif args.dataset == 'wikicorpus_en': args.input_files = [directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt'] elif args.dataset == 'wikicorpus_zh': args.input_files = [directory_structure['formatted'] + '/wikicorpus_zh_one_article_per_line.txt'] elif args.dataset == 'books_wiki_en_corpus': args.input_files = [directory_structure['formatted'] + '/bookscorpus_one_book_per_line.txt', directory_structure['formatted'] + '/wikicorpus_en_one_article_per_line.txt'] output_file_prefix = directory_structure['sharded'] + '/' + args.dataset + '/' + args.dataset if not os.path.exists(directory_structure['sharded']): os.makedirs(directory_structure['sharded']) if not os.path.exists(directory_structure['sharded'] + '/' + args.dataset): os.makedirs(directory_structure['sharded'] + '/' + args.dataset) # Segmentation is here because all datasets look the same in one article/book/whatever per line format, and # it seemed unnecessarily complicated to add an additional preprocessing step to call just for this. # Different languages (e.g., Chinese simplified/traditional) may require translation and # other packages to be called from here -- just add a conditional branch for those extra steps segmenter = TextSharding.NLTKSegmenter() sharding = TextSharding.Sharding(args.input_files, output_file_prefix, args.n_training_shards, args.n_test_shards, args.fraction_test_set) sharding.load_articles() sharding.segment_articles_into_sentences(segmenter) sharding.distribute_articles_over_shards() sharding.write_shards_to_disk() for _dir in ['train', 'test']: if not os.path.exists(directory_structure['sharded'] + '/' + args.dataset + '/' + _dir): os.makedirs(directory_structure['sharded'] + '/' + args.dataset + '/' + _dir) absolute_dir = directory_structure['sharded'] + '/' + args.dataset command = 'mv ' + absolute_dir + '/*' + _dir + '*.txt' + ' ' + absolute_dir + '/' + _dir mv_process = subprocess.Popen(command, shell=True) mv_process.wait() else: assert False, 'Unsupported dataset for sharding' elif args.action == 'create_tfrecord_files': if not os.path.exists(directory_structure['tfrecord'] + "/" + args.dataset): os.makedirs(directory_structure['tfrecord'] + "/" + args.dataset) if args.vocab_file is None: args.vocab_file = os.path.join(working_dir, "vocab.txt") for _dir in ['train', 'test']: electra_preprocessing_command = 'python /workspace/electra/build_pretraining_dataset.py' electra_preprocessing_command += ' --corpus-dir=' + directory_structure['sharded'] + '/' + args.dataset + '/' + _dir electra_preprocessing_command += ' --output-dir=' + directory_structure['tfrecord'] + '/' + args.dataset + '/' + _dir electra_preprocessing_command += ' --vocab-file=' + args.vocab_file electra_preprocessing_command += ' --do-lower-case' if args.do_lower_case else ' --no-lower-case' electra_preprocessing_command += ' --max-seq-length=' + str(args.max_seq_length) electra_preprocessing_command += ' --num-processes=8' electra_preprocessing_command += ' --num-out-files=' + str(args.n_training_shards) if _dir == 'train' \ else ' --num-out-files=' + str(args.n_test_shards) electra_preprocessing_process = subprocess.Popen(electra_preprocessing_command, shell=True) electra_preprocessing_process.wait() elif args.action == 'create_hdf5_files': raise NotImplementedError if __name__ == "__main__": parser = argparse.ArgumentParser( description='Preprocessing Application for Everything BERT-related' ) parser.add_argument( '--action', type=str, help='Specify the action you want the app to take. e.g., generate vocab, segment, create tfrecords', choices={ 'download', # Download and verify mdf5/sha sums 'text_formatting', # Convert into a file that contains one article/book per line 'sharding', # Convert previous formatted text into shards containing one sentence per line 'create_tfrecord_files', # Turn each shard into a TFrecord with masking and next sentence prediction info 'create_hdf5_files' # Turn each shard into a HDF5 file with masking and next sentence prediction info } ) parser.add_argument( '--dataset', type=str, help='Specify the dataset to perform --action on', choices={ 'bookscorpus', 'wikicorpus_en', 'wikicorpus_zh', 'books_wiki_en_corpus', 'google_pretrained_weights', 'nvidia_pretrained_weights', 'mrpc', 'squad', 'all' } ) parser.add_argument( '--input_files', type=str, help='Specify the input files in a comma-separated list (no spaces)' ) parser.add_argument( '--n_training_shards', type=int, help='Specify the number of training shards to generate', default=2048 ) parser.add_argument( '--n_test_shards', type=int, help='Specify the number of test shards to generate', default=2048 ) parser.add_argument( '--fraction_test_set', type=float, help='Specify the fraction (0..1) of the data to withhold for the test data split (based on number of sequences)', default=0.1 ) parser.add_argument( '--segmentation_method', type=str, help='Specify your choice of sentence segmentation', choices={ 'nltk' }, default='nltk' ) parser.add_argument( '--n_processes', type=int, help='Specify the max number of processes to allow at one time', default=4 ) parser.add_argument( '--random_seed', type=int, help='Specify the base seed to use for any random number generation', default=12345 ) parser.add_argument( '--dupe_factor', type=int, help='Specify the duplication factor', default=5 ) parser.add_argument( '--masked_lm_prob', type=float, help='Specify the probability for masked lm', default=0.15 ) parser.add_argument( '--max_seq_length', type=int, help='Specify the maximum sequence length', default=512 ) parser.add_argument( '--do_lower_case', type=int, help='Specify whether it is cased (0) or uncased (1) (any number greater than 0 will be treated as uncased)', default=0 ) parser.add_argument( '--vocab_file', type=str, help='Specify absolute path to vocab file to use)' ) parser.add_argument( '--skip_wikiextractor', type=int, help='Specify whether to skip wikiextractor step 0=False, 1=True', default=0 ) parser.add_argument( '--interactive_json_config_generator', type=str, help='Specify the action you want the app to take. e.g., generate vocab, segment, create tfrecords' ) args = parser.parse_args() main(args)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/dataPrep.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from GooglePretrainedWeightDownloader import GooglePretrainedWeightDownloader from NVIDIAPretrainedWeightDownloader import NVIDIAPretrainedWeightDownloader from WikiDownloader import WikiDownloader from BooksDownloader import BooksDownloader from MRPCDownloader import MRPCDownloader from SquadDownloader import SquadDownloader class Downloader: def __init__(self, dataset_name, save_path): self.dataset_name = dataset_name self.save_path = save_path def download(self): if self.dataset_name == 'bookscorpus': self.download_bookscorpus() elif self.dataset_name == 'wikicorpus_en': self.download_wikicorpus('en') elif self.dataset_name == 'wikicorpus_zh': self.download_wikicorpus('zh') elif self.dataset_name == 'google_pretrained_weights': self.download_google_pretrained_weights() elif self.dataset_name == 'nvidia_pretrained_weights': self.download_nvidia_pretrained_weights() elif self.dataset_name == 'mrpc': self.download_mrpc() elif self.dataset_name == 'squad': self.download_squad() elif self.dataset_name == 'all': self.download_bookscorpus(self.save_path) self.download_wikicorpus('en', self.save_path) self.download_wikicorpus('zh', self.save_path) self.download_google_pretrained_weights(self.save_path) self.download_nvidia_pretrained_weights(self.save_path) self.download_mrpc(self.save_path) self.download_squad(self.save_path) else: print(self.dataset_name) assert False, 'Unknown dataset_name provided to downloader' def download_bookscorpus(self): downloader = BooksDownloader(self.save_path) downloader.download() def download_wikicorpus(self, language): downloader = WikiDownloader(language, self.save_path) downloader.download() def download_google_pretrained_weights(self): downloader = GooglePretrainedWeightDownloader(self.save_path) downloader.download() def download_nvidia_pretrained_weights(self): downloader = NVIDIAPretrainedWeightDownloader(self.save_path) downloader.download() def download_mrpc(self): downloader = MRPCDownloader(self.save_path) downloader.download() def download_squad(self): downloader = SquadDownloader(self.save_path) downloader.download()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/Downloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os class BookscorpusTextFormatting: def __init__(self, books_path, output_filename, recursive = False): self.books_path = books_path self.recursive = recursive self.output_filename = output_filename # This puts one book per line def merge(self): with open(self.output_filename, mode='w', newline='\n') as ofile: for filename in glob.glob(self.books_path + '/' + '*.txt', recursive=True): with open(filename, mode='r', encoding='utf-8-sig', newline='\n') as file: for line in file: if line.strip() != '': ofile.write(line.strip() + ' ') ofile.write("\n\n")
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/BookscorpusTextFormatting.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os class NVIDIAPretrainedWeightDownloader: def __init__(self, save_path): self.save_path = save_path + '/nvidia_pretrained_weights' if not os.path.exists(self.save_path): os.makedirs(self.save_path) pass def download(self): assert False, 'NVIDIAPretrainedWeightDownloader not implemented yet.'
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/NVIDIAPretrainedWeightDownloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/__init__.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bz2 import os import urllib.request import sys class MRPCDownloader: def __init__(self, save_path): self.save_path = save_path + '/mrpc' if not os.path.exists(self.save_path): os.makedirs(self.save_path) # Documentation - Download link obtained from here: https://github.com/nyu-mll/GLUE-baselines/blob/master/download_glue_data.py self.download_urls = { 'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2Fmrpc_dev_ids.tsv?alt=media&token=ec5c0836-31d5-48f4-b431-7480817f1adc' : 'mrpc_dev_ids.tsv' } def download(self): for item in self.download_urls: url = item file = self.download_urls[item] print('Downloading:', url) if os.path.isfile(self.save_path + '/' + file): print('** Download file already exists, skipping download') else: response = urllib.request.urlopen(url) with open(self.save_path + '/' + file, "wb") as handle: handle.write(response.read())
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/MRPCDownloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import bz2 import os import urllib.request import subprocess import sys class WikiDownloader: def __init__(self, language, save_path): self.save_path = save_path + '/wikicorpus_' + language if not os.path.exists(self.save_path): os.makedirs(self.save_path) self.language = language self.download_urls = { 'en' : 'https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2', 'zh' : 'https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2' } self.output_files = { 'en' : 'wikicorpus_en.xml.bz2', 'zh' : 'wikicorpus_zh.xml.bz2' } def download(self): if self.language in self.download_urls: url = self.download_urls[self.language] filename = self.output_files[self.language] print('Downloading:', url) if os.path.isfile(self.save_path + '/' + filename): print('** Download file already exists, skipping download') else: response = urllib.request.urlopen(url) with open(self.save_path + '/' + filename, "wb") as handle: handle.write(response.read()) # Always unzipping since this is relatively fast and will overwrite print('Unzipping:', self.output_files[self.language]) subprocess.run('bzip2 -dk ' + self.save_path + '/' + filename, shell=True, check=True) else: assert False, 'WikiDownloader not implemented for this language yet.'
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/WikiDownloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os class WikicorpusTextFormatting: def __init__(self, wiki_path, output_filename, recursive = False): self.wiki_path = wiki_path self.recursive = recursive self.output_filename = output_filename # This puts one article per line def merge(self): with open(self.output_filename, mode='w', newline='\n') as ofile: for dirname in glob.glob(self.wiki_path + '/*/', recursive=False): for filename in glob.glob(dirname + 'wiki_*', recursive=self.recursive): print(filename) article_lines = [] article_open = False with open(filename, mode='r', newline='\n') as file: for line in file: if '<doc id=' in line: article_open = True elif '</doc>' in line: article_open = False for oline in article_lines[1:]: if oline != '\n': ofile.write(oline.rstrip() + " ") ofile.write("\n\n") article_lines = [] else: if article_open: article_lines.append(line)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/WikicorpusTextFormatting.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess class BooksDownloader: def __init__(self, save_path): self.save_path = save_path pass def download(self): bookscorpus_download_command = 'python3 /workspace/bookcorpus/download_files.py --list /workspace/bookcorpus/url_list.jsonl --out' bookscorpus_download_command += ' ' + self.save_path + '/bookscorpus' bookscorpus_download_command += ' --trash-bad-count' bookscorpus_download_process = subprocess.run(bookscorpus_download_command, shell=True, check=True)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/BooksDownloader.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from itertools import islice import multiprocessing import statistics class Sharding: def __init__(self, input_files, output_name_prefix, n_training_shards, n_test_shards, fraction_test_set): assert len(input_files) > 0, 'The input file list must contain at least one file.' assert n_training_shards > 0, 'There must be at least one output shard.' assert n_test_shards > 0, 'There must be at least one output shard.' self.n_training_shards = n_training_shards self.n_test_shards = n_test_shards self.fraction_test_set = fraction_test_set self.input_files = input_files self.output_name_prefix = output_name_prefix self.output_training_identifier = '_training' self.output_test_identifier = '_test' self.output_file_extension = '.txt' self.articles = {} # key: integer identifier, value: list of articles self.sentences = {} # key: integer identifier, value: list of sentences self.output_training_files = {} # key: filename, value: list of articles to go into file self.output_test_files = {} # key: filename, value: list of articles to go into file self.init_output_files() # Remember, the input files contain one article per line (the whitespace check is to skip extraneous blank lines) def load_articles(self): print('Start: Loading Articles') global_article_count = 0 for input_file in self.input_files: print('input file:', input_file) with open(input_file, mode='r', newline='\n') as f: for i, line in enumerate(f): if line.strip(): self.articles[global_article_count] = line.rstrip() global_article_count += 1 print('End: Loading Articles: There are', len(self.articles), 'articles.') def segment_articles_into_sentences(self, segmenter): print('Start: Sentence Segmentation') if len(self.articles) is 0: self.load_articles() assert len(self.articles) is not 0, 'Please check that input files are present and contain data.' # TODO: WIP: multiprocessing (create independent ranges and spawn processes) use_multiprocessing = 'serial' def chunks(data, size=len(self.articles)): it = iter(data) for i in range(0, len(data), size): yield {k: data[k] for k in islice(it, size)} if use_multiprocessing == 'manager': manager = multiprocessing.Manager() return_dict = manager.dict() jobs = [] n_processes = 7 # in addition to the main process, total = n_proc+1 def work(articles, return_dict): sentences = {} for i, article in enumerate(articles): sentences[i] = segmenter.segment_string(articles[article]) if i % 5000 == 0: print('Segmenting article', i) return_dict.update(sentences) for item in chunks(self.articles, len(self.articles)): p = multiprocessing.Process(target=work, args=(item, return_dict)) # Busy wait while len(jobs) >= n_processes: pass jobs.append(p) p.start() for proc in jobs: proc.join() elif use_multiprocessing == 'queue': work_queue = multiprocessing.Queue() jobs = [] for item in chunks(self.articles, len(self.articles)): pass else: # serial option for i, article in enumerate(self.articles): self.sentences[i] = segmenter.segment_string(self.articles[article]) if i % 5000 == 0: print('Segmenting article', i) print('End: Sentence Segmentation') def init_output_files(self): print('Start: Init Output Files') assert len(self.output_training_files) is 0, 'Internal storage self.output_files already contains data. This function is intended to be used by the constructor only.' assert len(self.output_test_files) is 0, 'Internal storage self.output_files already contains data. This function is intended to be used by the constructor only.' for i in range(self.n_training_shards): name = self.output_name_prefix + self.output_training_identifier + '_' + str(i) + self.output_file_extension self.output_training_files[name] = [] for i in range(self.n_test_shards): name = self.output_name_prefix + self.output_test_identifier + '_' + str(i) + self.output_file_extension self.output_test_files[name] = [] print('End: Init Output Files') def get_sentences_per_shard(self, shard): result = 0 for article_id in shard: result += len(self.sentences[article_id]) return result def distribute_articles_over_shards(self): print('Start: Distribute Articles Over Shards') assert len(self.articles) >= self.n_training_shards + self.n_test_shards, 'There are fewer articles than shards. Please add more data or reduce the number of shards requested.' # Create dictionary with - key: sentence count per article, value: article id number sentence_counts = defaultdict(lambda: []) max_sentences = 0 total_sentences = 0 for article_id in self.sentences: current_length = len(self.sentences[article_id]) sentence_counts[current_length].append(article_id) max_sentences = max(max_sentences, current_length) total_sentences += current_length n_sentences_assigned_to_training = int((1 - self.fraction_test_set) * total_sentences) nominal_sentences_per_training_shard = n_sentences_assigned_to_training // self.n_training_shards nominal_sentences_per_test_shard = (total_sentences - n_sentences_assigned_to_training) // self.n_test_shards consumed_article_set = set({}) unused_article_set = set(self.articles.keys()) # Make first pass and add one article worth of lines per file for file in self.output_training_files: current_article_id = sentence_counts[max_sentences][-1] sentence_counts[max_sentences].pop(-1) self.output_training_files[file].append(current_article_id) consumed_article_set.add(current_article_id) unused_article_set.remove(current_article_id) # Maintain the max sentence count while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0: max_sentences -= 1 if len(self.sentences[current_article_id]) > nominal_sentences_per_training_shard: nominal_sentences_per_training_shard = len(self.sentences[current_article_id]) print('Warning: A single article contains more than the nominal number of sentences per training shard.') for file in self.output_test_files: current_article_id = sentence_counts[max_sentences][-1] sentence_counts[max_sentences].pop(-1) self.output_test_files[file].append(current_article_id) consumed_article_set.add(current_article_id) unused_article_set.remove(current_article_id) # Maintain the max sentence count while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0: max_sentences -= 1 if len(self.sentences[current_article_id]) > nominal_sentences_per_test_shard: nominal_sentences_per_test_shard = len(self.sentences[current_article_id]) print('Warning: A single article contains more than the nominal number of sentences per test shard.') training_counts = [] test_counts = [] for shard in self.output_training_files: training_counts.append(self.get_sentences_per_shard(self.output_training_files[shard])) for shard in self.output_test_files: test_counts.append(self.get_sentences_per_shard(self.output_test_files[shard])) training_median = statistics.median(training_counts) test_median = statistics.median(test_counts) # Make subsequent passes over files to find articles to add without going over limit history_remaining = [] n_history_remaining = 4 while len(consumed_article_set) < len(self.articles): for fidx, file in enumerate(self.output_training_files): nominal_next_article_size = min(nominal_sentences_per_training_shard - training_counts[fidx], max_sentences) # Maintain the max sentence count while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0: max_sentences -= 1 while len(sentence_counts[nominal_next_article_size]) == 0 and nominal_next_article_size > 0: nominal_next_article_size -= 1 if nominal_next_article_size not in sentence_counts or nominal_next_article_size is 0 or training_counts[fidx] > training_median: continue # skip adding to this file, will come back later if no file can accept unused articles current_article_id = sentence_counts[nominal_next_article_size][-1] sentence_counts[nominal_next_article_size].pop(-1) self.output_training_files[file].append(current_article_id) consumed_article_set.add(current_article_id) unused_article_set.remove(current_article_id) for fidx, file in enumerate(self.output_test_files): nominal_next_article_size = min(nominal_sentences_per_test_shard - test_counts[fidx], max_sentences) # Maintain the max sentence count while len(sentence_counts[max_sentences]) == 0 and max_sentences > 0: max_sentences -= 1 while len(sentence_counts[nominal_next_article_size]) == 0 and nominal_next_article_size > 0: nominal_next_article_size -= 1 if nominal_next_article_size not in sentence_counts or nominal_next_article_size is 0 or test_counts[fidx] > test_median: continue # skip adding to this file, will come back later if no file can accept unused articles current_article_id = sentence_counts[nominal_next_article_size][-1] sentence_counts[nominal_next_article_size].pop(-1) self.output_test_files[file].append(current_article_id) consumed_article_set.add(current_article_id) unused_article_set.remove(current_article_id) # If unable to place articles a few times, bump up nominal sizes by fraction until articles get placed if len(history_remaining) == n_history_remaining: history_remaining.pop(0) history_remaining.append(len(unused_article_set)) history_same = True for i in range(1, len(history_remaining)): history_same = history_same and (history_remaining[i-1] == history_remaining[i]) if history_same: nominal_sentences_per_training_shard += 1 # nominal_sentences_per_test_shard += 1 training_counts = [] test_counts = [] for shard in self.output_training_files: training_counts.append(self.get_sentences_per_shard(self.output_training_files[shard])) for shard in self.output_test_files: test_counts.append(self.get_sentences_per_shard(self.output_test_files[shard])) training_median = statistics.median(training_counts) test_median = statistics.median(test_counts) print('Distributing data over shards:', len(unused_article_set), 'articles remaining.') if len(unused_article_set) != 0: print('Warning: Some articles did not make it into output files.') for shard in self.output_training_files: print('Training shard:', self.get_sentences_per_shard(self.output_training_files[shard])) for shard in self.output_test_files: print('Test shard:', self.get_sentences_per_shard(self.output_test_files[shard])) print('End: Distribute Articles Over Shards') def write_shards_to_disk(self): print('Start: Write Shards to Disk') for shard in self.output_training_files: self.write_single_shard(shard, self.output_training_files[shard]) for shard in self.output_test_files: self.write_single_shard(shard, self.output_test_files[shard]) print('End: Write Shards to Disk') def write_single_shard(self, shard_name, shard): with open(shard_name, mode='w', newline='\n') as f: for article_id in shard: for line in self.sentences[article_id]: f.write(line + '\n') f.write('\n') # Line break between articles import nltk nltk.download('punkt') class NLTKSegmenter: def __init(self): pass def segment_string(self, article): return nltk.tokenize.sent_tokenize(article)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/TextSharding.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import os import urllib.request import zipfile class GooglePretrainedWeightDownloader: def __init__(self, save_path): self.save_path = save_path + '/google_pretrained_weights' if not os.path.exists(self.save_path): os.makedirs(self.save_path) # Download urls self.model_urls = { 'bert_base_uncased': ('https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip', 'uncased_L-12_H-768_A-12.zip'), 'bert_large_uncased': ('https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip', 'uncased_L-24_H-1024_A-16.zip'), 'bert_base_cased': ('https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip', 'cased_L-12_H-768_A-12.zip'), 'bert_large_cased': ('https://storage.googleapis.com/bert_models/2018_10_18/cased_L-24_H-1024_A-16.zip', 'cased_L-24_H-1024_A-16.zip'), 'bert_base_multilingual_cased': ('https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip', 'multi_cased_L-12_H-768_A-12.zip'), 'bert_large_multilingual_uncased': ('https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip', 'multilingual_L-12_H-768_A-12.zip'), 'bert_base_chinese': ('https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip', 'chinese_L-12_H-768_A-12.zip') } # SHA256sum verification for file download integrity (and checking for changes from the download source over time) self.bert_base_uncased_sha = { 'bert_config.json': '7b4e5f53efbd058c67cda0aacfafb340113ea1b5797d9ce6ee411704ba21fcbc', 'bert_model.ckpt.data-00000-of-00001': '58580dc5e0bf0ae0d2efd51d0e8272b2f808857f0a43a88aaf7549da6d7a8a84', 'bert_model.ckpt.index': '04c1323086e2f1c5b7c0759d8d3e484afbb0ab45f51793daab9f647113a0117b', 'bert_model.ckpt.meta': 'dd5682170a10c3ea0280c2e9b9a45fee894eb62da649bbdea37b38b0ded5f60e', 'vocab.txt': '07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3', } self.bert_large_uncased_sha = { 'bert_config.json': 'bfa42236d269e2aeb3a6d30412a33d15dbe8ea597e2b01dc9518c63cc6efafcb', 'bert_model.ckpt.data-00000-of-00001': 'bc6b3363e3be458c99ecf64b7f472d2b7c67534fd8f564c0556a678f90f4eea1', 'bert_model.ckpt.index': '68b52f2205ffc64dc627d1120cf399c1ef1cbc35ea5021d1afc889ffe2ce2093', 'bert_model.ckpt.meta': '6fcce8ff7628f229a885a593625e3d5ff9687542d5ef128d9beb1b0c05edc4a1', 'vocab.txt': '07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3', } self.bert_base_cased_sha = { 'bert_config.json': 'f11dfb757bea16339a33e1bf327b0aade6e57fd9c29dc6b84f7ddb20682f48bc', 'bert_model.ckpt.data-00000-of-00001': '734d5a1b68bf98d4e9cb6b6692725d00842a1937af73902e51776905d8f760ea', 'bert_model.ckpt.index': '517d6ef5c41fc2ca1f595276d6fccf5521810d57f5a74e32616151557790f7b1', 'bert_model.ckpt.meta': '5f8a9771ff25dadd61582abb4e3a748215a10a6b55947cbb66d0f0ba1694be98', 'vocab.txt': 'eeaa9875b23b04b4c54ef759d03db9d1ba1554838f8fb26c5d96fa551df93d02', } self.bert_large_cased_sha = { 'bert_config.json': '7adb2125c8225da495656c982fd1c5f64ba8f20ad020838571a3f8a954c2df57', 'bert_model.ckpt.data-00000-of-00001': '6ff33640f40d472f7a16af0c17b1179ca9dcc0373155fb05335b6a4dd1657ef0', 'bert_model.ckpt.index': 'ef42a53f577fbe07381f4161b13c7cab4f4fc3b167cec6a9ae382c53d18049cf', 'bert_model.ckpt.meta': 'd2ddff3ed33b80091eac95171e94149736ea74eb645e575d942ec4a5e01a40a1', 'vocab.txt': 'eeaa9875b23b04b4c54ef759d03db9d1ba1554838f8fb26c5d96fa551df93d02', } self.bert_base_multilingual_cased_sha = { 'bert_config.json': 'e76c3964bc14a8bb37a5530cdc802699d2f4a6fddfab0611e153aa2528f234f0', 'bert_model.ckpt.data-00000-of-00001': '55b8a2df41f69c60c5180e50a7c31b7cdf6238909390c4ddf05fbc0d37aa1ac5', 'bert_model.ckpt.index': '7d8509c2a62b4e300feb55f8e5f1eef41638f4998dd4d887736f42d4f6a34b37', 'bert_model.ckpt.meta': '95e5f1997e8831f1c31e5cf530f1a2e99f121e9cd20887f2dce6fe9e3343e3fa', 'vocab.txt': 'fe0fda7c425b48c516fc8f160d594c8022a0808447475c1a7c6d6479763f310c', } self.bert_large_multilingual_uncased_sha = { 'bert_config.json': '49063bb061390211d2fdd108cada1ed86faa5f90b80c8f6fdddf406afa4c4624', 'bert_model.ckpt.data-00000-of-00001': '3cd83912ebeb0efe2abf35c9f1d5a515d8e80295e61c49b75c8853f756658429', 'bert_model.ckpt.index': '87c372c1a3b1dc7effaaa9103c80a81b3cbab04c7933ced224eec3b8ad2cc8e7', 'bert_model.ckpt.meta': '27f504f34f02acaa6b0f60d65195ec3e3f9505ac14601c6a32b421d0c8413a29', 'vocab.txt': '87b44292b452f6c05afa49b2e488e7eedf79ea4f4c39db6f2f4b37764228ef3f', } self.bert_base_chinese_sha = { 'bert_config.json': '7aaad0335058e2640bcb2c2e9a932b1cd9da200c46ea7b8957d54431f201c015', 'bert_model.ckpt.data-00000-of-00001': '756699356b78ad0ef1ca9ba6528297bcb3dd1aef5feadd31f4775d7c7fc989ba', 'bert_model.ckpt.index': '46315546e05ce62327b3e2cd1bed22836adcb2ff29735ec87721396edb21b82e', 'bert_model.ckpt.meta': 'c0f8d51e1ab986604bc2b25d6ec0af7fd21ff94cf67081996ec3f3bf5d823047', 'vocab.txt': '45bbac6b341c319adc98a532532882e91a9cefc0329aa57bac9ae761c27b291c', } # Relate SHA to urls for loop below self.model_sha = { 'bert_base_uncased': self.bert_base_uncased_sha, 'bert_large_uncased': self.bert_large_uncased_sha, 'bert_base_cased': self.bert_base_cased_sha, 'bert_large_cased': self.bert_large_cased_sha, 'bert_base_multilingual_cased': self.bert_base_multilingual_cased_sha, 'bert_large_multilingual_uncased': self.bert_large_multilingual_uncased_sha, 'bert_base_chinese': self.bert_base_chinese_sha } # Helper to get sha256sum of a file def sha256sum(self, filename): h = hashlib.sha256() b = bytearray(128*1024) mv = memoryview(b) with open(filename, 'rb', buffering=0) as f: for n in iter(lambda : f.readinto(mv), 0): h.update(mv[:n]) return h.hexdigest() def download(self): # Iterate over urls: download, unzip, verify sha256sum found_mismatch_sha = False for model in self.model_urls: url = self.model_urls[model][0] file = self.save_path + '/' + self.model_urls[model][1] print('Downloading', url) response = urllib.request.urlopen(url) with open(file, 'wb') as handle: handle.write(response.read()) print('Unzipping', file) zip = zipfile.ZipFile(file, 'r') zip.extractall(self.save_path) zip.close() sha_dict = self.model_sha[model] for extracted_file in sha_dict: sha = sha_dict[extracted_file] if sha != self.sha256sum(file[:-4] + '/' + extracted_file): found_mismatch_sha = True print('SHA256sum does not match on file:', extracted_file, 'from download url:', url) else: print(file[:-4] + '/' + extracted_file, '\t', 'verified') if not found_mismatch_sha: print("All downloads pass sha256sum verification.") def serialize(self): pass def deserialize(self): pass def listAvailableWeights(self): print("Available Weight Datasets") for item in self.model_urls: print(item) def listLocallyStoredWeights(self): pass
DeepLearningExamples-master
TensorFlow2/LanguageModeling/ELECTRA/data/GooglePretrainedWeightDownloader.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defining common flags used across all BERT models/applications.""" from absl import flags import tensorflow as tf from official.utils.flags import core as flags_core def define_common_bert_flags(): """Define common flags for BERT tasks.""" flags_core.define_base( data_dir=False, model_dir=True, clean=False, train_epochs=False, epochs_between_evals=False, stop_threshold=False, batch_size=False, num_gpu=True, hooks=False, export_dir=False, distribution_strategy=True, run_eagerly=True) flags.DEFINE_string('bert_config_file', None, 'Bert configuration file to define core bert layers.') flags.DEFINE_string( 'model_export_path', None, 'Path to the directory, where trainined model will be ' 'exported.') flags.DEFINE_string('tpu', '', 'TPU address to connect to.') flags.DEFINE_string( 'init_checkpoint', None, 'Initial checkpoint (usually from a pre-trained BERT model).') flags.DEFINE_bool('use_horovod', False, 'Whether to use horovod.') flags.DEFINE_integer('num_accumulation_steps', 1, 'Number of accumulation steps before gradient update.') flags.DEFINE_integer('num_train_epochs', 3, 'Total number of training epochs to perform.') flags.DEFINE_integer( 'steps_per_loop', 200, 'Number of steps per graph-mode loop. Only training step ' 'happens inside the loop. Callbacks will not be called ' 'inside.') flags.DEFINE_float('learning_rate', 5e-5, 'The initial learning rate for Adam.') flags.DEFINE_boolean( 'scale_loss', False, 'Whether to divide the loss by number of replica inside the per-replica ' 'loss function.') flags.DEFINE_boolean( 'use_keras_compile_fit', False, 'If True, uses Keras compile/fit() API for training logic. Otherwise ' 'use custom training loop.') flags.DEFINE_string( 'hub_module_url', None, 'TF-Hub path/url to Bert module. ' 'If specified, init_checkpoint flag should not be used.') flags.DEFINE_enum( 'model_type', 'bert', ['bert', 'albert'], 'Specifies the type of the model. ' 'If "bert", will use canonical BERT; if "albert", will use ALBERT model.') flags.DEFINE_boolean( 'use_fp16', False, 'Whether to use fp32 or fp16 arithmetic on GPU.') flags.DEFINE_string("optimizer_type", "adam", "Optimizer used for training - LAMB or ADAM") flags.DEFINE_integer( 'save_checkpoint_steps', 1000, 'save checkpoint for every n steps') flags.DEFINE_string( 'dllog_path', 'bert_dllogger.json', 'filename where dllogger writes to') flags.DEFINE_boolean( 'benchmark', False, 'Benchmark mode.') # Adds flags for mixed precision training. flags_core.define_performance( num_parallel_calls=False, inter_op=False, intra_op=False, synthetic_data=False, max_train_steps=False, dtype=True, dynamic_loss_scale=True, loss_scale=True, all_reduce_alg=False, num_packs=False, enable_xla=True, fp16_implementation=True, ) def use_float16(): return flags_core.get_tf_dtype(flags.FLAGS) == tf.float16 def get_loss_scale(): return flags_core.get_loss_scale(flags.FLAGS, default_for_fp16='dynamic')
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/common_flags.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BERT finetuning task dataset generator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json from absl import app from absl import flags import tensorflow as tf import classifier_data_lib # word-piece tokenizer based squad_lib import squad_lib as squad_lib_wp # sentence-piece tokenizer based squad_lib import squad_lib_sp import tokenization FLAGS = flags.FLAGS flags.DEFINE_enum( "fine_tuning_task_type", "classification", ["classification", "squad"], "The name of the BERT fine tuning task for which data " "will be generated..") # BERT classification specific flags. flags.DEFINE_string( "input_data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_enum("classification_task_name", "MNLI", ["COLA", "MNLI", "MRPC", "QNLI", "SST-2", "XNLI"], "The name of the task to train BERT classifier.") # BERT Squad task specific flags. flags.DEFINE_string( "squad_data_file", None, "The input data file in for generating training data for BERT squad task.") flags.DEFINE_integer( "doc_stride", 128, "When splitting up a long document into chunks, how much stride to " "take between chunks.") flags.DEFINE_integer( "max_query_length", 64, "The maximum number of tokens for the question. Questions longer than " "this will be truncated to this length.") flags.DEFINE_bool( "version_2_with_negative", False, "If true, the SQuAD examples contain some that do not have an answer.") # Shared flags across BERT fine-tuning tasks. flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "train_data_output_path", None, "The path in which generated training input data will be written as tf" " records.") flags.DEFINE_string( "eval_data_output_path", None, "The path in which generated training input data will be written as tf" " records.") flags.DEFINE_string("meta_data_file_path", None, "The path in which input meta data will be written.") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_string("sp_model_file", "", "The path to the model used by sentence piece tokenizer.") flags.DEFINE_enum( "tokenizer_impl", "word_piece", ["word_piece", "sentence_piece"], "Specifies the tokenizer implementation, i.e., whehter to use word_piece " "or sentence_piece tokenizer. Canonical BERT uses word_piece tokenizer, " "while ALBERT uses sentence_piece tokenizer.") def generate_classifier_dataset(): """Generates classifier dataset and returns input meta data.""" assert FLAGS.input_data_dir and FLAGS.classification_task_name processors = { "cola": classifier_data_lib.ColaProcessor, "mnli": classifier_data_lib.MnliProcessor, "mrpc": classifier_data_lib.MrpcProcessor, "qnli": classifier_data_lib.QnliProcessor, "sst-2": classifier_data_lib.SstProcessor, "xnli": classifier_data_lib.XnliProcessor, } task_name = FLAGS.classification_task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) if FLAGS.tokenizer_impl == "word_piece": tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) processor_text_fn = tokenization.convert_to_unicode else: assert FLAGS.tokenizer_impl == "sentence_piece" tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file) processor_text_fn = functools.partial( tokenization.preprocess_text, lower=FLAGS.do_lower_case) processor = processors[task_name](processor_text_fn) return classifier_data_lib.generate_tf_record_from_data_file( processor, FLAGS.input_data_dir, tokenizer, train_data_output_path=FLAGS.train_data_output_path, eval_data_output_path=FLAGS.eval_data_output_path, max_seq_length=FLAGS.max_seq_length) def generate_squad_dataset(): """Generates squad training dataset and returns input meta data.""" assert FLAGS.squad_data_file if FLAGS.tokenizer_impl == "word_piece": return squad_lib_wp.generate_tf_record_from_json_file( FLAGS.squad_data_file, FLAGS.vocab_file, FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative) else: assert FLAGS.tokenizer_impl == "sentence_piece" return squad_lib_sp.generate_tf_record_from_json_file( FLAGS.squad_data_file, FLAGS.sp_model_file, FLAGS.train_data_output_path, FLAGS.max_seq_length, FLAGS.do_lower_case, FLAGS.max_query_length, FLAGS.doc_stride, FLAGS.version_2_with_negative) def main(_): if FLAGS.tokenizer_impl == "word_piece": if not FLAGS.vocab_file: raise ValueError( "FLAG vocab_file for word-piece tokenizer is not specified.") else: assert FLAGS.tokenizer_impl == "sentence_piece" if not FLAGS.sp_model_file: raise ValueError( "FLAG sp_model_file for sentence-piece tokenizer is not specified.") if FLAGS.fine_tuning_task_type == "classification": input_meta_data = generate_classifier_dataset() else: input_meta_data = generate_squad_dataset() with tf.io.gfile.GFile(FLAGS.meta_data_file_path, "w") as writer: writer.write(json.dumps(input_meta_data, indent=4) + "\n") if __name__ == "__main__": flags.mark_flag_as_required("train_data_output_path") flags.mark_flag_as_required("meta_data_file_path") app.run(main)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/create_finetuning_data.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import math import os import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list return [i for i, e in enumerate(affinity_list) if e != 0] def set_affinity(gpu_id=None): if gpu_id is None: gpu_id = int(os.getenv('LOCAL_RANK', 0)) dev = device(gpu_id) os.sched_setaffinity(0, dev.getCpuAffinity()) # list of ints representing the logical cores this process is now affinitied with return os.sched_getaffinity(0)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/gpu_affinity.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BERT model input pipelines.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import horovod.tensorflow as hvd def decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.io.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) example[name] = t return example def single_file_dataset(input_file, name_to_features, use_horovod=False): """Creates a single-file dataset to be passed for BERT custom training.""" # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if use_horovod: d = d.shard(hvd.size(), hvd.rank()) d = d.map(lambda record: decode_record(record, name_to_features)) # When `input_file` is a path to a single file or a list # containing a single path, disable auto sharding so that # same input file is sent to all workers. if isinstance(input_file, str) or len(input_file) == 1: options = tf.data.Options() options.experimental_distribute.auto_shard_policy = ( tf.data.experimental.AutoShardPolicy.OFF) d = d.with_options(options) return d def create_pretrain_dataset(input_patterns, seq_length, max_predictions_per_seq, batch_size, is_training=True, input_pipeline_context=None, use_horovod=False): """Creates input dataset from (tf)records files for pretraining.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'masked_lm_positions': tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), 'masked_lm_ids': tf.io.FixedLenFeature([max_predictions_per_seq], tf.int64), 'masked_lm_weights': tf.io.FixedLenFeature([max_predictions_per_seq], tf.float32), 'next_sentence_labels': tf.io.FixedLenFeature([1], tf.int64), } dataset = tf.data.Dataset.list_files(input_patterns, shuffle=is_training) if use_horovod: dataset = dataset.shard(hvd.size(), hvd.rank()) if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1: dataset = dataset.shard(input_pipeline_context.num_input_pipelines, input_pipeline_context.input_pipeline_id) dataset = dataset.repeat() # We set shuffle buffer to exactly match total number of # training files to ensure that training data is well shuffled. input_files = [] for input_pattern in input_patterns: input_files.extend(tf.io.gfile.glob(input_pattern)) dataset = dataset.shuffle(len(input_files)) # In parallel, create tf record dataset for each train files. # cycle_length = 8 means that up to 8 files will be read and deserialized in # parallel. You may want to increase this number if you have a large number of # CPU cores. dataset = dataset.interleave( tf.data.TFRecordDataset, cycle_length=8, num_parallel_calls=tf.data.experimental.AUTOTUNE) decode_fn = lambda record: decode_record(record, name_to_features) dataset = dataset.map( decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE) def _select_data_from_record(record): """Filter out features to use for pretraining.""" x = { 'input_word_ids': record['input_ids'], 'input_mask': record['input_mask'], 'input_type_ids': record['segment_ids'], 'masked_lm_positions': record['masked_lm_positions'], 'masked_lm_ids': record['masked_lm_ids'], 'masked_lm_weights': record['masked_lm_weights'], 'next_sentence_labels': record['next_sentence_labels'], } y = record['masked_lm_weights'] return (x, y) dataset = dataset.map( _select_data_from_record, num_parallel_calls=tf.data.experimental.AUTOTUNE) if is_training: dataset = dataset.shuffle(100) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(1024) return dataset def create_classifier_dataset(file_path, seq_length, batch_size, is_training=True, input_pipeline_context=None, use_horovod=False): """Creates input dataset from (tf)records files for train/eval.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'label_ids': tf.io.FixedLenFeature([], tf.int64), 'is_real_example': tf.io.FixedLenFeature([], tf.int64), } dataset = single_file_dataset(file_path, name_to_features, use_horovod) # The dataset is always sharded by number of hosts. # num_input_pipelines is the number of hosts rather than number of cores. if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1: dataset = dataset.shard(input_pipeline_context.num_input_pipelines, input_pipeline_context.input_pipeline_id) def _select_data_from_record(record): x = { 'input_word_ids': record['input_ids'], 'input_mask': record['input_mask'], 'input_type_ids': record['segment_ids'] } y = record['label_ids'] return (x, y) dataset = dataset.map(_select_data_from_record) if is_training: dataset = dataset.shuffle(100) dataset = dataset.repeat() dataset = dataset.batch(batch_size, drop_remainder=is_training) dataset = dataset.prefetch(1024) return dataset def create_squad_dataset(file_path, seq_length, batch_size, is_training=True, input_pipeline_context=None, use_horovod=False): """Creates input dataset from (tf)records files for train/eval.""" name_to_features = { 'input_ids': tf.io.FixedLenFeature([seq_length], tf.int64), 'input_mask': tf.io.FixedLenFeature([seq_length], tf.int64), 'segment_ids': tf.io.FixedLenFeature([seq_length], tf.int64), } if is_training: name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64) name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64) else: name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64) dataset = single_file_dataset(file_path, name_to_features, use_horovod) # The dataset is always sharded by number of hosts. # num_input_pipelines is the number of hosts rather than number of cores. if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1: dataset = dataset.shard(input_pipeline_context.num_input_pipelines, input_pipeline_context.input_pipeline_id) def _select_data_from_record(record): """Dispatches record to features and labels.""" x, y = {}, {} for name, tensor in record.items(): if name in ('start_positions', 'end_positions'): y[name] = tensor elif name == 'input_ids': x['input_word_ids'] = tensor elif name == 'segment_ids': x['input_type_ids'] = tensor else: x[name] = tensor return (x, y) dataset = dataset.map(_select_data_from_record) if is_training: dataset = dataset.shuffle(100) dataset = dataset.repeat() dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(1024) return dataset
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/input_pipeline.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library to process data for SQuAD 1.1 and SQuAD 2.0.""" # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import math import six from absl import logging import tensorflow as tf import tokenization # pylint: enable=g-bad-import-order class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.doc_tokens = doc_tokens self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tokens = tokens self.token_to_orig_map = token_to_orig_map self.token_is_max_context = token_is_max_context self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature( int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["start_positions"] = create_int_feature([feature.start_position]) features["end_positions"] = create_int_feature([feature.end_position]) impossible = 0 if feature.is_impossible: impossible = 1 features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def read_squad_examples(input_file, is_training, version_2_with_negative, input_data=None): """Read a SQuAD json file into a list of SquadExample.""" if input_data is None: with tf.io.gfile.GFile(input_file, "r") as reader: input_data = json.load(reader)["data"] def is_whitespace(c): if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: return True return False examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] doc_tokens = [] char_to_word_offset = [] prev_is_whitespace = True for c in paragraph_text: if is_whitespace(c): prev_is_whitespace = True else: if prev_is_whitespace: doc_tokens.append(c) else: doc_tokens[-1] += c prev_is_whitespace = False char_to_word_offset.append(len(doc_tokens) - 1) for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None end_position = None orig_answer_text = None is_impossible = False if is_training: if version_2_with_negative: is_impossible = qa["is_impossible"] if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] answer_offset = answer["answer_start"] answer_length = len(orig_answer_text) start_position = char_to_word_offset[answer_offset] end_position = char_to_word_offset[answer_offset + answer_length - 1] # Only add answers where the text can be exactly recovered from the # document. If this CAN'T happen it's likely due to weird Unicode # stuff so we will just skip the example. # # Note that this means for training mode, every example is NOT # guaranteed to be preserved. actual_text = " ".join( doc_tokens[start_position:(end_position + 1)]) cleaned_answer_text = " ".join( tokenization.whitespace_tokenize(orig_answer_text)) if actual_text.find(cleaned_answer_text) == -1: logging.warning("Could not find answer: '%s' vs. '%s'", actual_text, cleaned_answer_text) continue else: start_position = -1 end_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, doc_tokens=doc_tokens, orig_answer_text=orig_answer_text, start_position=start_position, end_position=end_position, is_impossible=is_impossible) examples.append(example) return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn, batch_size=None): """Loads a data file into a list of `InputBatch`s.""" base_id = 1000000000 unique_id = base_id feature = None for (example_index, example) in enumerate(examples): query_tokens = tokenizer.tokenize(example.question_text) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] tok_to_orig_index = [] orig_to_tok_index = [] all_doc_tokens = [] for (i, token) in enumerate(example.doc_tokens): orig_to_tok_index.append(len(all_doc_tokens)) sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: tok_to_orig_index.append(i) all_doc_tokens.append(sub_token) tok_start_position = None tok_end_position = None if is_training and example.is_impossible: tok_start_position = -1 tok_end_position = -1 if is_training and not example.is_impossible: tok_start_position = orig_to_tok_index[example.start_position] if example.end_position < len(example.doc_tokens) - 1: tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 else: tok_end_position = len(all_doc_tokens) - 1 (tok_start_position, tok_end_position) = _improve_answer_span( all_doc_tokens, tok_start_position, tok_end_position, tokenizer, example.orig_answer_text) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_to_orig_map = {} token_is_max_context = {} segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length start_position = None end_position = None if is_training and not example.is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: start_position = 0 end_position = 0 else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and example.is_impossible: start_position = 0 end_position = 0 if example_index < 2: logging.info("*** Example ***") logging.info("unique_id: %s", (unique_id)) logging.info("example_index: %s", (example_index)) logging.info("doc_span_index: %s", (doc_span_index)) logging.info("tokens: %s", " ".join([tokenization.printable_text(x) for x in tokens])) logging.info( "token_to_orig_map: %s", " ".join([ "%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map) ])) logging.info( "token_is_max_context: %s", " ".join([ "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) ])) logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) if is_training and example.is_impossible: logging.info("impossible example") if is_training and not example.is_impossible: answer_text = " ".join(tokens[start_position:(end_position + 1)]) logging.info("start_position: %d", (start_position)) logging.info("end_position: %d", (end_position)) logging.info("answer: %s", tokenization.printable_text(answer_text)) feature = InputFeatures( unique_id=unique_id, example_index=example_index, doc_span_index=doc_span_index, tokens=tokens, token_to_orig_map=token_to_orig_map, token_is_max_context=token_is_max_context, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, start_position=start_position, end_position=end_position, is_impossible=example.is_impossible) # Run callback if is_training: output_fn(feature) else: output_fn(feature, is_padding=False) unique_id += 1 if not is_training and feature: assert batch_size num_padding = 0 num_examples = unique_id - base_id if unique_id % batch_size != 0: num_padding = batch_size - (num_examples % batch_size) logging.info("Adding padding examples to make sure no partial batch.") logging.info("Adds %d padding examples for inference.", num_padding) dummy_feature = copy.deepcopy(feature) for _ in range(num_padding): dummy_feature.unique_id = unique_id # Run callback output_fn(feature, is_padding=True) unique_id += 1 return unique_id - base_id def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, orig_answer_text): """Returns tokenized answer spans that better match the annotated answer.""" # The SQuAD annotations are character based. We first project them to # whitespace-tokenized words. But then after WordPiece tokenization, we can # often find a "better match". For example: # # Question: What year was John Smith born? # Context: The leader was John Smith (1895-1943). # Answer: 1895 # # The original whitespace-tokenized answer will be "(1895-1943).". However # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match # the exact answer, 1895. # # However, this is not always possible. Consider the following: # # Question: What country is the top exporter of electornics? # Context: The Japanese electronics industry is the lagest in the world. # Answer: Japan # # In this case, the annotator chose "Japan" as a character sub-span of # the word "Japanese". Since our WordPiece tokenizer does not split # "Japanese", we just use "Japanese" as the annotation. This is fairly rare # in SQuAD, but does happen. tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) for new_start in range(input_start, input_end + 1): for new_end in range(input_end, new_start - 1, -1): text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) if text_span == tok_answer_text: return (new_start, new_end) return (input_start, input_end) def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def get_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, version_2_with_negative=False, null_score_diff_threshold=0.0, verbose=False): example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index >= len(feature.tokens): continue if end_index >= len(feature.tokens): continue if start_index not in feature.token_to_orig_map: continue if end_index not in feature.token_to_orig_map: continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index, end_index=end_index, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=0, end_index=0, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index > 0: # this is a non-null prediction tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] orig_doc_start = feature.token_to_orig_map[pred.start_index] orig_doc_end = feature.token_to_orig_map[pred.end_index] orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] tok_text = " ".join(tok_tokens) # De-tokenize WordPieces that have been split off. tok_text = tok_text.replace(" ##", "") tok_text = tok_text.replace("##", "") # Clean whitespace tok_text = tok_text.strip() tok_text = " ".join(tok_text.split()) orig_text = " ".join(orig_tokens) final_text = get_final_text( tok_text, orig_text, do_lower_case, verbose=verbose) if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't inlude the empty option in the n-best, inlcude it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: # pytype: disable=attribute-error # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text # pytype: enable=attribute-error all_nbest_json[example.qas_id] = nbest_json return all_predictions, all_nbest_json, scores_diff_json def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, version_2_with_negative=False, null_score_diff_threshold=0.0, verbose=False): """Write final predictions to the json file and log-odds of null if needed.""" logging.info("Writing predictions to: %s", (output_prediction_file)) logging.info("Writing nbest to: %s", (output_nbest_file)) all_predictions, all_nbest_json, scores_diff_json = get_predictions( all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, version_2_with_negative, null_score_diff_threshold, verbose) with tf.io.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.io.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def get_final_text(pred_text, orig_text, do_lower_case, verbose=False): """Project the tokenized prediction back to the original text.""" # When we created the data, we kept track of the alignment between original # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So # now `orig_text` contains the span of our original text corresponding to the # span that we predicted. # # However, `orig_text` may contain extra characters that we don't want in # our prediction. # # For example, let's say: # pred_text = steve smith # orig_text = Steve Smith's # # We don't want to return `orig_text` because it contains the extra "'s". # # We don't want to return `pred_text` because it's already been normalized # (the SQuAD eval script also does punctuation stripping/lower casing but # our tokenizer does additional normalization like stripping accent # characters). # # What we really want to return is "Steve Smith". # # Therefore, we have to apply a semi-complicated alignment heruistic between # `pred_text` and `orig_text` to get a character-to-charcter alignment. This # can fail in certain cases in which case we just return `orig_text`. def _strip_spaces(text): ns_chars = [] ns_to_s_map = collections.OrderedDict() for (i, c) in enumerate(text): if c == " ": continue ns_to_s_map[len(ns_chars)] = i ns_chars.append(c) ns_text = "".join(ns_chars) return (ns_text, ns_to_s_map) # We first tokenize `orig_text`, strip whitespace from the result # and `pred_text`, and check if they are the same length. If they are # NOT the same length, the heuristic has failed. If they are the same # length, we assume the characters are one-to-one aligned. tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) tok_text = " ".join(tokenizer.tokenize(orig_text)) start_position = tok_text.find(pred_text) if start_position == -1: if verbose: logging.info("Unable to find text: '%s' in '%s'", pred_text, orig_text) return orig_text end_position = start_position + len(pred_text) - 1 (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) if len(orig_ns_text) != len(tok_ns_text): if verbose: logging.info("Length not equal after stripping spaces: '%s' vs '%s'", orig_ns_text, tok_ns_text) return orig_text # We then project the characters in `pred_text` back to `orig_text` using # the character-to-character alignment. tok_s_to_ns_map = {} for (i, tok_index) in six.iteritems(tok_ns_to_s_map): tok_s_to_ns_map[tok_index] = i orig_start_position = None if start_position in tok_s_to_ns_map: ns_start_position = tok_s_to_ns_map[start_position] if ns_start_position in orig_ns_to_s_map: orig_start_position = orig_ns_to_s_map[ns_start_position] if orig_start_position is None: if verbose: logging.info("Couldn't map start position") return orig_text orig_end_position = None if end_position in tok_s_to_ns_map: ns_end_position = tok_s_to_ns_map[end_position] if ns_end_position in orig_ns_to_s_map: orig_end_position = orig_ns_to_s_map[ns_end_position] if orig_end_position is None: if verbose: logging.info("Couldn't map end position") return orig_text output_text = orig_text[orig_start_position:(orig_end_position + 1)] return output_text def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): # pylint: disable=consider-using-enumerate if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs def generate_tf_record_from_json_file(input_file_path, vocab_file_path, output_path, max_seq_length=384, do_lower_case=True, max_query_length=64, doc_stride=128, version_2_with_negative=False): """Generates and saves training data into a tf record file.""" train_examples = read_squad_examples( input_file=input_file_path, is_training=True, version_2_with_negative=version_2_with_negative) tokenizer = tokenization.FullTokenizer( vocab_file=vocab_file_path, do_lower_case=do_lower_case) train_writer = FeatureWriter(filename=output_path, is_training=True) number_of_examples = convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True, output_fn=train_writer.process_feature) train_writer.close() meta_data = { "task_type": "bert_squad", "train_data_size": number_of_examples, "max_seq_length": max_seq_length, "max_query_length": max_query_length, "doc_stride": doc_stride, "version_2_with_negative": version_2_with_negative, } return meta_data
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/squad_lib.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions and classes related to optimization (weight updates).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import re import tensorflow as tf import tensorflow_addons.optimizers as tfa_optimizers class WarmUp(tf.keras.optimizers.schedules.LearningRateSchedule): """Applys a warmup schedule on a given learning rate decay schedule.""" def __init__( self, initial_learning_rate, decay_schedule_fn, warmup_steps, power=1.0, name=None): super(WarmUp, self).__init__() self.initial_learning_rate = initial_learning_rate self.warmup_steps = warmup_steps self.power = power self.decay_schedule_fn = decay_schedule_fn self.name = name def __call__(self, step): with tf.name_scope(self.name or 'WarmUp') as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. global_step_float = tf.cast(step, tf.float32) warmup_steps_float = tf.cast(self.warmup_steps, tf.float32) warmup_percent_done = global_step_float / warmup_steps_float warmup_learning_rate = ( self.initial_learning_rate * tf.math.pow(warmup_percent_done, self.power)) return tf.cond(global_step_float < warmup_steps_float, lambda: warmup_learning_rate, lambda: self.decay_schedule_fn(step), name=name) def get_config(self): return { 'initial_learning_rate': self.initial_learning_rate, 'decay_schedule_fn': self.decay_schedule_fn, 'warmup_steps': self.warmup_steps, 'power': self.power, 'name': self.name } def create_optimizer(init_lr, num_train_steps, num_warmup_steps, optimizer_type="adam"): """Creates an optimizer with learning rate schedule.""" # Implements linear decay of the learning rate. if optimizer_type == "adam": power = 1.0 decayed_learning_rate_at_crossover_point = init_lr * ( (1.0 - float(num_warmup_steps) / float(num_train_steps)) ** power) else: power = 0.5 decayed_learning_rate_at_crossover_point = init_lr init_lr = init_lr * (init_lr / decayed_learning_rate_at_crossover_point) print('decayed_learning_rate_at_crossover_point = %e, adjusted_init_lr = %e' % (decayed_learning_rate_at_crossover_point, init_lr)) learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=init_lr, decay_steps=num_train_steps, end_learning_rate=0.0, power=power) if num_warmup_steps: learning_rate_fn = WarmUp(initial_learning_rate=init_lr, decay_schedule_fn=learning_rate_fn, warmup_steps=num_warmup_steps) if optimizer_type == 'adam': optimizer = AdamWeightDecay( learning_rate=learning_rate_fn, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias']) else: skip_list = ['None'] # to avoid exclude_from_layer_adaptation set to exclude_from_weight_decay if the arg is None optimizer = tfa_optimizers.LAMB( learning_rate=learning_rate_fn, weight_decay_rate=0.01, beta_1=0.9, beta_2=0.999, epsilon=1e-6, exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'], exclude_from_layer_adaptation=skip_list) return optimizer class AdamWeightDecay(tf.keras.optimizers.Adam): """Adam enables L2 weight decay and clip_by_global_norm on gradients. Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways. Instead we want ot decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. """ def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, weight_decay_rate=0.0, include_in_weight_decay=None, exclude_from_weight_decay=None, name='AdamWeightDecay', **kwargs): super(AdamWeightDecay, self).__init__(learning_rate, beta_1, beta_2, epsilon, amsgrad, name, **kwargs) self.weight_decay_rate = weight_decay_rate self._include_in_weight_decay = include_in_weight_decay self._exclude_from_weight_decay = exclude_from_weight_decay @classmethod def from_config(cls, config): """Creates an optimizer from its config with WarmUp custom object.""" custom_objects = {'WarmUp': WarmUp} return super(AdamWeightDecay, cls).from_config( config, custom_objects=custom_objects) def _prepare_local(self, var_device, var_dtype, apply_state): super(AdamWeightDecay, self)._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)]['weight_decay_rate'] = tf.constant( self.weight_decay_rate, name='adam_weight_decay_rate') def _decay_weights_op(self, var, learning_rate, apply_state): do_decay = self._do_use_weight_decay(var.name) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'], use_locking=self._use_locking) return tf.no_op() def _get_lr(self, var_device, var_dtype, apply_state): """Retrieves the learning rate with the given state.""" if apply_state is None: return self._decayed_lr_t[var_dtype], {} apply_state = apply_state or {} coefficients = apply_state.get((var_device, var_dtype)) if coefficients is None: coefficients = self._fallback_apply_state(var_device, var_dtype) apply_state[(var_device, var_dtype)] = coefficients return coefficients['lr_t'], dict(apply_state=apply_state) def _resource_apply_dense(self, grad, var, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_dense(grad, var, **kwargs) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): lr_t, kwargs = self._get_lr(var.device, var.dtype.base_dtype, apply_state) decay = self._decay_weights_op(var, lr_t, apply_state) with tf.control_dependencies([decay]): return super(AdamWeightDecay, self)._resource_apply_sparse(grad, var, indices, **kwargs) def get_config(self): config = super(AdamWeightDecay, self).get_config() config.update({ 'weight_decay_rate': self.weight_decay_rate, }) return config def _do_use_weight_decay(self, param_name): """Whether to use L2 weight decay for `param_name`.""" if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(r, param_name) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(r, param_name) is not None: return False return True # Inspired from https://github.com/OpenNMT/OpenNMT-tf/blob/master/opennmt/optimizers/utils.py class GradientAccumulator(): def __init__(self): self._gradients = [] self._accum_steps = None def zero(self, dtype): return tf.Variable( tf.constant(0, dtype=dtype), trainable=False, synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA) @property def step(self): if self._accum_steps is None: self._accum_steps = self.zero(tf.int64) return self._accum_steps.value() @property def gradients(self): if not self._gradients: raise ValueError("The accumulator should be called first to initialize the gradients") return list(gradient.value() if gradient is not None else None for gradient in self._gradients) def reset(self): if not self._gradients: return self._accum_steps.assign(0) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros(tf.shape(gradient), dtype=gradient.dtype)) def add_gradients(self, grads): if not self._gradients: _ = self.step self._gradients.extend([ tf.Variable( tf.zeros_like(g), trainable=False, synchronization=tf.VariableSynchronization.ON_READ ) if g is not None else None for g in grads ]) if len(grads) != len(self._gradients): raise ValueError("Expected %s gradients, but got %d" % ( len(self._gradients), len(grads))) for accum_grad, grad in zip(self._gradients, grads): if accum_grad is not None: accum_grad.assign_add(grad) self._accum_steps.assign_add(1)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/optimization.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run BERT on SQuAD 1.1 and SQuAD 2.0 in tf2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import time import shutil import sys import subprocess from absl import app from absl import flags from absl import logging import tensorflow as tf import horovod.tensorflow as hvd import numpy as np from dllogger import Verbosity # Import BERT model libraries. from official.nlp import bert_models import common_flags import input_pipeline from official.modeling import model_training_utils import model_saving_utils from official.nlp import bert_modeling as modeling import optimization # word-piece tokenizer based squad_lib import squad_lib as squad_lib_wp # sentence-piece tokenizer based squad_lib import squad_lib_sp import tokenization import gpu_affinity import tf_trt from official.utils.misc import distribution_utils from official.utils.misc import keras_utils from official.utils.misc import tpu_lib import dllogger_class flags.DEFINE_enum( 'mode', 'train_and_predict', ['train_and_predict', 'train', 'predict', 'export_only', 'sm_predict', 'trt_predict'], 'One of {"train_and_predict", "train", "predict", "export_only", "sm_predict", "trt_predict"}. ' '`train_and_predict`: both train and predict to a json file. ' '`train`: only trains the model. ' 'trains the model and evaluates in the meantime. ' '`predict`: predict answers from the squad json file. ' '`export_only`: will take the latest checkpoint inside ' 'model_dir and export a `SavedModel`.' '`sm_predict`: will load SavedModel from savedmodel_dir and predict answers' '`trt_predict`: will load SavedModel from savedmodel_dir, convert and predict answers with TF-TRT') flags.DEFINE_string('train_data_path', '', 'Training data path with train tfrecords.') flags.DEFINE_string( 'input_meta_data_path', None, 'Path to file that contains meta data about input ' 'to be used for training and evaluation.') flags.DEFINE_string( "eval_script", None, "SQuAD evaluate.py file to compute f1 and exact_match E.g., evaluate-v1.1.py") # Model training specific flags. flags.DEFINE_integer('train_batch_size', 8, 'Total batch size for training.') # Predict processing related. flags.DEFINE_string('predict_file', None, 'Prediction data path with train tfrecords.') flags.DEFINE_string('vocab_file', None, 'The vocabulary file that the BERT model was trained on.') flags.DEFINE_bool( 'do_lower_case', True, 'Whether to lower case the input text. Should be True for uncased ' 'models and False for cased models.') flags.DEFINE_bool( 'verbose_logging', False, 'If true, all of the warnings related to data processing will be printed. ' 'A number of warnings are expected for a normal SQuAD evaluation.') flags.DEFINE_integer('predict_batch_size', 8, 'Total batch size for prediction.') flags.DEFINE_integer( 'n_best_size', 20, 'The total number of n-best predictions to generate in the ' 'nbest_predictions.json output file.') flags.DEFINE_integer( 'max_answer_length', 30, 'The maximum length of an answer that can be generated. This is needed ' 'because the start and end predictions are not conditioned on one another.') flags.DEFINE_string( 'sp_model_file', None, 'The path to the sentence piece model. Used by sentence piece tokenizer ' 'employed by ALBERT.') flags.DEFINE_string( 'savedmodel_dir', None, 'The path of SavedModel for Savedmodel and TF-TRT prediction.') common_flags.define_common_bert_flags() FLAGS = flags.FLAGS MODEL_CLASSES = { 'bert': (modeling.BertConfig, squad_lib_wp, tokenization.FullTokenizer), 'albert': (modeling.AlbertConfig, squad_lib_sp, tokenization.FullSentencePieceTokenizer), } def squad_loss_fn(start_positions, end_positions, start_logits, end_logits, loss_factor=1.0): """Returns sparse categorical crossentropy for start/end logits.""" start_loss = tf.keras.backend.sparse_categorical_crossentropy( start_positions, start_logits, from_logits=True) end_loss = tf.keras.backend.sparse_categorical_crossentropy( end_positions, end_logits, from_logits=True) total_loss = (tf.reduce_mean(start_loss) + tf.reduce_mean(end_loss)) / 2 total_loss *= loss_factor return total_loss def get_loss_fn(loss_factor=1.0): """Gets a loss function for squad task.""" def _loss_fn(labels, model_outputs): start_positions = labels['start_positions'] end_positions = labels['end_positions'] start_logits, end_logits = model_outputs return squad_loss_fn( start_positions, end_positions, start_logits, end_logits, loss_factor=loss_factor) return _loss_fn def get_raw_results(predictions): """Converts multi-replica predictions to RawResult.""" squad_lib = MODEL_CLASSES[FLAGS.model_type][1] for unique_ids, start_logits, end_logits in zip(predictions['unique_ids'], predictions['start_logits'], predictions['end_logits']): for values in zip(unique_ids.numpy(), start_logits.numpy(), end_logits.numpy()): yield squad_lib.RawResult( unique_id=values[0], start_logits=values[1].tolist(), end_logits=values[2].tolist()) def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size, is_training, use_horovod): """Gets a closure to create a dataset..""" def _dataset_fn(ctx=None): """Returns tf.data.Dataset for distributed BERT pretraining.""" batch_size = ctx.get_per_replica_batch_size( global_batch_size) if ctx else global_batch_size dataset = input_pipeline.create_squad_dataset( input_file_pattern, max_seq_length, batch_size, is_training=is_training, input_pipeline_context=ctx, use_horovod=use_horovod) return dataset return _dataset_fn def predict_squad_customized(strategy, input_meta_data, bert_config, predict_tfrecord_path, num_steps): """Make predictions using a Bert-based squad model.""" predict_dataset_fn = get_dataset_fn( predict_tfrecord_path, input_meta_data['max_seq_length'], FLAGS.predict_batch_size, is_training=False, use_horovod=False) if strategy: predict_iterator = iter( strategy.experimental_distribute_datasets_from_function( predict_dataset_fn)) else: predict_iterator = iter(predict_dataset_fn()) if FLAGS.mode == 'trt_predict': squad_model = tf_trt.TFTRTModel(FLAGS.savedmodel_dir, "amp" if FLAGS.use_fp16 else "fp32") elif FLAGS.mode == 'sm_predict': squad_model = tf_trt.SavedModel(FLAGS.savedmodel_dir, "amp" if FLAGS.use_fp16 else "fp32") else: with distribution_utils.get_strategy_scope(strategy): squad_model, _ = bert_models.squad_model( bert_config, input_meta_data['max_seq_length'], float_type=tf.float16 if FLAGS.use_fp16 else tf.float32) if FLAGS.init_checkpoint: checkpoint = tf.train.Checkpoint(model=squad_model) checkpoint.restore(FLAGS.init_checkpoint).expect_partial() checkpoint_path = tf.train.latest_checkpoint(FLAGS.model_dir) logging.info('Restoring checkpoints from %s', checkpoint_path) checkpoint = tf.train.Checkpoint(model=squad_model) checkpoint.restore(checkpoint_path).expect_partial() @tf.function def predict_step(iterator): """Predicts on distributed devices.""" def _replicated_step(inputs): """Replicated prediction calculation.""" x, _ = inputs unique_ids = x.pop('unique_ids') if FLAGS.benchmark: t0 = tf.timestamp() unique_ids = t0 start_logits, end_logits = squad_model(x, training=False) return dict( unique_ids=unique_ids, start_logits=start_logits, end_logits=end_logits) def tuple_fun(x): return (x,) if strategy: outputs = strategy.experimental_run_v2( _replicated_step, args=(next(iterator),)) map_func = strategy.experimental_local_results else: outputs = _replicated_step(next(iterator),) map_func = tuple_fun return tf.nest.map_structure(map_func, outputs) all_results = [] time_list = [] eval_start_time = time.time() elapsed_secs = 0 for _ in range(num_steps): predictions = predict_step(predict_iterator) if FLAGS.benchmark: # transfer tensor to CPU for synchronization t0 = predictions['unique_ids'][0] start_logits = predictions['start_logits'][0] start_logits.numpy() elapsed_secs = time.time() - t0.numpy() # Removing first 4 (arbitrary) number of startup iterations from perf evaluations if _ > 3: time_list.append(elapsed_secs) continue for result in get_raw_results(predictions): all_results.append(result) if len(all_results) % 100 == 0: logging.info('Made predictions for %d records.', len(all_results)) eval_time_elapsed = time.time() - eval_start_time logging.info("-----------------------------") logging.info("Summary Inference Statistics") logging.info("Batch size = %d", FLAGS.predict_batch_size) logging.info("Sequence Length = %d", input_meta_data['max_seq_length']) logging.info("Precision = %s", "fp16" if FLAGS.use_fp16 else "fp32") logging.info("Total Inference Time = %0.2f for Sentences = %d", eval_time_elapsed, num_steps * FLAGS.predict_batch_size) if FLAGS.benchmark: eval_time_wo_overhead = sum(time_list) time_list.sort() num_sentences = (num_steps - 4) * FLAGS.predict_batch_size avg = np.mean(time_list) cf_50 = max(time_list[:int(len(time_list) * 0.50)]) cf_90 = max(time_list[:int(len(time_list) * 0.90)]) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) ss_sentences_per_second = num_sentences * 1.0 / eval_time_wo_overhead logging.info("Total Inference Time W/O Overhead = %0.2f for Sequences = %d", eval_time_wo_overhead, (num_steps - 4) * FLAGS.predict_batch_size) logging.info("Latency Confidence Level 50 (ms) = %0.2f", cf_50 * 1000) logging.info("Latency Confidence Level 90 (ms) = %0.2f", cf_90 * 1000) logging.info("Latency Confidence Level 95 (ms) = %0.2f", cf_95 * 1000) logging.info("Latency Confidence Level 99 (ms) = %0.2f", cf_99 * 1000) logging.info("Latency Confidence Level 100 (ms) = %0.2f", cf_100 * 1000) logging.info("Latency Average (ms) = %0.2f", avg * 1000) logging.info("Throughput Average (sequences/sec) = %0.2f", ss_sentences_per_second) dllogging = input_meta_data['dllogging'] dllogging.logger.log(step=(), data={"throughput_val": ss_sentences_per_second}, verbosity=Verbosity.DEFAULT) logging.info("-----------------------------") return all_results def train_squad(strategy, input_meta_data, custom_callbacks=None, run_eagerly=False): """Run bert squad training.""" if strategy: logging.info('Training using customized training loop with distribution' ' strategy.') # Enables XLA in Session Config. Should not be set for TPU. keras_utils.set_config_v2(FLAGS.enable_xla) use_float16 = common_flags.use_float16() if use_float16: tf.keras.mixed_precision.experimental.set_policy('mixed_float16') bert_config = MODEL_CLASSES[FLAGS.model_type][0].from_json_file( FLAGS.bert_config_file) epochs = FLAGS.num_train_epochs num_train_examples = input_meta_data['train_data_size'] max_seq_length = input_meta_data['max_seq_length'] global_batch_size = FLAGS.train_batch_size * FLAGS.num_accumulation_steps if FLAGS.use_horovod: global_batch_size *= hvd.size() steps_per_epoch = int(num_train_examples / global_batch_size) warmup_steps = int(epochs * num_train_examples * 0.1 / global_batch_size) train_input_fn = get_dataset_fn( FLAGS.train_data_path, max_seq_length, FLAGS.train_batch_size, is_training=True, use_horovod=FLAGS.use_horovod) if FLAGS.benchmark: steps_per_epoch = 800 epochs = 1 def _get_squad_model(): """Get Squad model and optimizer.""" squad_model, core_model = bert_models.squad_model( bert_config, max_seq_length, float_type=tf.float16 if FLAGS.use_fp16 else tf.float32, hub_module_url=FLAGS.hub_module_url) learning_rate = FLAGS.learning_rate * hvd.size() if FLAGS.use_horovod else FLAGS.learning_rate squad_model.optimizer = optimization.create_optimizer( learning_rate, steps_per_epoch * epochs, warmup_steps, FLAGS.optimizer_type) if FLAGS.use_fp16: squad_model.optimizer = tf.keras.mixed_precision.LossScaleOptimizer(squad_model.optimizer, dynamic=True) return squad_model, core_model # The original BERT model does not scale the loss by # 1/num_replicas_in_sync. It could be an accident. So, in order to use # the same hyper parameter, we do the same thing here by keeping each # replica loss as it is. loss_fn = get_loss_fn( loss_factor=1.0 / strategy.num_replicas_in_sync if FLAGS.scale_loss and strategy else 1.0) params = {'dllogging' : input_meta_data['dllogging'], 'FLAGS' : FLAGS} model_training_utils.run_customized_training_loop( strategy=strategy, model_fn=_get_squad_model, loss_fn=loss_fn, model_dir=FLAGS.model_dir, steps_per_epoch=steps_per_epoch, num_accumulative_step=FLAGS.num_accumulation_steps, steps_per_loop=FLAGS.steps_per_loop, epochs=epochs, train_input_fn=train_input_fn, init_checkpoint=FLAGS.init_checkpoint, hvd=hvd if FLAGS.use_horovod else None, run_eagerly=run_eagerly, custom_callbacks=custom_callbacks, params=params) def predict_squad(strategy, input_meta_data): """Makes predictions for a squad dataset.""" keras_utils.set_config_v2(FLAGS.enable_xla) config_cls, squad_lib, tokenizer_cls = MODEL_CLASSES[FLAGS.model_type] bert_config = config_cls.from_json_file(FLAGS.bert_config_file) if tokenizer_cls == tokenization.FullTokenizer: tokenizer = tokenizer_cls( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) else: assert tokenizer_cls == tokenization.FullSentencePieceTokenizer tokenizer = tokenizer_cls(sp_model_file=FLAGS.sp_model_file) doc_stride = input_meta_data['doc_stride'] max_query_length = input_meta_data['max_query_length'] # Whether data should be in Ver 2.0 format. version_2_with_negative = input_meta_data.get('version_2_with_negative', False) eval_examples = squad_lib.read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=version_2_with_negative) eval_writer = squad_lib.FeatureWriter( filename=os.path.join(FLAGS.model_dir, 'eval.tf_record'), is_training=False) eval_features = [] def _append_feature(feature, is_padding): if not is_padding: eval_features.append(feature) eval_writer.process_feature(feature) # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. kwargs = dict( examples=eval_examples, tokenizer=tokenizer, max_seq_length=input_meta_data['max_seq_length'], doc_stride=doc_stride, max_query_length=max_query_length, is_training=False, output_fn=_append_feature, batch_size=FLAGS.predict_batch_size) # squad_lib_sp requires one more argument 'do_lower_case'. if squad_lib == squad_lib_sp: kwargs['do_lower_case'] = FLAGS.do_lower_case dataset_size = squad_lib.convert_examples_to_features(**kwargs) eval_writer.close() logging.info('***** Running predictions *****') logging.info(' Num orig examples = %d', len(eval_examples)) logging.info(' Num split examples = %d', len(eval_features)) logging.info(' Batch size = %d', FLAGS.predict_batch_size) num_steps = int(dataset_size / FLAGS.predict_batch_size) if FLAGS.benchmark and num_steps > 1000: num_steps = 1000 all_results = predict_squad_customized(strategy, input_meta_data, bert_config, eval_writer.filename, num_steps) if FLAGS.benchmark: return output_prediction_file = os.path.join(FLAGS.model_dir, 'predictions.json') output_nbest_file = os.path.join(FLAGS.model_dir, 'nbest_predictions.json') output_null_log_odds_file = os.path.join(FLAGS.model_dir, 'null_odds.json') squad_lib.write_predictions( eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, verbose=FLAGS.verbose_logging) if FLAGS.eval_script: eval_out = subprocess.check_output([sys.executable, FLAGS.eval_script, FLAGS.predict_file, output_prediction_file]) scores = str(eval_out).strip() exact_match = float(scores.split(":")[1].split(",")[0]) if version_2_with_negative: f1 = float(scores.split(":")[2].split(",")[0]) else: f1 = float(scores.split(":")[2].split("}")[0]) dllogging = input_meta_data['dllogging'] dllogging.logger.log(step=(), data={"f1": f1}, verbosity=Verbosity.DEFAULT) dllogging.logger.log(step=(), data={"exact_match": exact_match}, verbosity=Verbosity.DEFAULT) print(str(eval_out)) def export_squad(model_export_path, input_meta_data): """Exports a trained model as a `SavedModel` for inference. Args: model_export_path: a string specifying the path to the SavedModel directory. input_meta_data: dictionary containing meta data about input and model. Raises: Export path is not specified, got an empty string or None. """ if not model_export_path: raise ValueError('Export path is not specified: %s' % model_export_path) bert_config = MODEL_CLASSES[FLAGS.model_type][0].from_json_file( FLAGS.bert_config_file) squad_model, _ = bert_models.squad_model( bert_config, input_meta_data['max_seq_length'], float_type=tf.float32) model_saving_utils.export_bert_model( model_export_path + '/savedmodel', model=squad_model, checkpoint_dir=FLAGS.model_dir) model_name = FLAGS.triton_model_name model_folder = model_export_path + "/triton_models/" + model_name version_folder = model_folder + "/" + str(FLAGS.triton_model_version) final_model_folder = version_folder + "/model.savedmodel" if not os.path.exists(version_folder): os.makedirs(version_folder) if (not os.path.exists(final_model_folder)): os.rename(model_export_path + '/savedmodel', final_model_folder) print("Model saved to dir", final_model_folder) else: if (FLAGS.triton_model_overwrite): shutil.rmtree(final_model_folder) os.rename(model_export_path + '/savedmodel', final_model_folder) print("WARNING: Existing model was overwritten. Model dir: {}".format(final_model_folder)) else: print("ERROR: Could not save Triton model. Folder already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model. Model dir: {}".format(final_model_folder)) return config_filename = os.path.join(model_folder, "config.pbtxt") if (os.path.exists(config_filename) and not FLAGS.triton_model_overwrite): print("ERROR: Could not save Triton model config. Config file already exists. Use '--triton_model_overwrite=True' if you would like to overwrite an existing model config. Model config: {}".format(config_filename)) return config_template = r""" name: "{model_name}" platform: "tensorflow_savedmodel" max_batch_size: {max_batch_size} input [ {{ name: "input_mask" data_type: TYPE_INT32 dims: {seq_length} }}, {{ name: "input_type_ids" data_type: TYPE_INT32 dims: {seq_length} }}, {{ name: "input_word_ids" data_type: TYPE_INT32 dims: {seq_length} }} ] output [ {{ name: "end_positions" data_type: TYPE_FP32 dims: {seq_length} }}, {{ name: "start_positions" data_type: TYPE_FP32 dims: {seq_length} }} ] {dynamic_batching} instance_group [ {{ count: {engine_count} kind: KIND_GPU gpus: [{gpu_list}] }} ]""" batching_str = "" max_batch_size = FLAGS.triton_max_batch_size if (FLAGS.triton_dyn_batching_delay > 0): # Use only full and half full batches pref_batch_size = [int(max_batch_size / 2.0), max_batch_size] batching_str = r""" dynamic_batching {{ preferred_batch_size: [{0}] max_queue_delay_microseconds: {1} }}""".format(", ".join([str(x) for x in pref_batch_size]), int(FLAGS.triton_dyn_batching_delay * 1000.0)) config_values = { "model_name": model_name, "max_batch_size": max_batch_size, "seq_length": input_meta_data['max_seq_length'], "dynamic_batching": batching_str, "gpu_list": ", ".join([x.name.split(":")[-1] for x in tf.config.list_physical_devices('GPU')]), "engine_count": FLAGS.triton_engine_count } with open(model_folder + "/config.pbtxt", "w") as file: final_config_str = config_template.format_map(config_values) file.write(final_config_str) def main(_): # Users should always run this script under TF 2.x # The container haven't changed version number yet, skip the check. assert tf.version.VERSION.startswith('2.') with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader: input_meta_data = json.loads(reader.read().decode('utf-8')) if FLAGS.mode == 'export_only': export_squad(FLAGS.model_export_path, input_meta_data) return gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) strategy = distribution_utils.get_distribution_strategy( distribution_strategy=FLAGS.distribution_strategy, num_gpus=FLAGS.num_gpus, tpu_address=FLAGS.tpu) if FLAGS.use_horovod: if strategy: raise ValueError('Should not run horovod with distribution strategy') hvd.init() if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') gpu_affinity.set_affinity(hvd.local_rank()) if FLAGS.use_fp16: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16") tf.keras.mixed_precision.experimental.set_policy(policy) os.makedirs(FLAGS.model_dir, exist_ok=True) dllogging = dllogger_class.dllogger_class(FLAGS.dllog_path) input_meta_data['dllogging'] = dllogging if FLAGS.mode in ('train', 'train_and_predict'): train_squad(strategy, input_meta_data) if FLAGS.mode in ('predict', 'sm_predict', 'trt_predict', 'train_and_predict') and (not FLAGS.use_horovod or hvd.rank() == 0): predict_squad(strategy, input_meta_data) if __name__ == '__main__': flags.mark_flag_as_required('bert_config_file') flags.mark_flag_as_required('model_dir') app.run(main)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/run_squad.py
# coding=utf-8 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tokenization classes implementation. The file is forked from: https://github.com/google-research/bert/blob/master/tokenization.py. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re import unicodedata import six import tensorflow as tf import sentencepiece as spm SPIECE_UNDERLINE = "▁" def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): """Checks whether the casing config is consistent with the checkpoint name.""" # The casing has to be passed in by the user and there is no explicit check # as to whether it matches the checkpoint. The casing information probably # should have been stored in the bert_config.json file, but it's not, so # we have to heuristically detect it to validate. if not init_checkpoint: return m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) if m is None: return model_name = m.group(1) lower_models = [ "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" ] cased_models = [ "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", "multi_cased_L-12_H-768_A-12" ] is_bad_config = False if model_name in lower_models and not do_lower_case: is_bad_config = True actual_flag = "False" case_name = "lowercased" opposite_flag = "True" if model_name in cased_models and do_lower_case: is_bad_config = True actual_flag = "True" case_name = "cased" opposite_flag = "False" if is_bad_config: raise ValueError( "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " "However, `%s` seems to be a %s model, so you " "should pass in `--do_lower_case=%s` so that the fine-tuning matches " "how the model was pre-training. If this error is wrong, please " "just comment out this check." % (actual_flag, init_checkpoint, model_name, case_name, opposite_flag)) def convert_to_unicode(text): """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text.decode("utf-8", "ignore") elif isinstance(text, unicode): return text else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def printable_text(text): """Returns text encoded in a way suitable for print or `tf.logging`.""" # These functions want `str` for both Python2 and Python3, but in one case # it's a Unicode string and in the other it's a byte string. if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) elif six.PY2: if isinstance(text, str): return text elif isinstance(text, unicode): return text.encode("utf-8") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python2 or Python 3?") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with tf.io.gfile.GFile(vocab_file, "r") as reader: while True: token = convert_to_unicode(reader.readline()) if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def convert_by_vocab(vocab, items): """Converts a sequence of [tokens|ids] using the vocab.""" output = [] for item in items: output.append(vocab[item]) return output def convert_tokens_to_ids(vocab, tokens): return convert_by_vocab(vocab, tokens) def convert_ids_to_tokens(inv_vocab, ids): return convert_by_vocab(inv_vocab, ids) def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FullTokenizer(object): """Runs end-to-end tokenziation.""" def __init__(self, vocab_file, do_lower_case=True): self.vocab = load_vocab(vocab_file) self.inv_vocab = {v: k for k, v in self.vocab.items()} self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): return convert_by_vocab(self.vocab, tokens) def convert_ids_to_tokens(self, ids): return convert_by_vocab(self.inv_vocab, ids) class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = convert_to_unicode(text) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenziation.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer. Returns: A list of wordpiece tokens. """ text = convert_to_unicode(text) output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat in ("Cc", "Cf"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def preprocess_text(inputs, remove_space=True, lower=False): """Preprocesses data by removing extra space and normalize data. This method is used together with sentence piece tokenizer and is forked from: https://github.com/google-research/google-research/blob/master/albert/tokenization.py Args: inputs: The input text. remove_space: Whether to remove the extra space. lower: Whether to lowercase the text. Returns: The preprocessed text. """ outputs = inputs if remove_space: outputs = " ".join(inputs.strip().split()) if six.PY2 and isinstance(outputs, str): try: outputs = six.ensure_text(outputs, "utf-8") except UnicodeDecodeError: outputs = six.ensure_text(outputs, "latin-1") outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def encode_pieces(sp_model, text, sample=False): """Segements text into pieces. This method is used together with sentence piece tokenizer and is forked from: https://github.com/google-research/google-research/blob/master/albert/tokenization.py Args: sp_model: A spm.SentencePieceProcessor object. text: The input text to be segemented. sample: Whether to randomly sample a segmentation output or return a deterministic one. Returns: A list of token pieces. """ if six.PY2 and isinstance(text, six.text_type): text = six.ensure_binary(text, "utf-8") if not sample: pieces = sp_model.EncodeAsPieces(text) else: pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: piece = printable_text(piece) if len(piece) > 1 and piece[-1] == "," and piece[-2].isdigit(): cur_pieces = sp_model.EncodeAsPieces(piece[:-1].replace( SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def encode_ids(sp_model, text, sample=False): """Segments text and return token ids. This method is used together with sentence piece tokenizer and is forked from: https://github.com/google-research/google-research/blob/master/albert/tokenization.py Args: sp_model: A spm.SentencePieceProcessor object. text: The input text to be segemented. sample: Whether to randomly sample a segmentation output or return a deterministic one. Returns: A list of token ids. """ pieces = encode_pieces(sp_model, text, sample=sample) ids = [sp_model.PieceToId(piece) for piece in pieces] return ids class FullSentencePieceTokenizer(object): """Runs end-to-end sentence piece tokenization. The interface of this class is intended to keep the same as above `FullTokenizer` class for easier usage. """ def __init__(self, sp_model_file): """Inits FullSentencePieceTokenizer. Args: sp_model_file: The path to the sentence piece model file. """ self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(sp_model_file) self.vocab = { self.sp_model.IdToPiece(i): i for i in six.moves.range(self.sp_model.GetPieceSize()) } def tokenize(self, text): """Tokenizes text into pieces.""" return encode_pieces(self.sp_model, text) def convert_tokens_to_ids(self, tokens): """Converts a list of tokens to a list of ids.""" return [self.sp_model.PieceToId(printable_text(token)) for token in tokens] def convert_ids_to_tokens(self, ids): """Converts a list of ids ot a list of tokens.""" return [self.sp_model.IdToPiece(id_) for id_ in ids]
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/tokenization.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run masked LM/next sentence masked_lm pre-training for BERT in tf2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import tensorflow as tf import horovod.tensorflow as hvd import os # Import BERT model libraries. from official.nlp import bert_models import common_flags import input_pipeline import model_saving_utils from official.modeling import model_training_utils from official.nlp import bert_modeling as modeling import optimization import gpu_affinity import dllogger_class from official.utils.misc import distribution_utils from official.utils.misc import keras_utils from official.utils.misc import tpu_lib flags.DEFINE_string('input_files', None, 'File path to retrieve training data for pre-training.') # Model training specific flags. flags.DEFINE_integer( 'max_seq_length', 128, 'The maximum total input sequence length after WordPiece tokenization. ' 'Sequences longer than this will be truncated, and sequences shorter ' 'than this will be padded.') flags.DEFINE_integer('max_predictions_per_seq', 20, 'Maximum predictions per sequence_output.') flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.') flags.DEFINE_integer('num_steps_per_epoch', 1000, 'Total number of training steps to run per epoch.') flags.DEFINE_float('warmup_steps', 10000, 'Warmup steps for Adam weight decay optimizer.') common_flags.define_common_bert_flags() FLAGS = flags.FLAGS def get_pretrain_dataset_fn(input_file_pattern, seq_length, max_predictions_per_seq, global_batch_size): """Returns input dataset from input file string.""" def _dataset_fn(ctx=None): """Returns tf.data.Dataset for distributed BERT pretraining.""" input_patterns = input_file_pattern.split(',') batch_size = ctx.get_per_replica_batch_size( global_batch_size) if ctx else global_batch_size train_dataset = input_pipeline.create_pretrain_dataset( input_patterns, seq_length, max_predictions_per_seq, batch_size, is_training=True, input_pipeline_context=ctx, use_horovod=FLAGS.use_horovod) return train_dataset return _dataset_fn def get_loss_fn(loss_factor=1.0): """Returns loss function for BERT pretraining.""" def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args): return tf.keras.backend.mean(losses) * loss_factor return _bert_pretrain_loss_fn def run_customized_training(strategy, bert_config, max_seq_length, max_predictions_per_seq, model_dir, steps_per_epoch, steps_per_loop, epochs, initial_lr, warmup_steps, input_files, train_batch_size): """Run BERT pretrain model training using low-level API.""" train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length, max_predictions_per_seq, train_batch_size) def _get_pretrain_model(): """Gets a pretraining model.""" pretrain_model, core_model = bert_models.pretrain_model( bert_config, max_seq_length, max_predictions_per_seq, float_type=tf.float16 if FLAGS.use_fp16 else tf.float32) pretrain_model.optimizer = optimization.create_optimizer( initial_lr, steps_per_epoch * epochs, warmup_steps, FLAGS.optimizer_type) if FLAGS.use_fp16: pretrain_model.optimizer = tf.keras.mixed_precision.LossScaleOptimizer(pretrain_model.optimizer, dynamic=True) return pretrain_model, core_model dllogging = dllogger_class.dllogger_class(FLAGS.dllog_path) params = {'dllogging' : dllogging, 'FLAGS' : FLAGS} logging.info("init_lr = %f", initial_lr) trained_model = model_training_utils.run_customized_training_loop( strategy=strategy, model_fn=_get_pretrain_model, loss_fn=get_loss_fn( loss_factor=1.0 / strategy.num_replicas_in_sync if FLAGS.scale_loss and strategy else 1.0), model_dir=model_dir, train_input_fn=train_input_fn, steps_per_epoch=steps_per_epoch, num_accumulative_step=FLAGS.num_accumulation_steps, steps_per_loop=steps_per_loop, epochs=epochs, sub_model_export_name='pretrained/bert_model', init_checkpoint=FLAGS.init_checkpoint, hvd=hvd if FLAGS.use_horovod else None, params=params) return trained_model def run_bert_pretrain(strategy): """Runs BERT pre-training.""" bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) # Padding for divisibility by 8 # if bert_config.vocab_size % 8 != 0: # bert_config.vocab_size += 8 - bert_config.vocab_size % 8 if strategy: logging.info('Training using customized training loop TF 2.0 with distrubuted' 'strategy.') keras_utils.set_config_v2(FLAGS.enable_xla) # Runs customized training loop. return run_customized_training( strategy, bert_config, FLAGS.max_seq_length, FLAGS.max_predictions_per_seq, FLAGS.model_dir, FLAGS.num_steps_per_epoch, FLAGS.steps_per_loop, FLAGS.num_train_epochs, FLAGS.learning_rate * hvd.size() if FLAGS.use_horovod else FLAGS.learning_rate, FLAGS.warmup_steps, FLAGS.input_files, FLAGS.train_batch_size) def main(_): # Users should always run this script under TF 2.x assert tf.version.VERSION.startswith('2.') if not FLAGS.model_dir: FLAGS.model_dir = '/tmp/bert20/' gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) strategy = distribution_utils.get_distribution_strategy( distribution_strategy=FLAGS.distribution_strategy, num_gpus=FLAGS.num_gpus, tpu_address=FLAGS.tpu) if strategy: print('***** Number of cores used : ', strategy.num_replicas_in_sync) if FLAGS.use_horovod: if strategy: raise ValueError('Should not run horovod with distribution strategy') hvd.init() if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') gpu_affinity.set_affinity(hvd.local_rank()) if FLAGS.use_fp16: policy = tf.keras.mixed_precision.experimental.Policy("mixed_float16") tf.keras.mixed_precision.experimental.set_policy(policy) run_bert_pretrain(strategy) if __name__ == '__main__': app.run(main)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/run_pretraining.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Run ALBERT on SQuAD 1.1 and SQuAD 2.0 using sentence piece tokenization. The file is forked from: https://github.com/google-research/ALBERT/blob/master/run_squad_sp.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import json import math from absl import logging import numpy as np import tensorflow as tf import tokenization class SquadExample(object): """A single training/test example for simple sequence classification. For examples without an answer, the start and end position are -1. """ def __init__(self, qas_id, question_text, paragraph_text, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False): self.qas_id = qas_id self.question_text = question_text self.paragraph_text = paragraph_text self.orig_answer_text = orig_answer_text self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def __str__(self): return self.__repr__() def __repr__(self): s = "" s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) s += ", question_text: %s" % ( tokenization.printable_text(self.question_text)) s += ", paragraph_text: [%s]" % (" ".join(self.paragraph_text)) if self.start_position: s += ", start_position: %d" % (self.start_position) if self.start_position: s += ", end_position: %d" % (self.end_position) if self.start_position: s += ", is_impossible: %r" % (self.is_impossible) return s class InputFeatures(object): """A single set of features of data.""" def __init__(self, unique_id, example_index, doc_span_index, tok_start_to_orig_index, tok_end_to_orig_index, token_is_max_context, tokens, input_ids, input_mask, segment_ids, paragraph_len, start_position=None, end_position=None, is_impossible=None): self.unique_id = unique_id self.example_index = example_index self.doc_span_index = doc_span_index self.tok_start_to_orig_index = tok_start_to_orig_index self.tok_end_to_orig_index = tok_end_to_orig_index self.token_is_max_context = token_is_max_context self.tokens = tokens self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.paragraph_len = paragraph_len self.start_position = start_position self.end_position = end_position self.is_impossible = is_impossible def read_squad_examples(input_file, is_training, version_2_with_negative): """Read a SQuAD json file into a list of SquadExample.""" del version_2_with_negative with tf.io.gfile.GFile(input_file, "r") as reader: input_data = json.load(reader)["data"] examples = [] for entry in input_data: for paragraph in entry["paragraphs"]: paragraph_text = paragraph["context"] for qa in paragraph["qas"]: qas_id = qa["id"] question_text = qa["question"] start_position = None orig_answer_text = None is_impossible = False if is_training: is_impossible = qa.get("is_impossible", False) if (len(qa["answers"]) != 1) and (not is_impossible): raise ValueError( "For training, each question should have exactly 1 answer.") if not is_impossible: answer = qa["answers"][0] orig_answer_text = answer["text"] start_position = answer["answer_start"] else: start_position = -1 orig_answer_text = "" example = SquadExample( qas_id=qas_id, question_text=question_text, paragraph_text=paragraph_text, orig_answer_text=orig_answer_text, start_position=start_position, is_impossible=is_impossible) examples.append(example) return examples def _convert_index(index, pos, m=None, is_start=True): """Converts index.""" if index[pos] is not None: return index[pos] n = len(index) rear = pos while rear < n - 1 and index[rear] is None: rear += 1 front = pos while front > 0 and index[front] is None: front -= 1 assert index[front] is not None or index[rear] is not None if index[front] is None: if index[rear] >= 1: if is_start: return 0 else: return index[rear] - 1 return index[rear] if index[rear] is None: if m is not None and index[front] < m - 1: if is_start: return index[front] + 1 else: return m - 1 return index[front] if is_start: if index[rear] > index[front] + 1: return index[front] + 1 else: return index[rear] else: if index[rear] > index[front] + 1: return index[rear] - 1 else: return index[front] def convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, is_training, output_fn, do_lower_case, batch_size=None): """Loads a data file into a list of `InputBatch`s.""" cnt_pos, cnt_neg = 0, 0 base_id = 1000000000 unique_id = base_id max_n, max_m = 1024, 1024 f = np.zeros((max_n, max_m), dtype=np.float32) for (example_index, example) in enumerate(examples): if example_index % 100 == 0: logging.info("Converting %d/%d pos %d neg %d", example_index, len(examples), cnt_pos, cnt_neg) query_tokens = tokenization.encode_ids( tokenizer.sp_model, tokenization.preprocess_text( example.question_text, lower=do_lower_case)) if len(query_tokens) > max_query_length: query_tokens = query_tokens[0:max_query_length] paragraph_text = example.paragraph_text para_tokens = tokenization.encode_pieces( tokenizer.sp_model, tokenization.preprocess_text( example.paragraph_text, lower=do_lower_case)) chartok_to_tok_index = [] tok_start_to_chartok_index = [] tok_end_to_chartok_index = [] char_cnt = 0 for i, token in enumerate(para_tokens): new_token = token.replace(tokenization.SPIECE_UNDERLINE, " ") chartok_to_tok_index.extend([i] * len(new_token)) tok_start_to_chartok_index.append(char_cnt) char_cnt += len(new_token) tok_end_to_chartok_index.append(char_cnt - 1) tok_cat_text = "".join(para_tokens).replace(tokenization.SPIECE_UNDERLINE, " ") n, m = len(paragraph_text), len(tok_cat_text) if n > max_n or m > max_m: max_n = max(n, max_n) max_m = max(m, max_m) f = np.zeros((max_n, max_m), dtype=np.float32) g = {} # pylint: disable=cell-var-from-loop def _lcs_match(max_dist, n=n, m=m): """Longest-common-substring algorithm.""" f.fill(0) g.clear() ### longest common sub sequence # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) for i in range(n): # unlike standard LCS, this is specifically optimized for the setting # because the mismatch between sentence pieces and original text will # be small for j in range(i - max_dist, i + max_dist): if j >= m or j < 0: continue if i > 0: g[(i, j)] = 0 f[i, j] = f[i - 1, j] if j > 0 and f[i, j - 1] > f[i, j]: g[(i, j)] = 1 f[i, j] = f[i, j - 1] f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 if (tokenization.preprocess_text( paragraph_text[i], lower=do_lower_case, remove_space=False) == tok_cat_text[j] and f_prev + 1 > f[i, j]): g[(i, j)] = 2 f[i, j] = f_prev + 1 # pylint: enable=cell-var-from-loop max_dist = abs(n - m) + 5 for _ in range(2): _lcs_match(max_dist) if f[n - 1, m - 1] > 0.8 * n: break max_dist *= 2 orig_to_chartok_index = [None] * n chartok_to_orig_index = [None] * m i, j = n - 1, m - 1 while i >= 0 and j >= 0: if (i, j) not in g: break if g[(i, j)] == 2: orig_to_chartok_index[i] = j chartok_to_orig_index[j] = i i, j = i - 1, j - 1 elif g[(i, j)] == 1: j = j - 1 else: i = i - 1 if (all(v is None for v in orig_to_chartok_index) or f[n - 1, m - 1] < 0.8 * n): logging.info("MISMATCH DETECTED!") continue tok_start_to_orig_index = [] tok_end_to_orig_index = [] for i in range(len(para_tokens)): start_chartok_pos = tok_start_to_chartok_index[i] end_chartok_pos = tok_end_to_chartok_index[i] start_orig_pos = _convert_index( chartok_to_orig_index, start_chartok_pos, n, is_start=True) end_orig_pos = _convert_index( chartok_to_orig_index, end_chartok_pos, n, is_start=False) tok_start_to_orig_index.append(start_orig_pos) tok_end_to_orig_index.append(end_orig_pos) if not is_training: tok_start_position = tok_end_position = None if is_training and example.is_impossible: tok_start_position = 0 tok_end_position = 0 if is_training and not example.is_impossible: start_position = example.start_position end_position = start_position + len(example.orig_answer_text) - 1 start_chartok_pos = _convert_index( orig_to_chartok_index, start_position, is_start=True) tok_start_position = chartok_to_tok_index[start_chartok_pos] end_chartok_pos = _convert_index( orig_to_chartok_index, end_position, is_start=False) tok_end_position = chartok_to_tok_index[end_chartok_pos] assert tok_start_position <= tok_end_position def _piece_to_id(x): return tokenizer.sp_model.PieceToId(x) all_doc_tokens = list(map(_piece_to_id, para_tokens)) # The -3 accounts for [CLS], [SEP] and [SEP] max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. _DocSpan = collections.namedtuple( # pylint: disable=invalid-name "DocSpan", ["start", "length"]) doc_spans = [] start_offset = 0 while start_offset < len(all_doc_tokens): length = len(all_doc_tokens) - start_offset if length > max_tokens_for_doc: length = max_tokens_for_doc doc_spans.append(_DocSpan(start=start_offset, length=length)) if start_offset + length == len(all_doc_tokens): break start_offset += min(length, doc_stride) for (doc_span_index, doc_span) in enumerate(doc_spans): tokens = [] token_is_max_context = {} segment_ids = [] cur_tok_start_to_orig_index = [] cur_tok_end_to_orig_index = [] tokens.append(tokenizer.sp_model.PieceToId("[CLS]")) segment_ids.append(0) for token in query_tokens: tokens.append(token) segment_ids.append(0) tokens.append(tokenizer.sp_model.PieceToId("[SEP]")) segment_ids.append(0) for i in range(doc_span.length): split_token_index = doc_span.start + i cur_tok_start_to_orig_index.append( tok_start_to_orig_index[split_token_index]) cur_tok_end_to_orig_index.append( tok_end_to_orig_index[split_token_index]) is_max_context = _check_is_max_context(doc_spans, doc_span_index, split_token_index) token_is_max_context[len(tokens)] = is_max_context tokens.append(all_doc_tokens[split_token_index]) segment_ids.append(1) tokens.append(tokenizer.sp_model.PieceToId("[SEP]")) segment_ids.append(1) paragraph_len = len(tokens) input_ids = tokens # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length span_is_impossible = example.is_impossible start_position = None end_position = None if is_training and not span_is_impossible: # For training, if our document chunk does not contain an annotation # we throw it out, since there is nothing to predict. doc_start = doc_span.start doc_end = doc_span.start + doc_span.length - 1 out_of_span = False if not (tok_start_position >= doc_start and tok_end_position <= doc_end): out_of_span = True if out_of_span: # continue start_position = 0 end_position = 0 span_is_impossible = True else: doc_offset = len(query_tokens) + 2 start_position = tok_start_position - doc_start + doc_offset end_position = tok_end_position - doc_start + doc_offset if is_training and span_is_impossible: start_position = 0 end_position = 0 if example_index < 20: logging.info("*** Example ***") logging.info("unique_id: %s", (unique_id)) logging.info("example_index: %s", (example_index)) logging.info("doc_span_index: %s", (doc_span_index)) logging.info("tok_start_to_orig_index: %s", " ".join([str(x) for x in cur_tok_start_to_orig_index])) logging.info("tok_end_to_orig_index: %s", " ".join([str(x) for x in cur_tok_end_to_orig_index])) logging.info( "token_is_max_context: %s", " ".join( ["%d:%s" % (x, y) for (x, y) in token_is_max_context.items()])) logging.info( "input_pieces: %s", " ".join([tokenizer.sp_model.IdToPiece(x) for x in tokens])) logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) if is_training and span_is_impossible: logging.info("impossible example span") if is_training and not span_is_impossible: pieces = [ tokenizer.sp_model.IdToPiece(token) for token in tokens[start_position:(end_position + 1)] ] answer_text = tokenizer.sp_model.DecodePieces(pieces) logging.info("start_position: %d", (start_position)) logging.info("end_position: %d", (end_position)) logging.info("answer: %s", (tokenization.printable_text(answer_text))) # With multi processing, the example_index is actually the index # within the current process therefore we use example_index=None # to avoid being used in the future. # The current code does not use example_index of training data. if is_training: feat_example_index = None else: feat_example_index = example_index feature = InputFeatures( unique_id=unique_id, example_index=feat_example_index, doc_span_index=doc_span_index, tok_start_to_orig_index=cur_tok_start_to_orig_index, tok_end_to_orig_index=cur_tok_end_to_orig_index, token_is_max_context=token_is_max_context, tokens=[tokenizer.sp_model.IdToPiece(x) for x in tokens], input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, paragraph_len=paragraph_len, start_position=start_position, end_position=end_position, is_impossible=span_is_impossible) # Run callback if is_training: output_fn(feature) else: output_fn(feature, is_padding=False) unique_id += 1 if span_is_impossible: cnt_neg += 1 else: cnt_pos += 1 if not is_training and feature: assert batch_size num_padding = 0 num_examples = unique_id - base_id if unique_id % batch_size != 0: num_padding = batch_size - (num_examples % batch_size) dummy_feature = copy.deepcopy(feature) for _ in range(num_padding): dummy_feature.unique_id = unique_id # Run callback output_fn(feature, is_padding=True) unique_id += 1 logging.info("Total number of instances: %d = pos %d neg %d", cnt_pos + cnt_neg, cnt_pos, cnt_neg) return unique_id - base_id def _check_is_max_context(doc_spans, cur_span_index, position): """Check if this is the 'max context' doc span for the token.""" # Because of the sliding window approach taken to scoring documents, a single # token can appear in multiple documents. E.g. # Doc: the man went to the store and bought a gallon of milk # Span A: the man went to the # Span B: to the store and bought # Span C: and bought a gallon of # ... # # Now the word 'bought' will have two scores from spans B and C. We only # want to consider the score with "maximum context", which we define as # the *minimum* of its left and right context (the *sum* of left and # right context will always be the same, of course). # # In the example the maximum context for 'bought' would be span C since # it has 1 left context and 3 right context, while span B has 4 left context # and 0 right context. best_score = None best_span_index = None for (span_index, doc_span) in enumerate(doc_spans): end = doc_span.start + doc_span.length - 1 if position < doc_span.start: continue if position > end: continue num_left_context = position - doc_span.start num_right_context = end - position score = min(num_left_context, num_right_context) + 0.01 * doc_span.length if best_score is None or score > best_score: best_score = score best_span_index = span_index return cur_span_index == best_span_index RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def write_predictions(all_examples, all_features, all_results, n_best_size, max_answer_length, do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, version_2_with_negative=False, null_score_diff_threshold=0.0, verbose=False): """Write final predictions to the json file and log-odds of null if needed.""" del do_lower_case, verbose logging.info("Writing predictions to: %s", (output_prediction_file)) logging.info("Writing nbest to: %s", (output_nbest_file)) example_index_to_features = collections.defaultdict(list) for feature in all_features: example_index_to_features[feature.example_index].append(feature) unique_id_to_result = {} for result in all_results: unique_id_to_result[result.unique_id] = result _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name "PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() for (example_index, example) in enumerate(all_examples): features = example_index_to_features[example_index] prelim_predictions = [] # keep track of the minimum score of null start+end of position 0 score_null = 1000000 # large and positive min_null_feature_index = 0 # the paragraph slice with min mull score null_start_logit = 0 # the start logit at the slice with min null score null_end_logit = 0 # the end logit at the slice with min null score for (feature_index, feature) in enumerate(features): result = unique_id_to_result[feature.unique_id] start_indexes = _get_best_indexes(result.start_logits, n_best_size) end_indexes = _get_best_indexes(result.end_logits, n_best_size) # if we could have irrelevant answers, get the min score of irrelevant if version_2_with_negative: feature_null_score = result.start_logits[0] + result.end_logits[0] if feature_null_score < score_null: score_null = feature_null_score min_null_feature_index = feature_index null_start_logit = result.start_logits[0] null_end_logit = result.end_logits[0] for start_index in start_indexes: for end_index in end_indexes: doc_offset = feature.tokens.index("[SEP]") + 1 # We could hypothetically create invalid predictions, e.g., predict # that the start of the span is in the question. We throw out all # invalid predictions. if start_index - doc_offset >= len(feature.tok_start_to_orig_index): continue if end_index - doc_offset >= len(feature.tok_end_to_orig_index): continue # if start_index not in feature.tok_start_to_orig_index: # continue # if end_index not in feature.tok_end_to_orig_index: # continue if not feature.token_is_max_context.get(start_index, False): continue if end_index < start_index: continue length = end_index - start_index + 1 if length > max_answer_length: continue prelim_predictions.append( _PrelimPrediction( feature_index=feature_index, start_index=start_index - doc_offset, end_index=end_index - doc_offset, start_logit=result.start_logits[start_index], end_logit=result.end_logits[end_index])) if version_2_with_negative: prelim_predictions.append( _PrelimPrediction( feature_index=min_null_feature_index, start_index=-1, end_index=-1, start_logit=null_start_logit, end_logit=null_end_logit)) prelim_predictions = sorted( prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True) _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name "NbestPrediction", ["text", "start_logit", "end_logit"]) seen_predictions = {} nbest = [] for pred in prelim_predictions: if len(nbest) >= n_best_size: break feature = features[pred.feature_index] if pred.start_index >= 0: # this is a non-null prediction tok_start_to_orig_index = feature.tok_start_to_orig_index tok_end_to_orig_index = feature.tok_end_to_orig_index start_orig_pos = tok_start_to_orig_index[pred.start_index] end_orig_pos = tok_end_to_orig_index[pred.end_index] paragraph_text = example.paragraph_text final_text = paragraph_text[start_orig_pos:end_orig_pos + 1].strip() if final_text in seen_predictions: continue seen_predictions[final_text] = True else: final_text = "" seen_predictions[final_text] = True nbest.append( _NbestPrediction( text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit)) # if we didn't inlude the empty option in the n-best, inlcude it if version_2_with_negative: if "" not in seen_predictions: nbest.append( _NbestPrediction( text="", start_logit=null_start_logit, end_logit=null_end_logit)) # In very rare edge cases we could have no valid predictions. So we # just create a nonce prediction in this case to avoid failure. if not nbest: nbest.append( _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) assert len(nbest) >= 1 total_scores = [] best_non_null_entry = None for entry in nbest: total_scores.append(entry.start_logit + entry.end_logit) if not best_non_null_entry: if entry.text: best_non_null_entry = entry probs = _compute_softmax(total_scores) nbest_json = [] for (i, entry) in enumerate(nbest): output = collections.OrderedDict() output["text"] = entry.text output["probability"] = probs[i] output["start_logit"] = entry.start_logit output["end_logit"] = entry.end_logit nbest_json.append(output) assert len(nbest_json) >= 1 if not version_2_with_negative: all_predictions[example.qas_id] = nbest_json[0]["text"] else: assert best_non_null_entry is not None # predict "" iff the null score - the score of best non-null > threshold score_diff = score_null - best_non_null_entry.start_logit - ( best_non_null_entry.end_logit) scores_diff_json[example.qas_id] = score_diff if score_diff > null_score_diff_threshold: all_predictions[example.qas_id] = "" else: all_predictions[example.qas_id] = best_non_null_entry.text all_nbest_json[example.qas_id] = nbest_json with tf.io.gfile.GFile(output_prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") with tf.io.gfile.GFile(output_nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: with tf.io.gfile.GFile(output_null_log_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") def _get_best_indexes(logits, n_best_size): """Get the n-best logits from a list.""" index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) best_indexes = [] for i in range(len(index_and_score)): if i >= n_best_size: break best_indexes.append(index_and_score[i][0]) return best_indexes def _compute_softmax(scores): """Compute softmax probability over raw logits.""" if not scores: return [] max_score = None for score in scores: if max_score is None or score > max_score: max_score = score exp_scores = [] total_sum = 0.0 for score in scores: x = math.exp(score - max_score) exp_scores.append(x) total_sum += x probs = [] for score in exp_scores: probs.append(score / total_sum) return probs class FeatureWriter(object): """Writes InputFeature to TF example file.""" def __init__(self, filename, is_training): self.filename = filename self.is_training = is_training self.num_features = 0 self._writer = tf.io.TFRecordWriter(filename) def process_feature(self, feature): """Write a InputFeature to the TFRecordWriter as a tf.train.Example.""" self.num_features += 1 def create_int_feature(values): feature = tf.train.Feature( int64_list=tf.train.Int64List(value=list(values))) return feature features = collections.OrderedDict() features["unique_ids"] = create_int_feature([feature.unique_id]) features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) if self.is_training: features["start_positions"] = create_int_feature([feature.start_position]) features["end_positions"] = create_int_feature([feature.end_position]) impossible = 0 if feature.is_impossible: impossible = 1 features["is_impossible"] = create_int_feature([impossible]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) self._writer.write(tf_example.SerializeToString()) def close(self): self._writer.close() def generate_tf_record_from_json_file(input_file_path, sp_model_file, output_path, max_seq_length=384, do_lower_case=True, max_query_length=64, doc_stride=128, version_2_with_negative=False): """Generates and saves training data into a tf record file.""" train_examples = read_squad_examples( input_file=input_file_path, is_training=True, version_2_with_negative=version_2_with_negative) tokenizer = tokenization.FullSentencePieceTokenizer( sp_model_file=sp_model_file) train_writer = FeatureWriter(filename=output_path, is_training=True) number_of_examples = convert_examples_to_features( examples=train_examples, tokenizer=tokenizer, max_seq_length=max_seq_length, doc_stride=doc_stride, max_query_length=max_query_length, is_training=True, output_fn=train_writer.process_feature, do_lower_case=do_lower_case) train_writer.close() meta_data = { "task_type": "bert_squad", "train_data_size": number_of_examples, "max_seq_length": max_seq_length, "max_query_length": max_query_length, "doc_stride": doc_stride, "version_2_with_negative": version_2_with_negative, } return meta_data
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/squad_lib_sp.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from dllogger import Logger, StdOutBackend, JSONStreamBackend, Verbosity import numpy class dllogger_class(): def format_step(self, step): if isinstance(step, str): return step elif isinstance(step, int): return "Iteration: {} ".format(step) elif len(step) > 0: return "Iteration: {} ".format(step[0]) else: return "" def __init__(self, log_path="bert_dllog.json"): self.logger = Logger([ StdOutBackend(Verbosity.DEFAULT, step_format=self.format_step), JSONStreamBackend(Verbosity.VERBOSE, log_path), ]) self.logger.metadata("mlm_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("nsp_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("avg_loss_step", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("total_loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("loss", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "TRAIN"}) self.logger.metadata("f1", {"unit": None, "format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("precision", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("recall", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("mcc", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata("exact_match", {"format": ":.4f", "GOAL": "MINIMIZE", "STAGE": "VAL"}) self.logger.metadata( "throughput_train", {"unit": "sequences/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "TRAIN"}, ) self.logger.metadata( "throughput_inf", {"unit": "sequences/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "VAL"}, ) self.logger.metadata( "throughput_val", {"unit": "sequences/s", "format": ":.3f", "GOAL": "MAXIMIZE", "STAGE": "VAL"}, )
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/dllogger_class.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BERT classification finetuning runner in tf2.0.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import math import os from absl import app from absl import flags from absl import logging import tensorflow as tf import horovod.tensorflow as hvd # Import BERT model libraries. from official.nlp import bert_models import common_flags import input_pipeline import model_saving_utils from official.modeling import model_training_utils from official.nlp import bert_modeling as modeling import optimization from official.utils.misc import distribution_utils from official.utils.misc import keras_utils flags.DEFINE_enum( 'mode', 'train_and_eval', ['train_and_eval', 'export_only'], 'One of {"train_and_eval", "export_only"}. `train_and_eval`: ' 'trains the model and evaluates in the meantime. ' '`export_only`: will take the latest checkpoint inside ' 'model_dir and export a `SavedModel`.') flags.DEFINE_string('train_data_path', None, 'Path to training data for BERT classifier.') flags.DEFINE_string('eval_data_path', None, 'Path to evaluation data for BERT classifier.') # Model training specific flags. flags.DEFINE_string( 'input_meta_data_path', None, 'Path to file that contains meta data about input ' 'to be used for training and evaluation.') flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.') flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.') common_flags.define_common_bert_flags() FLAGS = flags.FLAGS def get_loss_fn(num_classes, loss_factor=1.0): """Gets the classification loss function.""" def classification_loss_fn(labels, logits): """Classification loss.""" labels = tf.squeeze(labels) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot( tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32) per_example_loss = -tf.reduce_sum( tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) loss *= loss_factor return loss return classification_loss_fn def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size, is_training, use_horovod): """Gets a closure to create a dataset.""" def _dataset_fn(ctx=None): """Returns tf.data.Dataset for distributed BERT pretraining.""" batch_size = ctx.get_per_replica_batch_size( global_batch_size) if ctx else global_batch_size dataset = input_pipeline.create_classifier_dataset( input_file_pattern, max_seq_length, batch_size, is_training=is_training, input_pipeline_context=ctx, use_horovod=use_horovod) return dataset return _dataset_fn def run_bert_classifier(strategy, bert_config, input_meta_data, model_dir, epochs, steps_per_epoch, steps_per_loop, eval_steps, warmup_steps, initial_lr, init_checkpoint, train_input_fn, eval_input_fn, custom_callbacks=None, run_eagerly=False, use_keras_compile_fit=False): """Run BERT classifier training using low-level API.""" max_seq_length = input_meta_data['max_seq_length'] num_classes = input_meta_data['num_labels'] def _get_classifier_model(): """Gets a classifier model.""" classifier_model, core_model = ( bert_models.classifier_model( bert_config, tf.float32, num_classes, max_seq_length, hub_module_url=FLAGS.hub_module_url)) classifier_model.optimizer = optimization.create_optimizer( initial_lr, steps_per_epoch * epochs, warmup_steps) if FLAGS.fp16_implementation == 'graph_rewrite': # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32' # which will ensure tf.compat.v2.keras.mixed_precision and # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double # up. classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite( classifier_model.optimizer) return classifier_model, core_model # During distributed training, loss used for gradient computation is # summed over from all replicas. When Keras compile/fit() API is used, # the fit() API internally normalizes the loss by dividing the loss by # the number of replicas used for computation. However, when custom # training loop is used this is not done automatically and should be # done manually by the end user. loss_multiplier = 1.0 if FLAGS.scale_loss and strategy and not use_keras_compile_fit: loss_multiplier = 1.0 / strategy.num_replicas_in_sync loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier) # Defines evaluation metrics function, which will create metrics in the # correct device and strategy scope. def metric_fn(): return tf.keras.metrics.SparseCategoricalAccuracy( 'test_accuracy', dtype=tf.float32) if use_keras_compile_fit: # Start training using Keras compile/fit API. logging.info('Training using TF 2.0 Keras compile/fit API with ' 'distribution strategy.') return run_keras_compile_fit( model_dir, strategy, _get_classifier_model, train_input_fn, eval_input_fn, loss_fn, metric_fn, init_checkpoint, epochs, steps_per_epoch, eval_steps, custom_callbacks=None) # Use user-defined loop to start training. logging.info('Training using customized training loop TF 2.0 with ' 'distribution strategy.') return model_training_utils.run_customized_training_loop( strategy=strategy, model_fn=_get_classifier_model, loss_fn=loss_fn, model_dir=model_dir, steps_per_epoch=steps_per_epoch, steps_per_loop=steps_per_loop, epochs=epochs, train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, eval_steps=eval_steps, init_checkpoint=init_checkpoint, metric_fn=metric_fn, hvd=hvd if FLAGS.use_horovod else None, custom_callbacks=custom_callbacks, run_eagerly=run_eagerly) def run_keras_compile_fit(model_dir, strategy, model_fn, train_input_fn, eval_input_fn, loss_fn, metric_fn, init_checkpoint, epochs, steps_per_epoch, eval_steps, custom_callbacks=None): """Runs BERT classifier model using Keras compile/fit API.""" with distribution_utils.get_strategy_scope(strategy): training_dataset = train_input_fn() evaluation_dataset = eval_input_fn() bert_model, sub_model = model_fn() optimizer = bert_model.optimizer if init_checkpoint: checkpoint = tf.train.Checkpoint(model=sub_model) checkpoint.restore(init_checkpoint).assert_existing_objects_matched() bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()]) summary_dir = os.path.join(model_dir, 'summaries') summary_callback = tf.keras.callbacks.TensorBoard(summary_dir) checkpoint_path = os.path.join(model_dir, 'checkpoint') checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( checkpoint_path, save_weights_only=True) if custom_callbacks is not None: custom_callbacks += [summary_callback, checkpoint_callback] else: custom_callbacks = [summary_callback, checkpoint_callback] bert_model.fit( x=training_dataset, validation_data=evaluation_dataset, steps_per_epoch=steps_per_epoch, epochs=epochs, validation_steps=eval_steps, callbacks=custom_callbacks) return bert_model def export_classifier(model_export_path, input_meta_data, restore_model_using_load_weights, bert_config, model_dir): """Exports a trained model as a `SavedModel` for inference. Args: model_export_path: a string specifying the path to the SavedModel directory. input_meta_data: dictionary containing meta data about input and model. restore_model_using_load_weights: Whether to use checkpoint.restore() API for custom checkpoint or to use model.load_weights() API. There are 2 different ways to save checkpoints. One is using tf.train.Checkpoint and another is using Keras model.save_weights(). Custom training loop implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint callback internally uses model.save_weights() API. Since these two API's cannot be used together, model loading logic must be take into account how model checkpoint was saved. bert_config: Bert configuration file to define core bert layers. model_dir: The directory where the model weights and training/evaluation summaries are stored. Raises: Export path is not specified, got an empty string or None. """ if not model_export_path: raise ValueError('Export path is not specified: %s' % model_export_path) if not model_dir: raise ValueError('Export path is not specified: %s' % model_dir) classifier_model = bert_models.classifier_model( bert_config, tf.float32, input_meta_data['num_labels'], input_meta_data['max_seq_length'])[0] model_saving_utils.export_bert_model( model_export_path, model=classifier_model, checkpoint_dir=model_dir, restore_model_using_load_weights=restore_model_using_load_weights) def run_bert(strategy, input_meta_data, train_input_fn=None, eval_input_fn=None): """Run BERT training.""" if FLAGS.model_type == 'bert': bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) else: assert FLAGS.model_type == 'albert' bert_config = modeling.AlbertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.mode == 'export_only': # As Keras ModelCheckpoint callback used with Keras compile/fit() API # internally uses model.save_weights() to save checkpoints, we must # use model.load_weights() when Keras compile/fit() is used. export_classifier(FLAGS.model_export_path, input_meta_data, FLAGS.use_keras_compile_fit, bert_config, FLAGS.model_dir) return if FLAGS.mode != 'train_and_eval': raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode) # Enables XLA in Session Config. Should not be set for TPU. keras_utils.set_config_v2(FLAGS.enable_xla) epochs = FLAGS.num_train_epochs train_data_size = input_meta_data['train_data_size'] global_batch_size = FLAGS.train_batch_size learning_rate = FLAGS.learning_rate if FLAGS.use_horovod: global_batch_size *= hvd.size() learning_rate *= hvd.size() steps_per_epoch = int(train_data_size / global_batch_size) warmup_steps = int(epochs * train_data_size * 0.1 / global_batch_size) eval_steps = int( math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size)) if strategy: # Runs customized training loop. logging.info('Training using customized training loop TF 2.0 with distrubuted' 'strategy.') trained_model = run_bert_classifier( strategy, bert_config, input_meta_data, FLAGS.model_dir, epochs, steps_per_epoch, FLAGS.steps_per_loop, eval_steps, warmup_steps, learning_rate, FLAGS.init_checkpoint, train_input_fn, eval_input_fn, run_eagerly=FLAGS.run_eagerly, use_keras_compile_fit=FLAGS.use_keras_compile_fit) if FLAGS.model_export_path: model_saving_utils.export_bert_model( FLAGS.model_export_path, model=trained_model, restore_model_using_load_weights=FLAGS.use_keras_compile_fit) return trained_model def main(_): # Users should always run this script under TF 2.x assert tf.version.VERSION.startswith('2.') with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader: input_meta_data = json.loads(reader.read().decode('utf-8')) if FLAGS.use_fp16: os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' strategy = distribution_utils.get_distribution_strategy( distribution_strategy=FLAGS.distribution_strategy, num_gpus=FLAGS.num_gpus, tpu_address=FLAGS.tpu) if FLAGS.use_horovod: if strategy: raise ValueError('Should not run horovod with distribution strategy') hvd.init() gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') if not FLAGS.model_dir: FLAGS.model_dir = '/tmp/bert20/' max_seq_length = input_meta_data['max_seq_length'] train_input_fn = get_dataset_fn( FLAGS.train_data_path, max_seq_length, FLAGS.train_batch_size, is_training=True, use_horovod=FLAGS.use_horovod) eval_input_fn = get_dataset_fn( FLAGS.eval_data_path, max_seq_length, FLAGS.eval_batch_size, is_training=False, use_horovod=FLAGS.use_horovod) run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn) if __name__ == '__main__': flags.mark_flag_as_required('bert_config_file') flags.mark_flag_as_required('input_meta_data_path') flags.mark_flag_as_required('model_dir') app.run(main)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/run_classifier.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf from tensorflow.python.compiler.tensorrt import trt_convert as trt from tensorflow.compat.v1.saved_model import tag_constants, signature_constants def export_model(model_dir, prec, tf_trt_model_dir=None): model = tf.saved_model.load(model_dir) input_shape = [1, 384] dummy_input = tf.constant(tf.zeros(input_shape, dtype=tf.int32)) x = [ tf.constant(dummy_input, name='input_word_ids'), tf.constant(dummy_input, name='input_mask'), tf.constant(dummy_input, name='input_type_ids'), ] _ = model(x) trt_prec = trt.TrtPrecisionMode.FP32 if prec == "fp32" else trt.TrtPrecisionMode.FP16 converter = trt.TrtGraphConverterV2( input_saved_model_dir=model_dir, conversion_params=trt.TrtConversionParams(precision_mode=trt_prec), ) converter.convert() tf_trt_model_dir = tf_trt_model_dir or f'/tmp/tf-trt_model_{prec}' converter.save(tf_trt_model_dir) print(f"TF-TRT model saved at {tf_trt_model_dir}") class SavedModel: def __init__(self, model_dir, precision): self.saved_model_loaded = tf.saved_model.load(model_dir, tags=[tag_constants.SERVING]) self.graph_func = self.saved_model_loaded.signatures[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] self.precision = tf.float16 if precision == "amp" else tf.float32 def __call__(self, x, **kwargs): return self.infer_step(x) @tf.function def infer_step(self, x): output = self.graph_func(**x) return output['start_positions'], output['end_positions'] class TFTRTModel: def __init__(self, model_dir, precision): temp_tftrt_dir = f"/tmp/tf-trt_model_{precision}" export_model(model_dir, precision, temp_tftrt_dir) saved_model_loaded = tf.saved_model.load(temp_tftrt_dir, tags=[tag_constants.SERVING]) print(f"TF-TRT model loaded from {temp_tftrt_dir}") self.graph_func = saved_model_loaded.signatures[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] self.precision = tf.float16 if precision == "amp" else tf.float32 def __call__(self, x, **kwargs): return self.infer_step(x) @tf.function def infer_step(self, x): output = self.graph_func(**x) return output['start_positions'], output['end_positions']
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/tf_trt.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Create masked LM/next sentence masked_lm TF examples for BERT.""" import collections import itertools import random # Import libraries from absl import app from absl import flags from absl import logging import tensorflow as tf import tokenization FLAGS = flags.FLAGS flags.DEFINE_string("input_file", None, "Input raw text file (or comma-separated list of files).") flags.DEFINE_string( "output_file", None, "Output TF example file (or comma-separated list of files).") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_bool( "do_whole_word_mask", False, "Whether to use whole word masking rather than per-WordPiece masking.") flags.DEFINE_integer( "max_ngram_size", None, "Mask contiguous whole words (n-grams) of up to `max_ngram_size` using a " "weighting scheme to favor shorter n-grams. " "Note: `--do_whole_word_mask=True` must also be set when n-gram masking.") flags.DEFINE_bool( "gzip_compress", False, "Whether to use `GZIP` compress option to get compressed TFRecord files.") flags.DEFINE_bool( "use_v2_feature_names", False, "Whether to use the feature names consistent with the models.") flags.DEFINE_integer("max_seq_length", 128, "Maximum sequence length.") flags.DEFINE_integer("max_predictions_per_seq", 20, "Maximum number of masked LM predictions per sequence.") flags.DEFINE_integer("random_seed", 12345, "Random seed for data generation.") flags.DEFINE_integer( "dupe_factor", 10, "Number of times to duplicate the input data (with different masks).") flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.") flags.DEFINE_float( "short_seq_prob", 0.1, "Probability of creating sequences which are shorter than the " "maximum length.") class TrainingInstance(object): """A single training instance (sentence pair).""" def __init__(self, tokens, segment_ids, masked_lm_positions, masked_lm_labels, is_random_next): self.tokens = tokens self.segment_ids = segment_ids self.is_random_next = is_random_next self.masked_lm_positions = masked_lm_positions self.masked_lm_labels = masked_lm_labels def __str__(self): s = "" s += "tokens: %s\n" % (" ".join( [tokenization.printable_text(x) for x in self.tokens])) s += "segment_ids: %s\n" % (" ".join([str(x) for x in self.segment_ids])) s += "is_random_next: %s\n" % self.is_random_next s += "masked_lm_positions: %s\n" % (" ".join( [str(x) for x in self.masked_lm_positions])) s += "masked_lm_labels: %s\n" % (" ".join( [tokenization.printable_text(x) for x in self.masked_lm_labels])) s += "\n" return s def __repr__(self): return self.__str__() def write_instance_to_example_files(instances, tokenizer, max_seq_length, max_predictions_per_seq, output_files, gzip_compress, use_v2_feature_names): """Creates TF example files from `TrainingInstance`s.""" writers = [] for output_file in output_files: writers.append( tf.io.TFRecordWriter( output_file, options="GZIP" if gzip_compress else "")) writer_index = 0 total_written = 0 for (inst_index, instance) in enumerate(instances): input_ids = tokenizer.convert_tokens_to_ids(instance.tokens) input_mask = [1] * len(input_ids) segment_ids = list(instance.segment_ids) assert len(input_ids) <= max_seq_length while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length masked_lm_positions = list(instance.masked_lm_positions) masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels) masked_lm_weights = [1.0] * len(masked_lm_ids) while len(masked_lm_positions) < max_predictions_per_seq: masked_lm_positions.append(0) masked_lm_ids.append(0) masked_lm_weights.append(0.0) next_sentence_label = 1 if instance.is_random_next else 0 features = collections.OrderedDict() if use_v2_feature_names: features["input_word_ids"] = create_int_feature(input_ids) features["input_type_ids"] = create_int_feature(segment_ids) else: features["input_ids"] = create_int_feature(input_ids) features["segment_ids"] = create_int_feature(segment_ids) features["input_mask"] = create_int_feature(input_mask) features["masked_lm_positions"] = create_int_feature(masked_lm_positions) features["masked_lm_ids"] = create_int_feature(masked_lm_ids) features["masked_lm_weights"] = create_float_feature(masked_lm_weights) features["next_sentence_labels"] = create_int_feature([next_sentence_label]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writers[writer_index].write(tf_example.SerializeToString()) writer_index = (writer_index + 1) % len(writers) total_written += 1 if inst_index < 20: logging.info("*** Example ***") logging.info("tokens: %s", " ".join( [tokenization.printable_text(x) for x in instance.tokens])) for feature_name in features.keys(): feature = features[feature_name] values = [] if feature.int64_list.value: values = feature.int64_list.value elif feature.float_list.value: values = feature.float_list.value logging.info("%s: %s", feature_name, " ".join([str(x) for x in values])) for writer in writers: writer.close() logging.info("Wrote %d total instances", total_written) def create_int_feature(values): feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return feature def create_float_feature(values): feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values))) return feature def create_training_instances(input_files, tokenizer, max_seq_length, dupe_factor, short_seq_prob, masked_lm_prob, max_predictions_per_seq, rng, do_whole_word_mask=False, max_ngram_size=None): """Create `TrainingInstance`s from raw text.""" all_documents = [[]] # Input file format: # (1) One sentence per line. These should ideally be actual sentences, not # entire paragraphs or arbitrary spans of text. (Because we use the # sentence boundaries for the "next sentence prediction" task). # (2) Blank lines between documents. Document boundaries are needed so # that the "next sentence prediction" task doesn't span between documents. for input_file in input_files: with tf.io.gfile.GFile(input_file, "rb") as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() # Empty lines are used as document delimiters if not line: all_documents.append([]) tokens = tokenizer.tokenize(line) if tokens: all_documents[-1].append(tokens) # Remove empty documents all_documents = [x for x in all_documents if x] rng.shuffle(all_documents) vocab_words = list(tokenizer.vocab.keys()) instances = [] for _ in range(dupe_factor): for document_index in range(len(all_documents)): instances.extend( create_instances_from_document( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size)) rng.shuffle(instances) return instances def create_instances_from_document( all_documents, document_index, max_seq_length, short_seq_prob, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask=False, max_ngram_size=None): """Creates `TrainingInstance`s for a single document.""" document = all_documents[document_index] # Account for [CLS], [SEP], [SEP] max_num_tokens = max_seq_length - 3 # We *usually* want to fill up the entire sequence since we are padding # to `max_seq_length` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pre-training and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `max_seq_length` is a hard limit. target_seq_length = max_num_tokens if rng.random() < short_seq_prob: target_seq_length = rng.randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. instances = [] current_chunk = [] current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = rng.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] # Random next is_random_next = False if len(current_chunk) == 1 or rng.random() < 0.5: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = rng.randint(0, len(all_documents) - 1) if random_document_index != document_index: break random_document = all_documents[random_document_index] random_start = rng.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng) assert len(tokens_a) >= 1 assert len(tokens_b) >= 1 tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) (tokens, masked_lm_positions, masked_lm_labels) = create_masked_lm_predictions( tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size) instance = TrainingInstance( tokens=tokens, segment_ids=segment_ids, is_random_next=is_random_next, masked_lm_positions=masked_lm_positions, masked_lm_labels=masked_lm_labels) instances.append(instance) current_chunk = [] current_length = 0 i += 1 return instances MaskedLmInstance = collections.namedtuple("MaskedLmInstance", ["index", "label"]) # A _Gram is a [half-open) interval of token indices which form a word. # E.g., # words: ["The", "doghouse"] # tokens: ["The", "dog", "##house"] # grams: [(0,1), (1,3)] _Gram = collections.namedtuple("_Gram", ["begin", "end"]) def _window(iterable, size): """Helper to create a sliding window iterator with a given size. E.g., input = [1, 2, 3, 4] _window(input, 1) => [1], [2], [3], [4] _window(input, 2) => [1, 2], [2, 3], [3, 4] _window(input, 3) => [1, 2, 3], [2, 3, 4] _window(input, 4) => [1, 2, 3, 4] _window(input, 5) => None Args: iterable: elements to iterate over. size: size of the window. Yields: Elements of `iterable` batched into a sliding window of length `size`. """ i = iter(iterable) window = [] try: for e in range(0, size): window.append(next(i)) yield window except StopIteration: # handle the case where iterable's length is less than the window size. return for e in i: window = window[1:] + [e] yield window def _contiguous(sorted_grams): """Test whether a sequence of grams is contiguous. Args: sorted_grams: _Grams which are sorted in increasing order. Returns: True if `sorted_grams` are touching each other. E.g., _contiguous([(1, 4), (4, 5), (5, 10)]) == True _contiguous([(1, 2), (4, 5)]) == False """ for a, b in _window(sorted_grams, 2): if a.end != b.begin: return False return True def _masking_ngrams(grams, max_ngram_size, max_masked_tokens, rng): """Create a list of masking {1, ..., n}-grams from a list of one-grams. This is an extention of 'whole word masking' to mask multiple, contiguous words such as (e.g., "the red boat"). Each input gram represents the token indices of a single word, words: ["the", "red", "boat"] tokens: ["the", "red", "boa", "##t"] grams: [(0,1), (1,2), (2,4)] For a `max_ngram_size` of three, possible outputs masks include: 1-grams: (0,1), (1,2), (2,4) 2-grams: (0,2), (1,4) 3-grams; (0,4) Output masks will not overlap and contain less than `max_masked_tokens` total tokens. E.g., for the example above with `max_masked_tokens` as three, valid outputs are, [(0,1), (1,2)] # "the", "red" covering two tokens [(1,2), (2,4)] # "red", "boa", "##t" covering three tokens The length of the selected n-gram follows a zipf weighting to favor shorter n-gram sizes (weight(1)=1, weight(2)=1/2, weight(3)=1/3, ...). Args: grams: List of one-grams. max_ngram_size: Maximum number of contiguous one-grams combined to create an n-gram. max_masked_tokens: Maximum total number of tokens to be masked. rng: `random.Random` generator. Returns: A list of n-grams to be used as masks. """ if not grams: return None grams = sorted(grams) num_tokens = grams[-1].end # Ensure our grams are valid (i.e., they don't overlap). for a, b in _window(grams, 2): if a.end > b.begin: raise ValueError("overlapping grams: {}".format(grams)) # Build map from n-gram length to list of n-grams. ngrams = {i: [] for i in range(1, max_ngram_size+1)} for gram_size in range(1, max_ngram_size+1): for g in _window(grams, gram_size): if _contiguous(g): # Add an n-gram which spans these one-grams. ngrams[gram_size].append(_Gram(g[0].begin, g[-1].end)) # Shuffle each list of n-grams. for v in ngrams.values(): rng.shuffle(v) # Create the weighting for n-gram length selection. # Stored cummulatively for `random.choices` below. cummulative_weights = list( itertools.accumulate([1./n for n in range(1, max_ngram_size+1)])) output_ngrams = [] # Keep a bitmask of which tokens have been masked. masked_tokens = [False] * num_tokens # Loop until we have enough masked tokens or there are no more candidate # n-grams of any length. # Each code path should ensure one or more elements from `ngrams` are removed # to guarentee this loop terminates. while (sum(masked_tokens) < max_masked_tokens and sum(len(s) for s in ngrams.values())): # Pick an n-gram size based on our weights. sz = random.choices(range(1, max_ngram_size+1), cum_weights=cummulative_weights)[0] # Ensure this size doesn't result in too many masked tokens. # E.g., a two-gram contains _at least_ two tokens. if sum(masked_tokens) + sz > max_masked_tokens: # All n-grams of this length are too long and can be removed from # consideration. ngrams[sz].clear() continue # All of the n-grams of this size have been used. if not ngrams[sz]: continue # Choose a random n-gram of the given size. gram = ngrams[sz].pop() num_gram_tokens = gram.end-gram.begin # Check if this would add too many tokens. if num_gram_tokens + sum(masked_tokens) > max_masked_tokens: continue # Check if any of the tokens in this gram have already been masked. if sum(masked_tokens[gram.begin:gram.end]): continue # Found a usable n-gram! Mark its tokens as masked and add it to return. masked_tokens[gram.begin:gram.end] = [True] * (gram.end-gram.begin) output_ngrams.append(gram) return output_ngrams def _wordpieces_to_grams(tokens): """Reconstitue grams (words) from `tokens`. E.g., tokens: ['[CLS]', 'That', 'lit', '##tle', 'blue', 'tru', '##ck', '[SEP]'] grams: [ [1,2), [2, 4), [4,5) , [5, 6)] Args: tokens: list of wordpieces Returns: List of _Grams representing spans of whole words (without "[CLS]" and "[SEP]"). """ grams = [] gram_start_pos = None for i, token in enumerate(tokens): if gram_start_pos is not None and token.startswith("##"): continue if gram_start_pos is not None: grams.append(_Gram(gram_start_pos, i)) if token not in ["[CLS]", "[SEP]"]: gram_start_pos = i else: gram_start_pos = None if gram_start_pos is not None: grams.append(_Gram(gram_start_pos, len(tokens))) return grams def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_words, rng, do_whole_word_mask, max_ngram_size=None): """Creates the predictions for the masked LM objective.""" if do_whole_word_mask: grams = _wordpieces_to_grams(tokens) else: # Here we consider each token to be a word to allow for sub-word masking. if max_ngram_size: raise ValueError("cannot use ngram masking without whole word masking") grams = [_Gram(i, i+1) for i in range(0, len(tokens)) if tokens[i] not in ["[CLS]", "[SEP]"]] num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob)))) # Generate masks. If `max_ngram_size` in [0, None] it means we're doing # whole word masking or token level masking. Both of these can be treated # as the `max_ngram_size=1` case. masked_grams = _masking_ngrams(grams, max_ngram_size or 1, num_to_predict, rng) masked_lms = [] output_tokens = list(tokens) for gram in masked_grams: # 80% of the time, replace all n-gram tokens with [MASK] if rng.random() < 0.8: replacement_action = lambda idx: "[MASK]" else: # 10% of the time, keep all the original n-gram tokens. if rng.random() < 0.5: replacement_action = lambda idx: tokens[idx] # 10% of the time, replace each n-gram token with a random word. else: replacement_action = lambda idx: rng.choice(vocab_words) for idx in range(gram.begin, gram.end): output_tokens[idx] = replacement_action(idx) masked_lms.append(MaskedLmInstance(index=idx, label=tokens[idx])) assert len(masked_lms) <= num_to_predict masked_lms = sorted(masked_lms, key=lambda x: x.index) masked_lm_positions = [] masked_lm_labels = [] for p in masked_lms: masked_lm_positions.append(p.index) masked_lm_labels.append(p.label) return (output_tokens, masked_lm_positions, masked_lm_labels) def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b assert len(trunc_tokens) >= 1 # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if rng.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop() def main(_): tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) input_files = [] for input_pattern in FLAGS.input_file.split(","): input_files.extend(tf.io.gfile.glob(input_pattern)) logging.info("*** Reading from input files ***") for input_file in input_files: logging.info(" %s", input_file) rng = random.Random(FLAGS.random_seed) instances = create_training_instances( input_files, tokenizer, FLAGS.max_seq_length, FLAGS.dupe_factor, FLAGS.short_seq_prob, FLAGS.masked_lm_prob, FLAGS.max_predictions_per_seq, rng, FLAGS.do_whole_word_mask, FLAGS.max_ngram_size) output_files = FLAGS.output_file.split(",") logging.info("*** Writing to output files ***") for output_file in output_files: logging.info(" %s", output_file) write_instance_to_example_files(instances, tokenizer, FLAGS.max_seq_length, FLAGS.max_predictions_per_seq, output_files, FLAGS.gzip_compress, FLAGS.use_v2_feature_names) if __name__ == "__main__": flags.mark_flag_as_required("input_file") flags.mark_flag_as_required("output_file") flags.mark_flag_as_required("vocab_file") app.run(main)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/create_pretraining_data.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities to save models.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import os from absl import logging import tensorflow as tf import typing def export_bert_model(model_export_path: typing.Text, model: tf.keras.Model, checkpoint_dir: typing.Optional[typing.Text] = None, restore_model_using_load_weights: bool = False) -> None: """Export BERT model for serving which does not include the optimizer. Arguments: model_export_path: Path to which exported model will be saved. model: Keras model object to export. checkpoint_dir: Path from which model weights will be loaded, if specified. restore_model_using_load_weights: Whether to use checkpoint.restore() API for custom checkpoint or to use model.load_weights() API. There are 2 different ways to save checkpoints. One is using tf.train.Checkpoint and another is using Keras model.save_weights(). Custom training loop implementation uses tf.train.Checkpoint API and Keras ModelCheckpoint callback internally uses model.save_weights() API. Since these two API's cannot be used toghether, model loading logic must be take into account how model checkpoint was saved. Raises: ValueError when either model_export_path or model is not specified. """ if not model_export_path: raise ValueError('model_export_path must be specified.') if not isinstance(model, tf.keras.Model): raise ValueError('model must be a tf.keras.Model object.') if checkpoint_dir: # Keras compile/fit() was used to save checkpoint using # model.save_weights(). if restore_model_using_load_weights: model_weight_path = os.path.join(checkpoint_dir, 'checkpoint') assert tf.io.gfile.exists(model_weight_path) model.load_weights(model_weight_path) # tf.train.Checkpoint API was used via custom training loop logic. else: checkpoint = tf.train.Checkpoint(model=model) # Restores the model from latest checkpoint. latest_checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir) assert latest_checkpoint_file logging.info('Checkpoint file %s found and restoring from ' 'checkpoint', latest_checkpoint_file) checkpoint.restore( latest_checkpoint_file).assert_existing_objects_matched() model.save(model_export_path, include_optimizer=False, save_format='tf') class BertModelCheckpoint(tf.keras.callbacks.Callback): """Keras callback that saves model at the end of every epoch.""" def __init__(self, checkpoint_dir, checkpoint): """Initializes BertModelCheckpoint. Arguments: checkpoint_dir: Directory of the to be saved checkpoint file. checkpoint: tf.train.Checkpoint object. """ super(BertModelCheckpoint, self).__init__() self.checkpoint_file_name = os.path.join( checkpoint_dir, 'bert_training_checkpoint_step_{global_step}.ckpt') assert isinstance(checkpoint, tf.train.Checkpoint) self.checkpoint = checkpoint def on_epoch_end(self, epoch, logs=None): global_step = tf.keras.backend.get_value(self.model.optimizer.iterations) formatted_file_name = self.checkpoint_file_name.format( global_step=global_step) saved_path = self.checkpoint.save(formatted_file_name) logging.info('Saving model TF checkpoint to : %s', saved_path)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/model_saving_utils.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """BERT library to process data for classification task.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from absl import logging import tensorflow as tf import tokenization class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def __init__(self, process_text_fn=tokenization.convert_to_unicode): self.process_text_fn = process_text_fn def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @staticmethod def get_processor_name(): """Gets the string identifier of the processor.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.io.gfile.GFile(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set.""" def __init__(self, process_text_fn=tokenization.convert_to_unicode): super(XnliProcessor, self).__init__(process_text_fn) self.language = "zh" def get_train_examples(self, data_dir): """See base class.""" lines = self._read_tsv( os.path.join(data_dir, "multinli", "multinli.train.%s.tsv" % self.language)) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "train-%d" % (i) text_a = self.process_text_fn(line[0]) text_b = self.process_text_fn(line[1]) label = self.process_text_fn(line[2]) if label == self.process_text_fn("contradictory"): label = self.process_text_fn("contradiction") examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_dev_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "dev-%d" % (i) language = self.process_text_fn(line[0]) if language != self.process_text_fn(self.language): continue text_a = self.process_text_fn(line[6]) text_b = self.process_text_fn(line[7]) label = self.process_text_fn(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] @staticmethod def get_processor_name(): """See base class.""" return "XNLI" class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] @staticmethod def get_processor_name(): """See base class.""" return "MNLI" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, self.process_text_fn(line[0])) text_a = self.process_text_fn(line[8]) text_b = self.process_text_fn(line[9]) if set_type == "test": label = "contradiction" else: label = self.process_text_fn(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "MRPC" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = self.process_text_fn(line[3]) text_b = self.process_text_fn(line[4]) if set_type == "test": label = "0" else: label = self.process_text_fn(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "COLA" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # Only the test set has a header if set_type == "test" and i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = self.process_text_fn(line[1]) label = "0" else: text_a = self.process_text_fn(line[3]) label = self.process_text_fn(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class SstProcessor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] @staticmethod def get_processor_name(): """See base class.""" return "SST-2" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) label = "0" else: text_a = tokenization.convert_to_unicode(line[0]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] @staticmethod def get_processor_name(): """See base class.""" return "QNLI" def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, 1) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = "entailment" else: text_a = tokenization.convert_to_unicode(line[1]) text_b = tokenization.convert_to_unicode(line[2]) label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer): """Converts a single `InputExample` into a single `InputFeatures`.""" label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: logging.info("*** Example ***") logging.info("guid: %s", (example.guid)) logging.info("tokens: %s", " ".join([tokenization.printable_text(x) for x in tokens])) logging.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logging.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logging.info("label: %s (id = %d)", example.label, label_id) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature def file_based_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logging.info("Writing example %d of %d", ex_index, len(examples)) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def generate_tf_record_from_data_file(processor, data_dir, tokenizer, train_data_output_path=None, eval_data_output_path=None, max_seq_length=128): """Generates and saves training data into a tf record file. Arguments: processor: Input processor object to be used for generating data. Subclass of `DataProcessor`. data_dir: Directory that contains train/eval data to process. Data files should be in from "dev.tsv", "test.tsv", or "train.tsv". tokenizer: The tokenizer to be applied on the data. train_data_output_path: Output to which processed tf record for training will be saved. eval_data_output_path: Output to which processed tf record for evaluation will be saved. max_seq_length: Maximum sequence length of the to be generated training/eval data. Returns: A dictionary containing input meta data. """ assert train_data_output_path or eval_data_output_path label_list = processor.get_labels() assert train_data_output_path train_input_data_examples = processor.get_train_examples(data_dir) file_based_convert_examples_to_features(train_input_data_examples, label_list, max_seq_length, tokenizer, train_data_output_path) num_training_data = len(train_input_data_examples) if eval_data_output_path: eval_input_data_examples = processor.get_dev_examples(data_dir) file_based_convert_examples_to_features(eval_input_data_examples, label_list, max_seq_length, tokenizer, eval_data_output_path) meta_data = { "task_type": "bert_classification", "processor_type": processor.get_processor_name(), "num_labels": len(processor.get_labels()), "train_data_size": num_training_data, "max_seq_length": max_seq_length, } if eval_data_output_path: meta_data["eval_data_size"] = len(eval_input_data_examples) return meta_data
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/classifier_data_lib.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for running models in a distributed setting.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import random import string import tensorflow as tf from official.utils.misc import tpu_lib def _collective_communication(all_reduce_alg): """Return a CollectiveCommunication based on all_reduce_alg. Args: all_reduce_alg: a string specifying which collective communication to pick, or None. Returns: tf.distribute.experimental.CollectiveCommunication object Raises: ValueError: if `all_reduce_alg` not in [None, 'ring', 'nccl'] """ collective_communication_options = { None: tf.distribute.experimental.CollectiveCommunication.AUTO, "ring": tf.distribute.experimental.CollectiveCommunication.RING, "nccl": tf.distribute.experimental.CollectiveCommunication.NCCL } if all_reduce_alg not in collective_communication_options: raise ValueError( "When used with `multi_worker_mirrored`, valid values for " "all_reduce_alg are ['ring', 'nccl']. Supplied value: {}".format( all_reduce_alg)) return collective_communication_options[all_reduce_alg] def _mirrored_cross_device_ops(all_reduce_alg, num_packs): """Return a CrossDeviceOps based on all_reduce_alg and num_packs. Args: all_reduce_alg: a string specifying which cross device op to pick, or None. num_packs: an integer specifying number of packs for the cross device op. Returns: tf.distribute.CrossDeviceOps object or None. Raises: ValueError: if `all_reduce_alg` not in [None, 'nccl', 'hierarchical_copy']. """ if all_reduce_alg is None: return None mirrored_all_reduce_options = { "nccl": tf.distribute.NcclAllReduce, "hierarchical_copy": tf.distribute.HierarchicalCopyAllReduce } if all_reduce_alg not in mirrored_all_reduce_options: raise ValueError( "When used with `mirrored`, valid values for all_reduce_alg are " "['nccl', 'hierarchical_copy']. Supplied value: {}".format( all_reduce_alg)) cross_device_ops_class = mirrored_all_reduce_options[all_reduce_alg] return cross_device_ops_class(num_packs=num_packs) def get_distribution_strategy(distribution_strategy="mirrored", num_gpus=0, num_workers=1, all_reduce_alg=None, num_packs=1, tpu_address=None): """Return a DistributionStrategy for running the model. Args: distribution_strategy: a string specifying which distribution strategy to use. Accepted values are 'off', 'one_device', 'mirrored', 'parameter_server', 'multi_worker_mirrored', and 'tpu' -- case insensitive. 'off' means not to use Distribution Strategy; 'tpu' means to use TPUStrategy using `tpu_address`. num_gpus: Number of GPUs to run this model. num_workers: Number of workers to run this model. all_reduce_alg: Optional. Specifies which algorithm to use when performing all-reduce. For `MirroredStrategy`, valid values are "nccl" and "hierarchical_copy". For `MultiWorkerMirroredStrategy`, valid values are "ring" and "nccl". If None, DistributionStrategy will choose based on device topology. num_packs: Optional. Sets the `num_packs` in `tf.distribute.NcclAllReduce` or `tf.distribute.HierarchicalCopyAllReduce` for `MirroredStrategy`. tpu_address: Optional. String that represents TPU to connect to. Must not be None if `distribution_strategy` is set to `tpu`. Returns: tf.distribute.DistibutionStrategy object. Raises: ValueError: if `distribution_strategy` is 'off' or 'one_device' and `num_gpus` is larger than 1; or `num_gpus` is negative or if `distribution_strategy` is `tpu` but `tpu_address` is not specified. """ if num_gpus < 0: raise ValueError("`num_gpus` can not be negative.") distribution_strategy = distribution_strategy.lower() if distribution_strategy == "off": return None if distribution_strategy == "tpu": # When tpu_address is an empty string, we communicate with local TPUs. cluster_resolver = tpu_lib.tpu_initialize(tpu_address) return tf.distribute.experimental.TPUStrategy(cluster_resolver) if distribution_strategy == "multi_worker_mirrored": return tf.distribute.experimental.MultiWorkerMirroredStrategy( communication=_collective_communication(all_reduce_alg)) if distribution_strategy == "one_device": if num_gpus == 0: return tf.distribute.OneDeviceStrategy("device:CPU:0") if num_gpus > 1: raise ValueError("`OneDeviceStrategy` can not be used for more than " "one device.") return tf.distribute.OneDeviceStrategy("device:GPU:0") if distribution_strategy == "mirrored": if num_gpus == 0: devices = ["device:CPU:0"] else: devices = ["device:GPU:%d" % i for i in range(num_gpus)] return tf.distribute.MirroredStrategy( devices=devices, cross_device_ops=_mirrored_cross_device_ops(all_reduce_alg, num_packs)) if distribution_strategy == "parameter_server": return tf.distribute.experimental.ParameterServerStrategy() raise ValueError( "Unrecognized Distribution Strategy: %r" % distribution_strategy) def per_replica_batch_size(batch_size, num_gpus): """For multi-gpu, batch-size must be a multiple of the number of GPUs. Note that distribution strategy handles this automatically when used with Keras. For using with Estimator, we need to get per GPU batch. Args: batch_size: Global batch size to be divided among devices. This should be equal to num_gpus times the single-GPU batch_size for multi-gpu training. num_gpus: How many GPUs are used with DistributionStrategies. Returns: Batch size per device. Raises: ValueError: if batch_size is not divisible by number of devices """ if num_gpus <= 1: return batch_size remainder = batch_size % num_gpus if remainder: err = ('When running with multiple GPUs, batch size ' 'must be a multiple of the number of available GPUs. Found {} ' 'GPUs with a batch size of {}; try --batch_size={} instead.' ).format(num_gpus, batch_size, batch_size - remainder) raise ValueError(err) return int(batch_size / num_gpus) # The `SyntheticDataset` is a temporary solution for generating synthetic data # directly on devices. It is only useful for Keras with Distribution # Strategies. We will have better support in `tf.data` or Distribution Strategy # later. class SyntheticDataset(object): """A dataset that generates synthetic data on each device.""" def __init__(self, dataset, split_by=1): # dataset.take(1) doesn't have GPU kernel. with tf.device('device:CPU:0'): tensor = tf.data.experimental.get_single_element(dataset.take(1)) flat_tensor = tf.nest.flatten(tensor) variable_data = [] initializers = [] for t in flat_tensor: rebatched_t = tf.split(t, num_or_size_splits=split_by, axis=0)[0] assert rebatched_t.shape.is_fully_defined(), rebatched_t.shape v = tf.compat.v1.get_local_variable(self._random_name(), initializer=rebatched_t) variable_data.append(v) initializers.append(v.initializer) input_data = tf.nest.pack_sequence_as(tensor, variable_data) self._iterator = SyntheticIterator(input_data, initializers) def _random_name(self, size=10, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def __iter__(self): return self._iterator def make_one_shot_iterator(self): return self._iterator def make_initializable_iterator(self): return self._iterator class SyntheticIterator(object): """A dataset that generates synthetic data on each device.""" def __init__(self, input_data, initializers): self._input_data = input_data self._initializers = initializers def get_next(self): return self._input_data def next(self): return self.__next__() def __next__(self): try: return self.get_next() except tf.errors.OutOfRangeError: raise StopIteration def initialize(self): if tf.executing_eagerly(): return tf.no_op() else: return self._initializers def _monkey_patch_dataset_method(strategy): """Monkey-patch `strategy`'s `make_dataset_iterator` method.""" def make_dataset(self, dataset): tf.compat.v1.logging.info('Using pure synthetic data.') with self.scope(): if self.extended._global_batch_size: # pylint: disable=protected-access return SyntheticDataset(dataset, self.num_replicas_in_sync) else: return SyntheticDataset(dataset) def make_iterator(self, dataset): dist_dataset = make_dataset(self, dataset) return iter(dist_dataset) strategy.orig_make_dataset_iterator = strategy.make_dataset_iterator strategy.make_dataset_iterator = make_iterator strategy.orig_distribute_dataset = strategy.experimental_distribute_dataset strategy.experimental_distribute_dataset = make_dataset def _undo_monkey_patch_dataset_method(strategy): if hasattr(strategy, 'orig_make_dataset_iterator'): strategy.make_dataset_iterator = strategy.orig_make_dataset_iterator if hasattr(strategy, 'orig_distribute_dataset'): strategy.make_dataset_iterator = strategy.orig_distribute_dataset def set_up_synthetic_data(): _monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy) _monkey_patch_dataset_method(tf.distribute.MirroredStrategy) _monkey_patch_dataset_method( tf.distribute.experimental.MultiWorkerMirroredStrategy) def undo_set_up_synthetic_data(): _undo_monkey_patch_dataset_method(tf.distribute.OneDeviceStrategy) _undo_monkey_patch_dataset_method(tf.distribute.MirroredStrategy) _undo_monkey_patch_dataset_method( tf.distribute.experimental.MultiWorkerMirroredStrategy) def configure_cluster(worker_hosts=None, task_index=-1): """Set multi-worker cluster spec in TF_CONFIG environment variable. Args: worker_hosts: comma-separated list of worker ip:port pairs. Returns: Number of workers in the cluster. """ tf_config = json.loads(os.environ.get('TF_CONFIG', '{}')) if tf_config: num_workers = (len(tf_config['cluster'].get('chief', [])) + len(tf_config['cluster'].get('worker', []))) elif worker_hosts: workers = worker_hosts.split(',') num_workers = len(workers) if num_workers > 1 and task_index < 0: raise ValueError('Must specify task_index when number of workers > 1') task_index = 0 if num_workers == 1 else task_index os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': workers }, 'task': {'type': 'worker', 'index': task_index} }) else: num_workers = 1 return num_workers def get_strategy_scope(strategy): if strategy: strategy_scope = strategy.scope() else: strategy_scope = DummyContextManager() return strategy_scope class DummyContextManager(object): def __enter__(self): pass def __exit__(self, *args): pass
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/distribution_utils.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Model Helper functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.misc import keras_utils from official.utils.misc import model_helpers class PastStopThresholdTest(tf.test.TestCase): """Tests for past_stop_threshold.""" def setUp(self): super(PastStopThresholdTest, self).setUp() if keras_utils.is_v2_0: tf.compat.v1.disable_eager_execution() def test_past_stop_threshold(self): """Tests for normal operating conditions.""" self.assertTrue(model_helpers.past_stop_threshold(0.54, 1)) self.assertTrue(model_helpers.past_stop_threshold(54, 100)) self.assertFalse(model_helpers.past_stop_threshold(0.54, 0.1)) self.assertFalse(model_helpers.past_stop_threshold(-0.54, -1.5)) self.assertTrue(model_helpers.past_stop_threshold(-0.54, 0)) self.assertTrue(model_helpers.past_stop_threshold(0, 0)) self.assertTrue(model_helpers.past_stop_threshold(0.54, 0.54)) def test_past_stop_threshold_none_false(self): """Tests that check None returns false.""" self.assertFalse(model_helpers.past_stop_threshold(None, -1.5)) self.assertFalse(model_helpers.past_stop_threshold(None, None)) self.assertFalse(model_helpers.past_stop_threshold(None, 1.5)) # Zero should be okay, though. self.assertTrue(model_helpers.past_stop_threshold(0, 1.5)) def test_past_stop_threshold_not_number(self): """Tests for error conditions.""" with self.assertRaises(ValueError): model_helpers.past_stop_threshold("str", 1) with self.assertRaises(ValueError): model_helpers.past_stop_threshold("str", tf.constant(5)) with self.assertRaises(ValueError): model_helpers.past_stop_threshold("str", "another") with self.assertRaises(ValueError): model_helpers.past_stop_threshold(0, None) with self.assertRaises(ValueError): model_helpers.past_stop_threshold(0.7, "str") with self.assertRaises(ValueError): model_helpers.past_stop_threshold(tf.constant(4), None) class SyntheticDataTest(tf.test.TestCase): """Tests for generate_synthetic_data.""" def test_generate_synethetic_data(self): input_element, label_element = tf.compat.v1.data.make_one_shot_iterator( model_helpers.generate_synthetic_data(input_shape=tf.TensorShape([5]), input_value=123, input_dtype=tf.float32, label_shape=tf.TensorShape([]), label_value=456, label_dtype=tf.int32)).get_next() with self.session() as sess: for n in range(5): inp, lab = sess.run((input_element, label_element)) self.assertAllClose(inp, [123., 123., 123., 123., 123.]) self.assertEquals(lab, 456) def test_generate_only_input_data(self): d = model_helpers.generate_synthetic_data( input_shape=tf.TensorShape([4]), input_value=43.5, input_dtype=tf.float32) element = tf.compat.v1.data.make_one_shot_iterator(d).get_next() self.assertFalse(isinstance(element, tuple)) with self.session() as sess: inp = sess.run(element) self.assertAllClose(inp, [43.5, 43.5, 43.5, 43.5]) def test_generate_nested_data(self): d = model_helpers.generate_synthetic_data( input_shape={'a': tf.TensorShape([2]), 'b': {'c': tf.TensorShape([3]), 'd': tf.TensorShape([])}}, input_value=1.1) element = tf.compat.v1.data.make_one_shot_iterator(d).get_next() self.assertIn('a', element) self.assertIn('b', element) self.assertEquals(len(element['b']), 2) self.assertIn('c', element['b']) self.assertIn('d', element['b']) self.assertNotIn('c', element) with self.session() as sess: inp = sess.run(element) self.assertAllClose(inp['a'], [1.1, 1.1]) self.assertAllClose(inp['b']['c'], [1.1, 1.1, 1.1]) self.assertAllClose(inp['b']['d'], 1.1) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/model_helpers_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Tests for distribution util functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.misc import distribution_utils class GetDistributionStrategyTest(tf.test.TestCase): """Tests for get_distribution_strategy.""" def test_one_device_strategy_cpu(self): ds = distribution_utils.get_distribution_strategy(num_gpus=0) self.assertEquals(ds.num_replicas_in_sync, 1) self.assertEquals(len(ds.extended.worker_devices), 1) self.assertIn('CPU', ds.extended.worker_devices[0]) def test_one_device_strategy_gpu(self): ds = distribution_utils.get_distribution_strategy(num_gpus=1) self.assertEquals(ds.num_replicas_in_sync, 1) self.assertEquals(len(ds.extended.worker_devices), 1) self.assertIn('GPU', ds.extended.worker_devices[0]) def test_mirrored_strategy(self): ds = distribution_utils.get_distribution_strategy(num_gpus=5) self.assertEquals(ds.num_replicas_in_sync, 5) self.assertEquals(len(ds.extended.worker_devices), 5) for device in ds.extended.worker_devices: self.assertIn('GPU', device) class PerReplicaBatchSizeTest(tf.test.TestCase): """Tests for per_replica_batch_size.""" def test_batch_size(self): self.assertEquals( distribution_utils.per_replica_batch_size(147, num_gpus=0), 147) self.assertEquals( distribution_utils.per_replica_batch_size(147, num_gpus=1), 147) self.assertEquals( distribution_utils.per_replica_batch_size(147, num_gpus=7), 21) def test_batch_size_with_remainder(self): with self.assertRaises(ValueError): distribution_utils.per_replica_batch_size(147, num_gpus=5) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/distribution_utils_test.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Miscellaneous functions that can be called by models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numbers import tensorflow as tf from tensorflow.python.util import nest def past_stop_threshold(stop_threshold, eval_metric): """Return a boolean representing whether a model should be stopped. Args: stop_threshold: float, the threshold above which a model should stop training. eval_metric: float, the current value of the relevant metric to check. Returns: True if training should stop, False otherwise. Raises: ValueError: if either stop_threshold or eval_metric is not a number """ if stop_threshold is None: return False if not isinstance(stop_threshold, numbers.Number): raise ValueError("Threshold for checking stop conditions must be a number.") if not isinstance(eval_metric, numbers.Number): raise ValueError("Eval metric being checked against stop conditions " "must be a number.") if eval_metric >= stop_threshold: tf.compat.v1.logging.info( "Stop threshold of {} was passed with metric value {}.".format( stop_threshold, eval_metric)) return True return False def generate_synthetic_data( input_shape, input_value=0, input_dtype=None, label_shape=None, label_value=0, label_dtype=None): """Create a repeating dataset with constant values. Args: input_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of the input data. input_value: Value of each input element. input_dtype: Input dtype. If None, will be inferred by the input value. label_shape: a tf.TensorShape object or nested tf.TensorShapes. The shape of the label data. label_value: Value of each input element. label_dtype: Input dtype. If None, will be inferred by the target value. Returns: Dataset of tensors or tuples of tensors (if label_shape is set). """ # TODO(kathywu): Replace with SyntheticDataset once it is in contrib. element = input_element = nest.map_structure( lambda s: tf.constant(input_value, input_dtype, s), input_shape) if label_shape: label_element = nest.map_structure( lambda s: tf.constant(label_value, label_dtype, s), label_shape) element = (input_element, label_element) return tf.data.Dataset.from_tensors(element).repeat() def apply_clean(flags_obj): if flags_obj.clean and tf.io.gfile.exists(flags_obj.model_dir): tf.compat.v1.logging.info("--clean flag set. Removing existing model dir:" " {}".format(flags_obj.model_dir)) tf.io.gfile.rmtree(flags_obj.model_dir)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/model_helpers.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Initializes TPU system for TF 2.0.""" import tensorflow as tf def tpu_initialize(tpu_address): """Initializes TPU for TF 2.0 training. Args: tpu_address: string, bns address of master TPU worker. Returns: A TPUClusterResolver. """ cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( tpu=tpu_address) if tpu_address not in ('', 'local'): tf.config.experimental_connect_to_cluster(cluster_resolver) tf.tpu.experimental.initialize_tpu_system(cluster_resolver) return cluster_resolver
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/tpu_lib.py
"""A simple Python callstack sampler.""" import contextlib import datetime import signal import traceback class CallstackSampler(object): """A simple signal-based Python callstack sampler. """ def __init__(self, interval=None): self.stacks = [] self.interval = 0.001 if interval is None else interval def _sample(self, signum, frame): """Samples the current stack.""" del signum stack = traceback.extract_stack(frame) formatted_stack = [] formatted_stack.append(datetime.datetime.utcnow()) for filename, lineno, function_name, text in stack: formatted_frame = '{}:{}({})({})'.format(filename, lineno, function_name, text) formatted_stack.append(formatted_frame) self.stacks.append(formatted_stack) signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0) @contextlib.contextmanager def profile(self): signal.signal(signal.SIGVTALRM, self._sample) signal.setitimer(signal.ITIMER_VIRTUAL, self.interval, 0) try: yield finally: signal.setitimer(signal.ITIMER_VIRTUAL, 0) def save(self, fname): with open(fname, 'w') as f: for s in self.stacks: for l in s: f.write('%s\n' % l) f.write('\n') @contextlib.contextmanager def callstack_sampling(filename, interval=None): """Periodically samples the Python callstack. Args: filename: the filename interval: the sampling interval, in seconds. Defaults to 0.001. Yields: nothing """ sampler = CallstackSampler(interval=interval) with sampler.profile(): yield sampler.save(filename)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/callstack_sampler.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for the Keras implementations of models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing import os import time from absl import logging import tensorflow as tf from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python import tf2 from tensorflow.python.eager import profiler class BatchTimestamp(object): """A structure to store batch time stamp.""" def __init__(self, batch_index, timestamp): self.batch_index = batch_index self.timestamp = timestamp def __repr__(self): return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format( self.batch_index, self.timestamp) class TimeHistory(tf.keras.callbacks.Callback): """Callback for Keras models.""" def __init__(self, batch_size, log_steps): """Callback for logging performance. Args: batch_size: Total batch size. log_steps: Interval of steps between logging of batch level stats. """ self.batch_size = batch_size super(TimeHistory, self).__init__() self.log_steps = log_steps self.global_steps = 0 # Logs start of step 1 then end of each step based on log_steps interval. self.timestamp_log = [] # Records the time each epoch takes to run from start to finish of epoch. self.epoch_runtime_log = [] def on_train_end(self, logs=None): self.train_finish_time = time.time() def on_epoch_begin(self, epoch, logs=None): self.epoch_start = time.time() def on_batch_begin(self, batch, logs=None): self.global_steps += 1 if self.global_steps == 1: self.start_time = time.time() self.timestamp_log.append(BatchTimestamp(self.global_steps, self.start_time)) def on_batch_end(self, batch, logs=None): """Records elapse time of the batch and calculates examples per second.""" if self.global_steps % self.log_steps == 0: timestamp = time.time() elapsed_time = timestamp - self.start_time examples_per_second = (self.batch_size * self.log_steps) / elapsed_time self.timestamp_log.append(BatchTimestamp(self.global_steps, timestamp)) logging.info( "BenchmarkMetric: {'global step':%d, 'time_taken': %f," "'examples_per_second': %f}", self.global_steps, elapsed_time, examples_per_second) self.start_time = timestamp def on_epoch_end(self, epoch, logs=None): epoch_run_time = time.time() - self.epoch_start self.epoch_runtime_log.append(epoch_run_time) logging.info( "BenchmarkMetric: {'epoch':%d, 'time_taken': %f}", epoch, epoch_run_time) def get_profiler_callback(model_dir, profile_steps, enable_tensorboard, steps_per_epoch): """Validate profile_steps flag value and return profiler callback.""" profile_steps_error_message = ( 'profile_steps must be a comma separated pair of positive integers, ' 'specifying the first and last steps to be profiled.' ) try: profile_steps = [int(i) for i in profile_steps.split(',')] except ValueError: raise ValueError(profile_steps_error_message) if len(profile_steps) != 2: raise ValueError(profile_steps_error_message) start_step, stop_step = profile_steps if start_step < 0 or start_step > stop_step: raise ValueError(profile_steps_error_message) if enable_tensorboard: logging.warning( 'Both TensorBoard and profiler callbacks are used. Note that the ' 'TensorBoard callback profiles the 2nd step (unless otherwise ' 'specified). Please make sure the steps profiled by the two callbacks ' 'do not overlap.') return ProfilerCallback(model_dir, start_step, stop_step, steps_per_epoch) class ProfilerCallback(tf.keras.callbacks.Callback): """Save profiles in specified step range to log directory.""" def __init__(self, log_dir, start_step, stop_step, steps_per_epoch): super(ProfilerCallback, self).__init__() self.log_dir = log_dir self.start_step = start_step self.stop_step = stop_step self.start_epoch = start_step // steps_per_epoch self.stop_epoch = stop_step // steps_per_epoch self.start_step_in_epoch = start_step % steps_per_epoch self.stop_step_in_epoch = stop_step % steps_per_epoch self.should_start = False self.should_stop = False def on_epoch_begin(self, epoch, logs=None): if epoch == self.start_epoch: self.should_start = True if epoch == self.stop_epoch: self.should_stop = True def on_batch_begin(self, batch, logs=None): if batch == self.start_step_in_epoch and self.should_start: self.should_start = False profiler.start() logging.info('Profiler started at Step %s', self.start_step) def on_batch_end(self, batch, logs=None): if batch == self.stop_step_in_epoch and self.should_stop: self.should_stop = False results = profiler.stop() profiler.save(self.log_dir, results) logging.info( 'Profiler saved profiles for steps between %s and %s to %s', self.start_step, self.stop_step, self.log_dir) def set_session_config(enable_eager=False, enable_xla=False): """Sets the session config.""" if is_v2_0(): set_config_v2(enable_xla=enable_xla) else: config = get_config_proto_v1(enable_xla=enable_xla) if enable_eager: tf.compat.v1.enable_eager_execution(config=config) else: sess = tf.Session(config=config) tf.keras.backend.set_session(sess) def get_config_proto_v1(enable_xla=False): """Return config proto according to flag settings, or None to use default.""" config = None if enable_xla: config = tf.compat.v1.ConfigProto() config.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_2) return config def set_config_v2(enable_xla=False): """Config eager context according to flag values using TF 2.0 API.""" if enable_xla: tf.config.optimizer.set_jit(True) def is_v2_0(): """Returns true if using tf 2.0.""" return tf2.enabled() def set_gpu_thread_mode_and_count(gpu_thread_mode, datasets_num_private_threads, num_gpus, per_gpu_thread_count): """Set GPU thread mode and count, and adjust dataset threads count.""" cpu_count = multiprocessing.cpu_count() logging.info('Logical CPU cores: %s', cpu_count) # Allocate private thread pool for each GPU to schedule and launch kernels per_gpu_thread_count = per_gpu_thread_count or 2 os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count) logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT']) logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE']) # Limit data preprocessing threadpool to CPU cores minus number of total GPU # private threads and memory copy threads. total_gpu_thread_count = per_gpu_thread_count * num_gpus num_runtime_threads = num_gpus if not datasets_num_private_threads: datasets_num_private_threads = min( cpu_count - total_gpu_thread_count - num_runtime_threads, num_gpus * 8) logging.info('Set datasets_num_private_threads to %s', datasets_num_private_threads)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/misc/keras_utils.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags which will be nearly universal across models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from official.utils.flags._conventions import help_wrap from official.utils.logs import hooks_helper def define_base(data_dir=True, model_dir=True, clean=False, train_epochs=False, epochs_between_evals=False, stop_threshold=False, batch_size=True, num_gpu=False, hooks=False, export_dir=False, distribution_strategy=False, run_eagerly=False): """Register base flags. Args: data_dir: Create a flag for specifying the input data directory. model_dir: Create a flag for specifying the model file directory. clean: Create a flag for removing the model_dir. train_epochs: Create a flag to specify the number of training epochs. epochs_between_evals: Create a flag to specify the frequency of testing. stop_threshold: Create a flag to specify a threshold accuracy or other eval metric which should trigger the end of training. batch_size: Create a flag to specify the batch size. num_gpu: Create a flag to specify the number of GPUs used. hooks: Create a flag to specify hooks for logging. export_dir: Create a flag to specify where a SavedModel should be exported. distribution_strategy: Create a flag to specify which Distribution Strategy to use. run_eagerly: Create a flag to specify to run eagerly op by op. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_dir: flags.DEFINE_string( name="data_dir", short_name="dd", default="/tmp", help=help_wrap("The location of the input data.")) key_flags.append("data_dir") if model_dir: flags.DEFINE_string( name="model_dir", short_name="md", default="/tmp", help=help_wrap("The location of the model checkpoint files.")) key_flags.append("model_dir") if clean: flags.DEFINE_boolean( name="clean", default=False, help=help_wrap("If set, model_dir will be removed if it exists.")) key_flags.append("clean") if train_epochs: flags.DEFINE_integer( name="train_epochs", short_name="te", default=1, help=help_wrap("The number of epochs used to train.")) key_flags.append("train_epochs") if epochs_between_evals: flags.DEFINE_integer( name="epochs_between_evals", short_name="ebe", default=1, help=help_wrap("The number of training epochs to run between " "evaluations.")) key_flags.append("epochs_between_evals") if stop_threshold: flags.DEFINE_float( name="stop_threshold", short_name="st", default=None, help=help_wrap("If passed, training will stop at the earlier of " "train_epochs and when the evaluation metric is " "greater than or equal to stop_threshold.")) if batch_size: flags.DEFINE_integer( name="batch_size", short_name="bs", default=32, help=help_wrap("Batch size for training and evaluation. When using " "multiple gpus, this is the global batch size for " "all devices. For example, if the batch size is 32 " "and there are 4 GPUs, each GPU will get 8 examples on " "each step.")) key_flags.append("batch_size") if num_gpu: flags.DEFINE_integer( name="num_gpus", short_name="ng", default=1, help=help_wrap( "How many GPUs to use at each worker with the " "DistributionStrategies API. The default is 1.")) if run_eagerly: flags.DEFINE_boolean( name="run_eagerly", default=False, help="Run the model op by op without building a model function.") if hooks: # Construct a pretty summary of hooks. hook_list_str = ( u"\ufeff Hook:\n" + u"\n".join([u"\ufeff {}".format(key) for key in hooks_helper.HOOKS])) flags.DEFINE_list( name="hooks", short_name="hk", default="LoggingTensorHook", help=help_wrap( u"A list of (case insensitive) strings to specify the names of " u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook," u"ExamplesPerSecondHook`\n See official.utils.logs.hooks_helper " u"for details.".format(hook_list_str)) ) key_flags.append("hooks") if export_dir: flags.DEFINE_string( name="export_dir", short_name="ed", default=None, help=help_wrap("If set, a SavedModel serialization of the model will " "be exported to this directory at the end of training. " "See the README for more details and relevant links.") ) key_flags.append("export_dir") if distribution_strategy: flags.DEFINE_string( name="distribution_strategy", short_name="ds", default="off", help=help_wrap("The Distribution Strategy to use for training. " "Accepted values are 'off', 'one_device', " "'mirrored', 'parameter_server', 'collective', " "case insensitive. 'off' means not to use " "Distribution Strategy; 'default' means to choose " "from `MirroredStrategy` or `OneDeviceStrategy` " "according to the number of GPUs.") ) return key_flags def get_num_gpus(flags_obj): """Treat num_gpus=-1 as 'use all'.""" if flags_obj.num_gpus != -1: return flags_obj.num_gpus from tensorflow.python.client import device_lib # pylint: disable=g-import-not-at-top local_device_protos = device_lib.list_local_devices() return sum([1 for d in local_device_protos if d.device_type == "GPU"])
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_base.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import unittest from absl import flags import tensorflow as tf from official.utils.flags import core as flags_core # pylint: disable=g-bad-import-order def define_flags(): flags_core.define_base(clean=True, num_gpu=False, stop_threshold=True, hooks=True, train_epochs=True, epochs_between_evals=True) flags_core.define_performance( num_parallel_calls=True, inter_op=True, intra_op=True, dynamic_loss_scale=True, loss_scale=True, synthetic_data=True, dtype=True) flags_core.define_image() flags_core.define_benchmark() class BaseTester(unittest.TestCase): @classmethod def setUpClass(cls): super(BaseTester, cls).setUpClass() define_flags() def test_default_setting(self): """Test to ensure fields exist and defaults can be set. """ defaults = dict( data_dir="dfgasf", model_dir="dfsdkjgbs", train_epochs=534, epochs_between_evals=15, batch_size=256, hooks=["LoggingTensorHook"], num_parallel_calls=18, inter_op_parallelism_threads=5, intra_op_parallelism_threads=10, data_format="channels_first" ) flags_core.set_defaults(**defaults) flags_core.parse_flags() for key, value in defaults.items(): assert flags.FLAGS.get_flag_value(name=key, default=None) == value def test_benchmark_setting(self): defaults = dict( hooks=["LoggingMetricHook"], benchmark_log_dir="/tmp/12345", gcp_project="project_abc", ) flags_core.set_defaults(**defaults) flags_core.parse_flags() for key, value in defaults.items(): assert flags.FLAGS.get_flag_value(name=key, default=None) == value def test_booleans(self): """Test to ensure boolean flags trigger as expected. """ flags_core.parse_flags([__file__, "--use_synthetic_data"]) assert flags.FLAGS.use_synthetic_data def test_parse_dtype_info(self): flags_core.parse_flags([__file__, "--dtype", "fp16"]) self.assertEqual(flags_core.get_tf_dtype(flags.FLAGS), tf.float16) self.assertEqual(flags_core.get_loss_scale(flags.FLAGS, default_for_fp16=2), 2) flags_core.parse_flags( [__file__, "--dtype", "fp16", "--loss_scale", "5"]) self.assertEqual(flags_core.get_loss_scale(flags.FLAGS, default_for_fp16=2), 5) flags_core.parse_flags( [__file__, "--dtype", "fp16", "--loss_scale", "dynamic"]) self.assertEqual(flags_core.get_loss_scale(flags.FLAGS, default_for_fp16=2), "dynamic") flags_core.parse_flags([__file__, "--dtype", "fp32"]) self.assertEqual(flags_core.get_tf_dtype(flags.FLAGS), tf.float32) self.assertEqual(flags_core.get_loss_scale(flags.FLAGS, default_for_fp16=2), 1) flags_core.parse_flags([__file__, "--dtype", "fp32", "--loss_scale", "5"]) self.assertEqual(flags_core.get_loss_scale(flags.FLAGS, default_for_fp16=2), 5) with self.assertRaises(SystemExit): flags_core.parse_flags([__file__, "--dtype", "int8"]) with self.assertRaises(SystemExit): flags_core.parse_flags([__file__, "--dtype", "fp16", "--loss_scale", "abc"]) def test_get_nondefault_flags_as_str(self): defaults = dict( clean=True, data_dir="abc", hooks=["LoggingTensorHook"], stop_threshold=1.5, use_synthetic_data=False ) flags_core.set_defaults(**defaults) flags_core.parse_flags() expected_flags = "" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) flags.FLAGS.clean = False expected_flags += "--noclean" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) flags.FLAGS.data_dir = "xyz" expected_flags += " --data_dir=xyz" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) flags.FLAGS.hooks = ["aaa", "bbb", "ccc"] expected_flags += " --hooks=aaa,bbb,ccc" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) flags.FLAGS.stop_threshold = 3. expected_flags += " --stop_threshold=3.0" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) flags.FLAGS.use_synthetic_data = True expected_flags += " --use_synthetic_data" self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) # Assert that explicit setting a flag to its default value does not cause it # to appear in the string flags.FLAGS.use_synthetic_data = False expected_flags = expected_flags[:-len(" --use_synthetic_data")] self.assertEqual(flags_core.get_nondefault_flags_as_str(), expected_flags) if __name__ == "__main__": unittest.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/flags_test.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public interface for flag definition. See _example.py for detailed instructions on defining flags. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from six.moves import shlex_quote from absl import app as absl_app from absl import flags from official.utils.flags import _base from official.utils.flags import _benchmark from official.utils.flags import _conventions from official.utils.flags import _device from official.utils.flags import _distribution from official.utils.flags import _misc from official.utils.flags import _performance def set_defaults(**kwargs): for key, value in kwargs.items(): flags.FLAGS.set_default(name=key, value=value) def parse_flags(argv=None): """Reset flags and reparse. Currently only used in testing.""" flags.FLAGS.unparse_flags() absl_app.parse_flags_with_usage(argv or sys.argv) def register_key_flags_in_core(f): """Defines a function in core.py, and registers its key flags. absl uses the location of a flags.declare_key_flag() to determine the context in which a flag is key. By making all declares in core, this allows model main functions to call flags.adopt_module_key_flags() on core and correctly chain key flags. Args: f: The function to be wrapped Returns: The "core-defined" version of the input function. """ def core_fn(*args, **kwargs): key_flags = f(*args, **kwargs) [flags.declare_key_flag(fl) for fl in key_flags] # pylint: disable=expression-not-assigned return core_fn define_base = register_key_flags_in_core(_base.define_base) # We have define_base_eager for compatibility, since it used to be a separate # function from define_base. define_base_eager = define_base define_benchmark = register_key_flags_in_core(_benchmark.define_benchmark) define_device = register_key_flags_in_core(_device.define_device) define_image = register_key_flags_in_core(_misc.define_image) define_performance = register_key_flags_in_core(_performance.define_performance) define_distribution = register_key_flags_in_core( _distribution.define_distribution) help_wrap = _conventions.help_wrap get_num_gpus = _base.get_num_gpus get_tf_dtype = _performance.get_tf_dtype get_loss_scale = _performance.get_loss_scale DTYPE_MAP = _performance.DTYPE_MAP require_cloud_storage = _device.require_cloud_storage def _get_nondefault_flags_as_dict(): """Returns the nondefault flags as a dict from flag name to value.""" nondefault_flags = {} for flag_name in flags.FLAGS: flag_value = getattr(flags.FLAGS, flag_name) if (flag_name != flags.FLAGS[flag_name].short_name and flag_value != flags.FLAGS[flag_name].default): nondefault_flags[flag_name] = flag_value return nondefault_flags def get_nondefault_flags_as_str(): """Returns flags as a string that can be passed as command line arguments. E.g., returns: "--batch_size=256 --use_synthetic_data" for the following code block: ``` flags.FLAGS.batch_size = 256 flags.FLAGS.use_synthetic_data = True print(get_nondefault_flags_as_str()) ``` Only flags with nondefault values are returned, as passing default flags as command line arguments has no effect. Returns: A string with the flags, that can be passed as command line arguments to a program to use the flags. """ nondefault_flags = _get_nondefault_flags_as_dict() flag_strings = [] for name, value in sorted(nondefault_flags.items()): if isinstance(value, bool): flag_str = '--{}'.format(name) if value else '--no{}'.format(name) elif isinstance(value, list): flag_str = '--{}={}'.format(name, ','.join(value)) else: flag_str = '--{}={}'.format(name, value) flag_strings.append(flag_str) return ' '.join(shlex_quote(flag_str) for flag_str in flag_strings)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/core.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags for benchmarking models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from official.utils.flags._conventions import help_wrap def define_benchmark(benchmark_log_dir=True, bigquery_uploader=True): """Register benchmarking flags. Args: benchmark_log_dir: Create a flag to specify location for benchmark logging. bigquery_uploader: Create flags for uploading results to BigQuery. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] flags.DEFINE_enum( name="benchmark_logger_type", default="BaseBenchmarkLogger", enum_values=["BaseBenchmarkLogger", "BenchmarkFileLogger", "BenchmarkBigQueryLogger"], help=help_wrap("The type of benchmark logger to use. Defaults to using " "BaseBenchmarkLogger which logs to STDOUT. Different " "loggers will require other flags to be able to work.")) flags.DEFINE_string( name="benchmark_test_id", short_name="bti", default=None, help=help_wrap("The unique test ID of the benchmark run. It could be the " "combination of key parameters. It is hardware " "independent and could be used compare the performance " "between different test runs. This flag is designed for " "human consumption, and does not have any impact within " "the system.")) flags.DEFINE_integer( name='log_steps', default=100, help='For every log_steps, we log the timing information such as ' 'examples per second. Besides, for every log_steps, we store the ' 'timestamp of a batch end.') if benchmark_log_dir: flags.DEFINE_string( name="benchmark_log_dir", short_name="bld", default=None, help=help_wrap("The location of the benchmark logging.") ) if bigquery_uploader: flags.DEFINE_string( name="gcp_project", short_name="gp", default=None, help=help_wrap( "The GCP project name where the benchmark will be uploaded.")) flags.DEFINE_string( name="bigquery_data_set", short_name="bds", default="test_benchmark", help=help_wrap( "The Bigquery dataset name where the benchmark will be uploaded.")) flags.DEFINE_string( name="bigquery_run_table", short_name="brt", default="benchmark_run", help=help_wrap("The Bigquery table name where the benchmark run " "information will be uploaded.")) flags.DEFINE_string( name="bigquery_run_status_table", short_name="brst", default="benchmark_run_status", help=help_wrap("The Bigquery table name where the benchmark run " "status information will be uploaded.")) flags.DEFINE_string( name="bigquery_metric_table", short_name="bmt", default="benchmark_metric", help=help_wrap("The Bigquery table name where the benchmark metric " "information will be uploaded.")) @flags.multi_flags_validator( ["benchmark_logger_type", "benchmark_log_dir"], message="--benchmark_logger_type=BenchmarkFileLogger will require " "--benchmark_log_dir being set") def _check_benchmark_log_dir(flags_dict): benchmark_logger_type = flags_dict["benchmark_logger_type"] if benchmark_logger_type == "BenchmarkFileLogger": return flags_dict["benchmark_log_dir"] return True return key_flags
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_benchmark.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Central location for shared argparse convention definitions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import codecs import functools from absl import app as absl_app from absl import flags # This codifies help string conventions and makes it easy to update them if # necessary. Currently the only major effect is that help bodies start on the # line after flags are listed. All flag definitions should wrap the text bodies # with help wrap when calling DEFINE_*. _help_wrap = functools.partial(flags.text_wrap, length=80, indent="", firstline_indent="\n") # Pretty formatting causes issues when utf-8 is not installed on a system. def _stdout_utf8(): try: codecs.lookup("utf-8") except LookupError: return False return sys.stdout.encoding == "UTF-8" if _stdout_utf8(): help_wrap = _help_wrap else: def help_wrap(text, *args, **kwargs): return _help_wrap(text, *args, **kwargs).replace(u"\ufeff", u"") # Replace None with h to also allow -h absl_app.HelpshortFlag.SHORT_NAME = "h"
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_conventions.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags for managing compute devices. Currently only contains TPU flags.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from official.utils.flags._conventions import help_wrap def require_cloud_storage(flag_names): """Register a validator to check directory flags. Args: flag_names: An iterable of strings containing the names of flags to be checked. """ msg = "TPU requires GCS path for {}".format(", ".join(flag_names)) @flags.multi_flags_validator(["tpu"] + flag_names, message=msg) def _path_check(flag_values): # pylint: disable=missing-docstring if flag_values["tpu"] is None: return True valid_flags = True for key in flag_names: if not flag_values[key].startswith("gs://"): tf.compat.v1.logging.error("{} must be a GCS path.".format(key)) valid_flags = False return valid_flags def define_device(tpu=True): """Register device specific flags. Args: tpu: Create flags to specify TPU operation. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if tpu: flags.DEFINE_string( name="tpu", default=None, help=help_wrap( "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a " "grpc://ip.address.of.tpu:8470 url. Passing `local` will use the" "CPU of the local instance instead. (Good for debugging.)")) key_flags.append("tpu") flags.DEFINE_string( name="tpu_zone", default=None, help=help_wrap( "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE " "project from metadata.")) flags.DEFINE_string( name="tpu_gcp_project", default=None, help=help_wrap( "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE " "project from metadata.")) flags.DEFINE_integer(name="num_tpu_shards", default=8, help=help_wrap("Number of shards (TPU chips).")) return key_flags
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_device.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Register flags for optimizing performance.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing from absl import flags # pylint: disable=g-bad-import-order import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.flags._conventions import help_wrap # Map string to TensorFlow dtype DTYPE_MAP = { "fp16": tf.float16, "bf16": tf.bfloat16, "fp32": tf.float32, } def get_tf_dtype(flags_obj): if getattr(flags_obj, "fp16_implementation", None) == "graph_rewrite": # If the graph_rewrite is used, we build the graph with fp32, and let the # graph rewrite change ops to fp16. return tf.float32 return DTYPE_MAP[flags_obj.dtype] def get_loss_scale(flags_obj, default_for_fp16): if flags_obj.loss_scale == "dynamic": return flags_obj.loss_scale elif flags_obj.loss_scale is not None: return float(flags_obj.loss_scale) elif flags_obj.dtype == "fp32": return 1 # No loss scaling is needed for fp32 else: assert flags_obj.dtype == "fp16" return default_for_fp16 def define_performance(num_parallel_calls=False, inter_op=False, intra_op=False, synthetic_data=False, max_train_steps=False, dtype=False, all_reduce_alg=False, num_packs=False, tf_gpu_thread_mode=False, datasets_num_private_threads=False, datasets_num_parallel_batches=False, dynamic_loss_scale=False, fp16_implementation=False, loss_scale=False, tf_data_experimental_slack=False, enable_xla=False, force_v2_in_keras_compile=False, training_dataset_cache=False): """Register flags for specifying performance tuning arguments. Args: num_parallel_calls: Create a flag to specify parallelism of data loading. inter_op: Create a flag to allow specification of inter op threads. intra_op: Create a flag to allow specification of intra op threads. synthetic_data: Create a flag to allow the use of synthetic data. max_train_steps: Create a flags to allow specification of maximum number of training steps dtype: Create flags for specifying dtype. all_reduce_alg: If set forces a specific algorithm for multi-gpu. num_packs: If set provides number of packs for MirroredStrategy's cross device ops. tf_gpu_thread_mode: gpu_private triggers us of private thread pool. datasets_num_private_threads: Number of private threads for datasets. datasets_num_parallel_batches: Determines how many batches to process in parallel when using map and batch from tf.data. dynamic_loss_scale: Allow the "loss_scale" flag to take on the value "dynamic". Only valid if `dtype` is True. fp16_implementation: Create fp16_implementation flag. loss_scale: Controls the loss scaling, normally for mixed-precision training. Can only be turned on if dtype is also True. tf_data_experimental_slack: Determines whether to enable tf.data's `experimental_slack` option. enable_xla: Determines if XLA (auto clustering) is turned on. force_v2_in_keras_compile: Forces the use of run_distribued path even if not using a `strategy`. This is not the same as `tf.distribute.OneDeviceStrategy` training_dataset_cache: Whether to cache the training dataset on workers. Typically used to improve training performance when training data is in remote storage and can fit into worker memory. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if num_parallel_calls: flags.DEFINE_integer( name="num_parallel_calls", short_name="npc", default=multiprocessing.cpu_count(), help=help_wrap("The number of records that are processed in parallel " "during input processing. This can be optimized per " "data set but for generally homogeneous data sets, " "should be approximately the number of available CPU " "cores. (default behavior)")) if inter_op: flags.DEFINE_integer( name="inter_op_parallelism_threads", short_name="inter", default=0, help=help_wrap("Number of inter_op_parallelism_threads to use for CPU. " "See TensorFlow config.proto for details.") ) if intra_op: flags.DEFINE_integer( name="intra_op_parallelism_threads", short_name="intra", default=0, help=help_wrap("Number of intra_op_parallelism_threads to use for CPU. " "See TensorFlow config.proto for details.")) if synthetic_data: flags.DEFINE_bool( name="use_synthetic_data", short_name="synth", default=False, help=help_wrap( "If set, use fake data (zeroes) instead of a real dataset. " "This mode is useful for performance debugging, as it removes " "input processing steps, but will not learn anything.")) if max_train_steps: flags.DEFINE_integer( name="max_train_steps", short_name="mts", default=None, help=help_wrap( "The model will stop training if the global_step reaches this " "value. If not set, training will run until the specified number " "of epochs have run as usual. It is generally recommended to set " "--train_epochs=1 when using this flag." )) if dtype: flags.DEFINE_enum( name="dtype", short_name="dt", default="fp32", enum_values=DTYPE_MAP.keys(), help=help_wrap("The TensorFlow datatype used for calculations. " "Variables may be cast to a higher precision on a " "case-by-case basis for numerical stability.")) loss_scale_help_text = ( "The amount to scale the loss by when the model is run. {}. Before " "gradients are computed, the loss is multiplied by the loss scale, " "making all gradients loss_scale times larger. To adjust for this, " "gradients are divided by the loss scale before being applied to " "variables. This is mathematically equivalent to training without " "a loss scale, but the loss scale helps avoid some intermediate " "gradients from underflowing to zero. If not provided the default " "for fp16 is 128 and 1 for all other dtypes.{}" ) if dynamic_loss_scale: loss_scale_help_text = loss_scale_help_text.format( "This can be an int/float or the string 'dynamic'", " The string 'dynamic' can be used to dynamically determine the " "optimal loss scale during training, but currently this " "significantly slows down performance") loss_scale_validation_msg = ("loss_scale should be a positive int/float " "or the string 'dynamic'.") else: loss_scale_help_text = loss_scale_help_text.format( "This must be an int/float", "") loss_scale_validation_msg = "loss_scale should be a positive int/float." if loss_scale: flags.DEFINE_string( name="loss_scale", short_name="ls", default=None, help=help_wrap(loss_scale_help_text)) @flags.validator(flag_name="loss_scale", message=loss_scale_validation_msg) def _check_loss_scale(loss_scale): # pylint: disable=unused-variable """Validator to check the loss scale flag is valid.""" if loss_scale is None: return True # null case is handled in get_loss_scale() if loss_scale == "dynamic" and dynamic_loss_scale: return True try: loss_scale = float(loss_scale) except ValueError: return False return loss_scale > 0 if fp16_implementation: flags.DEFINE_enum( name="fp16_implementation", default="keras", enum_values=("keras', 'graph_rewrite"), help=help_wrap( "When --dtype=fp16, how fp16 should be implemented. This has no " "impact on correctness. 'keras' uses the " "tf.keras.mixed_precision API. 'graph_rewrite' uses the " "tf.train.experimental.enable_mixed_precision_graph_rewrite " "API.")) @flags.multi_flags_validator(["fp16_implementation", "dtype", "loss_scale"]) def _check_fp16_implementation(flags_dict): """Validator to check fp16_implementation flag is valid.""" if (flags_dict["fp16_implementation"] == "graph_rewrite" and flags_dict["dtype"] != "fp16"): raise flags.ValidationError("--fp16_implementation should not be " "specified unless --dtype=fp16") return True if all_reduce_alg: flags.DEFINE_string( name="all_reduce_alg", short_name="ara", default=None, help=help_wrap("Defines the algorithm to use for performing all-reduce." "When specified with MirroredStrategy for single " "worker, this controls " "tf.contrib.distribute.AllReduceCrossTowerOps. When " "specified with MultiWorkerMirroredStrategy, this " "controls " "tf.distribute.experimental.CollectiveCommunication; " "valid options are `ring` and `nccl`.")) if num_packs: flags.DEFINE_integer( name="num_packs", default=1, help=help_wrap("Sets `num_packs` in the cross device ops used in " "MirroredStrategy. For details, see " "tf.distribute.NcclAllReduce.")) if tf_gpu_thread_mode: flags.DEFINE_string( name="tf_gpu_thread_mode", short_name="gt_mode", default=None, help=help_wrap( "Whether and how the GPU device uses its own threadpool.") ) flags.DEFINE_integer( name="per_gpu_thread_count", short_name="pgtc", default=0, help=help_wrap( "The number of threads to use for GPU. Only valid when " "tf_gpu_thread_mode is not global.") ) if datasets_num_private_threads: flags.DEFINE_integer( name="datasets_num_private_threads", default=None, help=help_wrap( "Number of threads for a private threadpool created for all" "datasets computation..") ) if datasets_num_parallel_batches: flags.DEFINE_integer( name="datasets_num_parallel_batches", default=None, help=help_wrap( "Determines how many batches to process in parallel when using " "map and batch from tf.data.") ) if training_dataset_cache: flags.DEFINE_boolean( name="training_dataset_cache", default=False, help=help_wrap( "Determines whether to cache the training dataset on workers. " "Typically used to improve training performance when training " "data is in remote storage and can fit into worker memory.") ) if tf_data_experimental_slack: flags.DEFINE_boolean( name="tf_data_experimental_slack", default=False, help=help_wrap( "Whether to enable tf.data's `experimental_slack` option.") ) if enable_xla: flags.DEFINE_boolean( name="enable_xla", default=False, help="Whether to enable XLA auto jit compilation") if force_v2_in_keras_compile: flags.DEFINE_boolean( name="force_v2_in_keras_compile", default=None, help="Forces the use of run_distribued path even if not" "using a `strategy`. This is not the same as" "`tf.distribute.OneDeviceStrategy`") return key_flags
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_performance.py
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Flags related to distributed execution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from official.utils.flags._conventions import help_wrap def define_distribution(worker_hosts=True, task_index=True): """Register distributed execution flags. Args: worker_hosts: Create a flag for specifying comma-separated list of workers. task_index: Create a flag for specifying index of task. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if worker_hosts: flags.DEFINE_string( name='worker_hosts', default=None, help=help_wrap( 'Comma-separated list of worker ip:port pairs for running ' 'multi-worker models with DistributionStrategy. The user would ' 'start the program on each host with identical value for this ' 'flag.')) if task_index: flags.DEFINE_integer( name='task_index', default=-1, help=help_wrap('If multi-worker training, the task_index of this ' 'worker.')) return key_flags
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_distribution.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Misc flags.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from official.utils.flags._conventions import help_wrap def define_image(data_format=True): """Register image specific flags. Args: data_format: Create a flag to specify image axis convention. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_format: flags.DEFINE_enum( name="data_format", short_name="df", default=None, enum_values=["channels_first", "channels_last"], help=help_wrap( "A flag to override the data format used in the model. " "channels_first provides a performance boost on GPU but is not " "always compatible with CPU. If left unspecified, the data format " "will be chosen automatically based on whether TensorFlow was " "built for CPU or GPU.")) key_flags.append("data_format") return key_flags
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/flags/_misc.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hooks helper to return a list of TensorFlow hooks for training by name. More hooks can be added to this set. To add a new hook, 1) add the new hook to the registry in HOOKS, 2) add a corresponding function that parses out necessary parameters. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.logs import hooks from official.utils.logs import logger from official.utils.logs import metric_hook _TENSORS_TO_LOG = dict((x, x) for x in ['learning_rate', 'cross_entropy', 'train_accuracy']) def get_train_hooks(name_list, use_tpu=False, **kwargs): """Factory for getting a list of TensorFlow hooks for training by name. Args: name_list: a list of strings to name desired hook classes. Allowed: LoggingTensorHook, ProfilerHook, ExamplesPerSecondHook, which are defined as keys in HOOKS use_tpu: Boolean of whether computation occurs on a TPU. This will disable hooks altogether. **kwargs: a dictionary of arguments to the hooks. Returns: list of instantiated hooks, ready to be used in a classifier.train call. Raises: ValueError: if an unrecognized name is passed. """ if not name_list: return [] if use_tpu: tf.compat.v1.logging.warning('hooks_helper received name_list `{}`, but a ' 'TPU is specified. No hooks will be used.' .format(name_list)) return [] train_hooks = [] for name in name_list: hook_name = HOOKS.get(name.strip().lower()) if hook_name is None: raise ValueError('Unrecognized training hook requested: {}'.format(name)) else: train_hooks.append(hook_name(**kwargs)) return train_hooks def get_logging_tensor_hook(every_n_iter=100, tensors_to_log=None, **kwargs): # pylint: disable=unused-argument """Function to get LoggingTensorHook. Args: every_n_iter: `int`, print the values of `tensors` once every N local steps taken on the current worker. tensors_to_log: List of tensor names or dictionary mapping labels to tensor names. If not set, log _TENSORS_TO_LOG by default. **kwargs: a dictionary of arguments to LoggingTensorHook. Returns: Returns a LoggingTensorHook with a standard set of tensors that will be printed to stdout. """ if tensors_to_log is None: tensors_to_log = _TENSORS_TO_LOG return tf.estimator.LoggingTensorHook( tensors=tensors_to_log, every_n_iter=every_n_iter) def get_profiler_hook(model_dir, save_steps=1000, **kwargs): # pylint: disable=unused-argument """Function to get ProfilerHook. Args: model_dir: The directory to save the profile traces to. save_steps: `int`, print profile traces every N steps. **kwargs: a dictionary of arguments to ProfilerHook. Returns: Returns a ProfilerHook that writes out timelines that can be loaded into profiling tools like chrome://tracing. """ return tf.estimator.ProfilerHook(save_steps=save_steps, output_dir=model_dir) def get_examples_per_second_hook(every_n_steps=100, batch_size=128, warm_steps=5, **kwargs): # pylint: disable=unused-argument """Function to get ExamplesPerSecondHook. Args: every_n_steps: `int`, print current and average examples per second every N steps. batch_size: `int`, total batch size used to calculate examples/second from global time. warm_steps: skip this number of steps before logging and running average. **kwargs: a dictionary of arguments to ExamplesPerSecondHook. Returns: Returns a ProfilerHook that writes out timelines that can be loaded into profiling tools like chrome://tracing. """ return hooks.ExamplesPerSecondHook( batch_size=batch_size, every_n_steps=every_n_steps, warm_steps=warm_steps, metric_logger=logger.get_benchmark_logger()) def get_logging_metric_hook(tensors_to_log=None, every_n_secs=600, **kwargs): # pylint: disable=unused-argument """Function to get LoggingMetricHook. Args: tensors_to_log: List of tensor names or dictionary mapping labels to tensor names. If not set, log _TENSORS_TO_LOG by default. every_n_secs: `int`, the frequency for logging the metric. Default to every 10 mins. **kwargs: a dictionary of arguments. Returns: Returns a LoggingMetricHook that saves tensor values in a JSON format. """ if tensors_to_log is None: tensors_to_log = _TENSORS_TO_LOG return metric_hook.LoggingMetricHook( tensors=tensors_to_log, metric_logger=logger.get_benchmark_logger(), every_n_secs=every_n_secs) def get_step_counter_hook(**kwargs): """Function to get StepCounterHook.""" del kwargs return tf.estimator.StepCounterHook() # A dictionary to map one hook name and its corresponding function HOOKS = { 'loggingtensorhook': get_logging_tensor_hook, 'profilerhook': get_profiler_hook, 'examplespersecondhook': get_examples_per_second_hook, 'loggingmetrichook': get_logging_metric_hook, 'stepcounterhook': get_step_counter_hook }
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/hooks_helper.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hook that counts examples per second every N steps or seconds.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.logs import logger class ExamplesPerSecondHook(tf.estimator.SessionRunHook): """Hook to print out examples per second. Total time is tracked and then divided by the total number of steps to get the average step time and then batch_size is used to determine the running average of examples per second. The examples per second for the most recent interval is also logged. """ def __init__(self, batch_size, every_n_steps=None, every_n_secs=None, warm_steps=0, metric_logger=None): """Initializer for ExamplesPerSecondHook. Args: batch_size: Total batch size across all workers used to calculate examples/second from global time. every_n_steps: Log stats every n steps. every_n_secs: Log stats every n seconds. Exactly one of the `every_n_steps` or `every_n_secs` should be set. warm_steps: The number of steps to be skipped before logging and running average calculation. warm_steps steps refers to global steps across all workers, not on each worker metric_logger: instance of `BenchmarkLogger`, the benchmark logger that hook should use to write the log. If None, BaseBenchmarkLogger will be used. Raises: ValueError: if neither `every_n_steps` or `every_n_secs` is set, or both are set. """ if (every_n_steps is None) == (every_n_secs is None): raise ValueError("exactly one of every_n_steps" " and every_n_secs should be provided.") self._logger = metric_logger or logger.BaseBenchmarkLogger() self._timer = tf.estimator.SecondOrStepTimer( every_steps=every_n_steps, every_secs=every_n_secs) self._step_train_time = 0 self._total_steps = 0 self._batch_size = batch_size self._warm_steps = warm_steps # List of examples per second logged every_n_steps. self.current_examples_per_sec_list = [] def begin(self): """Called once before using the session to check global step.""" self._global_step_tensor = tf.compat.v1.train.get_global_step() if self._global_step_tensor is None: raise RuntimeError( "Global step should be created to use StepCounterHook.") def before_run(self, run_context): # pylint: disable=unused-argument """Called before each call to run(). Args: run_context: A SessionRunContext object. Returns: A SessionRunArgs object or None if never triggered. """ return tf.estimator.SessionRunArgs(self._global_step_tensor) def after_run(self, run_context, run_values): # pylint: disable=unused-argument """Called after each call to run(). Args: run_context: A SessionRunContext object. run_values: A SessionRunValues object. """ global_step = run_values.results if self._timer.should_trigger_for_step( global_step) and global_step > self._warm_steps: elapsed_time, elapsed_steps = self._timer.update_last_triggered_step( global_step) if elapsed_time is not None: self._step_train_time += elapsed_time self._total_steps += elapsed_steps # average examples per second is based on the total (accumulative) # training steps and training time so far average_examples_per_sec = self._batch_size * ( self._total_steps / self._step_train_time) # current examples per second is based on the elapsed training steps # and training time per batch current_examples_per_sec = self._batch_size * ( elapsed_steps / elapsed_time) # Logs entries to be read from hook during or after run. self.current_examples_per_sec_list.append(current_examples_per_sec) self._logger.log_metric( "average_examples_per_sec", average_examples_per_sec, global_step=global_step) self._logger.log_metric( "current_examples_per_sec", current_examples_per_sec, global_step=global_step)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/hooks.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for metric_hook.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tempfile import time import tensorflow as tf # pylint: disable=g-bad-import-order from tensorflow.python.training import monitored_session # pylint: disable=g-bad-import-order from official.utils.logs import metric_hook from official.utils.testing import mock_lib class LoggingMetricHookTest(tf.test.TestCase): """Tests for LoggingMetricHook.""" def setUp(self): super(LoggingMetricHookTest, self).setUp() self._log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) self._logger = mock_lib.MockBenchmarkLogger() def tearDown(self): super(LoggingMetricHookTest, self).tearDown() tf.io.gfile.rmtree(self.get_temp_dir()) def test_illegal_args(self): with self.assertRaisesRegexp(ValueError, "nvalid every_n_iter"): metric_hook.LoggingMetricHook(tensors=["t"], every_n_iter=0) with self.assertRaisesRegexp(ValueError, "nvalid every_n_iter"): metric_hook.LoggingMetricHook(tensors=["t"], every_n_iter=-10) with self.assertRaisesRegexp(ValueError, "xactly one of"): metric_hook.LoggingMetricHook( tensors=["t"], every_n_iter=5, every_n_secs=5) with self.assertRaisesRegexp(ValueError, "xactly one of"): metric_hook.LoggingMetricHook(tensors=["t"]) with self.assertRaisesRegexp(ValueError, "metric_logger"): metric_hook.LoggingMetricHook(tensors=["t"], every_n_iter=5) def test_print_at_end_only(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() t = tf.constant(42.0, name="foo") train_op = tf.constant(3) hook = metric_hook.LoggingMetricHook( tensors=[t.name], at_end=True, metric_logger=self._logger) hook.begin() mon_sess = monitored_session._HookedSession(sess, [hook]) # pylint: disable=protected-access sess.run(tf.compat.v1.global_variables_initializer()) for _ in range(3): mon_sess.run(train_op) self.assertEqual(self._logger.logged_metric, []) hook.end(sess) self.assertEqual(len(self._logger.logged_metric), 1) metric = self._logger.logged_metric[0] self.assertRegexpMatches(metric["name"], "foo") self.assertEqual(metric["value"], 42.0) self.assertEqual(metric["unit"], None) self.assertEqual(metric["global_step"], 0) def test_global_step_not_found(self): with tf.Graph().as_default(): t = tf.constant(42.0, name="foo") hook = metric_hook.LoggingMetricHook( tensors=[t.name], at_end=True, metric_logger=self._logger) with self.assertRaisesRegexp( RuntimeError, "should be created to use LoggingMetricHook."): hook.begin() def test_log_tensors(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() t1 = tf.constant(42.0, name="foo") t2 = tf.constant(43.0, name="bar") train_op = tf.constant(3) hook = metric_hook.LoggingMetricHook( tensors=[t1, t2], at_end=True, metric_logger=self._logger) hook.begin() mon_sess = monitored_session._HookedSession(sess, [hook]) # pylint: disable=protected-access sess.run(tf.compat.v1.global_variables_initializer()) for _ in range(3): mon_sess.run(train_op) self.assertEqual(self._logger.logged_metric, []) hook.end(sess) self.assertEqual(len(self._logger.logged_metric), 2) metric1 = self._logger.logged_metric[0] self.assertRegexpMatches(str(metric1["name"]), "foo") self.assertEqual(metric1["value"], 42.0) self.assertEqual(metric1["unit"], None) self.assertEqual(metric1["global_step"], 0) metric2 = self._logger.logged_metric[1] self.assertRegexpMatches(str(metric2["name"]), "bar") self.assertEqual(metric2["value"], 43.0) self.assertEqual(metric2["unit"], None) self.assertEqual(metric2["global_step"], 0) def _validate_print_every_n_steps(self, sess, at_end): t = tf.constant(42.0, name="foo") train_op = tf.constant(3) hook = metric_hook.LoggingMetricHook( tensors=[t.name], every_n_iter=10, at_end=at_end, metric_logger=self._logger) hook.begin() mon_sess = monitored_session._HookedSession(sess, [hook]) # pylint: disable=protected-access sess.run(tf.compat.v1.global_variables_initializer()) mon_sess.run(train_op) self.assertRegexpMatches(str(self._logger.logged_metric), t.name) for _ in range(3): self._logger.logged_metric = [] for _ in range(9): mon_sess.run(train_op) # assertNotRegexpMatches is not supported by python 3.1 and later self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) mon_sess.run(train_op) self.assertRegexpMatches(str(self._logger.logged_metric), t.name) # Add additional run to verify proper reset when called multiple times. self._logger.logged_metric = [] mon_sess.run(train_op) # assertNotRegexpMatches is not supported by python 3.1 and later self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) self._logger.logged_metric = [] hook.end(sess) if at_end: self.assertRegexpMatches(str(self._logger.logged_metric), t.name) else: # assertNotRegexpMatches is not supported by python 3.1 and later self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) def test_print_every_n_steps(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() self._validate_print_every_n_steps(sess, at_end=False) # Verify proper reset. self._validate_print_every_n_steps(sess, at_end=False) def test_print_every_n_steps_and_end(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() self._validate_print_every_n_steps(sess, at_end=True) # Verify proper reset. self._validate_print_every_n_steps(sess, at_end=True) def _validate_print_every_n_secs(self, sess, at_end): t = tf.constant(42.0, name="foo") train_op = tf.constant(3) hook = metric_hook.LoggingMetricHook( tensors=[t.name], every_n_secs=1.0, at_end=at_end, metric_logger=self._logger) hook.begin() mon_sess = monitored_session._HookedSession(sess, [hook]) # pylint: disable=protected-access sess.run(tf.compat.v1.global_variables_initializer()) mon_sess.run(train_op) self.assertRegexpMatches(str(self._logger.logged_metric), t.name) # assertNotRegexpMatches is not supported by python 3.1 and later self._logger.logged_metric = [] mon_sess.run(train_op) self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) time.sleep(1.0) self._logger.logged_metric = [] mon_sess.run(train_op) self.assertRegexpMatches(str(self._logger.logged_metric), t.name) self._logger.logged_metric = [] hook.end(sess) if at_end: self.assertRegexpMatches(str(self._logger.logged_metric), t.name) else: # assertNotRegexpMatches is not supported by python 3.1 and later self.assertEqual(str(self._logger.logged_metric).find(t.name), -1) def test_print_every_n_secs(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() self._validate_print_every_n_secs(sess, at_end=False) # Verify proper reset. self._validate_print_every_n_secs(sess, at_end=False) def test_print_every_n_secs_and_end(self): with tf.Graph().as_default(), tf.compat.v1.Session() as sess: tf.compat.v1.train.get_or_create_global_step() self._validate_print_every_n_secs(sess, at_end=True) # Verify proper reset. self._validate_print_every_n_secs(sess, at_end=True) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/metric_hook_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for hooks_helper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.logs import hooks_helper from official.utils.misc import keras_utils class BaseTest(unittest.TestCase): def setUp(self): super(BaseTest, self).setUp() if keras_utils.is_v2_0: tf.compat.v1.disable_eager_execution() def test_raise_in_non_list_names(self): with self.assertRaises(ValueError): hooks_helper.get_train_hooks( 'LoggingTensorHook, ProfilerHook', model_dir="", batch_size=256) def test_raise_in_invalid_names(self): invalid_names = ['StepCounterHook', 'StopAtStepHook'] with self.assertRaises(ValueError): hooks_helper.get_train_hooks(invalid_names, model_dir="", batch_size=256) def validate_train_hook_name(self, test_hook_name, expected_hook_name, **kwargs): returned_hook = hooks_helper.get_train_hooks( [test_hook_name], model_dir="", **kwargs) self.assertEqual(len(returned_hook), 1) self.assertIsInstance(returned_hook[0], tf.estimator.SessionRunHook) self.assertEqual(returned_hook[0].__class__.__name__.lower(), expected_hook_name) def test_get_train_hooks_logging_tensor_hook(self): self.validate_train_hook_name('LoggingTensorHook', 'loggingtensorhook') def test_get_train_hooks_profiler_hook(self): self.validate_train_hook_name('ProfilerHook', 'profilerhook') def test_get_train_hooks_examples_per_second_hook(self): self.validate_train_hook_name('ExamplesPerSecondHook', 'examplespersecondhook') def test_get_logging_metric_hook(self): test_hook_name = 'LoggingMetricHook' self.validate_train_hook_name(test_hook_name, 'loggingmetrichook') if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/hooks_helper_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper for the mlperf logging utils. MLPerf compliance logging is only desired under a limited set of circumstances. This module is intended to keep users from needing to consider logging (or install the module) unless they are performing mlperf runs. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import json import os import re import subprocess import sys import typing import tensorflow as tf _MIN_VERSION = (0, 0, 10) _STACK_OFFSET = 2 SUDO = "sudo" if os.geteuid() else "" # This indirection is used in docker. DROP_CACHE_LOC = os.getenv("DROP_CACHE_LOC", "/proc/sys/vm/drop_caches") _NCF_PREFIX = "NCF_RAW_" # TODO(robieta): move line parsing to mlperf util _PREFIX = r"(?:{})?:::MLPv([0-9]+).([0-9]+).([0-9]+)".format(_NCF_PREFIX) _BENCHMARK = r"([a-zA-Z0-9_]+)" _TIMESTAMP = r"([0-9]+\.[0-9]+)" _CALLSITE = r"\((.+):([0-9]+)\)" _TAG = r"([a-zA-Z0-9_]+)" _VALUE = r"(.*)" ParsedLine = namedtuple("ParsedLine", ["version", "benchmark", "timestamp", "callsite", "tag", "value"]) LINE_PATTERN = re.compile( "^{prefix} {benchmark} {timestamp} {callsite} {tag}(: |$){value}?$".format( prefix=_PREFIX, benchmark=_BENCHMARK, timestamp=_TIMESTAMP, callsite=_CALLSITE, tag=_TAG, value=_VALUE)) def parse_line(line): # type: (str) -> typing.Optional[ParsedLine] match = LINE_PATTERN.match(line.strip()) if not match: return major, minor, micro, benchmark, timestamp = match.groups()[:5] call_file, call_line, tag, _, value = match.groups()[5:] return ParsedLine(version=(int(major), int(minor), int(micro)), benchmark=benchmark, timestamp=timestamp, callsite=(call_file, call_line), tag=tag, value=value) def unparse_line(parsed_line): # type: (ParsedLine) -> str version_str = "{}.{}.{}".format(*parsed_line.version) callsite_str = "({}:{})".format(*parsed_line.callsite) value_str = ": {}".format(parsed_line.value) if parsed_line.value else "" return ":::MLPv{} {} {} {} {} {}".format( version_str, parsed_line.benchmark, parsed_line.timestamp, callsite_str, parsed_line.tag, value_str) def get_mlperf_log(): """Shielded import of mlperf_log module.""" try: import mlperf_compliance def test_mlperf_log_pip_version(): """Check that mlperf_compliance is up to date.""" import pkg_resources version = pkg_resources.get_distribution("mlperf_compliance") version = tuple(int(i) for i in version.version.split(".")) if version < _MIN_VERSION: tf.compat.v1.logging.warning( "mlperf_compliance is version {}, must be >= {}".format( ".".join([str(i) for i in version]), ".".join([str(i) for i in _MIN_VERSION]))) raise ImportError return mlperf_compliance.mlperf_log mlperf_log = test_mlperf_log_pip_version() except ImportError: mlperf_log = None return mlperf_log class Logger(object): """MLPerf logger indirection class. This logger only logs for MLPerf runs, and prevents various errors associated with not having the mlperf_compliance package installed. """ class Tags(object): def __init__(self, mlperf_log): self._enabled = False self._mlperf_log = mlperf_log def __getattr__(self, item): if self._mlperf_log is None or not self._enabled: return return getattr(self._mlperf_log, item) def __init__(self): self._enabled = False self._mlperf_log = get_mlperf_log() self.tags = self.Tags(self._mlperf_log) def __call__(self, enable=False): if enable and self._mlperf_log is None: raise ImportError("MLPerf logging was requested, but mlperf_compliance " "module could not be loaded.") self._enabled = enable self.tags._enabled = enable return self def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): self._enabled = False self.tags._enabled = False @property def log_file(self): if self._mlperf_log is None: return return self._mlperf_log.LOG_FILE @property def enabled(self): return self._enabled def ncf_print(self, key, value=None, stack_offset=_STACK_OFFSET, deferred=False, extra_print=False, prefix=_NCF_PREFIX): if self._mlperf_log is None or not self.enabled: return self._mlperf_log.ncf_print(key=key, value=value, stack_offset=stack_offset, deferred=deferred, extra_print=extra_print, prefix=prefix) def set_ncf_root(self, path): if self._mlperf_log is None: return self._mlperf_log.ROOT_DIR_NCF = path LOGGER = Logger() ncf_print, set_ncf_root = LOGGER.ncf_print, LOGGER.set_ncf_root TAGS = LOGGER.tags def clear_system_caches(): if not LOGGER.enabled: return ret_code = subprocess.call( ["sync && echo 3 | {} tee {}".format(SUDO, DROP_CACHE_LOC)], shell=True) if ret_code: raise ValueError("Failed to clear caches") if __name__ == "__main__": tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) with LOGGER(True): ncf_print(key=TAGS.RUN_START)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/mlperf_helper.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Session hook for logging benchmark metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order class LoggingMetricHook(tf.estimator.LoggingTensorHook): """Hook to log benchmark metric information. This hook is very similar as tf.train.LoggingTensorHook, which logs given tensors every N local steps, every N seconds, or at the end. The metric information will be logged to given log_dir or via metric_logger in JSON format, which can be consumed by data analysis pipeline later. Note that if `at_end` is True, `tensors` should not include any tensor whose evaluation produces a side effect such as consuming additional inputs. """ def __init__(self, tensors, metric_logger=None, every_n_iter=None, every_n_secs=None, at_end=False): """Initializer for LoggingMetricHook. Args: tensors: `dict` that maps string-valued tags to tensors/tensor names, or `iterable` of tensors/tensor names. metric_logger: instance of `BenchmarkLogger`, the benchmark logger that hook should use to write the log. every_n_iter: `int`, print the values of `tensors` once every N local steps taken on the current worker. every_n_secs: `int` or `float`, print the values of `tensors` once every N seconds. Exactly one of `every_n_iter` and `every_n_secs` should be provided. at_end: `bool` specifying whether to print the values of `tensors` at the end of the run. Raises: ValueError: 1. `every_n_iter` is non-positive, or 2. Exactly one of every_n_iter and every_n_secs should be provided. 3. Exactly one of log_dir and metric_logger should be provided. """ super(LoggingMetricHook, self).__init__( tensors=tensors, every_n_iter=every_n_iter, every_n_secs=every_n_secs, at_end=at_end) if metric_logger is None: raise ValueError("metric_logger should be provided.") self._logger = metric_logger def begin(self): super(LoggingMetricHook, self).begin() self._global_step_tensor = tf.compat.v1.train.get_global_step() if self._global_step_tensor is None: raise RuntimeError( "Global step should be created to use LoggingMetricHook.") if self._global_step_tensor.name not in self._current_tensors: self._current_tensors[self._global_step_tensor.name] = ( self._global_step_tensor) def after_run(self, unused_run_context, run_values): # should_trigger is a internal state that populated at before_run, and it is # using self_timer to determine whether it should trigger. if self._should_trigger: self._log_metric(run_values.results) self._iter_count += 1 def end(self, session): if self._log_at_end: values = session.run(self._current_tensors) self._log_metric(values) def _log_metric(self, tensor_values): self._timer.update_last_triggered_step(self._iter_count) global_step = tensor_values[self._global_step_tensor.name] # self._tag_order is populated during the init of LoggingTensorHook for tag in self._tag_order: self._logger.log_metric(tag, tensor_values[tag], global_step=global_step)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/metric_hook.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Logging utilities for benchmark. For collecting local environment metrics like CPU and memory, certain python packages need be installed. See README for details. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import datetime import json import multiprocessing import numbers import os import threading import uuid from six.moves import _thread as thread from absl import flags import tensorflow as tf from tensorflow.python.client import device_lib from official.utils.logs import cloud_lib METRIC_LOG_FILE_NAME = "metric.log" BENCHMARK_RUN_LOG_FILE_NAME = "benchmark_run.log" _DATE_TIME_FORMAT_PATTERN = "%Y-%m-%dT%H:%M:%S.%fZ" GCP_TEST_ENV = "GCP" RUN_STATUS_SUCCESS = "success" RUN_STATUS_FAILURE = "failure" RUN_STATUS_RUNNING = "running" FLAGS = flags.FLAGS # Don't use it directly. Use get_benchmark_logger to access a logger. _benchmark_logger = None _logger_lock = threading.Lock() def config_benchmark_logger(flag_obj=None): """Config the global benchmark logger.""" _logger_lock.acquire() try: global _benchmark_logger if not flag_obj: flag_obj = FLAGS if (not hasattr(flag_obj, "benchmark_logger_type") or flag_obj.benchmark_logger_type == "BaseBenchmarkLogger"): _benchmark_logger = BaseBenchmarkLogger() elif flag_obj.benchmark_logger_type == "BenchmarkFileLogger": _benchmark_logger = BenchmarkFileLogger(flag_obj.benchmark_log_dir) elif flag_obj.benchmark_logger_type == "BenchmarkBigQueryLogger": from official.benchmark import benchmark_uploader as bu # pylint: disable=g-import-not-at-top bq_uploader = bu.BigQueryUploader(gcp_project=flag_obj.gcp_project) _benchmark_logger = BenchmarkBigQueryLogger( bigquery_uploader=bq_uploader, bigquery_data_set=flag_obj.bigquery_data_set, bigquery_run_table=flag_obj.bigquery_run_table, bigquery_run_status_table=flag_obj.bigquery_run_status_table, bigquery_metric_table=flag_obj.bigquery_metric_table, run_id=str(uuid.uuid4())) else: raise ValueError("Unrecognized benchmark_logger_type: %s" % flag_obj.benchmark_logger_type) finally: _logger_lock.release() return _benchmark_logger def get_benchmark_logger(): if not _benchmark_logger: config_benchmark_logger() return _benchmark_logger @contextlib.contextmanager def benchmark_context(flag_obj): """Context of benchmark, which will update status of the run accordingly.""" benchmark_logger = config_benchmark_logger(flag_obj) try: yield benchmark_logger.on_finish(RUN_STATUS_SUCCESS) except Exception: # pylint: disable=broad-except # Catch all the exception, update the run status to be failure, and re-raise benchmark_logger.on_finish(RUN_STATUS_FAILURE) raise class BaseBenchmarkLogger(object): """Class to log the benchmark information to STDOUT.""" def log_evaluation_result(self, eval_results): """Log the evaluation result. The evaluate result is a dictionary that contains metrics defined in model_fn. It also contains a entry for global_step which contains the value of the global step when evaluation was performed. Args: eval_results: dict, the result of evaluate. """ if not isinstance(eval_results, dict): tf.compat.v1.logging.warning( "eval_results should be dictionary for logging. Got %s", type(eval_results)) return global_step = eval_results[tf.compat.v1.GraphKeys.GLOBAL_STEP] for key in sorted(eval_results): if key != tf.compat.v1.GraphKeys.GLOBAL_STEP: self.log_metric(key, eval_results[key], global_step=global_step) def log_metric(self, name, value, unit=None, global_step=None, extras=None): """Log the benchmark metric information to local file. Currently the logging is done in a synchronized way. This should be updated to log asynchronously. Args: name: string, the name of the metric to log. value: number, the value of the metric. The value will not be logged if it is not a number type. unit: string, the unit of the metric, E.g "image per second". global_step: int, the global_step when the metric is logged. extras: map of string:string, the extra information about the metric. """ metric = _process_metric_to_json(name, value, unit, global_step, extras) if metric: tf.compat.v1.logging.info("Benchmark metric: %s", metric) def log_run_info(self, model_name, dataset_name, run_params, test_id=None): tf.compat.v1.logging.info( "Benchmark run: %s", _gather_run_info(model_name, dataset_name, run_params, test_id)) def on_finish(self, status): pass class BenchmarkFileLogger(BaseBenchmarkLogger): """Class to log the benchmark information to local disk.""" def __init__(self, logging_dir): super(BenchmarkFileLogger, self).__init__() self._logging_dir = logging_dir if not tf.io.gfile.isdir(self._logging_dir): tf.io.gfile.makedirs(self._logging_dir) self._metric_file_handler = tf.io.gfile.GFile( os.path.join(self._logging_dir, METRIC_LOG_FILE_NAME), "a") def log_metric(self, name, value, unit=None, global_step=None, extras=None): """Log the benchmark metric information to local file. Currently the logging is done in a synchronized way. This should be updated to log asynchronously. Args: name: string, the name of the metric to log. value: number, the value of the metric. The value will not be logged if it is not a number type. unit: string, the unit of the metric, E.g "image per second". global_step: int, the global_step when the metric is logged. extras: map of string:string, the extra information about the metric. """ metric = _process_metric_to_json(name, value, unit, global_step, extras) if metric: try: json.dump(metric, self._metric_file_handler) self._metric_file_handler.write("\n") self._metric_file_handler.flush() except (TypeError, ValueError) as e: tf.compat.v1.logging.warning( "Failed to dump metric to log file: name %s, value %s, error %s", name, value, e) def log_run_info(self, model_name, dataset_name, run_params, test_id=None): """Collect most of the TF runtime information for the local env. The schema of the run info follows official/benchmark/datastore/schema. Args: model_name: string, the name of the model. dataset_name: string, the name of dataset for training and evaluation. run_params: dict, the dictionary of parameters for the run, it could include hyperparameters or other params that are important for the run. test_id: string, the unique name of the test run by the combination of key parameters, eg batch size, num of GPU. It is hardware independent. """ run_info = _gather_run_info(model_name, dataset_name, run_params, test_id) with tf.io.gfile.GFile(os.path.join( self._logging_dir, BENCHMARK_RUN_LOG_FILE_NAME), "w") as f: try: json.dump(run_info, f) f.write("\n") except (TypeError, ValueError) as e: tf.compat.v1.logging.warning( "Failed to dump benchmark run info to log file: %s", e) def on_finish(self, status): self._metric_file_handler.flush() self._metric_file_handler.close() class BenchmarkBigQueryLogger(BaseBenchmarkLogger): """Class to log the benchmark information to BigQuery data store.""" def __init__(self, bigquery_uploader, bigquery_data_set, bigquery_run_table, bigquery_run_status_table, bigquery_metric_table, run_id): super(BenchmarkBigQueryLogger, self).__init__() self._bigquery_uploader = bigquery_uploader self._bigquery_data_set = bigquery_data_set self._bigquery_run_table = bigquery_run_table self._bigquery_run_status_table = bigquery_run_status_table self._bigquery_metric_table = bigquery_metric_table self._run_id = run_id def log_metric(self, name, value, unit=None, global_step=None, extras=None): """Log the benchmark metric information to bigquery. Args: name: string, the name of the metric to log. value: number, the value of the metric. The value will not be logged if it is not a number type. unit: string, the unit of the metric, E.g "image per second". global_step: int, the global_step when the metric is logged. extras: map of string:string, the extra information about the metric. """ metric = _process_metric_to_json(name, value, unit, global_step, extras) if metric: # Starting new thread for bigquery upload in case it might take long time # and impact the benchmark and performance measurement. Starting a new # thread might have potential performance impact for model that run on # CPU. thread.start_new_thread( self._bigquery_uploader.upload_benchmark_metric_json, (self._bigquery_data_set, self._bigquery_metric_table, self._run_id, [metric])) def log_run_info(self, model_name, dataset_name, run_params, test_id=None): """Collect most of the TF runtime information for the local env. The schema of the run info follows official/benchmark/datastore/schema. Args: model_name: string, the name of the model. dataset_name: string, the name of dataset for training and evaluation. run_params: dict, the dictionary of parameters for the run, it could include hyperparameters or other params that are important for the run. test_id: string, the unique name of the test run by the combination of key parameters, eg batch size, num of GPU. It is hardware independent. """ run_info = _gather_run_info(model_name, dataset_name, run_params, test_id) # Starting new thread for bigquery upload in case it might take long time # and impact the benchmark and performance measurement. Starting a new # thread might have potential performance impact for model that run on CPU. thread.start_new_thread( self._bigquery_uploader.upload_benchmark_run_json, (self._bigquery_data_set, self._bigquery_run_table, self._run_id, run_info)) thread.start_new_thread( self._bigquery_uploader.insert_run_status, (self._bigquery_data_set, self._bigquery_run_status_table, self._run_id, RUN_STATUS_RUNNING)) def on_finish(self, status): self._bigquery_uploader.update_run_status( self._bigquery_data_set, self._bigquery_run_status_table, self._run_id, status) def _gather_run_info(model_name, dataset_name, run_params, test_id): """Collect the benchmark run information for the local environment.""" run_info = { "model_name": model_name, "dataset": {"name": dataset_name}, "machine_config": {}, "test_id": test_id, "run_date": datetime.datetime.utcnow().strftime( _DATE_TIME_FORMAT_PATTERN)} _collect_tensorflow_info(run_info) _collect_tensorflow_environment_variables(run_info) _collect_run_params(run_info, run_params) _collect_cpu_info(run_info) _collect_memory_info(run_info) _collect_test_environment(run_info) return run_info def _process_metric_to_json( name, value, unit=None, global_step=None, extras=None): """Validate the metric data and generate JSON for insert.""" if not isinstance(value, numbers.Number): tf.compat.v1.logging.warning( "Metric value to log should be a number. Got %s", type(value)) return None extras = _convert_to_json_dict(extras) return { "name": name, "value": float(value), "unit": unit, "global_step": global_step, "timestamp": datetime.datetime.utcnow().strftime( _DATE_TIME_FORMAT_PATTERN), "extras": extras} def _collect_tensorflow_info(run_info): run_info["tensorflow_version"] = { "version": tf.version.VERSION, "git_hash": tf.version.GIT_VERSION} def _collect_run_params(run_info, run_params): """Log the parameter information for the benchmark run.""" def process_param(name, value): type_check = { str: {"name": name, "string_value": value}, int: {"name": name, "long_value": value}, bool: {"name": name, "bool_value": str(value)}, float: {"name": name, "float_value": value}, } return type_check.get(type(value), {"name": name, "string_value": str(value)}) if run_params: run_info["run_parameters"] = [ process_param(k, v) for k, v in sorted(run_params.items())] def _collect_tensorflow_environment_variables(run_info): run_info["tensorflow_environment_variables"] = [ {"name": k, "value": v} for k, v in sorted(os.environ.items()) if k.startswith("TF_")] # The following code is mirrored from tensorflow/tools/test/system_info_lib # which is not exposed for import. def _collect_cpu_info(run_info): """Collect the CPU information for the local environment.""" cpu_info = {} cpu_info["num_cores"] = multiprocessing.cpu_count() try: # Note: cpuinfo is not installed in the TensorFlow OSS tree. # It is installable via pip. import cpuinfo # pylint: disable=g-import-not-at-top info = cpuinfo.get_cpu_info() cpu_info["cpu_info"] = info["brand"] cpu_info["mhz_per_cpu"] = info["hz_advertised_raw"][0] / 1.0e6 run_info["machine_config"]["cpu_info"] = cpu_info except ImportError: tf.compat.v1.logging.warn( "'cpuinfo' not imported. CPU info will not be logged.") def _collect_memory_info(run_info): try: # Note: psutil is not installed in the TensorFlow OSS tree. # It is installable via pip. import psutil # pylint: disable=g-import-not-at-top vmem = psutil.virtual_memory() run_info["machine_config"]["memory_total"] = vmem.total run_info["machine_config"]["memory_available"] = vmem.available except ImportError: tf.compat.v1.logging.warn( "'psutil' not imported. Memory info will not be logged.") def _collect_test_environment(run_info): """Detect the local environment, eg GCE, AWS or DGX, etc.""" if cloud_lib.on_gcp(): run_info["test_environment"] = GCP_TEST_ENV # TODO(scottzhu): Add more testing env detection for other platform def _parse_gpu_model(physical_device_desc): # Assume all the GPU connected are same model for kv in physical_device_desc.split(","): k, _, v = kv.partition(":") if k.strip() == "name": return v.strip() return None def _convert_to_json_dict(input_dict): if input_dict: return [{"name": k, "value": v} for k, v in sorted(input_dict.items())] else: return []
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/logger.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for hooks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.logs import hooks from official.utils.testing import mock_lib tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG) class ExamplesPerSecondHookTest(tf.test.TestCase): """Tests for the ExamplesPerSecondHook. In the test, we explicitly run global_step tensor after train_op in order to keep the global_step value and the train_op (which increase the glboal_step by 1) consistent. This is to correct the discrepancies in reported global_step value when running on GPUs. """ def setUp(self): """Mock out logging calls to verify if correct info is being monitored.""" self._logger = mock_lib.MockBenchmarkLogger() self.graph = tf.Graph() with self.graph.as_default(): tf.compat.v1.train.create_global_step() self.train_op = tf.compat.v1.assign_add( tf.compat.v1.train.get_global_step(), 1) self.global_step = tf.compat.v1.train.get_global_step() def test_raise_in_both_secs_and_steps(self): with self.assertRaises(ValueError): hooks.ExamplesPerSecondHook( batch_size=256, every_n_steps=10, every_n_secs=20, metric_logger=self._logger) def test_raise_in_none_secs_and_steps(self): with self.assertRaises(ValueError): hooks.ExamplesPerSecondHook( batch_size=256, every_n_steps=None, every_n_secs=None, metric_logger=self._logger) def _validate_log_every_n_steps(self, every_n_steps, warm_steps): hook = hooks.ExamplesPerSecondHook( batch_size=256, every_n_steps=every_n_steps, warm_steps=warm_steps, metric_logger=self._logger) with tf.compat.v1.train.MonitoredSession( tf.compat.v1.train.ChiefSessionCreator(), [hook]) as mon_sess: for _ in range(every_n_steps): # Explicitly run global_step after train_op to get the accurate # global_step value mon_sess.run(self.train_op) mon_sess.run(self.global_step) # Nothing should be in the list yet self.assertFalse(self._logger.logged_metric) mon_sess.run(self.train_op) global_step_val = mon_sess.run(self.global_step) if global_step_val > warm_steps: self._assert_metrics() else: # Nothing should be in the list yet self.assertFalse(self._logger.logged_metric) # Add additional run to verify proper reset when called multiple times. prev_log_len = len(self._logger.logged_metric) mon_sess.run(self.train_op) global_step_val = mon_sess.run(self.global_step) if every_n_steps == 1 and global_step_val > warm_steps: # Each time, we log two additional metrics. Did exactly 2 get added? self.assertEqual(len(self._logger.logged_metric), prev_log_len + 2) else: # No change in the size of the metric list. self.assertEqual(len(self._logger.logged_metric), prev_log_len) def test_examples_per_sec_every_1_steps(self): with self.graph.as_default(): self._validate_log_every_n_steps(1, 0) def test_examples_per_sec_every_5_steps(self): with self.graph.as_default(): self._validate_log_every_n_steps(5, 0) def test_examples_per_sec_every_1_steps_with_warm_steps(self): with self.graph.as_default(): self._validate_log_every_n_steps(1, 10) def test_examples_per_sec_every_5_steps_with_warm_steps(self): with self.graph.as_default(): self._validate_log_every_n_steps(5, 10) def _validate_log_every_n_secs(self, every_n_secs): hook = hooks.ExamplesPerSecondHook( batch_size=256, every_n_steps=None, every_n_secs=every_n_secs, metric_logger=self._logger) with tf.compat.v1.train.MonitoredSession( tf.compat.v1.train.ChiefSessionCreator(), [hook]) as mon_sess: # Explicitly run global_step after train_op to get the accurate # global_step value mon_sess.run(self.train_op) mon_sess.run(self.global_step) # Nothing should be in the list yet self.assertFalse(self._logger.logged_metric) time.sleep(every_n_secs) mon_sess.run(self.train_op) mon_sess.run(self.global_step) self._assert_metrics() def test_examples_per_sec_every_1_secs(self): with self.graph.as_default(): self._validate_log_every_n_secs(1) def test_examples_per_sec_every_5_secs(self): with self.graph.as_default(): self._validate_log_every_n_secs(5) def _assert_metrics(self): metrics = self._logger.logged_metric self.assertEqual(metrics[-2]["name"], "average_examples_per_sec") self.assertEqual(metrics[-1]["name"], "current_examples_per_sec") if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/hooks_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities that interact with cloud service. """ import requests GCP_METADATA_URL = "http://metadata/computeMetadata/v1/instance/hostname" GCP_METADATA_HEADER = {"Metadata-Flavor": "Google"} def on_gcp(): """Detect whether the current running environment is on GCP.""" try: # Timeout in 5 seconds, in case the test environment has connectivity issue. # There is not default timeout, which means it might block forever. response = requests.get( GCP_METADATA_URL, headers=GCP_METADATA_HEADER, timeout=5) return response.status_code == 200 except requests.exceptions.RequestException: return False
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/cloud_lib.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for cloud_lib.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import mock import requests from official.utils.logs import cloud_lib class CloudLibTest(unittest.TestCase): @mock.patch("requests.get") def test_on_gcp(self, mock_requests_get): mock_response = mock.MagicMock() mock_requests_get.return_value = mock_response mock_response.status_code = 200 self.assertEqual(cloud_lib.on_gcp(), True) @mock.patch("requests.get") def test_not_on_gcp(self, mock_requests_get): mock_requests_get.side_effect = requests.exceptions.ConnectionError() self.assertEqual(cloud_lib.on_gcp(), False) if __name__ == "__main__": unittest.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/cloud_lib_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for benchmark logger.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import tempfile import time import unittest import mock from absl.testing import flagsaver import tensorflow as tf # pylint: disable=g-bad-import-order try: from google.cloud import bigquery except ImportError: bigquery = None from official.utils.misc import keras_utils from official.utils.flags import core as flags_core from official.utils.logs import logger class BenchmarkLoggerTest(tf.test.TestCase): @classmethod def setUpClass(cls): # pylint: disable=invalid-name super(BenchmarkLoggerTest, cls).setUpClass() flags_core.define_benchmark() def test_get_default_benchmark_logger(self): with flagsaver.flagsaver(benchmark_logger_type="foo"): self.assertIsInstance(logger.get_benchmark_logger(), logger.BaseBenchmarkLogger) def test_config_base_benchmark_logger(self): with flagsaver.flagsaver(benchmark_logger_type="BaseBenchmarkLogger"): logger.config_benchmark_logger() self.assertIsInstance(logger.get_benchmark_logger(), logger.BaseBenchmarkLogger) def test_config_benchmark_file_logger(self): # Set the benchmark_log_dir first since the benchmark_logger_type will need # the value to be set when it does the validation. with flagsaver.flagsaver(benchmark_log_dir="/tmp"): with flagsaver.flagsaver(benchmark_logger_type="BenchmarkFileLogger"): logger.config_benchmark_logger() self.assertIsInstance(logger.get_benchmark_logger(), logger.BenchmarkFileLogger) @unittest.skipIf(bigquery is None, "Bigquery dependency is not installed.") @mock.patch.object(bigquery, "Client") def test_config_benchmark_bigquery_logger(self, mock_bigquery_client): with flagsaver.flagsaver(benchmark_logger_type="BenchmarkBigQueryLogger"): logger.config_benchmark_logger() self.assertIsInstance(logger.get_benchmark_logger(), logger.BenchmarkBigQueryLogger) @mock.patch("official.utils.logs.logger.config_benchmark_logger") def test_benchmark_context(self, mock_config_benchmark_logger): mock_logger = mock.MagicMock() mock_config_benchmark_logger.return_value = mock_logger with logger.benchmark_context(None): tf.compat.v1.logging.info("start benchmarking") mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_SUCCESS) @mock.patch("official.utils.logs.logger.config_benchmark_logger") def test_benchmark_context_failure(self, mock_config_benchmark_logger): mock_logger = mock.MagicMock() mock_config_benchmark_logger.return_value = mock_logger with self.assertRaises(RuntimeError): with logger.benchmark_context(None): raise RuntimeError("training error") mock_logger.on_finish.assert_called_once_with(logger.RUN_STATUS_FAILURE) class BaseBenchmarkLoggerTest(tf.test.TestCase): def setUp(self): super(BaseBenchmarkLoggerTest, self).setUp() self._actual_log = tf.compat.v1.logging.info self.logged_message = None def mock_log(*args, **kwargs): self.logged_message = args self._actual_log(*args, **kwargs) tf.compat.v1.logging.info = mock_log def tearDown(self): super(BaseBenchmarkLoggerTest, self).tearDown() tf.compat.v1.logging.info = self._actual_log def test_log_metric(self): log = logger.BaseBenchmarkLogger() log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"}) expected_log_prefix = "Benchmark metric:" self.assertRegexpMatches(str(self.logged_message), expected_log_prefix) class BenchmarkFileLoggerTest(tf.test.TestCase): def setUp(self): super(BenchmarkFileLoggerTest, self).setUp() # Avoid pulling extra env vars from test environment which affects the test # result, eg. Kokoro test has a TF_PKG env which affect the test case # test_collect_tensorflow_environment_variables() self.original_environ = dict(os.environ) os.environ.clear() def tearDown(self): super(BenchmarkFileLoggerTest, self).tearDown() tf.io.gfile.rmtree(self.get_temp_dir()) os.environ.clear() os.environ.update(self.original_environ) def test_create_logging_dir(self): non_exist_temp_dir = os.path.join(self.get_temp_dir(), "unknown_dir") self.assertFalse(tf.io.gfile.isdir(non_exist_temp_dir)) logger.BenchmarkFileLogger(non_exist_temp_dir) self.assertTrue(tf.io.gfile.isdir(non_exist_temp_dir)) def test_log_metric(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"}) metric_log = os.path.join(log_dir, "metric.log") self.assertTrue(tf.io.gfile.exists(metric_log)) with tf.io.gfile.GFile(metric_log) as f: metric = json.loads(f.readline()) self.assertEqual(metric["name"], "accuracy") self.assertEqual(metric["value"], 0.999) self.assertEqual(metric["unit"], None) self.assertEqual(metric["global_step"], 1e4) self.assertEqual(metric["extras"], [{"name": "name", "value": "value"}]) def test_log_multiple_metrics(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) log.log_metric("accuracy", 0.999, global_step=1e4, extras={"name": "value"}) log.log_metric("loss", 0.02, global_step=1e4) metric_log = os.path.join(log_dir, "metric.log") self.assertTrue(tf.io.gfile.exists(metric_log)) with tf.io.gfile.GFile(metric_log) as f: accuracy = json.loads(f.readline()) self.assertEqual(accuracy["name"], "accuracy") self.assertEqual(accuracy["value"], 0.999) self.assertEqual(accuracy["unit"], None) self.assertEqual(accuracy["global_step"], 1e4) self.assertEqual(accuracy["extras"], [{"name": "name", "value": "value"}]) loss = json.loads(f.readline()) self.assertEqual(loss["name"], "loss") self.assertEqual(loss["value"], 0.02) self.assertEqual(loss["unit"], None) self.assertEqual(loss["global_step"], 1e4) self.assertEqual(loss["extras"], []) def test_log_non_number_value(self): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) const = tf.constant(1) log.log_metric("accuracy", const) metric_log = os.path.join(log_dir, "metric.log") self.assertFalse(tf.io.gfile.exists(metric_log)) def test_log_evaluation_result(self): eval_result = {"loss": 0.46237424, "global_step": 207082, "accuracy": 0.9285} log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) log.log_evaluation_result(eval_result) metric_log = os.path.join(log_dir, "metric.log") self.assertTrue(tf.io.gfile.exists(metric_log)) with tf.io.gfile.GFile(metric_log) as f: accuracy = json.loads(f.readline()) self.assertEqual(accuracy["name"], "accuracy") self.assertEqual(accuracy["value"], 0.9285) self.assertEqual(accuracy["unit"], None) self.assertEqual(accuracy["global_step"], 207082) loss = json.loads(f.readline()) self.assertEqual(loss["name"], "loss") self.assertEqual(loss["value"], 0.46237424) self.assertEqual(loss["unit"], None) self.assertEqual(loss["global_step"], 207082) def test_log_evaluation_result_with_invalid_type(self): eval_result = "{'loss': 0.46237424, 'global_step': 207082}" log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) log.log_evaluation_result(eval_result) metric_log = os.path.join(log_dir, "metric.log") self.assertFalse(tf.io.gfile.exists(metric_log)) @mock.patch("official.utils.logs.logger._gather_run_info") def test_log_run_info(self, mock_gather_run_info): log_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) log = logger.BenchmarkFileLogger(log_dir) run_info = {"model_name": "model_name", "dataset": "dataset_name", "run_info": "run_value"} mock_gather_run_info.return_value = run_info log.log_run_info("model_name", "dataset_name", {}) run_log = os.path.join(log_dir, "benchmark_run.log") self.assertTrue(tf.io.gfile.exists(run_log)) with tf.io.gfile.GFile(run_log) as f: run_info = json.loads(f.readline()) self.assertEqual(run_info["model_name"], "model_name") self.assertEqual(run_info["dataset"], "dataset_name") self.assertEqual(run_info["run_info"], "run_value") def test_collect_tensorflow_info(self): run_info = {} logger._collect_tensorflow_info(run_info) self.assertNotEqual(run_info["tensorflow_version"], {}) self.assertEqual(run_info["tensorflow_version"]["version"], tf.version.VERSION) self.assertEqual(run_info["tensorflow_version"]["git_hash"], tf.version.GIT_VERSION) def test_collect_run_params(self): run_info = {} run_parameters = { "batch_size": 32, "synthetic_data": True, "train_epochs": 100.00, "dtype": "fp16", "resnet_size": 50, "random_tensor": tf.constant(2.0) } logger._collect_run_params(run_info, run_parameters) self.assertEqual(len(run_info["run_parameters"]), 6) self.assertEqual(run_info["run_parameters"][0], {"name": "batch_size", "long_value": 32}) self.assertEqual(run_info["run_parameters"][1], {"name": "dtype", "string_value": "fp16"}) if keras_utils.is_v2_0(): self.assertEqual(run_info["run_parameters"][2], {"name": "random_tensor", "string_value": "tf.Tensor(2.0, shape=(), dtype=float32)"}) else: self.assertEqual(run_info["run_parameters"][2], {"name": "random_tensor", "string_value": "Tensor(\"Const:0\", shape=(), dtype=float32)"}) self.assertEqual(run_info["run_parameters"][3], {"name": "resnet_size", "long_value": 50}) self.assertEqual(run_info["run_parameters"][4], {"name": "synthetic_data", "bool_value": "True"}) self.assertEqual(run_info["run_parameters"][5], {"name": "train_epochs", "float_value": 100.00}) def test_collect_tensorflow_environment_variables(self): os.environ["TF_ENABLE_WINOGRAD_NONFUSED"] = "1" os.environ["TF_OTHER"] = "2" os.environ["OTHER"] = "3" run_info = {} logger._collect_tensorflow_environment_variables(run_info) self.assertIsNotNone(run_info["tensorflow_environment_variables"]) expected_tf_envs = [ {"name": "TF_ENABLE_WINOGRAD_NONFUSED", "value": "1"}, {"name": "TF_OTHER", "value": "2"}, ] self.assertEqual(run_info["tensorflow_environment_variables"], expected_tf_envs) def test_collect_memory_info(self): run_info = {"machine_config": {}} logger._collect_memory_info(run_info) self.assertIsNotNone(run_info["machine_config"]["memory_total"]) self.assertIsNotNone(run_info["machine_config"]["memory_available"]) @unittest.skipIf(bigquery is None, "Bigquery dependency is not installed.") class BenchmarkBigQueryLoggerTest(tf.test.TestCase): def setUp(self): super(BenchmarkBigQueryLoggerTest, self).setUp() # Avoid pulling extra env vars from test environment which affects the test # result, eg. Kokoro test has a TF_PKG env which affect the test case # test_collect_tensorflow_environment_variables() self.original_environ = dict(os.environ) os.environ.clear() self.mock_bq_uploader = mock.MagicMock() self.logger = logger.BenchmarkBigQueryLogger( self.mock_bq_uploader, "dataset", "run_table", "run_status_table", "metric_table", "run_id") def tearDown(self): super(BenchmarkBigQueryLoggerTest, self).tearDown() tf.io.gfile.rmtree(self.get_temp_dir()) os.environ.clear() os.environ.update(self.original_environ) def test_log_metric(self): self.logger.log_metric( "accuracy", 0.999, global_step=1e4, extras={"name": "value"}) expected_metric_json = [{ "name": "accuracy", "value": 0.999, "unit": None, "global_step": 1e4, "timestamp": mock.ANY, "extras": [{"name": "name", "value": "value"}] }] # log_metric will call upload_benchmark_metric_json in a separate thread. # Give it some grace period for the new thread before assert. time.sleep(1) self.mock_bq_uploader.upload_benchmark_metric_json.assert_called_once_with( "dataset", "metric_table", "run_id", expected_metric_json) @mock.patch("official.utils.logs.logger._gather_run_info") def test_log_run_info(self, mock_gather_run_info): run_info = {"model_name": "model_name", "dataset": "dataset_name", "run_info": "run_value"} mock_gather_run_info.return_value = run_info self.logger.log_run_info("model_name", "dataset_name", {}) # log_metric will call upload_benchmark_metric_json in a separate thread. # Give it some grace period for the new thread before assert. time.sleep(1) self.mock_bq_uploader.upload_benchmark_run_json.assert_called_once_with( "dataset", "run_table", "run_id", run_info) self.mock_bq_uploader.insert_run_status.assert_called_once_with( "dataset", "run_status_table", "run_id", "running") def test_on_finish(self): self.logger.on_finish(logger.RUN_STATUS_SUCCESS) # log_metric will call upload_benchmark_metric_json in a separate thread. # Give it some grace period for the new thread before assert. time.sleep(1) self.mock_bq_uploader.update_run_status.assert_called_once_with( "dataset", "run_status_table", "run_id", logger.RUN_STATUS_SUCCESS) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/logs/logger_test.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/accelerator/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions specific to running TensorFlow on TPUs.""" import tensorflow as tf # "local" is a magic word in the TPU cluster resolver; it informs the resolver # to use the local CPU as the compute device. This is useful for testing and # debugging; the code flow is ostensibly identical, but without the need to # actually have a TPU on the other end. LOCAL = "local" def construct_scalar_host_call(metric_dict, model_dir, prefix=""): """Construct a host call to log scalars when training on TPU. Args: metric_dict: A dict of the tensors to be logged. model_dir: The location to write the summary. prefix: The prefix (if any) to prepend to the metric names. Returns: A tuple of (function, args_to_be_passed_to_said_function) """ # type: (dict, str) -> (function, list) metric_names = list(metric_dict.keys()) def host_call_fn(global_step, *args): """Training host call. Creates scalar summaries for training metrics. This function is executed on the CPU and should not directly reference any Tensors in the rest of the `model_fn`. To pass Tensors from the model to the `metric_fn`, provide as part of the `host_call`. See https://www.tensorflow.org/api_docs/python/tf/contrib/tpu/TPUEstimatorSpec for more information. Arguments should match the list of `Tensor` objects passed as the second element in the tuple passed to `host_call`. Args: global_step: `Tensor with shape `[batch]` for the global_step *args: Remaining tensors to log. Returns: List of summary ops to run on the CPU host. """ step = global_step[0] with tf.contrib.summary.create_file_writer( logdir=model_dir, filename_suffix=".host_call").as_default(): with tf.contrib.summary.always_record_summaries(): for i, name in enumerate(metric_names): tf.contrib.summary.scalar(prefix + name, args[i][0], step=step) return tf.contrib.summary.all_summary_ops() # To log the current learning rate, and gradient norm for Tensorboard, the # summary op needs to be run on the host CPU via host_call. host_call # expects [batch_size, ...] Tensors, thus reshape to introduce a batch # dimension. These Tensors are implicitly concatenated to # [params['batch_size']]. global_step_tensor = tf.reshape( tf.compat.v1.train.get_or_create_global_step(), [1]) other_tensors = [tf.reshape(metric_dict[key], [1]) for key in metric_names] return host_call_fn, [global_step_tensor] + other_tensors def embedding_matmul(embedding_table, values, mask, name="embedding_matmul"): """Performs embedding lookup via a matmul. The matrix to be multiplied by the embedding table Tensor is constructed via an implementation of scatter based on broadcasting embedding indices and performing an equality comparison against a broadcasted range(num_embedding_table_rows). All masked positions will produce an embedding vector of zeros. Args: embedding_table: Tensor of embedding table. Rank 2 (table_size x embedding dim) values: Tensor of embedding indices. Rank 2 (batch x n_indices) mask: Tensor of mask / weights. Rank 2 (batch x n_indices) name: Optional name scope for created ops Returns: Rank 3 tensor of embedding vectors. """ with tf.name_scope(name): n_embeddings = embedding_table.get_shape().as_list()[0] batch_size, padded_size = values.shape.as_list() emb_idcs = tf.tile( tf.reshape(values, (batch_size, padded_size, 1)), (1, 1, n_embeddings)) emb_weights = tf.tile( tf.reshape(mask, (batch_size, padded_size, 1)), (1, 1, n_embeddings)) col_idcs = tf.tile( tf.reshape(tf.range(n_embeddings), (1, 1, n_embeddings)), (batch_size, padded_size, 1)) one_hot = tf.where( tf.equal(emb_idcs, col_idcs), emb_weights, tf.zeros((batch_size, padded_size, n_embeddings))) return tf.tensordot(one_hot, embedding_table, 1)
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/accelerator/tpu.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test TPU optimized matmul embedding.""" import numpy as np import tensorflow as tf from official.utils.accelerator import tpu as tpu_utils TEST_CASES = [ dict(embedding_dim=256, vocab_size=1000, sequence_length=64, batch_size=32, seed=54131), dict(embedding_dim=8, vocab_size=15, sequence_length=12, batch_size=256, seed=536413), dict(embedding_dim=2048, vocab_size=512, sequence_length=50, batch_size=8, seed=35124) ] class TPUBaseTester(tf.test.TestCase): def construct_embedding_and_values(self, embedding_dim, vocab_size, sequence_length, batch_size, seed): np.random.seed(seed) embeddings = np.random.random(size=(vocab_size, embedding_dim)) embedding_table = tf.convert_to_tensor(value=embeddings, dtype=tf.float32) tokens = np.random.randint(low=1, high=vocab_size-1, size=(batch_size, sequence_length)) for i in range(batch_size): tokens[i, np.random.randint(low=0, high=sequence_length-1):] = 0 values = tf.convert_to_tensor(value=tokens, dtype=tf.int32) mask = tf.cast(tf.not_equal(values, 0), dtype=tf.float32) return embedding_table, values, mask def _test_embedding(self, embedding_dim, vocab_size, sequence_length, batch_size, seed): """Test that matmul embedding matches embedding lookup (gather).""" with self.test_session(): embedding_table, values, mask = self.construct_embedding_and_values( embedding_dim=embedding_dim, vocab_size=vocab_size, sequence_length=sequence_length, batch_size=batch_size, seed=seed ) embedding = (tf.nn.embedding_lookup(params=embedding_table, ids=values) * tf.expand_dims(mask, -1)) matmul_embedding = tpu_utils.embedding_matmul( embedding_table=embedding_table, values=values, mask=mask) self.assertAllClose(embedding, matmul_embedding) def _test_masking(self, embedding_dim, vocab_size, sequence_length, batch_size, seed): """Test that matmul embedding properly zeros masked positions.""" with self.test_session(): embedding_table, values, mask = self.construct_embedding_and_values( embedding_dim=embedding_dim, vocab_size=vocab_size, sequence_length=sequence_length, batch_size=batch_size, seed=seed ) matmul_embedding = tpu_utils.embedding_matmul( embedding_table=embedding_table, values=values, mask=mask) self.assertAllClose(matmul_embedding, matmul_embedding * tf.expand_dims(mask, -1)) def test_embedding_0(self): self._test_embedding(**TEST_CASES[0]) def test_embedding_1(self): self._test_embedding(**TEST_CASES[1]) def test_embedding_2(self): self._test_embedding(**TEST_CASES[2]) def test_masking_0(self): self._test_masking(**TEST_CASES[0]) def test_masking_1(self): self._test_masking(**TEST_CASES[1]) def test_masking_2(self): self._test_masking(**TEST_CASES[2]) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/accelerator/tpu_test.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/export/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Convenience functions for exporting models as SavedModels or other types.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def build_tensor_serving_input_receiver_fn(shape, dtype=tf.float32, batch_size=1): """Returns a input_receiver_fn that can be used during serving. This expects examples to come through as float tensors, and simply wraps them as TensorServingInputReceivers. Arguably, this should live in tf.estimator.export. Testing here first. Args: shape: list representing target size of a single example. dtype: the expected datatype for the input example batch_size: number of input tensors that will be passed for prediction Returns: A function that itself returns a TensorServingInputReceiver. """ def serving_input_receiver_fn(): # Prep a placeholder where the input example will be fed in features = tf.compat.v1.placeholder( dtype=dtype, shape=[batch_size] + shape, name='input_tensor') return tf.estimator.export.TensorServingInputReceiver( features=features, receiver_tensors=features) return serving_input_receiver_fn
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/export/export.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for exporting utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-bad-import-order from official.utils.export import export class ExportUtilsTest(tf.test.TestCase): """Tests for the ExportUtils.""" def test_build_tensor_serving_input_receiver_fn(self): receiver_fn = export.build_tensor_serving_input_receiver_fn(shape=[4, 5]) with tf.Graph().as_default(): receiver = receiver_fn() self.assertIsInstance( receiver, tf.estimator.export.TensorServingInputReceiver) self.assertIsInstance(receiver.features, tf.Tensor) self.assertEqual(receiver.features.shape, tf.TensorShape([1, 4, 5])) self.assertEqual(receiver.features.dtype, tf.float32) self.assertIsInstance(receiver.receiver_tensors, dict) # Note that Python 3 can no longer index .values() directly; cast to list. self.assertEqual(list(receiver.receiver_tensors.values())[0].shape, tf.TensorShape([1, 4, 5])) def test_build_tensor_serving_input_receiver_fn_batch_dtype(self): receiver_fn = export.build_tensor_serving_input_receiver_fn( shape=[4, 5], dtype=tf.int8, batch_size=10) with tf.Graph().as_default(): receiver = receiver_fn() self.assertIsInstance( receiver, tf.estimator.export.TensorServingInputReceiver) self.assertIsInstance(receiver.features, tf.Tensor) self.assertEqual(receiver.features.shape, tf.TensorShape([10, 4, 5])) self.assertEqual(receiver.features.dtype, tf.int8) self.assertIsInstance(receiver.receiver_tensors, dict) # Note that Python 3 can no longer index .values() directly; cast to list. self.assertEqual(list(receiver.receiver_tensors.values())[0].shape, tf.TensorShape([10, 4, 5])) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/export/export_test.py
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/data/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Convenience functions for managing dataset file buffers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import atexit import multiprocessing import os import tempfile import uuid import numpy as np import six import tensorflow as tf class _GarbageCollector(object): """Deletes temporary buffer files at exit. Certain tasks (such as NCF Recommendation) require writing buffers to temporary files. (Which may be local or distributed.) It is not generally safe to delete these files during operation, but they should be cleaned up. This class keeps track of temporary files created, and deletes them at exit. """ def __init__(self): self.temp_buffers = [] def register(self, filepath): self.temp_buffers.append(filepath) def purge(self): try: for i in self.temp_buffers: if tf.io.gfile.exists(i): tf.io.gfile.remove(i) tf.compat.v1.logging.info("Buffer file {} removed".format(i)) except Exception as e: tf.compat.v1.logging.error("Failed to cleanup buffer files: {}".format(e)) _GARBAGE_COLLECTOR = _GarbageCollector() atexit.register(_GARBAGE_COLLECTOR.purge) _ROWS_PER_CORE = 50000 def write_to_temp_buffer(dataframe, buffer_folder, columns): if buffer_folder is None: _, buffer_path = tempfile.mkstemp() else: tf.io.gfile.makedirs(buffer_folder) buffer_path = os.path.join(buffer_folder, str(uuid.uuid4())) _GARBAGE_COLLECTOR.register(buffer_path) return write_to_buffer(dataframe, buffer_path, columns) def iter_shard_dataframe(df, rows_per_core=1000): """Two way shard of a dataframe. This function evenly shards a dataframe so that it can be mapped efficiently. It yields a list of dataframes with length equal to the number of CPU cores, with each dataframe having rows_per_core rows. (Except for the last batch which may have fewer rows in the dataframes.) Passing vectorized inputs to a multiprocessing pool is much more effecient than iterating through a dataframe in serial and passing a list of inputs to the pool. Args: df: Pandas dataframe to be sharded. rows_per_core: Number of rows in each shard. Returns: A list of dataframe shards. """ n = len(df) num_cores = min([multiprocessing.cpu_count(), n]) num_blocks = int(np.ceil(n / num_cores / rows_per_core)) max_batch_size = num_cores * rows_per_core for i in range(num_blocks): min_index = i * max_batch_size max_index = min([(i + 1) * max_batch_size, n]) df_shard = df[min_index:max_index] n_shard = len(df_shard) boundaries = np.linspace(0, n_shard, num_cores + 1, dtype=np.int64) yield [df_shard[boundaries[j]:boundaries[j+1]] for j in range(num_cores)] def _shard_dict_to_examples(shard_dict): """Converts a dict of arrays into a list of example bytes.""" n = [i for i in shard_dict.values()][0].shape[0] feature_list = [{} for _ in range(n)] for column, values in shard_dict.items(): if len(values.shape) == 1: values = np.reshape(values, values.shape + (1,)) if values.dtype.kind == "i": feature_map = lambda x: tf.train.Feature( int64_list=tf.train.Int64List(value=x)) elif values.dtype.kind == "f": feature_map = lambda x: tf.train.Feature( float_list=tf.train.FloatList(value=x)) else: raise ValueError("Invalid dtype") for i in range(n): feature_list[i][column] = feature_map(values[i]) examples = [ tf.train.Example(features=tf.train.Features(feature=example_features)) for example_features in feature_list ] return [e.SerializeToString() for e in examples] def _serialize_shards(df_shards, columns, pool, writer): """Map sharded dataframes to bytes, and write them to a buffer. Args: df_shards: A list of pandas dataframes. (Should be of similar size) columns: The dataframe columns to be serialized. pool: A multiprocessing pool to serialize in parallel. writer: A TFRecordWriter to write the serialized shards. """ # Pandas does not store columns of arrays as nd arrays. stack remedies this. map_inputs = [{c: np.stack(shard[c].values, axis=0) for c in columns} for shard in df_shards] # Failure within pools is very irksome. Thus, it is better to thoroughly check # inputs in the main process. for inp in map_inputs: # Check that all fields have the same number of rows. assert len(set([v.shape[0] for v in inp.values()])) == 1 for val in inp.values(): assert hasattr(val, "dtype") assert hasattr(val.dtype, "kind") assert val.dtype.kind in ("i", "f") assert len(val.shape) in (1, 2) shard_bytes = pool.map(_shard_dict_to_examples, map_inputs) for s in shard_bytes: for example in s: writer.write(example) def write_to_buffer(dataframe, buffer_path, columns, expected_size=None): """Write a dataframe to a binary file for a dataset to consume. Args: dataframe: The pandas dataframe to be serialized. buffer_path: The path where the serialized results will be written. columns: The dataframe columns to be serialized. expected_size: The size in bytes of the serialized results. This is used to lazily construct the buffer. Returns: The path of the buffer. """ if (tf.io.gfile.exists(buffer_path) and tf.io.gfile.stat(buffer_path).length > 0): actual_size = tf.io.gfile.stat(buffer_path).length if expected_size == actual_size: return buffer_path tf.compat.v1.logging.warning( "Existing buffer {} has size {}. Expected size {}. Deleting and " "rebuilding buffer.".format(buffer_path, actual_size, expected_size)) tf.io.gfile.remove(buffer_path) if dataframe is None: raise ValueError( "dataframe was None but a valid existing buffer was not found.") tf.io.gfile.makedirs(os.path.split(buffer_path)[0]) tf.compat.v1.logging.info("Constructing TFRecordDataset buffer: {}" .format(buffer_path)) count = 0 pool = multiprocessing.Pool(multiprocessing.cpu_count()) try: with tf.io.TFRecordWriter(buffer_path) as writer: for df_shards in iter_shard_dataframe(df=dataframe, rows_per_core=_ROWS_PER_CORE): _serialize_shards(df_shards, columns, pool, writer) count += sum([len(s) for s in df_shards]) tf.compat.v1.logging.info("{}/{} examples written." .format(str(count).ljust(8), len(dataframe))) finally: pool.terminate() tf.compat.v1.logging.info("Buffer write complete.") return buffer_path
DeepLearningExamples-master
TensorFlow2/LanguageModeling/BERT/official/utils/data/file_io.py