python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
#!/usr/bin/env python #***************************************************************************** # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # This script generates libbsdf_bitcode.h from libbsdf.bc import sys import os import struct copyright_str = """/****************************************************************************** * Copyright 2023 NVIDIA Corporation. All rights reserved. *****************************************************************************/ """ def process_data_set(table_data_filename, fout): f = open(table_data_filename, "rb") name_we = os.path.basename(table_data_filename) name = os.path.splitext(name_we)[0] print("- processing multi-scatter data set: %s" % name) fout.write("\n// Automatically generated from %s\n" % name_we) # check header res_roughness, = struct.unpack('i', f.read(4)) res_theta, = struct.unpack('i', f.read(4)) res_ior, = struct.unpack('i', f.read(4)) if (res_roughness != 64) or (res_theta != 64) or ((res_ior != 16) and (res_ior != 0)): print("unexpected resolutions in dataset %s" % name) print("- res_roughness: %d" % res_roughness) print("- res_theta: %d" % res_theta) print("- res_ior: %d" % res_ior) return -1 expected_buffer_size = (res_ior * 2 + 1) * res_roughness * (res_theta + 1) * 4 bytes = f.read() buffer_size = len(bytes) if expected_buffer_size != buffer_size: print("unexpected size of dataset %s" % name) print("- expected_buffer_size: %d" % expected_buffer_size) print("- buffer_size: %d" % buffer_size) return -1 fout.write("unsigned const libbsdf_multiscatter_res_theta_%s = %d;\n" % (name, res_theta)) fout.write("unsigned const libbsdf_multiscatter_res_roughness_%s = %d;\n" % (name, res_roughness)) fout.write("unsigned const libbsdf_multiscatter_res_ior_%s = %d;\n" % (name, res_ior)) # process the actual data after the header fout.write("unsigned char const libbsdf_multiscatter_data_%s[] = {\n" % name) i = 0 fout.write(" ") for byte in bytes: if isinstance(byte, str): byte = ord(byte) fout.write("0x%02x, " % byte) if i == 7: fout.write("\n ") i = 0 else: i += 1 fout.write("};\n") return 0 def usage(): print("Usage: %s <output directory> <inputfile1> <inputfile2> ..." % sys.argv[0]) return 1 def main(args): if len(args) < 3: return usage() with open(args[1], "w") as f: f.write(copyright_str) f.write("\n") f.write("#include <mdl/jit/generator_jit/generator_jit_libbsdf_data.h>\n") f.write("\n") f.write("namespace mi {\n") f.write("namespace mdl {\n") f.write("namespace libbsdf_data {\n") # process all files for x in range(2, len(args)): res = process_data_set(args[x], f) if (res < 0): print("res: %s" % res) return -1 f.write("}\n") f.write("}\n") f.write("}\n") return 0 if __name__ == "__main__": sys.exit(main(sys.argv))
MDL-SDK-master
src/mdl/jit/generator_jit/gen_libbsdf_multiscatter_tables.py
#!/bin/env python #***************************************************************************** # Copyright (c) 2017-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # This script generates the MDL runtime header file for libbsdf. # # Call it like this: # python gen_libbsdf_runtime_header.py ../../compiler/stdmodule ../libbsdf/libbsdf_runtime.h # # python 2.6 or higher is needed # import sys import re import os from gen_intrinsic_func import SignatureParser, error reference_parameter_types = { "bool2", "bool3", "bool4", "color", "double2", "double3", "double4", "float2", "float3", "float4", "int2", "int3", "int4" } def eat_until(token_set, tokens): """eat tokens until token_kind is found and return them, handle parenthesis""" r = 0 e = 0 g = 0 a = 0 l = len(tokens) eaten_tokens = [] while l > 0: tok = tokens[0] if r == 0 and e == 0 and g == 0 and a == 0 and tok in token_set: return eaten_tokens, tokens if tok == '(': r += 1 elif tok == ')': r -= 1 elif tok == '[': e += 1 elif tok == ']': e -= 1 elif tok == '{': g += 1 elif tok == '}': g -= 1 elif tok == '[[': a += 1 elif tok == ']]': a -= 1 eaten_tokens.append(tokens[0]) tokens = tokens[1:] l -= 1 # do not return empty tokens, the parser do not like that return eaten_tokens, [None] def format_param(param): typename, name, defparam = param if typename in reference_parameter_types: res = "%s const &%s" % (typename, name) else: res = "%s %s" % (typename, name) if defparam: res += " = %s" % defparam return res def parse_prototype(sigparser, decl, prototypes): """Get the C++ prototype for a given function declaration.""" # poor man's scanner :-) tokens = re.sub(r'[,()]', lambda m: ' ' + m.group(0) + ' ', decl).split() tokens, ret_type = sigparser.get_type(tokens) name = tokens[0] if tokens[1] != '(': error("unknown token '" + tokens[1] + "' while processing '" + decl + "': '(' expected") sys.exit(1) tokens = tokens[2:] params = [] if tokens[0] != ')': while True: tokens, t = sigparser.get_type(tokens) paramname = tokens[0] tokens = tokens[1:] if tokens[0] == '=': # default argument defarg, tokens = eat_until({',':None, ')':None}, tokens[1:]) else: defarg = [] params.append((t, paramname, ''.join(defarg))) if tokens[0] == ')': break if tokens[0] != ',': error("unknown token '" + tokens[1] + "' while processing '" + decl + "': ',' expected") sys.exit(1) # skip the comma tokens = tokens[1:] # For array returns, add one pointer parameter per array element if "[" in ret_type: match = re.match("([^[]+)\[(\d+)\]", ret_type) if match: elem_type = match.group(1) num_elems = int(match.group(2)) for i in range(num_elems): params.append((elem_type + "*", "res_%d" % i, [])) ret_type = "void" prototype = "%s %s(%s);" % (ret_type, name, ", ".join(map(format_param, params))) if "[" in ret_type or name == "transpose" or "[<N>]" in prototype: prototype = "// %s (not supported yet)" % prototype prototypes.append(prototype) def print_wrapped(parser, fileobj, line, wrap_pos = 99): """print the given line (provided without newline at end) and wrap it at wrap_pos, splitting the line at commas. Also handles commented out lines.""" orig_line = line prefix = "" next_prefix = "// " if line.startswith("//") else " " while parser.indent * 4 + len(prefix) + len(line) >= wrap_pos: splitpos = line.rfind(',', 0, wrap_pos - parser.indent * 4 - len(prefix)) if splitpos == -1: raise Exception("Unable to split line: %s" % orig_line) parser.write(fileobj, prefix + line[:splitpos + 1] + "\n") line = line[splitpos + 1:].lstrip() prefix = next_prefix parser.write(fileobj, prefix + line + "\n") def usage(args): """print usage info and exit""" print "Usage: %s stdlib_directory outputfile" % args[0] return 1 def main(args): """Process one file and generate signatures.""" if len(args) != 3: return usage(args) stdlib_dir = args[1] out_name = args[2] strict = True prototypes = [] # monkey patch SignatureParser to generate signature names suitable for C++ header files SignatureParser.get_signature = ( lambda self, decl: parse_prototype(self, decl, prototypes)) try: parser = SignatureParser(args[0], stdlib_dir, out_name, strict) # copy the copyright from first 3 lines of libbsdf.h libbsdf_h_path = os.path.join(os.path.dirname(out_name), "libbsdf.h") with open(libbsdf_h_path) as f: copyright = "".join([next(f) for x in xrange(3)]) with open(out_name, "w") as f: parser.write(f, copyright) parser.write(f, "\n#ifndef MDL_LIBBSDF_RUNTIME_H\n" "#define MDL_LIBBSDF_RUNTIME_H\n") for module_name in ["math", "debug"]: # clear list before parsing next module del prototypes[:] parser.parse(module_name) parser.write(f, "\nnamespace %s\n" % module_name) parser.write(f, "{\n") parser.indent += 1 for prototype in prototypes: print_wrapped(parser, f, prototype) parser.indent -= 1 parser.write(f, "}\n") parser.write(f, "\n#endif // MDL_LIBBSDF_RUNTIME_H\n") except Exception as e: error(str(e)) return 1 return 0 if __name__ == "__main__": sys.exit(main(sys.argv))
MDL-SDK-master
src/mdl/jit/generator_jit/gen_libbsdf_runtime_header.py
#!/usr/bin/env python #***************************************************************************** # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # # Generate HLSL intrinsics # import sys ############################################################################### # HLSL-specific information. # ############################################################################### class db_hlsl_attribute(object): "An HLSL attribute declaration" def __init__(self, title_name, scope, args, doc): self.name = title_name.lower() # lowercase attribute name self.title_name = title_name # title-case attribute name self.scope = scope # one of l (loop), c (condition), s (switch), f (function) self.args = args # list of arguments self.doc = doc # documentation class db_hlsl_intrinsic(object): "An HLSL intrinsic declaration" def __init__(self, name, idx, opname, params, ns, ns_idx, doc, ro, rn, unsigned_op, overload_idx): self.name = name # Function name self.idx = idx # Unique number within namespace self.opname = opname # D3D-style name self.params = params # List of parameters self.ns = ns # Function namespace self.ns_idx = ns_idx # Namespace index self.doc = doc # Documentation id_prefix = "DS_IOP" if ns == "Intrinsics" else "DS_MOP" self.enum_name = "%s_%s" % (id_prefix, name) # enum name self.readonly = ro # Only read memory self.readnone = rn # Not read memory self.unsigned_op = unsigned_op # Unsigned opcode if exist if unsigned_op != "": self.unsigned_op = "%s_%s" % (id_prefix, unsigned_op) self.overload_param_index = overload_idx # Parameter determines the overload type, -1 means ret type self.key = ("%3d" % ns_idx) + "!" + name + "!" + ("%2d" % len(params)) + "!" + ("%3d" % idx) # Unique key self.vulkanSpecific = ns.startswith("Vk") # Vulkan specific intrinsic - SPIRV change class db_hlsl_namespace(object): "A grouping of HLSL intrinsics" def __init__(self, name): self.name = name self.intrinsics = [] class db_hlsl_intrisic_param(object): "An HLSL parameter declaration for an intrinsic" def __init__(self, name, param_qual, template_id, template_list, component_id, component_list, rows, cols, type_name, idx, template_id_idx, component_id_idx): self.name = name # Parameter name self.param_qual = param_qual # Parameter qualifier expressions self.template_id = template_id # Template ID (possibly identifier) self.template_list = template_list # Template list (possibly identifier) self.component_id = component_id # Component ID (possibly identifier) self.component_list = component_list # Component list (possibly identifier) self.rows = rows # Row count for parameter, possibly identifier self.cols = cols # Row count for parameter, possibly identifier self.type_name = type_name # Type name self.idx = idx # Argument index self.template_id_idx = template_id_idx # Template ID numeric value self.component_id_idx = component_id_idx # Component ID numeric value class db_hlsl(object): "A database of HLSL language data" def __init__(self, intrinsic_defs): self.base_types = { "bool": "LICOMPTYPE_BOOL", "int": "LICOMPTYPE_INT", "int16_t": "LICOMPTYPE_INT16", "uint": "LICOMPTYPE_UINT", "uint16_t": "LICOMPTYPE_UINT16", "u64": "LICOMPTYPE_UINT64", "any_int": "LICOMPTYPE_ANY_INT", "any_int32": "LICOMPTYPE_ANY_INT32", "uint_only": "LICOMPTYPE_UINT_ONLY", "float16_t": "LICOMPTYPE_FLOAT16", "float": "LICOMPTYPE_FLOAT", "fldbl": "LICOMPTYPE_FLOAT_DOUBLE", "any_float": "LICOMPTYPE_ANY_FLOAT", "float_like": "LICOMPTYPE_FLOAT_LIKE", "double": "LICOMPTYPE_DOUBLE", "double_only": "LICOMPTYPE_DOUBLE_ONLY", "numeric": "LICOMPTYPE_NUMERIC", "numeric16_only": "LICOMPTYPE_NUMERIC16_ONLY", "numeric32": "LICOMPTYPE_NUMERIC32", "numeric32_only": "LICOMPTYPE_NUMERIC32_ONLY", "any": "LICOMPTYPE_ANY", "sampler1d": "LICOMPTYPE_SAMPLER1D", "sampler2d": "LICOMPTYPE_SAMPLER2D", "sampler3d": "LICOMPTYPE_SAMPLER3D", "sampler_cube": "LICOMPTYPE_SAMPLERCUBE", "sampler_cmp": "LICOMPTYPE_SAMPLERCMP", "sampler": "LICOMPTYPE_SAMPLER", "ray_desc" : "LICOMPTYPE_RAYDESC", "acceleration_struct" : "LICOMPTYPE_ACCELERATION_STRUCT", "udt" : "LICOMPTYPE_USER_DEFINED_TYPE", "void": "LICOMPTYPE_VOID", "string": "LICOMPTYPE_STRING", "wave": "LICOMPTYPE_WAVE"} self.trans_rowcol = { "r": "IA_R", "c": "IA_C", "r2": "IA_R2", "c2": "IA_C2"} self.param_qual = { "in": "AR_QUAL_IN", "inout": "AR_QUAL_IN | AR_QUAL_OUT", "out": "AR_QUAL_OUT", "col_major": "AR_QUAL_COLMAJOR", "row_major": "AR_QUAL_ROWMAJOR"} self.intrinsics = [] self.load_intrinsics(intrinsic_defs) self.create_namespaces() self.populate_attributes() self.opcode_namespace = "Def_function" def create_namespaces(self): last_ns = None self.namespaces = {} for i in sorted(self.intrinsics, key=lambda x: x.key): if last_ns is None or last_ns.name != i.ns: last_ns = db_hlsl_namespace(i.ns) self.namespaces[i.ns] = last_ns last_ns.intrinsics.append(i) def load_intrinsics(self, intrinsic_defs): import re blank_re = re.compile(r"^\s*$") comment_re = re.compile(r"^\s*//") namespace_beg_re = re.compile(r"^namespace\s+(\w+)\s*{\s*$") namespace_end_re = re.compile(r"^}\s*namespace\s*$") intrinsic_re = re.compile(r"^\s*([^(]+)\s+\[\[(\S*)\]\]\s+(\w+)\s*\(\s*([^)]*)\s*\)\s*(:\s*\w+\s*)?;$") operand_re = re.compile(r"^:\s*(\w+)\s*$") bracket_cleanup_re = re.compile(r"<\s*(\S+)\s*,\s*(\S+)\s*>") # change <a,b> to <a@> to help split params and parse params_split_re = re.compile(r"\s*,\s*") ws_split_re = re.compile(r"\s+") typeref_re = re.compile(r"\$type(\d+)$") type_matrix_re = re.compile(r"(\S+)<(\S+)@(\S+)>$") type_vector_re = re.compile(r"(\S+)<(\S+)>$") type_any_re = re.compile(r"(\S+)<>$") digits_re = re.compile(r"^\d+$") opt_param_match_re = re.compile(r"^\$match<(\S+)@(\S+)>$") ns_idx = 0 num_entries = 0 def add_flag(val, new_val): if val == "" or val == "0": return new_val return val + " | " + new_val def translate_rowcol(val): digits_match = digits_re.match(val) if digits_match: return val assert val in self.trans_rowcol, "unknown row/col %s" % val return self.trans_rowcol[val] def process_arg(desc, idx, done_args, intrinsic_name): "Process a single parameter description." opt_list = [] desc = desc.strip() if desc == "...": param_name = "..." type_name = "..." else: opt_list = ws_split_re.split(desc) assert len(opt_list) > 0, "malformed parameter desc %s" % (desc) param_name = opt_list.pop() # last token is name type_name = opt_list.pop() # next-to-last is type specifier param_qual = "0" template_id = str(idx) template_list = "LITEMPLATE_ANY" component_id = str(idx) component_list = "LICOMPTYPE_ANY" rows = "1" cols = "1" if type_name == "$unspec": assert idx == 0, "'$unspec' can only be used as the return type" # template_id may be -1 in other places other than return type, for example in Stream.Append(). # $unspec is a shorthand for return types only though. template_id = "-1" component_id = "0" type_name = "void" elif type_name == "...": assert idx != 0, "'...' can only be used in the parameter list" template_id = "-2" component_id = "0" type_name = "void" else: typeref_match = typeref_re.match(type_name) if typeref_match: template_id = typeref_match.group(1) component_id = template_id assert idx != 1, "Can't use $type on the first argument" assert template_id != "0", "Can't match an input to the return type" done_idx = int(template_id) - 1 assert done_idx <= len(args) + 1, "$type must refer to a processed arg" done_arg = done_args[done_idx] type_name = done_arg.type_name # Determine matrix/vector/any/scalar type names. type_matrix_match = type_matrix_re.match(type_name) if type_matrix_match: base_type = type_matrix_match.group(1) rows = type_matrix_match.group(2) cols = type_matrix_match.group(3) template_list = "LITEMPLATE_MATRIX" else: type_vector_match = type_vector_re.match(type_name) if type_vector_match: base_type = type_vector_match.group(1) cols = type_vector_match.group(2) template_list = "LITEMPLATE_VECTOR" else: type_any_match = type_any_re.match(type_name) if type_any_match: base_type = type_any_match.group(1) rows = "r" cols = "c" template_list = "LITEMPLATE_ANY" else: base_type = type_name if base_type.startswith("sampler") or base_type.startswith("string") or base_type.startswith("wave") or base_type.startswith("acceleration_struct") or base_type.startswith("ray_desc"): template_list = "LITEMPLATE_OBJECT" else: template_list = "LITEMPLATE_SCALAR" assert base_type in self.base_types, "Unknown base type '%s' in '%s'" % (base_type, desc) component_list = self.base_types[base_type] rows = translate_rowcol(rows) cols = translate_rowcol(cols) for opt in opt_list: if opt in self.param_qual: param_qual = add_flag(param_qual, self.param_qual[opt]) else: opt_param_match_match = opt_param_match_re.match(opt) assert opt_param_match_match, "Unknown parameter qualifier '%s'" % (opt) template_id = opt_param_match_match.group(1) component_id = opt_param_match_match.group(2) if component_list == "LICOMPTYPE_VOID": if type_name == "void": template_list = "LITEMPLATE_VOID" rows = "0" cols = "0" if template_id == "0": param_qual = "0" # Keep these as numeric values. template_id_idx = int(template_id) component_id_idx = int(component_id) # Verify that references don't point to the right (except for the return value). assert idx == 0 or template_id_idx <= int(idx), "Argument '%s' has a forward reference" % (param_name) assert idx == 0 or component_id_idx <= int(idx), "Argument '%s' has a forward reference" % (param_name) if template_id == "-1": template_id = "INTRIN_TEMPLATE_FROM_TYPE" elif template_id == "-2": template_id = "INTRIN_TEMPLATE_VARARGS" if component_id == "-1": component_id = "INTRIN_COMPTYPE_FROM_TYPE_ELT0" return db_hlsl_intrisic_param(param_name, param_qual, template_id, template_list, component_id, component_list, rows, cols, type_name, idx, template_id_idx, component_id_idx) def process_attr(attr): attrs = attr.split(',') readonly = False # Only read memory readnone = False # Not read memory unsigned_op = "" # Unsigned opcode if exist overload_param_index = -1 # Parameter determines the overload type, -1 means ret type. for a in attrs: if (a == ""): continue if (a == "ro"): readonly = True continue if (a == "rn"): readnone = True continue assign = a.split('=') if (len(assign) != 2): assert False, "invalid attr %s" % (a) continue d = assign[0] v = assign[1] if (d == "unsigned_op"): unsigned_op = v continue if (d == "overload"): overload_param_index = int(v) continue assert False, "invalid attr %s" % (a) return readonly, readnone, unsigned_op, overload_param_index current_namespace = None for line in intrinsic_defs: if blank_re.match(line): continue if comment_re.match(line): continue match_obj = namespace_beg_re.match(line) if match_obj: assert not current_namespace, "cannot open namespace without closing prior one" current_namespace = match_obj.group(1) num_entries = 0 ns_idx += 1 continue if namespace_end_re.match(line): assert current_namespace, "cannot close namespace without previously opening it" current_namespace = None continue match_obj = intrinsic_re.match(line) if match_obj: assert current_namespace, "instruction missing namespace %s" % (line) # Get a D3D-style operand name for the instruction. # Unused for DXIL. opts = match_obj.group(1) attr = match_obj.group(2) name = match_obj.group(3) params = match_obj.group(4) op = match_obj.group(5) if op: operand_match = operand_re.match(op) if operand_match: op = operand_match.group(1) if not op: op = name readonly, readnone, unsigned_op, overload_param_index = process_attr(attr) # Add an entry for this intrinsic. if bracket_cleanup_re.search(opts): opts = bracket_cleanup_re.sub(r"<\1@\2>", opts) if bracket_cleanup_re.search(params): params = bracket_cleanup_re.sub(r"<\g<1>@\2>", params) ret_desc = "out " + opts + " " + name if len(params) > 0: in_args = params_split_re.split(params) else: in_args = [] arg_idx = 1 args = [] for in_arg in in_args: args.append(process_arg(in_arg, arg_idx, args, name)) arg_idx += 1 # We have to process the return type description last # to match the compiler's handling of it and allow # the return type to match an input type. # It needs to be the first entry, so prepend it. args.insert(0, process_arg(ret_desc, 0, args, name)) # TODO: verify a single level of indirection self.intrinsics.append(db_hlsl_intrinsic( name, num_entries, op, args, current_namespace, ns_idx, "pending doc for " + name, readonly, readnone, unsigned_op, overload_param_index)) num_entries += 1 continue assert False, "cannot parse line %s" % (line) def populate_attributes(self): "Populate basic definitions for attributes." attributes = [] def add_attr(title_name, scope, doc): attributes.append(db_hlsl_attribute(title_name, scope, [], doc)) def add_attr_arg(title_name, scope, args, doc): attributes.append(db_hlsl_attribute(title_name, scope, args, doc)) add_attr("Allow_UAV_Condition", "l", "Allows a compute shader loop termination condition to be based off of a UAV read. The loop must not contain synchronization intrinsics") add_attr("Branch", "c", "Evaluate only one side of the if statement depending on the given condition") add_attr("Call", "s", "The bodies of the individual cases in the switch will be moved into hardware subroutines and the switch will be a series of subroutine calls") add_attr("EarlyDepthStencil", "f", "Forces depth-stencil testing before a shader executes") add_attr("FastOpt", "l", "Reduces the compile time but produces less aggressive optimizations") add_attr("Flatten", "c", "Evaluate both sides of the if statement and choose between the two resulting values") add_attr("ForceCase", "s", "Force a switch statement in the hardware") add_attr("Loop", "l", "Generate code that uses flow control to execute each iteration of the loop") add_attr_arg("ClipPlanes", "f", "Optional list of clip planes", [{"name":"ClipPlane", "type":"int", "count":6}]) add_attr_arg("Domain", "f", "Defines the patch type used in the HS", [{"name":"DomainType", type:"string"}]) add_attr_arg("Instance", "f", "Use this attribute to instance a geometry shader", [{"name":"Count", "type":"int"}]) add_attr_arg("MaxTessFactor", "f", "Indicates the maximum value that the hull shader would return for any tessellation factor.", [{"name":"Count", "type":"int"}]) add_attr_arg("MaxVertexCount", "f", "maxvertexcount doc", [{"name":"Count", "type":"int"}]) add_attr_arg("NumThreads", "f", "Defines the number of threads to be executed in a single thread group.", [{"name":"x", "type":"int"},{"name":"z", "type":"int"},{"name":"y", "type":"int"}]) add_attr_arg("OutputControlPoints", "f", "Defines the number of output control points per thread that will be created in the hull shader", [{"name":"Count", "type":"int"}]) add_attr_arg("OutputTopology", "f", "Defines the output primitive type for the tessellator", [{"name":"Topology", "type":"string"}]) add_attr_arg("Partitioning", "f", "Defines the tesselation scheme to be used in the hull shader", [{"name":"Scheme", "type":"scheme"}]) add_attr_arg("PatchConstantFunc", "f", "Defines the function for computing patch constant data", [{"name":"FunctionName", "type":"string"}]) add_attr_arg("RootSignature", "f", "RootSignature doc", [{"name":"SignatureName", "type":"string"}]) add_attr_arg("Unroll", "l", "Unroll the loop until it stops executing or a max count", [{"name":"Count", "type":"int"}]) self.attributes = attributes g_db_hlsl = None g_templ_name = None def get_db_hlsl(): global g_db_hlsl if g_db_hlsl is None: with open(g_templ_name, "r") as f: g_db_hlsl = db_hlsl(f) return g_db_hlsl def get_hlsl_intrinsics(): db = get_db_hlsl() result = "" last_ns = "" ns_table = "" is_vk_table = False # SPIRV Change id_prefix = "" arg_idx = 0 opcode_namespace = db.opcode_namespace for i in sorted(db.intrinsics, key=lambda x: x.key): if last_ns != i.ns: last_ns = i.ns id_prefix = "DS_IOP" if last_ns == "Intrinsics" else "DS_MOP" if (len(ns_table)): result += ns_table + "};\n" # SPIRV Change Starts if is_vk_table: result += "\n#endif // ENABLE_SPIRV_CODEGEN\n" is_vk_table = False # SPIRV Change Ends result += "\n//\n// Start of %s\n//\n\n" % (last_ns) # This used to be qualified as __declspec(selectany), but that's no longer necessary. ns_table = "static HLSL_intrinsic const g_%s[] =\n{\n" % (last_ns) # SPIRV Change Starts if (i.vulkanSpecific): is_vk_table = True result += "#ifdef ENABLE_SPIRV_CODEGEN\n\n" # SPIRV Change Ends arg_idx = 0 ma = "MA_WRITE" if i.readonly: ma = "MA_READ_ONLY" elif i.readnone: ma = "MA_READ_NONE" ns_table += " { %s::%s_%s, %s, %d, %d, g_%s_Args%s },\n" % (opcode_namespace, id_prefix, i.name, ma, i.overload_param_index,len(i.params), last_ns, arg_idx) result += "static HLSL_intrinsic_argument const g_%s_Args%s[] =\n{\n" % (last_ns, arg_idx) for p in i.params: result += " {\"%s\", %s, %s, %s, %s, %s, %s, %s},\n" % ( p.name, p.param_qual, p.template_id, p.template_list, p.component_id, p.component_list, p.rows, p.cols) result += "};\n\n" arg_idx += 1 result += ns_table + "};\n" result += "\n#endif // ENABLE_SPIRV_CODEGEN\n" if is_vk_table else "" # SPIRV Change return result # SPIRV Change Starts def wrap_with_ifdef_if_vulkan_specific(intrinsic, text): if intrinsic.vulkanSpecific: return "#ifdef ENABLE_SPIRV_CODEGEN\n" + text + "#endif // ENABLE_SPIRV_CODEGEN\n" return text # SPIRV Change Ends def enum_hlsl_intrinsics(): db = get_db_hlsl() result = " DS_HLSL_INTRINSIC_FIRST,\n" first = " = DS_HLSL_INTRINSIC_FIRST" enumed = [] last = None for i in sorted(db.intrinsics, key=lambda x: x.key): if (i.enum_name not in enumed): enumerant = " %s%s,\n" % (i.enum_name, first) first ="" result += wrap_with_ifdef_if_vulkan_specific(i, enumerant) # SPIRV Change enumed.append(i.enum_name) last = i.enum_name # unsigned result += " // unsigned\n" for i in sorted(db.intrinsics, key=lambda x: x.key): if (i.unsigned_op != ""): if (i.unsigned_op not in enumed): result += " %s%s,\n" % (i.unsigned_op, first) first = "" enumed.append(i.unsigned_op) last = i.unsigned_op result += " DS_HLSL_INTRINSIC_LAST = %s,\n" % last return result def error(msg): """Write a message to stderr""" sys.stderr.write("gen_intrinsic_eval: Error: " + msg + "\n") def usage(args): """print usage info and exit""" print("Usage: %s outputfile specification" % args[0]) return 1 def main(args): global g_templ_name """Process one file and generate signatures.""" g_templ_name = args[1] out_enum = args[2] out_defs = args[3] try: if out_enum: f = open(out_enum, "wt") else: f = sys.stderr f.write("// Generated by gen_hlsl_intrinsics.py.\n") f.write(enum_hlsl_intrinsics()) f.close() if out_defs: f = open(out_defs, "wt") else: f = sys.stderr f.write("// Generated by gen_hlsl_intrinsics.py.\n") f.write(get_hlsl_intrinsics()) f.close() except IOError as e: error(str(e)) return 1 return 0 if __name__ == "__main__": sys.exit(main(sys.argv))
MDL-SDK-master
src/mdl/compiler/compiler_hlsl/gen_hlsl_intrinsics.py
#!/bin/env python # # Copyright (c) 2012-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # This script generated signatures for compiler known functions. # # python 2.3 or higher is needed # import sys import os import re def error(msg): """Write a message to stderr""" sys.stderr.write("gen_intrinsic_eval: Error: " + msg + "\n") def warning(msg): """Write a message to stderr""" sys.stderr.write("gen_intrinsic_eval: Warning: " + msg + "\n") def make_temp_file(): """Return a temporary file name""" fd, name = tempfile.mkstemp() os.close(fd) return name class SignatureParser: """main signature parser""" def __init__(self, script_name, indir, out_name, strict): """constructor""" self.debug = False self.indir = indir self.out_name = out_name self.r_intrinsic = re.compile(r"\[\[\s+intrinsic\(\)[^]]*\]\];") self.curr_module = "" self.m_intrinsics = {} self.m_intrinsic_mods = {} self.m_signatures = {} self.indent = 0 self.strict = strict self.intrinsic_modes = {} # # ADD NEW TYPES HERE! # self.m_types = { "bool" : "BB", "bool2" : "B2", "bool3" : "B3", "bool4" : "B4", "int" : "II", "int2" : "I2", "int3" : "I3", "int4" : "I4", "float" : "FF", "float2" : "F2", "float3" : "F3", "float4" : "F4", "double" : "DD", "double2" : "D2", "double3" : "D3", "double4" : "D4", "color" : "CC", "float2x2" : "F22", "float2x3" : "F23", "float2x4" : "F24", "float3x2" : "F32", "float3x3" : "F33", "float3x4" : "F34", "float4x2" : "F42", "float4x3" : "F43", "float4x4" : "F44", "double2x2" : "D22", "double2x3" : "D23", "double2x4" : "D24", "double3x2" : "D32", "double3x3" : "D33", "double3x4" : "D34", "double4x2" : "D42", "double4x3" : "D43", "double4x4" : "D44", "float[2]" : "FA2", "float2[2]" : "F2A2", "float3[2]" : "F3A2", "float4[2]" : "F4A2", "double[2]" : "DA2", "double2[2]" : "D2A2", "double3[2]" : "D3A2", "double4[2]" : "D4A2", "float[<N>]" : "FAN", "float[N]" : "FAn", } # create inverse mapping self.m_inv_types = {} for type, code in self.m_types.items(): old_type = self.m_inv_types.setdefault(code, type) if type != old_type: error("type code %s is not unique, used by '%s' and '%s'" % (code, old_type, type)) def split_signature(self, signature): """Split a signature into return type and parameter types.""" params = signature.split('_') ret_type = params[0] params = params[1:] return ret_type, params def get_atomic_value_kind(self, type_code): """If type_code is an atomic value, return its value kind, else None.""" cases = { "bool": "IValue::VK_BOOL", "int": "IValue::VK_INT", "float": "IValue::VK_FLOAT", "double": "IValue::VK_DOUBLE", "color": "IValue::VK_RGB_COLOR", "string": "IValue::VK_STRING" } return cases.get(self.m_inv_types[type_code], None) def get_vector_type_kind(self, type_code): """If type_code is an vector value, return its type kind, else None.""" cases = { "bool2": "IType::TK_BOOL", "bool3": "IType::TK_BOOL", "bool4": "IType::TK_BOOL", "int2": "IType::TK_INT", "int3": "IType::TK_INT", "int4": "IType::TK_INT", "float2": "IType::TK_FLOAT", "float3": "IType::TK_FLOAT", "float4": "IType::TK_FLOAT", "double2": "IType::TK_DOUBLE", "double3": "IType::TK_DOUBLE", "double4": "IType::TK_DOUBLE", } return cases.get(self.m_inv_types[type_code], None) def get_vector_type_and_size(self, type_code): """If type_code is an vector value, return its (element type, size) pair else None.""" cases = { "bool2": ("bool", 2), "bool3": ("bool", 3), "bool4": ("bool", 4), "int2": ("int", 2), "int3": ("int", 3), "int4": ("int", 4), "float2": ("float", 2), "float3": ("float", 3), "float4": ("float", 4), "double2": ("double", 2), "double3": ("double", 3), "double4": ("double", 4), "color": ("float", 3) } return cases.get(self.m_inv_types[type_code], None) def get_matrix_type_kind(self, type_code): """If type_code is an matrix value, return its type kind, else None.""" cases = { "float2x2" : "IType::TK_FLOAT", "float2x3" : "IType::TK_FLOAT", "float2x4" : "IType::TK_FLOAT", "float3x2" : "IType::TK_FLOAT", "float3x3" : "IType::TK_FLOAT", "float3x4" : "IType::TK_FLOAT", "float4x2" : "IType::TK_FLOAT", "float4x3" : "IType::TK_FLOAT", "float4x4" : "IType::TK_FLOAT", "double2x2" : "IType::TK_DOUBLE", "double2x3" : "IType::TK_DOUBLE", "double2x4" : "IType::TK_DOUBLE", "double3x2" : "IType::TK_DOUBLE", "double3x3" : "IType::TK_DOUBLE", "double3x4" : "IType::TK_DOUBLE", "double4x2" : "IType::TK_DOUBLE", "double4x3" : "IType::TK_DOUBLE", "double4x4" : "IType::TK_DOUBLE", } return cases.get(self.m_inv_types[type_code], None) def write(self, f, s): """write string s to file f after doing indent.""" for i in range(self.indent): f.write(" ") f.write(s) def parse(self, mdl_name): """Parse a mdl module.""" self.curr_module = mdl_name fname = self.indir + "/" + mdl_name + ".mdl" f = open(fname, "r") o = self.parse_file(f) f.close() def as_intrinsic_function(self, decl): """Check if the given declaration is an intrinsic function declaration.""" if decl[:5] == "const": return None if decl[:4] == "enum": return None if decl[:5] == "struct": return None if decl[:8] == "material": return None m = self.r_intrinsic.search(decl) if m: decl = decl[:m.start()] # kill all other annotations return re.sub(r'\[\[[^]]*\]\]', "", decl).strip() return None def get_type(self, tokens): """decode a type""" start = 0 end = 1 if tokens[0] == "uniform" or tokens[0] == "varying": # skip uniform and varying modifier end += 1 start += 1 ret_type = " ".join(tokens[start:end]) return tokens[end:], ret_type def do_get_type_code(self, s): """get the type code""" try: return self.m_types[s] except KeyError as e: error("Unsupported type '" + s + "' found") sys.exit(1) def get_type_code(self, s): """get the type code""" c = self.do_get_type_code(s) return c def create_signature(self, ret_type, args): """create the signature""" ret_tp = self.get_type_code(ret_type) sig = "" for arg in args: sig += '_' + self.get_type_code(arg) return ret_tp + sig def is_float_type(self, type_code): """If type_code is an float type, return True, else False.""" cases = { "float": True, "double": True, } return cases.get(self.m_inv_types[type_code], False) def is_int_type(self, type_code): """If type_code is an int type, return True, else False.""" return self.m_inv_types[type_code] == "int" def is_bool_type(self, type_code): """If type_code is a bool type, return True, else False.""" return self.m_inv_types[type_code] == "bool" def is_atomic_type(self, type_code): """If type_code is a bool, int, or float type, return True, else False.""" return self.is_bool_type(type_code) or self.is_int_type(type_code) or self.is_float_type(type_code) def is_math_supported(self, name, signature): """Checks if the given math intrinsic is supported.""" ret_type, params = self.split_signature(signature) base = None dim = 0 vt = self.get_vector_type_and_size(ret_type) if vt: base = vt[0] dim = vt[1] all_atomic = self.is_atomic_type(ret_type) all_base_same = base != None for param in params: if not self.is_atomic_type(param): all_atomic = False if self.m_inv_types[param] != base: vt = self.get_vector_type_and_size(param) if not vt or vt[0] != base or vt[1] != dim: all_base_same = False if len(params) == 1: if name == "blackbody" and params[0] == "FF" : self.intrinsic_modes[name + signature] = "math::blackbody" return True elif name == "average": # support average with one argument self.intrinsic_modes[name + signature] = "math::average" return True elif name == "DX" or name == "DY": vt = self.get_vector_type_and_size(params[0]) if (params[0] == "FF" or params[0] == "DD" or (vt and (vt[0] == "float" or vt[0] == "double"))): # support DX(floatX) and DY(floatX) self.intrinsic_modes[name + signature] = "math::DX|DY" return True return False # Not yet supported derivations cannot be handled component_wise if len(params) == 2: if name == "emission_color" and params[0] == "FAN" and params[1] == "FAn": self.intrinsic_modes[name + signature] = "math::emission_color_spectrum" return True if all_atomic and self.is_atomic_type(ret_type): # simple all float/int/bool functions self.intrinsic_modes[name + signature] = "all_atomic" return True if len(params) == 1: if name == "any" or name == "all": # support any and all with one argument self.intrinsic_modes[name + signature] = "math::any|all" return True elif name == "isnan" or name == "isfinite": if self.get_vector_type_and_size(params[0]) or self.is_atomic_type(params[0]): # support all isnan/isfinite with one argument self.intrinsic_modes[name + signature] = "math::isnan|isfinite" return True elif name == "luminance": if params[0] == "F3" or params[0] == "CC": # support luminance(float3) and luminance(color) self.intrinsic_modes[name + signature] = "math::luminance" return True elif name == "max_value" or name == "min_value": if params[0] == "CC": # support max_value(color) and min_value(color) self.intrinsic_modes[name + signature] = "math::max_value|min_value" return True else: vt = self.get_vector_type_and_size(params[0]) if vt and (vt[0] == "float" or vt[0] == "double"): # support max_value(floatX) and min_value(floatX) self.intrinsic_modes[name + signature] = "math::max_value|min_value" return True elif name == "max_value_wavelength" or name == "min_value_wavelength": # support max_value_wavelength(color) and min_value_wavelength(color) self.intrinsic_modes[name + signature] = "math::max_value_wavelength|min_value_wavelength" return True elif name == "length" or name == "normalize": vt = self.get_vector_type_and_size(params[0]) if params[0] != "CC" and vt and (vt[0] == "float" or vt[0] == "double"): # support length(floatX) and normalize(floatX) self.intrinsic_modes[name + signature] = "math::length|normalize" return True return False # Not yet supported modes may not be handled via component_wise elif name == "transpose": if self.get_matrix_type_kind(params[0]): # support length(floatX) self.intrinsic_modes[name + signature] = "math::transpose" return True elif name == "emission_color": if params[0] == "CC": self.intrinsic_modes[name + signature] = "math::emission_color_color" return True if name == "distance" or name == "dot": if len(params) == 2: if params[0] == params[1] and params[0] != "CC": vt = self.get_vector_type_and_size(params[0]) if vt and (vt[0] == "float" or vt[0] == "double"): # support distance(floatX) self.intrinsic_modes[name + signature] = "math::distance|dot" return True if name == "cross": if signature == "F3_F3_F3" or signature == "D3_D3_D3": # the only supported cross variant self.intrinsic_modes[name + signature] = "math::cross" return True else: return False if name == "sincos": if len(params) == 1: arg_tp = params[0] if self.is_float_type(arg_tp): # support sincos for float types self.intrinsic_modes[name + signature] = "math::sincos" return True vt = self.get_vector_type_and_size(arg_tp) if vt and (vt[0] == "float" or vt[0] == "double"): # support sincos for float vector types self.intrinsic_modes[name + signature] = "math::sincos" return True return False if name == "modf": if len(params) == 1: arg_tp = params[0] if self.is_float_type(arg_tp): # support modf for float types self.intrinsic_modes[name + signature] = "math::modf" return True vt = self.get_vector_type_and_size(arg_tp) if vt and (vt[0] == "float" or vt[0] == "double"): # support modf for float vector types self.intrinsic_modes[name + signature] = "math::modf" return True return False if name == "eval_at_wavelength": self.intrinsic_modes[name + signature] = "math::eval_at_wavelength" return True if all_base_same: # assume component operation self.intrinsic_modes[name + signature] = "math::component_wise" return True return False def is_supported(self, modname, name, signature): """Checks if the given intrinsic is supported.""" if modname == "math": return self.is_math_supported(name, signature) return False def get_signature(self, decl): """Get the signature for a given function declaration.""" # poor man's scanner :-) tokens = re.sub(r'[,()]', lambda m: ' ' + m.group(0) + ' ', decl).split() tokens, ret_type = self.get_type(tokens) name = tokens[0] self.m_intrinsic_mods[name] = self.curr_module if tokens[1] != '(': error("unknown token '" + tokens[1] + "' while processing '" + decl + "': '(' expected") sys.exit(1) tokens = tokens[2:] args = [] if tokens[0] != ')': while True: tokens, t = self.get_type(tokens) args.append(t) # throw away the name tokens = tokens[1:] if tokens[0] == ')': break if tokens[0] != ',': error("unknown token '" + tokens[1] + "' while processing '" + decl + "': ',' expected") sys.exit(1) # skip the comma tokens = tokens[1:] signature = self.create_signature(ret_type, args) if self.debug: print("%s %s" % (decl, signature)) if self.is_supported(self.curr_module, name, signature): # insert the new signature for the given name sigs = self.m_intrinsics.setdefault(name, {}) sigs[signature] = True # remember the signature (without return type) _, params = self.split_signature(signature) self.m_signatures["_".join(params)] = True else: warning("Cannot evaluate %s" % decl) return "" def parse_file(self, f): """Parse a file and retrieve intrinsic function definitions.""" start = False curr_line = "" for line in f.readlines(): l = line.strip(); if not start: if l[:6] == "export": start = True curr_line = l[7:].strip() else: curr_line += l if start: if l[-1] == ";": start = False decl = self.as_intrinsic_function(curr_line) if not decl: continue if self.debug: print(decl) sig = self.get_signature(decl) if self.debug: print(sig) def gen_condition(self, f, params, as_assert, pre_if = ""): """Generate the condition for the parameter type check.""" if as_assert: self.write(f, "MDL_ASSERT(check_sig_%s(arguments));\n" % "_".join(params)) else: self.write(f, "%sif (check_sig_%s(arguments)) {\n" % (pre_if, "_".join(params))) def create_evaluation(self, f, intrinsic, signature): """Create the evaluation call for a given intrinsic, signature pair.""" ret_type, params = self.split_signature(signature) mode = self.intrinsic_modes.get(intrinsic + signature) if mode == "all_atomic": self.write(f, "// atomic\n") idx = 0 for param in params: kind = self.m_inv_types[param] self.write(f, "%s const %s = cast<IValue_%s>(arguments[%d])->get_value();\n" % ( kind, chr(ord('a') + idx), kind, idx)) idx += 1 kind = self.m_inv_types[ret_type] call = ("return value_factory->create_%s(" + intrinsic + "(") % kind idx = 0 comma = "" for param in params: call += comma comma = ", " call += chr(ord('a') + idx) idx += 1 call += "));\n" self.write(f, call); return elif mode == "math::eval_at_wavelength": # FIXME: not supported yet self.write(f, "return value_factory->create_float(0.0f);\n") return elif mode == "math::blackbody": self.write(f, "float sRGB[3];\n") self.write(f, "spectral::mdl_blackbody(sRGB, cast<IValue_float>(arguments[0])->get_value());\n") self.write(f, "IValue_float const *r = value_factory->create_float(sRGB[0]);\n") self.write(f, "IValue_float const *g = value_factory->create_float(sRGB[1]);\n") self.write(f, "IValue_float const *b = value_factory->create_float(sRGB[2]);\n") self.write(f, "return value_factory->create_rgb_color(r, g, b);\n") return elif mode == "math::emission_color_spectrum": # FIXME: so far black self.write(f, "IValue_float const *zero = value_factory->create_float(0.0f);\n") self.write(f, "return value_factory->create_rgb_color(zero, zero, zero);\n") return elif mode == "math::emission_color_color": # FIXME: so far no-op self.write(f, "return arguments[0];\n") return elif mode == "math::DX|DY": # always zero IF called on a constant self.write(f, "IType const *arg_tp = arguments[0]->get_type()->skip_type_alias();\n") self.write(f, "return value_factory->create_zero(arg_tp);\n") return elif mode == "math::cross": vt = self.get_vector_type_and_size(params[0]) if vt[0] == "float": self.write(f, "return do_cross<float>(value_factory, arguments);\n") else: self.write(f, "return do_cross<double>(value_factory, arguments);\n") return elif mode == "math::sincos": if len(params) == 1: arg_tp = params[0] if self.is_float_type(arg_tp): # support sincos for float types kind = self.m_inv_types[arg_tp] self.write(f, "IValue_%s const *a = cast<IValue_%s>(arguments[0]);\n" % (kind, kind)) self.write(f, "%s t_s, t_c;\n" % kind) self.write(f, "sincos(a->get_value(), t_s, t_c);\n") self.write(f, "IValue const *res[2] = {\n") self.indent += 1 self.write(f, "value_factory->create_%s(t_s),\n" % kind) self.write(f, "value_factory->create_%s(t_c)};\n" % kind) self.indent -= 1 self.write(f, "IType_factory *type_factory = value_factory->get_type_factory();\n") self.write(f, "IType const *a_type = type_factory->create_array(a->get_type(), 2);\n") self.write(f, "return value_factory->create_array(as<IType_array>(a_type), res, 2);\n") return vt = self.get_vector_type_and_size(arg_tp) if vt and (vt[0] == "float" or vt[0] == "double"): # support sincos for float vector types kind = vt[0] self.write(f, "IValue const *r_s[%d];\n" % vt[1]) self.write(f, "IValue const *r_c[%d];\n" % vt[1]) self.write(f, "IValue_vector const *arg = cast<IValue_vector>(arguments[0]);\n") self.write(f, "for (int j = 0; j < %d; ++j) {\n" % vt[1]) self.indent += 1 self.write(f, "IValue_%s const *a = cast<IValue_%s>(arg->get_value(j));\n" % (kind, kind)) self.write(f, "%s t_s, t_c;\n" % kind) self.write(f, "sincos(a->get_value(), t_s, t_c);\n") self.write(f, "r_s[j] = value_factory->create_%s(t_s);\n" % kind) self.write(f, "r_c[j] = value_factory->create_%s(t_c);\n" % kind) self.indent -= 1 self.write(f, "}\n") self.write(f, "IType_vector const *v_type = arg->get_type();\n") self.write(f, "IValue const *res[2] = {\n") self.indent += 1 self.write(f, "value_factory->create_vector(v_type, r_s, %d),\n" % vt[1]) self.write(f, "value_factory->create_vector(v_type, r_c, %d)};\n" % vt[1]) self.indent -= 1 self.write(f, "IType_factory *type_factory = value_factory->get_type_factory();\n") self.write(f, "IType const *a_type = type_factory->create_array(v_type, 2);\n") self.write(f, "return value_factory->create_array(as<IType_array>(a_type), res, 2);\n") return elif mode == "math::modf": if len(params) == 1: arg_tp = params[0] if self.is_float_type(arg_tp): # support modf for float types kind = self.m_inv_types[arg_tp] self.write(f, "IValue_%s const *a = cast<IValue_%s>(arguments[0]);\n" % (kind, kind)) self.write(f, "%s t_fractional, t_integral;\n" % kind) self.write(f, "t_fractional = modf(a->get_value(), t_integral);\n") self.write(f, "IValue const *res[2] = {\n") self.indent += 1 self.write(f, "value_factory->create_%s(t_integral),\n" % kind) self.write(f, "value_factory->create_%s(t_fractional)};\n" % kind) self.indent -= 1 self.write(f, "IType_factory *type_factory = value_factory->get_type_factory();\n") self.write(f, "IType const *a_type = type_factory->create_array(a->get_type(), 2);\n") self.write(f, "return value_factory->create_array(as<IType_array>(a_type), res, 2);\n") return vt = self.get_vector_type_and_size(arg_tp) if vt and (vt[0] == "float" or vt[0] == "double"): # support modf for float vector types kind = vt[0] self.write(f, "IValue const *r_fractional[%d];\n" % vt[1]) self.write(f, "IValue const *r_integral[%d];\n" % vt[1]) self.write(f, "IValue_vector const *arg = cast<IValue_vector>(arguments[0]);\n") self.write(f, "for (int j = 0; j < %d; ++j) {\n" % vt[1]) self.indent += 1 self.write(f, "IValue_%s const *a = cast<IValue_%s>(arg->get_value(j));\n" % (kind, kind)) self.write(f, "%s t_fractional, t_integral;\n" % kind) self.write(f, "t_fractional = modf(a->get_value(), t_integral);\n") self.write(f, "r_fractional[j] = value_factory->create_%s(t_fractional);\n" % kind) self.write(f, "r_integral[j] = value_factory->create_%s(t_integral);\n" % kind) self.indent -= 1 self.write(f, "}\n") self.write(f, "IType_vector const *v_type = arg->get_type();\n") self.write(f, "IValue const *res[2] = {\n") self.indent += 1 self.write(f, "value_factory->create_vector(v_type, r_integral, %d),\n" % vt[1]) self.write(f, "value_factory->create_vector(v_type, r_fractional, %d)};\n" % vt[1]) self.indent -= 1 self.write(f, "IType_factory *type_factory = value_factory->get_type_factory();\n") self.write(f, "IType const *a_type = type_factory->create_array(v_type, 2);\n") self.write(f, "return value_factory->create_array(as<IType_array>(a_type), res, 2);\n") return elif mode == "math::any|all": vt = self.get_vector_type_and_size(params[0]) need_or = intrinsic == "any" if need_or: self.write(f, "bool res = false;\n") else: self.write(f, "bool res = true;\n") self.write(f, "for (int j = 0; j < %d; ++j) {\n" % vt[1]) self.indent += 1 self.write(f, "IValue const *tmp;\n") idx = 0 for param in params: kind = self.m_inv_types[param] self.write(f, "tmp = cast<IValue_vector>(arguments[%d])->get_value(j);\n" % idx) self.write(f, "%s const %s = cast<IValue_%s>(tmp)->get_value();\n" % ( vt[0], chr(ord('a') + idx), vt[0])) idx += 1 call = "res = res" idx = 0 cases = { "bool" : "false", "float" : "1.0f", "double" : "1.0" } zero = cases.get(vt[0], "0") if need_or: comma = " | " else: comma = " & " for param in params: call += comma + "(" call += chr(ord('a') + idx) call += " != %s)" % zero idx += 1 call += ";\n" self.write(f, call); self.indent -= 1 self.write(f, "}\n") self.write(f, "return value_factory->create_bool(res);\n") return elif mode == "math::average": if params[0] == "CC": size = 3 type = "float" vec = "rgb_color" else: vt = self.get_vector_type_and_size(params[0]) if not vt: self.write(f, "return arguments[0];\n"); return size = vt[1] type = vt[0] vec = "vector" self.write(f, "IValue_%s const *arg = cast<IValue_%s>(arguments[0]);\n" % (vec, vec)) self.write(f, "IValue const *sum = arg->get_value(0);\n") self.write(f, "for (int j = 1; j < %d; ++j) {\n" % size) self.indent += 1 self.write(f, "sum = sum->add(value_factory, arg->get_value(j));\n") self.indent -= 1 self.write(f, "}\n") self.write(f, "IValue const *c = value_factory->create_%s(%s(%d));\n" % (type, type, size)) self.write(f, "return sum->divide(value_factory, c);\n") return elif mode == "math::isnan|isfinite": if len(params) == 1: vt = self.get_vector_type_and_size(params[0]) if vt: self.write(f, "IValue const *res[%d];\n" % (vt[1])) self.write(f, "IValue_vector const *v = cast<IValue_vector>(arguments[0]);\n") self.write(f, "for (int j = 0; j < %d; ++j) {\n" % vt[1]) self.indent += 1 self.write(f, "IValue_%s const *a = cast<IValue_%s>(v->get_value(j));\n" % (vt[0], vt[0])) self.write(f, "res[j] = value_factory->create_bool(" + intrinsic + "(a->get_value()));\n"); self.indent -= 1 self.write(f, "}\n") self.write(f, "IType_factory *type_factory = value_factory->get_type_factory();\n") self.write(f, "IType_bool const *b_type = type_factory->create_bool();\n") self.write(f, "IType_vector const *v_type = type_factory->create_vector(b_type, %d);\n" % vt[1]) self.write(f, "return value_factory->create_vector(v_type, res, %d);\n" % vt[1]) else: kind = self.m_inv_types(params[0]) self.write(f, "%s a = cast<IValue_%s>(arguments[0])->get_value());\n" % (kind)) self.write(f, "return value_factory->create_bool(" + intrinsic + "(a)));\n") return elif mode == "math::luminance": if len(params) == 1: vt = self.get_vector_type_and_size(params[0]) if params[0] == "F3": self.write(f, "return do_luminance_sRGB(value_factory, arguments);\n") elif params[0] == "CC": self.write(f, "return do_luminance_color(value_factory, arguments);\n") return elif mode == "math::max_value|min_value": if len(params) == 1: if params[0] == "CC": # color argument currently unsupported self.write(f, "return do_%s_rgb_color(value_factory, arguments);\n" % intrinsic) else: vt = self.get_vector_type_and_size(params[0]) if vt: if vt[0] == "float": self.write(f, "return do_%s<float>(value_factory, arguments);\n" % intrinsic) elif vt[0] == "double": self.write(f, "return do_%s<double>(value_factory, arguments);\n" % intrinsic) return elif mode == "math::max_value_wavelength|min_value_wavelength": # FIXME: so far black self.write(f, "return value_factory->create_float(0.0f);\n") return elif mode == "math::distance|dot": if len(params) == 2 and params[0] == params[1]: vt = self.get_vector_type_and_size(params[0]) if vt: if vt[0] == "float": self.write(f, "return do_%s<float>(value_factory, arguments);\n" % intrinsic) elif vt[0] == "double": self.write(f, "return do_%s<double>(value_factory, arguments);\n" % intrinsic) elif mode == "math::length|normalize": if len(params) == 1: vt = self.get_vector_type_and_size(params[0]) if vt and params[0] != "CC": if vt[0] == "float": self.write(f, "return do_%s<float>(value_factory, arguments);\n" % intrinsic) elif vt[0] == "double": self.write(f, "return do_%s<double>(value_factory, arguments);\n" % intrinsic) return elif mode == "math::transpose": if len(params) == 1: mk = self.get_matrix_type_kind(params[0]) if mk: if mk == "IType::TK_FLOAT": self.write(f, "return do_%s<float>(value_factory, arguments);\n" % intrinsic) elif mk == "IType::TK_DOUBLE": self.write(f, "return do_%s<double>(value_factory, arguments);\n" % intrinsic) return elif mode == "math::component_wise": vt = self.get_vector_type_and_size(ret_type) # vector/color all same base arguments if ret_type == "CC": self.write(f, "IValue_float const *res[3];\n") else: if self.get_vector_type_and_size(params[0]): self.write(f, "IType_vector const *v_type = cast<IValue_vector>(arguments[0])->get_type();\n") else: self.write(f, "IType_vector const *v_type = cast<IValue_vector>(arguments[1])->get_type();\n") self.write(f, "IValue const *res[%d];\n" % (vt[1])) idx = 0 for param in params: if self.is_atomic_type(param): self.write(f, "IValue_%s const *%s = cast<IValue_%s>(arguments[%d]);\n" % (vt[0], chr(ord('a') + idx), vt[0], idx)) elif param == "CC": self.write(f, "IValue_rgb_color const *v_%s = cast<IValue_rgb_color>(arguments[%d]);\n" % (chr(ord('a') + idx), idx)) else: self.write(f, "IValue_vector const *v_%s = cast<IValue_vector>(arguments[%d]);\n" % (chr(ord('a') + idx), idx)) idx += 1 self.write(f, "for (int j = 0; j < %d; ++j) {\n" % vt[1]) self.indent += 1 idx = 0 for param in params: if not self.is_atomic_type(param): self.write(f, "IValue_%s const *%s = cast<IValue_%s>(v_%s->get_value(j));\n" % (vt[0], chr(ord('a') + idx), vt[0], chr(ord('a') + idx))) idx += 1 call = ("res[j] = value_factory->create_%s(" + intrinsic + "(") % vt[0] idx = 0 comma = "" for param in params: call += comma comma = ", " call += chr(ord('a') + idx) call += "->get_value()" idx += 1 call += "));\n" self.write(f, call); self.indent -= 1 self.write(f, "}\n") if ret_type == "CC": self.write(f, "return value_factory->create_rgb_color(res[0], res[1], res[2]);\n") else: self.write(f, "return value_factory->create_vector(v_type, res, %d);\n" % vt[1]) return elif mode == None: error("Mode not set for intrinsic: %s %s" % (intrinsic, signature)) else: error("Unsupported mode for intrinsic: %s %s %s" % (intrinsic, signature, mode)) self.write(f, "//Unsupported\n") def handle_signatures(self, f, intrinsic, signatures): """Create code all sigtatures of one intrinsic.""" if len(signatures) == 1: # no overloads params = signatures[0].split('_')[1:] if self.strict: self.gen_condition(f, params, False) self.indent += 1 else: self.gen_condition(f, params, True) self.create_evaluation(f, intrinsic, signatures[0]) if self.strict: self.indent -= 1 self.write(f, "}\n") else: # have overloads signatures.sort() pre_if = "" for sig in signatures: params = sig.split('_')[1:] self.gen_condition(f, params, False, pre_if) pre_if = "} else " self.indent += 1 self.create_evaluation(f, intrinsic, sig) self.indent -= 1 self.write(f, "}\n") def handle_intrinsic(self, f, intrinsic): """Create code for one intrinsic.""" sigs = self.m_intrinsics[intrinsic] # order all signatures by ascending lenght l = {} for sig in sigs: sig_token = sig.split('_') n_params = len(sig_token) - 1 l.setdefault(n_params, []).append(sig) k = list(l.keys()) if len(k) == 1: # typical case: all signatures have the same length n_param = k[0] if self.strict: self.write(f, "if (n_arguments == %d) {\n" % n_param) self.indent += 1 else: # create just an assertion self.write(f, "MDL_ASSERT(n_arguments == %d);\n" % n_param) for n_param in k: self.handle_signatures(f, intrinsic, l[n_param]) if self.strict: self.indent -= 1 self.write(f, "}\n") else: # overloads with different signature length self.write(f, "switch (n_arguments) {\n") n_params = k n_params.sort() for n_param in n_params: self.write(f, "case %d:\n" % n_param) self.indent += 1 self.write(f, "{\n") self.indent += 1 self.handle_signatures(f, intrinsic, l[n_param]) self.indent -= 1 self.write(f, "}\n") self.write(f, "break;\n") self.indent -= 1 self.write(f, "}\n") def create_type_sig_tuple(self, params): """Create a type signature tuple (a, b) for a signature a_b.""" res = [] comma = "" for param in params: res.append(self.m_inv_types[param]) return "(" + ", ".join(res) + ")" def gen_type_check(self, f, idx, type_code): """Create a check for the idx parameter to be of given type.""" atomic_chk = self.get_atomic_value_kind(type_code) if atomic_chk: self.write(f, "if (arguments[%s]->get_kind() != %s)\n" % (idx, atomic_chk)) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 else: vector_chk = self.get_vector_type_kind(type_code) matrix_chk = self.get_matrix_type_kind(type_code) if vector_chk: self.write(f, "if (IValue_vector const *v = as<IValue_vector>(arguments[%s])) {\n" % (idx)) self.indent += 1 self.write(f, "if (v->get_component_count() != %s)\n" % type_code[-1]) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.write(f, "IType_vector const *v_type = v->get_type();\n") self.write(f, "IType_atomic const *e_type = v_type->get_element_type();\n") self.write(f, "if (e_type->get_kind() != %s)\n" % vector_chk) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.indent -= 1 self.write(f, "} else {\n") self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.write(f, "}\n") elif matrix_chk: self.write(f, "if (IValue_matrix const *v = as<IValue_matrix>(arguments[%s])) {\n" % (idx)) self.indent += 1 self.write(f, "if (v->get_component_count() != %s)\n" % type_code[-1]) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.write(f, "IType_matrix const *m_type = v->get_type();\n") self.write(f, "IType_vector const *v_type = m_type->get_element_type();\n") self.write(f, "if (v_type->get_size() != %s)\n" % type_code[-2]) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.write(f, "IType_atomic const *e_type = v_type->get_element_type();\n") self.write(f, "if (e_type->get_kind() != %s)\n" % matrix_chk) self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.indent -= 1 self.write(f, "} else {\n") self.indent += 1 self.write(f, "return false;\n") self.indent -= 1 self.write(f, "}\n") else: self.write(f, "// Unsupported\n"); self.write(f, "return false;\n") def create_signature_checker(self, f): """Create all signature checker functions.""" signatures = list(self.m_signatures.keys()) signatures.sort() for sig in signatures: params = sig.split('_') self.write(f, "/// Check that the given arguments have the signature %s.\n" % self.create_type_sig_tuple(params)) self.write(f, "///\n") self.write(f, "/// \\param arguments the values, must be of length %d\n" % len(params)) self.write(f, "static bool check_sig_%s(IValue const * const arguments[])\n" % sig) self.write(f, "{\n") self.indent += 1 all_equal = True first_p = params[0] for param in params: if first_p != param: all_equal = False break if all_equal and len(params) > 1: self.write(f, "for (size_t i = 0; i < %d; ++i) {\n" % (len(params))) self.indent += 1 self.gen_type_check(f, 'i', first_p) self.indent -= 1 self.write(f, "}\n") else: for i in range(len(params)): self.gen_type_check(f, str(i), params[i]) self.write(f, "return true;\n") self.indent -= 1 self.write(f, "}\n\n") def finalize(self): """Create output.""" f = open(self.out_name, "w") self.create_signature_checker(f) self.write(f, "/// Evaluates an intrinsic function called on constant arguments.\n") self.write(f, "///\n") self.write(f, "/// \\param value_factory The value factory used to create new values\n") self.write(f, "/// \\param sema The semantic of the intrinsic function\n") self.write(f, "/// \\param arguments The values of the function arguments\n") self.write(f, "/// \\param n_arguments The number of arguments\n") self.write(f, "///\n") self.write(f, "/// \\return The function result or IValue_bad if the function could\n") self.write(f, "/// not be evaluated\n") self.write(f, "IValue const *evaluate_intrinsic_function(\n") self.indent += 1 self.write(f, "IValue_factory *value_factory,\n") self.write(f, "IDefinition::Semantics sema,\n") self.write(f, "IValue const * const arguments[],\n") self.write(f, "size_t n_arguments)\n") self.indent -= 1 self.write(f, "{\n") self.indent += 1 self.write(f, "switch (sema) {\n") keys = list(self.m_intrinsics.keys()) keys.sort() for intrinsic in keys: mod_name = self.m_intrinsic_mods[intrinsic] self.write(f, "case IDefinition::DS_INTRINSIC_%s_%s:\n" % (mod_name.upper(), intrinsic.upper())) self.indent += 1 self.handle_intrinsic(f, intrinsic) self.write(f, "break;\n"); self.indent -= 1 self.write(f, "default:\n") self.indent += 1 self.write(f, "break;\n"); self.indent -= 1 self.write(f, "}\n") self.write(f, "// cannot evaluate\n") self.write(f, "return value_factory->create_bad();\n") self.indent -= 1 self.write(f, "}\n") f.close() def add_support(self, decl): """The given declaration is supported.""" decl = self.as_intrinsic_function(decl) # NYI pass def add_simple_math(self): pass def usage(args): """print usage info and exit""" print("Usage: %s stdlib_directory outputfile" % args[0]) return 1 def main(args): """Process one file and generate signatures.""" if len(args) != 3: return usage(args) stdlib_dir = args[1] out_name = args[2] strict = True try: parser = SignatureParser(args[0], stdlib_dir, out_name, strict) parser.parse("math") parser.finalize() except IOError as e: error(str(e)) return 1 return 0 if __name__ == "__main__": sys.exit(main(sys.argv))
MDL-SDK-master
src/mdl/compiler/compilercore/gen_intrinsic_eval.py
#!/usr/bin/env python #***************************************************************************** # Copyright (c) 2012-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # # Convert a mdl file to C++ string literals # import glob, os, string, re import time import sys try: # Python 2.2 has no optparse from optparse import OptionParser no_optparse = False except: no_optparse = True class Block: def __init__(self): self.name = "" self.comment = [] self.text = [] def scan_src_file(prefix, filename): """ Read a .mdl file and build a Block(name,comment,text). The name is the filename without extension, with module_ prepended """ block = Block() # remove extension and add prefix block.name, ext = os.path.splitext(os.path.basename(filename)) block.name = prefix + "_" + block.name in_file = open(filename) state = "header" for line in in_file: # rstrip removes the '\n' too line = line.rstrip() if state == "header": # read header, lines must start with "//" res = re.search(r"\s*//(.*)", line) if res: block.comment.append(res.group(1)) else: block.text.append(line) state = "in_text" elif state == "in_text": block.text.append(line) return block def check_whitespace(src): """Check a given file for whitespace errors.""" f = open(src) lineno = 1 module = os.path.basename(src) s_re = re.compile("^[ ]*\t+[ ]*.*") e_re = re.compile(".*[ \t]+$") bad = False for line in f.readlines(): if s_re.match(line): os.sys.stderr.write("%s(%d): error: has whitespace errors at start\n" % (module, lineno)) bad = True elif e_re.match(line): os.sys.stderr.write("%s(%d): error: has whitespace errors at end\n" % (module, lineno)) bad = True lineno = lineno + 1 if bad: sys.exit("Module has whitespace errors") def check_module(checker, src): """Run a checker on a given module.""" path, name = os.path.split(src) module_name, ext = header_filename, ext = os.path.splitext(name) if module_name == "distilling_support": # does not work with this simple logic because it is in nvidia AND requieres base import, so ignore return retval = os.system(checker + " " + path + " " + module_name) if retval != 0: sys.exit("Checking module '" + module_name + "' failed! Aborting.") def write_cpp_header(module, blocks, target): # write header head = time.strftime( """/****************************************************************************** * Copyright %Y NVIDIA Corporation. All rights reserved. *****************************************************************************/ """) target.write(head) def generate_cpp_file(files, dst, pch, prefix, module, namespace, do_escape, silent, key, checker): """ Generate C++ files (.cpp/.h) from parsed blocks. """ blocks = [] for src in files: check_whitespace(src) if checker: check_module(checker, src) block = scan_src_file(prefix, src) blocks.append(block); header_filename, ext = os.path.splitext(dst) header_filename += '.h' # generate .cpp file target = open(dst, "w+") write_cpp_header(module, blocks, target) target.write('#include ' + pch + '\n') target.write('#include "' + os.path.basename(header_filename) + '"\n\n') target.write('namespace mi {\n') target.write('namespace ' + namespace + ' {\n\n') # write all blocks for block in blocks: for str in block.comment: target.write("// " + str + '\n') text = "\n".join(block.text) + "\n" l = len(text) kl = len(key) target.write("unsigned char const " + block.name + "[%u] = {" % (l)) first = False if key: for i in range(l): first = False if i % 8 == 0: target.write('\n ') first = True code = ord(text[i]) ^ ord(key[i % kl]) ^ (i & 0xFF) start = code if not first: target.write(' ') target.write("0x%02x," % code) target.write('\n};\n\n'); else: for i in range(l): first = False if i % 8 == 0: target.write('\n ') first = True if not first: target.write(' ') target.write("0x%02x," % ord(text[i])) target.write('\n};\n\n'); # write footer target.write('} // mi\n} // ' + namespace + '\n') target.close() # generate header file target = open(header_filename, "w+") write_cpp_header(module, blocks, target) guard = header_filename[:].replace("\\", "/") guard = os.path.basename(guard).upper().replace('.', '_') target.write('#ifndef ' + guard + '\n') target.write('#define ' + guard + '\n\n') target.write('namespace mi {\n') target.write('namespace ' + namespace + ' {\n\n') # write all blocks for block in blocks: text = "\n".join(block.text) + "\n" l = len(text) target.write("extern unsigned char const " + block.name + "[%u];\n" % (l)) target.write('\n} // mi\n} // ' + namespace + '\n') target.write('#endif // ' + guard + '\n') target.close() def main(): try: mi_src = os.environ["MI_SRC"]; except: mi_src = "../../.." default_dst = os.path.normpath(mi_src + "/mdl/compiler/compilercore") if no_optparse: class Options: def __init__(self): self.dst_path = default_dst self.silent = False self.namespace = "mdl" options = Options() args = [] #print sys.argv state = "default" for arg in sys.argv[1:]: if state == "args": args.append(arg) state = "args" # keep looking for 'em elif state == "expect_dst": options.dst_path = arg state = "default" elif state == "expect_namespace": options.namespace = arg state = "default" elif state == "expect_module": options.module = arg state = "default" elif state == "expect_prefix": options.prefix = arg state = "default" elif state == "expect_pch": options.pch = arg state = "default" elif state == "expect_key": options.encode = True options.key = arg state = "default" elif state == "default": if arg == "-d": state = "expect_dst" elif arg == "-n": state = "expect_namespace" elif arg == "-s": options.silent = True elif arg == "-e": options.do_escape = True elif arg == "--escape": options.do_escape = True elif arg == "-m": state = "expect_module" elif arg == "-p": state = "expect_prefix" elif arg == "--prefix": state = "expect_prefix" elif arg == "--pch": state = "expect_pch" elif arg == "-E": state = "expect_key" elif arg == "--encode": state = "expect_key" else: args.append(arg) state = "args" else: parser = OptionParser() parser.add_option("-d", "--dst", help="dst C++ file to generate", dest="dst_path") parser.add_option("-s", "--silent", help="suppress messages", action="store_true", dest="silent") parser.add_option("-e", "--escape", help="escape quotes and backslashes found in files", action="store_true", dest="do_escape") parser.add_option("-n", "--namespace", help="namespace to use for generated cpp files", dest="namespace", default="mdl") parser.add_option("-m", "--module", help="module name to put into source files", dest="module", default="mdl/compiler/compilercore") parser.add_option("-p", "--prefix", help="prefix given value to const char * declarations", dest="prefix", default="mdl_module") parser.add_option("--pch", help="precompiled header to use", dest="pch", default='"pch.h"') parser.add_option("-E", "--encode", help="encode string using simple XOR chiffre", dest="key", default=None) parser.add_option("-c", "--check", help="enforce module check", dest="checker", default=None) (options, args) = parser.parse_args() if len(args) == 0: print("Must supply at least one mdl file as input") sys.exit(1) if not options.silent: print("Creating '%s' from '%s'" % (options.dst_path, ' '.join(args))) generate_cpp_file(args, options.dst_path, options.pch, options.prefix, options.module, options.namespace, options.do_escape, options.silent, options.key, options.checker) if __name__ == "__main__": main()
MDL-SDK-master
src/mdl/compiler/compilercore/generate_stdmodule.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import itertools as it import os import re from setuptools import setup from subprocess import call import sys match_mxnet_req = re.compile(r"mxnet>?=?=\d+.\d+\d*") extract_major_minor = re.compile(r"\D*(\d+.\d+)\D*") def check_mxnet_version(min_ver): if not int(os.environ.get('UPDATE_MXNET_FOR_ONNX_EXPORTER', '1')): print("Env var set to not upgrade MxNet for ONNX exporter. Skipping.") return False try: print("Checking if MxNet is installed.") import mxnet as mx except ImportError: print("MxNet is not installed. Installing version from requirements.txt") return False ver = float(re.match(extract_major_minor, mx.__version__).group(1)) min_ver = float(re.match(extract_major_minor, min_ver).group(1)) if ver < min_ver: print("MxNet is installed, but installed version (%s) is older than expected (%s). Upgrading." % (str(ver).rstrip('0'), str(min_ver).rstrip('0'))) return False print("Installed MxNet version (%s) meets the requirement of >= (%s). No need to install." % (str(ver).rstrip('0'), str(min_ver).rstrip('0'))) return True if __name__ == '__main__': with open('requirements.txt') as f: required = f.read().splitlines() mx_match_str = lambda x: re.match(match_mxnet_req, x) is None mx_str, new_reqs = tuple([list(i[1]) for i in it.groupby(sorted(required, key = mx_match_str), key = mx_match_str)]) if not check_mxnet_version(mx_str[0]): new_reqs += mx_str setup( install_requires = new_reqs, name = 'mx2onnx', description = 'MxNet to ONNX converter', author = 'NVIDIA Corporation', packages = ['mx2onnx_converter'], classifiers = [ 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5' ], keywords = 'mxnet onnx', zip_safe = False, test_suite='nose.collector', tests_require=['nose'], version = '0.1' ) call("rm -rf dist".split()) call("rm -rf build".split()) call("rm -rf mx2onnx.egg-info".split())
mxnet_to_onnx-master
setup.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os.path import subprocess from unittest import TestCase import mxnet as mx import numpy as np # needed by both the exporter and importer import onnx # MxNet exporter from mx2onnx_converter.conversion_helpers import from_mxnet # MxNet importer # Needed for ONNX -> NNVM -> MxNet conversion # to validate the results of the export #import onnx_mxnet from mxnet.contrib.onnx import import_model def check_gpu_id(gpu_id): try: result = subprocess.check_output("nvidia-smi --query-gpu=gpu_bus_id --format=csv,noheader", shell=True).strip() except OSError as e: return False if not isinstance(result, str): result = str(result.decode("ascii")) gpu_ct = len(result.split("\n")) # count is zero-based exists = gpu_id < gpu_ct print("\nChecked for GPU ID %d. Less than GPU count (%d)? %s\n" % (gpu_id, gpu_ct, exists)) return exists # MxNet LeNet-5 implementation def lenet5(): data = mx.sym.var('data') # first conv layer conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20) tanh1 = mx.sym.Activation(data=conv1, act_type="tanh") pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2)) # second conv layer conv2 = mx.sym.Convolution(data=pool1, kernel=(5,5), num_filter=50) tanh2 = mx.sym.Activation(data=conv2, act_type="tanh") pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2)) # first fullc layer flatten = mx.sym.flatten(data=pool2) fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500) tanh3 = mx.sym.Activation(data=fc1, act_type="tanh") # second fullc fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10) # softmax loss lenet = mx.sym.SoftmaxOutput(data=fc2, name='softmax') return lenet # train LeNet-5 model on MNIST data def train_lenet5(num_epochs, gpu_id, train_iter, val_iter, test_iter, batch_size): ctx = mx.gpu(gpu_id) if gpu_id is not None else mx.cpu() print("\nUsing %s to train" % str(ctx)) lenet_model = lenet5() lenet_model = mx.mod.Module(lenet_model, context=ctx) # This is cached so download will only take place if needed mnist = mx.test_utils.get_mnist() train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True) val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) data = mx.sym.var('data') data = mx.sym.flatten(data=data) lenet_model.fit(train_iter, eval_data=val_iter, optimizer='sgd', optimizer_params={'learning_rate': 0.1, 'momentum': 0.9}, eval_metric='acc', batch_end_callback = mx.callback.Speedometer(batch_size, 100), num_epoch=num_epochs) test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) # predict accuracy for lenet acc = mx.metric.Accuracy() lenet_model.score(test_iter, acc) accuracy = acc.get()[1] print("Training accuracy: %.2f" % accuracy) assert accuracy > 0.98, "Accuracy was too low" return lenet_model class LeNet5Test(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) # self.tearDown = lambda: subprocess.call("rm -f *.gz *-symbol.json *.params *.onnx", shell=True) def test_convert_and_compare_prediction(self): # get data iterators and set basic hyperparams num_epochs = 10 mnist = mx.test_utils.get_mnist() batch_size = 1000 train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True) val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) model_name = 'lenet5' model_file = '%s-symbol.json' % model_name params_file = '%s-%04d.params' % (model_name, num_epochs) onnx_file = "%s.onnx" % model_name test_gpu_id = 0 gpu_id = check_gpu_id(test_gpu_id) if not gpu_id: print("\nWARNING: GPU id %d is invalid on this machine" % test_gpu_id) gpu_id = None # If trained model exists, re-use cached version. Otherwise, train model. if not (os.path.exists(model_file) and os.path.exists(params_file)): print("\n\nTraining LeNet-5 on MNIST data") trained_lenet = train_lenet5(num_epochs, gpu_id, train_iter, val_iter, test_iter, batch_size) print("Training finished. Saving model") trained_lenet.save_checkpoint(model_name, num_epochs) # delete object so we can verify correct loading of the checkpoint from disk del trained_lenet else: print("\n\nTrained model exists. Skipping training.") # Load serialized MxNet model (model-symbol.json + model-epoch.params) trained_lenet = mx.mod.Module.load(model_name, num_epochs) trained_lenet.bind(data_shapes=test_iter.provide_data, label_shapes=None, for_training=False, force_rebind=True) # Run inference in MxNet from json/params serialized model test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size) pred_softmax = trained_lenet.predict(test_iter).asnumpy() pred_classes = np.argmax(pred_softmax, axis=1) # Create and save ONNX model print("\nConverting trained MxNet model to ONNX") model = from_mxnet(model_file, params_file, [1, 1, 28, 28], np.float32, log=True) with open(onnx_file, "wb") as f: serialized = model.SerializeToString() f.write(serialized) print("\nONNX file %s serialized to disk" % onnx_file) print("\nLoading ONNX file and comparing results to original MxNet output.") # ONNX load and inference step onnx_sym, onnx_arg_params, onnx_aux_params = import_model(onnx_file) onnx_mod = mx.mod.Module(symbol=onnx_sym, data_names=['data'], context=mx.cpu(), label_names=None) # Need to rename data argument from 'data' to 'input_0' because that's how # the MxNet ONNX importer expects it by default test_iter = mx.io.NDArrayIter(data={'data': mnist['test_data']}, label=None, batch_size=batch_size) onnx_mod.bind(data_shapes=test_iter.provide_data, label_shapes=None, for_training=False, force_rebind=True) onnx_mod.set_params(arg_params=onnx_arg_params, aux_params=onnx_aux_params, allow_missing=True) onnx_pred_softmax = onnx_mod.predict(test_iter).asnumpy() onnx_pred_classes = np.argmax(pred_softmax, axis=1) pred_matches = onnx_pred_classes == pred_classes pred_match_ct = pred_matches.sum() pred_total_ct = np.size(pred_matches) pct_match = 100.0 * pred_match_ct / pred_total_ct print("\nOriginal MxNet predictions and ONNX-based predictions after export and re-import:") print("Total examples tested: %d" % pred_total_ct) print("Matches: %d" % pred_match_ct) print("Percent match: %.2f\n" % pct_match) assert pred_match_ct == pred_total_ct, "Not all predictions from the ONNX representation match"
mxnet_to_onnx-master
tests/test_convert_lenet5.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ mx_to_uff_converter_functions.py Conversion Functions for common layers. Add new functions here with a decorator. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import defs, checker, helper, numpy_helper, mapping from .mx2onnx_converter import MxNetToONNXConverter as mx2onnx import numpy as np import re import sys def looks_like_weight(name): """Internal helper to figure out if node should be hidden with `hide_weights`. """ if name.endswith("_weight"): return True if name.endswith("_bias"): return True if name.endswith("_beta") or name.endswith("_gamma") or name.endswith("_moving_var") or name.endswith("_moving_mean"): return True return False @mx2onnx.register("null") def convert_weights_and_inputs(node, **kwargs): name = node["name"] if looks_like_weight(name): weights = kwargs["weights"] initializer = kwargs["initializer"] weights = kwargs["weights"] np_arr = weights[name] data_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np_arr.dtype] dims = np.shape(np_arr) tensor_node = helper.make_tensor_value_info(name, data_type, dims) initializer.append( helper.make_tensor( name=name, data_type=data_type, dims=dims, vals=np_arr.flatten().tolist(), raw=False, ) ) return tensor_node else: tval_node = helper.make_tensor_value_info(name, kwargs["in_type"], kwargs["in_shape"]) return tval_node @mx2onnx.register("Deconvolution") def convert_deconvolution(node, **kwargs): name = node["name"] inputs = node["inputs"] num_inputs = len(inputs) proc_nodes = kwargs["proc_nodes"] input_node = proc_nodes[inputs[0][0]].name weights_node = proc_nodes[inputs[1][0]].name if num_inputs > 2: bias_node = proc_nodes[inputs[2][0]].name attrs = node.get("attrs") tuple_re = re.compile('\([0-9|,| ]+\)') def parse_helper(attrs_name, alt_value=None): if attrs is None: return alt_value attrs_str = attrs.get(attrs_name) if attrs_str is None: return alt_value attrs_match = tuple_re.search(attrs_str) if attrs_match is not None: if attrs_match.span() == (0, len(attrs_str)): dims = eval(attrs_str) return dims else: raise AttributeError("Malformed %s dimensions: %s" % (attrs_name, str(attrs_str))) return alt_value num_filter = int(attrs["num_filter"]) kernel_dims = list(parse_helper("kernel")) stride_dims = list(parse_helper("stride", [1, 1])) pad_dims = parse_padding(attrs) num_group = int(attrs.get("num_group", 1)) # Not sure why this is included, it seems to change what the graphs is doing. # TODO(kellens): Ask Marek if this is requried. # if len(pad_dims) < 2 * len(kernel_dims): # pad_dims = [0] * (2 * len(kernel_dims) - len(pad_dims)) + pad_dims input_nodes = [input_node, weights_node] if num_inputs > 2: input_nodes.append(bias_node) deconv_node = helper.make_node( "ConvTranspose", inputs=input_nodes, outputs=[name], kernel_shape=kernel_dims, strides=stride_dims, pads=pad_dims, group=num_group, name=name ) return deconv_node @mx2onnx.register("Convolution") def convert_convolution(node, **kwargs): name = node["name"] inputs = node["inputs"] num_inputs = len(inputs) proc_nodes = kwargs["proc_nodes"] input_node = proc_nodes[inputs[0][0]].name weights_node = proc_nodes[inputs[1][0]].name if num_inputs > 2: bias_node = proc_nodes[inputs[2][0]].name attrs = node.get("attrs") tuple_re = re.compile('\([0-9|,| ]+\)') def parse_helper(attrs_name, alt_value=None): if attrs is None: return alt_value attrs_str = attrs.get(attrs_name) if attrs_str is None: return alt_value attrs_match = tuple_re.search(attrs_str) if attrs_match is not None: if attrs_match.span() == (0, len(attrs_str)): dims = eval(attrs_str) return dims else: raise AttributeError("Malformed %s dimensions: %s" % (attrs_name, str(attrs_str))) return alt_value num_filter = int(attrs["num_filter"]) kernel_dims = list(parse_helper("kernel")) stride_dims = list(parse_helper("stride", [1, 1])) pad_dims = parse_padding(attrs) num_group = int(attrs.get("num_group", 1)) # Not sure why this is included, it seems to change what the graphs is doing. # TODO(kellens): Ask Marek if this is requried. # if len(pad_dims) < 2 * len(kernel_dims): # pad_dims = [0] * (2 * len(kernel_dims) - len(pad_dims)) + pad_dims input_nodes = [input_node, weights_node] if num_inputs > 2: input_nodes.append(bias_node) conv_node = helper.make_node( "Conv", inputs=input_nodes, outputs=[name], kernel_shape=kernel_dims, strides=stride_dims, pads=pad_dims, group=num_group, name=name, ) return conv_node @mx2onnx.register("FullyConnected") def convert_fully_connected(node, **kwargs): name = node["name"] inputs = node["inputs"] input_node_id = inputs[0][0] weight_node_id = inputs[1][0] bias_node_id = inputs[2][0] proc_nodes = kwargs["proc_nodes"] input_node = proc_nodes[input_node_id] weights_node = proc_nodes[weight_node_id] bias_node = proc_nodes[bias_node_id] input_name = input_node.name weights_name = weights_node.name bias_name = bias_node.name node = helper.make_node( "Gemm", [input_name, weights_name, bias_name], # input (A, B, C) - C can be in place [name], # output alpha=1.0, beta=1.0, transA=False, transB=True, name=name ) return node @mx2onnx.register("BatchNorm") def convert_batchnorm(node, **kwargs): name = node["name"] proc_nodes = kwargs["proc_nodes"] inputs = node["inputs"] attrs = node["attrs"] # Default momentum is 0.9 try: momentum = float(attrs["momentum"]) except: momentum = 0.9 # Default eps is 0.001 try: eps = float(attrs["eps"]) except: eps = 0.001 data_idx = inputs[0][0] gamma_idx = inputs[1][0] beta_idx = inputs[2][0] moving_mean_idx = inputs[3][0] moving_var_idx = inputs[4][0] data_node = proc_nodes[data_idx].name gamma_node = proc_nodes[gamma_idx].name beta_node = proc_nodes[beta_idx].name mov_mean_node = proc_nodes[moving_mean_idx] mov_mean_node = mov_mean_node.name mov_var_node = proc_nodes[moving_var_idx].name bn_node = helper.make_node( "BatchNormalization", [data_node, gamma_node, # scale beta_node, # bias mov_mean_node, mov_var_node ], [name], name=name, epsilon=eps, momentum=momentum, is_test=1, spatial=1, consumed_inputs=(0, 0, 0, 1, 1) ) return bn_node @mx2onnx.register("Activation") def convert_activation(node, **kwargs): name = node["name"] proc_nodes = kwargs["proc_nodes"] attrs = node["attrs"] act_type = attrs["act_type"] inputs = node["inputs"] input_node_idx = inputs[0][0] input_node = proc_nodes[input_node_idx].output[0] # Creating a dictionary here, but if this titlecase pattern # is consistent for other activations, this can be changed to # mxnet_name.title() act_types = { "tanh": "Tanh", "relu": "Relu", "sigmoid": "Sigmoid", "softrelu": "Softplus", "softsign": "Softsign" } act_name = act_types.get(act_type) if act_name: node = helper.make_node( act_name, [input_node], [name], name=name ) else: raise AttributeError( "Activation %s not implemented or recognized in the converter" % act_type ) return node def parse_padding(attrs): tuple_re = re.compile('\([0-9|,| ]+\)') def parse_helper(attrs_name, alt_value=None): if attrs is None: return alt_value attrs_str = attrs.get(attrs_name) if attrs_str is None: return alt_value attrs_match = tuple_re.search(attrs_str) if attrs_match is not None: if attrs_match.span() == (0, len(attrs_str)): dims = eval(attrs_str) return dims else: raise AttributeError("Malformed %s dimensions: %s" % (attrs_name, str(attrs_str))) return alt_value symetric_pads = list(parse_helper("pad", [0, 0])) result = [] # Each padding in MXNet is assumed to be symetric in dim1, dim2 ... # In ONNX we need to have a start_dim1, start_dim2, ..., end_dim1, end_dim2 for pad in symetric_pads: result.append(pad) for pad in symetric_pads: result.append(pad) return result @mx2onnx.register("Pooling") def convert_pooling(node, **kwargs): proc_nodes = kwargs["proc_nodes"] attrs = node["attrs"] kernel = eval(attrs["kernel"]) pool_type = attrs["pool_type"] # Default stride in MXNet for pooling is (1,1) stride = eval(attrs["stride"]) if attrs.get("stride") else (1, 1) # Global pooling is set explicitly with an attr on the op. global_pool = eval(attrs["global"]) if attrs.get("global") else None node_inputs = node["inputs"] input_node_idx = node_inputs[0][0] input_node = proc_nodes[input_node_idx] name = node["name"] pad_dims = parse_padding(attrs) pool_types = {"max": "MaxPool", "avg": "AveragePool"} global_pool_types = {"max": "GlobalMaxPool", "avg": "GlobalAveragePool"} if global_pool: node = helper.make_node( global_pool_types[pool_type], [input_node.output[0]], [name], name=name, pads=pad_dims ) else: node = helper.make_node( pool_types[pool_type], [input_node.output[0]], # input [name], # dilations = [0, 0], kernel_shape=kernel, pads=pad_dims, strides=stride, name=name ) return node @mx2onnx.register("exp") def convert_exp(node, **kwargs): raise NotImplementedError # There's also mx.sym.softmax(), which doesn't do cross-entropy loss, # just softmax for inference - hence the name convert_softmax_output. @mx2onnx.register("SoftmaxOutput") def convert_softmax_output(node, **kwargs): # print("\nIn convert_softmax_output") inputs = node["inputs"] input1_idx = inputs[0][0] proc_nodes = kwargs["proc_nodes"] input1 = proc_nodes[input1_idx] name = node["name"] softmax_node = helper.make_node( "Softmax", [input1.output[0]], [name], axis=1, name=name ) return softmax_node @mx2onnx.register("Crop") def convert_concat(node, **kwargs): name = node["name"] inputs = node["inputs"] proc_nodes = kwargs["proc_nodes"] input_names = [proc_nodes[i[0]].name for i in inputs] attrs = node["attrs"] border = [0, 0, 0, 0] offset = list(eval(attrs['offset'])) if len(inputs) == 2: border = inputs[1] axis = int(node.get("attrs", {}).get("axis", 1)) concat_node = helper.make_node( "Crop", input_names, [name], border=border, scale=offset, name=name ) return concat_node @mx2onnx.register("Concat") def convert_concat(node, **kwargs): name = node["name"] inputs = node["inputs"] proc_nodes = kwargs["proc_nodes"] input_names = [proc_nodes[i[0]].name for i in inputs] axis = int(node.get("attrs", {}).get("axis", 1)) concat_node = helper.make_node( "Concat", input_names, [name], axis = axis, name = name ) return concat_node @mx2onnx.register("Dropout") def convert_dropout(node, **kwargs): name = node["name"] input_id = node["inputs"][0][0] input_name = kwargs["proc_nodes"][input_id].name attrs = node["attrs"] p = float(attrs["p"]) dropout_node = helper.make_node( "Dropout", [input_name], [name], ratio = p, is_test = 0, name = name ) return dropout_node @mx2onnx.register("Flatten") def convert_flatten(node, **kwargs): name = node["name"] input_idx = node["inputs"][0][0] proc_nodes = kwargs["proc_nodes"] input_node = proc_nodes[input_idx].name #.output[0] flatten_node = helper.make_node( "Flatten", [input_node], [name], name = name, axis = 1 ) return flatten_node @mx2onnx.register("_mul_scalar") def convert_mul_scalar(node, **kwargs): raise NotImplementedError @mx2onnx.register("elemwise_add") def convert_elementwise_add(node, **kwargs): name = node["name"] proc_nodes = kwargs["proc_nodes"] inputs = node["inputs"] weights = kwargs["weights"] a = inputs[0][0] b = inputs[1][0] a_node = proc_nodes[a].name b_node = proc_nodes[b].name add_node = helper.make_node( "Add", [a_node, b_node], [name], name = name, ) return add_node @mx2onnx.register("_sub") def convert_elementwise_sub(node, **kwargs): raise NotImplementedError @mx2onnx.register("abs") def convert_abs(node, **kwargs): raise NotImplementedError @mx2onnx.register("_mul") def convert_mul(node, proc_nodes): raise NotImplementedError @mx2onnx.register("_div") def convert_div(node, **kwargs): raise NotImplementedError @mx2onnx.register("log") def convert_log(node, **kwargs): raise NotImplementedError @mx2onnx.register("max") def convert_max(node, **kwargs): raise NotImplementedError @mx2onnx.register("_maximum") def convert_maximum(node, **kwargs): raise NotImplementedError @mx2onnx.register("min") def convert_min(node, **kwargs): raise NotImplementedError @mx2onnx.register("_minimum") def convert_minimum(node, **kwargs): raise NotImplementedError @mx2onnx.register("_power") def convert_power(node, **kwargs): raise NotImplementedError @mx2onnx.register("sqrt") def convert_sqrt(node, **kwargs): raise NotImplementedError
mxnet_to_onnx-master
mx2onnx_converter/mx2onnx_converter_functions.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import import mx2onnx_converter.conversion_helpers import mx2onnx_converter.mx2onnx_converter import mx2onnx_converter.mx2onnx_converter_functions
mxnet_to_onnx-master
mx2onnx_converter/__init__.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import sys from onnx import (defs, checker, helper, numpy_helper, mapping, onnx_pb, ModelProto, GraphProto, NodeProto, AttributeProto, TensorProto) from onnx.helper import make_tensor, make_tensor_value_info class MxNetToONNXConverter: registry_ = {} input_output_maps_ = {} def __init__(self): # topologically sorted nodes self.nodes = [] self.input_tensors = [] self.output_tensors = [] @staticmethod def register(op_name): def wrapper(func): MxNetToONNXConverter.registry_[op_name] = func return func return wrapper @staticmethod def convert_layer(node, **kwargs): op = str(node["op"]) if op not in MxNetToONNXConverter.registry_: raise AttributeError("No conversion function registered for op type %s yet." % op) convert_fun = MxNetToONNXConverter.registry_[op] return convert_fun(node, **kwargs) # Add transpose? @staticmethod def convert_weights_to_numpy(weights_dict): return dict([(k.replace("arg:", "").replace("aux:", ""), v.asnumpy()) for k, v in weights_dict.items()]) def convert_mx2onnx_graph(self, mx_graph, mx_weights, in_shape, in_type, log=False): print("\nconverting weights from MxNet NDArrays to NumPy arrays.\n") weights = MxNetToONNXConverter.convert_weights_to_numpy(mx_weights) onnx_graph = GraphProto() initializer = [] all_processed_nodes = [] onnx_processed_nodes = [] onnx_processed_inputs = [] onnx_processed_outputs = [] for idx, node in enumerate(mx_graph): op = node["op"] name = node["name"] if log: print("Converting idx: %d, op: %s, name: %s" % (idx, op, name)) converted = MxNetToONNXConverter.convert_layer( node, mx_graph = mx_graph, weights = weights, in_shape = in_shape, in_type = in_type, proc_nodes = all_processed_nodes, initializer = initializer ) if isinstance(converted, onnx_pb.ValueInfoProto): if idx < (len(mx_graph) - 1): onnx_processed_inputs.append(converted) else: onnx_processed_outputs.append(converted) elif isinstance(converted, onnx_pb.NodeProto): if idx < (len(mx_graph) - 1): onnx_processed_nodes.append(converted) else: onnx_processed_nodes.append(converted) onnx_processed_outputs.append( make_tensor_value_info( name=converted.name, elem_type=mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype('float32')], shape=(in_shape[0], -1) ) ) if log: print("Output node is: %s" % converted.name) elif isinstance(converted, onnx_pb.TensorProto): raise ValueError("Did not expect TensorProto") if idx < (len(mx_graph) - 1): onnx_processed_inputs.append(converted) else: onnx_processed_outputs.append(converted) else: print(converted) raise ValueError("node is of an unrecognized type: %s" % type(node)) all_processed_nodes.append(converted) graph = helper.make_graph( onnx_processed_nodes, "main", onnx_processed_inputs, onnx_processed_outputs ) graph.initializer.extend(initializer) checker.check_graph(graph) return graph
mxnet_to_onnx-master
mx2onnx_converter/mx2onnx_converter.py
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from onnx import defs, checker, helper, numpy_helper, mapping from .mx2onnx_converter import MxNetToONNXConverter import json import mxnet as mx import numpy as np def from_mxnet(model_file, weight_file, input_shape, input_type, log=False): mx_weights = mx.ndarray.load(weight_file) with open(model_file, 'r') as f: graph = json.loads(f.read())["nodes"] converter = MxNetToONNXConverter() onnx_graph = converter.convert_mx2onnx_graph(graph, mx_weights, input_shape, mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(input_type)], log=log) onnx_model = helper.make_model(onnx_graph) return onnx_model
mxnet_to_onnx-master
mx2onnx_converter/conversion_helpers.py
from conans import ConanFile, CMake, tools import requests import re from os import path class P2300Recipe(ConanFile): name = "P2300" description = "std::execution" author = "Michał Dominiak, Lewis Baker, Lee Howes, Kirk Shoop, Michael Garland, Eric Niebler, Bryce Adelstein Lelbach" topics = ("WG21", "concurrency") homepage = "https://github.com/NVIDIA/stdexec" url = "https://github.com/NVIDIA/stdexec" license = "Apache 2.0" settings = "compiler" # Header only - compiler only used for flags tool_requires = "catch2/2.13.6" exports_sources = "include/*" generators = "cmake_find_package" def validate(self): tools.check_min_cppstd(self,"20") def set_version(self): # Get the version from the spec file response = requests.get("https://raw.githubusercontent.com/brycelelbach/wg21_p2300_execution/main/execution.bs") rev = re.search(r"Revision: (\d+)", response.text).group(1).strip() self.version = f"0.{rev}.0" def package(self): self.copy("*.hpp") def package_info(self): # Make sure to add the correct flags for gcc if self.settings.compiler == "gcc": self.cpp_info.cxxflags = ["-fcoroutines", "-Wno-non-template-friend"]
stdexec-main
conanfile.py
import os from conans import ConanFile, CMake, tools class P2300TestConan(ConanFile): settings = "compiler" generators = "cmake" def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): if not tools.cross_building(self): os.chdir("bin") self.run(".{}test_p2300".format(os.sep))
stdexec-main
test_package/conanfile.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import this before torch to avoid GLIBC error import xarray import os import pytest from earth2mip import config import torch import os import torch def get_gpu_count(): return torch.cuda.device_count() @pytest.fixture() def has_registry(): if not config.MODEL_REGISTRY: pytest.skip("MODEL_REGISTRY not configured.") @pytest.fixture() def dist(): from modulus.distributed.manager import DistributedManager DistributedManager.initialize() return DistributedManager() @pytest.fixture() def ngpu(): return get_gpu_count()
earth2mip-main
conftest.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # !/usr/bin/env python from setuptools import setup setup()
earth2mip-main
setup.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from concurrent.futures import ThreadPoolExecutor import random def test_thread_pool_always_returns_same_order(): pool = ThreadPoolExecutor(4) def func(x): # ensure that threads all finish at different times time.sleep(random.uniform(0, 0.01)) return x items = list(range(10)) for i in range(4): assert list(pool.map(func, items)) == items
earth2mip-main
tests/test_thread_pool.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import registry def test_list_models(has_registry): ans = registry.list_models() assert ans assert "/" not in ans[0], ans[0]
earth2mip-main
tests/test_registry.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import netcdf import numpy as np import netCDF4 as nc from earth2mip import schema, weather_events import torch import pytest import pathlib @pytest.mark.parametrize("cls", ["raw"]) def test_diagnostic(cls: str, tmp_path: pathlib.Path): domain = weather_events.Window( name="Test", lat_min=-15, lat_max=15, diagnostics=[ weather_events.Diagnostic(type=cls, function="", channels=["tcwv"]) ], ) lat = np.array([-20, 0, 20]) lon = np.array([0, 1, 2]) n_ensemble = 2 path = tmp_path / "a.nc" weather_event = weather_events.read("EastCoast") with nc.Dataset(path.as_posix(), "w") as ncfile: total_diagnostics = netcdf.initialize_netcdf( ncfile, [domain], schema.Grid.grid_720x1440, lat, lon, n_ensemble, torch.device(type="cpu"), )[0] for diagnostic in total_diagnostics: print(ncfile) print(ncfile["Test"]) nlat = len(ncfile["Test"]["lat"][:]) nlon = len(ncfile["Test"]["lon"][:]) data = torch.randn((n_ensemble, 1, nlat, nlon)) time_index = 0 batch_id = 0 batch_size = n_ensemble diagnostic.update(data, time_index, batch_id, batch_size) # TODO Fix input data issues with crps, skill if not (cls in ["crps", "skill"]): diagnostic.finalize( np.array([time_index]), weather_event, schema.ChannelSet.var34 ) if cls == "skill": assert "tcwv" in ncfile["Test"]["skill"].variables elif cls == "raw": assert "tcwv" in ncfile["Test"].variables else: assert "tcwv" in ncfile["Test"][cls].variables
earth2mip-main
tests/test_diagnostics.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import forecasts import xarray import numpy as np import datetime import torch import pytest class MockTimeLoop: in_channel_names = ["b", "a"] out_channel_names = ["b", "a"] time_step = datetime.timedelta(hours=6) def __call__(self, time, x): assert torch.all(x == torch.tensor([1, 0], device=x.device)) while True: yield time, x, None time += self.time_step async def getarr(): arr = np.arange(3) coords = {} coords["channel"] = ["a", "b", "c"] return xarray.DataArray(arr, dims=["channel"], coords=coords) async def test_TimeLoopForecast(): if not torch.cuda.is_available(): pytest.skip("No Cuda") times = [ datetime.datetime(1, 1, 1) + datetime.timedelta(hours=12) * k for k in range(3) ] mock_obs = [getarr() for t in times] forecast = forecasts.TimeLoopForecast(MockTimeLoop(), times, mock_obs) iter = forecast[0] k = 0 async for state in iter: k += 1 if k >= 4: break
earth2mip-main
tests/test_forecasts.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import xarray as xr from earth2mip.datasets import zarr_directory, hindcast import numpy as np import os import pytest def test_zarr_directory(): # Generate data filled with ones data_a = np.ones((3, 4)) data_b = np.arange(4) # Create xarray dataset ds = xr.Dataset( { "a": (["x", "y"], data_a), "b": (["y"], data_b), }, coords={"x": np.arange(3), "y": np.arange(4)}, ) store = {} ds.to_zarr(store) nested_store = {} directories = [str(i) for i in range(10)] for i in directories: for key in store: # TODO remove the hardcode nested_store[f"{i}/mean.zarr/" + key] = store[key] obj = zarr_directory.NestedDirectoryStore( nested_store, directories=directories, concat_dim="dim", group="mean.zarr", static_coords=("x", "y"), dim_rename=None, ) loaded = xr.open_zarr(obj) for val in directories: iobj = loaded.sel(dim=val).load() for v in iobj: xr.testing.assert_equal(iobj.variables[v], ds.variables[v]) def test_open_forecast(): root = "/lustre/fsw/sw_climate_fno/nbrenowitz/scoring_tools/sfno_coszen/deterministic-medium" # noqa if not os.path.isdir(root): pytest.skip() ds = hindcast.open_forecast(root, group="mean.zarr") print(ds) ds.z500
earth2mip-main
tests/test_datasets.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.model_registry import Package def test_package(tmp_path): string = "hello" afile = tmp_path / "a.txt" afile.write_text(string) path = "file://" + tmp_path.as_posix() package = Package(path, seperator="/") path = package.get("a.txt") with open(path) as f: ans = f.read() assert ans == string
earth2mip-main
tests/test_model_registry.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import xarray import numpy as np from earth2mip.xarray.utils import to_cupy, concat_dict try: import cupy except ImportError: cupy = None import pytest @pytest.fixture() def has_gpu(): try: cupy.cuda.runtime.getDevice() except Exception: pytest.skip("No GPU.") @pytest.mark.parametrize("chunked", [True, False]) def test_to_cupy_weighted(has_gpu, chunked): nlat, nlon = 10, 20 lat = xarray.Variable(["lat"], np.linspace(90, -90, nlat)) arr = xarray.DataArray( np.ones([nlat, nlon]), dims=["lat", "lon"], coords={"lat": lat} ) arr_cp = to_cupy(arr) if chunked: arr_cp = arr_cp.chunk({"lat": 2}) arr_cp.load().data.device def test_concat_dict(): # Create sample input dictionary of xarray objects data1 = xarray.DataArray([1, 2, 3], dims="dim1") data2 = xarray.DataArray([4, 5, 6], dims="dim1") data3 = xarray.DataArray([7, 8, 9], dims="dim1") input_dict = { ("coord1_val1",): data1, ("coord1_val2",): data2, ("coord1_val3",): data3, } # Call the function result = concat_dict(input_dict, key_names=("coord1",), concat_dim="key") coord = xarray.Variable(["key"], [k[0] for k in input_dict]) expected_values = xarray.DataArray( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dims=("key", "dim1"), coords={"coord1": coord}, ) xarray.testing.assert_equal(result, expected_values)
earth2mip-main
tests/test_xarray_utils.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.time import convert_to_datetime import numpy as np import datetime def test_convert_to_datetime(): time = np.datetime64("2021-01-01T00:00:00") expected = datetime.datetime(2021, 1, 1) assert convert_to_datetime(time) == expected
earth2mip-main
tests/test_time.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from pathlib import Path from modulus.utils import filesystem @pytest.fixture def pyfile_name(): return "test_filesystem.py" def test_modulus_filesystem_local(pyfile_name): # Check if this test file is seen in a Fsspec local file system file_path = Path(__file__).parent.resolve() fssystem = filesystem._get_fs("file") assert pyfile_name in [Path(file).name for file in fssystem.ls(file_path)]
earth2mip-main
tests/test_modulus_filesystem.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
earth2mip-main
tests/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import torch import xarray import hashlib import numpy as np from earth2mip.networks import persistence from earth2mip import ( schema, weather_events, inference_ensemble, score_ensemble_outputs, inference_medium_range, ) import pytest def checksum_reduce_precision(arr, digits=3): most_significant = max(arr.max(), -arr.min()) least = most_significant / 10**digits arr = (most_significant / least).astype(np.int32) checksum = hashlib.md5(arr.data) return checksum.hexdigest() class get_data_source: def __init__(self, inference): arr = xarray.DataArray( np.ones([1, len(inference.in_channel_names), 721, 1440]), dims=["time", "channel", "lat", "lon"], ) arr["channel"] = inference.in_channel_names arr["lat"] = np.linspace(90, -90, 721) arr["lon"] = np.linspace(0, 360, 1440, endpoint=False) self.arr = arr self.channel_names = inference.out_channel_names def __getitem__(self, time): return self.arr.assign_coords(time=[time]) def test_inference_ensemble(tmp_path): inference = persistence(package=None) data_source = get_data_source(inference) time = datetime.datetime(2018, 1, 1) config = schema.EnsembleRun( weather_model="dummy", simulation_length=40, output_path=tmp_path.as_posix(), weather_event=schema.WeatherEvent( properties=weather_events.WeatherEventProperties( name="test", start_time=time ), domains=[ weather_events.Window( name="globe", diagnostics=[ weather_events.Diagnostic( type="raw", channels=inference.out_channel_names, ) ], ) ], ), ) inference_ensemble.run_inference( inference, config, data_source=data_source, progress=True ) path = tmp_path / "ensemble_out_0.nc" ds = xarray.open_dataset(path.as_posix(), decode_times=False) assert ds.time[0].item() == 0 out = tmp_path / "out" score_ensemble_outputs.main(tmp_path.as_posix(), out.as_posix(), score=False) def test_checksum_reduce_precision(regtest): # Test case 1: Basic example arr1 = np.array([1.23456, 2.34567, 3.45678]) arr2 = np.array([1, 2, 3]) assert checksum_reduce_precision(arr1, digits=1) == checksum_reduce_precision( arr2, digits=1 ) arr1 = np.array([0.23456, 2.34567, 3.45678]) arr2 = np.array([1, 2, 3]) assert checksum_reduce_precision(arr1, digits=1) != checksum_reduce_precision( arr2, digits=2 ) print(checksum_reduce_precision(arr1), file=regtest) def test_inference_medium_range(tmpdir, regtest): if not torch.cuda.is_available(): pytest.skip("need gpu") inference = persistence(package=None).cuda() data_source = get_data_source(inference) time = datetime.datetime(2018, 1, 1) dt = datetime.timedelta(hours=6) times = [time + dt * k for k in range(10)] mean = np.zeros((len(inference.out_channel_names), 721, 1440)) metrics = inference_medium_range.score_deterministic( inference, n=5, initial_times=times, time_mean=mean, data_source=data_source ) metrics["acc"].attrs["checksum"] = checksum_reduce_precision(metrics.acc, digits=3) metrics["rmse"].attrs["checksum"] = checksum_reduce_precision( metrics.rmse, digits=3 ) metrics.info(regtest)
earth2mip-main
tests/test_end_to_end.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.networks import pangu import datetime import torch class MockPangu(pangu.PanguWeather): def __init__(self): pass def __call__(self, pl, sl): return pl, sl def test_pangu(): model_6 = pangu.PanguStacked(MockPangu()) model_24 = pangu.PanguStacked(MockPangu()) inference = pangu.PanguInference(model_6, model_24) t0 = datetime.datetime(2018, 1, 1) dt = datetime.timedelta(hours=6) x = torch.ones((1, 1, len(inference.in_channel_names), 721, 1440)) n = 5 times = [] for k, (time, y, _) in enumerate(inference(t0, x)): if k > n: break assert y.shape == x.shape[1:] assert torch.all(y == x[0]) times.append(time) assert times == [t0 + k * dt for k in range(n + 1)]
earth2mip-main
tests/test_pangu.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import netcdf import numpy as np import netCDF4 as nc from earth2mip.schema import Grid from earth2mip.weather_events import Window, Diagnostic import torch def test_initialize_netcdf(tmp_path): domain = Window( name="TestAverage", lat_min=-15, lat_max=15, diagnostics=[Diagnostic(type="raw", function="", channels=["tcwv"])], ) lat = np.array([-20, 0, 20]) lon = np.array([0, 1, 2]) n_ensemble = 1 path = tmp_path / "a.nc" with nc.Dataset(path.as_posix(), "w") as ncfile: netcdf.initialize_netcdf( ncfile, [domain], Grid("720x1440"), lat, lon, n_ensemble, torch.device(type="cpu"), )
earth2mip-main
tests/test_io.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import pytest from earth2mip import regrid from earth2mip import schema def test_get_regridder(): src = schema.Grid.grid_721x1440 dest = schema.Grid.s2s_challenge try: f = regrid.get_regridder(src, dest) except FileNotFoundError as e: pytest.skip(f"{e}") x = torch.ones(1, 1, 721, 1440) y = f(x) assert y.shape == (1, 1, 121, 240) assert torch.allclose(y, torch.ones_like(y))
earth2mip-main
tests/test_regrid.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import weather_events import pytest @pytest.mark.parametrize("event", weather_events.list_()) def test_read(event): domain = weather_events.read(event) print(domain) def test_parse(): obj = { "properties": {"name": "Globe", "start_time": "2018-01-01 00:00:00"}, "domains": [ { "name": "global", "type": "Window", "diagnostics": [ { "type": "absolute", "function": "mean", "channels": ["tcwv", "t2m", "u10", "v10"], } ], } ], } weather_events.WeatherEvent.parse_obj(obj) def test_parse_cwbdomain(): obj = { "properties": {"name": "Taiwan", "start_time": "2018-10-07 18:00:00"}, "domains": [ { "name": "Taiwan", "type": "CWBDomain", "lat_min": 18, "lat_max": 30, "lon_min": 115, "lon_max": 125, "diagnostics": [ { "type": "raw", "function": "", "channels": [ "u10", "v10", "t2m", "sp", "msl", "t850", "u1000", "v1000", "z1000", "u850", "v850", "z850", "u500", "v500", "z500", "t500", "z50", "r500", "r850", "tcwv", "u100m", "v100m", "u250", "v250", "z250", "t250", ], } ], } ], } weather_events.WeatherEvent.parse_obj(obj) def test_parse_multipoint(): obj = { "properties": {"name": "EastCoast", "start_time": "2018-01-01 00:00:00"}, "domains": [ { "name": "Somewhere", "type": "MultiPoint", "lat": [40, 25, 42, 18, 29, 38], "lon": [286, 280, 289, 294, 265, 283], "diagnostics": [ { "type": "raw", "function": "", "channels": ["tcwv", "t2m", "u10", "v10"], } ], } ], } weather_events.WeatherEvent.parse_obj(obj)
earth2mip-main
tests/test_weather_events.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import schema import json def test_model(): obj = schema.Model( architecture="some_arch", n_history=0, channel_set=schema.ChannelSet.var34, grid=schema.Grid.grid_720x1440, in_channels=[0, 1], out_channels=[0, 1], ) loaded = json.loads(obj.json()) assert loaded["channel_set"] == obj.channel_set.var34.value
earth2mip-main
tests/test_schema.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import pytest import datetime from earth2mip.ensemble_utils import generate_noise_correlated, generate_bred_vector from earth2mip import networks from earth2mip.schema import Grid, ChannelSet @pytest.mark.slow def test_generate_noise_correlated(): torch.manual_seed(0) shape = (2, 34, 32, 64) noise = generate_noise_correlated( shape=shape, reddening=2.0, noise_amplitude=0.1, device="cpu" ) assert tuple(noise.shape) == tuple(shape) assert torch.mean(noise) < torch.tensor(1e-09).to() class Dummy(torch.nn.Module): def forward(self, x, time): return 2.5 * torch.abs(x) * (1 - torch.abs(x)) def test_bred_vector(): device = "cpu" model = Dummy().to(device) initial_time = datetime.datetime(2018, 1, 1) channels = [0, 1] center = [0, 0] scale = [1, 1] # batch, time_levels, channels, y, x x = torch.rand([4, 1, 2, 5, 6], device=device) model = networks.Inference( model, center=center, channels=channels, scale=scale, grid=Grid.grid_720x1440, channel_set=ChannelSet.var34, ).to(device) noise_amplitude = 0.01 noise = generate_bred_vector( x, model, noise_amplitude=noise_amplitude, time=initial_time, integration_steps=20, inflate=False, ) assert noise.device == x.device assert noise.shape == x.shape assert not torch.any(torch.isnan(noise)) noise = generate_bred_vector( x, model, noise_amplitude=noise_amplitude, time=initial_time, integration_steps=20, inflate=True, ) assert noise.device == x.device assert noise.shape == x.shape assert not torch.any(torch.isnan(noise))
earth2mip-main
tests/test_ensemble_perturb.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from earth2mip import filesystem def test_glob(tmp_path: Path): a = tmp_path / "a.txt" a.touch() # use file:// protocol to ensure handling is correct (f,) = filesystem.glob(f"file://{tmp_path.as_posix()}/*.txt") assert f == f"file://{a.as_posix()}" def test_glob_no_scheme(tmp_path: Path): a = tmp_path / "a.txt" a.touch() (f,) = filesystem.glob(f"{tmp_path.as_posix()}/*.txt") assert f == a.as_posix() def test__to_url(): assert ( filesystem._to_url("s3", "sw_climate_fno/a.txt") == "s3://sw_climate_fno/a.txt" ) assert filesystem._to_url("", "sw_climate_fno/a.txt") == "sw_climate_fno/a.txt"
earth2mip-main
tests/test_filesystem.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.initial_conditions.ifs import _get_filename, get from earth2mip import schema import datetime import pytest def test__get_filename(): expected = "20230310/00z/0p4-beta/oper/20230310000000-0h-oper-fc.grib2" time = datetime.datetime(2023, 3, 10, 0) assert _get_filename(time, "0h") == expected @pytest.mark.slow @pytest.mark.xfail def test_get(): # uses I/O and old ICs are not available forever. time = datetime.datetime(2023, 3, 10, 0) ds = get(time, schema.ChannelSet.var34) print(ds)
earth2mip-main
tests/test_ifs.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.lagged_ensembles.core import yield_lagged_ensembles import torch import pytest import logging c, lat, lon = 1, 10, 13 class Observations: def __init__(self, device, nt=20): self.device = device self.nt = nt async def __getitem__(self, i): """ Returns (channel, lat, lon) """ if i >= len(self): raise KeyError(i) return torch.tensor([i], device=self.device) def __len__(self): return self.nt class Forecast: def __init__(self, device): self.device = device async def __getitem__(self, i): """persistence forecast Yields (channel, lat, lon) """ x = torch.zeros((2,), device=self.device) x[0] = i lead_time = -1 while True: lead_time += 1 x[1] = lead_time yield x.clone() @pytest.fixture(scope="session") def dist_info(): try: torch.distributed.init_process_group(init_method="env://", backend="gloo") except ValueError: logging.warn("Could not initialize torch distributed with the gloo backend.") return 0, 1 else: rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() return rank, world_size @pytest.mark.parametrize("nt", [16, 20]) async def test_yield_lagged_ensembles(dist_info, nt): rank, world_size = dist_info device = "cpu" forecast = Forecast(device) async for (j, l), ens, o in yield_lagged_ensembles( observations=Observations(device, nt), forecast=forecast, ): i = j - l # assert this process is responsible for this lagged ensemble assert i % world_size == rank assert o == j for m in ens: arr = ens[m] ll = arr[1] assert ll == l - m ii = arr[0] assert ii == i + m
earth2mip-main
tests/test_lagged_averaged_forecast.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import networks, schema import torch import torch.nn import numpy as np class Identity(torch.nn.Module): def forward(self, x): return x + 0.01 def test_inference_run_with_restart(): model = Identity() channels = [0, 1] center = [0, 0] scale = [1, 1] # batch, time_levels, channels, y, x x = torch.zeros([1, 1, 2, 5, 6]) model = networks.Inference( model, center=center, channels=channels, scale=scale, grid=schema.Grid.grid_720x1440, channel_set=schema.ChannelSet.var34, ) step1 = [] for _, state, restart in model.run_steps_with_restart(x, 3): step1.append(restart) assert len(step1) == 4 # start run from 50% done for _, final_state, _ in model.run_steps_with_restart(n=2, **step1[1]): pass np.testing.assert_array_equal(final_state.numpy(), state.numpy())
earth2mip-main
tests/test_network.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import earth2mip.initial_conditions.era5 as initial_conditions from earth2mip.initial_conditions import get_data_source import datetime import pytest import pathlib from earth2mip import schema, config import xarray @pytest.mark.parametrize("year", [2018, 1980, 2017]) def test__get_path(year): root = pathlib.Path(__file__).parent / "mock_data" root = root.as_posix() dt = datetime.datetime(year, 1, 2) path = initial_conditions._get_path(root, dt) assert pathlib.Path(path).name == dt.strftime("%Y.h5") assert pathlib.Path(path).exists() def test__get_path_key_error(): with pytest.raises(KeyError): initial_conditions._get_path(".", datetime.datetime(2040, 1, 2)) @pytest.mark.slow def test_initial_conditions_get(): time = datetime.datetime(2018, 1, 1) if not config.ERA5_HDF5_73: pytest.skip("No data location configured.") data = get_data_source( n_history=0, channel_set=schema.ChannelSet.var73, initial_condition_source=schema.InitialConditionSource.era5, grid=schema.Grid.grid_721x1440, ) ic = data[time] assert isinstance(ic, xarray.DataArray)
earth2mip-main
tests/test_initial_conditions.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from earth2mip.networks import depends_on_time if sys.version_info < (3, 10): from importlib_metadata import EntryPoint else: from importlib.metadata import EntryPoint import pytest def test_upstream_entrypoint(): ep = EntryPoint(name=None, group=None, value="sys") assert ep.load() == sys # refer to an attribute with ":" ep = EntryPoint(name=None, group=None, value="sys:argv") assert ep.load() == sys.argv # if you don't use : it will give an error with pytest.raises(ModuleNotFoundError): ep = EntryPoint(name=None, group=None, value="sys.argv") ep.load() def test_inspect_for_time(): def f(x, time): pass def g(x): pass assert depends_on_time(f) assert not depends_on_time(g)
earth2mip-main
tests/test_entrypoint.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ xarray is confusing so let's test it to gain understanding """ import xarray import numpy as np import pytest def test_xarray_var_reference(): ds = xarray.DataArray(np.ones((10, 10)), dims=("x", "y")) ds["x"] = np.arange(10) ds["y"] = np.arange(10) datasets = ds.to_dataset(name="wind") datasets["var"] = datasets["wind"] assert isinstance(datasets["var"], xarray.DataArray) def test_xarray_loop(): ds = xarray.DataArray(np.ones((10, 10)), dims=("x", "y")) ds["x"] = np.arange(10) ds["y"] = np.arange(10) datasets = ds.to_dataset(name="wind") assert list(datasets) == ["wind"] assert set(datasets.variables) == {"x", "y", "wind"} def test_xarray_var(): ds = xarray.DataArray(np.ones((10, 10)), dims=("x", "y")) ds["x"] = np.arange(10) ds["y"] = np.arange(10) datasets = ds.to_dataset(name="wind") with pytest.raises(AttributeError): datasets.variables["wind"].weighted
earth2mip-main
tests/test_xarray_apis.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import argparse import numpy as np import datetime import torch from earth2mip import schema, model_registry, networks, _cli_utils from earth2mip.model_registry import Package import hashlib import pytest def md5_checksum(x, precision): x_rounded = np.round_(x, precision) x_string = x_rounded.tostring() md5 = hashlib.md5(x_string) checksum = md5.hexdigest() return checksum def _mock_registry_with_metadata(metadata, model_name, tmp_path): root = tmp_path / model_name root.mkdir() registry = model_registry.ModelRegistry(tmp_path.as_posix()) registry.put_metadata(model_name, metadata) # save stats def save_ones(path): out = np.ones((len(metadata.in_channels),)) np.save(path, out) save_ones(registry.get_scale_path(model_name)) save_ones(registry.get_center_path(model_name)) return registry def test_pickle(tmp_path: pathlib.Path): model_name = "model" # use a baseline AFNO model as a mock model = torch.nn.Conv2d(3, 3, 1) # Save the model to the registry with appropriate metadata metadata = schema.Model( architecture="pickle", n_history=0, channel_set=schema.ChannelSet.var34, grid=schema.Grid.grid_720x1440, in_channels=list(range(3)), out_channels=list(range(3)), ) registry = _mock_registry_with_metadata(metadata, model_name, tmp_path) # save model weights torch.save(model, registry.get_weight_path(model_name)) # make sure it works loaded = networks.get_model(model_name, registry) assert loaded.in_channel_names == [ metadata.channel_set.list_channels()[i] for i in metadata.in_channels ] # only do following if cuda enabled, it's too slow on the cpu n_history = 0 ic = torch.ones(1, n_history + 1, len(metadata.in_channels), 2, 4) time = datetime.datetime(1, 1, 1) for k, (_, b, _) in enumerate(loaded(time, ic)): if k > 10: break assert b.shape == ic[:, 0].shape def MockLoader(package, pretrained): assert pretrained return torch.nn.Linear(3, 3) def test_get_model_architecture_entrypoint(tmp_path): registry = model_registry.ModelRegistry(tmp_path.as_posix()) metadata = schema.Model( architecture_entrypoint="tests.test_models:MockLoader", n_history=0, channel_set=schema.ChannelSet.var34, grid=schema.Grid.grid_720x1440, in_channels=list(range(3)), out_channels=list(range(3)), ) model_name = "model" registry = _mock_registry_with_metadata(metadata, model_name, tmp_path) model = networks.get_model(model_name, registry) assert isinstance(model, torch.nn.Module) def test_get_model_uses_metadata(tmp_path): registry = model_registry.ModelRegistry(tmp_path.as_posix()) model_name = "model" model = networks.get_model(model_name, registry, metadata=metadata_with_entrypoint) assert isinstance(model, MyTestInference) @pytest.mark.parametrize("required", [True, False]) def test__cli_utils(tmp_path, required): path = tmp_path / "meta.json" with path.open("w") as f: f.write(metadata_with_entrypoint.json()) parser = argparse.ArgumentParser() _cli_utils.add_model_args(parser, required=required) model_args = ["model"] if required else ["--model", "unused"] args = parser.parse_args(model_args + ["--model-metadata", path.as_posix()]) loop = _cli_utils.model_from_args(args, device="cpu") assert isinstance(loop, MyTestInference) class MyTestInference: def __init__(self, package, device, **kwargs): self.kwargs = kwargs self.device = device metadata_with_entrypoint = schema.Model( entrypoint=schema.InferenceEntrypoint( name="tests.test_models:MyTestInference", kwargs=dict(param=1) ) ) def test__load_package_entrypoint(): package = Package("", seperator="/") obj = networks._load_package(package, metadata_with_entrypoint, device="cpu") assert isinstance(obj, MyTestInference) assert obj.kwargs == metadata_with_entrypoint.entrypoint.kwargs assert obj.device == "cpu"
earth2mip-main
tests/test_models.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.initial_conditions import cds from earth2mip import schema import datetime import random import pytest @pytest.mark.slow def test_cds_data_source(): try: client = cds.Client() except Exception: pytest.skip("Could not initialize client") time = datetime.datetime(2018, 1, 1) channels = ["q1000", "t2m"] source = cds.DataSource(channels, client=client) dataset = source[time] assert source.channel_names == channels correct_dims = {"time": 1, "channel": len(channels), "lat": 721, "lon": 1440} assert dataset.dims == tuple(correct_dims.keys()) assert dataset.shape == tuple(correct_dims.values()) def test_make_request(regtest): time = datetime.datetime(2018, 1, 1) channels = ["q1000", "z1000", "u1000", "t2m", "q10"] codes = [cds.parse_channel(c) for c in channels] for req in cds._get_cds_requests(codes, time, format="grib"): print(req, file=regtest) def test_parse_channel_with_level(): channel_level = random.randint(0, 10000) channel_string = f"u{channel_level}" assert cds.parse_channel(channel_string).level == channel_level @pytest.mark.parametrize("c", schema.ChannelSet.var73.list_channels()) def test_parse_known_channels(c): assert cds.parse_channel(c)
earth2mip-main
tests/test_cds.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch class Identity(torch.nn.Module): def forward(self, x): return x def load(package, pretrained=True): return Identity()
earth2mip-main
tests/mock_plugin.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import geometry from earth2mip.weather_events import Window import torch import numpy as np import pytest @pytest.mark.xfail def test_select_space(): domain = Window(name="latitude", lat_min=-15, lat_max=15, diagnostics=[]) lat = np.array([-20, 0, 20]) lon = np.array([0, 1, 2]) data = torch.ones((1, 1, len(lat), len(lon))).float() lat, lon, output = geometry.select_space(data, lat, lon, domain) assert tuple(output.shape[2:]) == (len(lat), len(lon)) assert np.all(np.abs(lat) <= 15) @pytest.mark.xfail def test_get_bounds_window(): domain = Window(name="latitude", lat_min=-15, lat_max=15, diagnostics=[]) lat = np.array([-20, 0, 20]) lon = np.array([0, 1, 2]) lat_sl, _ = geometry.get_bounds_window(domain, lat, lon) assert lat[lat_sl].shape == (1,) assert lat[lat_sl][0] == 0
earth2mip-main
tests/test_geometry.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import numpy as np import torch import subprocess import xarray from earth2mip.datasets.hindcast import open_forecast import pytest DIR = os.path.dirname(__file__) os.environ["PYTHONPATH"] = DIR + ":" + os.getenv("PYTHONPATH", ":") def create_model_package(tmp_path): package_dir = tmp_path / "mock_package" package_dir.mkdir() # Create metadata.json metadata = { "architecture_entrypoint": "mock_plugin:load", "n_history": 0, "channel_set": "73var", "grid": "721x1440", "in_channels": list(range(73)), "out_channels": list(range(73)), } with open(package_dir.joinpath("metadata.json"), "w") as f: json.dump(metadata, f) # Create numpy arrays global_means = np.zeros((1, 73, 1, 1)) global_stds = np.ones((1, 73, 1, 1)) np.save(package_dir.joinpath("global_means.npy"), global_means) np.save(package_dir.joinpath("global_stds.npy"), global_stds) return package_dir @pytest.mark.slow @pytest.mark.xfail def test_time_collection(tmp_path): if not torch.cuda.is_available(): pytest.skip("needs gpu and data") torch.init_process_group() model_package = create_model_package(tmp_path) config = os.path.join(DIR, "configs/medium-test.json") model = f"file://{model_package.as_posix()}" root = str(tmp_path / "test") subprocess.check_call(["python3", "-m", "earth2mip.make_job", model, config, root]) subprocess.check_call( [ "torchrun", "--nnodes", "1", "--nproc_per_node", str(min([torch.cuda.device_count(), 2])), "-m", "earth2mip.time_collection", root, ] ) ds = open_forecast(root, group="mean.zarr") assert isinstance(ds, xarray.Dataset)
earth2mip-main
tests/test_time_collection.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from earth2mip.datasets.era5 import time def test_datetime_range(): times = time.datetime_range(2018, datetime.timedelta(hours=6), 2) assert times == [datetime.datetime(2018, 1, 1, 0), datetime.datetime(2018, 1, 1, 6)] def test_filename_to_year(): assert 2018 == time.filename_to_year("some/long/path/2018.h5")
earth2mip-main
tests/datasets/test_time.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import h5py from earth2mip.datasets import era5 import pytest @pytest.mark.slow @pytest.mark.xfail def test_open_34_vars(tmp_path: pathlib.Path): path = tmp_path / "1979.h5" with h5py.File(path, "w") as f: f.create_dataset("fields", shape=[1, 34, 721, 1440]) ds = era5.open_34_vars(path) # ensure that data can be grabbed ds.mean().compute() assert set(ds.coords) == {"time", "channel", "lat", "lon"} @pytest.mark.slow @pytest.mark.xfail def test_open_all_hdf5(tmp_path): folder = tmp_path / "train" folder.mkdir() path = folder / "1979.h5" shape = [1, 34, 721, 1440] with h5py.File(path, "w") as f: f.create_dataset("fields", shape=shape) with era5.open_all_hdf5(tmp_path.as_posix()) as array: assert array.shape == (1, *shape)
earth2mip-main
tests/datasets/test_era5.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.initial_conditions.ifs import _get_filename, get from earth2mip import schema import datetime import pytest def test__get_filename(): expected = "20230310/00z/0p4-beta/oper/20230310000000-0h-oper-fc.grib2" time = datetime.datetime(2023, 3, 10, 0) assert _get_filename(time, "0h") == expected @pytest.mark.slow @pytest.mark.xfail def test_get(): # uses I/O and old ICs are not available forever. time = datetime.datetime(2023, 3, 10, 0) ds = get(time, schema.ChannelSet.var34) print(ds)
earth2mip-main
tests/initial_conditions/test_ifs.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.initial_conditions import get from earth2mip import schema import datetime import pytest @pytest.mark.slow @pytest.mark.xfail def test_get(): # uses I/O and old ICs are not available forever. time = datetime.datetime(2023, 3, 10, 0) dataset = get( 0, time, schema.ChannelSet.var34, source=schema.InitialConditionSource.cds ) # check dims correct_dims = {"time": 1, "channel": 34, "lat": 721, "lon": 1440} assert dataset.dims == tuple(correct_dims.keys()) assert dataset.shape == tuple(correct_dims.values())
earth2mip-main
tests/initial_conditions/test_cds.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script to check that copyright headers exists""" import itertools import re import json from datetime import datetime from pathlib import Path def get_top_comments(_data): """ Get all lines where comments should exist """ lines_to_extract = [] for i, line in enumerate(_data): # If empty line, skip if line in ["", "\n", "", "\r", "\r\n"]: continue # If it is a comment line, we should get it if line.startswith("#"): lines_to_extract.append(i) # Assume all copyright headers occur before any import or from statements # and not enclosed in a comment block elif "import" in line: break elif "from" in line: break comments = [] for line in lines_to_extract: comments.append(_data[line]) return comments def main(): with open(Path(__file__).parent.resolve() / Path("config.json")) as f: config = json.loads(f.read()) print(f"License check config:") print(json.dumps(config, sort_keys=True, indent=4)) current_year = int(datetime.today().year) starting_year = 2023 python_header_path = Path(__file__).parent.resolve() / Path( config["copyright_file"] ) working_path = Path(__file__).parent.resolve() / Path(config["dir"]) exts = config["include-ext"] with open(python_header_path, "r", encoding="utf-8") as original: pyheader = original.read().split("\n") pyheader_lines = len(pyheader) # Build list of files to check exclude_paths = [ (Path(__file__).parent / Path(path)).resolve().rglob("*") for path in config["exclude-dir"] ] all_exclude_paths = itertools.chain.from_iterable(exclude_paths) exclude_filenames = [p for p in all_exclude_paths if p.suffix in exts] filenames = [p for p in working_path.resolve().rglob("*") if p.suffix in exts] filenames = [ filename for filename in filenames if filename not in exclude_filenames ] problematic_files = [] gpl_files = [] for filename in filenames: with open(str(filename), "r", encoding="utf-8") as original: data = original.readlines() data = get_top_comments(data) if data and "# ignore_header_test" in data[0]: continue if len(data) < pyheader_lines - 1: print(f"{filename} has less header lines than the copyright template") problematic_files.append(filename) continue found = False for i, line in enumerate(data): if re.search(re.compile("Copyright.*NVIDIA.*", re.IGNORECASE), line): found = True # Check 1st line manually year_good = False for year in range(starting_year, current_year + 1): year_line = pyheader[0].format(CURRENT_YEAR=year) if year_line in data[i]: year_good = True break year_line_aff = year_line.split(".") year_line_aff = ( year_line_aff[0] + " & AFFILIATES." + year_line_aff[1] ) if year_line_aff in data[i]: year_good = True break if not year_good: problematic_files.append(filename) print(f"{filename} had an error with the year") break # while "opyright" in data[i]: # i += 1 # for j in range(1, pyheader_lines): # if pyheader[j] not in data[i + j - 1]: # problematic_files.append(filename) # print(f"{filename} missed the line: {pyheader[j]}") # break if found: break if not found: print(f"{filename} did not match the regex: `Copyright.*NVIDIA.*`") problematic_files.append(filename) # test if GPL license exists for lines in data: if "gpl" in lines.lower(): gpl_files.append(filename) break if len(problematic_files) > 0: print("The following files that might not have a copyright header:") for _file in problematic_files: print(_file) if len(gpl_files) > 0: print("test_header.py found the following files that might have GPL copyright:") for _file in gpl_files: print(_file) assert len(problematic_files) == 0, "header test failed!" assert len(gpl_files) == 0, "found gpl license, header test failed!" print(f"Success: File headers of {len(filenames)} files look good!") if __name__ == "__main__": main()
earth2mip-main
tests/_license/header_check.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import numpy as np def convert_to_datetime(time) -> datetime.datetime: dt = datetime.datetime.fromisoformat(np.datetime_as_string(time, "s")) return dt
earth2mip-main
earth2mip/time.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Protocol, List, Iterator, Tuple, Any, Optional import datetime import torch from earth2mip.schema import Grid ChannelNameT = str class TimeLoop(Protocol): """Abstract protocol that a custom time loop must follow This is a callable which yields time and output information. Some attributes are required to define the input and output data required. The expectation is that this class and the data passed to it are on the same device. While torch modules can be moved between devices easily, this is not true for all frameworks. Attributes: in_channel_names: out_channel_names: grid: n_history_levels: history_time_step: time_step: device: """ in_channel_names: List[ChannelNameT] out_channel_names: List[ChannelNameT] grid: Grid n_history_levels: int = 1 history_time_step: datetime.timedelta = datetime.timedelta(hours=0) time_step: datetime.timedelta device: torch.device dtype: torch.dtype = torch.float32 def __call__( self, time: datetime.datetime, x: torch.Tensor, restart: Optional[Any] = None ) -> Iterator[Tuple[datetime.datetime, torch.Tensor, Any]]: """ Args: x: an initial condition. has shape (B, n_history_levels, len(in_channel_names), Y, X). (Y, X) should be consistent with ``grid``. ``x[:, -i]`` is the data correspond to ``time - (i-1) * self.history_time_step``. Note this means that ``time`` corresponds to ``x[:, -1]``...not ``x[:, 0]``. time: the datetime to start with restart: if provided this restart information (typically some torch Tensor) can be used to restart the time loop Yields: (time, output, restart) tuples. ``output`` is a tensor with shape (B, len(out_channel_names), Y, X) which will be used for diagnostics. Restart data should encode the state of the time loop. """ pass
earth2mip-main
earth2mip/time_loop.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import xarray as xr import torch import argparse import numpy as np import datetime import sys from earth2mip import config from earth2mip import schema, time_loop from earth2mip.initial_conditions.era5 import HDF5DataSource from earth2mip import _cli_utils from modulus.distributed.manager import DistributedManager __all__ = ["score_deterministic"] def get_times(): # the IFS data Jaideep downloaded only has 668 steps (up to end of november 2018) nsteps = 668 times = [ datetime.datetime(2018, 1, 1) + k * datetime.timedelta(hours=12) for k in range(nsteps) ] return times class RMSE: def __init__(self, weight=None): self._xy = {} self.weight = weight def _mean(self, x): if self.weight is not None: x = self.weight * x denom = self.weight.mean(-1).mean(-1) else: denom = 1 num = x.mean(0).mean(-1).mean(-1) return num / denom def call(self, truth, pred): xy = self._mean((truth - pred) ** 2) return xy.cpu() def gather(self, seq): return torch.sqrt(sum(seq) / len(seq)) class ACC: def __init__(self, mean, weight=None): self.mean = mean self._xy = {} self._xx = {} self._yy = {} self.weight = weight def _mean(self, x): if self.weight is not None: x = self.weight * x denom = self.weight.mean(-1).mean(-1) else: denom = 1 num = x.mean(0).mean(-1).mean(-1) return num / denom def call(self, truth, pred): xx = self._mean((truth - self.mean) ** 2).cpu() yy = self._mean((pred - self.mean) ** 2).cpu() xy = self._mean((pred - self.mean) * (truth - self.mean)).cpu() return xx, yy, xy def gather(self, seq): """seq is an iterable of (xx, yy, xy) tuples""" # transpose seq xx, yy, xy = zip(*seq) xx = sum(xx) xy = sum(xy) yy = sum(yy) return xy / torch.sqrt(xx) / torch.sqrt(yy) logging.basicConfig(level=logging.INFO) logger = logging.getLogger("inference") def flat_map(func, seq, *args): for x in seq: yield from func(x, *args) def run_forecast( model: time_loop.TimeLoop, n, initial_times, device, data_source, mean ): mean = mean.squeeze() assert mean.ndim == 3 nlat = {schema.Grid.grid_720x1440: 720, schema.Grid.grid_721x1440: 721}[model.grid] channels = [ data_source.channel_names.index(name) for name in model.out_channel_names ] mean = mean[channels, :nlat] mean = torch.from_numpy(mean).to(device) ds = data_source[initial_times[0]] lat = np.deg2rad(ds.lat).values assert lat.ndim == 1 weight = np.cos(lat)[:, np.newaxis] weight_torch = torch.from_numpy(weight).to(device) if model.grid == schema.Grid.grid_720x1440: weight_torch = weight_torch[:720, :] acc = ACC(mean, weight=weight_torch) metrics = {"acc": acc, "rmse": RMSE(weight=weight_torch)} def process(initial_time): logger.info(f"Running {initial_time}") initial_condition = data_source[initial_time] logger.debug("Initial Condition Loaded.") x = torch.from_numpy(initial_condition.values[None, :, channels]).to(device) i = -1 for valid_time, data, _ in model(x=x, time=initial_time): assert data.shape[1] == len(model.out_channel_names) i += 1 if i > n: break lead_time = valid_time - initial_time logger.debug(f"{valid_time}") # TODO may need to fix n_history here v = data_source[valid_time] verification = v.values[:, channels, :nlat, :] verification_torch = torch.from_numpy(verification).to(device) output = {} for name, metric in metrics.items(): output[name] = metric.call(verification_torch, data) yield (initial_time, lead_time), output # collect outputs for lead_times my_channels = np.array(model.out_channel_names) return metrics, my_channels, list(flat_map(process, initial_times)) def gather(seq, metrics, model_name, channels): outputs_by_lead_time = {} initial_times = set() for (initial_time, lead_time), metric_values in seq: forecasts_at_lead_time = outputs_by_lead_time.setdefault(lead_time, []) forecasts_at_lead_time.append(metric_values) initial_times.add(initial_time) def to_dataset(metric, name): outputs = { k: [v[name] for v in snapshots] for k, snapshots in outputs_by_lead_time.items() } times, accs = zip(*outputs.items()) times = list(times) acc_arr = [metric.gather(acc) for acc in accs] stacked = torch.stack(acc_arr, 0) stacked = stacked.cpu().numpy() return xr.DataArray( stacked, dims=["lead_time", "channel"], coords={"lead_time": times, "channel": channels}, ).to_dataset(name=name) ds = xr.merge(to_dataset(metric, name) for name, metric in metrics.items()) ds = ds.assign( initial_times=xr.DataArray(list(initial_times), dims=["initial_time"]) ) return ds def score_deterministic( model: time_loop.TimeLoop, n: int, initial_times, data_source, time_mean ): """Compute deterministic accs and rmses Args: model: the inference class n: the number of lead times initial_times: the initial_times to compute over data_source: a mapping from time to dataset, used for the initial condition and the scoring time_mean: a (channel, lat, lon) numpy array containing the time_mean. Used for ACC. Returns: metrics """ if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() device = f"cuda:{rank % world_size}" else: rank = 0 world_size = 1 device = "cuda:0" local_initial_times = initial_times[rank::world_size] metrics, channels, seq = run_forecast( model, n=n, device=device, initial_times=local_initial_times, data_source=data_source, mean=time_mean, ) if world_size > 1: output_list = [None] * world_size torch.distributed.all_gather_object(output_list, seq) else: output_list = [seq] if rank == 0: seq = [] for item in output_list: seq.extend(item) return gather( seq, metrics=metrics, model_name=model, channels=channels, ) def main(): parser = argparse.ArgumentParser() _cli_utils.add_model_args(parser, required=True) parser.add_argument("output") parser.add_argument("-n", type=int, default=4) parser.add_argument("--test", action="store_true") # TODO refactor this to a shared place parser.add_argument( "--data", type=str, help="path to hdf5 root directory containing data.json" ) args = parser.parse_args() DistributedManager.initialize() dist = DistributedManager() initial_times = get_times() if args.test: initial_times = initial_times[-dist.world_size :] model = _cli_utils.model_from_args(args, dist.device) data_source = HDF5DataSource.from_path(args.data or config.ERA5_HDF5_73) # time mean ds = score_deterministic( model, args.n, initial_times, data_source, time_mean=data_source.time_means ) if dist.rank == 0: ds.attrs["model"] = args.model ds.attrs["history"] = " ".join(sys.argv) output = os.path.abspath(args.output) dirname = os.path.dirname(args.output) if dirname: os.makedirs(dirname, exist_ok=True) ds.to_netcdf(output) if __name__ == "__main__": main()
earth2mip-main
earth2mip/inference_medium_range.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np # noqa import h5py # noqa import os # noqa from einops import rearrange # noqa from earth2mip import schema # noqa import torch_harmonics as th # noqa from earth2mip.networks import Inference # noqa from datetime import datetime from timeit import default_timer # noqa from typing import Union def generate_noise_correlated(shape, *, reddening, device, noise_amplitude): return noise_amplitude * brown_noise(shape, reddening).to(device) def brown_noise(shape, reddening=2): noise = torch.normal(torch.zeros(shape), torch.ones(shape)) x_white = torch.fft.fft2(noise) S = ( torch.abs(torch.fft.fftfreq(noise.shape[-2]).reshape(-1, 1)) ** reddening + torch.abs(torch.fft.fftfreq(noise.shape[-1])) ** reddening ) S = torch.where(S == 0, 0, 1 / S) S = S / torch.sqrt(torch.mean(S**2)) x_shaped = x_white * S noise_shaped = torch.fft.ifft2(x_shaped).real return noise_shaped def generate_bred_vector( x: torch.Tensor, model: Inference, noise_amplitude: float = 0.15, time: Union[datetime, None] = None, integration_steps: int = 40, inflate=False, ): # Assume x has shape [ENSEMBLE, TIME, CHANNEL, LAT, LON] x0 = x[:1] # Get control forecast for data in model.run_steps(x0, n=1, normalize=False, time=time): xd = data # Unsqueeze if time has been collapsed. if xd.ndim != x0.ndim: xd = xd.unsqueeze(1) dx = noise_amplitude * torch.randn(x.shape, device=x.device, dtype=x.dtype) for _ in range(integration_steps): x1 = x + dx for data in model.run_steps(x1, n=1, normalize=False, time=time): x2 = data # Unsqueeze if time has been collapsed. if x2.ndim != x1.ndim: x2 = x2.unsqueeze(1) dx = x2 - xd if inflate: dx += noise_amplitude * (dx - dx.mean(dim=0)) gamma = torch.norm(x) / torch.norm(x + dx) return noise_amplitude * dx * gamma
earth2mip-main
earth2mip/ensemble_utils.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import json import logging import shutil import os import typer from modulus.distributed.manager import DistributedManager import torch.distributed from distributed import Client from earth2mip import inference_ensemble, networks, score_ensemble_outputs from earth2mip.schema import EnsembleRun logging.basicConfig( format="%(asctime)s:%(levelname)-s:%(name)s:%(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger(__file__) WD = os.getcwd() def get_distributed_client(rank): scheduler_file = "scheduler.json" if rank == 0: client = Client(n_workers=32, threads_per_worker=1) client.write_scheduler_file(scheduler_file) if torch.distributed.is_initialized(): torch.distributed.barrier() if rank != 0: client = Client(scheduler_file=scheduler_file) return client def main( root: str, shard: int = 0, n_shards: int = 1, ): """ Args: root: the root directory of the output shard: index of the shard n_shards: split the input times into this many shards """ assert shard < n_shards time = datetime.datetime(1, 1, 1) config_path = os.path.join(root, "config.json") with open(config_path, "r") as f: config = json.load(f) DistributedManager.initialize() model = networks.get_model(config["model"]) dist = DistributedManager() protocol = config["protocol"] lines = protocol["times"][shard::n_shards] logger.info( f"Working on shard {shard+1}/{n_shards}. {len(lines)} initial times to run." ) run = EnsembleRun.parse_obj(protocol["inference_template"]) n_ensemble_batches = run.ensemble_members // run.ensemble_batch_size ranks_per_time = min(n_ensemble_batches, dist.world_size) ranks_per_time = ranks_per_time - dist.world_size % ranks_per_time time_rank = int(dist.rank // ranks_per_time) n_time_groups = int(dist.world_size // ranks_per_time) group_ranks = list( range(time_rank * ranks_per_time, (time_rank + 1) * ranks_per_time) ) logger.info( "distributed info: " + str((dist.rank, time_rank, group_ranks, ranks_per_time)) ) if torch.distributed.is_initialized(): group = torch.distributed.new_group(group_ranks) group_rank = torch.distributed.get_group_rank(group, dist.rank) lines = lines[time_rank::n_time_groups] # setup dask client for post processing client = get_distributed_client(dist.rank) post_process_task = None count = 0 for line in lines: count += 1 initial_time = datetime.datetime.fromisoformat(line.strip()) start = time.now() output = f"{root}/{initial_time.isoformat()}" if os.path.exists(output): continue d = output + ".tmp" if torch.distributed.is_initialized(): torch.distributed.barrier(group) perturb = inference_ensemble.get_initializer( model, run, ) run.weather_event.properties.start_time = initial_time run.output_path = d inference_ensemble.run_inference( model, run, group=group, progress=False, perturb=perturb ) if group_rank == 0: def post_process(d): output_path = f"{d}/output/" score_ensemble_outputs.main( input_path=d, output_path=output_path, time_averaging_window=protocol.get("time_averaging_window", ""), score=protocol.get("score", False), save_ensemble=protocol.get("save_ensemble", False), ) shutil.move(output_path, output) shutil.rmtree(d, ignore_errors=True) # do not work on more than one post processing job at once if post_process_task is not None: post_process_task.result() post_process_task = client.submit(post_process, d) stop = time.now() elapsed = stop - start remaining = elapsed * (len(lines) - count) logger.info( f"{count}/{len(lines)}: {initial_time} done. Elapsed: {elapsed.total_seconds()}s. Remaining: {remaining}s" # noqa ) # finish up final task if group_rank == 0 and post_process_task is not None: post_process_task.result() # keep barrier at end so # dask distributed client is not cleaned up if torch.distributed.is_initialized(): torch.distributed.barrier() logging.info(f"rank {dist.rank} Finished.") if __name__ == "__main__": typer.run(main)
earth2mip-main
earth2mip/time_collection.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import networks, schema import argparse def add_model_args(parser: argparse.ArgumentParser, required=False): if required: parser.add_argument("model", type=str) else: parser.add_argument("--model", type=str) parser.add_argument( "--model-metadata", type=str, help="metadata.json file. Defaults to the metadata.json in the model package.", default="", ) def model_from_args(args, device): if args.model_metadata: with open(args.model_metadata) as f: metadata = schema.Model.parse_raw(f.read()) else: metadata = None return networks.get_model(args.model, device=device, metadata=metadata)
earth2mip-main
earth2mip/_cli_utils.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import os import argparse import xarray import pathlib import earth2mip.time from earth2mip import weather_events, schema from earth2mip.initial_conditions.era5 import open_era5_xarray import xskillscore import logging logger = logging.getLogger(__file__) def save_dataset(out, path): out.to_zarr(path + ".zarr", mode="w") def _open(f, domain, chunks={"time": 1}): root = xarray.open_dataset(f, decode_times=True) ds = xarray.open_dataset(f, chunks=chunks, group=domain) ds.attrs.update(root.attrs) return ds.assign_coords(root.coords) def open_ensemble(path, group): path = pathlib.Path(path) ensemble_files = sorted(list(path.glob("ensemble_out_*.nc"))) return xarray.concat([_open(f, group) for f in ensemble_files], dim="ensemble") def open_verification(time, channel_set): v = open_era5_xarray(time, channel_set) v = v.to_dataset("channel") v = v.chunk({"time": 1}) return v def read_weather_event(dir): ncfile = os.path.join(dir, "ensemble_out_0.nc") ds = xarray.open_dataset(ncfile) weather_event = weather_events.WeatherEvent.parse_raw(ds.weather_event) return weather_event def main( input_path: str, output_path: Optional[str] = None, time_averaging_window: str = "", score: bool = True, save_ensemble: bool = False, ) -> None: if output_path is None: output_path = args.input_path # use single-threaded scheduler to avoid deadlocks when writing to netCDF. # processes doesn't work because locks can't be shared and threaded # deadlocks, dask distributed works but isn't any faster, probably because # these are I/O bound computations. It is probably better to use zarr as an # output. pathlib.Path(output_path).mkdir(exist_ok=True) weather_event = read_weather_event(input_path) for domain in weather_event.domains: if domain.type != "Window": continue ds = open_ensemble(input_path, domain.name) channel_set = schema.ChannelSet.var73 ds.attrs["time_averaging_window"] = time_averaging_window if time_averaging_window: ds = ds.resample(time=time_averaging_window).mean( dim="time", keep_attrs=True, skipna=False, keepdims=True ) logger.info("Computing mean") ensemble_mean = ds.mean(dim="ensemble", keep_attrs=True) save_dataset(ensemble_mean, os.path.join(output_path + "mean")) if ds.sizes["ensemble"] > 1: logger.info("Computing variance") variance = ds.var(dim="ensemble", keep_attrs=True) save_dataset(variance, os.path.join(output_path + "variance")) if score: logger.info("Scoring") date_obj = earth2mip.time.convert_to_datetime(ds.time[0]) v = open_verification(date_obj, channel_set=channel_set) shared = set(v) & set(ds) verification = v[list(shared)] ds = ds[list(shared)] ds, verification, ensemble_mean = xarray.align( ds, verification, ensemble_mean ) if time_averaging_window: verification = verification.resample(time=time_averaging_window).mean( dim="time", keep_attrs=True, skipna=False, keepdims=True ) ensemble_mse = (verification - ensemble_mean) ** 2.0 save_dataset(ensemble_mse, os.path.join(output_path, "ensemble_mse")) deterministic_mse = (verification - ds.isel(ensemble=0)) ** 2.0 deterministic_mse.attrs.update(verification.attrs) save_dataset( deterministic_mse, os.path.join(output_path, "deterministic_mse") ) crps = xskillscore.crps_ensemble( verification, ds.chunk(dict(ensemble=-1)), issorted=False, member_dim="ensemble", dim=(), keep_attrs=True, ) save_dataset(crps, os.path.join(output_path, "crps")) if save_ensemble: logger.info("Saving ensemble") save_dataset(ds, os.path.join(output_path, "ensemble")) return if __name__ == "__main__": logging.basicConfig(level=logging.INFO) from distributed import Client Client() parser = argparse.ArgumentParser() parser.add_argument( "--input_path", type=str, help="full path to the ensemble simulation directory", ) parser.add_argument( "--output_path", type=str, help="full path to the ensemble score output directory", ) parser.add_argument( "--time_averaging_window", type=str, help="a string arg for the time averaging as np.datetime64 format, i.e. 2W", default="", ) parser.add_argument( "--no-score", action="store_false", dest="score", default=True, help="Turn off scoring if provided", ) parser.add_argument( "--save-ensemble", action="store_true", help="Save out all ensemble members" ) args = parser.parse_args() main( args.input_path, args.output_path, args.time_averaging_window, args.score, args.save_ensemble, )
earth2mip-main
earth2mip/score_ensemble_outputs.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np from earth2mip.weather_events import CWBDomain, Window, MultiPoint from earth2mip import weather_events from earth2mip.schema import Grid from netCDF4._netCDF4 import Group from typing import Union class Diagnostics: def __init__( self, group: Group, domain: Union[CWBDomain, Window, MultiPoint], grid: Grid, diagnostic: weather_events.Diagnostic, lat: np.ndarray, lon: np.ndarray, device: torch.device, ): self.group, self.domain, self.grid, self.lat, self.lon = ( group, domain, grid, lat, lon, ) self.diagnostic = diagnostic self.device = device self._init_subgroup() self._init_dimensions() self._init_variables() def _init_subgroup( self, ): if self.diagnostic.type == "raw": self.subgroup = self.group else: self.subgroup = self.group.createGroup(self.diagnostic.type) def _init_dimensions( self, ): if self.domain.type == "MultiPoint": self.domain_dims = ("npoints",) else: self.domain_dims = ("lat", "lon") def _init_variables( self, ): dims = self.get_dimensions() dtypes = self.get_dtype() for channel in self.diagnostic.channels: if self.diagnostic.type == "histogram": pass else: self.subgroup.createVariable( channel, dtypes[self.diagnostic.type], dims[self.diagnostic.type] ) def get_dimensions( self, ): raise NotImplementedError def get_dtype( self, ): raise NotImplementedError def get_variables( self, ): raise NotImplementedError def update( self, ): raise NotImplementedError def finalize( self, ): raise NotImplementedError class Raw(Diagnostics): def __init__( self, group: Group, domain: Union[CWBDomain, Window, MultiPoint], grid: Grid, diagnostic: weather_events.Diagnostic, lat: np.ndarray, lon: np.ndarray, device: torch.device, ): super().__init__(group, domain, grid, diagnostic, lat, lon, device) def get_dimensions(self): return {"raw": ("ensemble", "time") + self.domain_dims} def get_dtype(self): return {"raw": float} def update( self, output: torch.Tensor, time_index: int, batch_id: int, batch_size: int ): for c, channel in enumerate(self.diagnostic.channels): self.subgroup[channel][batch_id : batch_id + batch_size, time_index] = ( output[:, c].cpu().numpy() ) def finalize(self, *args): pass DiagnosticTypes = { "raw": Raw, }
earth2mip-main
earth2mip/diagnostics.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import fsspec import fsspec.implementations.cached import s3fs import builtins import urllib.request import os import hashlib import logging logger = logging.getLogger(__name__) LOCAL_CACHE = os.environ["HOME"] + "/.cache/fcn-mip" def _cache_fs(fs): return fsspec.implementations.cached.CachingFileSystem( fs=fs, cache_storage=LOCAL_CACHE ) def _get_fs(path): if path.startswith("s3://"): return s3fs.S3FileSystem(client_kwargs=dict(endpoint_url="https://pbss.s8k.io")) else: return fsspec.filesystem("file") def open(path, mode="r"): if path.startswith("s3://"): fs = _get_fs(path) cached_fs = _cache_fs(fs) return cached_fs.open(path, mode) else: return builtins.open(path, mode) def download_cached(path: str, recursive: bool = False) -> str: sha = hashlib.sha256(path.encode()) filename = sha.hexdigest() os.makedirs(LOCAL_CACHE, exist_ok=True) cache_path = os.path.join(LOCAL_CACHE, filename) url = urllib.parse.urlparse(path) # TODO watch for race condition here if not os.path.exists(cache_path): logger.debug("Downloading %s to cache: %s", path, cache_path) if path.startswith("s3://"): fs = _get_fs(path) fs.get(path, cache_path) elif url.scheme == "http" or url.scheme == "https": # TODO: Check if this supports directory fetches urllib.request.urlretrieve(path, cache_path) elif url.scheme == "file": path = os.path.join(url.netloc, url.path) return path else: return path else: logger.debug("Opening from cache: %s", cache_path) return cache_path def pipe(dest, value): """Save string to dest""" fs = _get_fs(dest) fs.pipe(dest, value) def _to_url(scheme, path): if scheme: return scheme + "://" + path else: return path def glob(pattern: str) -> List[str]: fs = _get_fs(pattern) url = urllib.parse.urlparse(pattern) return [_to_url(url.scheme, path) for path in fs.glob(pattern)] def ls(path): fs = _get_fs(path) return fs.ls(path)
earth2mip-main
earth2mip/filesystem.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Protocol class LoaderProtocol(Protocol): def __call__(self, package, pretrained=True) -> None: return def pickle(package, pretrained=True): """ load a checkpoint into a model """ assert pretrained p = package.get("weights.tar") return torch.load(p) def torchscript(package, pretrained=True): """ load a checkpoint into a model """ p = package.get("scripted_model.pt") import json config = package.get("config.json") with open(config) as f: config = json.load(f) model = torch.jit.load(p) if config["add_zenith"]: from earth2mip.networks import CosZenWrapper import numpy as np lat = 90 - np.arange(721) * 0.25 lon = np.arange(1440) * 0.25 model = CosZenWrapper(model, lon, lat) return model
earth2mip-main
earth2mip/loaders.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip._config import Settings from earth2mip.model_registry import ModelRegistry __version__ = "23.8.15" config = Settings() registry = ModelRegistry(config.MODEL_REGISTRY)
earth2mip-main
earth2mip/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines to save domains to a netCDF file """ import numpy as np import torch from typing import List, Iterable import xarray as xr import cftime from earth2mip import geometry from earth2mip.weather_events import Domain from earth2mip.diagnostics import DiagnosticTypes, Diagnostics __all__ = ["initialize_netcdf", "update_netcdf", "finalize_netcdf"] def _assign_lat_attributes(nc_variable): nc_variable.units = "degrees_north" nc_variable.standard_name = "latitude" nc_variable.long_name = "latitude" def _assign_lon_attributes(nc_variable): nc_variable.units = "degrees_east" nc_variable.standard_name = "longitude" nc_variable.long_name = "longitude" def init_dimensions(domain: Domain, group, lat, lon): if domain.type == "CWBDomain": cwb_path = "/lustre/fsw/sw_climate_fno/nbrenowitz/2023-01-24-cwb-4years.zarr" lat = xr.open_zarr(cwb_path)["XLAT"][:, 0] lon = xr.open_zarr(cwb_path)["XLONG"][0, :] nlat = lat.size nlon = lon.size group.createDimension("lat", nlat) group.createDimension("lon", nlon) v = group.createVariable("lat", np.float32, ("lat")) _assign_lat_attributes(v) v = group.createVariable("lon", np.float32, ("lon")) _assign_lon_attributes(v) group["lat"][:] = lat group["lon"][:] = lon elif domain.type == "Window": lat_sl, lon_sl = geometry.get_bounds_window(domain, lat, lon) group.createVariable("imin", int, ()) group.createVariable("imax", int, ()) group.createVariable("jmin", int, ()) group.createVariable("jmax", int, ()) group["imin"][:] = lat_sl.start group["imax"][:] = lat_sl.stop group["jmin"][:] = lon_sl.start group["jmax"][:] = lon_sl.stop nlat = np.r_[lat_sl].size nlon = np.r_[lon_sl].size group.createDimension("lat", nlat) group.createDimension("lon", nlon) v = group.createVariable("lat", np.float32, ("lat")) _assign_lat_attributes(v) v = group.createVariable("lon", np.float32, ("lon")) _assign_lon_attributes(v) group["lat"][:] = lat[lat_sl] group["lon"][:] = lon[lon_sl] elif domain.type == "MultiPoint": assert len(domain.lat) == len( domain.lon ), "Lat and Lon arrays must be of same size!" group.createDimension("npoints", len(domain.lon)) v = group.createVariable("lat_point", np.float32, ("npoints")) _assign_lat_attributes(v) v = group.createVariable("lon_point", np.float32, ("npoints")) _assign_lon_attributes(v) for diagnostic in domain.diagnostics: group.createDimension("n_channel", len(diagnostic.channels)) group["lat_point"][:] = domain.lat group["lon_point"][:] = domain.lon else: raise NotImplementedError(f"domain type {domain.type} not supported") return def initialize_netcdf( nc, domains: Iterable[Domain], grid, lat, lon, n_ensemble, device ) -> List[List[Diagnostics]]: nc.createVLType(str, "vls") nc.createDimension("time", None) nc.createDimension("ensemble", n_ensemble) nc.createVariable("time", np.float32, ("time")) total_diagnostics = [] for domain in domains: group = nc.createGroup(domain.name) init_dimensions(domain, group, lat, lon) diagnostics = [] for d in domain.diagnostics: diagnostic = DiagnosticTypes[d.type]( group, domain, grid, d, lat, lon, device ) diagnostics.append(diagnostic) total_diagnostics.append(diagnostics) return total_diagnostics def update_netcdf( data: torch.Tensor, total_diagnostics: List[List[Diagnostics]], domains: List[Domain], batch_id, time_count, model, lat, lon, channel, ): assert len(total_diagnostics) == len(domains), (total_diagnostics, domains) batch_size = geometry.get_batch_size(data) for d_index, domain in enumerate(domains): lat, lon, regional_data = geometry.select_space(data, lat, lon, domain) domain_diagnostics = total_diagnostics[d_index] for diagnostic in domain_diagnostics: output = geometry.sel_channel( model, channel, regional_data, diagnostic.diagnostic.channels ) diagnostic.update(output, time_count, batch_id, batch_size) return def finalize_netcdf(total_diagnostics, nc, domains, weather_event, channel_set): times = cftime.num2date(nc["time"][:], nc["time"].units) for d_index, domain in enumerate(domains): domain_diagnostics = total_diagnostics[d_index] for diagnostic in domain_diagnostics: diagnostic.finalize(times, weather_event, channel_set) for diagnostic in domain_diagnostics: if hasattr(diagnostic, "tmpdir"): diagnostic.tmpdir.cleanup() return
earth2mip-main
earth2mip/netcdf.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Forecast abstractions A forecast is a discrete array of ``(n_initial_times, n_lead_times)``. However because a forecast evolves forward in time, and we do not store the whole forecast necessarily, algorithms in fcn-mip should access ``n_lead_times`` in sequential order. This is the purpose of the abstractions here. """ from typing import Sequence, Any, Protocol, Iterator, List import datetime import torch import xarray import logging import numpy from earth2mip import time_loop import asyncio logger = logging.getLogger(__name__) class Forecast(Protocol): channel_names: List[str] def __getitem__(self, i: int) -> Iterator[torch.Tensor]: pass class Persistence: """persistence forecast. This forecast always returns the initial condition. Yields (channel, lat, lon) """ def __init__(self, observations: Any): self.observations = observations @property def channel_names(self): x = asyncio.run(self.obserations[0]) return x.channel.tolist() async def __getitem__(self, i: int): x = await self.observations[i] while True: yield x class TimeLoopForecast: """Wrap an fcn-mip TimeLoop object as a forecast""" def __init__( self, time_loop: time_loop.TimeLoop, times: Sequence[datetime.datetime], observations: Any, ): assert len(times) == len(observations) self.observations = observations self.time_loop = time_loop self._times = times @property def channel_names(self): return self.time_loop.out_channel_names async def __getitem__(self, i): # TODO clean-up this interface. pick a consistent type for ``x``. x = await self.observations[i] x = x.sel(channel=self.time_loop.in_channel_names) x = torch.from_numpy(x.values).cuda() x = x[None] count = 0 dt = self._times[1] - self._times[0] yield_every = int(dt // self.time_loop.time_step) assert yield_every * self.time_loop.time_step == dt for time, data, _ in self.time_loop(x=x, time=self._times[i]): if count % yield_every == 0: logger.info("forecast %s", time) yield data count += 1 class XarrayForecast: """Turn an xarray into a forecast-like dataset""" def __init__( self, ds: xarray.Dataset, fields, times: Sequence[datetime.datetime], xp=numpy ): self._dataset = ds self._fields = fields self._times = times self.xp = xp @property def channel_names(self): return self._dataset.channel.values.tolist() async def __getitem__(self, i): initial_time = self._times[i] j = i - 1 all_data = ( self._dataset.sel(initial_time=initial_time)[self._fields] .to_array(dim="channel") .sel(channel=self._fields) .load() ) while True: j += 1 time = self._times[j] data = all_data.sel(time=time - initial_time) data.data = self.xp.asarray(data.data) yield j, data
earth2mip-main
earth2mip/forecasts.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pathlib import datetime import typer import json def get_times_2018(): nsteps = 728 times = [ datetime.datetime(2018, 1, 1) + k * datetime.timedelta(hours=12) for k in range(nsteps) ] return times def get_times_s2s_test(): time = datetime.datetime(2020, 1, 2) dt = datetime.timedelta(days=7) while time.year < 2021: yield time time += dt def get_time_s2s_calibration(): times_file = pathlib.Path(__file__).parent / "times" / "calibration.txt" with times_file.open() as f: for line in f: line = line.strip() time = datetime.datetime.fromisoformat(line) yield time get_times = { "2018": get_times_2018, "s2s_test": get_times_s2s_test, "s2s_calibration": get_time_s2s_calibration, } def get_time(times): if isinstance(times, list): times = [datetime.datetime.fromisoformat(s) for s in times] else: times = get_times[times]() # convert generator to list times = list(times) return times def main( model: str, config: str, output: str, ): os.makedirs(output, exist_ok=True) with open(config) as f: protocol_config = json.load(f) config = {"protocol": protocol_config, "model": model} times = get_time(protocol_config["times"]) config["protocol"]["times"] = [time.isoformat() for time in times] config_path = os.path.join(output, "config.json") with open(config_path, "w") as f: json.dump(config, f) if __name__ == "__main__": typer.run(main)
earth2mip-main
earth2mip/make_job.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines for working with geometry""" import numpy as np import torch import xarray as xr LAT_AVERAGE = "LatitudeAverage" def sel_channel(model, channel_info, data, channels): channels = np.asarray(channels) # TODO: Whats the point of model.channels here, needs clearer name!!! if model.channels is not None: torch_indices = list(model.channels) channels_in_data = np.asarray(channel_info)[torch_indices].tolist() else: channels_in_data = np.asarray(channel_info).tolist() index_to_select = [channels_in_data.index(ch) for ch in channels] return data[:, index_to_select] def get_batch_size(data): return data.shape[0] def get_bounds_window(geom, lat, lon): i_min = np.where(lat <= geom.lat_max)[0][0] i_max = np.where(lat >= geom.lat_min)[0][-1] j_min = np.where(lon >= geom.lon_min)[0][0] j_max = np.where(lon <= geom.lon_max)[0][-1] return slice(i_min, i_max + 1), slice(j_min, j_max + 1) def select_space(data, lat, lon, domain): lat = np.asarray(lat) lon = np.asarray(lon) assert data.ndim == 4, data.ndim assert data.shape[2] == lat.size, lat.size assert data.shape[3] == lon.size, lon.size domain_type = domain.type if domain_type == "Window" or domain_type == LAT_AVERAGE or domain_type == "global": lat_sl, lon_sl = get_bounds_window(domain, lat, lon) domain_lat = lat[lat_sl] domain_lon = lon[lon_sl] return domain_lat, domain_lon, data[:, :, lat_sl, lon_sl] elif domain_type == "MultiPoint": # Convert lat-long points to array index (just got to closest 0.25 degree) i = lat.size - np.searchsorted(lat[::-1], domain.lat, side="right") j = np.searchsorted(lon, domain.lon, side="left") # TODO refactor this assertion to a test np.testing.assert_array_equal(domain.lat, lat[i]) np.testing.assert_array_equal(domain.lon, lon[j]) return lat[i], lon[j], data[:, :, i, j] elif domain_type == "CWBDomain": cwb_path = "/lustre/fsw/sw_climate_fno/nbrenowitz/2023-01-24-cwb-4years.zarr" xlat = xr.open_zarr(cwb_path)["XLAT"] xlong = xr.open_zarr(cwb_path)["XLONG"] array = data.cpu().numpy() diagnostic = domain["diagnostics"][0] darray = xr.DataArray( array, dims=["batch", "channel", "lat", "lon"], coords={"lat": lat, "lon": lon, "channel": diagnostic.channels}, ) interpolated = darray.interp(lat=xlat, lon=xlong) return xlat, xlong, torch.from_numpy(interpolated.values) else: raise ValueError( f"domain {domain_type} is not supported. Check the weather_events.json" ) def bilinear(data: torch.tensor, dims, source_coords, target_coords): return
earth2mip-main
earth2mip/geometry.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from enum import Enum from pydantic import BaseModel from typing import Literal, List, Union, Optional import datetime class InitialConditionSource(Enum): ifs: str = "ifs" era5: str = "era5" cds: str = "cds" gfs: str = "gfs" hrmip: str = "hrmip" # https://docs.pydantic.dev/usage/types/#discriminated-unions-aka-tagged-unions class WeatherEventProperties(BaseModel): """ Attributes: netcdf: load the initial conditions from this path if given """ name: str start_time: Optional[datetime.datetime] initial_condition_source: InitialConditionSource = InitialConditionSource.era5 netcdf: str = "" # TODO do not require IC other than restart (currently loads data w/ normal mechanisms regardless) # noqa restart: str = "" class Diagnostic(BaseModel): type: str function: str = "" channels: List[str] nbins: int = 10 class Window(BaseModel): type: Literal["Window"] = "Window" name: str lat_min: float = -90 lat_max: float = 90 lon_min: float = 0 lon_max: float = 360 diagnostics: List[Diagnostic] class CWBDomain(BaseModel): type: Literal["CWBDomain"] name: str path: str = "/lustre/fsw/sw_climate_fno/nbrenowitz/2023-01-24-cwb-4years.zarr" diagnostics: List[Diagnostic] class MultiPoint(BaseModel): type: Literal["MultiPoint"] name: str lat: List[float] lon: List[float] diagnostics: List[Diagnostic] Domain = Union[Window, CWBDomain, MultiPoint] class WeatherEvent(BaseModel): properties: WeatherEventProperties domains: List[Domain] def _read(): with open("weather_events.json") as f: return json.load(f) def list_(): events = _read() return list(events) def read(forecast_name: str) -> WeatherEvent: weather_events = _read() weather_event = weather_events[forecast_name] for domain in weather_event["domains"]: if domain["name"] == "global": domain["type"] = "Window" domain["lat_min"] = -90 domain["lat_max"] = 90 domain["lon_min"] = 0 domain["lon_max"] = 360 elif domain["name"] == "northern_hemisphere": domain["lat_min"] = 0 domain["lat_max"] = 90 domain["lon_min"] = 0 domain["lon_max"] = 360 elif domain["name"] == "southern_hemisphere": domain["lat_min"] = -90 domain["lat_max"] = 0 domain["lon_min"] = 0 domain["lon_max"] = 360 elif domain["name"] == "CWBDomain": if len(domain["diagnostics"]) > 1: print("CWBDomain only supports one diagnostic") domain["diagnostics"] = domain["diagnostics"][0] event = WeatherEvent.parse_obj(weather_event) return event
earth2mip-main
earth2mip/weather_events.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from pydantic import BaseSettings from earth2mip import schema class Settings(BaseSettings): # not needed anymore # AFNO_26_WEIGHTS: Optional[str] = None # AFNO_26_MEAN: str # AFNO_26_SCALE: str # only used in earth2mip.diagnostics # TODO add defaults (maybe scope in that module) MEAN: str = "" SCALE: str = "" # Key configurations ERA5_HDF5_34: str = "" ERA5_HDF5_73: str = "" MODEL_REGISTRY: str = "" LOCAL_CACHE: str = "" # used for scoring (score-ifs.py, inference-medium-range) TIME_MEAN: str = "" TIME_MEAN_73: str = "" # used in score-ifs.py # TODO refactor to a command line argument of that script IFS_ROOT: str = None # only used in test suite # TODO add a default option. TEST_DIAGNOSTICS: List[str] = () # where to store regridding files MAP_FILES: str = "" class Config: env_file = ".env" def get_data_root(self, channel_set: schema.ChannelSet) -> str: if channel_set == schema.ChannelSet.var34: val = self.ERA5_HDF5_34 if not val: raise ValueError( "Please configure ERA5_HDF5_34 to point to the 34 channel data." # noqa ) return val elif channel_set == schema.ChannelSet.var73: val = self.ERA5_HDF5_73 if not val: raise ValueError("Please configure ERA5_HDF5_73.") else: raise NotImplementedError(channel_set) return val def get_time_mean(self, channel_set: schema.ChannelSet) -> str: return { schema.ChannelSet.var34: self.TIME_MEAN, schema.ChannelSet.var73: self.TIME_MEAN_73, }[channel_set]
earth2mip-main
earth2mip/_config.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import sys import xarray import cftime import json import numpy as np import torch import tqdm from typing import Optional, Any from datetime import datetime from modulus.distributed.manager import DistributedManager from netCDF4 import Dataset as DS __all__ = ["run_inference"] # need to import initial conditions first to avoid unfortunate # GLIBC version conflict when importing xarray. There are some unfortunate # issues with the environment. from earth2mip import initial_conditions, time_loop from earth2mip.ensemble_utils import ( generate_noise_correlated, generate_bred_vector, ) from earth2mip.netcdf import finalize_netcdf, initialize_netcdf, update_netcdf from earth2mip.networks import get_model, Inference from earth2mip.schema import EnsembleRun, Grid, PerturbationStrategy from earth2mip.time import convert_to_datetime from earth2mip import regrid logger = logging.getLogger("inference") def get_checkpoint_path(rank, batch_id, path): directory = os.path.join(path, f"{rank}") filename = f"{batch_id}.pth" return os.path.join(directory, filename) def save_restart(restart, rank, batch_id, path): path = get_checkpoint_path(rank, batch_id, path) os.makedirs(os.path.dirname(path), exist_ok=True) logger.info(f"Saving restart file to {path}.") torch.save(restart, path) def run_ensembles( *, n_steps: int, weather_event, model, perturb, nc, domains, ds, n_ensemble: int, batch_size: int, device: str, rank: int, output_frequency: int, output_grid: Optional[Grid], date_obj: datetime, restart_frequency: Optional[int], output_path: str, restart_initial_directory: str = "", progress: bool = True, ): if not output_grid: output_grid = model.grid regridder = regrid.get_regridder(model.grid, output_grid).to(device) # TODO infer this from the model ds = ds.astype(np.float32) assert not np.any(np.isnan(ds)) if output_grid == model.grid: lat = ds.lat.values lon = ds.lon.values else: lat, lon = regridder.lat, regridder.lon diagnostics = initialize_netcdf( nc, domains, output_grid, lat, lon, n_ensemble, device ) time = convert_to_datetime(ds.time[-1]) time_units = time.strftime("hours since %Y-%m-%d %H:%M:%S") nc["time"].units = time_units nc["time"].calendar = "standard" for batch_id in range(0, n_ensemble, batch_size): logger.info(f"ensemble members {batch_id+1}-{batch_id+batch_size}/{n_ensemble}") time = convert_to_datetime(ds.time[-1]) batch_size = min(batch_size, n_ensemble - batch_id) x = torch.from_numpy(ds.values)[None].to(device) x = model.normalize(x) x = x.repeat(batch_size, 1, 1, 1, 1) perturb(x, rank, batch_id, device) # restart_dir = weather_event.properties.restart # TODO: figure out if needed # if restart_dir: # path = get_checkpoint_path(rank, batch_id, restart_dir) # # TODO use logger # logger.info(f"Loading from restart from {path}") # kwargs = torch.load(path) # else: # kwargs = dict( # x=x, # normalize=False, # time=time, # ) iterator = model(time, x, normalize=False) # Check if stdout is connected to a terminal if sys.stderr.isatty() and progress: iterator = tqdm.tqdm(iterator, total=n_steps) time_count = -1 # for time, data, restart in iterator: for k, (time, data, _) in enumerate(iterator): # if restart_frequency and k % restart_frequency == 0: # save_restart( # restart, # rank, # batch_id, # path=os.path.join(output_path, "restart", time.isoformat()), # ) # Saving the output if output_frequency and k % output_frequency == 0: time_count += 1 logger.debug(f"Saving data at step {k} of {n_steps}.") nc["time"][time_count] = cftime.date2num(time, nc["time"].units) update_netcdf( regridder(data), diagnostics, domains, batch_id, time_count, model, lat, lon, ds.channel, ) if k == n_steps: break # if restart_frequency is not None: # save_restart( # restart, # rank, # batch_id, # path=os.path.join(output_path, "restart", "end"), # ) finalize_netcdf(diagnostics, nc, domains, weather_event, model.channel_set) def main(config=None): logging.basicConfig(level=logging.INFO) if config is None: parser = argparse.ArgumentParser() parser.add_argument("config") parser.add_argument("--weather_model", default=None) args = parser.parse_args() config = args.config # If config is a file if os.path.exists(config): config: EnsembleRun = EnsembleRun.parse_file(config) # If string, assume JSON string elif isinstance(config, str): config: EnsembleRun = EnsembleRun.parse_obj(json.loads(config)) # Otherwise assume parsable obj else: raise ValueError( f"Passed config parameter {config} should be valid file or JSON string" ) # if args and args.weather_model: # config.weather_model = args.weather_model # Set up parallel DistributedManager.initialize() device = DistributedManager().device group = torch.distributed.group.WORLD logging.info(f"Earth-2 MIP config loaded {config}") logging.info(f"Loading model onto device {device}") model = get_model(config.weather_model, device=device) logging.info(f"Constructing initializer data source") perturb = get_initializer( model, config, ) logging.info(f"Running inference") run_inference(model, config, perturb, group) def get_initializer( model, config, ): def perturb(x, rank, batch_id, device): shape = x.shape if config.perturbation_strategy == PerturbationStrategy.gaussian: noise = config.noise_amplitude * torch.normal( torch.zeros(shape), torch.ones(shape) ).to(device) elif config.perturbation_strategy == PerturbationStrategy.correlated: noise = generate_noise_correlated( shape, reddening=config.noise_reddening, device=device, noise_amplitude=config.noise_amplitude, ) elif config.perturbation_strategy == PerturbationStrategy.bred_vector: noise = generate_bred_vector( x, model, config.noise_amplitude, time=config.weather_event.properties.start_time, ) if rank == 0 and batch_id == 0: # first ens-member is deterministic noise[0, :, :, :, :] = 0 x += noise return x return perturb def run_basic_inference(model: time_loop.TimeLoop, n: int, data_source, time): """Run a basic inference""" ds = data_source[time].sel(channel=model.in_channel_names) # TODO make the dtype flexible x = torch.from_numpy(ds.values).cuda().type(torch.float) # need a batch dimension of length 1 x = x[None] arrays = [] times = [] for k, (time, data, _) in enumerate(model(time, x)): arrays.append(data.cpu().numpy()) times.append(time) if k == n: break stacked = np.stack(arrays) coords = {**ds.coords} coords["channel"] = model.out_channel_names coords["time"] = times return xarray.DataArray( stacked, dims=["time", "history", "channel", "lat", "lon"], coords=coords ) def run_inference( model: Inference, config: EnsembleRun, perturb: Any = None, group: Any = None, progress: bool = True, # TODO add type hints data_source: Any = None, ): """Run an ensemble inference for a given config and a perturb function Args: group: the torch distributed group to use for the calculation progress: if True use tqdm to show a progress bar data_source: a Mapping object indexed by datetime and returning an xarray.Dataset object. """ if not perturb: perturb = get_initializer(model, config) if not group and torch.distributed.is_initialized(): group = torch.distributed.group.WORLD weather_event = config.get_weather_event() if not data_source: data_source = initial_conditions.get_data_source( model.n_history, model.grid, model.channel_set, initial_condition_source=weather_event.properties.initial_condition_source, netcdf=weather_event.properties.netcdf, ) ds = data_source[weather_event.properties.start_time] dist = DistributedManager() n_ensemble_global = config.ensemble_members n_ensemble = n_ensemble_global // dist.world_size if n_ensemble == 0: logger.warning("World size is larger than global number of ensembles.") n_ensemble = n_ensemble_global # Set random seed seed = config.seed torch.manual_seed(seed + dist.rank) np.random.seed(seed + dist.rank) date_obj = convert_to_datetime(ds.time[-1]) if config.output_dir: date_str = "{:%Y_%m_%d_%H_%M_%S}".format(date_obj) name = weather_event.properties.name output_path = ( f"{config.output_dir}/" f"Output.{config.weather_model}." f"{name}.{date_str}" ) else: output_path = config.output_path if not os.path.exists(output_path): # Avoid race condition across ranks os.makedirs(output_path, exist_ok=True) if dist.rank == 0: # Only rank 0 copies config files over config_path = os.path.join(output_path, "config.json") with open(config_path, "w") as f: f.write(config.json()) model.to(dist.device) group_rank = torch.distributed.get_group_rank(group, dist.rank) output_file_path = os.path.join(output_path, f"ensemble_out_{group_rank}.nc") with DS(output_file_path, "w", format="NETCDF4") as nc: # assign global attributes nc.model = config.weather_model nc.config = config.json() nc.weather_event = weather_event.json() nc.date_created = datetime.now().isoformat() nc.history = " ".join(sys.argv) nc.institution = "NVIDIA" nc.Conventions = "CF-1.10" run_ensembles( weather_event=weather_event, model=model, perturb=perturb, nc=nc, domains=weather_event.domains, ds=ds, n_ensemble=n_ensemble, n_steps=config.simulation_length, output_frequency=config.output_frequency, batch_size=config.ensemble_batch_size, rank=dist.rank, device=dist.device, date_obj=date_obj, restart_frequency=config.restart_frequency, output_path=output_path, output_grid=config.output_grid, progress=progress, ) if torch.distributed.is_initialized(): torch.distributed.barrier(group) logger.info(f"Ensemble forecast finished, saved to: {output_file_path}") if __name__ == "__main__": main()
earth2mip-main
earth2mip/inference_ensemble.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Create-read-update-delete (CRUD) operations for the FCN model registry The location of the registry is configured using `config.MODEL_REGISTRY`. Both s3:// and local paths are supported. The top-level structure of the registry is like this:: afno_26ch_v/ baseline_afno_26/ gfno_26ch_sc3_layers8_tt64/ hafno_baseline_26ch_edim512_mlp2/ modulus_afno_20/ sfno_73ch/ tfno_no-patching_lr5e-4_full_epochs/ The name of the model is the folder name. Each of these folders has the following structure:: sfno_73ch/about.txt # optional information (e.g. source path) sfno_73ch/global_means.npy sfno_73ch/global_stds.npy sfno_73ch/weights.tar # model checkpoint sfno_73ch/metadata.json The `metadata.json` file contains data necessary to use the model for forecasts:: { "architecture": "sfno_73ch", "n_history": 0, "channel_set": "73var", "grid": "721x1440", "in_channels": [ 0, 1 ], "out_channels": [ 0, 1 ] } Its schema is provided by the :py:class:`earth2mip.schema.Model`. The checkpoint file `weights.tar` should have a dictionary of model weights and parameters in the `model_state` key. For backwards compatibility with FCN checkpoints produced as of March 1, 2023 the keys should include prefixed `module.` prefix. This checkpoint format may change in the future. Scoring FCNs under active development ------------------------------------- One can use fcn-mip to score models not packaged in fcn-mip using a metadata file like this:: { "architecture": "pickle", ... } This will load ``weights.tar`` using `torch.load`. This is not recommended for long-time archival of model checkpoints but does allow scoring models under active development. Once a reasonable skill is achieved the model's source code can be stabilized and packaged within fcn-mip for long-term archival. """ import os from earth2mip import schema from earth2mip import filesystem METADATA = "metadata.json" class Package: """A model package Simple file system operations and quick metadata access """ def __init__(self, root: str, seperator: str): self.root = root self.seperator = seperator def get(self, path, recursive: bool = False): return filesystem.download_cached(self._fullpath(path), recursive=recursive) def _fullpath(self, path): return self.root + self.seperator + path def metadata(self) -> schema.Model: metadata_path = self._fullpath(METADATA) local_path = filesystem.download_cached(metadata_path) with open(local_path) as f: return schema.Model.parse_raw(f.read()) class ModelRegistry: SEPERATOR: str = "/" def __init__(self, path: str): self.path = path def list_models(self): return [os.path.basename(f) for f in filesystem.ls(self.path)] def get_model(self, name: str): return Package(self.get_path(name), seperator=self.SEPERATOR) def get_path(self, name, *args): return self.SEPERATOR.join([self.path, name, *args]) def get_model_path(self, name: str): return self.get_path(name) def get_weight_path(self, name: str): return self.get_path(name, "weights.tar") def get_scale_path(self, name: str): return self.get_path(name, "global_stds.npy") def get_center_path(self, name: str): return self.get_path(name, "global_means.npy") def put_metadata(self, name: str, metadata: schema.Model): metadata_path = self.get_path(name, METADATA) filesystem.pipe(metadata_path, metadata.json().encode()) def get_metadata(self, name: str) -> schema.Model: return self.get_model(name).metadata()
earth2mip-main
earth2mip/model_registry.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Mapping, Any import pydantic from earth2mip import weather_events from earth2mip.weather_events import InitialConditionSource, WeatherEvent from enum import Enum import datetime __all__ = ["InitialConditionSource", "WeatherEvent"] class Grid(Enum): grid_721x1440 = "721x1440" grid_720x1440 = "720x1440" s2s_challenge = "s2s" @property def shape(self): if self == Grid.grid_721x1440: return (721, 1440) elif self == Grid.grid_720x1440: return (720, 1440) elif self == Grid.s2s_challenge: return (181, 360) else: raise ValueError(f"Unknown grid {self}") # Enum of channels class ChannelSet(Enum): """An Enum of standard sets of channels These correspond to the post-processed outputs in .h5 files like this: 73var: /lustre/fsw/sw_climate_fno/test_datasets/73var-6hourly 34var: /lustre/fsw/sw_climate_fno/34Vars This concept is needed to map from integer channel numbers (e.g. [0, 1, 2] to physical variables). """ var34 = "34var" var73 = "73var" var_pangu = "var_pangu" def list_channels(self) -> List[str]: """List channel names corresponding to the vocabulary""" return _channels[self] _channels = { ChannelSet.var73: [ "u10m", "v10m", "u100m", "v100m", "t2m", "sp", "msl", "tcwv", "u50", "u100", "u150", "u200", "u250", "u300", "u400", "u500", "u600", "u700", "u850", "u925", "u1000", "v50", "v100", "v150", "v200", "v250", "v300", "v400", "v500", "v600", "v700", "v850", "v925", "v1000", "z50", "z100", "z150", "z200", "z250", "z300", "z400", "z500", "z600", "z700", "z850", "z925", "z1000", "t50", "t100", "t150", "t200", "t250", "t300", "t400", "t500", "t600", "t700", "t850", "t925", "t1000", "r50", "r100", "r150", "r200", "r250", "r300", "r400", "r500", "r600", "r700", "r850", "r925", "r1000", ], ChannelSet.var_pangu: [ "z1000", "z925", "z850", "z700", "z600", "z500", "z400", "z300", "z250", "z200", "z150", "z100", "z50", "q1000", "q925", "q850", "q700", "q600", "q500", "q400", "q300", "q250", "q200", "q150", "q100", "q50", "t1000", "t925", "t850", "t700", "t600", "t500", "t400", "t300", "t250", "t200", "t150", "t100", "t50", "u1000", "u925", "u850", "u700", "u600", "u500", "u400", "u300", "u250", "u200", "u150", "u100", "u50", "v1000", "v925", "v850", "v700", "v600", "v500", "v400", "v300", "v250", "v200", "v150", "v100", "v50", "msl", "u10m", "v10m", "t2m", ], ChannelSet.var34: [ "u10m", "v10m", "t2m", "sp", "msl", "t850", "u1000", "v1000", "z1000", "u850", "v850", "z850", "u500", "v500", "z500", "t500", "z50", "r500", "r850", "tcwv", "u100m", "v100m", "u250", "v250", "z250", "t250", "u100", "v100", "z100", "t100", "u900", "v900", "z900", "t900", ], } class InferenceEntrypoint(pydantic.BaseModel): """ Attrs: name: an entrypoint string like ``my_package:model_entrypoint``. this points to a function ``model_entrypoint(package)`` which returns an ``Inference`` object given a package kwargs: the arguments to pass to the constructor """ name: str = "" kwargs: Mapping[Any, Any] = pydantic.Field(default_factory=dict) class Model(pydantic.BaseModel): """Metadata for using a ERA5 time-stepper model Attrs: entrypoint: if provided, will be used to load a custom time-loop implementation. """ n_history: int = 0 channel_set: ChannelSet = ChannelSet.var34 grid: Grid = Grid.grid_720x1440 in_channels: List[int] = pydantic.Field(default_factory=list) out_channels: List[int] = pydantic.Field(default_factory=list) architecture: str = "" architecture_entrypoint: str = "" time_step: datetime.timedelta = datetime.timedelta(hours=6) entrypoint: Optional[InferenceEntrypoint] = None class PerturbationStrategy(Enum): correlated = "correlated" gaussian = "gaussian" bred_vector = "bred_vector" class EnsembleRun(pydantic.BaseModel): """A configuration for running an ensemble weather forecast Attributes: weather_model: The name of the fully convolutional neural network (FCN) model to use for the forecast. ensemble_members: The number of ensemble members to use in the forecast. noise_amplitude: The amplitude of the Gaussian noise to add to the initial conditions. noise_reddening: The noise reddening amplitude, 2.0 was the defualt set by A.G. work. simulation_length: The length of the simulation in timesteps. output_frequency: The frequency at which to write the output to file, in timesteps. use_cuda_graphs: Whether to use CUDA graphs to optimize the computation. seed: The random seed for the simulation. ensemble_batch_size: The batch size to use for the ensemble. autocast_fp16: Whether to use automatic mixed precision (AMP) with FP16 data types. perturbation_strategy: The strategy to use for perturbing the initial conditions. forecast_name (optional): The name of the forecast to use (alternative to `weather_event`). weather_event (optional): The weather event to use for the forecast (alternative to `forecast_name`). output_dir (optional): The directory to save the output files in (alternative to `output_path`). output_path (optional): The path to the output file (alternative to `output_dir`). restart_frequency: if provided save at end and at the specified frequency. 0 = only save at end. """ # noqa weather_model: str simulation_length: int # TODO make perturbation_strategy an Enum (see ChannelSet) perturbation_strategy: PerturbationStrategy = PerturbationStrategy.correlated single_value_perturbation: bool = True noise_reddening: float = 2.0 noise_amplitude: float = 0.05 output_frequency: int = 1 output_grid: Optional[Grid] = None ensemble_members: int = 1 seed: int = 1 ensemble_batch_size: int = 1 # alternatives for specifiying forecast forecast_name: Optional[str] = None weather_event: Optional[weather_events.WeatherEvent] = None # alternative for specifying output output_dir: Optional[str] = None output_path: Optional[str] = None restart_frequency: Optional[int] = None def get_weather_event(self) -> weather_events.WeatherEvent: if self.forecast_name: return weather_events.read(self.forecast_name) else: return self.weather_event
earth2mip-main
earth2mip/schema.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import netCDF4 as nc import einops import torch import pathlib from earth2mip.schema import Grid from earth2mip._config import Settings class TempestRegridder(torch.nn.Module): def __init__(self, file_path): super().__init__() dataset = nc.Dataset(file_path) self.lat = dataset["latc_b"][:] self.lon = dataset["lonc_b"][:] i = dataset["row"][:] - 1 j = dataset["col"][:] - 1 M = dataset["S"][:] i = i.data j = j.data M = M.data self.M = torch.sparse_coo_tensor((i, j), M, [max(i) + 1, max(j) + 1]).float() def to(self, device): self.M = self.M.to(device) return self def forward(self, x): xr = einops.rearrange(x, "b c x y -> b c (x y)") yr = xr @ self.M.T y = einops.rearrange( yr, "b c (x y) -> b c x y", x=self.lat.size, y=self.lon.size ) return y class Identity(torch.nn.Module): def forward(self, x): return x def _get_tempest_regridder(src: Grid, dest: Grid) -> TempestRegridder: # TODO map data needs to be available for S2S scoring config = Settings() # TODO add instructions for how to make the tempest map file map_file = ( pathlib.Path(config.MAP_FILES) / src.value / dest.value / "tempest_map.nc" ) return TempestRegridder(map_file.as_posix()) def get_regridder(src: Grid, dest: Grid): if src == dest: return Identity() else: return _get_tempest_regridder(src, dest) raise NotImplementedError()
earth2mip-main
earth2mip/regrid.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Routines for opening fcn-mip hindcast outputs """ import datetime import os import json import xarray from zarr.storage import FSStore import pandas as pd from earth2mip import filesystem from earth2mip.datasets.zarr_directory import NestedDirectoryStore def open_forecast(root, group, chunks=None): """Open a fcn-mip forecast as single xarray object The directory structure should contain items like this: {root}/2018-01-01T00:00:00/mean.zarr/ {root}/2018-01-02T00:00:00/mean.zarr/ """ if isinstance(root, str): map_ = FSStore(url=root) else: map_ = root config_path = os.path.join(root, "config.json") local_config = filesystem.download_cached(config_path) with open(local_config) as f: config = json.load(f) items = config["protocol"]["times"] times = [] for f in items: try: datetime.datetime.fromisoformat(f) except ValueError: pass else: times.append(f) times = sorted(times) store = NestedDirectoryStore( map=map_, group=group, directories=items, concat_dim="initial_time", static_coords=("lat", "lon"), dim_rename={"time": "lead_time"}, ) # TODO this only works locally example = xarray.open_zarr(os.path.join(root, f"{items[0]}/{group}")) ds = xarray.open_zarr(store, chunks=None).assign_coords( {dim: example[dim] for dim in store.static_coords} ) ds["initial_time"] = pd.to_datetime(ds.initial_time) if "time" in example.variables: ds["lead_time"] = (ds.time - ds.initial_time).isel(initial_time=0) ds = ds.rename(time="valid_time", lead_time="time") return ds
earth2mip-main
earth2mip/datasets/hindcast.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
earth2mip-main
earth2mip/datasets/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections.abc import MutableMapping import xarray class NestedDirectoryStore(MutableMapping): """Reads data like this:: {root}/a/{group}/{variable} {root}/b/{group}/{variable} The data are assumed to have identical shape and chunking and require a .zmetadata file. This store maps {root}/a/{group}/{variable}/0 -> {group}/{variable}/0.0 """ def __init__( self, map, directories, group, concat_dim="initial_time", static_coords=(), dim_rename=None, ): """ Args: map: a mutable mapping to base off directories: a list of directories containing identical data concat_dim: ``directories`` will be put in a dimension named ``concat_dim`` static_coords: A list of variables that should not be concated...read from the first example. dim_rename: if provided rename the dimensions of the source data """ self._map = map self.concat_dim = concat_dim self.group = group self.dim_rename = dim_rename or {} self.static_coords = static_coords self._local = {} self.directories = directories ds = xarray.Dataset() ds[self.concat_dim] = [self.concat_dim], directories ds.to_zarr(self._local) def _get_new_key_chunk(self, k): chunk = k.split("/")[-1] variable = "/".join(k.split("/")[:-1]) index, *sub_chunks = chunk.split(".") time = self.directories[int(index)] new_chunk = ".".join(sub_chunks) full_path = f"{time}/{self.group}/{variable}/{new_chunk}" return full_path def _get_new_key(self, k): if os.path.basename(k) == ".zarray": time = self.directories[0] # TODO parameterize "mean.zarr" or map it to a "group" full_path = f"{time}/{self.group}/{os.path.dirname(k)}/.zarray" return full_path elif os.path.basename(k) == ".zattrs": time = self.directories[0] full_path = f"{time}/{self.group}/{os.path.dirname(k)}/.zarray" return full_path elif os.path.basename(k) == ".zgroup": time = self.directories[0] full_path = f"{time}/{self.group}/.zgroup" return full_path elif os.path.basename(k) == ".zmetadata": return k else: return self._get_new_key_chunk(k) def _modify_zarray(self, v): config = json.loads(v) config["chunks"] = [1, *config["chunks"]] config["shape"] = [len(self.directories), *config["shape"]] return json.dumps(config) def _modify_zattrs(self, v): config = json.loads(v) xarray_dim_name = "_ARRAY_DIMENSIONS" dims = config.get(xarray_dim_name, []) dims_renamed = [self.dim_rename.get(dim, dim) for dim in dims] config[xarray_dim_name] = [self.concat_dim, *dims_renamed] return json.dumps(config) def __getitem__(self, k): if k.startswith(self.concat_dim): return self._local[k] key = self._get_new_key(k) if os.path.basename(k) == ".zarray": return self._modify_zarray(self._map[key]) elif os.path.basename(k) == ".zgroup": return self._map[key] elif os.path.basename(k) == ".zmetadata": return json.dumps(self._get_metadata()) else: return self._map[key] def __delitem__(self, k): k = self._get_new_key(self, k) del self._map[k] def __iter__(self): raise NotImplementedError() def __contains__(self, k): return ( (self._get_new_key(k) in self._map) or (os.path.basename(k) == ".zmetadata") or (k.startswith(self.concat_dim) and k in self._local) ) def __len__(self, k): raise NotImplementedError() def __setitem__(self, k, v): k = self._get_new_key(k) self._map[k] = v def _get_metadata(self): meta = self._map[os.path.join(self.directories[0], self.group, ".zmetadata")] meta = json.loads(meta) assert meta["zarr_consolidated_format"] == 1 metadata_dict = meta["metadata"] # use same class to modify the .zarray and other data new_meta = {} for k in self._local: if os.path.basename(k) == ".zarray": new_meta[k] = self._local[k].decode() elif os.path.basename(k) == (".zattrs"): new_meta[k] = self._local[k].decode() for key in metadata_dict: if os.path.dirname(key) in self.static_coords: continue if os.path.basename(key) == ".zarray": new_meta[key] = self._modify_zarray(json.dumps(metadata_dict[key])) elif os.path.basename(key) == (".zattrs"): new_meta[key] = self._modify_zattrs(json.dumps(metadata_dict[key])) else: new_meta[key] = json.dumps(metadata_dict[key]) return {"metadata": new_meta, "zarr_consolidated_format": 1}
earth2mip-main
earth2mip/datasets/zarr_directory.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib METADATA34 = pathlib.Path(__file__).parent / "data34var.json" METADATA73 = pathlib.Path(__file__).parent / "data73var.json"
earth2mip-main
earth2mip/datasets/gfs/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import os import datetime def filename_to_year(path: str) -> int: filename = os.path.basename(path) return int(filename[:4]) def datetime_range( year: int, time_step: datetime.timedelta, n: int ) -> List[datetime.datetime]: initial_time = datetime.datetime(year=year, month=1, day=1) return [initial_time + time_step * i for i in range(n)]
earth2mip-main
earth2mip/datasets/era5/time.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import datetime import glob import json import os import pathlib import tempfile from typing import Any, Iterable, Optional import h5py import numpy as np import xarray from earth2mip.datasets.era5 import time __all__ = ["open_34_vars", "open_hdf5"] METADATA = pathlib.Path(__file__).parent / "data.json" def open_hdf5(*, path, f=None, metadata, time_step=datetime.timedelta(hours=6)): dims = metadata["dims"] h5_path = metadata["h5_path"] ds = xarray.open_dataset(f or path, engine="h5netcdf", phony_dims="sort") array = ds[h5_path] ds = array.rename(dict(zip(array.dims, dims))) year = time.filename_to_year(path) n = array.shape[0] ds = ds.assign_coords( time=time.datetime_range(year, time_step=time_step, n=n), **metadata["coords"] ) ds = ds.assign_attrs(metadata["attrs"], path=path) return ds @contextlib.contextmanager def open_all_hdf5(root: str) -> Iterable[xarray.DataArray]: """A context manager to open hdf5 ERA5 data as a single logical xarray Args: root: A **local** directory where the dataset is stored. Metadata should be stored at ``root/data.json``. HDF5 data will be read from subdirectories, typically ``train``, ``test``, and ``out_of_sample``. Returns: an xarray dataset """ try: metadata_path = pathlib.Path(root) / "data.json" metadata = json.loads(metadata_path.read_text()) except FileNotFoundError: metadata = json.loads(METADATA.read_text()) with tempfile.NamedTemporaryFile("wb") as f: _create_virtual_dataset(root, f.name) with xarray.open_dataset(f.name, chunks=None) as ds: dims = ["year", "step"] + metadata["dims"][1:] ds = ds.rename(dict(zip(ds.dims, dims))) step = np.timedelta64(6, "h") * np.arange(ds.sizes["step"]) ds = ds.assign_coords(step=step).assign_coords(metadata["coords"]) yield ds.fields def _create_virtual_dataset(root: str, virtual_dataset_path: str): file_paths = glob.glob(root + "/*/*.h5") file_paths = sorted(file_paths, key=os.path.basename) # Open the first file to extract the dataset shape with h5py.File(file_paths[0], "r") as f: dataset_shape = f["fields"].shape # Create the virtual dataset with h5py.File(virtual_dataset_path, "w", libver="latest") as f: # Define the virtual dataset layout layout = h5py.VirtualLayout(shape=(len(file_paths),) + dataset_shape, dtype="f") year_d = f.create_dataset("year", shape=len(file_paths), dtype="i") for i, file_path in enumerate(file_paths): # Define the virtual source dataset source = h5py.VirtualSource(file_path, "fields", shape=dataset_shape) # Assign the virtual source dataset to the virtual layout layout[i, ...] = source filename = os.path.basename(file_path) base, _ = os.path.splitext(filename) year_d[i] = int(base) # Create the virtual dataset f.create_virtual_dataset("fields", layout) def open_34_vars(path: str, f: Optional[Any] = None) -> xarray.DataArray: """Open 34Vars hdf5 file Args: path: local path to hdf5 file f: an optional file-like object to load the data from. Useful for remote data and fsspec. Examples: >>> import earth2mip.datasets >>> path = "/out_of_sample/2018.h5" >>> datasets.era5.open_34_vars(path) <xarray.DataArray 'fields' (time: 1460, channel: 34, lat: 721, lon: 1440)> dask.array<array, shape=(1460, 34, 721, 1440), dtype=float32, chunksize=(1, 1, 721, 1440), chunktype=numpy.ndarray> # noqa Coordinates: * time (time) datetime64[ns] 2018-01-01 ... 2018-12-31T18:00:00 * lat (lat) float64 90.0 89.75 89.5 89.25 ... -89.25 -89.5 -89.75 -90.0 * lon (lon) float64 0.0 0.25 0.5 0.75 1.0 ... 359.0 359.2 359.5 359.8 * channel (channel) <U5 'u10' 'v10' 't2m' 'sp' ... 'v900' 'z900' 't900' Attributes: selene_path: /lustre/fsw/sw_climate_fno/34Var description: ERA5 data at 6 hourly frequency with snapshots at 0000, 060... path: /out_of_sample/2018.h5 """ metadata = json.loads(METADATA.read_text()) return open_hdf5(path=path, f=f, metadata=metadata)
earth2mip-main
earth2mip/datasets/era5/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # %% import xarray import numpy as np from earth2mip.datasets.hindcast import open_forecast __all__ = ["apply", "compute_edges"] def cleanup_metadata(fct_p): fct_p = fct_p.drop("category_edge").rename(lat="latitude", lon="longitude") fct_p = fct_p[["t2m"]] fct_p = fct_p.sel(lead_time=[14, 28]) # TODO check why the latitude is off fct_p = fct_p.reindex( latitude=np.linspace(90, -90, fct_p.sizes["latitude"]), longitude=np.linspace(0, 360, fct_p.sizes["longitude"], endpoint=False), ) fct_p["lead_time"] = fct_p.lead_time * np.timedelta64(1, "D") translate = np.vectorize(lambda x: "near normal" if x == "normal" else x) fct_p["category"] = translate(fct_p.category) return fct_p def apply(path, tercile_edges, output): ens = open_forecast( path, group="ensemble.zarr", chunks={"initial_time": 1, "ensemble": 1} ) # %% [markdown] # Moderately expensive: run time = 90 seconds # # %% tercile = xarray.open_dataset(tercile_edges) terciles_as_forecast = tercile.sel(week=ens.initial_time.dt.week) terciles_as_forecast # %% below_normal = (ens < terciles_as_forecast.isel(category_edge=0)).mean("ensemble") above_normal = (ens >= terciles_as_forecast.isel(category_edge=1)).mean("ensemble") normal = 1 - below_normal - above_normal terciled = xarray.concat( [below_normal, normal, above_normal], dim=xarray.Variable("category", ["below normal", "normal", "above normal"]), coords="minimal", compat="override", ) print(terciled) # rename to match contest metadata terciled = terciled.rename(initial_time="forecast_time") terciled["lead_time"] = 14 * terciled.lead_time terciled = cleanup_metadata(terciled) terciled.to_netcdf(output) def compute_edges(path, output): ds = open_forecast( path, group="ensemble.zarr", chunks={"initial_time": -1, "ensemble": -1, "lon": "auto"}, ) ds = ds[["t2m"]] tercile = ( ds.groupby(ds.initial_time.dt.week) .quantile(q=[1.0 / 3.0, 2.0 / 3.0], dim=["initial_time", "ensemble"]) .rename({"quantile": "category_edge"}) .astype("float32") ) tercile = tercile.load() tercile.to_netcdf(output)
earth2mip-main
earth2mip/s2s/terciles.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip.s2s import terciles # noqa from earth2mip.s2s import score # noqa
earth2mip-main
earth2mip/s2s/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import xarray import xskillscore import numpy as np import pandas as pd import altair as alt def score(terciles: xarray.Dataset, truth: xarray.Dataset) -> pd.DataFrame: """area-weighted RPSS scores Regions: global, northern hemisphere, and southern hemisphere Args: terciles: predicted terciles. must have `longitude`, `latitude`, `forecast_time` coordinates/dims. truth: true terciles. same format as terciles Returns: dataframe with scores for different regions and climatology. Example:: lead_time forecast_time t2m valid_time week source region tp 0 21.0 2018-01-02 1.455134 2018-01-23 1.0 sfno Global NaN 1 35.0 2018-01-02 1.357457 2018-02-06 1.0 sfno Global NaN 2 21.0 2018-01-02 1.308716 2018-01-23 NaN clim Global 1.310107 3 35.0 2018-01-02 1.306281 2018-02-06 NaN clim Global 1.312259 4 21.0 2018-01-02 1.331612 2018-01-23 1.0 sfno Northern Hem. NaN 5 35.0 2018-01-02 1.211101 2018-02-06 1.0 sfno Northern Hem. NaN 6 21.0 2018-01-02 1.184829 2018-01-23 NaN clim Northern Hem. 1.237482 7 35.0 2018-01-02 1.180459 2018-02-06 NaN clim Northern Hem. 1.241959 8 21.0 2018-01-02 1.575785 2018-01-23 1.0 sfno Southern Hem. NaN 9 35.0 2018-01-02 1.497714 2018-02-06 1.0 sfno Southern Hem. NaN 10 21.0 2018-01-02 1.431765 2018-01-23 NaN clim Southern Hem. 1.381933 11 35.0 2018-01-02 1.430871 2018-02-06 NaN clim Southern Hem. 1.381818 """ # noqa sfno = xarray.open_dataset(terciles) obs = xarray.open_dataset(truth) sfno, obs = xarray.align(sfno, obs) assert obs.sizes["forecast_time"] > 0 clim = xarray.ones_like(obs) / 3.0 # %% masks = {} cos_lat = np.cos(np.deg2rad(obs.latitude)) masks["Global"] = cos_lat masks["Northern Hem."] = cos_lat.where(obs.latitude > 0, 0.0) masks["Southern Hem."] = cos_lat.where(obs.latitude < 0, 0.0) scores = [] for mask in masks: cos_lat = masks[mask] iscores = {} iscores["sfno"] = xskillscore.rps( sfno, obs, category_edges=None, input_distributions="p", dim=["latitude", "longitude"], weights=cos_lat, ) iscores["clim"] = xskillscore.rps( clim, obs, category_edges=None, input_distributions="p", dim=["latitude", "longitude"], weights=cos_lat, ) for key in iscores: v = iscores[key] scores.append(v.assign(source=key, region=mask)) df = pd.concat([d.to_dataframe() for d in scores]) df = df.reset_index() df["lead_time"] = df.lead_time + pd.Timedelta("7D") df["valid_time"] = df.lead_time + df.forecast_time df["lead_time"] = df.lead_time / pd.Timedelta("1D") return df def plot(df, output, timeUnit="yearmonthdate"): import vl_convert alt.data_transformers.disable_max_rows() # https://davidmathlogic.com/colorblind/#%23000000-%23E69F00-%2356B4E9-%23009E73-%23F0E442-%230072B2-%23D55E00-%23CC79A7 wong_palette = [ "#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", ] # altair def my_theme(): return {"config": {"range": {"category": wong_palette}}} alt.themes.register("my_theme", my_theme) alt.themes.enable("my_theme") c = ( alt.Chart(df) .mark_line() .encode( x=alt.X(field="valid_time", timeUnit=timeUnit), y=alt.Y("mean(t2m)", title="RPSS T2M"), column="region", color="source", row=alt.Row("lead_time", type="ordinal", title="Lead Time (days)"), ) .properties(width=200, height=200 / 1.61) ) png_data = vl_convert.vegalite_to_png(vl_spec=c.to_json(), scale=3) with open(output, "wb") as f: f.write(png_data)
earth2mip-main
earth2mip/s2s/score.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from earth2mip import schema from earth2mip.datasets.gfs import METADATA34, METADATA73 from modulus.utils.filesystem import LOCAL_CACHE import json import xarray import numpy as np import shutil import pathlib import os import requests import warnings from dataclasses import dataclass from typing import List, Union from tqdm import tqdm # Max byte check of any one field # Will error if larger MAX_BYTE_SIZE = 2000000 # Location to cache grib files GFS_CACHE = LOCAL_CACHE + "/earth2mip/gfs" @dataclass class GFSChunk: variable_name: str = "phoo" meta_data: str = "" start_byte: int = 0 end_byte: int = 0 @property def byte_range(self) -> int: return self.end_byte - self.start_byte @property def channel_id(self) -> str: return ":".join([self.variable_name, self.meta_data]) def gfs_available( time: datetime.datetime, ) -> bool: nearest_hour = time.hour - time.hour % 6 time_gfs = datetime.datetime(time.year, time.month, time.day, nearest_hour) index_url = ( f"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/" + f'prod/gfs.{time_gfs.strftime("%Y%m%d")}/{time_gfs.strftime("%H")}' + f'/atmos/gfs.t{time_gfs.strftime("%H")}z.pgrb2.0p25.f000.idx' ) try: r = requests.get(index_url, timeout=5) r.raise_for_status() except requests.exceptions.RequestException: return False return True def get_gfs_chunks( time: datetime.datetime, ): index_url = ( f"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/" + f'prod/gfs.{time.strftime("%Y%m%d")}/{time.strftime("%H")}' + f'/atmos/gfs.t{time.strftime("%H")}z.pgrb2.0p25.f000.idx' ) try: r = requests.get(index_url, timeout=5) r.raise_for_status() except requests.exceptions.RequestException as e: # This is the correct syntax raise SystemExit(e) if len(r.text) == 0: raise ValueError(f"Empty index file: {r.text}") index_lines = r.text.splitlines() index_lines = index_lines[:-1] output = [GFSChunk()] for i, line in enumerate(index_lines): lsplit = line.split(":") if len(lsplit) < 7: continue chunk = GFSChunk( variable_name=lsplit[3], meta_data=lsplit[4], start_byte=int(lsplit[1]), end_byte=None, ) output.append(chunk) # Update previous chunk with end position based on start of current chunk output[-2].end_byte = int(lsplit[1]) - 1 if MAX_BYTE_SIZE < output[-2].byte_range: raise ValueError( "Byte range in index field found to be too large." + f" Parsed byte range {output[-2].byte_range}, max byte" + f" range {MAX_BYTE_SIZE}" ) # Pop place holder output.pop(0) return output def get_gfs_grib_file( time: datetime.datetime, gfs_chunks: List[GFSChunk], channel_id: str, output_file: str, ): gfs_url = ( f"https://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/" + f'prod/gfs.{time.strftime("%Y%m%d")}/{time.strftime("%H")}' + f'/atmos/gfs.t{time.strftime("%H")}z.pgrb2.0p25.f000' ) # Get chunk data for this variable gfs_chunk = None for chunk in gfs_chunks: if channel_id in chunk.channel_id: gfs_chunk = chunk break if gfs_chunk is None: raise ValueError(f"Variable {channel_id} not found in index") start_str = str(gfs_chunk.start_byte) if gfs_chunk.start_byte else "0" end_str = str(gfs_chunk.end_byte) if gfs_chunk.end_byte else "" headers = {"Range": f"bytes={start_str}-{end_str}"} # Send request to GFS try: with requests.get(gfs_url, headers=headers, stream=True, timeout=10) as r: with open(f"{output_file}.tmp", "wb") as f: shutil.copyfileobj(r.raw, f) r.raise_for_status() except requests.exceptions.RequestException as e: raise SystemExit(e) # Finally rename the file try: os.rename(f"{output_file}.tmp", f"{output_file}") except FileNotFoundError: raise FileNotFoundError( f"{output_file}.tmp not found in GFS cache. " + "its likely failed to download" ) def get( time: Union[datetime.datetime, None], channel_set: schema.ChannelSet, ) -> xarray.DataArray: # If no time is provided, use current time if time is None: time = datetime.datetime.now() # Check if most recent time is available, if not fall back 6 hours if not gfs_available(time): warnings.warn("Closest 6 hour interval not available, falling back 6 hours") time = time - datetime.timedelta(hours=6) nearest_hour = time.hour - time.hour % 6 time_gfs = datetime.datetime(time.year, time.month, time.day, nearest_hour) if not gfs_available(time_gfs): raise ValueError( f"Nearest 6 hour time {time_gfs} is not available right now " + "(needs to be past 10 days)" ) if channel_set == schema.ChannelSet.var34: # move to earth2mip.channels metadata = json.loads(METADATA34.read_text()) channels = metadata["coords"]["channel"] gfs_channels = metadata["gfs_coords"]["channel"] elif channel_set == schema.ChannelSet.var73: # move to earth2mip.channels metadata = json.loads(METADATA73.read_text()) channels = metadata["coords"]["channel"] gfs_channels = metadata["gfs_coords"]["channel"] else: raise NotImplementedError(channel_set) # Make temp grib folder pathlib.Path(GFS_CACHE).mkdir(parents=True, exist_ok=True) # Get index file gfs_chunks = get_gfs_chunks(time_gfs) # Loop through channels and download grib of each print(f"Downloading {len(channels)} grib files:") for idname, outname in zip(tqdm(gfs_channels), channels): get_gfs_grib_file(time_gfs, gfs_chunks, idname, f"{GFS_CACHE}/{outname}.grb") # Convert gribs to xarray dataset data = np.empty((1, len(channels), 721, 1440)) gfsds = xarray.Dataset( {"fields": (["time", "channel", "lat", "lon"], data)}, coords={ "time": [time_gfs], "channel": metadata["coords"]["channel"], "lat": metadata["coords"]["lat"], "lon": metadata["coords"]["lon"], }, ) print(f"Processing {len(channels)} grib files:") for i, name in enumerate(tqdm(channels)): ds = xarray.open_dataset(f"{GFS_CACHE}/{name}.grb", engine="cfgrib") field = ds[list(ds.keys())[0]] # If geopotential height multiply by gravity to get geopotential if name[0] == "z": field = field * 9.81 gfsds["fields"][0, i] = field # Clean up shutil.rmtree(GFS_CACHE) return gfsds["fields"]
earth2mip-main
earth2mip/initial_conditions/gfs.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import datetime import json import logging import os import warnings from typing import Any import s3fs import xarray import numpy as np from earth2mip import config, filesystem, schema from earth2mip.datasets import era5 __all__ = ["open_era5_xarray"] logger = logging.getLogger(__name__) # TODO move to earth2mip/datasets/era5? @dataclasses.dataclass class HDF5DataSource: root: str metadata: Any n_history: int = 0 @classmethod def from_path(cls, root: str, **kwargs: Any) -> "HDF5DataSource": metadata_path = os.path.join(root, "data.json") metadata_path = filesystem.download_cached(metadata_path) with open(metadata_path) as mf: metadata = json.load(mf) return cls(root, metadata, **kwargs) @property def channel_names(self): return self.metadata["coords"]["channel"] @property def time_means(self): time_mean_path = os.path.join(self.root, "stats", "time_means.npy") time_mean_path = filesystem.download_cached(time_mean_path) return np.load(time_mean_path) def __getitem__(self, time: datetime.datetime): n_history = self.n_history path = _get_path(self.root, time) if path.startswith("s3://"): fs = s3fs.S3FileSystem( client_kwargs=dict(endpoint_url="https://pbss.s8k.io") ) f = fs.open(path) else: f = None logger.debug(f"Opening {path} for {time}.") ds = era5.open_hdf5(path=path, f=f, metadata=self.metadata) subset = ds.sel(time=slice(None, time)) # TODO remove n_history from this API? subset = subset[-n_history - 1 :] num_time = subset.sizes["time"] if num_time != n_history + 1: a = ds.time.min().values b = ds.time.max().values raise ValueError( f"{num_time} found. Expected: {n_history + 1} ." f"Time requested: {time}. Time range in data: {a} -- {b}." ) return subset.load() def _get_path(path: str, time) -> str: filename = time.strftime("%Y.h5") h5_files = filesystem.glob(os.path.join(path, "*/*.h5")) files = {os.path.basename(f): f for f in h5_files} return files[filename] def open_era5_xarray( time: datetime.datetime, channel_set: schema.ChannelSet ) -> xarray.DataArray: warnings.warn(DeprecationWarning("This function will be removed")) root = config.get_data_root(channel_set) path = _get_path(root, time) logger.debug(f"Opening {path} for {time}.") if path.endswith(".h5"): if path.startswith("s3://"): fs = s3fs.S3FileSystem( client_kwargs=dict(endpoint_url="https://pbss.s8k.io") ) f = fs.open(path) else: f = None if channel_set == schema.ChannelSet.var34: ds = era5.open_34_vars(path, f=f) else: metadata_path = os.path.join(config.ERA5_HDF5_73, "data.json") metadata_path = filesystem.download_cached(metadata_path) with open(metadata_path) as mf: metadata = json.load(mf) ds = era5.open_hdf5(path=path, f=f, metadata=metadata) elif path.endswith(".nc"): ds = xarray.open_dataset(path).fields return ds
earth2mip-main
earth2mip/initial_conditions/era5.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datetime import xarray import json from earth2mip import filesystem, schema, config import logging import numpy as np import h5py logger = logging.getLogger(__name__) def _get_path(path: str, time) -> str: filename = time.strftime("%Y.h5") h5_files = filesystem.glob(os.path.join(path, "*.h5")) files = {os.path.basename(f): f for f in h5_files} return files[filename] def _get_time(time: datetime.datetime) -> int: day_of_year = time.timetuple().tm_yday - 1 hour_of_day = time.timetuple().tm_hour hours_since_jan_01 = 24 * day_of_year + hour_of_day return int(hours_since_jan_01 / 6) def _get_hdf5(path: str, metadata, time: datetime.datetime) -> xarray.DataArray: dims = metadata["dims"] h5_path = metadata["h5_path"] variables = [] ic = _get_time(time) with h5py.File(path, "r") as f: for nm in h5_path: if nm == "pl": pl = f[nm][ic : ic + 1] elif nm == "sl": sl = f[nm][ic : ic + 1] assert "pl" in locals() and "sl" in locals() pl_list = [] for var_idx in range(pl.shape[1]): pl_list.append(pl[:, var_idx]) pl = np.concatenate(pl_list, axis=1) # pressure level vars flattened data = np.concatenate([pl, sl], axis=1) ds = xarray.DataArray( data, dims=["time", "channel", "lat", "lon"], coords={ "time": [time], "channel": metadata["coords"]["channel"], "lat": metadata["coords"]["lat"], "lon": metadata["coords"]["lon"], }, name="fields", ) return ds def get(time: datetime.datetime, channel_set: schema.ChannelSet) -> xarray.DataArray: root = config.get_data_root(channel_set) path = _get_path(root, time) logger.debug(f"Opening {path} for {time}.") metadata_path = os.path.join(config.ERA5_HDF5_73, "data.json") metadata_path = filesystem.download_cached(metadata_path) with open(metadata_path) as mf: metadata = json.load(mf) ds = _get_hdf5(path=path, metadata=metadata, time=time) return ds
earth2mip-main
earth2mip/initial_conditions/hrmip.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from earth2mip import config import xarray import datetime from earth2mip import schema import joblib import numpy as np from earth2mip.initial_conditions.era5 import open_era5_xarray, HDF5DataSource from earth2mip.initial_conditions import ifs from earth2mip.initial_conditions import cds from earth2mip.initial_conditions import gfs from earth2mip.initial_conditions import hrmip # TODO remove this fcn-mip import from earth2mip.datasets.era5 import METADATA import json __all__ = ["open_era5_xarray", "get", "get_data_source"] def get_data_source( n_history, grid, channel_set, netcdf="", initial_condition_source=schema.InitialConditionSource.era5, ): if initial_condition_source == schema.InitialConditionSource.era5: root = config.get_data_root(channel_set) return HDF5DataSource.from_path(root) else: return LegacyDataSource( n_history, grid, channel_set, netcdf=netcdf, initial_condition_source=initial_condition_source, ) class LegacyDataSource: def __init__( self, n_history, grid, channel_set, netcdf="", initial_condition_source=schema.InitialConditionSource.era5, ): self.n_history = n_history self.grid = grid self.channel_set = channel_set self.initial_condition_source = initial_condition_source self.netcdf = "" def __getitem__(self, time): if self.netcdf: return xarray.open_dataset(self.netcdf)["fields"] else: return ic( n_history=self.n_history, grid=self.grid, time=time, channel_set=self.channel_set, source=self.initial_condition_source, ) def get( n_history: int, time: datetime.datetime, channel_set: schema.ChannelSet, source: schema.InitialConditionSource = schema.InitialConditionSource.era5, ) -> xarray.DataArray: if source == schema.InitialConditionSource.hrmip: ds = hrmip.get(time, channel_set) return ds elif source == schema.InitialConditionSource.ifs: if n_history > 0: raise NotImplementedError("IFS initializations only work with n_history=0.") ds = ifs.get(time, channel_set) ds = ds.expand_dims("time", axis=0) # move to earth2mip.channels # TODO refactor interpolation to another place metadata = json.loads(METADATA.read_text()) lat = np.array(metadata["coords"]["lat"]) lon = np.array(metadata["coords"]["lon"]) ds = ds.roll(lon=len(ds.lon) // 2, roll_coords=True) ds["lon"] = ds.lon.where(ds.lon >= 0, ds.lon + 360) assert min(ds.lon) >= 0, min(ds.lon) return ds.interp(lat=lat, lon=lon, kwargs={"fill_value": "extrapolate"}) elif source == schema.InitialConditionSource.cds: if n_history > 0: raise NotImplementedError("CDS initializations only work with n_history=0.") ds = cds.get(time, channel_set) return ds elif source == schema.InitialConditionSource.gfs: if n_history > 0: raise NotImplementedError("GFS initializations only work with n_history=0.") return gfs.get(time, channel_set) else: raise NotImplementedError(source) if config.LOCAL_CACHE: memory = joblib.Memory(config.LOCAL_CACHE) get = memory.cache(get) def ic( time: datetime, grid, n_history: int, channel_set: schema.ChannelSet, source: schema.InitialConditionSource, ): ds = get(n_history, time, channel_set, source) # TODO collect grid logic in one place if grid == schema.Grid.grid_720x1440: return ds.isel(lat=slice(0, -1)) elif grid == schema.Grid.grid_721x1440: return ds else: raise NotImplementedError(f"Grid {grid} not supported")
earth2mip-main
earth2mip/initial_conditions/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import eccodes from typing import List, Union import datetime import dataclasses from earth2mip import schema import xarray import numpy as np import tempfile import os from concurrent.futures import ThreadPoolExecutor from cdsapi import Client import logging logging.getLogger("cdsapi").setLevel(logging.WARNING) import urllib3 urllib3.disable_warnings( urllib3.exceptions.InsecureRequestWarning ) # Hack to disable SSL warnings # codes database: https://codes.ecmwf.int/grib/param-db/?filter=grib2 CHANNEL_TO_CODE = { "z": 129, "u": 131, "v": 132, "t": 130, "q": 133, "r": 157, "t2m": 167, "u10m": 165, "v10m": 166, "u100m": 228246, "v100m": 228247, "tcwv": 137, "sp": 134, "msl": 151, # total precip "tp": 228, } @dataclasses.dataclass class PressureLevelCode: id: int level: int = 0 @dataclasses.dataclass class SingleLevelCode: id: int def parse_channel(channel: str) -> Union[PressureLevelCode, SingleLevelCode]: if channel in CHANNEL_TO_CODE: return SingleLevelCode(CHANNEL_TO_CODE[channel]) else: code = CHANNEL_TO_CODE[channel[0]] level = int(channel[1:]) return PressureLevelCode(code, level=int(level)) @dataclasses.dataclass class DataSource: channel_names: List[str] client: Client = dataclasses.field( default_factory=lambda: Client(progress=False, quiet=False) ) @property def time_means(self): raise NotImplementedError() def __getitem__(self, time: datetime.datetime): return _get_channels(self.client, time, self.channel_names) def get(time: datetime.datetime, channel_set: schema.ChannelSet): warnings.warn( DeprecationWarning("Will be removed. Please use CDSDataSource instead.") ) channels = channel_set.list_channels() ds = DataSource(channels) return ds[time] def _get_cds_requests(codes, time, format): grid = (0.25, 0.25) area = (90, -180, -90, 180) # create a list of arguments for each call to retrieve_channel_data levels = set() pressure_level_names = set() single_level_names = set() for v in codes: if isinstance(v, PressureLevelCode): # it's a pressure level variable levels.add(v.level) pressure_level_names.add(v.id) elif isinstance(v, SingleLevelCode): # it's a single level variable single_level_names.add(v.id) if pressure_level_names and levels: yield ( "reanalysis-era5-pressure-levels", { "product_type": "reanalysis", "variable": list(pressure_level_names), "pressure_level": sorted(levels), "year": time.strftime("%Y"), "month": time.strftime("%m"), "day": time.strftime("%d"), "time": time.strftime("%H:%M"), "area": area, "grid": grid, "format": format, }, ) if single_level_names: yield ( "reanalysis-era5-single-levels", { "product_type": "reanalysis", "variable": sorted(single_level_names), "year": time.strftime("%Y"), "month": time.strftime("%m"), "day": time.strftime("%d"), "time": time.strftime("%H:%M"), "area": area, "grid": grid, "format": format, }, ) def _parse_files( codes: List[Union[SingleLevelCode, PressureLevelCode]], files: List[str] ) -> xarray.DataArray: """Retrieve ``codes`` from a list of ``files`` Returns: a data array of all the codes """ arrays = [None] * len(codes) for path in files: with open(path) as f: while True: gid = eccodes.codes_grib_new_from_file(f) if gid is None: break id = eccodes.codes_get(gid, "paramId") level = eccodes.codes_get(gid, "level") type_of_level = eccodes.codes_get(gid, "typeOfLevel") if type_of_level == "surface": code = SingleLevelCode(id) else: code = PressureLevelCode(id, level=level) nlat = eccodes.codes_get(gid, "Nj") nlon = eccodes.codes_get(gid, "Ni") lat = eccodes.codes_get_array(gid, "latitudes").reshape(nlat, nlon) lon = eccodes.codes_get_array(gid, "longitudes").reshape(nlat, nlon) vals = eccodes.codes_get_values(gid).reshape(nlat, nlon) eccodes.codes_release(gid) try: i = codes.index(code) except ValueError: continue arrays[i] = vals array = np.stack(arrays) coords = {} coords["lat"] = lat[:, 0] coords["lon"] = lon[0, :] return xarray.DataArray(array, dims=["channel", "lat", "lon"], coords=coords) def _download_codes(client, codes, time): with tempfile.TemporaryDirectory() as d: files = [] format = "grib" def download(arg): f = tempfile.mktemp(dir=d, suffix="." + format) name, req = arg path = os.path.join(d, f) client.retrieve(name, req, path) return path requests = _get_cds_requests(codes, time, format) with ThreadPoolExecutor(4) as pool: files = pool.map(download, requests) darray = _parse_files(codes, files) return darray def _get_channels(client, time: datetime.datetime, channels: List[str]): codes = [parse_channel(c) for c in channels] darray = _download_codes(client, codes, time) return ( darray.assign_coords(channel=channels) .assign_coords(time=time) .expand_dims("time") .transpose("time", "channel", "lat", "lon") .assign_coords(lon=darray["lon"] + 180.0) .roll(lon=1440 // 2) )
earth2mip-main
earth2mip/initial_conditions/cds.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from modulus.utils import filesystem from earth2mip import schema from earth2mip.datasets.era5 import METADATA import json import xarray import numpy as np def _get_filename(time: datetime.datetime, lead_time: str): date_format = f"%Y%m%d/%Hz/0p4-beta/oper/%Y%m%d%H%M%S-{lead_time}-oper-fc.grib2" return time.strftime(date_format) def _get_channel(c: str, **kwargs) -> xarray.DataArray: """ Parameters: ----------- c: channel id **kwargs: variables in ecmwf data """ # handle 2d inputs if c in kwargs: return kwargs[c] else: varcode, pressure_level = c[0], int(c[1:]) return kwargs[varcode].interp(isobaricInhPa=pressure_level) def get(time: datetime.datetime, channel_set: schema.ChannelSet): root = "https://ecmwf-forecasts.s3.eu-central-1.amazonaws.com/" path = root + _get_filename(time, "0h") local_path = filesystem.download_cached(path) dataset_0h = xarray.open_dataset(local_path, engine="cfgrib") # get t2m and other things from 12 hour forecast initialized 12 hours before # The HRES is only initialized every 12 hours path = root + _get_filename(time - datetime.timedelta(hours=12), "12h") local_path = filesystem.download_cached(path) forecast_12h = xarray.open_dataset(local_path, engine="cfgrib") if channel_set == schema.ChannelSet.var34: # move to earth2mip.channels metadata = json.loads(METADATA.read_text()) channels = metadata["coords"]["channel"] else: raise NotImplementedError(channel_set) channel_data = [ _get_channel( c, u10m=dataset_0h.u10, v10m=dataset_0h.v10, u100m=dataset_0h.u10, v100m=dataset_0h.v10, sp=dataset_0h.sp, t2m=forecast_12h.t2m, msl=forecast_12h.msl, tcwv=forecast_12h.tciwv, t=dataset_0h.t, u=dataset_0h.u, v=dataset_0h.v, r=dataset_0h.r, z=dataset_0h.gh * 9.81, ) for c in channels ] array = np.stack([d for d in channel_data], axis=0) darray = xarray.DataArray( array, dims=["channel", "lat", "lon"], coords={ "channel": channels, "lon": dataset_0h.longitude.values, "lat": dataset_0h.latitude.values, "time": time, }, ) return darray
earth2mip-main
earth2mip/initial_conditions/ifs.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import torch import numpy as np import xarray import json from earth2mip import registry, schema, networks, config, initial_conditions, geometry from earth2mip.time_loop import TimeLoop from earth2mip.schema import Grid from modulus.models.fcn_mip_plugin import _fix_state_dict_keys from modulus.models.dlwp import DLWP from modulus.utils.filesystem import Package from modulus.utils.sfno.zenith_angle import cos_zenith_angle # TODO: Added here explicitly for better access. This will be imported from: # modulus repo after this PR is merged: https://github.com/NVIDIA/modulus/pull/138 class _DLWPWrapper(torch.nn.Module): def __init__( self, model, lsm, longrid, latgrid, topographic_height, ll_to_cs_mapfile_path, cs_to_ll_mapfile_path, ): super(_DLWPWrapper, self).__init__() self.model = model self.lsm = lsm self.longrid = longrid self.latgrid = latgrid self.topographic_height = topographic_height # load map weights self.input_map_wts = xarray.open_dataset(ll_to_cs_mapfile_path) self.output_map_wts = xarray.open_dataset(cs_to_ll_mapfile_path) @property def channel_names(): return ["t850", "z1000", "z700", "z500", "z300", "tcwv", "t2m"] def prepare_input(self, input, time): device = input.device dtype = input.dtype i = self.input_map_wts.row.values - 1 j = self.input_map_wts.col.values - 1 data = self.input_map_wts.S.values M = torch.sparse_coo_tensor(np.array((i, j)), data).type(dtype).to(device) bs, t, chan = input.shape[0], input.shape[1], input.shape[2] input = input.reshape(bs * t * chan, -1) @ M.T input = input.reshape(bs, t, chan, 6, 64, 64) input_list = list(torch.split(input, 1, dim=1)) input_list = [tensor.squeeze(1) for tensor in input_list] repeat_vals = (input.shape[0], -1, -1, -1, -1) # repeat along batch dimension for i in range(len(input_list)): tisr = np.maximum( cos_zenith_angle( time - datetime.timedelta(hours=6 * (input.shape[0] - 1)) + datetime.timedelta(hours=6 * i), self.longrid, self.latgrid, ), 0, ) - ( 1 / np.pi ) # subtract mean value tisr = ( torch.tensor(tisr, dtype=dtype) .to(device) .unsqueeze(dim=0) .unsqueeze(dim=0) ) # add channel and batch size dimension tisr = tisr.expand(*repeat_vals) # TODO - find better way to batch TISR input_list[i] = torch.cat( (input_list[i], tisr), dim=1 ) # concat along channel dim input_model = torch.cat( input_list, dim=1 ) # concat the time dimension into channels lsm_tensor = torch.tensor(self.lsm, dtype=dtype).to(device).unsqueeze(dim=0) lsm_tensor = lsm_tensor.expand(*repeat_vals) topographic_height_tensor = ( torch.tensor((self.topographic_height - 3.724e03) / 8.349e03, dtype=dtype) .to(device) .unsqueeze(dim=0) ) topographic_height_tensor = topographic_height_tensor.expand(*repeat_vals) input_model = torch.cat( (input_model, lsm_tensor, topographic_height_tensor), dim=1 ) return input_model def prepare_output(self, output): device = output.device dtype = output.dtype output = torch.split(output, output.shape[1] // 2, dim=1) output = torch.stack(output, dim=1) # add time dimension back in i = self.output_map_wts.row.values - 1 j = self.output_map_wts.col.values - 1 data = self.output_map_wts.S.values M = torch.sparse_coo_tensor(np.array((i, j)), data).type(dtype).to(device) output = output.reshape(output.shape[0], 2, output.shape[2], -1) @ M.T output = output.reshape(output.shape[0], 2, output.shape[2], 721, 1440) return output def forward(self, x, time): x = self.prepare_input(x, time) y = self.model(x) return self.prepare_output(y) def load(package, *, pretrained=True, device="cuda"): assert pretrained # load static datasets lsm = xarray.open_dataset(package.get("land_sea_mask_rs_cs.nc"))["lsm"].values topographic_height = xarray.open_dataset(package.get("geopotential_rs_cs.nc"))[ "z" ].values latlon_grids = xarray.open_dataset(package.get("latlon_grid_field_rs_cs.nc")) latgrid, longrid = latlon_grids["latgrid"].values, latlon_grids["longrid"].values # load maps ll_to_cs_mapfile_path = package.get("map_LL721x1440_CS64.nc") cs_to_ll_mapfile_path = package.get("map_CS64_LL721x1440.nc") with torch.cuda.device(device): # p = package.get("model.onnx") with open(package.get("config.json")) as json_file: config = json.load(json_file) core_model = DLWP( nr_input_channels=config["nr_input_channels"], nr_output_channels=config["nr_output_channels"], ) if pretrained: weights_path = package.get("weights.pt") weights = torch.load(weights_path) fixed_weights = _fix_state_dict_keys(weights, add_module=False) core_model.load_state_dict(fixed_weights) model = _DLWPWrapper( core_model, lsm, longrid, latgrid, topographic_height, ll_to_cs_mapfile_path, cs_to_ll_mapfile_path, ) channel_names = ["t850", "z1000", "z700", "z500", "z300", "tcwv", "t2m"] center = np.load(package.get("global_means.npy")) scale = np.load(package.get("global_stds.npy")) grid = schema.Grid.grid_721x1440 dt = datetime.timedelta(hours=12) inference = networks.Inference( model, channels=None, center=center, scale=scale, grid=grid, channel_names=channel_names, time_step=dt, n_history=1, ) inference.to(device) return inference
earth2mip-main
earth2mip/networks/dlwp.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import urllib import warnings import itertools from typing import Optional, Tuple, Any, Iterator import sys import datetime import torch import einops import numpy as np import contextlib from earth2mip import registry, ModelRegistry, model_registry from earth2mip import filesystem, loaders, time_loop, schema import modulus from modulus.utils.sfno.zenith_angle import cos_zenith_angle from modulus.distributed.manager import DistributedManager from earth2mip.loaders import LoaderProtocol if sys.version_info < (3, 10): from importlib_metadata import EntryPoint else: from importlib.metadata import EntryPoint __all__ = ["get_model"] def depends_on_time(f): """ A function to detect if the function `f` takes an argument `time`. Args: f: a function. Returns: bool: True if the function takes a second argument `time`, False otherwise. """ # check if model is a torchscript model if isinstance(f, torch.jit.ScriptModule): return False else: import inspect signature = inspect.signature(f) parameters = signature.parameters return "time" in parameters class Wrapper(torch.nn.Module): """Makes sure the parameter names are the same as the checkpoint""" def __init__(self, module): super().__init__() self.module = module def forward(self, *args, **kwargs): """x: (batch, history, channel, x, y)""" return self.module(*args, **kwargs) class CosZenWrapper(torch.nn.Module): def __init__(self, model, lon, lat): super().__init__() self.model = model self.lon = lon self.lat = lat def forward(self, x, time): lon_grid, lat_grid = np.meshgrid(self.lon, self.lat) cosz = cos_zenith_angle(time, lon_grid, lat_grid) cosz = cosz.astype(np.float32) z = torch.from_numpy(cosz).to(device=x.device) # assume no history x = torch.cat([x, z[None, None]], dim=1) return self.model(x) class _SimpleModelAdapter(torch.nn.Module): """Takes model of (b, c, y, x) to (b, h, y, x) where h == 1""" def __init__(self, model, time_dependent, has_history): super().__init__() self.model = model self.time_dependent = time_dependent self.has_history = has_history def forward(self, x, time): if not self.has_history: x = x[:, 0] if self.time_dependent: y = self.model.forward(x, time) else: y = self.model.forward(x) if not self.has_history: y = y[:, None] return y class Inference(torch.nn.Module, time_loop.TimeLoop): def __init__( self, model, center: np.array, scale: np.array, grid: schema.Grid, channels=None, channel_set: Optional[schema.ChannelSet] = None, n_history: int = 0, time_step=datetime.timedelta(hours=6), channel_names=None, ): """ Args: model: a model, with signature model(x, time) or model(x). With n_history == 0, x is a torch tensor with shape (batch, nchannel, lat, lon). With n_history > 0 x has the shape (batch, nchannel, lat, lon). `time` is a datetime object, which is passed if model.forward has time as an argument. center: a 1d numpy array with shape (n_channels in data) containing the means. The shape is NOT `len(channels)`. scale: a 1d numpy array with shape (n_channels in data) containing the stds. The shape is NOT `len(channels)`. grid: metadata about the grid, which should be used to pass the correct data to this object. channels: a list of integers taken from [0, n_channels in data - 1]. This is used to subset the input data. channel_set: optional metadata about the channel-set, that can be used to figure out what the channel names are. channel_names: if provided overrides the ``channel_set`` and ``channels``. If this is provided then mean/scale are assumed to match this. n_history: whether `model` was trained with history. time_step: the time-step `model` was trained with. """ # noqa super().__init__() self.channel_set = channel_set self.time_dependent = depends_on_time(model.forward) # TODO probably delete this line # if not isinstance(model, modulus.Module): # model = Wrapper(model) # TODO extract this to another place model = _SimpleModelAdapter( model, time_dependent=self.time_dependent, has_history=n_history > 0 ) self.model = model self.channel_set = channel_set self.channel_names = channel_names self.grid = grid self.time_step = time_step self.n_history = n_history center = torch.from_numpy(np.squeeze(center)).float() scale = torch.from_numpy(np.squeeze(scale)).float() self.register_buffer("scale_org", scale) self.register_buffer("center_org", center) # infer channel names if channel_names is not None: self.in_channel_names = self.out_channel_names = channel_names self.channels = list(range(len(channel_names))) self.register_buffer("scale", scale[:, None, None]) self.register_buffer("center", center[:, None, None]) elif channel_set is not None: data_channel_names = channel_set.list_channels() self.channels = channels self.in_channel_names = self.out_channel_names = [ data_channel_names[i] for i in channels ] self.register_buffer("scale", scale[self.channels, None, None]) self.register_buffer("center", center[self.channels, None, None]) else: raise ValueError( "Cannot infer channel names. Please provide channel_names or both channels and channel_set." # noqa ) @property def n_history_levels(self) -> int: """The expected size of the second dimension""" return self.n_history + 1 def device(self) -> torch.device: return self.scale.device def normalize(self, x): warnings.warn( DeprecationWarning( ".normalize does not follow the TimeLoop API. It will be removed soon." ) ) return (x - self.center_org[None, :, None, None]) / self.scale_org[ None, :, None, None ] def run_steps(self, x, n, normalize=True, time=None): warnings.warn( DeprecationWarning( ".run_steps does not follow the TimeLoop API. It will be removed soon." ) ) for _, data, _ in self.run_steps_with_restart(x, n, normalize, time): yield data def __call__( self, time: datetime.datetime, x: torch.Tensor, restart: Optional[Any] = None, normalize=True, ) -> Iterator[Tuple[datetime.datetime, torch.Tensor, Any]]: """ Args: x: an initial condition. has shape (B, n_history_levels, len(in_channel_names), Y, X). (Y, X) should be consistent with ``grid``. time: the datetime to start with restart: if provided this restart information (typically some torch Tensor) can be used to restart the time loop Yields: (time, output, restart) tuples. ``output`` is a tensor with shape (B, len(out_channel_names), Y, X) which will be used for diagnostics. Restart data should encode the state of the time loop. """ if restart: yield from self._iterate(**restart) else: yield from self._iterate(x=x, time=time, n=None, normalize=normalize) def run_steps_with_restart(self, x, n, normalize=True, time=None): warnings.warn( DeprecationWarning( ".run_steps_with_restart does not follow the TimeLoop API. It will be removed soon." # noqa ) ) x = x[:, :, self.channels] yield from self._iterate(x, n, normalize=normalize, time=time) def _iterate(self, x, n, normalize=True, time=None): """Yield (time, unnormalized data, restart) tuples restart = (time, unnormalized data) """ if self.time_dependent and not time: raise ValueError("Time dependent models require ``time``.") time = time or datetime.datetime(1900, 1, 1) with torch.no_grad(): # drop all but the last time point # remove channels _, n_time_levels, n_channels, _, _ = x.shape assert n_time_levels == self.n_history + 1 if normalize: x = (x - self.center) / self.scale # yield initial time for convenience restart = dict(x=x, normalize=False, time=time) yield time, self.scale * x[:, -1] + self.center, restart for i in range(n) if n else itertools.count(): x = self.model(x, time) time = time + self.time_step # create args and kwargs for future use restart = dict(x=x, normalize=False, time=time) out = self.scale * x[:, -1] + self.center yield time, out, restart def _default_inference(package, metadata, device): if metadata.architecture == "pickle": loader = loaders.pickle elif metadata.architecture_entrypoint: ep = EntryPoint(name=None, group=None, value=metadata.architecture_entrypoint) loader: LoaderProtocol = ep.load() else: raise NotImplementedError() model = loader(package, pretrained=True) center_path = package.get("global_means.npy") scale_path = package.get("global_stds.npy") inference = Inference( model=model, channels=metadata.in_channels, center=np.load(center_path), scale=np.load(scale_path), grid=metadata.grid, channel_set=metadata.channel_set, n_history=metadata.n_history, time_step=metadata.time_step, ) inference.to(device) return inference def _load_package(package, metadata, device) -> time_loop.TimeLoop: if metadata is None: local_path = package.get("metadata.json") with open(local_path) as f: metadata = schema.Model.parse_raw(f.read()) if metadata.entrypoint: ep = EntryPoint(name=None, group=None, value=metadata.entrypoint.name) inference_loader = ep.load() return inference_loader(package, device=device, **metadata.entrypoint.kwargs) else: warnings.warn("No loading entry point found, using default inferencer") return _default_inference(package, metadata, device=device) def get_model( model: str, registry: ModelRegistry = registry, device="cpu", metadata: Optional[schema.Model] = None, ) -> time_loop.TimeLoop: """ Function to construct an inference model and load the appropriate checkpoints from the model registry Parameters ---------- model : The model name to open in the ``registry``. If a url is passed (e.g. s3://bucket/model), then this location will be opened directly. Supported urls protocols include s3:// for PBSS access, and file:// for local files. registry: A model registry object. Defaults to the global model registry metadata: If provided, this model metadata will be used to load the model. By default this will be loaded from the file ``metadata.json`` in the model package. device: the device to load on, by default the 'cpu' Returns ------- Inference model """ url = urllib.parse.urlparse(model) if url.scheme == "": package = registry.get_model(model) else: package = model_registry.Package(root=model, seperator="/") return _load_package(package, metadata, device) class Identity(torch.nn.Module): def forward(self, x): return x def persistence(package, pretrained=True): model = Identity() center = np.zeros((3)) scale = np.zeros((3)) grid = schema.Grid.grid_721x1440 return Inference( model, channel_names=["a", "b", "c"], center=center, scale=scale, grid=grid, n_history=0, )
earth2mip-main
earth2mip/networks/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FCN v2 Small adapter This model is an outdated version of FCN v2 (SFNO), a more recent one is present in Modulus. """ from typing import List import logging import os import datetime import torch import json import pathlib import numpy as np import onnxruntime as ort import dataclasses from earth2mip import registry, schema, networks, config, initial_conditions, geometry from modulus.models.fcn_mip_plugin import _fix_state_dict_keys # TODO: Update to new arch in Modulus! import earth2mip.networks.fcnv2 as fcnv2 def load(package, *, pretrained=True, device="cuda"): assert pretrained config_path = pathlib.Path(__file__).parent / "fcnv2" / "sfnonet.yaml" params = fcnv2.YParams(config_path.as_posix(), "sfno_73ch") params.img_crop_shape_x = 721 params.img_crop_shape_y = 1440 params.N_in_channels = 73 params.N_out_channels = 73 core_model = fcnv2.FourierNeuralOperatorNet(params).to(device) local_center = np.load(package.get("global_means.npy")) local_std = np.load(package.get("global_stds.npy")) weights_path = package.get("weights.tar") weights = torch.load(weights_path, map_location=device) fixed_weights = _fix_state_dict_keys(weights["model_state"], add_module=False) core_model.load_state_dict(fixed_weights) grid = schema.Grid.grid_721x1440 channel_set = schema.ChannelSet.var73 dt = datetime.timedelta(hours=6) inference = networks.Inference( core_model, channels=None, center=local_center, scale=local_std, grid=grid, channel_names=channel_set.list_channels(), channel_set=channel_set, time_step=dt, ) inference.to(device) return inference
earth2mip-main
earth2mip/networks/fcnv2_sm.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pangu Weather adapter adapted from https://raw.githubusercontent.com/ecmwf-lab/ai-models-panguweather/main/ai_models_panguweather/model.py # (C) Copyright 2023 European Centre for Medium-Range Weather Forecasts. # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. """ # %% from typing import List import logging import os import datetime import torch import numpy as np import onnxruntime as ort import dataclasses from earth2mip import registry, schema, networks, config, initial_conditions, geometry class PanguWeather: # Download download_url = ( "https://get.ecmwf.int/repository/test-data/ai-models/pangu-weather/{file}" ) download_files = ["pangu_weather_24.onnx", "pangu_weather_6.onnx"] # Input area = [90, 0, -90, 360] grid = [0.25, 0.25] param_sfc = ["msl", "u10m", "v10m", "t2m"] param_level_pl = ( ["z", "q", "t", "u", "v"], [1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50], ) # Output expver = "pguw" # providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] def __init__(self, path): self.path = path options = ort.SessionOptions() options.enable_cpu_mem_arena = False options.enable_mem_pattern = False options.enable_mem_reuse = False options.intra_op_num_threads = 1 pangu_weather = self.path # That will trigger a FileNotFoundError self.device_index = torch.cuda.current_device() os.stat(self.path) providers = [ ( "CUDAExecutionProvider", { "device_id": self.device_index, }, ) ] self.ort_session = ort.InferenceSession( self.path, sess_options=options, providers=providers, ) def __call__(self, fields_pl, fields_sfc): assert fields_pl.dtype == torch.float32 assert fields_sfc.dtype == torch.float32 # from https://onnxruntime.ai/docs/api/python/api_summary.html binding = self.ort_session.io_binding() def bind_input(name, x): x = x.contiguous() binding.bind_input( name=name, device_type="cuda", device_id=self.device_index, element_type=np.float32, shape=tuple(x.shape), buffer_ptr=x.data_ptr(), ) def bind_output(name, like): x = torch.empty_like(like).contiguous() binding.bind_output( name=name, device_type="cuda", device_id=self.device_index, element_type=np.float32, shape=tuple(x.shape), buffer_ptr=x.data_ptr(), ) return x bind_input("input", fields_pl) bind_input("input_surface", fields_sfc) output = bind_output("output", like=fields_pl) output_sfc = bind_output("output_surface", like=fields_sfc) self.ort_session.run_with_iobinding(binding) return output, output_sfc class PanguStacked: def __init__(self, model: PanguWeather): self.model = model def channel_names(self): variables, levels = self.model.param_level_pl names = [] for v in variables: for lev in levels: names.append(v + str(lev)) for v in self.model.param_sfc: names.append(v) return names def __call__(self, x): return self.forward(x) def to(self): pass def forward(self, x): assert x.shape[0] == 1 assert x.shape[1] == len(self.channel_names()) pl_shape = (5, 13, 721, 1440) nchan = pl_shape[0] * pl_shape[1] pl = x[:, :nchan] surface = x[:, nchan:] pl = pl.resize(*pl_shape) sl = surface[0] plo, slo = self.model(pl, sl) return torch.cat( [ plo.resize(1, nchan, 721, 1440), slo.resize(1, x.size(1) - nchan, 721, 1440), ], dim=1, ) class PanguInference(torch.nn.Module): n_history_levels = 1 time_step = datetime.timedelta(hours=6) def __init__(self, model_6: PanguStacked, model_24: PanguStacked): super().__init__() self.model_6 = model_6 self.model_24 = model_24 self.channels = None def to(self, device): return self def cuda(self, device=None): return self @property def in_channel_names(self): return self.channel_names @property def out_channel_names(self): return self.channel_names @property def grid(self): return schema.Grid.grid_721x1440 @property def channel_set(self): return schema.ChannelSet.var_pangu @property def channel_names(self): return schema.ChannelSet.var_pangu.list_channels() @property def n_history(self): return 0 def normalize(self, x): # No normalization for pangu return x def run_steps_with_restart(self, x, n, normalize=True, time=None): """Yield (time, unnormalized data, restart) tuples restart = (time, unnormalized data) """ assert normalize, "normalize=False not supported" # do not implement restart capability restart_data = None for k, data in enumerate(self(time, x)): yield data if k == n: break yield from self.__call__(time, x) def __call__(self, time, x, restart=None): """Yield (time, unnormalized data, restart) tuples restart = (time, unnormalized data) """ if restart: raise NotImplementedError("Restart capability not implemented.") # do not implement restart capability restart_data = None with torch.no_grad(): x0 = x[:, -1].clone() yield time, x0, restart_data time0 = time while True: x1 = x0 time1 = time0 for i in range(3): time1 += datetime.timedelta(hours=6) x1 = self.model_6(x1) yield time1, x1, restart_data time0 += datetime.timedelta(hours=24) x0 = self.model_24(x0) yield time0, x0, restart_data def load(package, *, pretrained=True, device="doesn't matter"): """Load the sub-stepped pangu weather inference""" assert pretrained p6 = package.get("pangu_weather_6.onnx") p24 = package.get("pangu_weather_24.onnx") model_6 = PanguStacked(PanguWeather(p6)) model_24 = PanguStacked(PanguWeather(p24)) return PanguInference(model_6, model_24) def load_single_model( package, *, time_step_hours: int = 24, pretrained=True, device="cuda:0" ): """Load a single time-step pangu weather""" assert pretrained with torch.cuda.device(device): if time_step_hours == 6: p = package.get("pangu_weather_6.onnx") elif time_step_hours == 24: p = package.get("pangu_weather_24.onnx") else: raise ValueError(f"time_step_hours must be 6 or 24, got {time_step_hours}") model = PanguStacked(PanguWeather(p)) channel_names = model.channel_names() center = np.zeros([len(channel_names)]) scale = np.ones([len(channel_names)]) grid = schema.Grid.grid_721x1440 dt = datetime.timedelta(hours=time_step_hours) inference = networks.Inference( model, channels=None, center=center, scale=scale, grid=grid, channel_names=channel_names, channel_set=schema.ChannelSet.var_pangu, time_step=dt, ) inference.to(device) return inference
earth2mip-main
earth2mip/networks/pangu.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn class ComplexReLU(nn.Module): def __init__(self, negative_slope=0.0, mode="cartesian", bias_shape=None): super(ComplexReLU, self).__init__() # store parameters self.mode = mode if self.mode in ["modulus", "halfplane"]: if bias_shape is not None: self.bias = nn.Parameter(torch.zeros(bias_shape, dtype=torch.float32)) else: self.bias = nn.Parameter(torch.zeros((1), dtype=torch.float32)) else: bias = torch.zeros((1), dtype=torch.float32) self.register_buffer("bias", bias) self.negative_slope = negative_slope self.act = nn.LeakyReLU(negative_slope=negative_slope) def forward(self, z: torch.Tensor) -> torch.Tensor: if self.mode == "cartesian": zr = torch.view_as_real(z) za = self.act(zr) out = torch.view_as_complex(za) elif self.mode == "modulus": zabs = torch.sqrt(torch.square(z.real) + torch.square(z.imag)) out = self.act(zabs + self.bias) * torch.exp(1.0j * z.angle()) elif self.mode == "halfplane": # bias is an angle parameter in this case modified_angle = torch.angle(z) - self.bias condition = torch.logical_and( (0.0 <= modified_angle), (modified_angle < torch.pi / 2.0) ) out = torch.where(condition, z, self.negative_slope * z) elif self.mode == "real": zr = torch.view_as_real(z) outr = zr.clone() outr[..., 0] = self.act(zr[..., 0]) out = torch.view_as_complex(outr) else: # identity out = z return out class ComplexActivation(nn.Module): def __init__(self, activation, mode="cartesian", bias_shape=None): super(ComplexActivation, self).__init__() # store parameters self.mode = mode if self.mode == "modulus": if bias_shape is not None: self.bias = nn.Parameter(torch.zeros(bias_shape, dtype=torch.float32)) else: self.bias = nn.Parameter(torch.zeros((1), dtype=torch.float32)) else: bias = torch.zeros((1), dtype=torch.float32) self.register_buffer("bias", bias) # real valued activation self.act = activation def forward(self, z: torch.Tensor) -> torch.Tensor: if self.mode == "cartesian": zr = torch.view_as_real(z) za = self.act(zr) out = torch.view_as_complex(za) elif self.mode == "modulus": zabs = torch.sqrt(torch.square(z.real) + torch.square(z.imag)) out = self.act(zabs + self.bias) * torch.exp(1.0j * z.angle()) else: # identity out = z return out
earth2mip-main
earth2mip/networks/fcnv2/activations.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .yparams import YParams from .sfnonet import FourierNeuralOperatorNet
earth2mip-main
earth2mip/networks/fcnv2/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from functools import partial import torch import torch.nn as nn from torch_harmonics import * class Preprocessor2D(nn.Module): def __init__(self, params, img_size=(720, 1440)): super(Preprocessor2D, self).__init__() self.n_history = params.n_history self.transform_to_nhwc = params.enable_nhwc # self.poltor_decomp = params.poltor_decomp # self.img_size = (params.img_shape_x, params.img_shape_y) if hasattr(params, "img_shape_x") and hasattr(params, "img_shape_y") else img_size # self.input_grid = "equiangular" # self.output_grid = "equiangular" # process static features static_features = None # needed for sharding start_x = params.img_local_offset_x end_x = start_x + params.img_local_shape_x start_y = params.img_local_offset_y end_y = start_y + params.img_local_shape_y if params.add_grid: tx = torch.linspace(0, 1, params.img_shape_x + 1, dtype=torch.float32)[0:-1] ty = torch.linspace(0, 1, params.img_shape_y + 1, dtype=torch.float32)[0:-1] x_grid, y_grid = torch.meshgrid(tx, ty, indexing="ij") x_grid, y_grid = x_grid.unsqueeze(0).unsqueeze(0), y_grid.unsqueeze( 0 ).unsqueeze(0) grid = torch.cat([x_grid, y_grid], dim=1) # now shard: grid = grid[:, :, start_x:end_x, start_y:end_y] static_features = grid # self.register_buffer("grid", grid) if params.add_orography: from utils.conditioning_inputs import get_orography oro = torch.tensor( get_orography(params.orography_path), dtype=torch.float32 ) oro = torch.reshape(oro, (1, 1, oro.shape[0], oro.shape[1])) # shard oro = oro[:, :, start_x:end_x, start_y:end_y] if static_features is None: static_features = oro else: static_features = torch.cat([static_features, oro], dim=1) if params.add_landmask: from utils.conditioning_inputs import get_land_mask lsm = torch.tensor(get_land_mask(params.landmask_path), dtype=torch.long) # one hot encode and move channels to front: lsm = torch.permute(torch.nn.functional.one_hot(lsm), (2, 0, 1)).to( torch.float32 ) lsm = torch.reshape(lsm, (1, lsm.shape[0], lsm.shape[1], lsm.shape[2])) # shard lsm = lsm[:, :, start_x:end_x, start_y:end_y] if static_features is None: static_features = lsm else: static_features = torch.cat([static_features, lsm], dim=1) self.add_static_features = False if static_features is not None: self.add_static_features = True self.register_buffer("static_features", static_features) # if self.poltor_decomp: # assert(hasattr(params, 'wind_channels')) # wind_channels = torch.as_tensor(params.wind_channels) # self.register_buffer("wind_channels", wind_channels) # self.forward_transform = RealVectorSHT(*self.img_size, grid=self.input_grid).float() # self.inverse_transform = InverseRealSHT(*self.img_size, grid=self.output_grid).float() def _flatten_history(self, x, y): # flatten input if x.dim() == 5: b_, t_, c_, h_, w_ = x.shape x = torch.reshape(x, (b_, t_ * c_, h_, w_)) # flatten target if (y is not None) and (y.dim() == 5): b_, t_, c_, h_, w_ = y.shape y = torch.reshape(y, (b_, t_ * c_, h_, w_)) return x, y def _add_static_features(self, x, y): # we need to replicate the grid for each batch: static = torch.tile(self.static_features, dims=(x.shape[0], 1, 1, 1)) x = torch.cat([x, static], dim=1) return x, y def _nchw_to_nhwc(self, x, y): x = x.to(memory_format=torch.channels_last) if y is not None: y = y.to(memory_format=torch.channels_last) return x, y def append_history(self, x1, x2): # without history, just return the second tensor # with grid if requested if self.n_history == 0: return x2 # if grid is added, strip it off first if self.add_static_features: nfeat = self.static_features.shape[1] x1 = x1[:, :-nfeat, :, :] # this is more complicated if x1.dim() == 4: b_, c_, h_, w_ = x1.shape x1 = torch.reshape( x1, (b_, (self.n_history + 1), c_ // (self.n_history + 1), h_, w_) ) if x2.dim() == 4: b_, c_, h_, w_ = x2.shape x2 = torch.reshape(x2, (b_, 1, c_, h_, w_)) # append res = torch.cat([x1[:, 1:, :, :, :], x2], dim=1) # flatten again b_, t_, c_, h_, w_ = res.shape res = torch.reshape(res, (b_, t_ * c_, h_, w_)) return res # def _poltor_decompose(self, x, y): # b_, c_, h_, w_ = x.shape # xu = x[:, self.wind_channels, :, :] # xu = xu.reshape(b_, -1, 2, h_, w_) # xu = self.inverse_transform(self.forward_transform(xu)) # xu = xu.reshape(b_, -1, h_, w_) # x[:, self.wind_channels, :, :] = xu # return x, y # forward method for additional variable fiels in x and y, # for example zenith angle: # def forward(self, x, y, xz, yz): # x = torch.cat([x, xz], dim=2) # # return x, y def append_channels(self, x, xc): if x.dim() == 4: b_, c_, h_, w_ = x.shape x = torch.reshape( x, (b_, (self.n_history + 1), c_ // (self.n_history + 1), h_, w_) ) xo = torch.cat([x, xc], dim=2) if x.dim() == 4: xo, _ = self._flatten_history(xo, None) return xo def forward(self, x, y=None, xz=None, yz=None): if xz is not None: x = self.append_channels(x, xz) return self._forward(x, y) def _forward(self, x, y): # we always want to flatten the history, even if its a singleton x, y = self._flatten_history(x, y) if self.add_static_features: x, y = self._add_static_features(x, y) # if self.poltor_decomp: # x, y = self._poltor_decompose(x, y) if self.transform_to_nhwc: x, y = self._nchw_to_nhwc(x, y) return x, y def get_preprocessor(params): return Preprocessor2D(params)
earth2mip-main
earth2mip/networks/fcnv2/preprocessor.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ruamel.yaml import YAML import logging class YParams: """Yaml file parser""" def __init__(self, yaml_filename, config_name, print_params=False): self._yaml_filename = yaml_filename self._config_name = config_name self.params = {} if print_params: print("------------------ Configuration ------------------") with open(yaml_filename) as _file: for key, val in YAML().load(_file)[config_name].items(): if print_params: print(key, val) if val == "None": val = None self.params[key] = val self.__setattr__(key, val) if print_params: print("---------------------------------------------------") def __getitem__(self, key): return self.params[key] def __setitem__(self, key, val): self.params[key] = val self.__setattr__(key, val) def __contains__(self, key): return key in self.params def update_params(self, config): for key, val in config.items(): self.params[key] = val self.__setattr__(key, val) def log(self): logging.info("------------------ Configuration ------------------") logging.info("Configuration file: " + str(self._yaml_filename)) logging.info("Configuration name: " + str(self._config_name)) for key, val in self.params.items(): logging.info(str(key) + " " + str(val)) logging.info("---------------------------------------------------")
earth2mip-main
earth2mip/networks/fcnv2/yparams.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from collections import OrderedDict from copy import Error, deepcopy from re import S from numpy.lib.arraypad import pad import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.fft from torch.nn.modules.container import Sequential from torch.utils.checkpoint import checkpoint, checkpoint_sequential from torch.cuda import amp from typing import Optional import math from torch_harmonics import * from earth2mip.networks.fcnv2.contractions import * from earth2mip.networks.fcnv2.activations import * def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2, ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.0)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) @torch.jit.script def drop_path( x: torch.Tensor, drop_prob: float = 0.0, training: bool = False ) -> torch.Tensor: """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return x keep_prob = 1.0 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2d ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class PatchEmbed(nn.Module): def __init__( self, img_size=(224, 224), patch_size=(16, 16), in_chans=3, embed_dim=768 ): super(PatchEmbed, self).__init__() num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size ) def forward(self, x): # gather input B, C, H, W = x.shape assert ( H == self.img_size[0] and W == self.img_size[1] ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # new: B, C, H*W x = self.proj(x).flatten(2) return x class MLP(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, output_bias=True, drop_rate=0.0, checkpointing=False, ): super(MLP, self).__init__() self.checkpointing = checkpointing out_features = out_features or in_features hidden_features = hidden_features or in_features fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True) act = act_layer() fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=output_bias) if drop_rate > 0.0: drop = nn.Dropout(drop_rate) self.fwd = nn.Sequential(fc1, act, drop, fc2, drop) else: self.fwd = nn.Sequential(fc1, act, fc2) @torch.jit.ignore def checkpoint_forward(self, x): return checkpoint(self.fwd, x) def forward(self, x): if self.checkpointing: return self.checkpoint_forward(x) else: return self.fwd(x) class RealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax=None, mmax=None): super(RealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 self.num_batches = 1 assert self.lmax % 2 == 0 def forward(self, x): # do batched FFT xs = torch.split(x, x.shape[1] // self.num_batches, dim=1) ys = [] for xt in xs: yt = torch.fft.rfft2(xt, dim=(-2, -1), norm="ortho") ys.append( torch.cat( ( yt[..., : math.ceil(self.lmax / 2), : self.mmax], yt[..., -math.floor(self.lmax / 2) :, : self.mmax], ), dim=-2, ) ) # connect y = torch.cat(ys, dim=1).contiguous() # y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho") # y = torch.cat((y[..., :math.ceil(self.lmax/2), :self.mmax], y[..., -math.floor(self.lmax/2):, :self.mmax]), dim=-2) return y class InverseRealFFT2(nn.Module): """ Helper routine to wrap FFT similarly to the SHT """ def __init__(self, nlat, nlon, lmax=None, mmax=None): super(InverseRealFFT2, self).__init__() self.nlat = nlat self.nlon = nlon self.lmax = lmax or self.nlat self.mmax = mmax or self.nlon // 2 + 1 self.num_batches = 1 def forward(self, x): # do batched FFT xs = torch.split(x, x.shape[1] // self.num_batches, dim=1) ys = [] for xt in xs: ys.append( torch.fft.irfft2( xt, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho" ) ) out = torch.cat(ys, dim=1).contiguous() # out = torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho") return out class SpectralConv2d(nn.Module): """ Spectral Convolution as utilized in """ def __init__( self, forward_transform, inverse_transform, hidden_size, sparsity_threshold=0.0, hard_thresholding_fraction=1, use_complex_kernels=False, compression=None, rank=0, bias=False, ): super(SpectralConv2d, self).__init__() self.hidden_size = hidden_size self.sparsity_threshold = sparsity_threshold self.hard_thresholding_fraction = hard_thresholding_fraction self.scale = 1 / hidden_size**2 self.contract_handle = ( compl_contract2d_fwd_c if use_complex_kernels else compl_contract2d_fwd ) self.forward_transform = forward_transform self.inverse_transform = inverse_transform self.output_dims = (self.inverse_transform.nlat, self.inverse_transform.nlon) modes_lat = self.inverse_transform.lmax modes_lon = self.inverse_transform.mmax self.modes_lat = int(modes_lat * self.hard_thresholding_fraction) self.modes_lon = int(modes_lon * self.hard_thresholding_fraction) # new simple linear layer self.w = nn.Parameter( self.scale * torch.randn( self.hidden_size, self.hidden_size, self.modes_lat, self.modes_lon, 2 ) ) # optional bias if bias: self.b = nn.Parameter( self.scale * torch.randn(1, self.hidden_size, *self.output_dims) ) def forward(self, x): dtype = x.dtype # x = x.float() B, C, H, W = x.shape with amp.autocast(enabled=False): x = x.to(torch.float32) x = self.forward_transform(x) x = torch.view_as_real(x) x = x.to(dtype) # do spectral conv modes = torch.zeros(x.shape, device=x.device) # modes[:, :, :self.modes_lat, :self.modes_lon, :] = self.contract_handle(x[:, :, :self.modes_lat, :self.modes_lon, :], self.wh) # modes[:, :, -self.modes_lat:, :self.modes_lon, :] = self.contract_handle(x[:, :, -self.modes_lat:, :self.modes_lon, :], self.wl) modes = self.contract_handle(x, self.w) # finalize x = F.softshrink(modes, lambd=self.sparsity_threshold) x = torch.view_as_complex(x) with amp.autocast(enabled=False): x = x.to(torch.float32) x = torch.view_as_complex(x) x = self.inverse_transform(x) x = x.to(dtype) if hasattr(self, "b"): x = x + self.b return x class SpectralConvS2(nn.Module): """ Spectral Convolution as utilized in """ def __init__( self, forward_transform, inverse_transform, hidden_size, sparsity_threshold=0.0, use_complex_kernels=False, compression=None, rank=128, bias=False, ): super(SpectralConvS2, self).__init__() self.hidden_size = hidden_size self.sparsity_threshold = sparsity_threshold self.scale = 0.02 self.forward_transform = forward_transform self.inverse_transform = inverse_transform self.modes_lat = self.forward_transform.lmax self.modes_lon = self.forward_transform.mmax assert self.inverse_transform.lmax == self.modes_lat assert self.inverse_transform.mmax == self.modes_lon # remember the lower triangular indices ii, jj = torch.tril_indices(self.modes_lat, self.modes_lon) self.register_buffer("ii", ii) self.register_buffer("jj", jj) if compression == "tt": self.rank = rank # tensortrain coefficients g1 = nn.Parameter(self.scale * torch.randn(self.hidden_size, self.rank, 2)) g2 = nn.Parameter( self.scale * torch.randn(self.rank, self.hidden_size, self.rank, 2) ) g3 = nn.Parameter(self.scale * torch.randn(self.rank, len(ii), 2)) self.w = nn.ParameterList([g1, g2, g3]) self.contract_handle = ( contract_tt # if use_complex_kernels else raise(NotImplementedError) ) else: self.w = nn.Parameter( self.scale * torch.randn(self.hidden_size, self.hidden_size, len(ii), 2) ) self.contract_handle = ( compl_contract_fwd_c if use_complex_kernels else compl_contract_fwd ) if bias: self.b = nn.Parameter( self.scale * torch.randn(1, self.hidden_size, *self.output_dims) ) def forward(self, x): dtype = x.dtype # x = x.float() B, C, H, W = x.shape with amp.autocast(enabled=False): x = x.to(torch.float32) x = self.forward_transform(x) x = torch.view_as_real(x) x = x.to(dtype) # do spectral conv modes = torch.zeros(x.shape, device=x.device) modes[:, :, self.ii, self.jj, :] = self.contract_handle( x[:, :, self.ii, self.jj, :], self.w ) # finalize x = F.softshrink(modes, lambd=self.sparsity_threshold) with amp.autocast(enabled=False): x = x.to(torch.float32) x = torch.view_as_complex(x) x = self.inverse_transform(x) x = x.to(dtype) if hasattr(self, "b"): x = x + self.b return x class SpectralAttention2d(nn.Module): """ 2d Spectral Attention layer """ def __init__( self, forward_transform, inverse_transform, embed_dim, sparsity_threshold=0.0, hidden_size_factor=2, use_complex_network=True, use_complex_kernels=False, complex_activation="real", bias=False, spectral_layers=1, drop_rate=0.0, ): super(SpectralAttention2d, self).__init__() self.embed_dim = embed_dim self.sparsity_threshold = sparsity_threshold self.hidden_size = int(hidden_size_factor * self.embed_dim) self.scale = 0.02 self.spectral_layers = spectral_layers self.mul_add_handle = ( compl_muladd2d_fwd_c if use_complex_kernels else compl_muladd2d_fwd ) self.mul_handle = compl_mul2d_fwd_c if use_complex_kernels else compl_mul2d_fwd self.modes_lat = forward_transform.lmax self.modes_lon = forward_transform.mmax # only storing the forward handle to be able to call it self.forward_transform = forward_transform.forward self.inverse_transform = inverse_transform.forward assert inverse_transform.lmax == self.modes_lat assert inverse_transform.mmax == self.modes_lon # weights w = [self.scale * torch.randn(self.embed_dim, self.hidden_size, 2)] # w = [self.scale * torch.randn(self.embed_dim + 2*self.embed_freqs, self.hidden_size, 2)] # w = [self.scale * torch.randn(self.embed_dim + 4*self.embed_freqs, self.hidden_size, 2)] for l in range(1, self.spectral_layers): w.append(self.scale * torch.randn(self.hidden_size, self.hidden_size, 2)) self.w = nn.ParameterList(w) if bias: self.b = nn.ParameterList( [ self.scale * torch.randn(self.hidden_size, 1, 2) for _ in range(self.spectral_layers) ] ) self.wout = nn.Parameter( self.scale * torch.randn(self.hidden_size, self.embed_dim, 2) ) self.drop = nn.Dropout(drop_rate) if drop_rate > 0.0 else nn.Identity() self.activation = ComplexReLU( mode=complex_activation, bias_shape=(self.hidden_size, 1, 1) ) def forward_mlp(self, xr): for l in range(self.spectral_layers): if hasattr(self, "b"): xr = self.mul_add_handle( xr, self.w[l].to(xr.dtype), self.b[l].to(xr.dtype) ) else: xr = self.mul_handle(xr, self.w[l].to(xr.dtype)) xr = torch.view_as_complex(xr) xr = self.activation(xr) xr = self.drop(xr) xr = torch.view_as_real(xr) xr = self.mul_handle(xr, self.wout) return xr def forward(self, x): dtype = x.dtype # x = x.to(torch.float32) # FWD transform with amp.autocast(enabled=False): x = x.to(torch.float32) x = self.forward_transform(x) x = torch.view_as_real(x) # MLP x = self.forward_mlp(x) # BWD transform with amp.autocast(enabled=False): x = torch.view_as_complex(x) x = self.inverse_transform(x) x = x.to(dtype) return x class SpectralAttentionS2(nn.Module): """ geometrical Spectral Attention layer """ def __init__( self, forward_transform, inverse_transform, embed_dim, sparsity_threshold=0.0, hidden_size_factor=2, use_complex_network=True, use_complex_kernels=False, complex_activation="real", bias=False, spectral_layers=1, drop_rate=0.0, ): super(SpectralAttentionS2, self).__init__() self.embed_dim = embed_dim self.sparsity_threshold = sparsity_threshold self.hidden_size = int(hidden_size_factor * self.embed_dim) self.scale = 0.02 # self.mul_add_handle = compl_muladd1d_fwd_c if use_complex_kernels else compl_muladd1d_fwd self.mul_add_handle = ( compl_muladd2d_fwd_c if use_complex_kernels else compl_muladd2d_fwd ) # self.mul_handle = compl_mul1d_fwd_c if use_complex_kernels else compl_mul1d_fwd self.mul_handle = compl_mul2d_fwd_c if use_complex_kernels else compl_mul2d_fwd self.spectral_layers = spectral_layers self.modes_lat = forward_transform.lmax self.modes_lon = forward_transform.mmax # only storing the forward handle to be able to call it self.forward_transform = forward_transform.forward self.inverse_transform = inverse_transform.forward assert inverse_transform.lmax == self.modes_lat assert inverse_transform.mmax == self.modes_lon # weights w = [self.scale * torch.randn(self.embed_dim, self.hidden_size, 2)] # w = [self.scale * torch.randn(self.embed_dim + 4*self.embed_freqs, self.hidden_size, 2)] for l in range(1, self.spectral_layers): w.append(self.scale * torch.randn(self.hidden_size, self.hidden_size, 2)) self.w = nn.ParameterList(w) if bias: self.b = nn.ParameterList( [ self.scale * torch.randn(2 * self.hidden_size, 1, 1, 2) for _ in range(self.spectral_layers) ] ) self.wout = nn.Parameter( self.scale * torch.randn(self.hidden_size, self.embed_dim, 2) ) self.drop = nn.Dropout(drop_rate) if drop_rate > 0.0 else nn.Identity() self.activation = ComplexReLU( mode=complex_activation, bias_shape=(self.hidden_size, 1, 1) ) def forward_mlp(self, xr): for l in range(self.spectral_layers): if hasattr(self, "b"): xr = self.mul_add_handle( xr, self.w[l].to(xr.dtype), self.b[l].to(xr.dtype) ) else: xr = self.mul_handle(xr, self.w[l].to(xr.dtype)) xr = torch.view_as_complex(xr) xr = self.activation(xr) xr = self.drop(xr) xr = torch.view_as_real(xr) # final MLP xr = self.mul_handle(xr, self.wout) return xr def forward(self, x): dtype = x.dtype # x = x.to(torch.float32) # FWD transform with amp.autocast(enabled=False): x = x.to(torch.float32) x = self.forward_transform(x) x = torch.view_as_real(x) # MLP x = self.forward_mlp(x) # BWD transform with amp.autocast(enabled=False): x = torch.view_as_complex(x) x = self.inverse_transform(x) x = x.to(dtype) return x
earth2mip-main
earth2mip/networks/fcnv2/layers.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint from apex.normalization import FusedLayerNorm from torch.utils.checkpoint import checkpoint # helpers from earth2mip.networks.fcnv2.layers import trunc_normal_, DropPath, MLP from earth2mip.networks.fcnv2.layers import SpectralAttentionS2, SpectralConvS2 from earth2mip.networks.fcnv2.layers import SpectralAttention2d, SpectralConv2d import torch_harmonics as harmonics # to fake the sht module with ffts from earth2mip.networks.fcnv2.layers import RealFFT2, InverseRealFFT2 from earth2mip.networks.fcnv2.contractions import * # from earth2mip.networks.fcnv2 import activations from earth2mip.networks.fcnv2.activations import * class SpectralFilterLayer(nn.Module): def __init__( self, forward_transform, inverse_transform, embed_dim, filter_type="linear", sparsity_threshold=0.0, use_complex_kernels=True, hidden_size_factor=2, compression=None, rank=128, complex_network=True, complex_activation="real", spectral_layers=1, drop_rate=0.0, ): super(SpectralFilterLayer, self).__init__() if filter_type == "non-linear" and isinstance( forward_transform, harmonics.RealSHT ): self.filter = SpectralAttentionS2( forward_transform, inverse_transform, embed_dim, sparsity_threshold, use_complex_network=complex_network, use_complex_kernels=use_complex_kernels, hidden_size_factor=hidden_size_factor, complex_activation=complex_activation, spectral_layers=spectral_layers, drop_rate=drop_rate, bias=False, ) elif filter_type == "non-linear" and isinstance(forward_transform, RealFFT2): self.filter = SpectralAttention2d( forward_transform, inverse_transform, embed_dim, sparsity_threshold, use_complex_kernels=use_complex_kernels, hidden_size_factor=hidden_size_factor, complex_activation=complex_activation, spectral_layers=spectral_layers, drop_rate=drop_rate, bias=False, ) elif filter_type == "linear" and isinstance(forward_transform, RealSHT): self.filter = SpectralConvS2( forward_transform, inverse_transform, embed_dim, sparsity_threshold, use_complex_kernels=use_complex_kernels, compression=compression, rank=rank, bias=False, ) elif filter_type == "linear" and isinstance(forward_transform, RealFFT2): self.filter = SpectralConv2d( forward_transform, inverse_transform, embed_dim, sparsity_threshold, use_complex_kernels=use_complex_kernels, compression=compression, rank=rank, bias=False, ) else: raise (NotImplementedError) def forward(self, x): return self.filter(x) class FourierNeuralOperatorBlock(nn.Module): def __init__( self, forward_transform, inverse_transform, embed_dim, filter_type="linear", mlp_ratio=2.0, drop_rate=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=(nn.LayerNorm, nn.LayerNorm), # num_blocks = 8, sparsity_threshold=0.0, use_complex_kernels=True, compression=None, rank=128, inner_skip="linear", outer_skip=None, # None, nn.linear or nn.Identity concat_skip=False, mlp_mode="none", complex_network=True, complex_activation="real", spectral_layers=1, checkpointing=False, ): super(FourierNeuralOperatorBlock, self).__init__() # norm layer self.norm0 = norm_layer[0]() # ((h,w)) # convolution layer self.filter_layer = SpectralFilterLayer( forward_transform, inverse_transform, embed_dim, filter_type, sparsity_threshold, use_complex_kernels=use_complex_kernels, hidden_size_factor=mlp_ratio, compression=compression, rank=rank, complex_network=complex_network, complex_activation=complex_activation, spectral_layers=spectral_layers, drop_rate=drop_rate, ) if inner_skip == "linear": self.inner_skip = nn.Conv2d(embed_dim, embed_dim, 1, 1) elif inner_skip == "identity": self.inner_skip = nn.Identity() self.concat_skip = concat_skip if concat_skip and inner_skip is not None: self.inner_skip_conv = nn.Conv2d(2 * embed_dim, embed_dim, 1, bias=False) if filter_type == "linear": self.act_layer = act_layer() # dropout self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() # norm layer self.norm1 = norm_layer[1]() # ((h,w)) if mlp_mode != "none": mlp_hidden_dim = int(embed_dim * mlp_ratio) self.mlp = MLP( in_features=embed_dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop_rate=drop_rate, checkpointing=checkpointing, ) if outer_skip == "linear": self.outer_skip = nn.Conv2d(embed_dim, embed_dim, 1, 1) elif outer_skip == "identity": self.outer_skip = nn.Identity() if concat_skip and outer_skip is not None: self.outer_skip_conv = nn.Conv2d(2 * embed_dim, embed_dim, 1, bias=False) def forward(self, x): residual = x x = self.norm0(x) x = self.filter_layer(x).contiguous() if hasattr(self, "inner_skip"): if self.concat_skip: x = torch.cat((x, self.inner_skip(residual)), dim=1) x = self.inner_skip_conv(x) else: x = x + self.inner_skip(residual) if hasattr(self, "act_layer"): x = self.act_layer(x) x = self.norm1(x) if hasattr(self, "mlp"): x = self.mlp(x) x = self.drop_path(x) if hasattr(self, "outer_skip"): if self.concat_skip: x = torch.cat((x, self.outer_skip(residual)), dim=1) x = self.outer_skip_conv(x) else: x = x + self.outer_skip(residual) return x # @torch.jit.ignore # def checkpoint_forward(self, x): # return checkpoint(self._forward, x) # def forward(self, x): # if self.checkpointing: # return self.checkpoint_forward(x) # else: # return self._forward(x) class FourierNeuralOperatorNet(nn.Module): def __init__( self, params, spectral_transform="sht", filter_type="non-linear", img_size=(721, 1440), scale_factor=16, in_chans=2, out_chans=2, embed_dim=256, num_layers=12, mlp_mode="none", mlp_ratio=2.0, drop_rate=0.0, drop_path_rate=0.0, num_blocks=16, sparsity_threshold=0.0, normalization_layer="instance_norm", hard_thresholding_fraction=1.0, use_complex_kernels=True, big_skip=True, compression=None, rank=128, complex_network=True, complex_activation="real", spectral_layers=3, laplace_weighting=False, checkpointing=False, ): super(FourierNeuralOperatorNet, self).__init__() self.params = params self.spectral_transform = ( params.spectral_transform if hasattr(params, "spectral_transform") else spectral_transform ) self.filter_type = ( params.filter_type if hasattr(params, "filter_type") else filter_type ) self.img_size = (params.img_crop_shape_x, params.img_crop_shape_y) self.scale_factor = ( params.scale_factor if hasattr(params, "scale_factor") else scale_factor ) self.in_chans = ( params.N_in_channels if hasattr(params, "N_in_channels") else in_chans ) self.out_chans = ( params.N_out_channels if hasattr(params, "N_out_channels") else out_chans ) self.embed_dim = self.num_features = ( params.embed_dim if hasattr(params, "embed_dim") else embed_dim ) self.num_layers = ( params.num_layers if hasattr(params, "num_layers") else num_layers ) self.num_blocks = ( params.num_blocks if hasattr(params, "num_blocks") else num_blocks ) self.hard_thresholding_fraction = ( params.hard_thresholding_fraction if hasattr(params, "hard_thresholding_fraction") else hard_thresholding_fraction ) self.normalization_layer = ( params.normalization_layer if hasattr(params, "normalization_layer") else normalization_layer ) self.mlp_mode = params.mlp_mode if hasattr(params, "mlp_mode") else mlp_mode self.big_skip = params.big_skip if hasattr(params, "big_skip") else big_skip self.compression = ( params.compression if hasattr(params, "compression") else compression ) self.rank = params.rank if hasattr(params, "rank") else rank self.complex_network = ( params.complex_network if hasattr(params, "complex_network") else complex_network ) self.complex_activation = ( params.complex_activation if hasattr(params, "complex_activation") else complex_activation ) self.spectral_layers = ( params.spectral_layers if hasattr(params, "spectral_layers") else spectral_layers ) self.laplace_weighting = ( params.laplace_weighting if hasattr(params, "laplace_weighting") else laplace_weighting ) self.checkpointing = ( params.checkpointing if hasattr(params, "checkpointing") else checkpointing ) # compute downsampled image size self.h = self.img_size[0] // self.scale_factor self.w = self.img_size[1] // self.scale_factor # dropout self.pos_drop = nn.Dropout(p=drop_rate) if drop_rate > 0.0 else nn.Identity() dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.num_layers)] # pick norm layer if self.normalization_layer == "layer_norm": norm_layer0 = partial( nn.LayerNorm, normalized_shape=(self.img_size[0], self.img_size[1]), eps=1e-6, ) norm_layer1 = partial( nn.LayerNorm, normalized_shape=(self.h, self.w), eps=1e-6 ) elif self.normalization_layer == "instance_norm": norm_layer0 = partial( nn.InstanceNorm2d, num_features=self.embed_dim, eps=1e-6, affine=True, track_running_stats=False, ) norm_layer1 = norm_layer0 # elif self.normalization_layer == "batch_norm": # norm_layer = partial(nn.InstanceNorm2d, num_features=self.embed_dim, eps=1e-6, affine=True, track_running_stats=False) else: raise NotImplementedError( f"Error, normalization {self.normalization_layer} not implemented." ) # ENCODER is just an MLP? encoder_hidden_dim = self.embed_dim encoder_act = nn.GELU # encoder0 = nn.Conv2d(self.in_chans, encoder_hidden_dim, 1, bias=True) # encoder1 = nn.Conv2d(encoder_hidden_dim, self.embed_dim, 1, bias=False) # encoder_act = nn.GELU() # self.encoder = nn.Sequential(encoder0, encoder_act, encoder1, norm_layer0()) self.encoder = MLP( in_features=self.in_chans, hidden_features=encoder_hidden_dim, out_features=self.embed_dim, output_bias=False, act_layer=encoder_act, drop_rate=0.0, checkpointing=checkpointing, ) # self.input_encoding = nn.Conv2d(self.in_chans, self.embed_dim, 1) # self.pos_embed = nn.Parameter(torch.zeros(1, self.pos_embed_dim, self.img_size[0], self.img_size[1])) self.pos_embed = nn.Parameter( torch.zeros(1, self.embed_dim, self.img_size[0], self.img_size[1]) ) # prepare the SHT modes_lat = int(self.h * self.hard_thresholding_fraction) modes_lon = int((self.w // 2 + 1) * self.hard_thresholding_fraction) if self.spectral_transform == "sht": self.trans_down = harmonics.RealSHT( *self.img_size, lmax=modes_lat, mmax=modes_lon, grid="equiangular" ).float() self.itrans_up = harmonics.InverseRealSHT( *self.img_size, lmax=modes_lat, mmax=modes_lon, grid="equiangular" ).float() self.trans = harmonics.RealSHT( self.h, self.w, lmax=modes_lat, mmax=modes_lon, grid="legendre-gauss" ).float() self.itrans = harmonics.InverseRealSHT( self.h, self.w, lmax=modes_lat, mmax=modes_lon, grid="legendre-gauss" ).float() # we introduce some ad-hoc rescaling of the weights to aid gradient computation: sht_rescaling_factor = 1e5 self.trans_down.weights = self.trans_down.weights * sht_rescaling_factor self.itrans_up.pct = self.itrans_up.pct / sht_rescaling_factor self.trans.weights = self.trans.weights * sht_rescaling_factor self.itrans.pct = self.itrans.pct / sht_rescaling_factor elif self.spectral_transform == "fft": self.trans_down = RealFFT2( *self.img_size, lmax=modes_lat, mmax=modes_lon ).float() self.itrans_up = InverseRealFFT2( *self.img_size, lmax=modes_lat, mmax=modes_lon ).float() self.trans = RealFFT2( self.h, self.w, lmax=modes_lat, mmax=modes_lon ).float() self.itrans = InverseRealFFT2( self.h, self.w, lmax=modes_lat, mmax=modes_lon ).float() else: raise (ValueError("Unknown spectral transform")) self.blocks = nn.ModuleList([]) for i in range(self.num_layers): first_layer = i == 0 last_layer = i == self.num_layers - 1 forward_transform = self.trans_down if first_layer else self.trans inverse_transform = self.itrans_up if last_layer else self.itrans inner_skip = "linear" if 0 < i < self.num_layers - 1 else None outer_skip = "identity" if 0 < i < self.num_layers - 1 else None mlp_mode = self.mlp_mode if not last_layer else "none" if first_layer: norm_layer = (norm_layer0, norm_layer1) elif last_layer: norm_layer = (norm_layer1, norm_layer0) else: norm_layer = (norm_layer1, norm_layer1) block = FourierNeuralOperatorBlock( forward_transform, inverse_transform, self.embed_dim, filter_type=self.filter_type, mlp_ratio=mlp_ratio, drop_rate=drop_rate, drop_path=dpr[i], norm_layer=norm_layer, sparsity_threshold=sparsity_threshold, use_complex_kernels=use_complex_kernels, inner_skip=inner_skip, outer_skip=outer_skip, mlp_mode=mlp_mode, compression=self.compression, rank=self.rank, complex_network=self.complex_network, complex_activation=self.complex_activation, spectral_layers=self.spectral_layers, checkpointing=self.checkpointing, ) self.blocks.append(block) # DECODER is also an MLP decoder_hidden_dim = self.embed_dim decoder_act = nn.GELU # decoder0 = nn.Conv2d(self.embed_dim + self.big_skip*self.in_chans, decoder_hidden_dim, 1, bias=True) # decoder1 = nn.Conv2d(decoder_hidden_dim, self.out_chans, 1, bias=False) # decoder_act = nn.GELU() # self.decoder = nn.Sequential(decoder0, decoder_act, decoder1) self.decoder = MLP( in_features=self.embed_dim + self.big_skip * self.in_chans, hidden_features=decoder_hidden_dim, out_features=self.out_chans, output_bias=False, act_layer=decoder_act, drop_rate=0.0, checkpointing=checkpointing, ) trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=0.02) # nn.init.normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm) or isinstance(m, FusedLayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def forward_features(self, x): # x = x + self.pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) return x def forward(self, x): # save big skip if self.big_skip: residual = x # encoder x = self.encoder(x) # do positional embedding x = x + self.pos_embed # forward features x = self.forward_features(x) # concatenate the big skip if self.big_skip: x = torch.cat((x, residual), dim=1) # decoder x = self.decoder(x) return x
earth2mip-main
earth2mip/networks/fcnv2/sfnonet.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging _format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" def config_logger(log_level=logging.INFO): logging.basicConfig(format=_format, level=log_level) def log_to_file( logger_name=None, log_level=logging.INFO, log_filename="tensorflow.log" ): if not os.path.exists(os.path.dirname(log_filename)): os.makedirs(os.path.dirname(log_filename)) if logger_name is not None: log = logging.getLogger(logger_name) else: log = logging.getLogger() fh = logging.FileHandler(log_filename) fh.setLevel(log_level) fh.setFormatter(logging.Formatter(_format)) log.addHandler(fh) def log_versions(): import torch import subprocess logging.info("--------------- Versions ---------------") try: logging.info( "git branch: " + str(subprocess.check_output(["git", "branch"]).strip()) ) logging.info( "git hash: " + str(subprocess.check_output(["git", "rev-parse", "HEAD"]).strip()) ) except: pass logging.info("Torch: " + str(torch.__version__)) logging.info("----------------------------------------") class disable_logging(object): def __init__(self, level=logging.ERROR): logging.disable(level=level) def __enter__(self): return self def __exit__(self, type, value, traceback): logging.disable(level=logging.NOTSET)
earth2mip-main
earth2mip/networks/fcnv2/logging_utils.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch # Helper routines for FNOs @torch.jit.script def compl_contract2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: tmp = torch.einsum("bixys,kixyr->srbkxy", a, b) res = torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) return res @torch.jit.script def compl_contract2d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) res = torch.einsum("bixy,kixy->bkxy", ac, bc) return torch.view_as_real(res) @torch.jit.script def compl_contract_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: tmp = torch.einsum("bins,kinr->srbkn", a, b) res = torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) return res @torch.jit.script def compl_contract_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) res = torch.einsum("bin,kin->bkn", ac, bc) return torch.view_as_real(res) @torch.jit.script def compl_ttc1_c_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) res = torch.einsum("jt,bct->jbct", ac, bc) return torch.view_as_real(res) @torch.jit.script def compl_ttc2_c_fwd(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) cc = torch.view_as_complex(c) res = torch.einsum("oi,icj,jbct->bot", ac, bc, cc) return torch.view_as_real(res) def contract_tt(x, w): y = compl_ttc1_c_fwd(w[2], x) return compl_ttc2_c_fwd(w[0], w[1], y) # Helper routines for spherical MLPs @torch.jit.script def compl_mul1d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: tmp = torch.einsum("bixs,ior->srbox", a, b) res = torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) return res @torch.jit.script def compl_mul1d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) resc = torch.einsum("bix,io->box", ac, bc) res = torch.view_as_real(resc) return res @torch.jit.script def compl_muladd1d_fwd( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: res = compl_mul1d_fwd(a, b) + c return res @torch.jit.script def compl_muladd1d_fwd_c( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmpcc = torch.view_as_complex(compl_mul1d_fwd_c(a, b)) cc = torch.view_as_complex(c) return torch.view_as_real(tmpcc + cc) # for the real-valued case: @torch.jit.script def compl_mul1d_fwd_r(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: res = torch.einsum("bix,io->box", a, b) return res @torch.jit.script def compl_muladd1d_fwd_r( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmp = compl_mul1d_fwd_r(a, b) return tmp + c # Helper routines for FFT MLPs @torch.jit.script def compl_mul2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: tmp = torch.einsum("bixys,ior->srboxy", a, b) res = torch.stack( [tmp[0, 0, ...] - tmp[1, 1, ...], tmp[1, 0, ...] + tmp[0, 1, ...]], dim=-1 ) return res @torch.jit.script def compl_mul2d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: ac = torch.view_as_complex(a) bc = torch.view_as_complex(b) resc = torch.einsum("bixy,io->boxy", ac, bc) res = torch.view_as_real(resc) return res @torch.jit.script def compl_muladd2d_fwd( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: res = compl_mul2d_fwd(a, b) + c return res @torch.jit.script def compl_muladd2d_fwd_c( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmpcc = torch.view_as_complex(compl_mul2d_fwd_c(a, b)) cc = torch.view_as_complex(c) return torch.view_as_real(tmpcc + cc) # for the real-valued case: @torch.jit.script def compl_mul2d_fwd_r(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor: res = torch.einsum("bixy,io->boxy", a, b) return res @torch.jit.script def compl_muladd2d_fwd_r( a: torch.Tensor, b: torch.Tensor, c: torch.Tensor ) -> torch.Tensor: tmp = compl_mul2d_fwd_c(a, b) return torch.view_as_real(tmp + c)
earth2mip-main
earth2mip/networks/fcnv2/contractions.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
earth2mip-main
earth2mip/lagged_ensembles/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from collections import deque async def yield_lagged_ensembles( *, observations, forecast, lags: int = 2, n: int = 10, ): """Yield centered lagged ensembles The forecast array has shape (len(observations), n) The ensemble consist of runs initialized with an offset of (-lags, ..., 0, ...lags). The ensemble size is therefore ``2*lags + =`` for points within the interior of the array. Supports running in parallel using the ``rank`` and ``world_size`` flags """ if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() world_size = torch.distributed.get_world_size() else: rank = 0 world_size = 1 # example one. no garbage collection nt = len(observations) assert n < nt # work trackers that will be used to determine when an ensemble is finished, # and ensure that all data is processed finished = set() ensemble = {} obs_buffer = deque([]) for i in range(n + world_size): obs_buffer.append(await observations[i]) n_iter = int(nt // world_size) assert nt % world_size == 0 buffers = None for i0 in range(n_iter): for k in range(world_size): i = world_size * i0 + k if i + n + 1 < nt: obs_buffer.append(await observations[i + n + 1]) i = world_size * i0 + rank nsteps = min(nt - world_size * i0 - 1, n) lead_time = -1 async for y in forecast[i]: lead_time += 1 j = i + lead_time if lead_time > nsteps: break if torch.distributed.is_initialized(): buffers = [torch.empty_like(y) for _ in range(world_size)] # TODO only gather from needed ranks (i - m) torch.distributed.all_gather(buffers, y) if y.device != torch.device("cpu"): cpu_buffers = [ torch.empty_like(b, device="cpu", pin_memory=True) for b in buffers ] for cpu, gpu in zip(cpu_buffers, buffers): cpu.copy_(gpu, non_blocking=True) else: cpu_buffers = buffers else: cpu_buffers = [y] lead_time = j - i # need to loop over ranks to ensure that number of iterations # per rank is the same for r in range(world_size): for m in range(-lags, lags + 1): ii = i0 * world_size + r jj = ii + lead_time if jj >= nt: break # Should this rank process the data or not? i_owner = jj - lead_time - m if i_owner % world_size != rank: continue k = (jj, lead_time + m) store_me = cpu_buffers[r] # ensemble[k][m] ensemble.setdefault(k, {})[m] = store_me # There are two options for this finishing criteria # 1. if it work is not done in the next iteration, then we know # we are done this would be implemented by # # if not done(j, lead_time + m, i + 1): # # 2. if the ensemble has the expected number of members # 2 seems easier to parallelize and less subject to the # looping we take, so is what we do here: expected = num(n=n, ell=lead_time + m, j=jj, L=lags) if jj < nt and len(ensemble[k]) == expected: # sanity check that a single ensemble is not # processed multiple times if k in finished: assert False, k finished.add(k) # need to synchronize to ensure cpu buffers are filled # before yielding the complete ensemble if torch.cuda.is_available(): torch.cuda.synchronize() yield k, ensemble.pop(k), await observations[jj] for _ in range(world_size): obs_buffer.popleft() assert not ensemble, len(ensemble) def num(n, ell, j, L): a = max(ell - j, ell - n, -L) b = min(ell, L) return b - a + 1 def done(j, ell, i, lags, n): """Unused helper function wich says if lag ell and valid_time j are written to in a given iteration `i` of the loop in lagged_average_simple This is one way to implement the done criteria which is less easily parallelized. I am leaving it in the code for educational value only. """ # a = j - i - lags <= ell <= j - i + lags b = n >= j - i >= 0 return a & b
earth2mip-main
earth2mip/lagged_ensembles/core.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # SPDX-FileCopyrightText: All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import concurrent.futures import datetime import logging from functools import partial import argparse import cupy import pandas as pd import torch import xarray from earth2mip import forecasts, _cli_utils from earth2mip.initial_conditions.era5 import HDF5DataSource from earth2mip.datasets.hindcast import open_forecast from earth2mip.lagged_ensembles import core from earth2mip.xarray import metrics from earth2mip.xarray.utils import concat_dict, to_cupy from earth2mip import config # patch the proper scoring imports use_cupy = True if use_cupy: import cupy as np else: import numpy as np logger = logging.getLogger(__name__) async def lagged_average_simple( *, observations, run_forecast, score, lags=2, n=10, ): scores = {} async for (j, l), ensemble, obs in core.yield_lagged_ensembles( observations=observations, forecast=run_forecast, lags=lags, n=n, ): scores.setdefault(j, {})[l] = score(ensemble, obs) return scores def get_times_2018(nt): times = [ datetime.datetime(2018, 1, 1) + k * datetime.timedelta(hours=12) for k in range(nt) ] return times class Observations: def __init__(self, times, pool, data_source, device=None): self.pool = pool self.device = device self.times = times self.data_source = data_source def _get_time(self, time): return self.data_source[time] async def __getitem__(self, i): """ Returns (channel, lat, lon) """ time = self.times[i] logger.debug("Loading %s", time) loop = asyncio.get_running_loop() return await loop.run_in_executor(self.pool, self._get_time, time) def __len__(self): return len(self.times) def score(channel_names, ensemble, obs): """ Args: ensemble: list of (c, ...) obs: (c, ...) Returns:gg (c,) """ import dask dask.config.set(scheduler="single-threaded") obs = to_cupy(obs.drop(["time", "channel"])).assign_coords( time=obs.time, channel=obs.channel ) lat = to_cupy(obs.lat) out = {} ens = torch.stack(list(ensemble.values()), dim=0) coords = {**obs.coords} coords["channel"] = channel_names ensemble_xr = xarray.DataArray( np.asarray(ens), dims=["ensemble", *obs.dims], coords=coords ) # add ensemble dimension # the convention is that ensemble member 0 is the deterministic (i.e. best) # one ensemble_xr = ensemble_xr.assign_coords( ensemble=xarray.Variable(["ensemble"], list(ensemble)) ) ensemble_xr = ensemble_xr.chunk(lat=32) obs = obs.chunk(lat=32) # need to chunk to avoid OOMs pred_align, obs_align = xarray.align(ensemble_xr, obs) with metrics.properscoring_with_cupy(): out = metrics.score_ensemble(pred_align, obs_align, lat=lat) mempool = cupy.get_default_memory_pool() logger.debug( "bytes used: %0.1f\ttotal: %0.1f", mempool.used_bytes() / 2**30, mempool.total_bytes() / 2**30, ) return out def collect_score(score, times) -> pd.DataFrame: """traverse the collected scores and collate into a data frame score[j][l][series] is a DataArray of `series` for valid index `j` and lead time `l` """ # save data with these columns # time,valid_time,model,series,t850,u10m,v10m,t2m,z500,initial_time dt = times[1] - times[0] flat = {} for j in score: for ell in score[j]: for series in score[j][ell]: arr = score[j][ell][series] arr = arr.copy() try: # is a cupy array arr.data = arr.data.get() except AttributeError: # otherwise do nothing pass arr = arr.squeeze() flat[(times[j] - ell * dt, ell * dt, series)] = arr # idx = pd.MultiIndex.from_tuples(list(flat.keys()), names=['initial_time', 'time']) combined = concat_dict(flat, key_names=["initial_time", "time", "series"]) df = combined.to_dataset(dim="channel").to_dataframe().reset_index() df["valid_time"] = df["initial_time"] + df["time"] del df["time"] del df["key"] return df def main(args): """Run a lagged ensemble scoring Can be run against either a fcn model (--model), a forecast directory as output by earth2mip.time_collection (--forecast_dir), persistence forecast (--persistence), or deterministic IFS (--ifs). Saves data as csv files (1 per rank). Examples: torchrun --nproc_per_node 2 --nnodes 1 -m earth2mip.lagged_ensembles --model sfno_73ch --inits 10 --leads 5 --lags 4 """ # noqa times = list(get_times_2018(args.inits)) FIELDS = ["u10m", "v10m", "z500", "t2m", "t850"] pool = concurrent.futures.ThreadPoolExecutor() data_source = HDF5DataSource.from_path(args.data or config.ERA5_HDF5_73) obs = Observations(times=times, pool=pool, data_source=data_source, device="cpu") try: torch.distributed.init_process_group(backend="nccl", init_method="env://") except ValueError: pass rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0 device = torch.device("cuda", rank % torch.cuda.device_count()) if args.model: timeloop = _cli_utils.model_from_args(args, device=device) run_forecast = forecasts.TimeLoopForecast( timeloop, times=times, observations=obs ) elif args.forecast_dir: run_forecast = forecasts.XarrayForecast( open_forecast(args.forecast_dir, group="mean.zarr"), times=times, fields=FIELDS, ) elif args.ifs: # TODO fix this import error # TODO convert ifs to zarr so we don't need custom code from earth2mip.datasets.deterministic_ifs import open_deterministic_ifs run_forecast = forecasts.XarrayForecast(open_deterministic_ifs(args.ifs)) elif args.persistence: run_forecast = forecasts.Persistence else: raise ValueError( "need to provide one of --persistence --ifs --forecast-dir or --model." ) if rank == 0: logging.basicConfig(level=logging.INFO) scores_future = lagged_average_simple( observations=obs, score=partial(score, run_forecast.channel_names), run_forecast=run_forecast, lags=args.lags, n=args.leads, ) with torch.cuda.device(device): scores = asyncio.run(scores_future) df = collect_score(scores, times) path = f"{args.output}.{rank:03d}.csv" print(f"saving scores to {path}") # remove headers from other ranks so it is easy to cat the files df.to_csv(path, header=(rank == 0)) def parse_args(): parser = argparse.ArgumentParser( description="Your CLI description here", usage=main.__doc__ ) parser.add_argument("--data", type=str, help="Path to data file") _cli_utils.add_model_args(parser, required=False) parser.add_argument("--forecast_dir", type=str, help="Path to forecast directory") parser.add_argument("--ifs", type=str, default="", help="IFS parameter") parser.add_argument("--persistence", action="store_true", help="Enable persistence") parser.add_argument("--inits", type=int, default=10, help="Number of inits") parser.add_argument("--lags", type=int, default=4, help="Number of lags") parser.add_argument("--leads", type=int, default=54, help="Number of leads") parser.add_argument("--output", type=str, default=".", help="Output directory") return parser.parse_args() if __name__ == "__main__": args = parse_args() main(args)
earth2mip-main
earth2mip/lagged_ensembles/__main__.py