python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pynini from nemo_text_processing.text_normalization.zh.graph_utils import GraphFst, delete_space, generator_main from nemo_text_processing.text_normalization.zh.verbalizers.postprocessor import PostProcessor from nemo_text_processing.text_normalization.zh.verbalizers.verbalize import VerbalizeFst from pynini.lib import pynutil # import logging class VerbalizeFinalFst(GraphFst): """ """ def __init__(self, deterministic: bool = True, cache_dir: str = None, overwrite_cache: bool = False): super().__init__(name="verbalize_final", kind="verbalize", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) far_file = os.path.join(cache_dir, f"zh_tn_{deterministic}_deterministic_verbalizer.far") if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["verbalize"] else: token_graph = VerbalizeFst(deterministic=deterministic) token_verbalizer = ( pynutil.delete("tokens {") + delete_space + token_graph.fst + delete_space + pynutil.delete(" }") ) verbalizer = pynini.closure(delete_space + token_verbalizer + delete_space) postprocessor = PostProcessor(remove_puncts=False, to_upper=False, to_lower=False, tag_oov=False,) self.fst = (verbalizer @ postprocessor.fst).optimize() if far_file: generator_main(far_file, {"verbalize": self.fst})
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/verbalize_final.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class DecimalFst(GraphFst): """ Finite state transducer for verbalizing decimal, e.g. decimal { integer_part: "零" fractional_part: "五" } -> 零点五 decimal { integer_part: "零" fractional_part: "五" quantity: "万" } -> 零点五万 decimal { positive: "正" integer_part: "零" fractional_part: "五" quantity: "万" } -> 正零点五万 """ def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="decimal", kind="verbalize", deterministic=deterministic) integer = ( pynutil.delete("integer_part:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) fractional = ( pynutil.delete("fractional_part:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) quantity = ( pynutil.delete("quantity:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) sign = pynini.closure( pynutil.delete("negative:") + delete_space + pynutil.delete("\"") + pynini.accep("负") + pynutil.delete("\"") ) graph = integer + delete_space + pynutil.insert("点") + fractional graph_quantity = graph + delete_space + quantity graph_regular = graph | graph_quantity graph_sign = sign + delete_space + graph_regular final_graph = graph_regular | graph_sign self.decimal_component = final_graph delete_tokens = self.delete_tokens(final_graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/decimal.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class MoneyFst(GraphFst): """ Finite state transducer for verbalizing fraction e.g. tokens { money { integer: "二" currency: "$"} } -> 二美元 tokens { money { integer: "三" major_unit: "块"} } -> 三块 tokens { money { currency: "$" integer: "二" } } -> 二美元 """ def __init__(self, decimal: GraphFst, deterministic: bool = True, lm: bool = False): super().__init__(name="money", kind="verbalize", deterministic=deterministic) # components to combine to make graphs number_component = pynutil.delete("integer: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") currency_component = pynutil.delete("currency: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") decimal_component = decimal.decimal_component unit_only_component = ( (pynutil.delete("currency: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"")) | (pynutil.delete("currency_major: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"")) | (pynutil.delete("currency_minor: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"")) ) # graphs graph_regular_money = number_component + delete_space + currency_component graph_unit_money = pynini.closure( (number_component + delete_space + unit_only_component + pynini.closure(delete_space)) ) graph_decimal_money = decimal_component + delete_space + currency_component graph_suffix = ( number_component + delete_space + pynutil.delete("quantity: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") + delete_space + currency_component ) graph = graph_unit_money | graph_regular_money | graph_decimal_money | graph_suffix final_graph = graph delete_tokens = self.delete_tokens(final_graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/money.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst from pynini.lib import pynutil class MathSymbol(GraphFst): ''' tokens { sign: "加" } -> 加 ''' def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="sign", kind="verbalize", deterministic=deterministic) graph = pynutil.delete('score: \"') + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete('\"') self.fst = graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/math_symbol.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class CardinalFst(GraphFst): """ Finite state transducer for verbalizing cardinal, e.g. cardinal { negative: "负" integer: "23" } -> 负二十三 cardinal { integer: "23" } -> 二十三 cardinal { positive: "正" integer: "23" } -> 正二十三 """ def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="cardinal", kind="verbalize", deterministic=deterministic) delete_sign = pynini.cross("negative: \"负\"", "负") | pynini.cross("positive: \"正\"", "正") delete_integer = ( pynutil.delete("integer: ") + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") + delete_space ) delete_mandarin = pynutil.delete("quantity: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") graph_mandarin = (delete_integer + delete_mandarin) | ( delete_sign + delete_space + delete_integer + delete_mandarin ) graph_sign = delete_sign + delete_space + delete_integer final_graph = delete_integer | graph_sign | graph_mandarin delete_tokens = self.delete_tokens(final_graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/cardinal.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class DateFst(GraphFst): """ Finite state transducer classifiying dates, e.g. { date { year: "二零零二" } } -> 二零零二年 { date { year: "二零零二" month: "一" day: "二十八"} } -> 二零零二年一月二十八日 { date { year: "二零零二" month: "二" } } -> 二零零二年二月 { date { month: "二" day: "十一" } } -> 二月十一日 """ def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="date", kind="verbalize", deterministic=deterministic) year_component = ( pynutil.delete("year: ") + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") + pynutil.insert("年") ) month_component = ( pynutil.delete("month: ") + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") + pynutil.insert("月") ) day_component = ( pynutil.delete("day: ") + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") + pynutil.insert("日") ) optional_era = ( pynutil.delete("era: ") + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") ) graph_date = ( pynini.closure(year_component) + pynini.closure(delete_space) + pynini.closure(month_component) + pynini.closure(delete_space) + pynini.closure(day_component) ) graph_date_era = optional_era + delete_space + graph_date graph_date_all = graph_date | graph_date_era # range symbol = pynini.accep("-") | pynini.accep("~") | pynini.accep("——") | pynini.accep("—") ranges = ( pynutil.delete("range: \"") + delete_space + (pynini.closure(NEMO_NOT_QUOTE) | pynini.cross(symbol, "到")) + pynutil.delete("\"") ) graph_range = ( pynini.closure((ranges + delete_space), 0, 1) + graph_date + delete_space + ranges + delete_space + graph_date ) final_graph = graph_date_all | graph_range delete_tokens = self.delete_tokens(final_graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/date.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.zh.graph_utils import NEMO_NOT_QUOTE, GraphFst from pynini.lib import pynutil class Char(GraphFst): ''' tokens { char: "你" } -> 你 ''' def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="char", kind="verbalize", deterministic=deterministic) graph = pynutil.delete("name: \"") + NEMO_NOT_QUOTE + pynutil.delete("\"") self.fst = graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/verbalizers/word.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/char/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/date/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/denylist/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/math/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/time/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/number/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/erhua/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/money/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/zh/data/measure/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright 2015 and onwards Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import string from pathlib import Path from typing import Dict from nemo_text_processing.text_normalization.en.utils import get_abs_path try: import pynini from pynini import Far from pynini.export import export from pynini.examples import plurals from pynini.lib import byte, pynutil, utf8 NEMO_CHAR = utf8.VALID_UTF8_CHAR NEMO_DIGIT = byte.DIGIT NEMO_LOWER = pynini.union(*string.ascii_lowercase).optimize() NEMO_UPPER = pynini.union(*string.ascii_uppercase).optimize() NEMO_ALPHA = pynini.union(NEMO_LOWER, NEMO_UPPER).optimize() NEMO_ALNUM = pynini.union(NEMO_DIGIT, NEMO_ALPHA).optimize() NEMO_HEX = pynini.union(*string.hexdigits).optimize() NEMO_NON_BREAKING_SPACE = u"\u00A0" NEMO_SPACE = " " NEMO_WHITE_SPACE = pynini.union(" ", "\t", "\n", "\r", u"\u00A0").optimize() NEMO_NOT_SPACE = pynini.difference(NEMO_CHAR, NEMO_WHITE_SPACE).optimize() NEMO_NOT_QUOTE = pynini.difference(NEMO_CHAR, r'"').optimize() NEMO_PUNCT = pynini.union(*map(pynini.escape, string.punctuation)).optimize() NEMO_GRAPH = pynini.union(NEMO_ALNUM, NEMO_PUNCT).optimize() NEMO_SIGMA = pynini.closure(NEMO_CHAR) flop_digits = pynini.union( "21", "22", "23", "24", "25", "26", "27", "28", "29", "31", "32", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "48", "49", "51", "52", "53", "54", "55", "56", "57", "58", "59", "61", "62", "63", "64", "65", "66", "67", "68", "69", "71", "72", "73", "74", "75", "76", "77", "78", "79", "81", "82", "83", "84", "85", "86", "87", "88", "89", "91", "92", "93", "94", "95", "96", "97", "98", "99", ) delete_space = pynutil.delete(pynini.closure(NEMO_WHITE_SPACE)) delete_zero_or_one_space = pynutil.delete(pynini.closure(NEMO_WHITE_SPACE, 0, 1)) insert_space = pynutil.insert(" ") insert_and = pynutil.insert("و") delete_extra_space = pynini.cross(pynini.closure(NEMO_WHITE_SPACE, 1), " ") delete_preserve_order = pynini.closure( pynutil.delete(" preserve_order: true") | (pynutil.delete(" field_order: \"") + NEMO_NOT_QUOTE + pynutil.delete("\"")) ) suppletive = pynini.string_file(get_abs_path("data/suppletive.tsv")) # _v = pynini.union("a", "e", "i", "o", "u") _c = pynini.union( "b", "c", "d", "f", "g", "h", "j", "k", "l", "m", "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z" ) _ies = NEMO_SIGMA + _c + pynini.cross("y", "ies") _es = NEMO_SIGMA + pynini.union("s", "sh", "ch", "x", "z") + pynutil.insert("es") _s = NEMO_SIGMA + pynutil.insert("s") graph_plural = plurals._priority_union( suppletive, plurals._priority_union(_ies, plurals._priority_union(_es, _s, NEMO_SIGMA), NEMO_SIGMA), NEMO_SIGMA ).optimize() SINGULAR_TO_PLURAL = graph_plural PLURAL_TO_SINGULAR = pynini.invert(graph_plural) TO_LOWER = pynini.union(*[pynini.cross(x, y) for x, y in zip(string.ascii_uppercase, string.ascii_lowercase)]) TO_UPPER = pynini.invert(TO_LOWER) MIN_NEG_WEIGHT = -0.0001 MIN_POS_WEIGHT = 0.0001 PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): # Create placeholders NEMO_CHAR = None NEMO_DIGIT = None NEMO_LOWER = None NEMO_UPPER = None NEMO_ALPHA = None NEMO_ALNUM = None NEMO_HEX = None NEMO_NON_BREAKING_SPACE = u"\u00A0" NEMO_SPACE = " " NEMO_WHITE_SPACE = None NEMO_NOT_SPACE = None NEMO_NOT_QUOTE = None NEMO_PUNCT = None NEMO_GRAPH = None NEMO_SIGMA = None delete_space = None insert_space = None delete_extra_space = None delete_preserve_order = None suppletive = None # _v = pynini.union("a", "e", "i", "o", "u") _c = None _ies = None _es = None _s = None graph_plural = None SINGULAR_TO_PLURAL = None PLURAL_TO_SINGULAR = None TO_LOWER = None TO_UPPER = None MIN_NEG_WEIGHT = None MIN_POS_WEIGHT = None PYNINI_AVAILABLE = False def generator_main(file_name: str, graphs: Dict[str, 'pynini.FstLike']): """ Exports graph as OpenFst finite state archive (FAR) file with given file name and rule name. Args: file_name: exported file name graphs: Mapping of a rule name and Pynini WFST graph to be exported """ exporter = export.Exporter(file_name) for rule, graph in graphs.items(): exporter[rule] = graph.optimize() exporter.close() logging.info(f'Created {file_name}') def get_plurals(fst): """ Given singular returns plurals Args: fst: Fst Returns plurals to given singular forms """ return SINGULAR_TO_PLURAL @ fst def get_singulars(fst): """ Given plural returns singulars Args: fst: Fst Returns singulars to given plural forms """ return PLURAL_TO_SINGULAR @ fst def convert_space(fst) -> 'pynini.FstLike': """ Converts space to nonbreaking space. Used only in tagger grammars for transducing token values within quotes, e.g. name: "hello kitty" This is making transducer significantly slower, so only use when there could be potential spaces within quotes, otherwise leave it. Args: fst: input fst Returns output fst where breaking spaces are converted to non breaking spaces """ return fst @ pynini.cdrewrite(pynini.cross(NEMO_SPACE, NEMO_NON_BREAKING_SPACE), "", "", NEMO_SIGMA) class GraphFst: """ Base class for all grammar fsts. Args: name: name of grammar class kind: either 'classify' or 'verbalize' deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, name: str, kind: str, deterministic: bool = True): self.name = name self.kind = str self._fst = None self.deterministic = deterministic self.far_path = Path(os.path.dirname(__file__) + '/grammars/' + kind + '/' + name + '.far') if self.far_exist(): self._fst = Far(self.far_path, mode="r", arc_type="standard", far_type="default").get_fst() def far_exist(self) -> bool: """ Returns true if FAR can be loaded """ return self.far_path.exists() @property def fst(self) -> 'pynini.FstLike': return self._fst @fst.setter def fst(self, fst): self._fst = fst def add_tokens(self, fst) -> 'pynini.FstLike': """ Wraps class name around to given fst Args: fst: input fst Returns: Fst: fst """ return pynutil.insert(f"{self.name} {{ ") + fst + pynutil.insert(" }") def delete_tokens(self, fst) -> 'pynini.FstLike': """ Deletes class name wrap around output of given fst Args: fst: input fst Returns: Fst: fst """ res = ( pynutil.delete(f"{self.name}") + delete_space + pynutil.delete("{") + delete_space + fst + delete_space + pynutil.delete("}") ) return res @ pynini.cdrewrite(pynini.cross(u"\u00A0", " "), "", "", NEMO_SIGMA)
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/graph_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from nemo_text_processing.text_normalization.en.taggers.tokenize_and_classify import ClassifyFst from nemo_text_processing.text_normalization.en.verbalizers.verbalize import VerbalizeFst from nemo_text_processing.text_normalization.en.verbalizers.verbalize_final import VerbalizeFinalFst try: import pynini PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): logging.warning( "`pynini` is not installed ! \n" "Please run the `nemo_text_processing/setup.sh` script" "prior to usage of this toolkit." ) PYNINI_AVAILABLE = False
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os def get_abs_path(rel_path): """ Get absolute path Args: rel_path: relative path to this file Returns absolute path """ return os.path.dirname(os.path.abspath(__file__)) + '/' + rel_path def load_labels(abs_path): """ loads relative path file as dictionary Args: abs_path: absolute path Returns dictionary of mappings """ label_tsv = open(abs_path, encoding="utf-8") labels = list(csv.reader(label_tsv, delimiter="\t")) return labels def augment_labels_with_punct_at_end(labels): """ augments labels: if key ends on a punctuation that value does not have, add a new label where the value maintains the punctuation Args: labels : input labels Returns: additional labels """ res = [] for label in labels: if len(label) > 1: if label[0][-1] == "." and label[1][-1] != ".": res.append([label[0], label[1] + "."] + label[2:]) return res
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( NEMO_ALPHA, NEMO_DIGIT, NEMO_NON_BREAKING_SPACE, GraphFst, convert_space, insert_space, ) from nemo_text_processing.text_normalization.ar.utils import get_abs_path from pynini.lib import pynutil unit_singular = pynini.string_file(get_abs_path("data/measure/measurements.tsv")) class MeasureFst(GraphFst): """ Finite state transducer for classifying measure, e.g. "20%" -> measure { cardinal { integer: "20" } units: "%" } Args: cardinal: CardinalFst decimal: DecimalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, decimal: GraphFst, fraction: GraphFst, deterministic: bool = True): super().__init__(name="measure", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.cardinal_numbers graph_unit = pynini.string_file(get_abs_path("data/measure/measurements.tsv")) graph_unit_singular = convert_space(graph_unit) optional_graph_negative = pynini.closure("-", 0, 1) graph_unit_denominator = pynini.cross("/", "في") + pynutil.insert( NEMO_NON_BREAKING_SPACE ) + graph_unit_singular | graph_unit_singular + pynutil.insert(NEMO_NON_BREAKING_SPACE) + pynini.cross( "/", "في" ) optional_unit_denominator = pynini.closure( pynutil.insert(NEMO_NON_BREAKING_SPACE) + graph_unit_denominator, 0, 1, ) unit_plural = ( pynutil.insert("units: \"") + (graph_unit_singular + (optional_unit_denominator) | graph_unit_denominator) + pynutil.insert("\"") ) unit_singular_graph = ( pynutil.insert("units: \"") + ((graph_unit_singular + optional_unit_denominator) | graph_unit_denominator) + pynutil.insert("\"") ) subgraph_decimal = ( decimal.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural | unit_plural + pynini.closure(pynutil.delete(" "), 0, 1) + insert_space + decimal.fst ) subgraph_cardinal = ( (optional_graph_negative + (pynini.closure(NEMO_DIGIT) - "1")) @ cardinal.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural | unit_plural + pynini.closure(pynutil.delete(" "), 0, 1) + insert_space + (optional_graph_negative + (pynini.closure(NEMO_DIGIT) - "1")) @ cardinal.fst ) subgraph_cardinal |= ( (optional_graph_negative + pynini.accep("1")) @ cardinal.fst # @ pynini.cdrewrite(pynini.cross("واحد", ""), "", "", NEMO_SIGMA) + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_singular_graph ) subgraph_fraction = fraction.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural subgraph_fraction |= unit_plural + pynini.closure(pynutil.delete(" "), 0, 1) + insert_space + fraction.fst cardinal_dash_alpha = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.delete('-') + pynutil.insert("\" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) alpha_dash_cardinal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" }") ) decimal_dash_alpha = ( pynutil.insert("decimal { ") + decimal.final_graph_decimal + pynutil.delete('-') + pynutil.insert(" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) decimal_times = ( pynutil.insert("decimal { ") + decimal.final_graph_decimal + pynutil.insert(" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) cardinal_times = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) alpha_dash_decimal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" decimal { ") + decimal.final_graph_decimal + pynutil.insert(" }") ) final_graph = ( subgraph_decimal | subgraph_cardinal | cardinal_dash_alpha | alpha_dash_cardinal | decimal_dash_alpha | decimal_times | alpha_dash_decimal | subgraph_fraction | cardinal_times ) final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/measure.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import GraphFst from nemo_text_processing.text_normalization.ar.utils import get_abs_path from pynini.lib import pynutil class FractionFst(GraphFst): """ Finite state transducer for classifying fraction "1 1/2" -> tokens { fraction { integer_part: "واحد" numerator: "واحد" denominator: "نص" } } Args: cardinal: cardinal fst """ def __init__(self, cardinal): super().__init__(name="fraction", kind="classify") cardinal_graph = cardinal.cardinal_numbers digit_one = pynini.accep("1") digit_two = pynini.accep("2") digit_three_to_ten = pynini.union("3", "4", "5", "6", "7", "8", "9", "10") digit_one_to_ten = pynini.union("1", "2", "3", "4", "5", "6", "7", "8", "9", "10") graph_ones = pynini.string_file(get_abs_path("data/number/fraction_singular.tsv")).optimize() graph_dual = pynini.string_file(get_abs_path("data/number/fraction_dual.tsv")).optimize() graph_plural = pynini.string_file(get_abs_path("data/number/fraction_plural.tsv")).optimize() integer = pynutil.insert("integer_part: \"") + cardinal_graph + pynutil.insert("\"") dividor = pynini.cross("/", "\" ") | pynini.cross(" / ", "\" ") graph_numerator = pynutil.insert("numerator: \"") + cardinal_graph denominator_singual = pynutil.insert("denominator: \"") + digit_one_to_ten @ graph_ones + pynutil.insert("\"") denominator_dual = pynutil.insert("denominator: \"") + digit_one_to_ten @ graph_dual + pynutil.insert("\"") denominator_plural = pynutil.insert("denominator: \"") + digit_one_to_ten @ graph_plural + pynutil.insert("\"") numerator_one = digit_one @ graph_numerator + dividor + denominator_singual numerator_two = digit_two @ graph_numerator + dividor + denominator_dual numerator_three_to_ten = digit_three_to_ten @ graph_numerator + dividor + denominator_plural numerator_more_than_ten = ( graph_numerator + dividor + pynutil.insert("denominator: \"") + cardinal_graph + pynutil.insert("\"") ) fraction_graph = ( numerator_one | numerator_two | numerator_three_to_ten | pynutil.add_weight(numerator_more_than_ten, 0.001) ) graph = pynini.closure(integer + pynini.accep(" "), 0, 1) + (fraction_graph) graph |= pynini.closure(integer + (pynini.accep(" ") | pynutil.insert(" ")), 0, 1) + pynini.compose( pynini.string_file(get_abs_path("data/number/fraction.tsv")), (fraction_graph) ) self.graph = graph final_graph = self.add_tokens(self.graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/fraction.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( NEMO_CHAR, NEMO_DIGIT, GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.ar.taggers.cardinal import CardinalFst from nemo_text_processing.text_normalization.ar.taggers.decimal import DecimalFst from nemo_text_processing.text_normalization.ar.taggers.fraction import FractionFst from nemo_text_processing.text_normalization.ar.taggers.measure import MeasureFst from nemo_text_processing.text_normalization.ar.taggers.money import MoneyFst from nemo_text_processing.text_normalization.ar.taggers.word import WordFst from nemo_text_processing.text_normalization.en.taggers.punctuation import PunctuationFst from pynini.lib import pynutil class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence, that is lower cased. For deployment, this grammar will be compiled and exported to OpenFst Finite State Archive (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files whitelist: path to a file with whitelist replacements """ def __init__( self, input_case: str, deterministic: bool = False, cache_dir: str = None, overwrite_cache: bool = False, whitelist: str = None, ): super().__init__(name="tokenize_and_classify", kind="classify") far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) whitelist_file = os.path.basename(whitelist) if whitelist else "" far_file = os.path.join( cache_dir, f"_{input_case}_ar_tn_{deterministic}_deterministic{whitelist_file}.far" ) if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["tokenize_and_classify"] no_digits = pynini.closure(pynini.difference(NEMO_CHAR, NEMO_DIGIT)) self.fst_no_digits = pynini.compose(self.fst, no_digits).optimize() logging.info(f"ClassifyFst.fst was restored from {far_file}.") else: logging.info(f"Creating ClassifyFst grammars. This might take some time...") self.cardinal = CardinalFst() cardinal_graph = self.cardinal.fst self.decimal = DecimalFst(cardinal=self.cardinal, deterministic=deterministic) decimal_graph = self.decimal.fst self.fraction = FractionFst(cardinal=self.cardinal) fraction_graph = self.fraction.fst self.money = MoneyFst(cardinal=self.cardinal) money_graph = self.money.fst self.measure = MeasureFst( cardinal=self.cardinal, decimal=self.decimal, fraction=self.fraction, deterministic=deterministic ) measure_graph = self.measure.fst word_graph = WordFst(deterministic=deterministic).fst punct_graph = PunctuationFst(deterministic=deterministic).fst classify = ( pynutil.add_weight(cardinal_graph, 1.1) | pynutil.add_weight(decimal_graph, 1.1) | pynutil.add_weight(fraction_graph, 1.0) | pynutil.add_weight(money_graph, 1.0) | pynutil.add_weight(measure_graph, 1.0) ) classify |= pynutil.add_weight(word_graph, 100) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=1.1) + pynutil.insert(" }") token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = token_plus_punct + pynini.closure(pynutil.add_weight(delete_extra_space, 1.1) + token_plus_punct) graph = delete_space + graph + delete_space self.fst = graph.optimize() no_digits = pynini.closure(pynini.difference(NEMO_CHAR, NEMO_DIGIT)) self.fst_no_digits = pynini.compose(self.fst, no_digits).optimize() if far_file: generator_main(far_file, {"tokenize_and_classify": self.fst}) logging.info(f"ClassifyFst grammars are saved to {far_file}.")
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/tokenize_and_classify.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pynini from nemo_text_processing.inverse_text_normalization.en.taggers.tokenize_and_classify import ClassifyFst from nemo_text_processing.inverse_text_normalization.en.verbalizers.verbalize import VerbalizeFst from nemo_text_processing.inverse_text_normalization.en.verbalizers.verbalize_final import VerbalizeFinalFst
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import NEMO_DIGIT, NEMO_SPACE, GraphFst, insert_space from nemo_text_processing.text_normalization.ar.utils import get_abs_path from pynini.lib import pynutil def get_quantity(decimal: "pynini.FstLike", cardinal_up_to_hundred: "pynini.FstLike") -> "pynini.FstLike": """ Returns FST that transforms either a cardinal or decimal followed by a quantity into a numeral, e.g. 5 مليون -> integer_part: "خمسة" quantity: "مليون" e.g. 5.4 مليون -> integer_part: "خمسة" fractional_part: "اربعة من عشرة" quantity: "مليون" Args: decimal: decimal FST cardinal_up_to_hundred: cardinal FST """ numbers = cardinal_up_to_hundred res = ( pynutil.insert('integer_part: "') + numbers + pynutil.insert('"') + pynini.accep(" ") + pynutil.insert('quantity: "') + quantities + pynutil.insert('"') ) res |= decimal + pynini.accep(" ") + pynutil.insert('quantity: "') + quantities + pynutil.insert('"') return res class DecimalFst(GraphFst): """ Finite state transducer for classifying decimal, e.g. 321.7 --> ثلاث مئة وواحد وعشرون وسبعة من عشرة -321.7 -> decimal { negative: "true" integer_part: "321" fractional_part: ".7" } cardinal: CardinalFst """ def __init__(self, cardinal: GraphFst, deterministic: bool): super().__init__(name="decimal", kind="classify", deterministic=deterministic) integer_part = cardinal.cardinal_numbers cardinal_numbers_with_leading_zeros = cardinal.cardinal_numbers_with_leading_zeros self.integer_part = pynini.closure(integer_part, 0, 1) self.seperator = pynini.string_map([(".", "و"), (",", "و")]) add_preposition = pynutil.insert(" من ") graph_fractional = NEMO_DIGIT @ cardinal_numbers_with_leading_zeros + add_preposition + pynutil.insert("عشرة") graph_fractional |= ( (NEMO_DIGIT + NEMO_DIGIT) @ cardinal_numbers_with_leading_zeros + add_preposition + pynutil.insert("مئة") ) graph_fractional |= ( (NEMO_DIGIT + NEMO_DIGIT + NEMO_DIGIT) @ cardinal_numbers_with_leading_zeros + add_preposition + pynutil.insert("ألف") ) graph_fractional |= ( (NEMO_DIGIT + NEMO_DIGIT + NEMO_DIGIT + NEMO_DIGIT) @ cardinal_numbers_with_leading_zeros + add_preposition + pynutil.insert("عشرة آلاف") ) graph_integer = pynutil.insert('integer_part: "') + self.integer_part + pynutil.insert('" ') # to parse something like ,50 alone as well graph_integer_or_none = graph_integer | pynutil.insert('integer_part: "0" ', weight=0.001) self.optional_quantity = pynini.string_file(get_abs_path("data/number/quantities.tsv")).optimize() self.graph_fractional = graph_fractional graph_fractional = ( pynutil.insert('fractional_part: "') + self.seperator + graph_fractional + pynutil.insert('"') ) optional_quantity = pynini.closure( (pynutil.add_weight(pynini.accep(NEMO_SPACE), -0.1) | insert_space) + pynutil.insert('quantity: "') + self.optional_quantity + pynutil.insert('"'), 0, 1, ) self.graph_decimal = self.integer_part + insert_space + self.seperator + graph_fractional self.final_graph_decimal = ( cardinal.optional_minus_graph + graph_integer_or_none + insert_space + graph_fractional + optional_quantity ) self.final_graph = self.add_tokens(self.final_graph_decimal) self.fst = self.final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/decimal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( NEMO_ALPHA, NEMO_DIGIT, NEMO_SIGMA, GraphFst, convert_space, insert_space, ) from nemo_text_processing.text_normalization.ar.utils import get_abs_path, load_labels from pynini.lib import pynutil min_singular = pynini.string_file(get_abs_path("data/money/currency_minor_singular.tsv")) min_plural = pynini.string_file(get_abs_path("data/money/currency_minor_plural.tsv")) maj_singular = pynini.string_file(get_abs_path("data/money/currency_major.tsv")) ar_cur = pynini.string_file((get_abs_path("data/money/local_currency.tsv"))) class MoneyFst(GraphFst): """ Finite state transducer for classifying money, e.g. "$1,99" -> money { integer_part: "سبعة" currency_maj: "دولار" fractional_part: "تسعة وتسعون" currency_min: "سنت" preserve_order: true} "$0,10" -> money { fractional_part: "عشرة" currency_min: "بنسات" preserve_order: true } "$9" -> money { integer_part: "تسعة" currency_maj: "دولار" preserve_order: true} Args: cardinal: CardinalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool = True): super().__init__(name="money", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.cardinal_numbers_with_leading_zeros # graph_decimal_final = final_graph_decimal maj_singular_labels = load_labels(get_abs_path("data/money/currency_major.tsv")) maj_singular_graph = convert_space(maj_singular) maj_plural_graph = maj_singular_graph ar_cur_graph = convert_space(ar_cur) graph_maj_singular = pynutil.insert("currency_maj: \"") + maj_singular_graph + pynutil.insert("\"") graph_maj_plural = pynutil.insert("currency_maj: \"") + maj_plural_graph + pynutil.insert("\"") graph_ar_cur = pynutil.insert("currency_maj: \"") + ar_cur_graph + pynutil.insert("\"") optional_delete_fractional_zeros = pynini.closure( pynutil.delete(".") + pynini.closure(pynutil.delete("0"), 1), 0, 1 ) graph_integer_one = pynutil.insert("integer_part: \"") + pynini.cross("1", "واحد") + pynutil.insert("\"") # only for decimals where third decimal after comma is non-zero or with quantity decimal_delete_last_zeros = ( pynini.closure(NEMO_DIGIT, 1) + pynini.accep(".") + pynini.closure(NEMO_DIGIT, 2) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) decimal_with_quantity = NEMO_SIGMA + NEMO_ALPHA # graph_decimal = ( # graph_maj_plural + insert_space + (decimal_delete_last_zeros | decimal_with_quantity) @ graph_decimal_final # ) graph_integer = ( pynutil.insert("integer_part: \"") + ((NEMO_SIGMA - "1") @ cardinal_graph) + pynutil.insert("\"") ) graph_integer_only = graph_maj_singular + insert_space + graph_integer_one graph_integer_only |= graph_maj_plural + insert_space + graph_integer # For local currency "9د.ك" graph_integer_only_ar = graph_integer + insert_space + graph_ar_cur # graph_decimal_ar = graph_decimal_final + insert_space + graph_ar_cur graph = (graph_integer_only + optional_delete_fractional_zeros) | graph_integer_only_ar # remove trailing zeros of non zero number in the first 2 digits and fill up to 2 digits # e.g. 2000 -> 20, 0200->02, 01 -> 01, 10 -> 10 # not accepted: 002, 00, 0, two_digits_fractional_part = ( pynini.closure(NEMO_DIGIT) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) @ ( (pynutil.delete("0") + (NEMO_DIGIT - "0")) | ((NEMO_DIGIT - "0") + pynutil.insert("0")) | ((NEMO_DIGIT - "0") + NEMO_DIGIT) ) graph_min_singular = pynutil.insert(" currency_min: \"") + min_singular + pynutil.insert("\"") graph_min_plural = pynutil.insert(" currency_min: \"") + min_plural + pynutil.insert("\"") # format ** euro ** cent decimal_graph_with_minor = None graph_with_no_minor = None for curr_symbol, _ in maj_singular_labels: preserve_order = pynutil.insert(" preserve_order: true") integer_plus_maj = graph_integer + insert_space + pynutil.insert(curr_symbol) @ graph_maj_plural integer_plus_maj |= graph_integer_one + insert_space + pynutil.insert(curr_symbol) @ graph_maj_singular # non zero integer part integer_plus_maj = (pynini.closure(NEMO_DIGIT) - "0") @ integer_plus_maj graph_fractional_one = two_digits_fractional_part @ pynini.cross("1", "") graph_fractional_one = pynutil.insert("fractional_part: \"") + graph_fractional_one + pynutil.insert("\"") digits_two_to_ten = pynini.union("2", "3", "4", "5", "6", "7", "8", "9", "10") graph_fractional_up_to_ten = two_digits_fractional_part @ digits_two_to_ten @ cardinal_graph graph_fractional_up_to_ten = ( pynutil.insert("fractional_part: \"") + graph_fractional_up_to_ten + pynutil.insert("\"") ) graph_fractional = ( two_digits_fractional_part @ (pynini.closure(NEMO_DIGIT, 1, 2) - pynini.union("2", "3", "4", "5", "6", "7", "8", "9", "10")) @ cardinal_graph ) graph_fractional = pynutil.insert("fractional_part: \"") + graph_fractional + pynutil.insert("\"") fractional_plus_min = graph_fractional + insert_space + pynutil.insert(curr_symbol) @ graph_min_singular fractional_plus_min |= ( graph_fractional_one + insert_space + pynutil.insert(curr_symbol) @ graph_min_singular ) fractional_plus_min |= ( graph_fractional_up_to_ten + insert_space + pynutil.insert(curr_symbol) @ graph_min_plural ) graph_with_no_minor_curr = integer_plus_maj graph_with_no_minor_curr |= pynutil.add_weight(integer_plus_maj, weight=0.0001,) graph_with_no_minor_curr = pynutil.delete(curr_symbol) + graph_with_no_minor_curr + preserve_order graph_with_no_minor = ( graph_with_no_minor_curr if graph_with_no_minor is None else pynini.union(graph_with_no_minor, graph_with_no_minor_curr) ) decimal_graph_with_minor_curr = integer_plus_maj + pynini.cross(".", " ") + fractional_plus_min decimal_graph_with_minor_curr |= pynutil.add_weight( integer_plus_maj + pynini.cross(".", " ") + pynutil.insert("fractional_part: \"") + two_digits_fractional_part @ cardinal_graph + pynutil.insert("\""), weight=0.0001, ) decimal_graph_with_minor_curr |= pynutil.delete("0.") + fractional_plus_min decimal_graph_with_minor_curr = ( pynutil.delete(curr_symbol) + decimal_graph_with_minor_curr + preserve_order ) decimal_graph_with_minor = ( decimal_graph_with_minor_curr if decimal_graph_with_minor is None else pynini.union(decimal_graph_with_minor, decimal_graph_with_minor_curr) ) final_graph = decimal_graph_with_minor | graph_with_no_minor | graph final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/money.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import GraphFst, flop_digits, insert_and, insert_space from nemo_text_processing.text_normalization.ar.utils import get_abs_path from pynini.lib import pynutil class CardinalFst(GraphFst): """ Finite state transducer for classifying cardinals, e.g. "9837" -> cardinal { integer: "تسعة اَلاف وثمان مئة وسبعة وثلاثون" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self): super().__init__(name="cardinal", kind="classify") # zero graph_zero = pynini.string_file(get_abs_path("data/number/zero.tsv")) # cardinals data files graph_digit = pynini.string_file(get_abs_path("data/number/digit.tsv")) digit_100 = pynini.string_file(get_abs_path("data/number/digit_100.tsv")) digit_1000 = pynini.string_file(get_abs_path("data/number/digit_1000.tsv")) teens = pynini.string_file(get_abs_path("data/number/teens.tsv")) tens = pynini.string_file(get_abs_path("data/number/tens.tsv")) # Grammar for cardinals 10_20_30 etc tens_zero = tens + pynutil.delete("0") # Creating flops for two digit cardinals 34->43 reverse_digits = pynini.string_file(get_abs_path("data/number/flops.tsv")) # Grammar for two digitcardinals graph_flops = flop_digits @ reverse_digits graph_tens_plus1 = graph_digit + insert_space + insert_and + tens graph_tens_plus = graph_flops @ graph_tens_plus1 graph_all = graph_digit | teens | tens_zero | graph_tens_plus graph_two_digits = teens | tens_zero | graph_tens_plus # Grammar for cardinals hundreds one_hundred = pynini.cross("1", "مئة") hundreds_zero = digit_100 + insert_space + pynutil.insert("مئة") + pynutil.delete("00", weight=0.001) hundreds_plus = ( digit_100 + insert_space + pynutil.insert("مئة") + insert_space + insert_and + graph_two_digits | digit_100 + insert_space + pynutil.insert("مئة") + pynutil.delete("0") + insert_space + insert_and + graph_digit ) two_hundreds = pynini.cross("2", "مئتان") graph_one_hundred = one_hundred + pynutil.delete("00", weight=0.001) graph_one_hundred_plus = ( one_hundred + insert_space + insert_and + graph_two_digits | one_hundred + pynutil.delete("0") + insert_space + insert_and + graph_digit ) graph_two_hundreds = ( (two_hundreds + pynutil.delete("00", weight=0.001)) | two_hundreds + insert_space + insert_and + graph_two_digits | two_hundreds + pynutil.delete("0") + insert_space + insert_and + graph_digit ) graph_all_one_hundred = graph_one_hundred | graph_one_hundred_plus graph_all_hundreds = graph_all_one_hundred | graph_two_hundreds | hundreds_zero | hundreds_plus # Grammar for thousands one_thousand = pynini.cross("1", "ألف") thousands_zero = digit_1000 + insert_space + pynutil.insert("اَلاف") + pynutil.delete("000", weight=0.001) thousands_plus = ( digit_1000 + insert_space + pynutil.insert("اَلاف") + insert_space + insert_and + graph_all_hundreds ) thousands_skip_hundreds = ( digit_1000 + insert_space + pynutil.insert("اَلاف") + pynutil.delete("0") + insert_space + insert_and + graph_two_digits | digit_1000 + insert_space + pynutil.insert("اَلاف") + pynutil.delete("00") + insert_space + insert_and + graph_digit ) two_thousands = pynini.cross("2", "ألفان") graph_one_thousand = one_thousand + pynutil.delete("000", weight=0.001) graph_one_thousand_plus = ( one_thousand + insert_space + insert_and + graph_all_hundreds | one_thousand + pynutil.delete("0") + insert_space + insert_and + graph_two_digits | one_thousand + pynutil.delete("00") + insert_space + insert_and + graph_digit ) graph_two_thousands = two_thousands + pynutil.delete("000", weight=0.001) graph_two_thousands_plus = ( two_thousands + insert_space + insert_and + graph_all_hundreds | two_thousands + pynutil.delete("0") + insert_space + insert_and + graph_two_digits | two_thousands + pynutil.delete("00") + insert_space + insert_and + graph_digit ) graph_all_one_thousand = graph_one_thousand | graph_one_thousand_plus graph_all_two_thousands = graph_two_thousands | graph_two_thousands_plus graph_all_thousands = ( graph_all_one_thousand | graph_two_thousands | thousands_zero | thousands_plus | thousands_skip_hundreds | graph_all_two_thousands ) graph = graph_all | graph_all_hundreds | graph_all_thousands | graph_zero self.cardinal_numbers = (graph).optimize() # remove leading zeros leading_zeros = pynini.closure(pynini.cross("0", "")) self.cardinal_numbers_with_leading_zeros = (leading_zeros + self.cardinal_numbers).optimize() self.optional_minus_graph = pynini.closure(pynutil.insert("negative: ") + pynini.cross("-", '"true" '), 0, 1) final_graph = ( self.optional_minus_graph + pynutil.insert('integer: "') + self.cardinal_numbers_with_leading_zeros + pynutil.insert('"') ) final_graph = self.add_tokens(final_graph) # inserts the cardinal tag self.fst = final_graph
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/cardinal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_SPACE, GraphFst from pynini.lib import pynutil class WordFst(GraphFst): """ Finite state transducer for classifying word. e.g. sleep -> tokens { name: "sleep" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="word", kind="classify") word = pynutil.insert("name: \"") + pynini.closure(NEMO_NOT_SPACE, 1) + pynutil.insert("\"") self.fst = word.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/taggers/word.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( NEMO_NOT_QUOTE, GraphFst, delete_extra_space, delete_preserve_order, ) from pynini.lib import pynutil class MeasureFst(GraphFst): """ Finite state transducer for verbalizing measure, e.g. measure { cardinal { integer: "20" } units: "%" } -> "عشرون في المائة" Args: decimal: decimal GraphFst cardinal: cardinal GraphFst fraction: fraction GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, cardinal: GraphFst, fraction: GraphFst, deterministic: bool): super().__init__(name="measure", kind="verbalize", deterministic=deterministic) unit = pynutil.delete("units: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") graph_decimal = decimal.fst graph_cardinal = cardinal.fst graph_fraction = fraction.fst graph = (graph_cardinal | graph_decimal | graph_fraction) + pynini.accep(" ") + unit graph |= (graph_cardinal | graph_decimal | graph_fraction) + delete_extra_space + unit # graph |= unit + delete_extra_space + (graph_cardinal | graph_decimal) graph += delete_preserve_order delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/measure.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import NEMO_NOT_QUOTE, NEMO_SIGMA, GraphFst, insert_space from pynini.lib import pynutil class FractionFst(GraphFst): """ Finite state transducer for verbalizing fraction e.g. tokens { 'fraction { integer_part: "مئة وخمسة" numerator: "ثلاثون" denominator: "سبعة وستون" }' } -> مئة وخمسة و ثلاثون على سبعة وستون """ def __init__(self): super().__init__(name="fraction", kind="verbalize") optional_sign = pynini.closure(pynini.cross("negative: \"true\"", "سالب ") + pynutil.delete(" "), 0, 1) # create unions for special cases denominator_singular = pynini.union("نصف", "ثلث", "ربع", "خمس", "سدس", "سبع", "ثمن", "تسع", "عشر") denominator_dual = pynini.union( "نصفين", "ثلثين", "ربعين", "خمسين", "سدسين", "سبعين", "ثمنين", "تسعين", "عشرين" ) denominator_plural = pynini.union("أخماس", "أرباع", "أثلاث", "أسداس", "أسباع", "أثمان", "أتساع", "أعشار") numerator_three_to_ten = pynini.union("خمسة", "سبعة", "عشرة", "ثلاثة", "أربعة", "ستة", "ثمانية", "تسعة") # filter cases when denominator_singular graph_denominator_singular = ( pynutil.delete("denominator: \"") + denominator_singular @ pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") ) # filter cases when denominator_dual graph_denominator_dual = ( pynutil.delete("denominator: \"") + denominator_dual @ pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") ) # filter cases when denominator_plural graph_denominator_plural = ( pynutil.delete("denominator: \"") + denominator_plural @ pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") ) # integer part integer = pynutil.delete("integer_part: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\" ") # verbalize from integer and one over half --> integer and half e.g واحد ونصف numerator_one = pynutil.delete("numerator: \"واحد\"") + pynutil.delete(" ") + graph_denominator_singular # verbalize from integer and two over half(dual) --> integer and half(dual) e.g. واحد وثلثين numerator_two = pynutil.delete("numerator: \"اثنان\"") + pynutil.delete(" ") + graph_denominator_dual # verbalize from integer and three over thirds(plural) --> integer and three thirds(plural) e.g. واحد وثلاثة أرباع numerator_three_to_ten = ( pynutil.delete("numerator: \"") + numerator_three_to_ten @ pynini.closure(NEMO_NOT_QUOTE) + insert_space + pynutil.delete("\"") + pynutil.delete(" ") + graph_denominator_plural ) # rest of numbers denominator_rest = pynutil.delete("denominator: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") numerator_rest = pynutil.delete("numerator: \"") + (pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\" ")) numerators = numerator_rest + insert_space + pynutil.insert("على ") + denominator_rest fraction = ( numerator_one | numerator_three_to_ten | numerator_two | pynutil.add_weight(numerators, 0.001) ) # apply exceptions first then the rest conjunction = pynutil.insert("و ") integer = pynini.closure(integer + insert_space + conjunction, 0, 1) self.graph = optional_sign + integer + fraction delete_tokens = self.delete_tokens(self.graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/fraction.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.ar.graph_utils import GraphFst from nemo_text_processing.text_normalization.ar.taggers.cardinal import CardinalFst as CardinalTagger from nemo_text_processing.text_normalization.ar.verbalizers.cardinal import CardinalFst from nemo_text_processing.text_normalization.ar.verbalizers.decimal import DecimalFst from nemo_text_processing.text_normalization.ar.verbalizers.fraction import FractionFst from nemo_text_processing.text_normalization.ar.verbalizers.measure import MeasureFst from nemo_text_processing.text_normalization.ar.verbalizers.money import MoneyFst class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finite State Archive (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) cardinal_tagger = CardinalTagger() cardinal = CardinalFst() cardinal_graph = cardinal.fst decimal = DecimalFst() decimal_graph = decimal.fst fraction = FractionFst() fraction_graph = fraction.fst money = MoneyFst() money_graph = money.fst measure = MeasureFst(decimal=decimal, cardinal=cardinal, fraction=fraction, deterministic=deterministic) measure_graph = measure.fst graph = cardinal_graph | decimal_graph | fraction_graph | money_graph | measure_graph self.fst = graph
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/verbalize.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.ar.verbalizers.verbalize import VerbalizeFst from nemo_text_processing.text_normalization.ar.verbalizers.word import WordFst from pynini.lib import pynutil class VerbalizeFinalFst(GraphFst): """ Finite state transducer that verbalizes an entire sentence Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files """ def __init__(self, deterministic: bool = True, cache_dir: str = None, overwrite_cache: bool = False): super().__init__(name="verbalize_final", kind="verbalize", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) far_file = os.path.join(cache_dir, f"ar_tn_{deterministic}_deterministic_verbalizer.far") if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["verbalize"] logging.info(f'VerbalizeFinalFst graph was restored from {far_file}.') else: verbalize = VerbalizeFst(deterministic=deterministic).fst word = WordFst(deterministic=deterministic).fst types = verbalize | word graph = ( pynutil.delete("tokens") + delete_space + pynutil.delete("{") + delete_space + types + delete_space + pynutil.delete("}") ) graph = delete_space + pynini.closure(graph + delete_extra_space) + graph + delete_space self.fst = graph.optimize() if far_file: generator_main(far_file, {"verbalize": self.fst}) logging.info(f"VerbalizeFinalFst grammars are saved to {far_file}.")
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/verbalize_final.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pynini from nemo_text_processing.inverse_text_normalization.en.taggers.tokenize_and_classify import ClassifyFst from nemo_text_processing.inverse_text_normalization.en.verbalizers.verbalize import VerbalizeFst from nemo_text_processing.inverse_text_normalization.en.verbalizers.verbalize_final import VerbalizeFinalFst
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class DecimalFst(GraphFst): """ Finite state transducer for verbalizing decimal, e.g. tokens { decimal { integer_part: "одно целая" fractional_part: "восемь сотых} } -> "одно целая восемь сотых" Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="decimal", kind="verbalize", deterministic=deterministic) optional_sign = pynini.closure(pynini.cross("negative: \"true\" ", "سالب"), 0, 1) integer = pynutil.delete(" \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") integer_part = pynutil.delete("integer_part:") + integer fractional_part = pynutil.delete("fractional_part:") + integer optional_quantity_part = pynini.closure( pynini.accep(" ") + pynutil.delete("quantity: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\""), 0, 1, ) self.graph = ( optional_sign + integer_part + pynini.accep(" ") + fractional_part + optional_quantity_part + delete_space ) delete_tokens = self.delete_tokens(self.graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/decimal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import ( NEMO_NOT_QUOTE, GraphFst, delete_preserve_order, delete_space, ) from pynini.lib import pynutil class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { integer_part: "تسعة" currency_maj: "يورو" preserve_order: true} -> "تسعة يورو" money { integer_part: "تسعة" currency_maj: "دولار" preserve_order: true} -> "تسعة دولار" money { integer_part: "خمسة" currency_maj: "دينار كويتي"} -> "خمسة دينار كويتي" Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="money", kind="verbalize", deterministic=deterministic) keep_space = pynini.accep(" ") maj = pynutil.delete("currency_maj: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") min = pynutil.delete("currency_min: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") fractional_part = ( pynutil.delete("fractional_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) integer_part = pynutil.delete("integer_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") add_and = pynutil.insert(" و") # *** currency_maj graph_integer = maj + keep_space + integer_part # *** currency_maj + (***) (و) *** current_min graph_integer_with_minor = ( integer_part + keep_space + maj + delete_space + add_and + fractional_part + keep_space + delete_space + min + delete_preserve_order ) # this graph fix word order from dollar three (دولار تسعة)--> three dollar (تسعة دولار) graph_integer_no_minor = integer_part + keep_space + maj + delete_space + delete_preserve_order # *** current_min graph_minor = fractional_part + keep_space + delete_space + min + delete_preserve_order graph = graph_integer | graph_integer_with_minor | graph_minor | graph_integer_no_minor delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/money.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst from pynini.lib import pynutil class CardinalFst(GraphFst): """ Finite state transducer for verbalizing cardinals e.g. cardinal { integer: "ستون" } -> "ستون" Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="cardinal", kind="verbalize", deterministic=deterministic) optional_sign = pynini.closure(pynini.cross("negative: \"true\" ", "minus "), 0, 1) self.optional_sign = optional_sign integer = pynini.closure(NEMO_NOT_QUOTE, 1) self.integer = pynutil.delete(" \"") + integer + pynutil.delete("\"") integer = pynutil.delete("integer:") + self.integer self.numbers = integer graph = optional_sign + self.numbers delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/cardinal.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.ar.graph_utils import NEMO_CHAR, NEMO_SIGMA, GraphFst, delete_space from pynini.lib import pynutil class WordFst(GraphFst): """ Finite state transducer for verbalizing word e.g. tokens { name: "sleep" } -> sleep Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="word", kind="verbalize", deterministic=deterministic) chars = pynini.closure(NEMO_CHAR - " ", 1) char = pynutil.delete("name:") + delete_space + pynutil.delete("\"") + chars + pynutil.delete("\"") graph = char @ pynini.cdrewrite(pynini.cross(u"\u00A0", " "), "", "", NEMO_SIGMA) self.fst = graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/verbalizers/word.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/data/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/data/number/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/data/money/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/ar/data/measure/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright 2015 and onwards Google, Inc. # Copyright (c) 2023, Jim O'Regan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import delete_space, insert_space from pynini.lib import byte _ALPHA_UPPER = "AÁBCDEÉFGHIÍJKLMNOÓÖŐPQRSTUÚÜŰVWXYZ" _ALPHA_LOWER = "aábcdeéfghiíjklmnoóöőpqrstuúüűvwxyz" _VOWELS = "AÁEÉIÍOÓÖŐUÚÜŰaáeéiíoóöőuúüű" TO_LOWER = pynini.union(*[pynini.cross(x, y) for x, y in zip(_ALPHA_UPPER, _ALPHA_LOWER)]) TO_UPPER = pynini.invert(TO_LOWER) HU_LOWER = pynini.union(*_ALPHA_LOWER).optimize() HU_UPPER = pynini.union(*_ALPHA_UPPER).optimize() HU_ALPHA = pynini.union(HU_LOWER, HU_UPPER).optimize() HU_ALNUM = pynini.union(byte.DIGIT, HU_ALPHA).optimize() HU_VOWELS = pynini.union(*[x for x in _VOWELS]) ensure_space = pynini.closure(delete_space, 0, 1) + insert_space bos_or_space = pynini.union("[BOS]", " ") eos_or_space = pynini.union("[EOS]", " ")
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/graph_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2023, Jim O'Regan. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os def get_abs_path(rel_path): """ Get absolute path Args: rel_path: relative path to this file Returns absolute path """ return os.path.dirname(os.path.abspath(__file__)) + '/' + rel_path def load_labels(abs_path): """ loads relative path file as dictionary Args: abs_path: absolute path Returns dictionary of mappings """ with open(abs_path) as label_tsv: labels = list(csv.reader(label_tsv, delimiter="\t")) return labels def load_inflection(abs_path): """ loads inflection information Args: abs_path: absolute path Returns dictionary of mappings of word endings to lists of case endings. """ with open(abs_path) as inflection_tsv: items = list(csv.reader(inflection_tsv, delimiter="\t")) inflections = {k[0]: k[1].split(" ") for k in items} return inflections def _modify_ending(outword: str, word: str, form: str) -> str: """ Helper for the inflector. Modifies endings where there is a difference between how they are written for abbreviations, and for full words. Args: outword: the form of the word to be output word: the base form of the word form: the ending to be appended """ if outword == word: return form endings = ["ny", "nny", "ly", "lly", "ev", "év", "út", "ut", "a", "á", "e", "é"] undouble = { "nny": "ny", "lly": "ly", } for ending in endings: if form.startswith(ending): final = "" if ending in undouble: final = undouble[ending] return final + form[len(ending) :] return form def inflect_abbreviation(abbr: str, word: str, singular_only=False): """ For currency symbols, the inflection can either be taken from the underlying final word, or from the letter itself. This (ab)uses naive_inflector to get the letter-based inflection. Args: abbr: the abbreviated base form word: the base (nominative singular) form of the expansion of abbr singular_only: whether or not to add plural forms Returns a list of tuples containing the inflected abbreviation and its expansion. """ abbr_orig = abbr abbr = abbr.lower() if abbr[-1] in "bcdgjptvz": ending = "é" elif abbr[-1] in "aáeéiíoóöőuúüű": ending = abbr[-1] elif abbr[-1] in "flmnrs": ending = "e" + abbr[-1] elif abbr[-1] in "hk": ending = "á" else: return [] word_part = naive_inflector(".", word, singular_only) abbr_part = naive_inflector(abbr_orig, ending, singular_only) word_useful = [x[1] for x in word_part] abbr_useful = [x[0] for x in abbr_part] return zip(abbr_useful, word_useful) def naive_inflector(abbr: str, word: str, singular_only=False): """ Performs naïve inflection of a pair of words: the abbreviation, and its expansion. Possessive forms are omitted, due to the nature of the kinds of words/abbreviations being expanded Args: abbr: the abbreviated base form word: the base (nominative singular) form of the expansion of abbr singular_only: whether or not to add plural forms Returns a list of tuples containing the inflected abbreviation and its expansion. """ singular = load_inflection(get_abs_path("data/inflection/endings.tsv")) plural = load_inflection(get_abs_path("data/inflection/plural_endings.tsv")) lexical = load_inflection(get_abs_path("data/inflection/word_endings.tsv")) keys_sorted = sorted(singular, key=len, reverse=True) def get_kv(): if word in lexical: return (word, lexical[word]) for key in keys_sorted: if word.endswith(key): return (key, singular[key]) raise KeyError(f"Key {key} not found ({word})") forms = [] key, ends = get_kv() outword = word for wordend in ["ny", "ly", "év", "út", "a", "e"]: if outword.endswith(wordend): outword = outword[: -len(wordend)] def tweak(form: str) -> str: return _modify_ending(outword, word, form) if "-" in abbr: abbr = abbr.split("-")[0] for form in ends: forms.append((f"{abbr}-{tweak(form)}", f"{outword}{form}")) if not singular_only: for plural_form in plural[key]: plural_key = plural_form if plural_form == "k": plural_key = key + "k" forms.append((f"{abbr}-{tweak(plural_form)}", f"{outword}{plural_form}")) for form in singular[plural_key]: forms.append((f"{abbr}-{tweak(plural_form)}{form}", f"{outword}{plural_form}{form}")) return forms
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2023, Jim O'Regan. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_DIGIT, NEMO_SPACE, GraphFst, convert_space, insert_space, ) from nemo_text_processing.text_normalization.hu.utils import ( get_abs_path, inflect_abbreviation, load_labels, naive_inflector, ) from pynini.lib import pynutil QUARTERS = {15: "negyed", 30: "fél", 45: "háromnegyed"} def get_all_to_or_from_numbers(): output = {} for num, word in QUARTERS.items(): current_past = [] current_to = [] for i in range(1, 60): if i == num: continue elif i < num: current_to.append((str(i), str(num - i))) else: current_past.append((str(i), str(i - num))) output[word] = {} output[word]["past"] = current_past output[word]["to"] = current_to return output def get_all_to_or_from_fst(cardinal: GraphFst): numbers = get_all_to_or_from_numbers() output = {} for key in numbers: for when in ["past", "to"]: output[key] = {} map = pynini.string_map(numbers[key][when]) output[key][when] = pynini.project(map, "input") @ map @ cardinal.graph return output class TimeFst(GraphFst): """ Finite state transducer for classifying time, e.g. "Délelőtt 9 óra est" -> time { hours: "2" minutes: "15" zone: "e s t"} "9 óra" -> time { hours: "2" } "09:00 óra" -> time { hours: "2" } "02:15:10 óra" -> time { hours: "2" minutes: "15" seconds: "10"} "negyed 2" -> time { minutes: "15" hours: "1" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool = True): super().__init__(name="time", kind="classify", deterministic=deterministic) ora_word = pynini.cross("ó", "óra") | pynini.accep("óra") ora_forms = pynini.string_map(naive_inflector("ó", "óra", True) + [("ó", "óra")]) ora_forms_both = ora_forms | pynini.project(ora_forms, "output") perc_word = pynini.cross("p", "perc") | pynini.accep("perc") perc_forms = pynini.string_map(naive_inflector("p", "perc", True) + [("p", "perc")]) perc_forms_both = perc_forms | pynini.project(perc_forms, "output") # masodperc_word = pynini.cross("mp", "másodperc") | pynini.accep("másodperc") masodperc_forms = pynini.string_map(naive_inflector("mp", "másodperc", True) + [("mp", "másodperc")]) masodperc_forms_both = masodperc_forms | pynini.project(masodperc_forms, "output") final_forms = ora_forms_both | perc_forms_both | masodperc_forms_both final_suffix = pynutil.insert("suffix: \"") + final_forms + pynutil.insert("\"") final_suffix_optional = pynini.closure( pynutil.insert(" suffix: \"") + final_forms + pynutil.insert("\""), 0, 1 ) ora_suffix = pynutil.insert("suffix: \"") + ora_forms_both + pynutil.insert("\"") perc_suffix = pynutil.insert("suffix: \"") + (ora_forms_both | perc_forms_both) + pynutil.insert("\"") time_zone_graph = pynini.string_file(get_abs_path("data/time/time_zone.tsv")) time_zone_entries = load_labels(get_abs_path("data/time/time_zone.tsv")) for entry in time_zone_entries: # Inflect 'a' because there's nothing else meaningful to use inflected = inflect_abbreviation(entry[1], "a", True) mapping = [(x[0].replace(" ", ""), x[0]) for x in inflected] time_zone_graph |= pynini.string_map(mapping) labels_hour = [str(x) for x in range(0, 25)] labels_minute_single = [str(x) for x in range(1, 10)] labels_minute_double = [str(x) for x in range(10, 60)] minutes_to = pynini.string_map([(str(i), str(60 - i)) for i in range(1, 60)]) minutes_inverse = pynini.invert(pynini.project(minutes_to, "input") @ cardinal.graph) self.minute_words_to_words = minutes_inverse @ minutes_to @ cardinal.graph # minute_words_to_words = pynutil.insert("minutes: \"") + self.minute_words_to_words + pynutil.insert("\"") def hours_to_pairs(): for x in range(1, 13): if x == 12: y = 1 else: y = x + 1 yield y, x hours_next = pynini.string_map([(str(x[0]), str(x[1])) for x in hours_to_pairs()]) hours_next_inverse = pynini.invert(pynini.project(hours_next, "input") @ cardinal.graph) self.hour_numbers_to_words = hours_next @ cardinal.graph self.hour_words_to_words = hours_next_inverse @ self.hour_numbers_to_words hour_numbers_to_words = pynutil.insert("hours: \"") + self.hour_numbers_to_words + pynutil.insert("\"") hour_words_to_words = pynutil.insert("hours: \"") + self.hour_words_to_words + pynutil.insert("\"") quarter_map = pynini.string_map([(p[1], str(p[0])) for p in QUARTERS.items()]) quarter_map_graph = pynutil.insert("minutes: \"") + (quarter_map @ cardinal.graph) + pynutil.insert("\"") # quarter_words = pynini.string_map(QUARTERS.values()) # quarter_words_graph = pynutil.insert("minutes: \"") + quarter_words + pynutil.insert("\"") # {quarter} {hour_next} # negyed 2 -> minutes: "tizenöt" hours: "egy" self.quarter_prefixed_next_to_current = quarter_map_graph + NEMO_SPACE + hour_numbers_to_words # For ITN self.quarter_prefixed_next_to_current_words = quarter_map_graph + NEMO_SPACE + hour_words_to_words delete_leading_zero_to_double_digit = (pynutil.delete("0") | (NEMO_DIGIT - "0")) + NEMO_DIGIT optional_delete_leading_zero_to_double_digit = ( pynini.closure(pynutil.delete("0"), 0, 1) | (NEMO_DIGIT - "0") ) + NEMO_DIGIT graph_hour = pynini.union(*labels_hour) @ cardinal.graph graph_minute_single = pynini.union(*labels_minute_single) graph_minute_double = pynini.union(*labels_minute_double) # final_graph_hour_only = pynutil.insert("hours: \"") + graph_hour + pynutil.insert("\"") final_graph_hour = ( pynutil.insert("hours: \"") + delete_leading_zero_to_double_digit @ graph_hour + pynutil.insert("\"") ) final_graph_hour_maybe_zero = ( pynutil.insert("hours: \"") + optional_delete_leading_zero_to_double_digit @ graph_hour + pynutil.insert("\"") ) final_graph_minute = ( pynutil.insert("minutes: \"") + (pynutil.delete("0") + graph_minute_single | graph_minute_double) @ cardinal.graph + pynutil.insert("\"") ) final_graph_minute_maybe_zero = ( pynutil.insert("minutes: \"") + (pynini.closure(pynutil.delete("0"), 0, 1) + graph_minute_single | graph_minute_double) @ cardinal.graph + pynutil.insert("\"") ) final_graph_second = ( pynutil.insert("seconds: \"") + (pynutil.delete("0") + graph_minute_single | graph_minute_double) @ cardinal.graph + pynutil.insert("\"") ) final_graph_second_maybe_zero = ( pynutil.insert("seconds: \"") + (pynini.closure(pynutil.delete("0"), 0, 1) + graph_minute_single | graph_minute_double) @ cardinal.graph + pynutil.insert("\"") ) final_time_zone = ( pynini.accep(" ") + pynutil.insert("zone: \"") + convert_space(time_zone_graph) + pynutil.insert("\"") ) final_time_zone_optional = pynini.closure(final_time_zone, 0, 1,) # This might be better as just the inflected forms hour_only_delimited = ( pynutil.insert("hours: \"") + optional_delete_leading_zero_to_double_digit @ graph_hour + pynutil.insert("\"") + NEMO_SPACE + ora_suffix + pynutil.insert(" preserve_order: true") ) hour_only_delimited |= ( pynutil.insert("hours: \"") + optional_delete_leading_zero_to_double_digit @ graph_hour + pynutil.insert("\"") + NEMO_SPACE + ora_word + final_time_zone + pynutil.insert(" preserve_order: true") ) # 02:30 óra graph_hm = ( final_graph_hour + pynutil.delete(":") + (pynutil.delete("00") | (insert_space + final_graph_minute)) + pynini.closure(ora_forms | perc_forms) + final_time_zone_optional + pynutil.insert(" preserve_order: true") ) graph_hm |= ( final_graph_hour_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + pynutil.delete(ora_word) + NEMO_SPACE + final_graph_minute_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + perc_suffix + pynutil.insert(" preserve_order: true") ) graph_hm |= ( final_graph_hour_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + pynutil.delete(ora_word) + NEMO_SPACE + final_graph_minute_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + perc_word + final_time_zone + pynutil.insert(" preserve_order: true") ) # 10:30:05 Uhr, graph_hms = ( final_graph_hour + pynutil.delete(":") + (pynutil.delete("00") | (insert_space + final_graph_minute)) + pynutil.delete(":") + (pynutil.delete("00") | (insert_space + final_graph_second)) + final_suffix_optional + final_time_zone_optional + pynutil.insert(" preserve_order: true") ) graph_hms |= ( final_graph_hour_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + pynutil.delete(ora_word + NEMO_SPACE) + final_graph_minute_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + pynutil.delete(perc_word + NEMO_SPACE) + final_graph_second_maybe_zero + pynini.closure(NEMO_SPACE, 0, 1) + final_suffix + pynutil.insert(" preserve_order: true") ) # 2 Uhr est graph_h = hour_only_delimited final_graph = (graph_hm | graph_h | graph_hms).optimize() final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/time.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_ALPHA, NEMO_NON_BREAKING_SPACE, GraphFst, convert_space, delete_space, insert_space, ) from nemo_text_processing.text_normalization.hu.taggers.whitelist import load_inflected from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil unit_singular = pynini.string_file(get_abs_path("data/measures/measurements.tsv")) class MeasureFst(GraphFst): """ Finite state transducer for classifying measure, e.g. "2,4 oz" -> measure { cardinal { integer_part: "zwei" fractional_part: "vier" units: "unzen" preserve_order: true } } "1 oz" -> measure { cardinal { integer: "zwei" units: "unze" preserve_order: true } } "1 million oz" -> measure { cardinal { integer: "eins" quantity: "million" units: "unze" preserve_order: true } } This class also converts words containing numbers and letters e.g. "a-8" —> "a acht" e.g. "1,2-a" —> "ein komma zwei a" Args: cardinal: CardinalFst decimal: DecimalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, decimal: GraphFst, fraction: GraphFst, deterministic: bool = True): super().__init__(name="measure", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph graph_unit_singular = convert_space(unit_singular) graph_unit_singular = graph_unit_singular | load_inflected( get_abs_path("data/measures/measurements.tsv"), "lower_cased", False ) optional_graph_negative = pynini.closure(pynini.cross("-", 'negative: "true" '), 0, 1) graph_unit_denominator = ( pynini.cross("/", "per") + pynutil.insert(NEMO_NON_BREAKING_SPACE) + graph_unit_singular ) optional_unit_denominator = pynini.closure( pynutil.insert(NEMO_NON_BREAKING_SPACE) + graph_unit_denominator, 0, 1, ) unit_singular_graph = ( pynutil.insert("units: \"") + ((graph_unit_singular + optional_unit_denominator) | graph_unit_denominator) + pynutil.insert("\"") ) subgraph_decimal = decimal.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_singular_graph subgraph_cardinal = ( pynutil.insert("cardinal { ") + optional_graph_negative + pynutil.insert("integer: \"") + cardinal.graph + delete_space + pynutil.insert("\"") + pynutil.insert(" } ") + unit_singular_graph ) subgraph_fraction = ( fraction.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_singular_graph ) cardinal_dash_alpha = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.delete('-') + pynutil.insert("\" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) alpha_dash_cardinal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" }") ) decimal_dash_alpha = ( pynutil.insert("decimal { ") + decimal.final_graph_wo_negative + pynutil.delete('-') + pynutil.insert(" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) decimal_times = ( pynutil.insert("decimal { ") + decimal.final_graph_wo_negative + pynutil.insert(" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) cardinal_times = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) alpha_dash_decimal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" decimal { ") + decimal.final_graph_wo_negative + pynutil.insert(" }") ) final_graph = ( subgraph_decimal | subgraph_cardinal | cardinal_dash_alpha | alpha_dash_cardinal | decimal_dash_alpha | decimal_times | alpha_dash_decimal | subgraph_fraction | cardinal_times ) final_graph += pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/measure.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import GraphFst from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil fraction_symbols = pynini.string_file(get_abs_path("data/fractions/fraction_symbols.tsv")) class FractionFst(GraphFst): """ Finite state transducer for classifying fraction "23 4/6" -> fraction { integer: "huszonhárom" numerator: "négy" denominator: "hatod" preserve_order: true } Args: cardinal: cardinal GraphFst ordinal: ordinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal, ordinal, deterministic: bool = True): super().__init__(name="fraction", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph self.optional_graph_negative = pynini.closure( pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1 ) self.integer = pynutil.insert("integer_part: \"") + cardinal_graph + pynutil.insert("\"") self.numerator = ( pynutil.insert("numerator: \"") + cardinal_graph + pynini.cross(pynini.union("/", " / "), "\" ") ) self.denominator = pynutil.insert("denominator: \"") + ordinal.fractional + pynutil.insert("\"") fraction = (fraction_symbols @ (self.numerator + self.denominator)) | (self.numerator + self.denominator) self.graph = self.optional_graph_negative + pynini.closure(self.integer + pynini.accep(" "), 0, 1) + fraction graph = self.graph + pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/fraction.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2023, Jim O'Regan for Språkbanken Tal # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_SPACE, GraphFst, delete_extra_space, insert_space, ) from nemo_text_processing.text_normalization.hu.taggers.cardinal import CardinalFst from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil class TelephoneFst(GraphFst): """ tel: + (36) 1 441-4000 Finite state transducer for classifying telephone numbers, e.g. + (36) 1 441-4000 -> { number_part: "plusz harminchat egy négyszáznegyvenegy négyezer" }. Hungarian numbers are written in the following formats: 06 1 XXX XXXX 06 AA XXX-XXX 06 AA XXX-XXXX (mobile phones) See: https://en.wikipedia.org/wiki/Telephone_numbers_in_Hungary Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="telephone", kind="classify", deterministic=deterministic) cardinal = CardinalFst(deterministic) area_codes = pynini.string_file(get_abs_path("data/telephone/area_codes.tsv")) @ cardinal.graph self.area_codes = area_codes country_codes = pynini.string_file(get_abs_path("data/telephone/country_codes.tsv")) @ cardinal.graph self.country_codes = country_codes.optimize() digit = cardinal.digit two_digits = cardinal.two_digits_read three_digits = cardinal.three_digits_read four_digits = cardinal.four_digits_read up_to_three_digits = digit | two_digits | three_digits up_to_four_digits = up_to_three_digits | four_digits separators = pynini.union(NEMO_SPACE, pynini.cross("-", " ")) area_separators = pynini.union(separators, pynini.cross("/", " ")) zero = pynini.cross("0", "nulla") digit |= zero special_numbers = pynini.string_file(get_abs_path("data/telephone/special_numbers.tsv")) special_numbers @= cardinal.three_digits_read passable = pynini.union(":", ": ", " ") prompt_pass = pynini.closure(pynutil.delete(passable) + insert_space, 0, 1) telephone_abbr = pynini.string_file(get_abs_path("data/telephone/telephone_abbr.tsv")) telephone_abbr = telephone_abbr + prompt_pass telephone_prompt = pynini.string_file(get_abs_path("data/telephone/telephone_prompt.tsv")) prompt_as_code = pynutil.insert("country_code: \"") + telephone_prompt + pynutil.insert("\"") prompt_as_code |= pynutil.insert("country_code: \"") + telephone_abbr + pynutil.insert("\"") prompt_as_code |= ( pynutil.insert("country_code: \"") + telephone_prompt + NEMO_SPACE + telephone_abbr + pynutil.insert("\"") ) prompt_inner = telephone_prompt | telephone_abbr prompt_inner |= telephone_prompt + NEMO_SPACE + telephone_abbr plus = pynini.cross("+", "plusz ") plus |= pynini.cross("00", "nulla nulla ") plus = plus + pynini.closure(pynutil.delete(" "), 0, 1) country = pynini.closure(pynutil.delete("("), 0, 1) + country_codes + pynini.closure(pynutil.delete(")"), 0, 1) country = plus + pynini.closure(pynutil.delete(" "), 0, 1) + country country_code = pynutil.insert("country_code: \"") + country + pynutil.insert("\"") country_code |= prompt_as_code country_code |= pynutil.insert("country_code: \"") + prompt_inner + NEMO_SPACE + country + pynutil.insert("\"") trunk = pynini.cross("06", "nulla hat") trunk |= pynutil.delete("(") + trunk + pynutil.delete(")") area_part = area_codes + area_separators base_number_part = pynini.union( three_digits + separators + three_digits, three_digits + separators + two_digits + separators + two_digits, three_digits + separators + four_digits, two_digits + separators + four_digits, four_digits + separators + three_digits, two_digits + separators + two_digits + separators + three_digits, ) number_part = area_part + base_number_part self.number_graph = number_part number_part = pynutil.insert("number_part: \"") + self.number_graph + pynutil.insert("\"") trunk_number_part = ( pynutil.insert("number_part: \"") + trunk + separators + self.number_graph + pynutil.insert("\"") ) mellek = NEMO_SPACE + pynutil.delete("mellék") extension = pynutil.insert("extension: \"") + up_to_four_digits + pynutil.insert("\"") extension = pynini.closure(area_separators + extension + mellek, 0, 1) special_numbers = pynutil.insert("number_part: \"") + special_numbers + pynutil.insert("\"") graph = pynini.union( country_code + separators + number_part, country_code + separators + number_part + extension, number_part + extension, trunk_number_part, trunk_number_part + extension, country_code + number_part, country_code + trunk_number_part, country_code + trunk_number_part + extension, country_code + special_numbers, country_code + number_part + extension, ) self.tel_graph = graph.optimize() # ip ip_prompts = pynini.string_file(get_abs_path("data/telephone/ip_prompt.tsv")) ip_graph = up_to_three_digits + (pynini.cross(".", " pont ") + up_to_three_digits) ** 3 graph |= ( pynini.closure( pynutil.insert("country_code: \"") + ip_prompts + pynutil.insert("\"") + delete_extra_space, 0, 1 ) + pynutil.insert("number_part: \"") + ip_graph.optimize() + pynutil.insert("\"") ) final_graph = self.add_tokens(graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/telephone.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/google/TextNormalizationCoveringGrammars # Russian minimally supervised number grammar. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_SIGMA, GraphFst from nemo_text_processing.text_normalization.hu.taggers.cardinal import filter_punctuation from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil class OrdinalFst(GraphFst): """ Finite state transducer for classifying cardinals, e.g. "2." -> ordinal { integer: "második" } } Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic=False): super().__init__(name="ordinal", kind="classify", deterministic=deterministic) endings = pynini.string_file(get_abs_path("data/ordinals/endings.tsv")) exceptions = pynini.string_file(get_abs_path("data/ordinals/exceptional.tsv")) superessive_endings = pynini.string_file(get_abs_path("data/ordinals/superessive_endings.tsv")) superscript2digit = pynini.string_file(get_abs_path("data/ordinals/superscript_digits.tsv")) cardinal_graph = cardinal.graph bare_ordinals = ( cardinal_graph @ pynini.cdrewrite(exceptions, "[BOS]", "[EOS]", NEMO_SIGMA) @ pynini.cdrewrite(endings, "", "[EOS]", NEMO_SIGMA) ) self.bare_ordinals = bare_ordinals self.filtered_ordinals = filter_punctuation(bare_ordinals).optimize() self.superessive = self.bare_ordinals @ pynini.cdrewrite(superessive_endings, "", "[EOS]", NEMO_SIGMA) self.superscript_to_superessive = pynini.closure(superscript2digit) @ self.superessive self.graph = pynini.union( self.filtered_ordinals + pynutil.delete("."), self.filtered_ordinals.project("output") ).optimize() # For some reason, bare_ordinals does not work when exported, so doing this here fractional_exceptions = pynini.string_map([("első", "egyed"), ("második", "fél")]) self.fractional = ( bare_ordinals @ pynini.cdrewrite(fractional_exceptions, "[BOS]", "[EOS]", NEMO_SIGMA) @ pynini.cdrewrite(pynutil.delete("ik"), "", "[EOS]", NEMO_SIGMA) ).optimize() if not deterministic: self.fractional |= pynini.cross("2", "ketted") final_graph = pynutil.insert("integer: \"") + self.graph + pynutil.insert("\"") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/ordinal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2023, Jim O'Regan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, convert_space from nemo_text_processing.text_normalization.hu.utils import get_abs_path, load_labels, naive_inflector from pynini.lib import pynutil def load_inflected(filename, input_case, singular_only=False, skip_spaces=True): forms = [] with open(filename) as tsv: for line in tsv.readlines(): parts = line.strip().split("\t") key = parts[0] if input_case == "lower_cased": key = parts[0].lower() forms.append((key, parts[1])) if not (skip_spaces and " " in parts[1]): forms += naive_inflector(key, parts[1], singular_only) graph = pynini.string_map(forms) return graph class WhiteListFst(GraphFst): """ Finite state transducer for classifying whitelist, e.g. "stb." -> tokens { name: "s a többi" } This class has highest priority among all classifier grammars. Whitelisted tokens are defined and loaded from "data/whitelist.tsv". Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) input_file: path to a file with whitelist replacements """ def __init__(self, input_case: str, deterministic: bool = True, input_file: str = None): super().__init__(name="whitelist", kind="classify", deterministic=deterministic) def _get_whitelist_graph(input_case, file): whitelist = load_labels(file) if input_case == "lower_cased": whitelist = [[x[0].lower()] + x[1:] for x in whitelist] graph = pynini.string_map(whitelist) return graph graph = _get_whitelist_graph(input_case, get_abs_path("data/whitelist.tsv")) if not deterministic and input_case != "lower_cased": graph |= pynutil.add_weight( _get_whitelist_graph("lower_cased", get_abs_path("data/whitelist.tsv")), weight=0.0001 ) graph_inflected = load_inflected(get_abs_path("data/whitelist_inflect.tsv"), input_case, False) graph_inflected_sg = load_inflected(get_abs_path("data/whitelist_inflect_sg.tsv"), input_case, True) units_graph = load_inflected(get_abs_path("data/measures/measurements.tsv"), input_case, False) graph |= graph_inflected graph |= graph_inflected_sg if input_file: whitelist_provided = _get_whitelist_graph(input_case, input_file) if not deterministic: graph |= whitelist_provided else: graph = whitelist_provided if not deterministic: graph |= units_graph self.graph = graph self.final_graph = convert_space(self.graph).optimize() self.fst = (pynutil.insert("name: \"") + self.final_graph + pynutil.insert("\"")).optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/whitelist.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_WHITE_SPACE, GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.en.taggers.punctuation import PunctuationFst from nemo_text_processing.text_normalization.hu.taggers.cardinal import CardinalFst from nemo_text_processing.text_normalization.hu.taggers.date import DateFst from nemo_text_processing.text_normalization.hu.taggers.decimal import DecimalFst from nemo_text_processing.text_normalization.hu.taggers.electronic import ElectronicFst from nemo_text_processing.text_normalization.hu.taggers.fraction import FractionFst from nemo_text_processing.text_normalization.hu.taggers.measure import MeasureFst from nemo_text_processing.text_normalization.hu.taggers.money import MoneyFst from nemo_text_processing.text_normalization.hu.taggers.ordinal import OrdinalFst from nemo_text_processing.text_normalization.hu.taggers.telephone import TelephoneFst from nemo_text_processing.text_normalization.hu.taggers.time import TimeFst from nemo_text_processing.text_normalization.hu.taggers.whitelist import WhiteListFst from nemo_text_processing.text_normalization.hu.taggers.word import WordFst from pynini.lib import pynutil class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence, that is lower cased. For deployment, this grammar will be compiled and exported to OpenFst Finite State Archive (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files whitelist: path to a file with whitelist replacements """ def __init__( self, input_case: str, deterministic: bool = False, cache_dir: str = None, overwrite_cache: bool = False, whitelist: str = None, ): super().__init__(name="tokenize_and_classify", kind="classify", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) whitelist_file = os.path.basename(whitelist) if whitelist else "" far_file = os.path.join( cache_dir, f"_{input_case}_hu_tn_{deterministic}_deterministic{whitelist_file}.far" ) if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["tokenize_and_classify"] logging.info(f"ClassifyFst.fst was restored from {far_file}.") else: logging.info(f"Creating ClassifyFst grammars. This might take some time...") self.cardinal = CardinalFst(deterministic=deterministic) cardinal_graph = self.cardinal.fst self.ordinal = OrdinalFst(cardinal=self.cardinal, deterministic=deterministic) ordinal_graph = self.ordinal.fst self.decimal = DecimalFst(cardinal=self.cardinal, deterministic=deterministic) decimal_graph = self.decimal.fst self.fraction = FractionFst(cardinal=self.cardinal, ordinal=self.ordinal, deterministic=deterministic) fraction_graph = self.fraction.fst self.measure = MeasureFst( cardinal=self.cardinal, decimal=self.decimal, fraction=self.fraction, deterministic=deterministic ) measure_graph = self.measure.fst self.date = DateFst(cardinal=self.cardinal, deterministic=deterministic) date_graph = self.date.fst word_graph = WordFst(deterministic=deterministic).fst self.time = TimeFst(self.cardinal, deterministic=deterministic) time_graph = self.time.fst self.telephone = TelephoneFst(deterministic=deterministic) telephone_graph = self.telephone.fst self.electronic = ElectronicFst(deterministic=deterministic) electronic_graph = self.electronic.fst self.money = MoneyFst(cardinal=self.cardinal, decimal=self.decimal, deterministic=deterministic) money_graph = self.money.fst self.whitelist = WhiteListFst(input_case=input_case, deterministic=deterministic, input_file=whitelist) whitelist_graph = self.whitelist.fst punct_graph = PunctuationFst(deterministic=deterministic).fst classify = ( pynutil.add_weight(whitelist_graph, 1.01) | pynutil.add_weight(time_graph, 1.09) | pynutil.add_weight(measure_graph, 1.08) | pynutil.add_weight(cardinal_graph, 1.1) | pynutil.add_weight(fraction_graph, 1.09) | pynutil.add_weight(date_graph, 1.1) | pynutil.add_weight(ordinal_graph, 1.1) | pynutil.add_weight(decimal_graph, 1.1) | pynutil.add_weight(money_graph, 1.1) | pynutil.add_weight(telephone_graph, 1.1) | pynutil.add_weight(electronic_graph, 1.1) | pynutil.add_weight(word_graph, 200) ) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=2.1) + pynutil.insert(" }") punct = pynini.closure( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct), 1, ) token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = token_plus_punct + pynini.closure( ( pynini.compose(pynini.closure(NEMO_WHITE_SPACE, 1), delete_extra_space) | (pynutil.insert(" ") + punct + pynutil.insert(" ")) ) + token_plus_punct ) graph = delete_space + graph + delete_space graph |= punct self.fst = graph.optimize() if far_file: generator_main(far_file, {"tokenize_and_classify": self.fst}) logging.info(f"ClassifyFst grammars are saved to {far_file}.")
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/tokenize_and_classify.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2023, Jim O'Regan. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_DIGIT, NEMO_SIGMA, GraphFst, insert_space from nemo_text_processing.text_normalization.hu.utils import get_abs_path, load_labels, naive_inflector from pynini.lib import pynutil quantities = load_labels(get_abs_path("data/number/quantities.tsv")) def inflect_quantities(): output = [] for quantity in quantities: if len(quantity) == 2: output.append((quantity[0], quantity[1])) output += naive_inflector(quantity[0], quantity[1], True) else: output.append((quantity[0], quantity[0])) tmp = naive_inflector(".", quantity[0], True) real = [t[1] for t in tmp] output += [(t, t) for t in real] if "lli" in quantity[0]: output.append((quantity[0].replace("lli", "li"), quantity[0])) orth = [(x.replace("lli", "li"), x) for x in real] output += orth return output def get_quantity(decimal: 'pynini.FstLike', cardinal_up_to_hundred: 'pynini.FstLike') -> 'pynini.FstLike': """ Returns FST that transforms either a cardinal or decimal followed by a quantity into a numeral, e.g. 1 millió -> integer_part: "egy" quantity: "millió" e.g. 1,4 million -> integer_part: "egy" fractional_part: "négy" quantity: "millió" Args: decimal: decimal FST cardinal_up_to_hundred: cardinal FST """ numbers = cardinal_up_to_hundred quant_fst = pynini.string_map(inflect_quantities()) res = ( pynutil.insert("integer_part: \"") + numbers + pynutil.insert("\"") + pynini.accep(" ") + pynutil.insert("quantity: \"") + quant_fst + pynutil.insert("\"") ) res |= decimal + pynini.accep(" ") + pynutil.insert("quantity: \"") + quant_fst + pynutil.insert("\"") return res class DecimalFst(GraphFst): """ Finite state transducer for classifying decimal, e.g. -11,4006 milliárd -> decimal { negative: "true" integer_part: "tizenegy" fractional_part: "négyezer-hat tízezred" quantity: "milliárd" preserve_order: true } 1 milliárd -> decimal { integer_part: "egy" quantity: "milliárd" preserve_order: true } Args: cardinal: CardinalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool = True): super().__init__(name="decimal", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph digit_no_zero = NEMO_DIGIT - "0" digit_or_del_zero = pynutil.delete("0") | digit_no_zero final_zero = pynini.closure(pynutil.delete("0")) # In Hungarian, the fraction is read as a whole number # with a word for the decimal place added # see: https://helyesiras.mta.hu/helyesiras/default/numerals decimal_number = digit_no_zero @ cardinal_graph + final_zero + pynutil.insert(" tized") decimal_number |= (digit_or_del_zero + NEMO_DIGIT) @ cardinal_graph + final_zero + pynutil.insert(" század") order = 2 for decimal_name in [ "ezred", "milliomod", "milliárdod", "billiomod", "billiárdod", "trilliomod", "trilliárdod", ]: for modifier in ["", "tíz", "száz"]: decimal_number |= ( (NEMO_DIGIT ** order + (NEMO_DIGIT - "0")) @ pynini.cdrewrite(pynini.cross("0", ""), "[BOS]", "", NEMO_SIGMA) @ cardinal_graph + final_zero + pynutil.insert(f" {modifier}{decimal_name}") ) order += 1 if not deterministic: alts = pynini.string_map([("billiomod", "ezer milliárdod"), ("billiárdod", "millió milliárdod")]) decimal_alts = decimal_number @ pynini.cdrewrite(alts, "", "[EOS]", NEMO_SIGMA) decimal_number |= decimal_alts self.graph = decimal_number point = pynutil.delete(",") optional_graph_negative = pynini.closure(pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1) self.graph_fractional = pynutil.insert("fractional_part: \"") + self.graph + pynutil.insert("\"") self.graph_integer = pynutil.insert("integer_part: \"") + cardinal.graph + pynutil.insert("\"") final_graph_wo_sign = self.graph_integer + point + insert_space + self.graph_fractional self.final_graph_wo_negative = final_graph_wo_sign | get_quantity( final_graph_wo_sign, cardinal.graph_hundreds_component_at_least_one_non_zero_digit ) final_graph = optional_graph_negative + self.final_graph_wo_negative final_graph += pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/decimal.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_ALPHA, NEMO_DIGIT, NEMO_SIGMA, GraphFst, convert_space, insert_space, ) from nemo_text_processing.text_normalization.hu.graph_utils import ensure_space from nemo_text_processing.text_normalization.hu.utils import ( get_abs_path, inflect_abbreviation, load_labels, naive_inflector, ) from pynini.lib import pynutil min_singular = pynini.string_file(get_abs_path("data/money/currency_minor.tsv")) maj_singular = pynini.string_file((get_abs_path("data/money/currency.tsv"))) class MoneyFst(GraphFst): """ Finite state transducer for classifying money, e.g. "€1" -> money { currency_maj: "euró" integer_part: "egy"} "€1,000" -> money { currency_maj: "euró" integer_part: "egy" } "€1,001" -> money { currency_maj: "euró" integer_part: "egy" fractional_part: "egy"} "£1,4" -> money { integer_part: "egy" currency_maj: "font" fractional_part: "negyven" preserve_order: true} -> money { integer_part: "egy" currency_maj: "font" fractional_part: "negyven" currency_min: "penny" preserve_order: true} "£0,01" -> money { fractional_part: "egy" currency_min: "penny" preserve_order: true} "£0,01 million" -> money { currency_maj: "font" integer_part: "nulla" fractional_part: "egy század" quantity: "millió"} Args: cardinal: CardinalFst decimal: DecimalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, decimal: GraphFst, deterministic: bool = True): super().__init__(name="money", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph graph_decimal_final = decimal.final_graph_wo_negative maj_singular_labels = load_labels(get_abs_path("data/money/currency.tsv")) maj_singular_graph = convert_space(maj_singular) letters = pynini.string_file((get_abs_path("data/money/alphabet.tsv"))) if not deterministic: letters |= pynini.cross("W", "vé") letters |= pynini.cross("W", "kettős vé") read_letters = letters + pynini.closure(insert_space + letters) self.read_letters = read_letters graph_maj_singular = pynutil.insert("currency_maj: \"") + maj_singular_graph + pynutil.insert("\"") optional_delete_fractional_zeros = pynini.closure( pynutil.delete(",") + pynini.closure(pynutil.delete("0"), 1), 0, 1 ) # only for decimals where third decimal after comma is non-zero or with quantity decimal_delete_last_zeros = ( pynini.closure(NEMO_DIGIT, 1) + pynini.accep(",") + pynini.closure(NEMO_DIGIT, 2) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) decimal_with_quantity = NEMO_SIGMA + NEMO_ALPHA decimal_part = (decimal_delete_last_zeros | decimal_with_quantity) @ graph_decimal_final graph_decimal = graph_maj_singular + insert_space + decimal_part graph_integer = pynutil.insert("integer_part: \"") + cardinal_graph + pynutil.insert("\"") graph_integer_only = graph_maj_singular + insert_space + graph_integer graph = (graph_integer_only + optional_delete_fractional_zeros) | graph_decimal # remove trailing zeros of non zero number in the first 2 digits and fill up to 2 digits # e.g. 2000 -> 20, 0200->02, 01 -> 01, 10 -> 10 # not accepted: 002, 00, 0, two_digits_fractional_part = ( pynini.closure(NEMO_DIGIT) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) @ ( (pynutil.delete("0") + (NEMO_DIGIT - "0")) | ((NEMO_DIGIT - "0") + pynutil.insert("0")) | ((NEMO_DIGIT - "0") + NEMO_DIGIT) ) graph_min_singular = pynutil.insert(" currency_min: \"") + min_singular + pynutil.insert("\"") # format ** euro ** cent decimal_graph_with_minor = None for curr_symbol, cur_word in maj_singular_labels: preserve_order = pynutil.insert(" preserve_order: true") integer_plus_maj = graph_integer + insert_space + pynutil.insert(curr_symbol) @ graph_maj_singular # non zero integer part integer_plus_maj = (pynini.closure(NEMO_DIGIT) - "0") @ integer_plus_maj abbr_expansion = pynini.string_map(naive_inflector(curr_symbol, cur_word)) maj_inflected = pynini.accep(cur_word) maj_inflected |= pynini.project(abbr_expansion, "output") # where a currency abbreviation (like GBP) appears inflected (GBP-t), # we read the number as a pure fraction, because to add a minor currency # would involve moving the inflectional piece from major to minor if re.match("^[A-Z]{3}$", curr_symbol): letter_expansion = pynini.string_map(inflect_abbreviation(curr_symbol, cur_word)) maj_inflected = letter_expansion | abbr_expansion maj_inflected |= pynini.cross(curr_symbol, cur_word) if not deterministic: expanded = curr_symbol @ read_letters get_endings = pynini.project(letter_expansion, "input") letter_endings = get_endings @ ( pynini.cdrewrite(pynini.cross(f"{curr_symbol}-", expanded), "[BOS]", "", NEMO_SIGMA) ) maj_inflected |= letter_endings maj_inflected |= pynini.project(letter_endings, "output") graph_maj_final = pynutil.insert("currency_maj: \"") + maj_inflected + pynutil.insert("\"") graph |= graph_decimal_final + ensure_space + graph_maj_final + preserve_order graph |= graph_integer + ensure_space + graph_maj_final + preserve_order graph_fractional = ( two_digits_fractional_part @ pynini.closure(NEMO_DIGIT, 1, 2) @ cardinal.two_digit_non_zero ) graph_fractional = pynutil.insert("fractional_part: \"") + graph_fractional + pynutil.insert("\"") fractional_plus_min = graph_fractional + pynutil.insert(curr_symbol) @ graph_min_singular decimal_graph_with_minor_curr = integer_plus_maj + pynini.cross(",", " ") + fractional_plus_min decimal_graph_with_minor_curr |= pynutil.delete("0,") + fractional_plus_min decimal_graph_with_minor_curr = ( pynutil.delete(curr_symbol) + decimal_graph_with_minor_curr + preserve_order ) decimal_graph_with_minor = ( decimal_graph_with_minor_curr if decimal_graph_with_minor is None else pynini.union(decimal_graph_with_minor, decimal_graph_with_minor_curr) ) final_graph = graph | decimal_graph_with_minor final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/money.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2022, Jim O'Regan. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_DIGIT, NEMO_SIGMA, NEMO_SPACE, NEMO_WHITE_SPACE, GraphFst, delete_space, insert_space, ) from nemo_text_processing.text_normalization.hu.graph_utils import HU_ALPHA from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil def make_million(word: str, hundreds: 'pynini.FstLike', deterministic=False): insert_hyphen = pynutil.insert("-") # in the non-deterministic case, add an optional space if not deterministic: insert_hyphen |= pynini.closure(pynutil.insert(" "), 0, 1) graph_million = pynutil.add_weight(pynini.cross("001", word), -0.001) graph_million |= hundreds + pynutil.insert(word) if not deterministic: graph_million |= pynutil.add_weight(pynini.cross("001", "egy{word}"), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", "egy{word} "), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", "{word} "), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", " egy{word}"), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", " egy{word} "), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", " egy {word} "), -0.001) graph_million |= pynutil.add_weight(pynini.cross("001", " {word} "), -0.001) graph_million += insert_hyphen graph_million |= pynutil.delete("000") return graph_million def filter_punctuation(fst: 'pynini.FstLike') -> 'pynini.FstLike': """ Helper function for parsing number strings. Converts common cardinal strings (groups of three digits delineated by 'cardinal_separator' - see graph_utils) and converts to a string of digits: "1 000" -> "1000" "1.000.000" -> "1000000" Args: fst: Any pynini.FstLike object. Function composes fst onto string parser fst Returns: fst: A pynini.FstLike object """ cardinal_separator = pynini.string_map([".", NEMO_SPACE]) exactly_three_digits = NEMO_DIGIT ** 3 # for blocks of three up_to_three_digits = pynini.closure(NEMO_DIGIT, 1, 3) # for start of string up_to_three_digits = up_to_three_digits - "000" - "00" - "0" cardinal_string = pynini.closure( NEMO_DIGIT, 1 ) # For string w/o punctuation (used for page numbers, thousand series) cardinal_string |= ( up_to_three_digits + pynutil.delete(cardinal_separator) + pynini.closure(exactly_three_digits + pynutil.delete(cardinal_separator)) + exactly_three_digits ) return cardinal_string @ fst class CardinalFst(GraphFst): """ Finite state transducer for classifying cardinals, e.g. "1000" -> cardinal { integer: "ezer" } "9999" -> cardinal { integer: "kilencezer-kilencszázkilencvenkilenc" } "2000000" -> cardinal { integer: "kétmillió" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="cardinal", kind="classify", deterministic=deterministic) zero = pynini.invert(pynini.string_file(get_abs_path("data/number/zero.tsv"))) digit = pynini.invert(pynini.string_file(get_abs_path("data/number/digit.tsv"))) digit_inline = pynini.invert(pynini.string_file(get_abs_path("data/number/digit_inline.tsv"))) tens = pynini.invert(pynini.string_file(get_abs_path("data/number/tens.tsv"))) tens_inline = pynini.invert(pynini.string_file(get_abs_path("data/number/tens_inline.tsv"))) delete_hyphen = pynutil.delete(pynini.closure("-")) delete_extra_hyphens = pynini.cross(pynini.closure("-", 1), "-") delete_extra_spaces = pynini.cross(pynini.closure(" ", 1), " ") # Any single digit graph_digit = digit self.digit = graph_digit graph_zero = zero digits_inline_no_one = (NEMO_DIGIT - "1") @ digit_inline digits_no_one = (NEMO_DIGIT - "1") @ digit if not deterministic: graph_digit |= pynini.cross("2", "két") digits_inline_no_one |= pynini.cross("2", "kettő") insert_hyphen = pynutil.insert("-") # in the non-deterministic case, add an optional space if not deterministic: insert_hyphen |= pynini.closure(pynutil.insert(" "), 0, 1) # Any double digit graph_tens = (tens_inline + digit) | tens self.tens = graph_tens.optimize() self.two_digit_non_zero = pynini.union(graph_digit, graph_tens, (pynutil.delete("0") + digit)).optimize() base_hundreds = pynini.union(pynini.cross("1", "száz"), digits_inline_no_one + pynutil.insert("száz")) if not deterministic: base_hundreds |= pynini.cross("1", "egyszáz") base_hundreds |= pynini.cross("1", " egyszáz") base_hundreds |= pynini.cross("1", "egy száz") base_hundreds |= pynini.cross("1", " egy száz") base_hundreds |= pynini.cross("1", " száz") digits_inline_no_one |= pynutil.insert(" száz") hundreds = pynini.union( pynini.cross("100", "száz"), pynini.cross("1", "száz") + graph_tens, digits_inline_no_one + pynini.cross("00", "száz"), digits_inline_no_one + pynutil.insert("száz") + graph_tens, ) if not deterministic: hundreds |= pynini.union( pynini.cross("100", "egyszáz"), pynini.cross("1", "egyszáz") + graph_tens, pynini.cross("100", " egyszáz"), pynini.cross("1", " egyszáz ") + graph_tens, pynini.cross("100", "egy száz"), pynini.cross("1", "egy száz") + graph_tens, pynini.cross("100", " egy száz"), pynini.cross("1", " egy száz ") + graph_tens, pynini.cross("100", " száz"), pynini.cross("1", " száz ") + graph_tens, ) # Three digit strings graph_hundreds = base_hundreds + pynini.union( pynutil.delete("00"), graph_tens, (pynutil.delete("0") + graph_digit) ) self.hundreds = graph_hundreds.optimize() # For all three digit strings with leading zeroes (graph appends '0's to manage place in string) graph_hundreds_component = pynini.union(graph_hundreds, pynutil.delete("0") + graph_tens) graph_hundreds_component_at_least_one_non_zero_digit = graph_hundreds_component | ( pynutil.delete("00") + graph_digit ) self.graph_hundreds_component_at_least_one_non_zero_digit = ( graph_hundreds_component_at_least_one_non_zero_digit | graph_tens | graph_digit ).optimize() # Needed? graph_hundreds_component_at_least_one_non_zero_digit_no_one = graph_hundreds_component | ( pynutil.delete("00") + digits_no_one ) self.hundreds_non_zero_no_one = graph_hundreds_component_at_least_one_non_zero_digit_no_one ezer = pynutil.insert("ezer") if not deterministic: ezer |= pynutil.insert(" ezer") ezer1 = ezer if not deterministic: ezer1 |= pynutil.insert("egyezer") ezer1 |= pynutil.insert(" egyezer") ezer1 |= pynutil.insert("egy ezer") ezer1 |= pynutil.insert(" egy ezer") graph_thousands_component_at_least_one_non_zero_digit = pynini.union( pynutil.delete("000") + graph_hundreds_component_at_least_one_non_zero_digit, graph_hundreds_component_at_least_one_non_zero_digit_no_one + ezer + insert_hyphen + (graph_hundreds_component_at_least_one_non_zero_digit | pynutil.delete("000")), pynutil.delete("001") + ezer1 + (graph_hundreds_component_at_least_one_non_zero_digit | pynutil.delete("000")), ) graph_thousands_component_at_least_one_non_zero_digit_no_one = pynini.union( pynutil.delete("000") + graph_hundreds_component_at_least_one_non_zero_digit_no_one, graph_hundreds_component_at_least_one_non_zero_digit_no_one + ezer + insert_hyphen + (graph_hundreds_component_at_least_one_non_zero_digit | pynutil.delete("000")), pynutil.delete("001") + ezer1 + (graph_hundreds_component_at_least_one_non_zero_digit | pynutil.delete("000")), ) self.graph_thousands_component_at_least_one_non_zero_digit = ( graph_thousands_component_at_least_one_non_zero_digit ) self.graph_thousands_component_at_least_one_non_zero_digit_no_one = ( graph_thousands_component_at_least_one_non_zero_digit_no_one ) graph_million = make_million("millió", self.hundreds_non_zero_no_one, deterministic) graph_milliard = make_million("milliárd", self.hundreds_non_zero_no_one, deterministic) graph_billion = make_million("billió", self.hundreds_non_zero_no_one, deterministic) graph_billiard = make_million("billiárd", self.hundreds_non_zero_no_one, deterministic) graph_trillion = make_million("trillió", self.hundreds_non_zero_no_one, deterministic) graph_trilliard = make_million("trilliárd", self.hundreds_non_zero_no_one, deterministic) graph = ( graph_trilliard + graph_trillion + graph_billiard + graph_billion + graph_milliard + graph_million + (graph_thousands_component_at_least_one_non_zero_digit | pynutil.delete("000000")) ) clean_output = ( pynini.cdrewrite(delete_space | delete_hyphen, "[BOS]", "", NEMO_SIGMA) @ pynini.cdrewrite(delete_space | delete_hyphen, "", "[EOS]", NEMO_SIGMA) @ pynini.cdrewrite(delete_extra_hyphens | delete_extra_spaces, "", "", NEMO_SIGMA) @ pynini.cdrewrite( pynini.cross(pynini.closure(NEMO_WHITE_SPACE, 2), NEMO_SPACE), HU_ALPHA, HU_ALPHA, NEMO_SIGMA ) ).optimize() self.graph = ( ((NEMO_DIGIT - "0") + pynini.closure(NEMO_DIGIT, 0)) @ pynini.cdrewrite(pynini.closure(pynutil.insert("0")), "[BOS]", "", NEMO_SIGMA) @ NEMO_DIGIT ** 24 @ graph @ clean_output ) zero_space = zero + insert_space self.zero_space = zero_space self.two_digits_read = pynini.union( ((NEMO_DIGIT - "0") + NEMO_DIGIT) @ self.graph_hundreds_component_at_least_one_non_zero_digit, zero_space + digit, ).optimize() self.three_digits_read = pynini.union( ((NEMO_DIGIT - "0") + (NEMO_DIGIT ** 2)) @ self.graph_hundreds_component_at_least_one_non_zero_digit, zero_space + ((NEMO_DIGIT ** 2) @ graph_tens), zero_space + zero_space + digit, ).optimize() self.four_digits_read = pynini.union( ((NEMO_DIGIT - "0") + (NEMO_DIGIT ** 3)) @ self.graph, zero_space + self.three_digits_read ).optimize() self.graph |= graph_zero self.graph_unfiltered = self.graph self.graph = filter_punctuation(self.graph).optimize() optional_minus_graph = pynini.closure(pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1) final_graph = optional_minus_graph + pynutil.insert("integer: \"") + self.graph + pynutil.insert("\"") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/cardinal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_ALPHA, NEMO_DIGIT, GraphFst, insert_space from nemo_text_processing.text_normalization.es.utils import get_abs_path, load_labels from pynini.lib import pynutil common_domains = [x[0] for x in load_labels(get_abs_path("data/electronic/domain.tsv"))] symbols = [x[0] for x in load_labels(get_abs_path("data/electronic/symbols.tsv"))] class ElectronicFst(GraphFst): """ Finite state transducer for classifying electronic: email addresses e.g. "[email protected]" -> electronic { username: "abc" domain: "hotmail.com" preserve_order: true } e.g. "www.abc.com/123" -> electronic { protocol: "www." domain: "abc.com/123" preserve_order: true } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="electronic", kind="classify", deterministic=deterministic) dot = pynini.accep(".") accepted_common_domains = pynini.union(*common_domains) accepted_symbols = pynini.union(*symbols) - dot accepted_characters = pynini.closure(NEMO_ALPHA | NEMO_DIGIT | accepted_symbols) acceepted_characters_with_dot = pynini.closure(NEMO_ALPHA | NEMO_DIGIT | accepted_symbols | dot) # email username = ( pynutil.insert("username: \"") + acceepted_characters_with_dot + pynutil.insert("\"") + pynini.cross('@', ' ') ) domain_graph = accepted_characters + dot + accepted_characters domain_graph = pynutil.insert("domain: \"") + domain_graph + pynutil.insert("\"") domain_common_graph = ( pynutil.insert("domain: \"") + accepted_characters + accepted_common_domains + pynini.closure((accepted_symbols | dot) + pynini.closure(accepted_characters, 1), 0, 1) + pynutil.insert("\"") ) graph = (username + domain_graph) | domain_common_graph # url protocol_start = pynini.accep("https://") | pynini.accep("http://") protocol_end = ( pynini.accep("www.") if deterministic else ( pynini.accep("www.") | pynini.cross("www.", "vé vé vé.") | pynini.cross("www.", "dupla vé dupla vé dupla vé.") | pynini.cross("www.", "kettős vé kettős vé kettős vé.") ) ) protocol = protocol_start | protocol_end | (protocol_start + protocol_end) protocol = pynutil.insert("protocol: \"") + protocol + pynutil.insert("\"") graph |= protocol + insert_space + (domain_graph | domain_common_graph) self.graph = graph final_graph = self.add_tokens(self.graph + pynutil.insert(" preserve_order: true")) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/electronic.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # Copyright (c) 2023, Jim O'Regan. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_CHAR, NEMO_DIGIT, NEMO_SPACE, GraphFst from nemo_text_processing.text_normalization.hu.graph_utils import TO_LOWER, TO_UPPER from nemo_text_processing.text_normalization.hu.utils import get_abs_path, load_labels from pynini.lib import pynutil def get_suffixed_days(labels): endings = ["je", "a", "e"] output = [] for label in labels: for ending in endings: if label[1].endswith(ending): output.append((f"{label[0]}-{ending}", label[1])) break return output def day_inflector(number, day): """ Generates pairs of inflected day numbers and their full forms, according to the options listed here: https://helyesiras.mta.hu/helyesiras/default/akh#298 Args: number: the day number day: the day name Returns: a list of expanded forms, two per ending. """ endings = { "e": "ét ének ével éért évé éig eként éül ében én énél ébe ére éhez éből éről étől", "a": "át ának ával áért ává áig aként ául ában án ánál ába ára ához ából áról ától", } output = [] daylast = day[-1] for ending in endings[daylast].split(" "): daybase = day[:-1] endtrimmed = ending[1:] if day.endswith("eje"): output.append((f"{number}-j{ending}", f"{daybase}{ending}")) output.append((f"{number}-{ending}", f"{daybase}{ending}")) else: output.append((f"{number}-{ending}", f"{daybase}{ending}")) output.append((f"{number}-{endtrimmed}", f"{daybase}{ending}")) return output def day_adj_endings(number, word, basic=True): """ Two adjective forms can be formed from the days (three for 1): 1-i -> elseji 1-ji -> elseji 1-jei -> elsejei 2-i -> másodiki 2-ai -> másodikai 4-i -> negyediki 4-ei -> negyedikei This is based on other -i adjectives, because these forms are rare. """ endings_pl = { "e": "iek ieket ieknek iekkel iekért iekké iekig iekként iekben ieken ieknél iekbe iekre iekhez iekből iekről iektől", "a": "iak iakat iaknak iakkal iakért iakká iakig iakként iakban iakon iaknál iakba iakra iakhoz iakból iakról iaktól", } endings_sg = { "e": "i it inek ivel iért ivé iig iként iben in inél ibe ire ihez iből iről itől", "a": "i it inak ival iért ivá iig iként iban in inál iba ira ihoz iból iról itól", } last = word[-1] short = word[:-1] output = [] if basic: endings = ["i"] else: endings = endings_sg[last].split(" ") + endings_pl[last].split(" ") for ending in endings: if word == "elseje": output.append((f"{number}-{ending}", f"{short}{ending}")) output.append((f"{number}-j{ending}", f"{short}{ending}")) output.append((f"{number}-{last}{ending}", f"{word}{ending}")) else: output.append((f"{number}-{ending}", f"{short}{ending}")) output.append((f"{number}-{last}{ending}", f"{word}{ending}")) return output class DateFst(GraphFst): """ Finite state transducer for classifying date, e.g. "2010. április 1." -> date { year: "kettőezer-tíz" month: "április" day: "elseje" preserve_order: true } "2010. ápr. 1." -> date { year: "kettőezer-tíz" month: "április" day: "elseje" preserve_order: true } "2010. IV. 1." -> date { year: "kettőezer-tíz" month: "április" day: "elseje" preserve_order: true } "2010. 04. 1." -> date { year: "kettőezer-tíz" month: "április" day: "elseje" preserve_order: true } "2010. 04. 1-je" -> date { year: "kettőezer-tíz" month: "április" day: "elseje" preserve_order: true } "2010. 04. 1-jén" -> date { year: "kettőezer-tíz" month: "április" day: "elsején" preserve_order: true } "2010. 04. 1-én" -> date { year: "kettőezer-tíz" month: "április" day: "elsején" preserve_order: true } Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool): super().__init__(name="date", kind="classify", deterministic=deterministic) delete_dot = pynutil.delete(".") optional_dot = pynini.closure(delete_dot, 0, 1) day_tsv = load_labels(get_abs_path("data/dates/days.tsv")) graph_day = pynini.string_map(day_tsv) days_suffixed = get_suffixed_days(day_tsv) use_full_adj_forms = False if not deterministic: use_full_adj_forms = True day_adj_forms = [] for day in day_tsv: days_suffixed += day_inflector(day[0], day[1]) day_adj_forms += day_adj_endings(day[0], day[1], use_full_adj_forms) graph_days_suffixed = pynini.string_map(days_suffixed) graph_days_adj_suffixed = pynini.string_map(day_adj_forms) graph_days_suffixed |= pynini.project(graph_days_suffixed, "output") graph_days_adj_suffixed |= pynini.project(graph_days_adj_suffixed, "output") self.days_suffixed = graph_days_suffixed self.days_suffixed |= graph_days_adj_suffixed self.days_only = pynutil.insert("day: \"") + graph_days_suffixed + pynutil.insert("\"") # these express from and to, respectively # december 25-től január 27-ig -> from December 25 to January 27 self.days_tol = (pynini.closure(NEMO_CHAR) + pynini.union("től", "tól")) @ graph_days_suffixed self.days_ig = (pynini.closure(NEMO_CHAR) + "ig") @ graph_days_suffixed delete_leading_zero = (pynutil.delete("0") | (NEMO_DIGIT - "0")) + NEMO_DIGIT month_abbr_graph = load_labels(get_abs_path("data/dates/month_abbr.tsv")) number_to_month = pynini.string_file(get_abs_path("data/dates/months.tsv")).optimize() month_romans = pynini.string_file(get_abs_path("data/dates/months_roman.tsv")).optimize() month_romans |= pynini.invert(pynini.invert(month_romans) @ pynini.closure(TO_UPPER)) month_romans_dot = month_romans + delete_dot month_graph = pynini.union(*[x[1] for x in month_abbr_graph]).optimize() month_abbr_graph = pynini.string_map(month_abbr_graph) self.month_abbr = month_abbr_graph month_graph |= (TO_LOWER + pynini.closure(NEMO_CHAR)) @ month_graph # jan.-> januar, Jan-> januar, januar-> januar month_abbr_dot = month_abbr_graph + delete_dot numbers = cardinal.graph optional_leading_zero = delete_leading_zero | NEMO_DIGIT # 01, 31, 1 digit_day = optional_leading_zero @ pynini.union(*[str(x) for x in range(1, 32)]) @ graph_day day = (pynutil.insert("day: \"") + digit_day + pynutil.insert("\"")).optimize() day_dot = (pynutil.insert("day: \"") + digit_day + pynutil.delete(".") + pynutil.insert("\"")).optimize() self.day_dot = day_dot day_words = pynini.project(digit_day, "output") day_pieces = (digit_day + optional_dot) | day_words | graph_days_suffixed day_part = (pynutil.insert("day: \"") + day_pieces + pynutil.insert("\"")).optimize() digit_month = optional_leading_zero @ pynini.union(*[str(x) for x in range(1, 13)]) number_to_month = digit_month @ number_to_month number_to_month_dot = number_to_month + delete_dot month_part = month_abbr_dot | month_graph | month_romans_dot | number_to_month_dot self.month = month_part month_component = (pynutil.insert("month: \"") + month_part + pynutil.insert("\"")).optimize() month_number_only = (pynutil.insert("month: \"") + number_to_month + pynutil.insert("\"")).optimize() self.month_component = month_component self.month_number_only = month_number_only self.month_number = number_to_month_dot month_component = self.month_component.optimize() # prefer cardinal over year year = (NEMO_DIGIT - "0") + pynini.closure(NEMO_DIGIT, 1, 3) # 90, 990, 1990 year @= numbers self.year = year year_only = pynutil.insert("year: \"") + year + pynutil.insert("\"") year_dot = pynutil.insert("year: \"") + year + pynutil.delete(".") + pynutil.insert("\"") optional_year_dot_space = pynini.closure(year_dot + NEMO_SPACE, 0, 1) graph_ymd = optional_year_dot_space + month_component + NEMO_SPACE + day_part graph_ymd |= ( pynini.closure(year_only + pynini.cross("-", " "), 0, 1) + month_number_only + pynini.cross("-", " ") + day ) self.ymd = graph_ymd graph_ym = year_dot + NEMO_SPACE + month_component graph_dmy = ( day + pynini.cross("-", " ") + month_number_only + pynini.closure(pynini.cross("-", " ") + year_only, 0, 1) ) separators = [".", "/"] for sep in separators: year_optional = pynini.closure(pynini.cross(sep, " ") + year_only, 0, 1) if not deterministic: new_graph = day + pynini.cross(sep, " ") + month_number_only + year_optional else: new_graph = day + pynini.cross(sep, " ") + month_number_only + year_only graph_dmy |= new_graph final_graph = graph_ymd + pynutil.insert(" preserve_order: true") final_graph |= graph_ym + pynutil.insert(" preserve_order: true") final_graph |= graph_dmy self.final_graph = final_graph.optimize() self.fst = self.add_tokens(self.final_graph).optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/date.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_SPACE, GraphFst from pynini.lib import pynutil class WordFst(GraphFst): """ Finite state transducer for classifying word. e.g. nyomok -> tokens { name: "nyomok" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="word", kind="classify") word = pynutil.insert("name: \"") + pynini.closure(NEMO_NOT_SPACE, 1) + pynutil.insert("\"") self.fst = word.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/taggers/word.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, NEMO_SIGMA, NEMO_SPACE, GraphFst, delete_extra_space, delete_preserve_order, delete_space, insert_space, ) from pynini.lib import pynutil class TimeFst(GraphFst): """ Finite state transducer for verbalizing time, e.g. time { hours: "tolv" minutes: "trettio" suffix: "förmiddag" zone: "e s t" } -> tolv trettio förmiddag e s t time { hours: "tolv" } -> tolv Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="time", kind="verbalize", deterministic=deterministic) ANY_NOT_QUOTE = pynini.closure(NEMO_NOT_QUOTE, 1) NOT_NULLA = pynini.difference(ANY_NOT_QUOTE, "nulla") hour = pynutil.delete("hours: \"") + ANY_NOT_QUOTE + pynutil.delete("\"") hour_ora = hour + pynutil.insert(" óra") minute = pynutil.delete("minutes: \"") + NOT_NULLA + pynutil.delete("\"") minute |= pynutil.delete("minutes: \"nulla\"") minute_perc = minute + pynutil.insert(" perc") suffix = pynutil.delete("suffix: \"") + ANY_NOT_QUOTE + pynutil.delete("\"") optional_suffix = pynini.closure(delete_space + insert_space + suffix, 0, 1) zone = ( pynutil.delete("zone:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) optional_zone = pynini.closure(delete_space + insert_space + zone, 0, 1) second = pynutil.delete("seconds: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") second |= pynutil.delete("seconds: \"nulla\"") second_masodperc = second + pynutil.insert(" masodperc") graph = hour_ora + NEMO_SPACE + minute + NEMO_SPACE + suffix + optional_zone graph |= hour_ora + NEMO_SPACE + minute + NEMO_SPACE + suffix + delete_preserve_order graph |= ( hour_ora + NEMO_SPACE + minute_perc + NEMO_SPACE + second + NEMO_SPACE + suffix + delete_preserve_order ) graph |= hour_ora + NEMO_SPACE + second + NEMO_SPACE + suffix + delete_preserve_order graph |= ( hour_ora + NEMO_SPACE + minute_perc + NEMO_SPACE + second_masodperc + optional_zone + delete_preserve_order ) graph |= hour_ora + NEMO_SPACE + second_masodperc + optional_zone + delete_preserve_order graph |= hour + NEMO_SPACE + suffix + delete_preserve_order graph |= hour_ora + optional_zone + delete_preserve_order graph |= hour_ora + NEMO_SPACE + minute_perc + optional_zone + delete_preserve_order graph |= hour + NEMO_SPACE + minute + NEMO_SPACE + second + optional_suffix + optional_zone graph |= hour + NEMO_SPACE + suffix + optional_zone graph |= hour + optional_zone graph = ( graph @ pynini.cdrewrite(delete_extra_space, "", "", NEMO_SIGMA) @ pynini.cdrewrite(delete_space, "", "[EOS]", NEMO_SIGMA) ) # graph |= graph_hms delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/time.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, GraphFst, delete_extra_space, delete_preserve_order, ) from pynini.lib import pynutil class MeasureFst(GraphFst): """ Finite state transducer for verbalizing measure, e.g. measure { cardinal { integer: "zwei" units: "unzen" } } -> "zwei unzen" measure { cardinal { integer_part: "zwei" quantity: "millionen" units: "unzen" } } -> "zwei millionen unzen" Args: decimal: decimal GraphFst cardinal: cardinal GraphFst fraction: fraction GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, cardinal: GraphFst, fraction: GraphFst, deterministic: bool): super().__init__(name="measure", kind="verbalize", deterministic=deterministic) unit = pynutil.delete("units: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") graph_decimal = decimal.fst graph_cardinal = cardinal.fst graph_fraction = fraction.fst graph = (graph_cardinal | graph_decimal | graph_fraction) + pynini.accep(" ") + unit graph |= unit + delete_extra_space + (graph_cardinal | graph_decimal) graph += delete_preserve_order delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/measure.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, GraphFst, delete_preserve_order, insert_space, ) from pynini.lib import pynutil class FractionFst(GraphFst): """ Finite state transducer for verbalizing fraction e.g. tokens { fraction { integer: "huszonhárom" numerator: "négy" denominator: "hatod" } } -> huszonhárom négy hatod Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True, lm: bool = False): super().__init__(name="fraction", kind="verbalize", deterministic=deterministic) optional_sign = pynini.closure(pynini.cross("negative: \"true\"", "mínusz "), 0, 1) integer = pynutil.delete("integer_part: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\" ") numerator = pynutil.delete("numerator: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\" ") denominator = pynutil.delete("denominator: \"") + pynini.closure(NEMO_NOT_QUOTE) + pynutil.delete("\"") graph = numerator + insert_space + denominator if not deterministic: graph |= numerator + denominator conjunction = pynutil.insert("és ") if not deterministic and not lm: conjunction = pynini.closure(conjunction, 0, 1) integer = pynini.closure(optional_sign + integer + insert_space + conjunction, 0, 1) graph = integer + graph + delete_preserve_order self.graph = graph delete_tokens = self.delete_tokens(self.graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/fraction.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space, insert_space from pynini.lib import pynutil class TelephoneFst(GraphFst): """ Finite state transducer for verbalizing telephone numbers, e.g. telephone { country_code: "one" number_part: "one two three, one two three, five six seven eight" extension: "one" } -> one, one two three, one two three, five six seven eight, one Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="telephone", kind="verbalize", deterministic=deterministic) country_code = pynutil.delete("country_code: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") optional_country_code = pynini.closure(country_code + delete_space + insert_space, 0, 1,) number_part = ( pynutil.delete("number_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynini.closure(pynutil.add_weight(pynutil.delete(" "), -0.0001), 0, 1) + pynutil.delete("\"") ) optional_extension = pynini.closure( delete_space + insert_space + pynutil.delete("extension: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\""), 0, 1, ) graph = pynini.union(optional_country_code + number_part + optional_extension,) delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/telephone.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class OrdinalFst(GraphFst): """ Finite state transducer for verbalizing ordinal, e.g. ordinal { integer: "második" } } -> második Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="ordinal", kind="verbalize", deterministic=deterministic) graph = ( pynutil.delete("integer:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) self.graph = graph delete_tokens = self.delete_tokens(self.graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/ordinal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import GraphFst from nemo_text_processing.text_normalization.en.verbalizers.whitelist import WhiteListFst from nemo_text_processing.text_normalization.hu.verbalizers.cardinal import CardinalFst from nemo_text_processing.text_normalization.hu.verbalizers.date import DateFst from nemo_text_processing.text_normalization.hu.verbalizers.decimal import DecimalFst from nemo_text_processing.text_normalization.hu.verbalizers.electronic import ElectronicFst from nemo_text_processing.text_normalization.hu.verbalizers.fraction import FractionFst from nemo_text_processing.text_normalization.hu.verbalizers.measure import MeasureFst from nemo_text_processing.text_normalization.hu.verbalizers.money import MoneyFst from nemo_text_processing.text_normalization.hu.verbalizers.ordinal import OrdinalFst from nemo_text_processing.text_normalization.hu.verbalizers.telephone import TelephoneFst from nemo_text_processing.text_normalization.hu.verbalizers.time import TimeFst class VerbalizeFst(GraphFst): """ Composes other verbalizer grammars. For deployment, this grammar will be compiled and exported to OpenFst Finite State Archive (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="verbalize", kind="verbalize", deterministic=deterministic) cardinal = CardinalFst(deterministic=deterministic) cardinal_graph = cardinal.fst ordinal = OrdinalFst(deterministic=deterministic) ordinal_graph = ordinal.fst decimal = DecimalFst(deterministic=deterministic) decimal_graph = decimal.fst fraction = FractionFst(deterministic=deterministic) fraction_graph = fraction.fst date = DateFst(deterministic=deterministic) date_graph = date.fst measure = MeasureFst(cardinal=cardinal, decimal=decimal, fraction=fraction, deterministic=deterministic) measure_graph = measure.fst electronic = ElectronicFst(deterministic=deterministic) electronic_graph = electronic.fst whitelist_graph = WhiteListFst(deterministic=deterministic).fst money_graph = MoneyFst(decimal=decimal, deterministic=deterministic).fst telephone_graph = TelephoneFst(deterministic=deterministic).fst time_graph = TimeFst(deterministic=deterministic).fst graph = ( cardinal_graph | measure_graph | decimal_graph | ordinal_graph | date_graph | electronic_graph | money_graph | fraction_graph | whitelist_graph | telephone_graph | time_graph ) self.fst = graph
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/verbalize.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.en.verbalizers.word import WordFst from nemo_text_processing.text_normalization.hu.verbalizers.verbalize import VerbalizeFst from pynini.lib import pynutil class VerbalizeFinalFst(GraphFst): """ Finite state transducer that verbalizes an entire sentence Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files """ def __init__(self, deterministic: bool = True, cache_dir: str = None, overwrite_cache: bool = False): super().__init__(name="verbalize_final", kind="verbalize", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) far_file = os.path.join(cache_dir, f"hu_tn_{deterministic}_deterministic_verbalizer.far") if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["verbalize"] logging.info(f'VerbalizeFinalFst graph was restored from {far_file}.') else: verbalize = VerbalizeFst(deterministic=deterministic).fst word = WordFst(deterministic=deterministic).fst types = verbalize | word graph = ( pynutil.delete("tokens") + delete_space + pynutil.delete("{") + delete_space + types + delete_space + pynutil.delete("}") ) graph = delete_space + pynini.closure(graph + delete_extra_space) + graph + delete_space self.fst = graph.optimize() if far_file: generator_main(far_file, {"verbalize": self.fst}) logging.info(f"VerbalizeFinalFst grammars are saved to {far_file}.")
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/verbalize_final.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, GraphFst, delete_preserve_order, delete_space, insert_space, ) from pynini.lib import pynutil class DecimalFst(GraphFst): """ Finite state transducer for verbalizing decimal, e.g. decimal { negative: "true" integer_part: "tizenkét" fractional_part: "ötvenhatszázad" quantity: "milliárd" } -> mínusz tizenkét egész ötvenhatszázad milliárd Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="decimal", kind="verbalize", deterministic=deterministic) self.optional_sign = pynini.cross("negative: \"true\"", "mínusz ") self.optional_sign = pynini.closure(self.optional_sign + delete_space, 0, 1) self.integer = ( pynutil.delete("integer_part:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) self.optional_integer = pynini.closure(self.integer + delete_space + insert_space, 0, 1) self.fractional_default = ( pynutil.delete("fractional_part:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) self.fractional = pynutil.insert("egész ") + self.fractional_default self.quantity = ( pynutil.delete("quantity:") + delete_space + pynutil.delete("\"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) self.optional_quantity = pynini.closure(delete_space + insert_space + self.quantity, 0, 1) graph = ( self.optional_sign + ( self.integer | (self.integer + delete_space + insert_space + self.quantity) | (self.optional_integer + self.fractional + self.optional_quantity) ) + delete_preserve_order ) self.numbers = graph delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/decimal.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_preserve_order from pynini.lib import pynutil class MoneyFst(GraphFst): """ Finite state transducer for verbalizing money, e.g. money { currency_maj: "euró" integer_part: "egy"} -> "egy euró" money { currency_maj: "euró" integer_part: "egy" fractional_part: "egy ezred"} -> "egy egész egy ezred euro" money { integer_part: "egy" currency_maj: "font" fractional_part: "negyven" preserve_order: true} -> "egy font negyven" money { integer_part: "egy" currency_maj: "font" fractional_part: "negyven" currency_min: "penny" preserve_order: true} -> "egy font negyven penny" money { fractional_part: "egy" currency_min: "penny" preserve_order: true} -> "egy penny" money { currency_maj: "font" integer_part: "nulla" fractional_part: "null eins" quantity: "millió"} -> "null egész egy század millió font" Args: decimal: GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, decimal: GraphFst, deterministic: bool = True): super().__init__(name="money", kind="verbalize", deterministic=deterministic) keep_space = pynini.accep(" ") maj = pynutil.delete("currency_maj: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") min = pynutil.delete("currency_min: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") fractional_part = ( pynutil.delete("fractional_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") ) integer_part = pynutil.delete("integer_part: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") optional_add_and = pynini.closure(pynutil.insert("és "), 0, 1) # *** currency_maj graph_integer = integer_part + keep_space + maj # *** currency_maj + (***) | ((und) *** current_min) minor_part = fractional_part | (fractional_part + keep_space + min) if not deterministic: minor_part |= optional_add_and + fractional_part + keep_space + min graph_integer_with_minor = integer_part + keep_space + maj + keep_space + minor_part + delete_preserve_order # *** komma *** currency_maj graph_decimal = decimal.numbers + keep_space + maj graph_decimal |= decimal.numbers + keep_space + maj + delete_preserve_order # *** current_min graph_minor = fractional_part + keep_space + min + delete_preserve_order graph = graph_integer | graph_integer_with_minor | graph_decimal | graph_minor delete_tokens = self.delete_tokens(graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/money.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_space from pynini.lib import pynutil class CardinalFst(GraphFst): """ Finite state transducer for verbalizing cardinal, e.g. cardinal { negative: "true" integer: "23" } -> mínusz huszonhárom Args: deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="cardinal", kind="verbalize", deterministic=deterministic) self.optional_sign = pynini.cross("negative: \"true\"", "mínusz ") self.optional_sign = pynini.closure(self.optional_sign + delete_space, 0, 1) integer = pynini.closure(NEMO_NOT_QUOTE) self.integer = delete_space + pynutil.delete("\"") + integer + pynutil.delete("\"") integer = pynutil.delete("integer:") + self.integer self.numbers = self.optional_sign + integer delete_tokens = self.delete_tokens(self.numbers) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/cardinal.py
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_NOT_QUOTE, NEMO_SIGMA, GraphFst, delete_preserve_order, insert_space, ) from nemo_text_processing.text_normalization.hu.utils import get_abs_path from pynini.lib import pynutil digit_no_zero = pynini.invert(pynini.string_file(get_abs_path("data/number/digit.tsv"))) zero = pynini.invert(pynini.string_file(get_abs_path("data/number/zero.tsv"))) graph_symbols = pynini.string_file(get_abs_path("data/electronic/symbols.tsv")) server_common = pynini.string_file(get_abs_path("data/electronic/server_name.tsv")) domain_common = pynini.string_file(get_abs_path("data/electronic/domain.tsv")) class ElectronicFst(GraphFst): """ Finite state transducer for verbalizing electronic e.g. electronic { username: "abc" domain: "hotmail.com" } -> "a b c kukac hotmail pont com" -> "a b c kukac h o t m a i l pont c o m" -> "a b c kukac hotmail pont c o m" -> "a b c at h o t m a i l pont com" Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="electronic", kind="verbalize", deterministic=deterministic) graph_digit = digit_no_zero | zero def add_space_after_char(): return pynini.closure(NEMO_NOT_QUOTE - pynini.accep(" ") + insert_space) + ( NEMO_NOT_QUOTE - pynini.accep(" ") ) at_sign = pynutil.insert("kukac ") if not deterministic: at_sign |= pynutil.insert("kukacjel ") at_sign |= pynutil.insert("csiga ") at_sign |= pynutil.insert("ormány ") at_sign |= pynutil.insert("farkas á ") at_sign |= pynutil.insert("bejgli ") at_sign |= pynutil.insert("at-jel ") verbalize_characters = pynini.cdrewrite(graph_symbols | graph_digit, "", "", NEMO_SIGMA) user_name = pynutil.delete("username: \"") + add_space_after_char() + pynutil.delete("\"") user_name @= verbalize_characters convert_defaults = pynutil.add_weight(NEMO_NOT_QUOTE, weight=0.0001) | domain_common | server_common domain = convert_defaults + pynini.closure(insert_space + convert_defaults) domain @= verbalize_characters domain = pynutil.delete("domain: \"") + domain + pynutil.delete("\"") protocol = ( pynutil.delete("protocol: \"") + add_space_after_char() @ pynini.cdrewrite(graph_symbols, "", "", NEMO_SIGMA) + pynutil.delete("\"") ) self.graph = (pynini.closure(protocol + pynini.accep(" "), 0, 1) + domain) | ( user_name + pynini.accep(" ") + at_sign + domain ) delete_tokens = self.delete_tokens(self.graph + delete_preserve_order) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/electronic.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_QUOTE, GraphFst, delete_preserve_order from pynini.lib import pynutil class DateFst(GraphFst): """ Finite state transducer for verbalizing date, e.g. date { year: "kettőezer-tíz" month: "szeptember" day: "harmincegyedike" preserve_order: true } -> "kettőezer-tíz szeptember harmincegyedike" Args: ordinal: ordinal verbalizer GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="date", kind="verbalize", deterministic=deterministic) month = pynutil.delete("month: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") year = pynutil.delete("year: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") day = pynutil.delete("day: \"") + pynini.closure(NEMO_NOT_QUOTE, 1) + pynutil.delete("\"") # day month year graph_ymd = pynini.closure(year + pynini.accep(" "), 0, 1) + month + pynini.accep(" ") + day self.graph = graph_ymd final_graph = self.graph + delete_preserve_order delete_tokens = self.delete_tokens(final_graph) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/verbalizers/date.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/dates/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/ordinals/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/inflection/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/electronic/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/telephone/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/time/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/number/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/money/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/measures/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/hu/data/fractions/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import logging import os def get_abs_path(rel_path): """ Get absolute path Args: rel_path: relative path to this file Returns absolute path """ abs_path = os.path.dirname(os.path.abspath(__file__)) + os.sep + rel_path if not os.path.exists(abs_path): logging.warning(f'{abs_path} does not exist') return abs_path def load_labels(abs_path): """ loads relative path file as dictionary Args: abs_path: absolute path Returns dictionary of mappings """ label_tsv = open(abs_path, encoding="utf-8") labels = list(csv.reader(label_tsv, delimiter="\t")) return labels
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path from nemo_text_processing.text_normalization.en.graph_utils import NEMO_DIGIT, GraphFst, convert_space, insert_space from pynini.lib import pynutil class TimeFst(GraphFst): """ Finite state transducer for classifying time, e.g. "02:15 Uhr est" -> time { hours: "2" minutes: "15" zone: "e s t"} "2 Uhr" -> time { hours: "2" } "09:00 Uhr" -> time { hours: "2" } "02:15:10 Uhr" -> time { hours: "2" minutes: "15" seconds: "10"} Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="time", kind="classify", deterministic=deterministic) final_suffix = pynutil.delete(" ") + pynutil.delete("Uhr") | pynutil.delete("uhr") time_zone_graph = pynini.string_file(get_abs_path("data/time/time_zone.tsv")) labels_hour = [str(x) for x in range(0, 25)] labels_minute_single = [str(x) for x in range(1, 10)] labels_minute_double = [str(x) for x in range(10, 60)] delete_leading_zero_to_double_digit = (pynutil.delete("0") | (NEMO_DIGIT - "0")) + NEMO_DIGIT graph_hour = pynini.union(*labels_hour) graph_minute_single = pynini.union(*labels_minute_single) graph_minute_double = pynini.union(*labels_minute_double) final_graph_hour_only = pynutil.insert("hours: \"") + graph_hour + pynutil.insert("\"") final_graph_hour = ( pynutil.insert("hours: \"") + delete_leading_zero_to_double_digit @ graph_hour + pynutil.insert("\"") ) final_graph_minute = ( pynutil.insert("minutes: \"") + (pynutil.delete("0") + graph_minute_single | graph_minute_double) + pynutil.insert("\"") ) final_graph_second = ( pynutil.insert("seconds: \"") + (pynutil.delete("0") + graph_minute_single | graph_minute_double) + pynutil.insert("\"") ) final_time_zone_optional = pynini.closure( pynini.accep(" ") + pynutil.insert("zone: \"") + convert_space(time_zone_graph) + pynutil.insert("\""), 0, 1, ) # 02:30 Uhr graph_hm = ( final_graph_hour + pynutil.delete(":") + (pynutil.delete("00") | (insert_space + final_graph_minute)) + final_suffix + final_time_zone_optional ) # 10:30:05 Uhr, graph_hms = ( final_graph_hour + pynutil.delete(":") + (pynini.cross("00", " minutes: \"0\"") | (insert_space + final_graph_minute)) + pynutil.delete(":") + (pynini.cross("00", " seconds: \"0\"") | (insert_space + final_graph_second)) + final_suffix + final_time_zone_optional + pynutil.insert(" preserve_order: true") ) # 2 Uhr est graph_h = final_graph_hour_only + final_suffix + final_time_zone_optional final_graph = (graph_hm | graph_h | graph_hms).optimize() final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/time.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_ALPHA, NEMO_DIGIT, NEMO_NON_BREAKING_SPACE, NEMO_SIGMA, GraphFst, convert_space, insert_space, ) from pynini.examples import plurals from pynini.lib import pynutil unit_singular = pynini.string_file(get_abs_path("data/measure/measurements.tsv")) suppletive = pynini.string_file(get_abs_path("data/measure/suppletive.tsv")) def singular_to_plural(): # plural endung n/en maskuline Nomen mit den Endungen e, ent, and, ant, ist, or _n = NEMO_SIGMA + pynini.union("e") + pynutil.insert("n") _en = ( NEMO_SIGMA + pynini.union("ent", "and", "ant", "ist", "or", "ion", "ik", "heit", "keit", "schaft", "tät", "ung") + pynutil.insert("en") ) _nen = NEMO_SIGMA + pynini.union("in") + (pynutil.insert("e") | pynutil.insert("nen")) _fremd = NEMO_SIGMA + pynini.union("ma", "um", "us") + pynutil.insert("en") # maskuline Nomen mit den Endungen eur, ich, ier, ig, ling, ör _e = NEMO_SIGMA + pynini.union("eur", "ich", "ier", "ig", "ling", "ör") + pynutil.insert("e") _s = NEMO_SIGMA + pynini.union("a", "i", "o", "u", "y") + pynutil.insert("s") graph_plural = plurals._priority_union( suppletive, pynini.union(_n, _en, _nen, _fremd, _e, _s), NEMO_SIGMA ).optimize() return graph_plural class MeasureFst(GraphFst): """ Finite state transducer for classifying measure, e.g. "2,4 oz" -> measure { cardinal { integer_part: "zwei" fractional_part: "vier" units: "unzen" preserve_order: true } } "1 oz" -> measure { cardinal { integer: "zwei" units: "unze" preserve_order: true } } "1 million oz" -> measure { cardinal { integer: "eins" quantity: "million" units: "unze" preserve_order: true } } This class also converts words containing numbers and letters e.g. "a-8" —> "a acht" e.g. "1,2-a" —> "ein komma zwei a" Args: cardinal: CardinalFst decimal: DecimalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, decimal: GraphFst, fraction: GraphFst, deterministic: bool = True): super().__init__(name="measure", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph graph_unit_singular = convert_space(unit_singular) graph_unit_plural = graph_unit_singular @ pynini.cdrewrite(convert_space(suppletive), "", "[EOS]", NEMO_SIGMA) optional_graph_negative = pynini.closure("-", 0, 1) graph_unit_denominator = ( pynini.cross("/", "pro") + pynutil.insert(NEMO_NON_BREAKING_SPACE) + graph_unit_singular ) optional_unit_denominator = pynini.closure( pynutil.insert(NEMO_NON_BREAKING_SPACE) + graph_unit_denominator, 0, 1, ) unit_plural = ( pynutil.insert("units: \"") + (graph_unit_plural + (optional_unit_denominator) | graph_unit_denominator) + pynutil.insert("\"") ) unit_singular_graph = ( pynutil.insert("units: \"") + ((graph_unit_singular + optional_unit_denominator) | graph_unit_denominator) + pynutil.insert("\"") ) subgraph_decimal = decimal.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural subgraph_cardinal = ( (optional_graph_negative + (pynini.closure(NEMO_DIGIT) - "1")) @ cardinal.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural ) subgraph_cardinal |= ( (optional_graph_negative + pynini.accep("1")) @ cardinal.fst @ pynini.cdrewrite(pynini.cross("eins", "ein"), "", "", NEMO_SIGMA) + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_singular_graph ) subgraph_fraction = fraction.fst + insert_space + pynini.closure(pynutil.delete(" "), 0, 1) + unit_plural cardinal_dash_alpha = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.delete('-') + pynutil.insert("\" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) alpha_dash_cardinal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" }") ) decimal_dash_alpha = ( pynutil.insert("decimal { ") + decimal.final_graph_wo_negative + pynutil.delete('-') + pynutil.insert(" } units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.insert("\"") ) decimal_times = ( pynutil.insert("decimal { ") + decimal.final_graph_wo_negative + pynutil.insert(" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) cardinal_times = ( pynutil.insert("cardinal { integer: \"") + cardinal_graph + pynutil.insert("\" } units: \"") + pynini.union('x', 'X') + pynutil.insert("\"") ) alpha_dash_decimal = ( pynutil.insert("units: \"") + pynini.closure(NEMO_ALPHA, 1) + pynutil.delete('-') + pynutil.insert("\"") + pynutil.insert(" decimal { ") + decimal.final_graph_wo_negative + pynutil.insert(" }") ) final_graph = ( subgraph_decimal | subgraph_cardinal | cardinal_dash_alpha | alpha_dash_cardinal | decimal_dash_alpha | decimal_times | alpha_dash_decimal | subgraph_fraction | cardinal_times ) final_graph += pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/measure.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import GraphFst from pynini.lib import pynutil class FractionFst(GraphFst): """ Finite state transducer for classifying fraction "23 4/6" -> fraction { integer: "drei und zwanzig" numerator: "vier" denominator: "sechs" preserve_order: true } Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal, deterministic: bool = True): super().__init__(name="fraction", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph self.optional_graph_negative = pynini.closure( pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1 ) self.integer = pynutil.insert("integer_part: \"") + cardinal_graph + pynutil.insert("\"") self.numerator = ( pynutil.insert("numerator: \"") + cardinal_graph + pynini.cross(pynini.union("/", " / "), "\" ") ) self.denominator = pynutil.insert("denominator: \"") + cardinal_graph + pynutil.insert("\"") self.graph = ( self.optional_graph_negative + pynini.closure(self.integer + pynini.accep(" "), 0, 1) + self.numerator + self.denominator ) graph = self.graph + pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/fraction.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path from nemo_text_processing.text_normalization.en.graph_utils import NEMO_DIGIT, GraphFst, insert_space from pynini.lib import pynutil class TelephoneFst(GraphFst): """ Finite state transducer for classifying telephone, which includes country code, number part and extension E.g "+49 1234-1233" -> telephone { country_code: "plus neun und vierzig" number_part: "eins zwei drei vier eins zwei drei drei" preserve_order: true } "(012) 1234-1233" -> telephone { country_code: "null eins zwei" number_part: "eins zwei drei vier eins zwei drei drei" preserve_order: true } (0**) Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool = True): super().__init__(name="telephone", kind="classify", deterministic=deterministic) graph_zero = pynini.invert(pynini.string_file(get_abs_path("data/numbers/zero.tsv"))).optimize() graph_digit_no_zero = pynini.invert( pynini.string_file(get_abs_path("data/numbers/digit.tsv")) ).optimize() | pynini.cross("1", "eins") graph_digit = graph_digit_no_zero | graph_zero numbers_with_single_digits = pynini.closure(graph_digit + insert_space) + graph_digit two_digit_and_zero = (NEMO_DIGIT ** 2 @ cardinal.two_digit_non_zero) | graph_zero # def add_space_after_two_digit(): # return pynini.closure(two_digit_and_zero + insert_space) + ( # two_digit_and_zero # ) country_code = pynini.closure(pynini.cross("+", "plus "), 0, 1) + two_digit_and_zero country_code |= ( pynutil.delete("(") + graph_zero + insert_space + numbers_with_single_digits + pynutil.delete(")") ) country_code |= graph_zero + insert_space + numbers_with_single_digits country_code = pynutil.insert("country_code: \"") + country_code + pynutil.insert("\"") del_separator = pynini.cross(pynini.union("-", " "), " ") # numbers_with_two_digits = pynini.closure(graph_digit + insert_space) + add_space_after_two_digit() + pynini.closure(insert_space + graph_digit) # numbers = numbers_with_two_digits + pynini.closure(del_separator + numbers_with_two_digits, 0, 1) numbers = numbers_with_single_digits + pynini.closure(del_separator + numbers_with_single_digits, 0, 1) number_length = pynini.closure((NEMO_DIGIT | pynini.union("-", " ", ")", "(")), 7) number_part = pynini.compose(number_length, numbers) number = pynutil.insert("number_part: \"") + number_part + pynutil.insert("\"") graph = country_code + pynini.accep(" ") + number self.graph = graph final_graph = self.add_tokens(self.graph + pynutil.insert(" preserve_order: true")) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/telephone.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/google/TextNormalizationCoveringGrammars # Russian minimally supervised number grammar. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_DIGIT, GraphFst from pynini.lib import pynutil class OrdinalFst(GraphFst): """ Finite state transducer for classifying cardinals, e.g. "2." -> ordinal { integer: "zwei" } } "2tes" -> ordinal { integer: "zwei" } } Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic=False): super().__init__(name="ordinal", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph endings = ["ter", "tes", "tem", "te", "ten"] self.graph = ( ( pynini.closure(NEMO_DIGIT | pynini.accep(".")) + pynutil.delete(pynutil.add_weight(pynini.union(*endings), weight=0.0001) | pynini.accep(".")) ) @ cardinal_graph ).optimize() final_graph = pynutil.insert("integer: \"") + self.graph + pynutil.insert("\"") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/ordinal.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, convert_space from pynini.lib import pynutil class WhiteListFst(GraphFst): """ Finite state transducer for classifying whitelist, e.g. "Mr." -> tokens { name: "mister" } This class has highest priority among all classifier grammars. Whitelisted tokens are defined and loaded from "data/whitelist.tsv". Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) input_file: path to a file with whitelist replacements """ def __init__(self, input_case: str, deterministic: bool = True, input_file: str = None): super().__init__(name="whitelist", kind="classify", deterministic=deterministic) def _get_whitelist_graph(input_case, file): whitelist = load_labels(file) if input_case == "lower_cased": whitelist = [[x[0].lower()] + x[1:] for x in whitelist] graph = pynini.string_map(whitelist) return graph graph = _get_whitelist_graph(input_case, get_abs_path("data/whitelist.tsv")) if not deterministic and input_case != "lower_cased": graph |= pynutil.add_weight( _get_whitelist_graph("lower_cased", get_abs_path("data/whitelist.tsv")), weight=0.0001 ) if input_file: whitelist_provided = _get_whitelist_graph(input_case, input_file) if not deterministic: graph |= whitelist_provided else: graph = whitelist_provided if not deterministic: units_graph = _get_whitelist_graph(input_case, file=get_abs_path("data/measure/measurements.tsv")) graph |= units_graph self.graph = graph self.final_graph = convert_space(self.graph).optimize() self.fst = (pynutil.insert("name: \"") + self.final_graph + pynutil.insert("\"")).optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/whitelist.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import pynini from nemo_text_processing.text_normalization.de.taggers.cardinal import CardinalFst from nemo_text_processing.text_normalization.de.taggers.date import DateFst from nemo_text_processing.text_normalization.de.taggers.decimal import DecimalFst from nemo_text_processing.text_normalization.de.taggers.electronic import ElectronicFst from nemo_text_processing.text_normalization.de.taggers.fraction import FractionFst from nemo_text_processing.text_normalization.de.taggers.measure import MeasureFst from nemo_text_processing.text_normalization.de.taggers.money import MoneyFst from nemo_text_processing.text_normalization.de.taggers.ordinal import OrdinalFst from nemo_text_processing.text_normalization.de.taggers.telephone import TelephoneFst from nemo_text_processing.text_normalization.de.taggers.time import TimeFst from nemo_text_processing.text_normalization.de.taggers.whitelist import WhiteListFst from nemo_text_processing.text_normalization.de.taggers.word import WordFst from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_CHAR, NEMO_DIGIT, GraphFst, delete_extra_space, delete_space, generator_main, ) from nemo_text_processing.text_normalization.en.taggers.punctuation import PunctuationFst from pynini.lib import pynutil class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence, that is lower cased. For deployment, this grammar will be compiled and exported to OpenFst Finite State Archive (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. Args: input_case: accepting either "lower_cased" or "cased" input. deterministic: if True will provide a single transduction option, for False multiple options (used for audio-based normalization) cache_dir: path to a dir with .far grammar file. Set to None to avoid using cache. overwrite_cache: set to True to overwrite .far files whitelist: path to a file with whitelist replacements """ def __init__( self, input_case: str, deterministic: bool = False, cache_dir: str = None, overwrite_cache: bool = False, whitelist: str = None, ): super().__init__(name="tokenize_and_classify", kind="classify", deterministic=deterministic) far_file = None if cache_dir is not None and cache_dir != "None": os.makedirs(cache_dir, exist_ok=True) whitelist_file = os.path.basename(whitelist) if whitelist else "" far_file = os.path.join( cache_dir, f"_{input_case}_de_tn_{deterministic}_deterministic{whitelist_file}.far" ) if not overwrite_cache and far_file and os.path.exists(far_file): self.fst = pynini.Far(far_file, mode="r")["tokenize_and_classify"] no_digits = pynini.closure(pynini.difference(NEMO_CHAR, NEMO_DIGIT)) self.fst_no_digits = pynini.compose(self.fst, no_digits).optimize() logging.info(f"ClassifyFst.fst was restored from {far_file}.") else: logging.info(f"Creating ClassifyFst grammars. This might take some time...") self.cardinal = CardinalFst(deterministic=deterministic) cardinal_graph = self.cardinal.fst self.ordinal = OrdinalFst(cardinal=self.cardinal, deterministic=deterministic) ordinal_graph = self.ordinal.fst self.decimal = DecimalFst(cardinal=self.cardinal, deterministic=deterministic) decimal_graph = self.decimal.fst self.fraction = FractionFst(cardinal=self.cardinal, deterministic=deterministic) fraction_graph = self.fraction.fst self.measure = MeasureFst( cardinal=self.cardinal, decimal=self.decimal, fraction=self.fraction, deterministic=deterministic ) measure_graph = self.measure.fst self.date = DateFst(cardinal=self.cardinal, deterministic=deterministic) date_graph = self.date.fst word_graph = WordFst(deterministic=deterministic).fst self.time = TimeFst(deterministic=deterministic) time_graph = self.time.fst self.telephone = TelephoneFst(cardinal=self.cardinal, deterministic=deterministic) telephone_graph = self.telephone.fst self.electronic = ElectronicFst(deterministic=deterministic) electronic_graph = self.electronic.fst self.money = MoneyFst(cardinal=self.cardinal, decimal=self.decimal, deterministic=deterministic) money_graph = self.money.fst self.whitelist = WhiteListFst(input_case=input_case, deterministic=deterministic, input_file=whitelist) whitelist_graph = self.whitelist.fst punct_graph = PunctuationFst(deterministic=deterministic).fst classify = ( pynutil.add_weight(whitelist_graph, 1.01) | pynutil.add_weight(time_graph, 1.1) | pynutil.add_weight(measure_graph, 1.1) | pynutil.add_weight(cardinal_graph, 1.1) | pynutil.add_weight(fraction_graph, 1.1) | pynutil.add_weight(date_graph, 1.1) | pynutil.add_weight(ordinal_graph, 1.1) | pynutil.add_weight(decimal_graph, 1.1) | pynutil.add_weight(money_graph, 1.1) | pynutil.add_weight(telephone_graph, 1.1) | pynutil.add_weight(electronic_graph, 1.1) ) classify |= pynutil.add_weight(word_graph, 100) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=1.1) + pynutil.insert(" }") token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = token_plus_punct + pynini.closure(pynutil.add_weight(delete_extra_space, 1.1) + token_plus_punct) graph = delete_space + graph + delete_space self.fst = graph.optimize() no_digits = pynini.closure(pynini.difference(NEMO_CHAR, NEMO_DIGIT)) self.fst_no_digits = pynini.compose(self.fst, no_digits).optimize() if far_file: generator_main(far_file, {"tokenize_and_classify": self.fst}) logging.info(f"ClassifyFst grammars are saved to {far_file}.")
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/tokenize_and_classify.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, insert_space from pynini.lib import pynutil quantities = pynini.string_file(get_abs_path("data/numbers/quantities.tsv")) def get_quantity(decimal: 'pynini.FstLike', cardinal_up_to_hundred: 'pynini.FstLike') -> 'pynini.FstLike': """ Returns FST that transforms either a cardinal or decimal followed by a quantity into a numeral, e.g. 1 million -> integer_part: "eine" quantity: "million" e.g. 1.4 million -> integer_part: "eins" fractional_part: "vier" quantity: "million" Args: decimal: decimal FST cardinal_up_to_hundred: cardinal FST """ numbers = cardinal_up_to_hundred res = ( pynutil.insert("integer_part: \"") + numbers + pynutil.insert("\"") + pynini.accep(" ") + pynutil.insert("quantity: \"") + quantities + pynutil.insert("\"") ) res |= decimal + pynini.accep(" ") + pynutil.insert("quantity: \"") + quantities + pynutil.insert("\"") return res class DecimalFst(GraphFst): """ Finite state transducer for classifying decimal, e.g. -11,4006 billion -> decimal { negative: "true" integer_part: "elf" fractional_part: "vier null null sechs" quantity: "billion" preserve_order: true } 1 billion -> decimal { integer_part: "eins" quantity: "billion" preserve_order: true } Args: cardinal: CardinalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool = True): super().__init__(name="decimal", kind="classify", deterministic=deterministic) graph_digit = pynini.string_file(get_abs_path("data/numbers/digit.tsv")).invert() graph_digit |= pynini.string_file(get_abs_path("data/numbers/zero.tsv")).invert() graph_digit |= pynini.cross("1", "eins") self.graph = graph_digit + pynini.closure(insert_space + graph_digit).optimize() point = pynutil.delete(",") optional_graph_negative = pynini.closure(pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1) self.graph_fractional = pynutil.insert("fractional_part: \"") + self.graph + pynutil.insert("\"") self.graph_integer = pynutil.insert("integer_part: \"") + cardinal.graph + pynutil.insert("\"") final_graph_wo_sign = self.graph_integer + point + insert_space + self.graph_fractional self.final_graph_wo_negative = final_graph_wo_sign | get_quantity( final_graph_wo_sign, cardinal.graph_hundred_component_at_least_one_none_zero_digit ) final_graph = optional_graph_negative + self.final_graph_wo_negative final_graph += pynutil.insert(" preserve_order: true") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/decimal.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_ALPHA, NEMO_DIGIT, NEMO_SIGMA, GraphFst, convert_space, insert_space, ) from pynini.lib import pynutil min_singular = pynini.string_file(get_abs_path("data/money/currency_minor_singular.tsv")) min_plural = pynini.string_file(get_abs_path("data/money/currency_minor_plural.tsv")) maj_singular = pynini.string_file((get_abs_path("data/money/currency.tsv"))) class MoneyFst(GraphFst): """ Finite state transducer for classifying money, e.g. "€1" -> money { currency_maj: "euro" integer_part: "ein"} "€1,000" -> money { currency_maj: "euro" integer_part: "ein" } "€1,001" -> money { currency_maj: "euro" integer_part: "eins" fractional_part: "null null eins"} "£1,4" -> money { integer_part: "ein" currency_maj: "pfund" fractional_part: "vierzig" preserve_order: true} -> money { integer_part: "ein" currency_maj: "pfund" fractional_part: "vierzig" currency_min: "pence" preserve_order: true} "£0,01" -> money { fractional_part: "ein" currency_min: "penny" preserve_order: true} "£0,01 million" -> money { currency_maj: "pfund" integer_part: "null" fractional_part: "null eins" quantity: "million"} Args: cardinal: CardinalFst decimal: DecimalFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, decimal: GraphFst, deterministic: bool = True): super().__init__(name="money", kind="classify", deterministic=deterministic) cardinal_graph = cardinal.graph graph_decimal_final = decimal.fst maj_singular_labels = load_labels(get_abs_path("data/money/currency.tsv")) maj_singular_graph = convert_space(maj_singular) maj_plural_graph = maj_singular_graph graph_maj_singular = pynutil.insert("currency_maj: \"") + maj_singular_graph + pynutil.insert("\"") graph_maj_plural = pynutil.insert("currency_maj: \"") + maj_plural_graph + pynutil.insert("\"") optional_delete_fractional_zeros = pynini.closure( pynutil.delete(",") + pynini.closure(pynutil.delete("0"), 1), 0, 1 ) graph_integer_one = pynutil.insert("integer_part: \"") + pynini.cross("1", "ein") + pynutil.insert("\"") # only for decimals where third decimal after comma is non-zero or with quantity decimal_delete_last_zeros = ( pynini.closure(NEMO_DIGIT, 1) + pynini.accep(",") + pynini.closure(NEMO_DIGIT, 2) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) decimal_with_quantity = NEMO_SIGMA + NEMO_ALPHA graph_decimal = ( graph_maj_plural + insert_space + (decimal_delete_last_zeros | decimal_with_quantity) @ graph_decimal_final ) graph_integer = ( pynutil.insert("integer_part: \"") + ((NEMO_SIGMA - "1") @ cardinal_graph) + pynutil.insert("\"") ) graph_integer_only = graph_maj_singular + insert_space + graph_integer_one graph_integer_only |= graph_maj_plural + insert_space + graph_integer graph = (graph_integer_only + optional_delete_fractional_zeros) | graph_decimal # remove trailing zeros of non zero number in the first 2 digits and fill up to 2 digits # e.g. 2000 -> 20, 0200->02, 01 -> 01, 10 -> 10 # not accepted: 002, 00, 0, two_digits_fractional_part = ( pynini.closure(NEMO_DIGIT) + (NEMO_DIGIT - "0") + pynini.closure(pynutil.delete("0")) ) @ ( (pynutil.delete("0") + (NEMO_DIGIT - "0")) | ((NEMO_DIGIT - "0") + pynutil.insert("0")) | ((NEMO_DIGIT - "0") + NEMO_DIGIT) ) graph_min_singular = pynutil.insert(" currency_min: \"") + min_singular + pynutil.insert("\"") graph_min_plural = pynutil.insert(" currency_min: \"") + min_plural + pynutil.insert("\"") # format ** euro ** cent decimal_graph_with_minor = None for curr_symbol, _ in maj_singular_labels: preserve_order = pynutil.insert(" preserve_order: true") integer_plus_maj = graph_integer + insert_space + pynutil.insert(curr_symbol) @ graph_maj_plural integer_plus_maj |= graph_integer_one + insert_space + pynutil.insert(curr_symbol) @ graph_maj_singular # non zero integer part integer_plus_maj = (pynini.closure(NEMO_DIGIT) - "0") @ integer_plus_maj graph_fractional_one = two_digits_fractional_part @ pynini.cross("1", "ein") graph_fractional_one = pynutil.insert("fractional_part: \"") + graph_fractional_one + pynutil.insert("\"") graph_fractional = ( two_digits_fractional_part @ (pynini.closure(NEMO_DIGIT, 1, 2) - "1") @ cardinal.two_digit_non_zero ) graph_fractional = pynutil.insert("fractional_part: \"") + graph_fractional + pynutil.insert("\"") fractional_plus_min = graph_fractional + insert_space + pynutil.insert(curr_symbol) @ graph_min_plural fractional_plus_min |= ( graph_fractional_one + insert_space + pynutil.insert(curr_symbol) @ graph_min_singular ) decimal_graph_with_minor_curr = integer_plus_maj + pynini.cross(",", " ") + fractional_plus_min decimal_graph_with_minor_curr |= pynutil.add_weight( integer_plus_maj + pynini.cross(",", " ") + pynutil.insert("fractional_part: \"") + two_digits_fractional_part @ cardinal.two_digit_non_zero + pynutil.insert("\""), weight=0.0001, ) decimal_graph_with_minor_curr |= pynutil.delete("0,") + fractional_plus_min decimal_graph_with_minor_curr = ( pynutil.delete(curr_symbol) + decimal_graph_with_minor_curr + preserve_order ) decimal_graph_with_minor = ( decimal_graph_with_minor_curr if decimal_graph_with_minor is None else pynini.union(decimal_graph_with_minor, decimal_graph_with_minor_curr) ) final_graph = graph | decimal_graph_with_minor final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/money.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_DIGIT, NEMO_SIGMA, GraphFst, delete_space, insert_space, ) from pynini.lib import pynutil AND = "und" def get_ties_digit(digit_path: str, tie_path: str) -> 'pynini.FstLike': """ getting all inverse normalizations for numbers between 21 - 100 Args: digit_path: file to digit tsv tie_path: file to tie tsv, e.g. 20, 30, etc. Returns: res: fst that converts numbers to their verbalization """ digits = defaultdict(list) ties = defaultdict(list) for k, v in load_labels(digit_path): digits[v].append(k) digits["1"] = ["ein"] for k, v in load_labels(tie_path): ties[v].append(k) d = [] for i in range(21, 100): s = str(i) if s[1] == "0": continue for di in digits[s[1]]: for ti in ties[s[0]]: word = di + f" {AND} " + ti d.append((word, s)) res = pynini.string_map(d) return res class CardinalFst(GraphFst): """ Finite state transducer for classifying cardinals, e.g. "101" -> cardinal { integer: "ein hundert und zehn" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = False): super().__init__(name="cardinal", kind="classify", deterministic=deterministic) graph_zero = pynini.string_file(get_abs_path("data/numbers/zero.tsv")).invert() graph_digit_no_one = pynini.string_file(get_abs_path("data/numbers/digit.tsv")).invert() graph_one = pynini.string_file(get_abs_path("data/numbers/ones.tsv")).invert() graph_digit = graph_digit_no_one | graph_one self.digit = (graph_digit | graph_zero).optimize() graph_teen = pynini.string_file(get_abs_path("data/numbers/teen.tsv")).invert() graph_ties = pynini.string_file(get_abs_path("data/numbers/ties.tsv")).invert() # separator = "." def tens_no_zero(): return ( pynutil.delete("0") + graph_digit | get_ties_digit( get_abs_path("data/numbers/digit.tsv"), get_abs_path("data/numbers/ties.tsv") ).invert() | graph_teen | (graph_ties + pynutil.delete("0")) ) def hundred_non_zero(): return (graph_digit_no_one + insert_space | pynini.cross("1", "ein ")) + pynutil.insert("hundert") + ( pynini.closure(insert_space + pynutil.insert(AND, weight=0.0001), 0, 1) + insert_space + tens_no_zero() | pynutil.delete("00") ) | pynutil.delete("0") + tens_no_zero() def thousand(): return (hundred_non_zero() + insert_space + pynutil.insert("tausend") | pynutil.delete("000")) + ( insert_space + hundred_non_zero() | pynutil.delete("000") ) optional_plural_quantity_en = pynini.closure(pynutil.insert("en", weight=-0.0001), 0, 1) optional_plural_quantity_n = pynini.closure(pynutil.insert("n", weight=-0.0001), 0, 1) graph_million = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("million") + optional_plural_quantity_en, pynutil.delete("000"), ) graph_billion = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("milliarde") + optional_plural_quantity_n, pynutil.delete("000"), ) graph_trillion = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("billion") + optional_plural_quantity_en, pynutil.delete("000"), ) graph_quadrillion = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("billiarde") + optional_plural_quantity_n, pynutil.delete("000"), ) graph_quintillion = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("trillion") + optional_plural_quantity_en, pynutil.delete("000"), ) graph_sextillion = pynini.union( hundred_non_zero() + insert_space + pynutil.insert("trilliarde") + optional_plural_quantity_n, pynutil.delete("000"), ) graph = pynini.union( graph_sextillion + insert_space + graph_quintillion + insert_space + graph_quadrillion + insert_space + graph_trillion + insert_space + graph_billion + insert_space + graph_million + insert_space + thousand() ) fix_syntax = [ ("eins tausend", "ein tausend"), ("eins millionen", "eine million"), ("eins milliarden", "eine milliarde"), ("eins billionen", "eine billion"), ("eins billiarden", "eine billiarde"), ] fix_syntax = pynini.union(*[pynini.cross(*x) for x in fix_syntax]) self.graph = ( ((NEMO_DIGIT - "0" + pynini.closure(NEMO_DIGIT, 0)) - "0" - "1") @ pynini.cdrewrite(pynini.closure(pynutil.insert("0")), "[BOS]", "", NEMO_SIGMA) @ NEMO_DIGIT ** 24 @ graph @ pynini.cdrewrite(delete_space, "[BOS]", "", NEMO_SIGMA) @ pynini.cdrewrite(delete_space, "", "[EOS]", NEMO_SIGMA) @ pynini.cdrewrite(pynini.cross(" ", " "), "", "", NEMO_SIGMA) @ pynini.cdrewrite(fix_syntax, "[BOS]", "", NEMO_SIGMA) ) self.graph |= graph_zero | pynini.cross("1", "eins") # self.graph = pynini.cdrewrite(pynutil.delete(separator), "", "", NEMO_SIGMA) @ self.graph self.graph = self.graph.optimize() self.graph_hundred_component_at_least_one_none_zero_digit = ( ((NEMO_DIGIT - "0" + pynini.closure(NEMO_DIGIT, 0)) - "0" - "1") @ pynini.cdrewrite(pynini.closure(pynutil.insert("0")), "[BOS]", "", NEMO_SIGMA) @ NEMO_DIGIT ** 3 @ hundred_non_zero() ) | pynini.cross("1", "eins") self.graph_hundred_component_at_least_one_none_zero_digit = ( self.graph_hundred_component_at_least_one_none_zero_digit.optimize() ) self.two_digit_non_zero = ( pynini.closure(NEMO_DIGIT, 1, 2) @ self.graph_hundred_component_at_least_one_none_zero_digit ) optional_minus_graph = pynini.closure(pynutil.insert("negative: ") + pynini.cross("-", "\"true\" "), 0, 1) final_graph = optional_minus_graph + pynutil.insert("integer: \"") + self.graph + pynutil.insert("\"") final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/cardinal.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import NEMO_ALPHA, NEMO_DIGIT, GraphFst, insert_space from pynini.lib import pynutil class ElectronicFst(GraphFst): """ Finite state transducer for classifying electronic: email addresses e.g. "[email protected]" -> electronic { username: "abc" domain: "hotmail.com" preserve_order: true } e.g. "www.abc.com/123" -> electronic { protocol: "www." domain: "abc.com/123" preserve_order: true } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="electronic", kind="classify", deterministic=deterministic) dot = pynini.accep(".") accepted_common_domains = [x[0] for x in load_labels(get_abs_path("data/electronic/domain.tsv"))] accepted_common_domains = pynini.union(*accepted_common_domains) accepted_symbols = [x[0] for x in load_labels(get_abs_path("data/electronic/symbols.tsv"))] accepted_symbols = pynini.union(*accepted_symbols) - dot accepted_characters = pynini.closure(NEMO_ALPHA | NEMO_DIGIT | accepted_symbols) # email username = pynutil.insert("username: \"") + accepted_characters + pynutil.insert("\"") + pynini.cross('@', ' ') domain_graph = accepted_characters + dot + accepted_characters domain_graph = pynutil.insert("domain: \"") + domain_graph + pynutil.insert("\"") domain_common_graph = ( pynutil.insert("domain: \"") + accepted_characters + accepted_common_domains + pynini.closure((accepted_symbols | dot) + pynini.closure(accepted_characters, 1), 0, 1) + pynutil.insert("\"") ) graph = (username + domain_graph) | domain_common_graph # url protocol_start = pynini.accep("https://") | pynini.accep("http://") protocol_end = pynini.accep("www.") protocol = protocol_start | protocol_end | (protocol_start + protocol_end) protocol = pynutil.insert("protocol: \"") + protocol + pynutil.insert("\"") graph |= protocol + insert_space + (domain_graph | domain_common_graph) self.graph = graph final_graph = self.add_tokens(self.graph + pynutil.insert(" preserve_order: true")) self.fst = final_graph.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/electronic.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_CHAR, NEMO_DIGIT, TO_LOWER, GraphFst, insert_space, ) from pynini.lib import pynutil graph_teen = pynini.invert(pynini.string_file(get_abs_path("data/numbers/teen.tsv"))).optimize() graph_digit = pynini.invert(pynini.string_file(get_abs_path("data/numbers/digit.tsv"))).optimize() ties_graph = pynini.invert(pynini.string_file(get_abs_path("data/numbers/ties.tsv"))).optimize() delete_leading_zero = (pynutil.delete("0") | (NEMO_DIGIT - "0")) + NEMO_DIGIT def get_year_graph(cardinal: GraphFst) -> 'pynini.FstLike': """ Returns year verbalizations as fst < 2000 neunzehn (hundert) (vier und zwanzig), >= 2000 regular cardinal **00 ** hundert Args: delete_leading_zero: removed leading zero cardinal: cardinal GraphFst """ year_gt_2000 = (pynini.union("21", "20") + NEMO_DIGIT ** 2) @ cardinal.graph graph_two_digit = delete_leading_zero @ cardinal.two_digit_non_zero hundred = pynutil.insert("hundert") graph_double_double = ( (pynini.accep("1") + NEMO_DIGIT) @ graph_two_digit + insert_space + pynini.closure(hundred + insert_space, 0, 1) + graph_two_digit ) # for 20** graph_double_double |= pynini.accep("20") @ graph_two_digit + insert_space + graph_two_digit graph = ( graph_double_double | (pynini.accep("1") + NEMO_DIGIT) @ graph_two_digit + insert_space + pynutil.delete("00") + hundred | year_gt_2000 ) return graph class DateFst(GraphFst): """ Finite state transducer for classifying date, e.g. "01.04.2010" -> date { day: "erster" month: "april" year: "zwei tausend zehn" preserve_order: true } "1994" -> date { year: "neunzehn vier und neuzig" } "1900" -> date { year: "neunzehn hundert" } Args: cardinal: cardinal GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal: GraphFst, deterministic: bool): super().__init__(name="date", kind="classify", deterministic=deterministic) month_abbr_graph = load_labels(get_abs_path("data/months/abbr_to_name.tsv")) number_to_month = pynini.string_file(get_abs_path("data/months/numbers.tsv")).optimize() month_graph = pynini.union(*[x[1] for x in month_abbr_graph]).optimize() month_abbr_graph = pynini.string_map(month_abbr_graph) month_abbr_graph = ( pynutil.add_weight(month_abbr_graph, weight=0.0001) | ((TO_LOWER + pynini.closure(NEMO_CHAR)) @ month_abbr_graph) ) + pynini.closure(pynutil.delete(".", weight=-0.0001), 0, 1) self.month_abbr = month_abbr_graph month_graph |= (TO_LOWER + pynini.closure(NEMO_CHAR)) @ month_graph # jan.-> januar, Jan-> januar, januar-> januar month_graph |= month_abbr_graph numbers = cardinal.graph_hundred_component_at_least_one_none_zero_digit optional_leading_zero = delete_leading_zero | NEMO_DIGIT # 01, 31, 1 digit_day = optional_leading_zero @ pynini.union(*[str(x) for x in range(1, 32)]) @ numbers day = (pynutil.insert("day: \"") + digit_day + pynutil.insert("\"")).optimize() digit_month = optional_leading_zero @ pynini.union(*[str(x) for x in range(1, 13)]) number_to_month = digit_month @ number_to_month digit_month @= numbers month_name = (pynutil.insert("month: \"") + month_graph + pynutil.insert("\"")).optimize() month_number = ( pynutil.insert("month: \"") + (pynutil.add_weight(digit_month, weight=0.0001) | number_to_month) + pynutil.insert("\"") ).optimize() # prefer cardinal over year year = pynutil.add_weight(get_year_graph(cardinal=cardinal), weight=0.001) self.year = year year_only = pynutil.insert("year: \"") + year + pynutil.insert("\"") graph_dmy = ( day + pynutil.delete(".") + pynini.closure(pynutil.delete(" "), 0, 1) + insert_space + month_name + pynini.closure(pynini.accep(" ") + year_only, 0, 1) ) separators = ["."] for sep in separators: year_optional = pynini.closure(pynini.cross(sep, " ") + year_only, 0, 1) new_graph = day + pynini.cross(sep, " ") + month_number + year_optional graph_dmy |= new_graph dash = "-" day_optional = pynini.closure(pynini.cross(dash, " ") + day, 0, 1) graph_ymd = year_only + pynini.cross(dash, " ") + month_number + day_optional final_graph = graph_dmy + pynutil.insert(" preserve_order: true") final_graph |= year_only final_graph |= graph_ymd self.final_graph = final_graph.optimize() self.fst = self.add_tokens(self.final_graph).optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/date.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.en.graph_utils import NEMO_NOT_SPACE, GraphFst from pynini.lib import pynutil class WordFst(GraphFst): """ Finite state transducer for classifying word. e.g. sleep -> tokens { name: "sleep" } Args: deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, deterministic: bool = True): super().__init__(name="word", kind="classify") word = pynutil.insert("name: \"") + pynini.closure(NEMO_NOT_SPACE, 1) + pynutil.insert("\"") self.fst = word.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/taggers/word.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pynini from nemo_text_processing.text_normalization.de.utils import get_abs_path, load_labels from nemo_text_processing.text_normalization.en.graph_utils import ( NEMO_DIGIT, NEMO_SIGMA, GraphFst, convert_space, delete_preserve_order, ) from pynini.lib import pynutil class TimeFst(GraphFst): """ Finite state transducer for verbalizing electronic, e.g. time { hours: "2" minutes: "15"} -> "zwei uhr fünfzehn" time { minutes: "15" hours: "2" } -> "viertel nach zwei" time { minutes: "15" hours: "2" } -> "fünfzehn nach zwei" time { hours: "14" minutes: "15"} -> "vierzehn uhr fünfzehn" time { minutes: "15" hours: "14" } -> "viertel nach zwei" time { minutes: "15" hours: "14" } -> "fünfzehn nach drei" time { minutes: "45" hours: "14" } -> "viertel vor drei" Args: cardinal_tagger: cardinal_tagger tagger GraphFst deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, cardinal_tagger: GraphFst, deterministic: bool = True): super().__init__(name="time", kind="verbalize", deterministic=deterministic) # add weight so when using inverse text normalization this conversion is depriotized night_to_early = pynutil.add_weight( pynini.invert(pynini.string_file(get_abs_path("data/time/hour_to_night.tsv"))).optimize(), weight=0.0001 ) hour_to = pynini.invert(pynini.string_file(get_abs_path("data/time/hour_to.tsv"))).optimize() minute_to = pynini.invert(pynini.string_file(get_abs_path("data/time/minute_to.tsv"))).optimize() time_zone_graph = pynini.invert( convert_space(pynini.union(*[x[1] for x in load_labels(get_abs_path("data/time/time_zone.tsv"))])) ) graph_zero = pynini.invert(pynini.string_file(get_abs_path("data/numbers/zero.tsv"))).optimize() number_verbalization = graph_zero | cardinal_tagger.two_digit_non_zero hour = pynutil.delete("hours: \"") + pynini.closure(NEMO_DIGIT, 1) + pynutil.delete("\"") hour_verbalized = hour @ number_verbalization @ pynini.cdrewrite( pynini.cross("eins", "ein"), "[BOS]", "[EOS]", NEMO_SIGMA ) + pynutil.insert(" uhr") minute = pynutil.delete("minutes: \"") + pynini.closure(NEMO_DIGIT, 1) + pynutil.delete("\"") zone = pynutil.delete("zone: \"") + time_zone_graph + pynutil.delete("\"") optional_zone = pynini.closure(pynini.accep(" ") + zone, 0, 1) second = pynutil.delete("seconds: \"") + pynini.closure(NEMO_DIGIT, 1) + pynutil.delete("\"") graph_hms = ( hour_verbalized + pynini.accep(" ") + minute @ number_verbalization + pynutil.insert(" minuten") + pynini.accep(" ") + second @ number_verbalization + pynutil.insert(" sekunden") + optional_zone ) graph_hms @= pynini.cdrewrite( pynini.cross("eins minuten", "eine minute") | pynini.cross("eins sekunden", "eine sekunde"), pynini.union(" ", "[BOS]"), "", NEMO_SIGMA, ) min_30 = [str(x) for x in range(1, 31)] min_30 = pynini.union(*min_30) min_29 = [str(x) for x in range(1, 30)] min_29 = pynini.union(*min_29) graph_h = hour_verbalized graph_hm = hour_verbalized + pynini.accep(" ") + minute @ number_verbalization graph_m_past_h = ( minute @ min_30 @ (number_verbalization | pynini.cross("15", "viertel")) + pynini.accep(" ") + pynutil.insert("nach ") # + hour @ number_verbalization + hour @ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", NEMO_SIGMA) @ number_verbalization ) graph_m30_h = ( minute @ pynini.cross("30", "halb") + pynini.accep(" ") + hour @ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", NEMO_SIGMA) @ hour_to @ number_verbalization ) graph_m_to_h = ( minute @ minute_to @ min_29 @ (number_verbalization | pynini.cross("15", "viertel")) + pynini.accep(" ") + pynutil.insert("vor ") + hour @ pynini.cdrewrite(night_to_early, "[BOS]", "[EOS]", NEMO_SIGMA) @ hour_to @ number_verbalization ) self.graph = ( graph_hms | graph_h | graph_hm | pynutil.add_weight(graph_m_past_h, weight=0.0001) | pynutil.add_weight(graph_m30_h, weight=0.0001) | pynutil.add_weight(graph_m_to_h, weight=0.0001) ) + optional_zone delete_tokens = self.delete_tokens(self.graph + delete_preserve_order) self.fst = delete_tokens.optimize()
NeMo-text-processing-main
nemo_text_processing/text_normalization/de/verbalizers/time.py